WO2020042563A1 - 投影屏幕及其制造方法 - Google Patents

投影屏幕及其制造方法 Download PDF

Info

Publication number
WO2020042563A1
WO2020042563A1 PCT/CN2019/076623 CN2019076623W WO2020042563A1 WO 2020042563 A1 WO2020042563 A1 WO 2020042563A1 CN 2019076623 W CN2019076623 W CN 2019076623W WO 2020042563 A1 WO2020042563 A1 WO 2020042563A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
microlens
projection screen
diffusion
Prior art date
Application number
PCT/CN2019/076623
Other languages
English (en)
French (fr)
Inventor
王霖
孙微
胡飞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020042563A1 publication Critical patent/WO2020042563A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens

Definitions

  • the invention relates to a projection screen and a manufacturing method thereof.
  • characteristics such as the gain, viewing angle, contrast, and uniformity of the screen are parameters that evaluate the quality of the screen.
  • a screen used for a projector can reflect both the light of the projector and the light of ambient light.
  • the influence of ambient light also tends to increase, so the contrast of the screen is generally low.
  • a technical solution combining a micro lens and an opening is often used to shield the ambient light.
  • the above-mentioned light shielding structure is mainly used in a transmissive screen, that is, the light source and the audience are located on both sides of the opening, and it is not suitable for a reflective projection screen.
  • the microlens units are usually arranged periodically in the screen, but this arrangement manner easily causes the phenomenon of a certain diffraction or moiré of the reflected light, which may affect the viewing comfort of the audience.
  • the present invention desires to provide a projection screen and a manufacturing method thereof, in which the projection screen has a high utilization rate of projection light, a high contrast resistance to ambient light, a good uniformity of screen brightness, and can eliminate periodic alignment Moiré or diffraction phenomena caused by lenses can ensure better visual effects on the screen.
  • a projection screen including a microlens array composed of a plurality of microlens units and used to focus projection light from a projector; and an optical structure layer including a light absorption layer and a reflection layer
  • the light absorption layer is used to absorb ambient light
  • the reflection layer is used to reflect projection light
  • the reflection layer is disposed on a focal point of the microlens unit, and at least a part of the microlens array is described as
  • the positions of the microlens units are randomly distributed, and / or at least part of the microlens units have a radius of curvature set randomly.
  • the present invention provides a projection screen, including: a microlens array composed of a plurality of microlens units and used to focus the projection light from the projector; and an optical structure layer including a light absorption layer and a reflection layer.
  • the light absorption layer is used to absorb ambient light
  • the reflection layer is used to reflect ambient light
  • a diffusion layer is used to diffuse light from the microlens array to the audience side, wherein the reflection layer is disposed at At the focal point of the microlens unit, the diffusion layer has different diffusion angles in different regions of the projection screen.
  • the present invention provides a method for manufacturing a projection screen, comprising: forming the microlens array on a first surface of a transparent substrate; and coating a second surface of the transparent substrate for forming The reflective material of the reflective layer, wherein the second surface and the first surface are opposite surfaces of the transparent substrate; a portion of the reflective material is cured; the uncured reflective material is removed; A light-absorbing material is filled at a position between the reflective layers on the second surface to form a light-absorbing layer or a light-absorbing material is provided at a position of the reflective layer away from the microlens array to form a light-absorbing layer.
  • the light utilization ratio of the screen can be improved, and at the same time, it has high gain and high contrast.
  • the random deviation of the microlens unit is added to the microlens array of the screen in the present invention, so that the viewing comfort can be improved.
  • the brightness uniformity is compensated by regionally setting the diffusion angle of the diffusion layer.
  • FIG. 1 illustrates the structure of a projection screen in a first embodiment of the present invention.
  • Figures 2a-2c respectively illustrate the structure of the microlens unit in the microlens array as a spherical microlens, a cylindrical microlens, and an ellipsoid microlens.
  • FIG. 3a illustrates the arrangement of microlens units in a conventional microstructure array
  • FIG. 3b illustrates a structure in which a random position deviation is added to the microstructure array in the present invention.
  • 4a-4d illustrate other examples of the random distribution of the positions of the microlens units and the random setting of the radius of curvature in the projection screen of the present invention.
  • FIG. 5 illustrates a case where the light absorbing layer reflects and absorbs ambient light and the reflective layer reflects projection light without the microlens array.
  • 6a-6d illustrate a first method of manufacturing a projection screen in a first embodiment of the present invention.
  • FIG. 7a-7c illustrate a second method of manufacturing a projection screen in a first embodiment of the present invention.
  • FIG. 8 illustrates the structure of a projection screen in a second embodiment of the present invention.
  • FIG. 9 is a diagram illustrating the relationship between Fresnel reflection and incident angle.
  • FIG. 10 illustrates the irradiation situation where the projector is disposed at a position corresponding to the center of the screen.
  • FIG. 11 illustrates light intensity distributions at different Gaussian diffusion angles ⁇ .
  • Figures 12a-12b illustrate gain changes when the horizontal diffusion angle is fixed and the vertical diffusion angle is changed.
  • 13a-13b illustrate how to control the diffusion angle by adjusting the size, shape, and density of the diffusion particles in the bulk diffusion layer.
  • Figures 14a-14b illustrate electron microscope images of surface diffusion layers with diffusion angles of Gaussian G1 * 15 and Gaussian G15 * 15, respectively.
  • FIG. 15 illustrates a way to control the diffusion angle by changing the microstructure of the surface diffusion layer.
  • the projection screen in the first embodiment of the present invention includes a microlens array and an optical structure layer, where the microlens array is used to focus the projection light from the projector, and the optical structure layer includes a vertical direction along the screen ( Hereinafter referred to as the vertical direction, and similarly, the light absorbing layers and the reflective layers are alternately arranged along the horizontal direction of the screen (hereinafter referred to as the horizontal direction).
  • microlens array and the optical structure layer will be described in detail below through FIGS. 2a-2c and FIG. 3, respectively.
  • the reflection layer is disposed on the focal point of the microlens unit, and the reflection layer and the absorption layer are alternately disposed in the horizontal direction and the vertical direction.
  • the structures of Figs. 1 and 2a-2c are only used to illustrate specific embodiments, but are not used to limit the present invention.
  • the reflective layer and the light absorbing layer in the present invention may not be alternately arranged in the horizontal or vertical direction.
  • a light absorbing layer may be provided at a position where the reflective layer is far from the microlens unit.
  • Fig. 2a illustrates a case where the microlens unit in the microlens array is a spherical microlens.
  • the projection light from the projector is converged into a circular spot.
  • the area ratio of the reflective layer in the optical structure layer is the smallest, and a good image contrast can be obtained.
  • the angle of field of view will be narrowed.
  • FIG. 2b illustrates a case where the microlens unit in the microlens array is a cylindrical microlens.
  • the cylindrical microlens since the cylindrical microlens has a certain collimating effect on the reflected light in the vertical direction, but has no collimating effect on the reflected light in the horizontal direction, the viewing angle of the screen in the horizontal direction can be increased.
  • the area ratio of the reflective layer in the screen increases significantly, which will cause the screen's anti-ambient contrast to decrease.
  • the reflective layer is disposed on the focal point of the microlens unit, and the reflective layer and the absorption layer are alternately disposed in the vertical direction.
  • FIG. 2c illustrates a case where the microlens unit in the microlens array is an ellipsoid microlens.
  • the long axis of the ellipsoidal microlens unit extends in the horizontal direction, and the short axis extends in the vertical direction.
  • the radius of curvature in the major axis direction is greater than the radius of curvature in the minor axis direction.
  • the screen structure using the ellipsoid lens can improve the screen's contrast resistance to ambient light.
  • the structure using the ellipsoidal lens can improve the horizontal viewing angle of the screen.
  • the reflection layer is disposed on the focal point of the microlens unit, and the reflection layer and the absorption layer are alternately disposed in the horizontal direction and the vertical direction.
  • the size of each microlens unit in the vertical direction is about 100 ⁇ m.
  • the arrangement of periodically arranging the microlens units is likely to cause a phenomenon of a certain diffraction or moiré of the reflected light, which may affect the viewing comfort of the audience.
  • the present invention adds a random deviation when arranging the microstructure array to improve the quality of reflected light.
  • the positions of at least part of the microlens units can be randomly distributed and / or the radius of curvature of at least part of the microlens units can be randomly set.
  • the random deviation in position in the present invention is not limited to the center position, and the random deviation may be set based on other positions of the microlens unit.
  • the center position coordinate of each microlens unit is (x0, y0),
  • the distance between the center positions of adjacent microlens units in the horizontal direction is a, and the distance in the vertical direction is b.
  • a random position deviation is added to the microstructure array arrangement so that the new microstructure unit center position (x1, y1) meets the definition of formula (1):
  • f (-1,1) represents a probability distribution function with a value between -1 and 1 and a mean value of 0.
  • the probability distribution function may be a normal distribution, a uniform distribution, or other probability distribution functions.
  • the selection of the value n determines the range of the maximum position deviation, which is generally in the range of 5-20.
  • FIG. 3b only shows the random center position deviation of the microlens unit added to the conventional microstructure array, but it is also possible to randomly set the curvature radius of at least part of the microlens unit.
  • the diffraction or moiré effect brought by the periodically arranged microstructure arrays can be eliminated, thereby improving viewing comfort.
  • Figures 4a-4d illustrate other examples of random distribution of microlens unit positions and / or randomly set curvature radii in a projection screen of the present invention.
  • the curvature radius of at least a part of the microlens units in the microlens array is randomly set, that is, the curvature radius of the microlens units in the projection screen is random.
  • an arrangement as shown in FIG. 4b may be adopted, that is, although the curvature radius of each microlens unit is randomly set, the horizontal position of the center of the microlens unit in the same row or column and / Or the vertical positions are on the same line.
  • an arrangement as shown in FIG. 4c may be adopted, that is, although the curvature radii of the microlens units are set to be the same, the center position coordinates (ie, positions) of the microlens units are randomly distributed.
  • an arrangement as shown in FIG. 4d may also be adopted, that is, the curvature radius of at least part of the microlens unit is randomly set, and at the same time, its center position coordinates (ie, positions) have a random distribution.
  • the random distribution of the position of the microlens unit and / or the random setting of the radius of curvature can be adopted in the present invention.
  • the random distribution of the position can be set as a random deviation of the position, or it can be another form of random distribution of the position.
  • FIG. 5 illustrates a case where the light absorbing layer reflects and absorbs ambient light and the reflective layer reflects projection light in a case where the micro lens array is omitted. It is clear from FIG. 5 that the reflective layers and the light absorbing layers are alternately arranged in the vertical direction.
  • the projection light from the projector is focused by the micro lens array to the reflective layer, and then reflected by the reflective layer into the field of view of the audience.
  • Part of the ambient light (ambient light 1) is incident into the light absorption layer and absorbed, and the other part of the ambient light (ambient light 2) ) Is incident on the reflective layer and is reflected. Since the absorption rate of the light absorption layer is not 100%, a part of the ambient light 1 incident on the light absorption layer will also be reflected back to the field of view of the audience.
  • the reflectance r coating of the reflective material forming the reflective layer preferably ranges from 60% or more, and the reflectance r abs of the material of the light absorbing layer preferably ranges from 5% or less.
  • the area ratio of the reflective layer in the optical structure layer is 10%, that is, a% is 10%
  • the reflectance of the reflective material in the reflective layer is 60%
  • the reflectance of the light-absorbing material in the light-absorbing layer is 5%
  • the gain of the projector is about 1.0
  • the anti-ambient contrast is about 10.
  • the reflective layer is disposed on the focal point of the microlens unit, it can be seen from the above formula (2) that the projection light is focused on the reflective layer by the microlens array by using a combination of the microlens array and the optical structure layer
  • the upper layer is reflected by the reflective layer, which can not only improve the utilization ratio of the projected light, but also obtain a good effect in improving the contrast of ambient light.
  • the anti-ambient light contrast in the screen of the present invention is much higher than the anti-ambient light contrast of the screen in the prior art.
  • the area ratio of the reflective layer in the optical structure layer can be changed.
  • the screen's anti-ambient light contrast is adjusted, and the horizontal viewing angle of the screen is adjusted to a certain extent.
  • the projection light is only incident on the reflection layer, and most of the ambient light is absorbed by the light absorption layer, which can improve the screen's light utilization rate and the resistance to ambient light contrast.
  • the screen in the present invention can have high gain and high contrast while ensuring the utilization ratio of the projection light.
  • microlens array is made by hot embossing.
  • organic materials such as PC (polycarbonate), PET, acrylic plastic, or PMMA, which have good light transmittance, can be used.
  • a reflective layer is formed on the other surface of the transparent substrate.
  • the light-concentrating effect of the microlens array is used, and the principle of selective light curing is adopted.
  • the reflective material is adhered to the other surface of the transparent substrate through photosensitive glue, and then cured by a curing light source to form a reflective layer.
  • the white reflective material is made of reflective particles, diffusion particles, negative photoresist, adhesive glue, and other auxiliary materials.
  • the reflective particles may be reflective particles such as mica, titanium dioxide (TiO 2 ), aluminum silver paste, etc., and the reflectance thereof is 60% or more.
  • the diffusion particles may be organic resin particles such as epoxy-based, acrylic-based, or silicone-based, or other inorganic scattering materials.
  • the negative photoresist may be a polycinnamic acid system or a cyclized rubber system.
  • auxiliary materials include: leveling agents, wetting agents and defoamers mixed in a certain proportion to increase the coating effect, such as anhydrous acetone, anhydrous xylene, Anhydrous cyclohexanone, anhydrous methyl ethyl ketone, a mixture of ethyl acetate and anhydrous ethyl acetate.
  • the curing light source may be an X-ray, an electron or atomic beam, and a UV lamp.
  • the position of the curing light source for curing the reflective material should coincide with the actual use position of the projector as much as possible.
  • the curing light source can choose blue light with a wavelength range between 430nm-460nm or ultraviolet light with a wavelength range below 400nm, and cooperate with the use of photosensitive glue with a corresponding wavelength range.
  • the white reflective paint contains a negative photoresist, the areas that are not exposed to light can be dissolved after being processed by the developing solution, and finally a reflective layer is formed.
  • a black light-absorbing material is filled at a position where the reflective layer is not formed on the surface of the transparent substrate.
  • the light absorbing material can be produced by adding an organic dye (aniline black, etc.) and an inorganic pigment (for example, carbon black, graphite, metal oxide, etc.) to the glue.
  • the prepared black light-absorbing material is filled between the reflective layers, and the light-absorbing material is cured by a photo-curing or heat-curing method to form a light-absorbing layer.
  • a light-absorbing material may be provided directly at a position of the reflective layer away from the microlens unit, and the light-absorbing material may be cured by a photo-curing or thermal curing method to form a light-absorbing layer.
  • the projection screen in the present invention can be manufactured.
  • the projection screen in the first embodiment of the present invention can also be manufactured according to the second manufacturing method shown in FIG. 7.
  • This second manufacturing method differs from the first manufacturing method only in that, by using a positive photoresist photo-curing process, the order of the above steps (2) and (3) is reversed.
  • a positive photoresist is added to a black light-absorbing material, and then uniformly coated on a surface of a transparent substrate opposite to the surface on which the microlens structure is formed.
  • the light beam is focused through the micro lens array to irradiate the surface of the black light-absorbing material.
  • the light-absorbing material that has been irradiated can be dissolved after being processed by the developer, and then cleaned and removed, leaving no The light-irradiated part forms a light-absorbing layer.
  • a portion between the light absorbing layers is filled with a reflective material for forming a reflective layer, so as to obtain an optical structure layer structure in which the reflective layer and the light absorbing layer are alternately disposed.
  • FIG. 8 illustrates a configuration diagram of a second embodiment of a projection screen in the present invention.
  • the projection screen in the second embodiment of the present invention includes a micro lens array and an optical structure layer, wherein the micro lens array is used to focus the projection light from the projector, and the optical structure layer includes a vertical direction along the screen.
  • the light absorption layers and the reflection layers are alternately arranged. It should be noted that the reflection layers and the light absorption layers in the present invention may not be alternately arranged in the horizontal or vertical direction. For example, a light absorbing layer may be provided at a position where the reflective layer is far from the microlens unit.
  • the projection screen in this second embodiment is further provided with a diffusion layer on the light exit side of the projection screen, and the diffusion layer is used to diffuse the light from the microlens array, thereby increasing the viewing angle of the audience.
  • the projected light is focused on the reflective layer through the micro lens array, and then the reflected light passes through the micro lens array and is incident on the diffusion layer, and diffuses to the audience side through the diffusion layer.
  • ⁇ i and ⁇ t are the angle of incident light and the angle of refracted light, respectively.
  • FIG. 9 is a relationship diagram between Fresnel reflection and incident angle obtained according to formula (3). According to FIG. 9, the smaller the angle of incident light, the smaller the Fresnel reflection, and the lower the loss caused by Fresnel reflection (hereinafter also referred to as Fresnel loss).
  • FIG. 10 illustrates a case where the projector is disposed at a position corresponding to the center of the screen.
  • the angle of incident light at the center of the screen is small, while the angle of incidence at the edge of the screen is large.
  • the Fresnel reflection and the angle of incidence in Figure 9 it can be seen that the Fresnel loss at the center of the screen is small, but the Fresnel loss at the edges is large. This will cause poor uniformity of the screen brightness and affect the viewing of the screen. effect.
  • FIG. 11 is the light intensity distribution at different Gaussian diffusion angles ⁇ obtained according to formula (4), where ⁇ 1 ⁇ 2 ⁇ 3, so it can be seen that as the Gaussian diffusion angle ⁇ increases, the peak brightness gradually decreases.
  • an elliptical Gaussian diffusion layer with different diffusion angles in the horizontal and vertical directions is generally used in the screen, that is, the diffusion layer has a large diffusion angle in the horizontal direction and a small diffusion angle in the vertical direction.
  • the diffusion angle of the diffusion layer is set regionally, a diffusion layer with a larger diffusion angle is set at a position with high brightness in the screen, and the screen brightness A diffusion layer having a smaller diffusion angle is provided at a lower position. Therefore, in the present invention, by making the diffusion layer have different diffusion angles in different regions of the screen, the reflected light reflected by the screen can have a uniform brightness distribution. In other words, in a region where the incident angle of the projection light on the screen is smaller, the diffusion angle of the diffusion layer is larger, so that the entire brightness of the screen is uniform.
  • the present invention selects a diffusion layer with an elliptical Gaussian distribution.
  • Figures 12a-12b show gain changes when the horizontal diffusion angle is fixed and the vertical diffusion angle is changed.
  • FIG. 12a when the horizontal diffusion angle is fixed at 15 ° and 20 °, and the vertical diffusion angle is changed from 1 ° to 15 °, the screen gain gradually decreases as the vertical diffusion angle increases.
  • FIG. 12b the horizontal viewing angle of the screen does not change with the vertical diffusion angle of the diffusion layer.
  • the diffusion layer used in the present invention may be selected from a common body diffusion layer, a surface diffusion layer, a regular surface scattering film, or a regular microlens array shape thin film.
  • one of the diffusion layers may be used alone, or a combination of the above three or two types of diffusion layers may be used in superposition. Any method of use can increase the viewing angle of the screen.
  • the bulk diffusion layer is mainly composed of a transparent substrate, a diffusion layer, and an anti-blocking layer.
  • the diffusion particles in the bulk diffusion layer mainly play a role of uniformly diffusing light.
  • the diffusion particles may be organic polymer particles or inorganic particles.
  • the organic polymer particles may include PMMA particles, PS particles, and the like, and the inorganic particles may include SiO 2 particles, TiO 2 particles, and the like.
  • the size, shape, and dispersion density of the diffusion particles in the bulk diffusion layer can be adjusted to control the diffusion angle of the bulk diffusion layer.
  • only the size, density, or shape of the diffusion particles can be adjusted individually, or they can be mixed and set, that is, at least one of the size, density, and shape of the diffusion particles can be adjusted, so that the reflected light has a uniform brightness distribution To improve the brightness uniformity of the screen.
  • a surface diffusion layer may be used in the present invention.
  • Figures 14a-14b illustrate electron microscope images of surface diffusion layers with diffusion angles of Gaussian G1 * 15 and Gaussian G15 * 15, respectively. Referring to the microstructures in the surface diffusion layer in Figs. 14a-14b, the size of the diffusion angle is inversely proportional to the sparseness and size of the microstructures in the surface diffusion layer. The smaller the diffusion angle.
  • the brightness uniformity of the screen can be improved by changing the size and density of the microstructure of the diffusion layer.
  • the method for improving the brightness uniformity of the screen by changing the diffusion angle of the diffusion layer is not limited to the adjustment method described above for the body diffusion layer and the surface diffusion layer, and can make different areas of the screen have different diffusion angles to improve the diffusion of brightness uniformity.
  • the layer arrangement mode should be considered to be within the scope of the inventive concept of the present invention.
  • the projection light is incident only on the reflection layer, and most of the ambient light Absorbed by the light absorbing layer, thereby improving the light utilization efficiency of the screen.
  • the screen in the present invention can have high gain and high contrast while ensuring the utilization ratio of the projection light.
  • the random distribution of the positions of the microlens units and / or the random setting of the radius of curvature are added to the microlens array, the diffraction or moiré effect that may be caused by the periodic microstructure is eliminated, thereby improving viewing comfort.
  • the uniformity of brightness can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种投影屏幕,其包括:微透镜阵列,其由多个微透镜单元构成,并用于聚焦来自投影机的投影光线;以及光学结构层,包括由吸光层和反射层,吸光层用于吸收环境光线(1),反射层用于反射投影光线,反射层设置在微透镜单元的焦点上,微透镜阵列的至少部分微透镜单元的位置随机分布,且/或至少部分微透镜单元具有随机设置的曲率半径。

Description

投影屏幕及其制造方法 技术领域
本发明涉及一种投影屏幕及其制造方法。
背景技术
在投影显示系统中,屏幕的增益、可视角、对比度、均匀性等特性是评价屏幕性能好坏的参数。
一般来说,用于投影机的屏幕既能反射投影机的光线也能反射环境光的光线。在现有技术中,当提高屏幕增益时,环境光的影响也往往增加,因此屏幕的对比度通常来说会很低。
在使用液晶显示面板的屏幕中,为了提高屏幕的对比度,并减少屏幕对于环境光的反射,经常采用微透镜与开孔相结合的技术方案来遮蔽环境光。但上述遮光结构主要应用于透射式的屏幕中,即光源和观众位于开孔的两侧,不适用于反射式的投影屏幕。
在现有技术中,通常在屏幕中周期性地排列微透镜单元,但该排列方式容易造成反射光产生一定的衍射或者摩尔纹的现象,从而会影响观众的观看舒适度。
发明内容
为解决上述课题,本发明期望提供一种投影屏幕及其制造方法,其中,该投影屏幕对投影光线的利用率高、抗环境光对比度高且屏幕亮度均匀性好,而且能够消除周期性排列微透镜而造成的摩尔纹或衍射现象,从而能够保证屏幕具有较佳的视觉效果。
在本发明的第一方面提供一种投影屏幕,其包括:微透镜阵列,其由多个微透镜单元构成,并用于聚焦来自投影机的投影光线;以及光学结构层,包括吸光层和反射层,其中,所述吸光层用于吸收环境光线,所述反射层用于反射投影光线,其中,所述反射层设置在所述微透镜单元的焦点上,所述微透镜阵列的至少部分所述微透镜单元的位置随机分布,且/或至少部分所述微透镜单元具有随机设置的曲率半径。
另一方面,本发明提供一种投影屏幕,其包括:微透镜阵列,其由 多个微透镜单元构成,并用于聚焦来自投影机的投影光线;以及光学结构层,包括吸光层和反射层其中,所述吸光层用于吸收环境光线,所述反射层用于反射环境光线;以及扩散层,其用于使来自所述微透镜阵列的光扩散到观众侧,其中,所述反射层设置在所述微透镜单元的焦点上,所述扩散层在所述投影屏幕的不同区域中具有不同的扩散角度。
另一方面,本发明提供一种制造投影屏幕的方法,其包括:在透明基材的第一表面上形成所述微透镜阵列;在所述透明基材的第二表面上涂布用于形成所述反射层的反射材料,其中,所述第二表面与所述第一表面为所述透明基材的相反表面;固化部分所述反射材料;去除未经固化的所述反射材料;在所述第二表面上所述反射层之间的位置处,填充吸光材料,以形成吸光层或在所述反射层远离所述微透镜阵列的位置处设置吸光材料以形成吸光层。
在本发明中,通过对微透镜阵列和反射层的设计,能够提高屏幕的光线利用率,同时具有高增益和高对比度。
此外,本发明中屏幕的微透镜阵列中增加了微透镜单元的随机偏差,从而能够提高观看的舒适度。
另外,在本发明中,根据投影屏幕的本身特性,通过对扩散层的扩散角度进行区域性设置来实现亮度均匀性的补偿。
附图说明
图1是说明本发明第一实施例中投影屏幕的结构。
图2a-2c分别说明了微透镜阵列中的微透镜单元为球形微透镜、柱状微透镜和椭球微透镜的结构。
图3a说明常规微结构阵列中微透镜单元的布置方式,且图3b说明本发明中在微结构阵列的基础上加入随机位置偏差的结构。
图4a-4d说明了本发明的投影屏幕中微透镜单元位置随机分布和随机设置曲率半径的其他示例。
图5在省略微透镜阵列的情况下说明吸光层反射和吸收环境光以及反射层反射投影光的情况。
图6a-6d说明本发明第一实施例中投影屏幕的第一制造方法。
图7a-7c说明本发明第一实施例中投影屏幕的第二制造方法。
图8说明本发明第二实施例中投影屏幕的结构。
图9是说明菲涅尔反射与入射角度之间关系的图示。
图10说明投影机设置在对应于屏幕中心位置处的照射情况。
图11说明不同高斯扩散角度σ下的光强分布。
图12a-12b说明在固定水平扩散角度并改变竖直扩散角度时的增益变化。
图13a-13b说明通过调节体扩散层中扩散粒子的大小、形状以及密度以控制扩散角度的方式。
图14a-14b说明扩散角度分别为高斯G1*15和高斯G15*15的面扩散层的电镜图像。
图15说明通过改变面扩散层微结构来控制扩散角度的方式。
具体实施方式
下面,将参照附图详细说明根据本发明的各具体实施例。需要强调的是,附图中的所有尺寸仅是示意性的并且不一定是按照真实比例图示的,因而不具有限定性。例如,应当理解,图示中的扩散层、微透镜阵列、光学结构层等组件的尺寸、比例等参数并不是按照实际的尺寸和比例示出的,仅是为了图示方便,但不是用于限定本发明的具体范围。
第一实施例
如图1所示,本发明第一实施例中的投影屏幕包括微透镜阵列和光学结构层,其中微透镜阵列用于聚焦来自投影机的投影光线,光学结构层包括沿着屏幕竖直方向(在下文称为竖直方向,同理,沿着屏幕的水平方向在下文中称为水平方向)上交替排布的吸光层和反射层。
在下文中将分别通过图2a-2c和图3详细描述微透镜阵列和光学结构层。
从图2a可以看出,反射层设置在微透镜单元的焦点上,且反射层与 吸收层在水平方向和竖直方向上都是交替设置的。然而,图1和图2a-2c的结构仅用于说明具体实施例,但并不用于限定本发明。需要说明的是,本发明中的反射层和吸光层也可以不在水平或垂直方向上交替排布。例如,可以在反射层远离微透镜单元的位置处设置吸光层。
图2a说明了微透镜阵列中的微透镜单元为球形微透镜的情况。在图2a中,来自投影机的投影光线被会聚成圆形的光斑。在这种情况下,反射层在光学结构层中的面积占比最小,能够获得较好的图像对比度。但是由于通过反射层反射的光在水平和竖直方向上都会被球形微透镜准直并返回到观众的视场,因此会造成视场角度偏窄。
图2b说明了微透镜阵列中的微透镜单元为柱状微透镜的情况。在图2b中,由于柱状微透镜对于竖直方向的反射光具有一定的准直作用,而对水平方向的反射光没有准直作用,因此可以增大屏幕在水平方向视角。但是在此情况下,反射层在屏幕中的面积占比明显增加,会导致屏幕的抗环境光对比度降低。
从图2b可以看出,反射层设置在微透镜单元的焦点上,且反射层与吸收层在竖直方向上是交替设置。
图2c说明了微透镜阵列中的微透镜单元为椭球微透镜的情况。在图2b中,椭球微透镜单元的长轴沿着水平方向延伸,短轴沿着竖直方向延伸。长轴方向的曲率半径大于短轴方向的曲率半径。与采用柱面透镜的结构相比,采用该椭球透镜的屏幕结构能够提高屏幕的抗环境光对比度。与采用球透镜的结构相比,采用该椭球透镜的结构能够提高屏幕的水平观看视角。
从图2c可以看出,反射层设置在微透镜单元的焦点上,且反射层与吸收层在水平方向和竖直方向上都是交替设置的。
在本发明中,每一微透镜单元在竖直方向上的尺寸约为100μm。
然而,在上述三种微透镜阵列结构中,周期性地排列微透镜单元的排列方式容易造成反射光产生一定的衍射或者摩尔纹的现象,从而会影响观众的观看舒适度。
为解决上述问题,本发明在布置微结构阵列时加入随机偏差,改善 反射光线的质量。例如,在本发明的微结构阵列中,可以使至少部分微透镜单元的位置随机分布和/或随机设置至少部分微透镜单元的曲率半径。
在下文中虽然通过图3a和图3b说明了使至少部分微透镜单元的中心位置具有随机偏差,但也可以采用随机偏差之外的其他随机分布方式。
而且本发明中位置方面的随机偏差并不限于中心位置,也可以以微透镜单元的其他位置为基准设置随机偏差。
如图3a所示,假设在常规的微结构阵列中(即在微透镜单元的中心位置不具有随机偏差的微结构阵列中),每一微透镜单元的中心位置坐标为(x0,y0),相邻微透镜单元的中心位置在水平方向上的间距为a,且在竖直方向上的间距为b。
在本发明中,如图3b所示,在该微结构阵列排布的基础上加入随机的位置偏差,使得新的微结构单元中心位置(x1,y1),满足公式(1)的定义:
x1=x0+a/n*f(-1,1),y1=y0+b/n*f(-1,1)  (1)
其中,f(-1,1)表示取值在-1到1之间且均值为0的概率分布函数。该概率分布函数可以是正态分布、均匀分布或者其他概率分布函数。数值n的选取决定了位置偏差最大的范围,一般在5-20的范围内。
需要说明的是,图3b仅示出了在常规微结构阵列中加入微透镜单元的随机中心位置偏差,但同样可以随机设定至少部分微透镜单元的曲率半径。通过上述微透镜单元的随机分布和随机设置,能够消除周期性布置的微结构阵列带来的衍射或者摩尔纹效果,从而提高观看的舒适性。
图4a-4d说明了本发明的投影屏幕中微透镜单元位置的随机分布和/或随机设置的曲率半径的其他示例。
如图4a所示,随机设置微透镜阵列中至少部分微透镜单元的曲率半径,即投影屏幕中微透镜单元的曲率半径是随机的。
除上述布置之外,还可以采用如图4b所示的布置,即虽然每个微透镜单元的曲率半径为随机设置,但布置在同一行或同一列中的微透镜单 元中心的水平位置和/或竖直位置位于同一直线上。
除上述布置之外,还可以采用如图4c所示的布置,即虽然微透镜单元的曲率半径设置为相同,但微透镜单元的中心位置坐标(即位置)随机分布。
除上述布置之外,还可以采用如图4d所示的布置,即至少部分微透镜单元的曲率半径为随机设置,同时其中心位置坐标(即位置)具有随机分布。
如图4a-4b所示的布置同样能够消除周期性布置的微结构阵列带来的衍射或者摩尔纹效果。
根据上述内容可知,本发明中可以采用微透镜单元位置的随机分布和/或曲率半径的随机设置。在本发明同时具有微透镜单元位置的随机分布和曲率半径随机设置的情况下,位置的随机分布可以设置为位置的随机偏差,也可以是其他形式的位置随机分布。
图5示出了在省略微透镜阵列的情况下,吸光层反射和吸收环境光且反射层反射投影光的情况。从图5可以清楚看出,反射层和吸光层在竖直方向上交替布置。
来自投影机的投影光经微透镜阵列聚焦到反射层,然后被反射层反射到观众视场中,一部分环境光线(环境光线1)入射到吸光层中被吸收,另一部分环境光线(环境光线2)入射在反射层上被反射。由于吸光层的吸收率不是百分之百,入射到吸光层中的一部分环境光线1也会被反射回观众视场。
下面,结合图5来说明本发明的屏幕中用于提高对比度的原理。
在本发明中,形成反射层的反射材料的反射率r coating优选范围为60%以上,且吸光层的材料反射率r abs优选范围为5%以下。投影光线被微透镜阵列会聚到反射层上后,大部分投影光都被反射层所反射。根据本发明中设计的反射层尺寸,如果环境光线中有a%的环境光线直接入射在反射层上,而另外(1-a%)的环境光线被吸光层所反射,则屏幕的抗环境光对比度根据下述公式(1)计算:
Figure PCTCN2019076623-appb-000001
如果反射层在光学结构层中的面积占比为10%,即a%为10%,反射层中的反射材料的反射率为60%,且吸光层中的吸光材料的反射率为5%,且投影机的增益在1.0左右,那么抗环境光对比度约为10。
此外,由于反射层设置在微透镜单元的焦点上,从上述公式(2)中可看出,通过采用微透镜阵列与光学结构层相结合的方式,使投影光线被微透镜阵列会聚到反射层上并被反射层所反射,不仅可以提高投影光线的利用率,在提高抗环境光对比度方面也能获得良好的效果。本发明的屏幕中的抗环境光对比度远高于现有技术中屏幕的抗环境光对比度。
由于反射层设置在微透镜单元的焦点上,改变微透镜阵列的结构(即在微结构阵列中加入微透镜单元的随机中心位置偏差),可以改变反射层在光学结构层中的面积占比,从而调节屏幕的抗环境光对比度,并且在一定程度上调节屏幕的水平方向视角。
此外,通过对微透镜阵列和反射层的设计,使投影光只入射在反射层上,而环境光线大部分被吸光层吸收,从而能够提高屏幕的光线利用率和抗环境光对比度。基于此,本发明中的屏幕能够在保证投影光线利用率的同时,具有高增益和高对比度。
下面,参考图6说明本发明第一实施例中投影屏幕的第一制造方法。
(1)在透明基材的该表面上涂覆一定厚度的胶水,然后采用结构转印并配合UV光固化法,在透明基材表面上形成微透镜阵列,或者直接在透明基材表面上以热压印的方式制作微透镜阵列。
透明基材可以使用透光性好的PC(聚碳酸酯)、PET、丙烯酸塑料或者PMMA等有机材料。
(2)在透明基材的另一个表面上制作反射层。
首先利用微透镜阵列的聚光效应,采用选择性光固化原理,通过感光胶水将反射材料粘结在透明基材另一个表面上,然后再使用固化光源进行固化,从而形成反射层。
白色反射材料由反射颗粒、扩散颗粒、负性光刻胶、粘接胶水和其 他辅助原料混合而成。其中,反射颗粒可为云母、二氧化钛(TiO 2)、铝银浆等反射颗粒,其反射率为60%以上。扩散颗粒可以为环氧系、丙烯酸系或者硅酮系等有机树脂颗粒、或者其他无机散射材料。负性光刻胶可为聚肉桂酸系或环化橡胶系。其他辅助原料(助剂和溶剂)包含:以一定比例混合的流平剂、润湿剂与消泡剂等增加涂布效果的混合物,例如以一定比例混合的无水丙酮、无水二甲苯、无水环已酮、无水丁酮、乙酸乙酯和无水醋酸丁醋等的混合物。
还可以将混合好的白色反射材料均匀地涂布在透明基材上,然后与在另一透明基材上制作好的微透镜阵列进行贴合,使用固化光源的光束进行照射。该固化光源可以是X射线、电子或原子光束以及UV灯等。
为了将投影光线尽可能多地引导到反射层,用于固化反射材料的固化光源位置应该跟投影机的实际使用位置尽可能地重合。
通过该构造,固化光源发出的光经过微透镜阵列汇聚后,会形成缩小的光斑。在该光斑照射区域内的感光胶水发生反应,而光斑范围外的胶水不发生反应。固化光源可以选择波长范围在430nm-460nm之间的蓝光或者波长范围在400nm以下的紫外光,并配合使用具有相应波长范围的感光胶水。
由于白色反射涂料中含有负性光刻胶,未被光照到的地方再经过显影液处理之后可被溶解,最终形成反射层。
(3)在制作完成反射层之后,在透明基材的该表面上没有形成有反射层的位置处,填充黑色的吸光材料。该吸光材料可以通过在胶水中加入有机染料(苯胺黑等)及无机颜料(例如炭黑、石墨、金属氧化物等)而制造。
将制好的黑色吸光材料填充在反射层之间,并通过光固化或热固化法对该吸光材料进行固化,从而形成吸光层。
此外也可以直接在反射层远离微透镜单元的位置处设置吸光材料,并通过光固化或热固化法对该吸光材料进行固化,从而形成吸光层
通过上述三个步骤,可制造本发明中的投影屏幕。
然而,本发明第一实施例中的投影屏幕还可以根据如图7所示的第二制造方法来制造。
该第二制造方法不同于第一制造方法之处仅在于,通过采用正性光刻胶光固化工艺,对调上述步骤(2)和步骤(3)的顺序。
即,在第二制造方法中,首先如图7a所示,在黑色吸光材料中加入正性光刻胶,然后均匀涂布在透明基材中与形成有微透镜结构的表面相反的表面上。
然后,如图7b所示,通过微透镜阵列,将光束聚焦,以照射黑色吸光材料的表面,被照射到的吸光材料再经过显影液处理之后可被溶解,然后被清理去除,留下未经光束照射的部分,形成吸光层。
最后,如图7c所示,在吸光层之间的部分中填充用于形成反射层的反射材料,从而得到反射层与吸光层交替设置的光学结构层结构。
第二实施例
图8说明了本发明中投影屏幕的第二实施例的构造示意图。如图8所示,本发明第二实施例中的投影屏幕包括微透镜阵列和光学结构层,其中微透镜阵列用于聚焦来自投影机的投影光线,光学结构层包括沿着屏幕竖直方向上交替排布的吸光层和反射层,需要说明的是,本发明中的反射层和吸光层也可以不在水平或垂直方向上交替排布。例如,可以在反射层远离微透镜单元的位置处设置吸光层。
此外,该第二实施例中的投影屏幕在投影屏幕的光出射侧还设置有扩散层,该扩散层用于使来自微透镜阵列的光扩散,从而增加观众视角。
如图8所示,投影光线通过微透镜阵列聚焦到反射层上,而后被反射的光穿过微透镜阵列入射到扩散层上,并通过扩散层扩散到观众侧。
下面结合图9-图12b说明通过扩散层能够提高屏幕的亮度均匀性的原理。
当光以一定角度从空气入射到介质表面的时候会发生菲涅尔反射,其中,屏幕外侧表面对于水平偏振光和垂直偏振光的反射率分别为R //和R ,该反射率R //和R 分别通过下述公式(3)计算得出:
Figure PCTCN2019076623-appb-000002
其中θ i和θ t分别为入射光线角度和折射光线角度。
而对于通常情况下没有固定偏振态的投影光线,屏幕表面的反射率为水平反射率R //和垂直反射率R 的平均值。图9是根据公式(3)所得出的菲涅尔反射与入射角度之间的关系图。根据图9可知,入射光线角度越小,菲涅尔反射越小,由菲涅尔反射造成的损耗(在下文中也简称为菲涅尔损耗)也越低。
在将投影机看作点光源的情况下,投影光线入射在屏幕的不同位置上的角度是不同的。图10说明了投影机设置在对应于屏幕中心位置处的情况。在该情况下,屏幕中心的入射光线角度小,而屏幕边缘的入射角度较大。根据图9中菲涅尔反射与入射角度的关系可知,屏幕中心位置处的菲涅尔损耗小,但边缘处的菲涅尔损耗大,这样将会导致屏幕亮度均匀性差,从而影响屏幕的观看效果。根据扩散层的散射特性,可以得到圆形的高斯散射、椭圆形的高斯散射或者其他散射分布。呈高斯分布的扩散光的光强P(θ)满足下述公式(4),其中θ为扩散层的扩散角度。图11是根据公式(4)所得出的在不同高斯扩散角度σ的光强分布,其中σ1<σ2<σ3,因此可知,随着高斯扩散角度σ的增加,峰值亮度逐渐降低。
Figure PCTCN2019076623-appb-000003
在观看屏幕的实际场景中,通常来说,观众的水平视角较大,且竖直视角较小。因此一般在屏幕中采用在水平方向和竖直方向具有不同扩散角度的椭圆高斯散射分布的扩散层,即该扩散层在水平方向上的扩散角度大,在竖直方向的扩散角度小。
为补偿屏幕表面上出现的上述菲涅尔损耗,在本发明中将扩散层的扩散角度进行区域性设置,在屏幕中亮度高的位置处设置具有较大扩散角度的扩散层,并在屏幕亮度低的位置处设置具有较小扩散角度的扩散层。由此,本发明通过使扩散层在屏幕的不同区域中具有不同的扩散角度,能够使得由屏幕反射的反射光具有均匀的亮度分布。换一种说法, 即是屏幕上的投影光线入射角越小的区域中,扩散层的所述扩散角度越大,以使屏幕整个亮度均匀。
如上所述,由于一般情况下,观众的水平视角较大且竖直视角较小,通常希望屏幕的水平视角满足观看要求,而对竖直视角并没有严格规定。因此为了保证不影响屏幕增益且满足水平视角的观看要求,本发明选择具有椭圆高斯分布的扩散层。
图12a-12b示出了在固定水平扩散角度并改变竖直扩散角度时的增益变化。如图12a所示,将水平扩散角度分别固定为15°和20°,且竖直扩散角度从1°变化到15°时,随着竖直扩散角度的增大,屏幕增益逐渐下降。然而,如图12b所示,屏幕的水平观看视角不会随着扩散层的竖直扩散角变化。
本发明中所使用的扩散层可选择常见的体扩散层、面扩散层、规则面散射膜或规则的微透镜阵列形状的薄膜。在本发明中可以单独使用其中一种扩散层,也可以叠加使用上述三种或两种的组合扩散层,任何使用方法都能够增加屏幕的观看视角。
体扩散层主要由透明基材、扩散层和防粘连层构成,在该体扩散层中的扩散粒子主要起到使光线均匀扩散的作用。该扩散粒子可为有机高分子粒子或无机粒子,其中,有机高分子粒子例如可包括PMMA粒子、PS粒子等,无机粒子可包括SiO 2粒子、TiO 2粒子等。
如图13a-13b所示,可以调节体扩散层中扩散粒子的大小、形状以及分散密度等特性,从而控制体扩散层的扩散角度。在同一体扩散层中,可以单独只调节扩散粒子的大小、密度或形状,也可以混合设置,即调节扩散粒子的大小、密度和形状中的至少一者,从而使得反射光具有均匀的亮度分布,改善屏幕的亮度均匀性。
除了体扩散层,本发明中还可以使用面扩散层。图14a-14b说明扩散角度分别为高斯G1*15和高斯G15*15的面扩散层的电镜图像。参考图14a-14b中面扩散层中微结构,扩散角度的大小与面扩散层中微结构的疏密、尺寸大小成反比,即微结构尺寸越大,扩散角度越小,微结构越稀疏,扩散角度越小。
因此,如图15所示,对于面散射膜,可以通过改变扩散层微结构的尺寸、疏密来提高屏幕的亮度均匀性。
但通过改变扩散层的扩散角度来提高屏幕亮度均匀性的方法不限于上述针对体扩散层和面扩散层所述的调节方式,能够使得屏幕的不同区域具有不同扩散角度从而提高亮度均匀性的扩散层设置方式都应当认为属于本发明的发明构思范围内。
除了关于扩散层的相关描述,第二实施例中屏幕的其他结构和制造方法与第一实施例中所记载的相同。
通过上述本发明中第一和第二实施例中屏幕的结构和制造方法可知,本发明中通过对微透镜阵列和反射层的设计,使投影光只入射在反射层上,而环境光线大部分被吸光层吸收,从而能够提高屏幕的光线利用率。基于此,本发明中的屏幕能够在保证投影光线利用率的同时,具有高增益和高对比度。
另外,由于在微透镜阵列中增加了微透镜单元位置的随机分布和/或曲率半径的随机设置,消除周期性微结构可能带来的衍射或者摩尔纹效果,从而提高观看的舒适性。
此外,在第二实施例中,由于在屏幕的不同区域中设置具有不同扩散角度的扩散层,从而能够提高亮度均匀性。
本领域技术人员应当理解,依据设计要求和其他因素,可以在本发明随附的权利要求或其等同物的范围内进行各种修改、组合、次组合以及改变。

Claims (22)

  1. 一种投影屏幕,其包括:
    微透镜阵列,其由多个微透镜单元构成,并用于聚焦来自投影机的投影光线;以及
    光学结构层,包括吸光层和反射层,其中,所述吸光层用于吸收环境光线,所述反射层用于反射投影光线,
    其中,所述反射层设置在所述微透镜单元的焦点上,
    所述微透镜阵列的至少部分所述微透镜单元的位置随机分布,且/或至少部分所述微透镜单元具有随机设置的曲率半径。
  2. 根据权利要求1所述的投影屏幕,其中,所述吸光层和所述反射层在至少沿着所述投影屏幕的竖直方向上交替排布。
  3. 根据权利要求1所述的投影屏幕,其中,具有所述随机分布的所述微透镜单元的中心位置坐标具有随机偏差,假设所述微透镜单元在中心位置方面不具有随机偏差时的中心位置坐标为(x0,y0),则所述微透镜单元在具有所述随机偏差时的中心位置坐标(x1,y1)根据下述公式定义:
    x1=x0+a/n*f(-1,1),y1=y0+b/n*f(-1,1)
    其中,f(-1,1)表示取值在-1到1之间且均值为0的概率分布函数,n为5-20范围内的数值,a为在所述中心位置方面不具有随机偏差的相邻所述微透镜单元的所述中心位置在水平方向上的间距,b为在所述中心位置方面不具有随机偏差的相邻所述微透镜单元的所述中心位置在竖直方向上的间距。
  4. 根据权利要求3所述的投影屏幕,其中所述概率分布函数为正态分布函数或均匀分布函数。
  5. 根据权利要求1所述的投影屏幕,所述微透镜单元为球形微透镜、 柱状微透镜或椭球微透镜。
  6. 根据权利要求4所述的投影屏幕,当所述微透镜单元为椭球微透镜时,所述椭球微透镜的长轴方向的曲率半径大于短轴方向的曲率半径。
  7. 根据权利要求1所述的投影屏幕,所述微透镜单元在竖直方向上的尺寸为100μm。
  8. 根据权利要求1所述的投影屏幕,形成所述反射层的反射材料的反射率为60%以上,且形成所述吸光层的吸光材料的反射率为5%以下。
  9. 一种投影屏幕,其包括:
    微透镜阵列,其由多个微透镜单元构成,并用于聚焦来自投影机的投影光线;以及
    光学结构层,包括吸光层和反射层,
    其中,所述吸光层用于吸收环境光线,所述反射层用于反射环境光线;以及
    扩散层,其用于使来自所述微透镜阵列的光扩散到观众侧,
    其中,所述反射层设置在所述微透镜单元的焦点上,
    所述扩散层在所述投影屏幕的不同区域中具有不同的扩散角度。
  10. 根据权利要求9所述的投影屏幕,其中,所述吸光层和所述反射层在至少沿着所述投影屏幕的竖直方向上交替排布。
  11. 根据权利要求9所述的投影屏幕,其中,所述扩散层在水平方向上的扩散角度大于竖直方向上的扩散角度。
  12. 根据权利要求9所述的投影屏幕,其中所述扩散层为体扩散层、面扩散层或规则的微透镜阵列形状的薄膜。
  13. 根据权利要求12所述的投影屏幕,其中,当所述扩散层为体扩 散层时,所述体扩散层中的扩散粒子在所述投影屏幕的不同区域中具有不同的大小、密度或形状。
  14. 根据权利要求12所述的投影屏幕,其中,当所述扩散层为面扩散层时,所述面扩散层的扩散微结构的大小或疏密在所述投影屏幕的不同区域中不同。
  15. 根据权利要求9所述的投影屏幕,其中,在所述投影屏幕上,所述投影光线的入射角越小的区域中,所述扩散层的所述扩散角度越大。
  16. 一种制造如权利要求1所述的投影屏幕的方法,其包括:
    在透明基材的第一表面上形成所述微透镜阵列;
    在所述透明基材的第二表面上涂布用于形成所述反射层的反射材料,其中,所述第二表面与所述第一表面为所述透明基材的相反表面;
    固化部分所述反射材料;
    去除未经固化的所述反射材料;
    在所述第二表面上所述反射层之间的位置处,填充吸光材料,以形成吸光层或在所述反射层远离所述微透镜阵列的位置处设置吸光材料以形成吸光层。
  17. 根据权利要求16所述的方法,其中,所述反射材料包含反射颗粒、扩散颗粒、负性光刻胶和粘接胶水。
  18. 根据权利要求16所述的方法,其中,用于固化所述反射材料的固化光源为X射线、电子光束、原子光束或UV灯。
  19. 根据权利要求18所述的方法,其中,所述固化光源的位置与所述投影机的位置重合。
  20. 根据权利要求16所述的方法,其中,用于固化所述反射材料的固化光源发出波长范围在430nm-460nm之间的蓝光或者波长范围在 400nm以下的紫外光。
  21. 一种制造如权利要求1所述的投影屏幕的方法,其包括:
    在透明基材的第一表面上形成所述微透镜阵列;
    在所述透明基材的第二表面上涂布用于形成所述吸光层的吸光材料,其中,所述第二表面与所述第一表面为所述透明基材的相反表面;
    固化并去除部分所述吸光材料,形成吸光层;
    在所述第二表面上所述吸光层之间的位置处,填充反射材料,以形成反射层。
  22. 根据权利要求21所述的方法,其中,所述吸光材料包含正性光刻胶。
PCT/CN2019/076623 2018-08-27 2019-03-01 投影屏幕及其制造方法 WO2020042563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810980251.9A CN110865509B (zh) 2018-08-27 2018-08-27 投影屏幕及其制造方法
CN201810980251.9 2018-08-27

Publications (1)

Publication Number Publication Date
WO2020042563A1 true WO2020042563A1 (zh) 2020-03-05

Family

ID=69642851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076623 WO2020042563A1 (zh) 2018-08-27 2019-03-01 投影屏幕及其制造方法

Country Status (2)

Country Link
CN (1) CN110865509B (zh)
WO (1) WO2020042563A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741135A (zh) * 2021-09-27 2021-12-03 青岛海信激光显示股份有限公司 一种投影屏幕及投影装置
CN114660884A (zh) * 2020-12-22 2022-06-24 宁波激智科技股份有限公司 一种抗环境光激光电视屏幕及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031256B (zh) * 2019-12-09 2023-05-09 觉芯电子(无锡)有限公司 一种集成透镜阵列的微镜、微镜制备方法及激光显示系统
CN111489636B (zh) * 2020-04-21 2022-06-03 京东方科技集团股份有限公司 透明显示装置
CN111538204A (zh) * 2020-06-22 2020-08-14 成都菲斯特科技有限公司 一种反射型投影屏幕及投影系统
CN112198751A (zh) * 2020-10-15 2021-01-08 成都菲斯特科技有限公司 一种投影屏幕及投影系统
CN112198750A (zh) * 2020-10-15 2021-01-08 成都菲斯特科技有限公司 一种投影屏幕及投影系统
CN112904660A (zh) * 2021-02-01 2021-06-04 四川长虹电器股份有限公司 一种高增益宽视角超短焦激光投影屏结构
CN115390351B (zh) * 2021-05-24 2024-08-13 安徽白雪投影显示技术有限公司 长焦投影幕布

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162711A (ja) * 1998-11-30 2000-06-16 Arisawa Mfg Co Ltd スクリーン及びスクリーンの製造方法並びに反射型スクリーン装置
JP2004240159A (ja) * 2003-02-06 2004-08-26 Sony Corp スクリーン及びその製造方法
CN103345112A (zh) * 2013-07-05 2013-10-09 中国科学院半导体研究所 一种包含镜头和屏幕的正向投影装置
CN106154730A (zh) * 2016-08-11 2016-11-23 杭州昌松光学有限公司 一种增加对比度和亮度的投影屏幕及其制作方法
CN206946185U (zh) * 2017-07-10 2018-01-30 成都恒坤光显材料科技有限公司 一种可降低莫尔条纹效应的正投影屏幕

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089371B2 (ja) * 2002-09-24 2008-05-28 セイコーエプソン株式会社 透過型スクリーン及びリア型プロジェクタ
WO2004104694A1 (ja) * 2003-05-26 2004-12-02 Sharp Kabushiki Kaisha 反射型スクリーン
JP6414212B2 (ja) * 2014-06-02 2018-10-31 Agc株式会社 映像投影構造体、映像投影構造体の製造方法、映像投影方法及び自動車用窓
TWI653471B (zh) * 2014-09-30 2019-03-11 Kuraray Co., Ltd. 擴散板及擴散板之設計方法
JP6156671B2 (ja) * 2015-02-26 2017-07-05 大日本印刷株式会社 透過型スクリーン及びそれを用いたヘッドアップディスプレイ装置
US10877188B2 (en) * 2015-04-08 2020-12-29 Kuraray Co., Ltd. Composite diffuser plate
JP6753660B2 (ja) * 2015-10-02 2020-09-09 デクセリアルズ株式会社 拡散板、表示装置、投影装置及び照明装置
CN206991014U (zh) * 2017-07-10 2018-02-09 成都恒坤光显材料科技有限公司 一种带有曲率的投影屏幕
CN207216263U (zh) * 2017-08-04 2018-04-10 深圳市光峰光电技术有限公司 全反射屏幕和投影系统
CN108388075B (zh) * 2018-03-19 2021-02-09 青岛海信激光显示股份有限公司 激光投影屏幕及激光投影系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162711A (ja) * 1998-11-30 2000-06-16 Arisawa Mfg Co Ltd スクリーン及びスクリーンの製造方法並びに反射型スクリーン装置
JP2004240159A (ja) * 2003-02-06 2004-08-26 Sony Corp スクリーン及びその製造方法
CN103345112A (zh) * 2013-07-05 2013-10-09 中国科学院半导体研究所 一种包含镜头和屏幕的正向投影装置
CN106154730A (zh) * 2016-08-11 2016-11-23 杭州昌松光学有限公司 一种增加对比度和亮度的投影屏幕及其制作方法
CN206946185U (zh) * 2017-07-10 2018-01-30 成都恒坤光显材料科技有限公司 一种可降低莫尔条纹效应的正投影屏幕

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114660884A (zh) * 2020-12-22 2022-06-24 宁波激智科技股份有限公司 一种抗环境光激光电视屏幕及其制备方法
CN114660884B (zh) * 2020-12-22 2024-05-14 宁波激智科技股份有限公司 一种抗环境光激光电视屏幕及其制备方法
CN113741135A (zh) * 2021-09-27 2021-12-03 青岛海信激光显示股份有限公司 一种投影屏幕及投影装置

Also Published As

Publication number Publication date
CN110865509A (zh) 2020-03-06
CN110865509B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2020042563A1 (zh) 投影屏幕及其制造方法
CN111077722B (zh) 投影屏幕及其加工方法
US6700702B2 (en) High-contrast screen with random microlens array
US20220075250A1 (en) Total internal reflection screen and projection system
TWI417612B (zh) 照明裝置及使用此照明裝置之圖像顯示裝置
TWI494681B (zh) 投影幕及投影幕的製作方法
WO2007125803A1 (ja) バックライトに用いられるレンズシート、それを用いたバックライト及び表示装置
EP3859446B1 (en) Projection screen and projection system
JP2006330631A (ja) 背面投射型スクリーン
US20220121097A1 (en) Projection screen and projection system
TW200410042A (en) Transmissive type screen and rear type projector
JP2007047757A (ja) 透過型スクリーンの製造方法、その製造装置および透過型スクリーン
WO2021143439A1 (zh) 一种投影屏幕以及投影系统
JPH11125704A (ja) レンチキュラーレンズシート及びその製造方法
JP2002311509A (ja) レンチキュラーレンズシートおよびこれを用いたスクリーン
EP3985435B1 (en) Projection screen
CN111208705B (zh) 投影屏幕和投影系统
JPH03156435A (ja) 反射形スクリーン及びこれを用いた表示装置
TW200532359A (en) Fresnel lens sheet and rear projection screen using it applicant
JP2004246352A (ja) レンチキュラーレンズシート、背面投射型スクリーン及び背面投射型プロジェクション装置並びにレンチキュラーレンズシートの製造方法
TW200304579A (en) Micro-lens sheet and projection screen
JP5228171B2 (ja) 光学素子
JPH02304542A (ja) 透過形スクリーン
JP2000171905A (ja) 透過型スクリーン
JP2008287269A (ja) マイクロレンズシートおよびそれを用いたディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855772

Country of ref document: EP

Kind code of ref document: A1