WO2019220642A1 - 積層フィルム、及びフォルダブルデバイス - Google Patents

積層フィルム、及びフォルダブルデバイス Download PDF

Info

Publication number
WO2019220642A1
WO2019220642A1 PCT/JP2018/019400 JP2018019400W WO2019220642A1 WO 2019220642 A1 WO2019220642 A1 WO 2019220642A1 JP 2018019400 W JP2018019400 W JP 2018019400W WO 2019220642 A1 WO2019220642 A1 WO 2019220642A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin layer
laminated film
condition
laminated
Prior art date
Application number
PCT/JP2018/019400
Other languages
English (en)
French (fr)
Inventor
横山将史
▲高▼橋啓司
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to KR1020207036051A priority Critical patent/KR102469951B1/ko
Priority to CN201880093576.3A priority patent/CN112135731B/zh
Priority to JP2020518938A priority patent/JP7049447B2/ja
Priority to PCT/JP2018/019400 priority patent/WO2019220642A1/ja
Priority to TW108116361A priority patent/TWI787508B/zh
Publication of WO2019220642A1 publication Critical patent/WO2019220642A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED

Definitions

  • the present invention relates to a laminated film having high surface hardness and excellent bending durability, and a foldable device provided with the laminated film.
  • the foldable device needs to be bent at 180 ° with a small bending radius (for example, a bending radius of about 2.5 mm), and extremely high flexibility (flexibility) is required.
  • the foldable device is carried in a folded state, opened at the time of use, and then folded again after use, so that it is required to have high bending durability, that is, durability that does not cause cracks even when repeatedly folded. .
  • a highly flexible image display device such as an organic EL is used.
  • a hard coat layer is provided on the support film.
  • the scratch resistance of an image display surface of an image display device is improved by protecting with a formed laminated film (hard coat film) (for example, Patent Document 1).
  • the conventional hard coat film is excellent in surface hardness and bendability, cracks occur in the hard coat layer when it is repeatedly folded, the bending durability is low, and it cannot be used as a member for protecting the surface of a foldable device. There was a problem.
  • an object of the present invention is to provide a laminated film having high surface hardness and excellent bending durability and suitable as a surface protective material for foldable devices. Moreover, the other object of this invention is to provide the foldable device provided with the said laminated
  • the present invention comprises a support, A laminated film having a resin layer laminated on at least one surface of the support, The laminated film (1), wherein the resin layer (one of the resin layers when the resin layer is laminated on both sides of the support) satisfies the following (Condition 1) and (Condition 2) I will provide a.
  • the pencil hardness in the pencil hardness test (750 g load) specified in JIS K5600-5-4 (1999) on the resin layer surface of the laminated film is F or more.
  • the bending durability (1) in the following bending durability test (1) is 50,000 times or more.
  • Bending durability test (1) From the state in which the laminated film is stretched, the operation of bending 180 ° so that the bending radius becomes 2.5 mm in the direction in which the surface of the resin layer becomes concave, and extending again is once, and the speed is 30 to 60 times / minute. The number of times until a crack occurs in the resin layer of the laminated film when the above operation is performed is used as an index of bending durability (1).
  • the present invention also includes a support, A laminated film having a resin layer laminated on at least one surface of the support, The laminated film (2), wherein the resin layer (one of the resin layers when the resin layers are laminated on both sides of the support) satisfies the following (Condition 1) and (Condition 3): I will provide a.
  • the pencil hardness in the pencil hardness test (750 g load) specified in JIS K5600-5-4 (1999) on the resin layer surface of the laminated film is F or more.
  • the bending durability (2) in the following bending durability test (2) is 10,000 times or more.
  • Bending durability test (2) From the state in which the laminated film is stretched, the operation of bending 180 ° so that the bend radius becomes 4.0 mm in the direction in which the surface of the resin layer becomes convex, and extending once is once, and the speed is 30 to 60 times / minute. The number of times until a crack occurs in the resin layer of the laminated film when the above operation is performed is used as an index of bending durability (2).
  • the resin layer (one resin layer when the resin layers are laminated on both surfaces of the support) satisfies the following (Condition 4). Is preferred. (Condition 4) In the cylindrical mandrel test specified in JIS K5600-5-1 (1999) where the resin layer surface of the laminated film is convex, no crack is generated on the resin layer surface when the bending radius is 5 mm.
  • the water contact angle on the surface of the resin layer is 95 ° or more. It is preferable.
  • the resin layer (one resin layer when resin layers are laminated on both sides of the support) satisfies the following (condition 5). . (Condition 5) No damage is visually observed in a steel wool test in which the surface of the resin layer is rubbed back and forth 30 times while applying a load of 1 kg / cm 2 with # 0000 steel wool.
  • the haze of the resin layer is 1.0% or less. preferable.
  • the resin layer is a cured product of a curable composition containing one or more curable compounds, and at least one of the curable compounds is a polyorganosilsesquide. Oxane is preferred.
  • the curable composition preferably contains a compound having one or more thermopolymerizable functional groups and one or more photopolymerizable functional groups in the molecule.
  • the curable composition preferably further includes a curing catalyst.
  • the curing catalyst may be a photocationic polymerization initiator.
  • the curing catalyst may be a thermal cationic polymerization initiator.
  • the curable composition preferably further contains a fluorine-containing photopolymerizable resin.
  • the support is preferably a transparent support.
  • this invention provides a foldable device provided with the said laminated
  • the foldable device may be an image display device.
  • the image display device may be an organic electroluminescence display device.
  • the laminated film of the present invention has high surface hardness and excellent bending durability. For this reason, the laminated
  • FIG. 3 is a schematic diagram (side view) showing a single operation of stretching. It is the figure which expanded and showed (4) of FIG. 2 is a 1 H-NMR chart of an epoxy group-containing low molecular weight polyorganosilsesquioxane obtained in Production Example 1.
  • FIG. 2 is a 29 Si-NMR chart of an epoxy group-containing low molecular weight polyorganosilsesquioxane obtained in Production Example 1.
  • FIG. 2 is a 1 H-NMR chart of an epoxy group-containing high molecular weight polyorganosilsesquioxane obtained in Production Example 2.
  • FIG. 3 is a 29 Si-NMR chart of an epoxy group-containing high molecular weight polyorganosilsesquioxane obtained in Production Example 2.
  • laminated film (1) One aspect of the laminated film of the present invention (hereinafter sometimes referred to as “laminated film (1)”) is a laminated film having a support and a resin layer laminated on at least one surface of the support.
  • the resin layer one resin layer when the resin layers are laminated on both sides of the support
  • Condition 1 The pencil hardness in the pencil hardness test (750 g load) specified in JIS K5600-5-4 (1999) on the resin layer surface of the laminated film is F or more.
  • the bending durability (1) in the following bending durability test (1) is 50,000 times or more.
  • Bending durability test (1) From the state in which the laminated film is stretched, the operation of bending 180 ° so that the bending radius becomes 2.5 mm in the direction in which the surface of the resin layer becomes concave, and extending again is once, and the speed is 30 to 60 times / minute. The number of times until a crack occurs in the resin layer of the laminated film when the above operation is performed is used as an index of bending durability (1).
  • the laminated film (1) of the present invention has extremely excellent surface hardness and bending durability, and can be suitably used as a surface protective material for foldable devices such as organic EL display devices. That is, in the laminated film (1) of the present invention, the resin layer satisfies the above (Condition 1) and (Condition 2). In addition, in the laminated
  • the above condition 1 is a condition indicating that the resin layer surface of the laminated film (1) of the present invention has excellent surface hardness.
  • the pencil hardness in the pencil hardness test (750 g load) specified in JIS K5600-5-4 (1999) on the surface of the resin layer is F or more, preferably 1H or more, more preferably 2H or more, more preferably 3H or more. More preferably, it is 4H or more, More preferably, it is 5H or more, More preferably, it is 6H or more, More preferably, it is 7H or more, More preferably, it is 8H or more, Most preferably, it is 9H.
  • the pencil hardness on the surface of the resin layer is less than F, the surface hardness of the laminated film (1) of the present invention may be insufficient, making it difficult to use as a surface protective material for foldable devices.
  • the above condition 2 is a condition that indicates that the laminated film (1) of the present invention has excellent bending durability, that is, has a characteristic that the resin layer is less likely to cause defects such as cracks even when folded repeatedly.
  • This is a condition indicating that the resin layer has durability (hereinafter sometimes referred to as “bending durability (1)”) when folded repeatedly so that the surface of the resin layer becomes concave (inside).
  • FIG. 1 shows that the surface of the resin layer is concave (inside) from the state (FIG. 1 (1)) in which the laminated film (1) (1 in FIG. 1) is stretched in the bending durability test (1) shown in the above condition 2.
  • FIG. 2 is an enlarged view of FIG. 1 (4), and R indicates a bending radius.
  • a cylindrical mandrel having a radius of 2.5 mm can be wound around the bent portion of the resin layer surface of the laminated film (1) so that the bending radius is 2.5 mm.
  • the number of times until a crack occurs in the resin layer of the laminated film (1) when the above operation is performed at a speed of 30 to 60 times per minute is the bending durability (1 ).
  • the bending durability (1) in the bending durability test (1) of the laminated film (1) of the present invention is 50,000 times or more, preferably 60,000 times or more, more preferably 70,000 times or more, more preferably 8 It is 10,000 times or more, more preferably 90,000 times or more, more preferably 100,000 times or more, further preferably 150,000 times or more, and particularly preferably 200,000 times or more.
  • the bending durability (1) is less than 50,000 times, the bending durability (1) of the laminated film (1) of the present invention is insufficient, and the surface protective material for a foldable device (particularly a display device that is bent inward). It may be difficult to use as.
  • laminated film (2) As another aspect of the laminated film of the present invention (hereinafter sometimes referred to as “laminated film (2)”), either of the resin layers (when the resin layers are laminated on both sides of the support) is used. A mode in which one resin layer) satisfies the above (Condition 1) and the following (Condition 3) is also preferable. (Condition 3)
  • the bending durability (2) in the following bending durability test (2) is 10,000 times or more. Bending durability test (2): From the state in which the laminated film is stretched, the operation of bending 180 ° so that the bend radius becomes 4.0 mm in the direction in which the surface of the resin layer becomes convex, and extending once is once, and the speed is 30 to 60 times / minute. The number of times until a crack occurs in the resin layer of the laminated film when the above operation is performed is used as an index of bending durability (2).
  • the measuring method of the pencil hardness test in the condition 1 of the laminated film (2) of the present invention and the preferable pencil hardness are the same as those of the laminated film (1).
  • the above condition 3 is the bending durability of the laminated film (2) of the present invention when it is repeatedly folded so that the surface of the resin layer is convex (outside) (hereinafter referred to as “bending durability (2 ) ”In some cases.
  • the bending durability test (2) for bending durability (2) is the above-mentioned bending except that the surface of the resin layer is convex (outside) and the bending radius (R) is 4.0 mm. It can be measured under the same conditions as in the durability test (1).
  • the bending durability (2) in the bending durability test (2) of the laminated film (2) of the present invention is 10,000 times or more, more preferably 20,000 times or more, more preferably 30,000 times or more, more preferably 40,000 times or more, more preferably 50,000 times or more, more preferably 60,000 times or more, more preferably 70,000 times or more, more preferably 80,000 times or more, more preferably 90,000 times or more, more preferably 100,000 Times or more, more preferably 150,000 times or more, particularly preferably 200,000 times or more. If the bending durability (2) is less than 10,000 times, the bending durability (2) of the laminated film (2) of the present invention will be insufficient, and the surface protective material for a foldable device (particularly a display device folded outward). It may be difficult to use as.
  • the laminated film (1) and laminated film (2) of the present invention are the resin layers (resin layers on both sides of the support). In the case of being laminated, it is more preferable that any one of the resin layers) satisfies all of the above (Condition 1) to (Condition 3).
  • the laminated film of the present invention (including the laminated film (1) and the laminated film (2); hereinafter the same) is further applied to the resin layer (when the resin layers are laminated on both surfaces of the support). It is preferable that one resin layer) satisfies the following (Condition 4). (Condition 4) In the cylindrical mandrel test specified in JIS K5600-5-1 (1999) in which the surface of the resin layer of the laminated film is convex, the surface of the resin layer does not crack when the bending radius is 5 mm For example, it may be referred to as “flexibility is 5 mm or less”)
  • any one resin layer should just satisfy (condition 4), and the other resin layer is ( The condition 4) may be satisfied or may not be satisfied.
  • the condition 4 is a condition indicating that the laminated film of the present invention has excellent flexibility.
  • the flexibility of the laminated film of the present invention is 5 mm or less, preferably 4.5 mm or less, more preferably 4.0 mm or less, more preferably 3.5 mm or less, more preferably 3.0 mm or less, and further preferably 2 mm. 0.5 mm or less, particularly preferably 2.0 mm or less. If the bendability exceeds 5 mm, the bendability of the laminated film of the present invention may be insufficient, and it may be difficult to use as a surface protective material for foldable devices (particularly, display devices that are folded outward).
  • the resin layer (one resin layer when the resin layers are laminated on both surfaces of the support) satisfy the following (Condition 5).
  • Consdition 5 In the steel wool test in which the surface of the resin layer is rubbed back and forth 30 times while applying a load of 1 kg / cm 2 with # 0000 steel wool, there is no visual damage (hereinafter, for example, “resistance resistance” (In some cases, the scratch resistance is 30 times or more)
  • any one resin layer should just satisfy (condition 5), and the other resin layer is ( The condition 5) may be satisfied or may not be satisfied.
  • the condition 5 is a condition indicating that the laminated film of the present invention has excellent scratch resistance.
  • the scratch resistance of the laminated film of the present invention is 30 times or more, preferably 100 times or more, more preferably 200 times or more, more preferably 300 times or more, more preferably 500 times or more, more preferably 700 times or more, More preferably 1000 times or more, particularly preferably 2000 times or more. If the scratch resistance is less than 30 times, the scratch resistance of the laminated film of the present invention is insufficient, and it may be difficult to use as a surface protective material for a foldable device.
  • the laminated film of the present invention includes a support, a layer other than the resin layer, such as an anchor layer, an adhesive layer, a low reflection layer, an antifouling layer, a water repellent layer, an oil repellent layer, an antifogging layer, a protective film layer, a printing layer, You may have a conductive layer, an electromagnetic wave shield layer, an ultraviolet absorption layer, an infrared absorption layer, a blue light cut layer, etc.
  • the resin layer may be formed on only a part of the surface of the support or on the entire surface.
  • the haze of the laminated film of the present invention is, for example, 7% or less, preferably 6% or less, more preferably 5% or less, more preferably 4% or less, and further preferably 3% or less. Particularly preferably, it is 2% or less, and most preferably 1% or less.
  • the minimum of haze is 0.1%, for example.
  • the haze of the present invention can be easily controlled within the above range, for example, by using a transparent substrate described later as a support. In the present specification, haze can be measured according to JIS K7136.
  • the thickness of the laminated film of the present invention can be appropriately selected from the range of, for example, 1 to 10000 ⁇ m, preferably 10 to 1000 ⁇ m, more preferably 15 to 800 ⁇ m. More preferably, it is 20 to 700 ⁇ m, and particularly preferably 30 to 500 ⁇ m.
  • the water contact angle on the surface of the resin layer is preferably 95 ° or more, more preferably. Is 96 ° or more, more preferably 97 ° or more, more preferably 98 ° or more, more preferably 99 ° or more, more preferably 100 ° or more, more preferably 101 ° or more, more preferably 102 ° or more, more preferably It is 103 ° or more, more preferably 104 ° or more, and particularly preferably 105 ° or more.
  • the water contact angle is less than 95 °, the antifouling property of the laminated film of the present invention becomes insufficient, and it may be difficult to use as a surface protective material for a foldable device.
  • the laminated film of the present invention having the above-described performance can be obtained by selecting the material of the support described later and controlling the thickness of the support, and controlling the component and thickness of the resin layer, and the method of laminating the support. Can do.
  • a plastic substrate As a support in the laminated film of the present invention, a plastic substrate, a metal substrate, a ceramic substrate, a semiconductor substrate, a glass substrate, a paper substrate, a wood substrate (wood substrate), and the surface is a painted surface.
  • a known or conventional support such as a substrate can be used and is not particularly limited. Among these, a plastic substrate is preferable.
  • the support may have a single-layer configuration or a multilayer (lamination) configuration, and the configuration (structure) is not particularly limited.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); Polyimide; Polycarbonate; Polyamide; Polyacetal; Polyphenylene oxide; Polyphenylene sulfide; Polyethersulfone; Polyetheretherketone: Homopolymers of norbornene monomers (addition polymers and ring-opening polymers, etc.), norbornene monomers such as norbornene and ethylene copolymers, and copolymers of olefin monomers (addition polymers and open polymers).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Polyimide Polycarbonate
  • Polyamide Polyamide
  • Polyacetal Polyphenylene oxide
  • Polyphenylene sulfide Polyethersulfone
  • Polyetherketone Homopolymers of norbornene monomers (addition polymers and ring-opening polymers, etc.), norbornene monomers such as norborn
  • Cyclic olefin copolymers such as ring polymers), cyclic polyolefins such as derivatives thereof; vinyl polymers (for example, acrylic resins such as polymethyl methacrylate (PMMA), polystyrene, Vinyl chloride, acrylonitrile-styrene-butadiene resin (ABS resin, etc.); vinylidene polymer (eg, polyvinylidene chloride, etc.); cellulose resin, such as triacetyl cellulose (TAC); epoxy resin; phenol resin; melamine resin Urea resin; maleimide resin; and various plastic materials such as silicone.
  • the plastic substrate may be composed of only one kind of plastic material or may be composed of two or more kinds of plastic materials.
  • a support transparent support
  • a polyester film especially PET, PEN
  • a polyimide film especially PET, PEN
  • a cyclic polyolefin film especially PET, PEN
  • a polycarbonate film especially PET, PEN
  • a TAC film and a PMMA film more preferably a polyester film (especially PET, PEN) and a polyimide film.
  • Roughening treatment, easy adhesion treatment, antistatic treatment, sand blast treatment (sand mat treatment), corona discharge treatment, plasma treatment, chemical etching treatment are performed on a part or all of the surface of the support (particularly, plastic substrate). Further, known or conventional surface treatments such as water mat treatment, flame treatment, acid treatment, alkali treatment, oxidation treatment, ultraviolet irradiation treatment, silane coupling agent treatment, etc. may be applied.
  • the plastic substrate may be an unstretched film or a stretched film (uniaxially stretched film, biaxially stretched film, etc.). In addition, a commercial item can also be used as a support body.
  • the thickness of the support is, for example, about 1 to 1000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 10 to 400 ⁇ m, more preferably 15 to 400 ⁇ m, still more preferably 20 to 300 ⁇ m, and particularly preferably 25 to 200 ⁇ m.
  • the total light transmittance of the support of the present invention is, for example, 85% or more, preferably 90% or more.
  • the total light transmittance is, for example, 85% or more, preferably 90% or more.
  • the thickness of the resin layer is, for example, 1 to 100 ⁇ m, preferably 2 to 80 ⁇ m, more preferably 3 to 60 ⁇ m, still more preferably 5 to 50 ⁇ m, and most preferably 10 to 40 ⁇ m. .
  • the thickness of the resin layer is thinner than 1 ⁇ m, high surface hardness may not be maintained. Further, when the thickness of the resin layer is greater than 100 ⁇ m, problems such as large curl are likely to occur.
  • the total light transmittance of the resin layer is, for example, 85% or more, and preferably 90% or more. By setting the total light transmittance to 85% or more, for example, it tends to be suitable for use in applications that require extremely high transparency (for example, surface protection sheets for displays such as touch panels).
  • the total light transmittance of the resin layer is, for example, applied to a release substrate and cured so that the thickness after curing of the curable composition is the same as that of the resin layer of the laminated film of the present invention, and a cured film Can be obtained by measuring in accordance with JIS K7361-1.
  • the resin layer is also excellent in surface smoothness, and the arithmetic average roughness Ra is, for example, 0.1 to 20 nm, preferably 0.1 to 10 nm in a method based on JIS B0601. More preferably, it is 0.1 to 5 nm.
  • the resin layer may be laminated only on one side of the support or may be laminated on both sides. When the resin layers are laminated on both sides of the support, they may be the same resin layer or different resin layers. Moreover, when the resin layer is laminated
  • the curable composition for forming the resin layer in the laminated film of the present invention is not particularly limited, and those used for the hard coat layer of a known hard coat film can be employed without any particular limitation.
  • the cation curable silicone resin preferably includes a polyorganosilsesquioxane, specifically, a polyorganosilsesquioxane having a structural unit represented by the following formula (1) (hereinafter referred to as “the present invention”). It is preferably formed from a curable composition (hereinafter sometimes referred to as “the curable composition of the present invention”).
  • R 1 represents a group containing a cationically polymerizable functional group.
  • the curable composition of the present invention is a curable composition (curable resin composition) containing the polyorganosilsesquioxane of the present invention as an essential component, and forms a resin layer in the laminated film of the present invention. It is used as a curable composition.
  • the curable composition of the present invention further comprises a curing catalyst (particularly a photocationic polymerization initiator or a radical polymerizable initiator), one or more thermopolymerizable functional groups and one or more in the molecule.
  • a curing catalyst particularly a photocationic polymerization initiator or a radical polymerizable initiator
  • Other components such as a compound having a photopolymerizable functional group, a fluorine-containing photopolymerizable resin, a surface conditioner or a surface modifier may be included.
  • the structural unit represented by the above formula (1) is a silsesquioxane structural unit (so-called T unit) generally represented by [RSiO 3/2 ].
  • R represents a hydrogen atom or a monovalent organic group, and the same applies to the following.
  • the structural unit represented by the above formula (1) is formed by hydrolysis and condensation reaction of a corresponding hydrolyzable trifunctional silane compound (specifically, for example, a compound represented by the following formula (a)). Is done.
  • R 1 in the formula (1) represents a group containing a cationic polymerizable functional group (monovalent group). That is, the polyorganosilsesquioxane of the present invention is a cationically curable compound (cationically polymerizable compound) having at least a cationically polymerizable functional group in the molecule.
  • the “cation polymerizable functional group” in the group containing the cationic polymerizable functional group is not particularly limited as long as it has cationic polymerizability, and examples thereof include an epoxy group, an oxetane group, a vinyl ether group, and a vinyl phenyl group. Is mentioned.
  • an epoxy group is particularly preferable from the viewpoint of the surface hardness (for example, F or more) of the resin layer.
  • Examples of the group containing the cationic polymerizable functional group include known or commonly used groups having an oxirane ring, and are not particularly limited.
  • the curability of the curable composition, the surface hardness of the cured product (resin layer), and the heat resistance are preferable. More preferably, it is a group represented by the following formula (1a), a group represented by the following formula (1c), and more preferably a group represented by the following formula (1a).
  • R 1a represents a linear or branched alkylene group.
  • the linear or branched alkylene group include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and a decamethylene group.
  • Examples thereof include a linear or branched alkylene group having 1 to 10 carbon atoms.
  • R 1b represents a linear or branched alkylene group, and examples thereof include the same groups as R 1a .
  • R 1b is preferably a linear alkylene group having 1 to 4 carbon atoms or a branched alkylene group having 3 or 4 carbon atoms from the viewpoint of the surface hardness or curability of the cured product (resin layer). More preferably, they are an ethylene group, a trimethylene group, and a propylene group, and more preferably an ethylene group and a trimethylene group.
  • R ⁇ 1c> shows a linear or branched alkylene group, and the group similar to R ⁇ 1a> is illustrated.
  • R 1c is preferably a linear alkylene group having 1 to 4 carbon atoms or a branched alkylene group having 3 or 4 carbon atoms from the viewpoint of the surface hardness or curability of the cured product (resin layer). More preferably, they are an ethylene group, a trimethylene group, and a propylene group, and more preferably an ethylene group and a trimethylene group.
  • R 1d represents a linear or branched alkylene group, and examples thereof include the same groups as R 1a .
  • R 1d is preferably a linear alkylene group having 1 to 4 carbon atoms or a branched alkylene group having 3 or 4 carbon atoms from the viewpoint of the surface hardness or curability of the cured product (resin layer). More preferably, they are an ethylene group, a trimethylene group, and a propylene group, and more preferably an ethylene group and a trimethylene group.
  • R 1 in formula (1) is particularly a group represented by the above formula (1a), wherein R 1a is an ethylene group [in particular, 2- (3 ′, 4′-epoxycyclohexyl) Ethyl group] is preferable.
  • Examples of the group containing an oxetane group include known or conventional groups having an oxetane ring, and are not particularly limited.
  • the oxetane group itself, an alkyl group (preferably having a carbon number of 1 to 10, more preferably a carbon number).
  • Examples of the group containing a vinyl ether group include known or commonly used groups having a vinyl ether group, and are not particularly limited.
  • the vinyl ether group itself, an alkyl group (preferably having a carbon number of 1 to 10, more preferably a carbon number).
  • a vinyloxymethyl group, 2- (vinyloxy) ethyl group, 3- (vinyloxy) propyl group, and the like are preferable.
  • Examples of the group containing a vinylphenyl group include known or commonly used groups having a vinylphenyl group, and are not particularly limited.
  • the vinylphenyl group itself, an alkyl group (preferably having 1 to 10 carbon atoms, more preferably).
  • 4-vinylphenyl group, 3-vinylphenyl group, 2-vinylphenyl group and the like are preferable.
  • the polyorganosilsesquioxane of the present invention may have only one type of structural unit represented by the above formula (1), or two or more types of structural units represented by the above formula (1). You may have.
  • the polyorganosilsesquioxane of the present invention is represented by the following formula (2) in addition to the structural unit represented by the above formula (1) as the silsesquioxane structural unit [RSiO 3/2 ]. You may have a unit.
  • the structural unit represented by the above formula (2) is a silsesquioxane structural unit (T unit) generally represented by [RSiO 3/2 ]. That is, the structural unit represented by the above formula (2) is a hydrolysis and condensation reaction of a corresponding hydrolyzable trifunctional silane compound (specifically, for example, a compound represented by the following formula (b)). It is formed by.
  • Examples of the cycloalkyl group include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • Examples of the alkyl group include linear or branched alkyl groups such as methyl group, ethyl group, propyl group, n-butyl group, isopropyl group, isobutyl group, s-butyl group, t-butyl group, and isopentyl group. Groups.
  • alkenyl group linear or branched alkenyl groups, such as a vinyl group, an allyl group, and an isopropenyl group, are mentioned, for example.
  • the above-mentioned substituted aryl group, substituted aralkyl group, substituted cycloalkyl group, substituted alkyl group, and substituted alkenyl group are each a hydrogen atom or main chain. Part or all of the case is an ether group, ester group, carbonyl group, siloxane group, halogen atom (fluorine atom, etc.), acrylic group, methacryl group, mercapto group, amino group, and hydroxy group (hydroxyl group). And a group substituted with at least one selected.
  • R 2 is preferably a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, more preferably a substituted or unsubstituted aryl group, more preferably a phenyl group. is there.
  • the proportion of each of the above silsesquioxane structural units (the structural unit represented by the formula (1) and the structural unit represented by the formula (2)) It is possible to adjust appropriately according to the composition of the raw material (hydrolyzable trifunctional silane) for forming the slag.
  • the proportion thereof [T3 body / T2 body] is not particularly limited, but can be appropriately selected from a range of, for example, 5 or more (for example, 5 or more and 500 or less).
  • the lower limit value of the above-mentioned ratio [T3 body / T2 body] of one embodiment of the polyorganosilsesquioxane of the present invention is preferably 5, more preferably 6, further preferably 7, and the upper limit value is preferably It is less than 20, more preferably 18, more preferably 16, and further preferably 14.
  • the ratio [T3 body / T2 body] is 5 or more, the surface hardness of the resin layer tends to be improved.
  • the ratio [T3 body / T2 body] is less than 20 (preferably 18 or less), compatibility with other components in the curable composition is improved, viscosity is also suppressed, and handling is easy. It becomes easy to apply.
  • the lower limit of the ratio [T3 / T2] of another aspect of the polyorganosilsesquioxane of the present invention is preferably 20, more preferably 21, more preferably 23, still more preferably 25, and the upper limit.
  • the value is preferably 500, more preferably 100, more preferably 50, and even more preferably 40.
  • R a in the above formula (I) (formula (I ') in the R a same) and formula (II) in the R b (wherein (II') in the R b versa), respectively, cationic polymerization
  • R a and R b are the same as R 1 in the above formula (1) and R 2 in the above formula (2).
  • R a in the formula (I) and R b in the formula (II) were bonded to silicon atoms in the hydrolyzable trifunctional silane compound used as the raw material of the polyorganosilsesquioxane of the present invention, respectively. It is derived from a group (a group other than an alkoxy group and a halogen atom; for example, R 1 , R 2 and a hydrogen atom in the following formulas (a) to (c)).
  • R c in the formula (II) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • alkyl group having 1 to 4 carbon atoms include linear or branched alkyl groups having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group. .
  • the alkyl group represented by R c in the formula (II) is generally an alkoxy group (for example, X 1 to X 3 described later) in the hydrolyzable silane compound used as a raw material of the polyorganosilsesquioxane of the present invention. Derived from an alkyl group forming an alkoxy group or the like.
  • the ratio [T3 body / T2 body] in the polyorganosilsesquioxane of the present invention can be determined by, for example, 29 Si-NMR spectrum measurement. 29 In the Si-NMR spectrum, the silicon atom in the structural unit (T3 form) represented by the formula (I) is different from the silicon atom in the structural unit (T2 form) represented by the formula (II). In order to show a signal (peak) in (chemical shift), the ratio [T3 body / T2 body] is obtained by calculating the integration ratio of these respective peaks.
  • the polyorganosilsesquioxane of the present invention has a structural unit represented by the above formula (1) and R 1 is a 2- (3 ′, 4′-epoxycyclohexyl) ethyl group.
  • R 1 is a 2- (3 ′, 4′-epoxycyclohexyl) ethyl group.
  • the signal of the silicon atom in the structure (T3 form) represented by the above formula (I) appears at ⁇ 64 to ⁇ 70 ppm
  • the silicon atom in the structure (T2 form) represented by the above formula (II) appears.
  • the signal appears at -54 to -60 ppm.
  • the ratio [T3 body / T2 body] can be obtained by calculating the integral ratio of the signal (T3 body) of ⁇ 64 to ⁇ 70 ppm and the signal (T2 body) of ⁇ 54 to ⁇ 60 ppm. it can.
  • R 1 is a group containing a cationically polymerizable functional group other than 2- (3 ′, 4′-epoxycyclohexyl) ethyl group
  • [T3 body / T2 body] can be obtained in the same manner.
  • the 29 Si-NMR spectrum of the polyorganosilsesquioxane of the present invention can be measured, for example, with the following apparatus and conditions.
  • Measuring apparatus Trade name “JNM-ECA500NMR” (manufactured by JEOL Ltd.)
  • Solvent Deuterated chloroform Accumulated times: 1800 times Measurement temperature: 25 ° C
  • T2 the ratio [T3 / T2] of the polyorganosilsesquioxane of the present invention is within the above range (for example, 5 or more and 500 or less), It means that a certain amount of T2 is present.
  • T2 isomer examples include a structural unit represented by the following formula (4), a structural unit represented by the following formula (5), and a structural unit represented by the following formula (6).
  • R 2 in R 1 and the following formula (5) in the following equation (4) is the same as R 2 in R 1 and the formula in the formula (1) (2).
  • R c in the following formulas (4) to (6) represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, like R c in the formula (II).
  • the polyorganosilsesquioxane of the present invention may have any cage-type, incomplete cage-type, ladder-type, or random-type silsesquioxane structure. You may have in combination.
  • the total amount of siloxane structural units [total siloxane structural units; total amounts of M units, D units, T units, and Q units ]
  • the proportion (total amount) of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (4) relative to (100 mol%) is not particularly limited, but is preferably 55 to 100 mol%. More preferably, it is 65 to 100 mol%, and further preferably 80 to 99 mol%. When the ratio is 55 mol% or more, the curability of the curable composition is improved, and the surface hardness and adhesiveness of the cured product (resin layer) are remarkably increased.
  • the ratio of each siloxane structural unit in the polyorganosilsesquioxane of this invention is computable by the composition of a raw material, NMR spectrum measurement, etc., for example.
  • the total amount of siloxane structural units in the polyorganosilsesquioxane of the present invention [total siloxane structural units; total amount of M units, D units, T units, and Q units] (100 mol%).
  • the proportion (total amount) of the structural units represented by the above formula (5) is not particularly limited, but is preferably 0 to 70 mol%, more preferably 0 to 60 mol%, and still more preferably 0 to It is 40 mol%, particularly preferably 1 to 15 mol%.
  • the curable composition Since the ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (4) can be relatively increased by setting the ratio to 70 mol% or less, the curable composition The curability of the cured product (resin layer) tends to be higher and the surface hardness and adhesion of the cured product (resin layer) tend to be higher. On the other hand, the gas barrier property of the cured product (resin layer) tends to be improved by setting the ratio to 1 mol% or more.
  • the number average molecular weight (Mn) in terms of standard polystyrene by gel permeation chromatography of the polyorganosilsesquioxane of the present invention is not particularly limited, but can be appropriately selected from the range of 1000 to 50000, for example.
  • the lower limit of the number average molecular weight of one embodiment of the polyorganosilsesquioxane of the present invention is preferably 1000, more preferably 1100, and the upper limit is preferably 3000, more preferably 2800, and even more preferably 2600. It is.
  • the number average molecular weight By setting the number average molecular weight to 1000 or more, the heat resistance, scratch resistance, and adhesion of the cured product (resin layer) tend to be further improved.
  • By setting the number average molecular weight to 3000 or less compatibility with other components in the curable composition is improved, and the heat resistance of the cured product (resin layer) tends to be further improved.
  • the lower limit value of the number average molecular weight of another embodiment of the polyorganosilsesquioxane of the present invention is preferably 2500, more preferably 2800, still more preferably 3000, and the upper limit value is preferably 50000, more preferably 10,000. More preferably, it is 8000.
  • the number average molecular weight is set to 2500 or more, in addition to improving the heat resistance, scratch resistance and adhesion of the cured product (resin layer), the surface of the uncured or semi-cured resin layer is tack-free. The anti-blocking property is improved, and it is easy to take up the roll.
  • compatibility with other components in the curable composition is improved, and the heat resistance of the cured product (resin layer) tends to be further improved.
  • the molecular weight dispersity (Mw / Mn) in terms of standard polystyrene by gel permeation chromatography of the polyorganosilsesquioxane of the present invention is not particularly limited, but may be appropriately selected from the range of 1.0 to 4.0. it can.
  • the lower limit of the molecular weight dispersity is preferably 1.0, more preferably 1.1, and still more preferably 1.2. By setting the molecular weight dispersity to 1.1 or more, it tends to be liquid and the handling property tends to be improved.
  • the upper limit value of the molecular weight dispersity is preferably 4.0, more preferably 3.0, still more preferably 2.5 (for example, preferably 3.0, more preferably 2.0, still more preferably 1. 9). By setting the molecular weight dispersity to 4.0 or lower (for example, 3.0 or lower), the surface hardness and adhesiveness of the cured product (resin layer) tend to be higher.
  • the number average molecular weight and molecular weight dispersity of the polyorganosilsesquioxane of this invention can be measured with the following apparatus and conditions.
  • Measuring device Product name “LC-20AD” (manufactured by Shimadzu Corporation)
  • Eluent THF, sample concentration 0.1-0.2% by weight
  • Flow rate 1 mL / min
  • Detector UV-VIS detector (trade name “SPD-20A”, manufactured by Shimadzu Corporation)
  • Molecular weight Standard polystyrene conversion
  • the 5% weight loss temperature (T d5 ) in the air atmosphere of the polyorganosilsesquioxane of the present invention is not particularly limited, but is preferably 330 ° C. or higher (for example, 330 to 450 ° C.), more preferably 340 ° C. or higher. More preferably, it is 350 ° C. or higher.
  • T d5 The 5% weight loss temperature in the air atmosphere of the polyorganosilsesquioxane of the present invention is not particularly limited, but is preferably 330 ° C. or higher (for example, 330 to 450 ° C.), more preferably 340 ° C. or higher. More preferably, it is 350 ° C. or higher.
  • the 5% weight reduction temperature is 330 ° C. or higher, the heat resistance of the cured product (resin layer) tends to be further improved.
  • the polyorganosilsesquioxane of the present invention has a ratio [T3 / T2] of 5 to 500, a number average molecular weight of 1,000 to 50,000, and a molecular weight dispersity of 1.0 to 4.0. Therefore, the 5% weight loss temperature is controlled to 330 ° C. or higher.
  • the 5% weight reduction temperature is a temperature at the time when 5% of the weight before heating is reduced when heated at a constant rate of temperature increase, and serves as an index of heat resistance.
  • the 5% weight loss temperature can be measured by TGA (thermogravimetric analysis) under an air atmosphere at a temperature rising rate of 5 ° C./min.
  • the polyorganosilsesquioxane of the present invention can be produced by a known or conventional polysiloxane production method, and is not particularly limited.
  • one or two or more hydrolyzable silane compounds are hydrolyzed and It can be produced by a method of condensation.
  • a hydrolyzable trifunctional silane compound compound represented by the following formula (a)
  • a hydrolyzable trifunctional silane compound for forming the structural unit represented by the above formula (1) is essential. It is necessary to use it as a hydrolyzable silane compound.
  • the compound represented by the above formula (a) is a compound that forms the structural unit represented by the formula (1) in the polyorganosilsesquioxane of the present invention.
  • R 1 in the formula (a) like that of R 1 in the formula (1), a group containing a cationic polymerizable functional group. That is, R 1 in the formula (a) includes a group represented by the formula (1a), a group represented by the formula (1b), a group represented by the formula (1c), and the formula (1d).
  • X 1 in the above formula (a) represents an alkoxy group or a halogen atom.
  • the alkoxy group for X 1 include alkoxy groups having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, and an isobutyloxy group.
  • the halogen atom in X 1 for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • X 1 is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group.
  • the three X 1 may be the same or different.
  • the compound represented by the above formula (b) is a compound that forms the structural unit represented by the formula (2) in the polyorganosilsesquioxane of the present invention.
  • R 2 in formula (b) like the R 2 in the formula (2), a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted An alkyl group, or a substituted or unsubstituted alkenyl group.
  • R 2 in formula (b) is preferably a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, more preferably a substituted or unsubstituted aryl group, More preferred is a phenyl group.
  • X 2 in the above formula (b) represents an alkoxy group or a halogen atom.
  • Specific examples of X 2 include those exemplified as X 1 .
  • X 2 is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group.
  • the three X 2 may be the same or different.
  • the compound represented by the above formula (c) is a compound that forms the structural unit represented by the formula (3) in the polyorganosilsesquioxane of the present invention.
  • X 3 in the above formula (c) represents an alkoxy group or a halogen atom.
  • Specific examples of X 3 include those exemplified as X 1 .
  • X 3 is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group.
  • the three X 3 may be the same or different.
  • hydrolyzable silane compound a hydrolyzable silane compound other than the compounds represented by the above formulas (a) to (c) may be used in combination.
  • hydrolyzable trifunctional silane compounds other than the compounds represented by the above formulas (a) to (c) hydrolyzable monofunctional silane compounds that form M units, hydrolyzable bifunctional silanes that form D units
  • hydrolyzable tetrafunctional silane compounds that form compounds and Q units.
  • the amount and composition of the hydrolyzable silane compound can be appropriately adjusted according to the desired structure of the polyorganosilsesquioxane of the present invention.
  • the amount of the compound represented by the above formula (a) is not particularly limited, but is preferably 55 to 100 mol%, more preferably based on the total amount (100 mol%) of the hydrolyzable silane compound to be used. Is from 65 to 100 mol%, more preferably from 80 to 99 mol%.
  • the amount of the compound represented by the above formula (b) is not particularly limited, but is preferably 0 to 70 mol%, more preferably based on the total amount (100 mol%) of the hydrolyzable silane compound to be used. Is 0 to 60 mol%, more preferably 0 to 40 mol%, particularly preferably 1 to 15 mol%.
  • the ratio of the compound represented by the formula (a) and the compound represented by the formula (b) (the ratio of the total amount) to the total amount (100 mol%) of the hydrolyzable silane compound to be used is not particularly limited.
  • the amount is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%.
  • hydrolysis and condensation reaction of these hydrolysable silane compounds can also be performed simultaneously, or can also be performed sequentially.
  • the order which performs reaction is not specifically limited.
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound may be performed in one stage or may be performed in two or more stages.
  • the above-mentioned ratio [T3 body / T2 body] is less than 20 and / or the polyorganosilsesquioxane of the present invention having a number average molecular weight of less than 2500 (hereinafter referred to as “low molecular weight polyorganosilsesquioxane”).
  • low molecular weight polyorganosilsesquioxane it is preferable to carry out the hydrolysis and condensation reaction in one step.
  • the polyorganosilsesquioxane of the present invention (hereinafter referred to as “high molecular weight polyorganosilsesquioxane”) having a ratio [T3 / T2] of 20 or more and / or a number average molecular weight of 2500 or more.
  • the hydrolysis and condensation reaction is performed in two or more stages (preferably two stages), that is, the low molecular weight polyorganosilsesquioxane is used as a raw material. It is preferable that the hydrolysis and condensation reaction be further performed once or more.
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound is performed in one step to obtain a low molecular weight polyorganosilsesquioxane, and the low molecular weight polyorganosilsesquioxane is further subjected to hydrolysis and condensation reactions.
  • the manufacturing method of the polyorgano silsesquioxane of this invention is not limited to this.
  • the ratio [T3 body / T2 body] is 5 or more and less than 20 in the first stage hydrolysis and condensation reaction, and the number average molecular weight A low molecular weight polyorganosilsesquioxane having a molecular weight of 1000 or more and less than 2500 is obtained.
  • the low molecular weight polyorganosilsesquioxane is further subjected to hydrolysis and condensation reaction, whereby the ratio [T3 Body / T2 body] is 20 or more and 500 or less, and a high molecular weight polyorganosilsesquioxane having a number average molecular weight of 2500 or more and 50000 or less can be obtained.
  • the first stage hydrolysis and condensation reaction can be performed in the presence or absence of a solvent.
  • a solvent examples include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; methyl acetate and ethyl acetate.
  • aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene
  • ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane
  • ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • methyl acetate and ethyl acetate
  • Esters such as isopropyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; nitriles such as acetonitrile, propionitrile and benzonitrile; alcohols such as methanol, ethanol, isopropyl alcohol and butanol Etc. Among them, ketone and ether are preferable.
  • a solvent can also be used individually by 1 type and can also be used in combination of 2 or more type.
  • the amount of the solvent used in the first stage hydrolysis and condensation reaction is not particularly limited, and the desired reaction time is within the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the total amount of the hydrolyzable silane compound. It can adjust suitably according to etc.
  • the first stage hydrolysis and condensation reaction is preferably allowed to proceed in the presence of a catalyst and water.
  • the catalyst may be an acid catalyst or an alkali catalyst, but an alkali catalyst is preferable in order to suppress decomposition of a cationically polymerizable functional group such as an epoxy group.
  • Examples of the acid catalyst include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid; phosphoric acid esters; carboxylic acids such as acetic acid, formic acid and trifluoroacetic acid; methanesulfonic acid, trifluoromethanesulfonic acid, p -Sulfonic acids such as toluenesulfonic acid; solid acids such as activated clay; Lewis acids such as iron chloride.
  • Examples of the alkali catalyst include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; alkaline earth metals such as magnesium hydroxide, calcium hydroxide, and barium hydroxide.
  • Hydroxides carbonates of alkali metals such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; carbonates of alkaline earth metals such as magnesium carbonate; lithium hydrogen carbonate, sodium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate Alkali metal hydrogen carbonates such as cesium hydrogen carbonate; organic acid salts of alkali metals such as lithium acetate, sodium acetate, potassium acetate and cesium acetate (for example, acetate); organic acids of alkaline earth metals such as magnesium acetate Salt (eg acetate); lithium methoxide, sodium methoxy Alkali metal alkoxides such as sodium ethoxide, sodium isopropoxide, potassium ethoxide and potassium t-butoxide; alkali metal phenoxides such as sodium phenoxide; triethylamine, N-methylpiperidine, 1,8-diazabicyclo [5.4 0.0] undec-7-ene, amines such as 1,5-diaza
  • the amount of the catalyst used in the first stage hydrolysis and condensation reaction is not particularly limited, and is suitably within the range of 0.002 to 0.200 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. Can be adjusted.
  • the amount of water used in the first stage hydrolysis and condensation reaction is not particularly limited, and is appropriately adjusted within the range of 0.5 to 20 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. be able to.
  • the hydrolysis and condensation reaction in the first stage can be performed under normal pressure, or can be performed under pressure or under reduced pressure.
  • the atmosphere at the time of performing the first stage hydrolysis and condensation reaction is not particularly limited, for example, under an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or in the presence of oxygen such as under air. Although it may be present, an inert gas atmosphere is preferred.
  • a low molecular weight polyorganosilsesquioxane is obtained by the hydrolysis and condensation reaction in the first stage. After completion of the first stage hydrolysis and condensation reaction, it is preferable to neutralize the catalyst in order to suppress decomposition of the cationically polymerizable functional group such as ring opening of the epoxy group.
  • low molecular weight polyorganosilsesquioxane can be separated from, for example, separation means such as water washing, acid washing, alkali washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination thereof. It may be separated and purified by means or the like.
  • the low molecular weight polyorganosilsesquioxane obtained by the first stage hydrolysis and condensation reaction is subjected to the second stage hydrolysis and condensation reaction to produce a high molecular weight polyorganosilsesquioxane. be able to.
  • the hydrolysis and condensation reaction in the second stage can be performed in the presence of a solvent or in the absence.
  • the solvents mentioned in the first-stage hydrolysis and condensation reaction can be used.
  • the solvent for the second stage hydrolysis and condensation reaction the low molecular weight polyorganosilsesquioxane containing the reaction solvent for the first stage hydrolysis and condensation reaction, the extraction solvent, etc. is used as it is or partially distilled off. You may use what you did.
  • a solvent can also be used individually by 1 type and can also be used in combination of 2 or more type.
  • the amount used is not particularly limited, and is within the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the low molecular weight polyorganosilsesquioxane. Thus, it can be appropriately adjusted according to the desired reaction time and the like.
  • the amount of the catalyst used in the second stage hydrolysis and condensation reaction is not particularly limited, and is preferably 0.01 to 10000 ppm, more preferably 0 with respect to the low molecular weight polyorganosilsesquioxane (1000000 ppm). Within the range of 1 to 1000 ppm, it can be adjusted as appropriate.
  • the amount of water used in the second stage hydrolysis and condensation reaction is not particularly limited, and is preferably 10 to 100000 ppm, more preferably 100 to 20000 ppm with respect to the low molecular weight polyorganosilsesquioxane (1000000 ppm). Within the range, it can be adjusted as appropriate. If the amount of water used is greater than 100,000 ppm, the ratio of the high molecular weight polyorganosilsesquioxane [T3 body / T2 body] and the number average molecular weight tend to be difficult to control within a predetermined range.
  • the method for adding water in the hydrolysis and condensation reaction in the second stage is not particularly limited, and the total amount of water to be used (total amount used) may be added all at once or sequentially. Good. When adding sequentially, you may add continuously and may add intermittently.
  • the above ratio [T3 / T2] in the high molecular weight polyorganosilsesquioxane is 20 to 500 and the number average molecular weight is 2500 to 50000. It is important to select such reaction conditions.
  • the reaction temperature of the second stage hydrolysis and condensation reaction varies depending on the catalyst used and is not particularly limited, but is preferably 5 to 200 ° C, more preferably 30 to 100 ° C. By controlling the reaction temperature within the above range, the ratio [T3 body / T2 body] and the number average molecular weight tend to be more efficiently controlled within the desired range.
  • the reaction time for the hydrolysis and condensation reaction in the second stage is not particularly limited, but is preferably 0.5 to 1000 hours, more preferably 1 to 500 hours.
  • the ratio [T3 / T2] and the reaction while monitoring the number average molecular weight, the desired ratio [T3 body / T2 body] a high molecular weight polyorganosilsesquioxane having a number average molecular weight can also be obtained.
  • the second stage hydrolysis and condensation reaction can be performed under normal pressure, or under pressure or under reduced pressure.
  • the atmosphere at the time of performing the hydrolysis and condensation reaction in the second stage is not particularly limited, and for example, under an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or in the presence of oxygen such as under air. Although it may be present, an inert gas atmosphere is preferred.
  • High molecular weight polyorganosilsesquioxane is obtained by the hydrolysis and condensation reaction in the second stage. After completion of the hydrolysis and condensation reaction in the second stage, it is preferable to neutralize the catalyst in order to suppress decomposition of the cationically polymerizable functional group such as ring opening of the epoxy group.
  • high molecular weight polyorganosilsesquioxane can be separated from, for example, separation means such as water washing, acid washing, alkali washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination thereof. It may be separated and purified by means or the like.
  • the resin layer obtained by curing the curable composition containing the polyorganosilsesquioxane as an essential component has a high surface hardness and an excellent bending durability. It is easy to form a resin layer satisfying the above (conditions 1 to 5).
  • the polyorganosilsesquioxane of the present invention can be used singly or in combination of two or more.
  • the content (blending amount) of the polyorganosilsesquioxane of the present invention in the curable composition of the present invention is not particularly limited, but is 50 with respect to the total amount (100% by weight) of the curable composition excluding the solvent. It is preferably not less than 100% by weight and more preferably less than 100% by weight, more preferably 60 to 99% by weight, still more preferably 70 to 95% by weight.
  • the content of the polyorganosilsesquioxane of the present invention By setting the content of the polyorganosilsesquioxane of the present invention to 50% by weight or more, the surface hardness and adhesiveness of the cured product (resin layer) tend to be further improved.
  • the curing catalyst, one or more thermopolymerizable functional groups in the molecule described later, and A compound having one or more photopolymerizable functional groups, an epoxy compound, a fluorine-containing photopolymerizable resin, or the like can be contained, thereby allowing the curing of the curable composition to proceed more efficiently, There is a tendency for surface hardness and bending durability to improve.
  • the ratio of the polyorganosilsesquioxane of the present invention to the total amount (100% by weight) of the cationic curable compound contained in the curable composition of the present invention is not particularly limited, but is preferably 60 to 99% by weight. Is 65 to 98% by weight, more preferably 70 to 95% by weight.
  • the content of the polyorganosilsesquioxane of the present invention to 99% by weight or less, it has one or more thermally polymerizable functional groups and one or more photopolymerizable functional groups in the molecule described later.
  • a compound, an epoxy compound, or the like can be contained, and this tends to improve surface hardness and bending durability.
  • the curable composition of the present invention preferably further contains a curing catalyst.
  • a curing catalyst it is particularly preferable to include a cationic polymerization initiator or a radical polymerization initiator as a curing catalyst in that the curing time until tack-free is further shortened.
  • the cationic polymerization initiator is a compound that can initiate or accelerate the cationic polymerization reaction of a cationically curable compound such as the polyorganosilsesquioxane of the present invention. Although it does not specifically limit as said cationic polymerization initiator, For example, a photocationic polymerization initiator (photoacid generator), a thermal cationic polymerization initiator (thermal acid generator), etc. are mentioned.
  • photocationic polymerization initiator known or commonly used photocationic polymerization initiators can be used.
  • sulfonium salts salts of sulfonium ions and anions
  • iodonium salts salts of iodonium ions and anions
  • Selenium salt senium ion and anion salt
  • ammonium salt ammonium ion and anion salt
  • phosphonium salt phosphonium ion and anion salt
  • transition metal complex ion and anion salt etc.
  • sulfonium salt examples include [4- (4-biphenylylthio) phenyl] -4-biphenylylphenylsulfonium tris (pentafluoroethyl) trifluorophosphate, triphenylsulfonium salt, tri-p-tolylsulfonium salt, Tri-o-tolylsulfonium salt, tris (4-methoxyphenyl) sulfonium salt, 1-naphthyldiphenylsulfonium salt, 2-naphthyldiphenylsulfonium salt, tris (4-fluorophenyl) sulfonium salt, tri-1-naphthylsulfonium salt, Tri-2-naphthylsulfonium salt, tris (4-hydroxyphenyl) sulfonium salt, diphenyl [4- (phenylthio) phenyl] s
  • diphenyl [4- (phenylthio) phenyl] sulfonium salt examples include diphenyl [4- (phenylthio) phenyl] sulfonium hexafluoroantimonate and diphenyl [4- (phenylthio) phenyl] sulfonium hexafluorophosphate. .
  • UV9380C trade name “UV9380
  • selenium salt examples include triaryl selenium such as triphenyl selenium salt, tri-p-tolyl selenium salt, tri-o-tolyl selenium salt, tris (4-methoxyphenyl) selenium salt, and 1-naphthyldiphenyl selenium salt.
  • Salts Diaryl phenacyl selenium salts, diphenyl benzyl selenium salts, diaryl selenium salts such as diphenyl methyl selenium salts; monoaryl selenium salts such as phenyl methyl benzyl selenium salts; trialkyl selenium salts such as dimethyl phenacyl selenium salts, etc. .
  • ammonium salt examples include tetramethylammonium salt, ethyltrimethylammonium salt, diethyldimethylammonium salt, triethylmethylammonium salt, tetraethylammonium salt, trimethyl-n-propylammonium salt, and trimethyl-n-butylammonium salt.
  • Pyrodium salts such as alkylammonium salts; N, N-dimethylpyrrolidinium salts, N-ethyl-N-methylpyrrolidinium salts; N, N′-dimethylimidazolinium salts, N, N′-diethylimidazolinium salts, etc.
  • Imidazolinium salts such as N, N′-dimethyltetrahydropyrimidinium salt, N, N′-diethyltetrahydropyrimidinium salt; N, N-dimethylmorpholinium salt, N, N -Diethylmorpholine Morpholinium salts such as um salt; piperidinium salts such as N, N-dimethylpiperidinium salt and N, N-diethylpiperidinium salt; pyridinium salts such as N-methylpyridinium salt and N-ethylpyridinium salt; N, N 'Imidazolium salts such as dimethylimidazolium salt; Quinolium salts such as N-methylquinolium salt; Isoquinolium salts such as N-methylisoquinolium salt; Thiazonium salts such as benzylbenzothiazonium salt; And the like.
  • the phosphonium salt examples include tetraarylphosphonium salts such as tetraphenylphosphonium salt, tetra-p-tolylphosphonium salt, tetrakis (2-methoxyphenyl) phosphonium salt; triarylphosphonium salts such as triphenylbenzylphosphonium salt; Examples thereof include tetraalkylphosphonium salts such as benzylphosphonium salt, tributylbenzylphosphonium salt, tetraethylphosphonium salt, tetrabutylphosphonium salt, and triethylphenacylphosphonium salt.
  • tetraarylphosphonium salts such as tetraphenylphosphonium salt, tetra-p-tolylphosphonium salt, tetrakis (2-methoxyphenyl) phosphonium salt
  • triarylphosphonium salts such as triphenylbenzylphosphonium salt
  • the salt of the transition metal complex ion e.g., (eta. @ 5-cyclopentadienyl) ( ⁇ 6- toluene) Cr +, (eta. @ 5-cyclopentadienyl) ( ⁇ 6- xylene) Cr + salt of chromium complex cations such as And salts of iron complex cations such as ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-toluene) Fe + and ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-xylene) Fe + .
  • anion constituting the above-described salt examples include SbF 6 ⁇ , PF 6 ⁇ , BF 4 ⁇ , (CF 3 CF 2 ) 3 PF 3 ⁇ , (CF 3 CF 2 CF 2 ) 3 PF 3 ⁇ , (C 6 F 5 ) 4 B ⁇ , (C 6 F 5 ) 4 Ga ⁇ , sulfonate anion (trifluoromethanesulfonate anion, pentafluoroethanesulfonate anion, nonafluorobutanesulfonate anion, methanesulfonate anion, benzenesulfonate Anion, p-toluenesulfonic acid anion, etc.), (CF 3 SO 2 ) 3 C ⁇ , (CF 3 SO 2 ) 2 N ⁇ , perhalogenate ion, halogenated sulfonate ion, sulfate ion, carbonate
  • thermal cationic polymerization initiator examples include arylsulfonium salts, aryliodonium salts, allene-ion complexes, quaternary ammonium salts, aluminum chelates, and boron trifluoride amine complexes.
  • arylsulfonium salts examples include hexafluoroantimonate salts.
  • trade names “SP-66” and “SP-77” manufactured by ADEKA Corporation
  • trade names “Sun Aid SI-60L” and “Sun Aid SI-80L” Commercial products such as “Sun-Aid SI-100L” and “Sun-Aid SI-150L” (manufactured by Sanshin Chemical Industry Co., Ltd.) can be used.
  • the aluminum chelate examples include ethyl acetoacetate aluminum diisopropylate and aluminum tris (ethyl acetoacetate).
  • the boron trifluoride amine complex include boron trifluoride monoethylamine complex, boron trifluoride imidazole complex, and boron trifluoride piperidine complex.
  • one type of curing catalyst can be used alone, or two or more types can be used in combination.
  • the content (blending amount) of the curing catalyst in the curable composition of the present invention is not particularly limited, but is 0.01 to 3.0 parts by weight with respect to 100 parts by weight of the polyorganosilsesquioxane of the present invention. It is preferably 0.05 to 3.0 parts by weight, more preferably 0.1 to 1.0 parts by weight (for example, 0.3 to 1.0 parts by weight).
  • the content of the curing catalyst is 0.01 parts by weight or more, the curing reaction can proceed efficiently and sufficiently, and the surface hardness and adhesiveness of the cured product (resin layer) tend to be further improved.
  • the content of the curing catalyst is 3.0 parts by weight or less, the storage stability of the curable composition tends to be further improved, and coloring of the cured product (resin layer) tends to be suppressed.
  • the curable composition of the present invention contains a compound having one or more thermopolymerizable functional groups and one or more photopolymerizable functional groups in the molecule (hereinafter sometimes referred to as “compound A”). It is preferable.
  • compound A a compound having one or more thermopolymerizable functional groups and one or more photopolymerizable functional groups in the molecule.
  • the curable composition of the present invention can effectively increase the crosslink density when it is a cured product, and the cured product (resin layer) High surface hardness and excellent bending durability are easily imparted.
  • thermopolymerizable functional group possessed by compound A is not particularly limited as long as it is a functional group that imparts polymerizability to compound A by heat.
  • examples thereof include a hydroxyl group, an epoxy group, an oxetanyl group, and a vinyl ether group.
  • a hydroxyl group and an epoxy group are preferred.
  • these thermopolymerizable functional groups may be the same or different.
  • the “photopolymerizable functional group” possessed by compound A is not particularly limited as long as it is a functional group that imparts polymerizability to compound A by light (for example, ultraviolet rays), and examples thereof include (meth) acryloyl group, vinyl group, and the like. From the viewpoint of surface hardness and bending durability of the resin layer of the present invention, a (meth) acryloyl group is preferable. In addition, when the compound A has two or more photopolymerizable functional groups, these photopolymerizable functional groups may be the same or different.
  • thermopolymerizable functional groups that compound A has in one molecule may be one or more, and is not particularly limited. For example, 1 to 5 is preferable, 1 to 3 is more preferable, and 1 is more preferable. One or two. Further, the number of photopolymerizable functional groups that compound A has in one molecule may be one or more, and is not particularly limited. For example, 1 to 5 is preferable, 1 to 3 is more preferable, and still more preferable. Is one or two.
  • the functional group equivalent of the thermally polymerizable functional group of Compound A is not particularly limited, but is preferably 50 to 500, more preferably 80 to 480, and still more preferably 120 to 450. If the functional group equivalent is less than 50, the bending durability of the cured product (resin layer) may be insufficient. On the other hand, when the functional group equivalent exceeds 500, the surface hardness of the cured product (resin layer) may decrease.
  • the functional group equivalent of the photopolymerizable functional group of Compound A is not particularly limited, but is preferably 50 to 500, more preferably 80 to 480, and still more preferably 120 to 450. If the functional group equivalent is less than 50, the bending durability of the cured product (resin layer) may be insufficient. On the other hand, when the functional group equivalent exceeds 500, the surface hardness of the cured product (resin layer) may decrease.
  • the compound A include, for example, 3,4-epoxycyclohexylmethyl (meth) acrylate, glycidyl (meth) acrylate, tripropylene glycol diglycidyl ether di (meth) acrylate (both tripropylene glycol diglycidyl ether) Compound obtained by reacting (meth) acrylic acid with epoxy group), tripropylene glycol diglycidyl ether half (meth) acrylate (reacting (meth) acrylic acid with one epoxy group of tripropylene glycol diglycidyl ether) Compound), bisphenol A epoxy di (meth) acrylate (compound obtained by reacting both epoxy groups of bisphenol A diglycidyl ether with (meth) acrylic acid), bisphenol A epoxy Sihalf (meth) acrylate (compound obtained by reacting one epoxy group of bisphenol A diglycidyl ether with (meth) acrylic acid or its derivative), bisphenol F epoxy di (meth) acrylate, bisphenol F epoxy di (
  • an epoxy group and / or a hydroxyl group as a thermopolymerizable functional group and (meth) acryloyl as a photopolymerizable functional group in one molecule an epoxy group and / or a hydroxyl group as a thermopolymerizable functional group and (meth) acryloyl as a photopolymerizable functional group in one molecule
  • Bisphenol F epoxy half (meth) acrylate bisphenol S epoxy half (meth) acrylate, and the like are preferable.
  • Compound A can be used alone or in combination of two or more.
  • Compound A can be produced by a known method.
  • a part of the thermopolymerizable functional group of a compound having two or more thermopolymerizable functional groups for example, epoxy group, hydroxyl group
  • a carboxylic acid having a photopolymerizable functional group for example, acrylic acid, methacrylic acid, etc.
  • Examples of the compound A include, for example, trade names “light ester G”, “epoxy ester 200PA”, “epoxy ester 200PA-E5” (manufactured by Kyoeisha Chemical Co., Ltd.), trade names “NK OLIGO EA1010N” ( Commercial products such as Shin-Nakamura Chemical Co., Ltd.) can also be used.
  • the content (blending amount) of the compound A in the curable composition of the present invention is not particularly limited, but it is 1 to 100 parts by weight as solid content with respect to 100 parts by weight of the polyorganosilsesquioxane of the present invention. It is preferably 3 to 75 parts by weight, more preferably 5 to 50 parts by weight.
  • the content of compound A is 1 part by weight or more, the bending durability of the cured product (resin layer) tends to be further improved.
  • the content of Compound A is 100 parts by weight or less, the surface hardness of the cured product (resin layer) tends to be maintained.
  • the curable composition of the present invention preferably contains a fluorine-containing photopolymerizable resin.
  • the fluorine-containing photopolymerizable resin is a resin (oligomer) having a fluorine-containing group such as a fluoroaliphatic hydrocarbon skeleton and a photopolymerizable functional group in the molecule.
  • the curable composition of the present invention contains a fluorine-containing photopolymerizable resin together with the polyorganosilsesquioxane or compound A of the present invention, the crosslink density on the surface of the resin layer when cured is effectively increased.
  • the number of photopolymerizable functional groups contained in one molecule of the fluorine-containing photopolymerizable resin may be one or more, and is not particularly limited. For example, 1 to 5 is preferable, and 1 to 3 is more preferable. It is.
  • the “fluorine-containing group” of the fluorine-containing photopolymerizable resin is not particularly limited as long as it has a fluorine atom, and examples thereof include those having a fluoroaliphatic hydrocarbon skeleton.
  • the fluoroaliphatic hydrocarbon skeleton include fluoro C 1-10 alkanes such as fluoromethane, fluoroethane, fluoropropane, fluoroisopropane, fluorobutane, fluoroisobutane, fluoro t-butane, fluoropentane, and fluorohexane. be able to.
  • fluoroaliphatic hydrocarbon skeletons only need to have at least some of the hydrogen atoms replaced with fluorine atoms, but all hydrogen atoms can be improved in terms of improving the scratch resistance, slipperiness and antifouling properties of the resin layer.
  • a perfluoroaliphatic hydrocarbon skeleton in which atoms are substituted with fluorine atoms is preferred.
  • the fluoroaliphatic hydrocarbon skeleton may form a polyfluoroalkylene ether skeleton that is a repeating unit via an ether bond.
  • the fluoroaliphatic hydrocarbon group as the repeating unit may be at least one selected from the group consisting of fluoro C 1-4 alkylene groups such as fluoromethylene, fluoroethylene, fluoropropylene, and fluoroisopropylene.
  • the number of repeating polyfluoroalkylene ether units (degree of polymerization) is, for example, 10 to 3000, preferably 30 to 1000, and more preferably 50 to 500.
  • the fluorine-containing photopolymerizable resin may have a silicone-containing group in addition to the above-mentioned “photopolymerizable functional group” and “fluorine-containing group”. Since the fluorine-containing photopolymerizable resin further has a silicone-containing group, the affinity with the polyorganosilsesquioxane of the present invention is improved, and the surface hardness, scratch resistance, and antifouling of the cured product (resin layer) are improved. Tend to be further improved.
  • the silicone-containing group is a group having a polyorganosiloxane skeleton, and any polyorganosiloxane formed with M units, D units, T units, and Q units may be used.
  • a polyorganosiloxane formed with D units is used.
  • a polyorganosiloxane formed with D units is usually used.
  • the organic group of the polyorganosiloxane a C 1-4 alkyl group or an aryl group is usually used, and a methyl group or a phenyl group (particularly a methyl group) is generally used.
  • the number of repeating siloxane units is, for example, 2 to 3000, preferably 3 to 2000, and more preferably 5 to 1000.
  • fluorine-containing photopolymerizable resin Commercially available products can be used as the fluorine-containing photopolymerizable resin.
  • Trade names “Factent 601AD”, “Factent 601ADH2”, “Factent 602A”, “Factent 650AC”, “Factent 681” (manufactured by Neos Co., Ltd.) and the like can be used.
  • fluorine-containing photopolymerizable resins can be used singly or in combination of two or more.
  • the content (blending amount) of the fluorine-containing photopolymerizable resin in the curable composition of the present invention is not particularly limited, but as a solid content, for example, with respect to 100 parts by weight of the polyorganosilsesquioxane of the present invention, The amount is 0.01 to 15 parts by weight, preferably 0.05 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, and still more preferably 0.2 to 3 parts by weight.
  • the curable composition may contain an epoxy compound other than the polyorganosilsesquioxane of the present invention (hereinafter sometimes simply referred to as “epoxy compound”).
  • epoxy compound an epoxy compound other than the polyorganosilsesquioxane of the present invention
  • a cured product resin layer having high surface hardness and excellent flexibility, flexibility and workability can be formed.
  • epoxy compound the well-known and usual compound which has 1 or more epoxy groups (oxirane ring) in a molecule
  • numerator can be used, although it does not specifically limit, An alicyclic epoxy compound (alicyclic epoxy resin), aromatic An aromatic epoxy compound (aromatic epoxy resin), an aliphatic epoxy compound (aliphatic epoxy resin), etc. can be mentioned. Of these, alicyclic epoxy compounds are preferred.
  • Examples of the alicyclic epoxy compound include known and commonly used compounds having one or more alicyclic rings and one or more epoxy groups in the molecule, and are not particularly limited.
  • a compound having an epoxy group (referred to as “alicyclic epoxy group”) composed of two adjacent carbon atoms and oxygen atoms constituting the ring; (2) the epoxy group is directly bonded to the alicyclic ring by a single bond; (3) Compounds having an alicyclic ring and a glycidyl ether group in the molecule (glycidyl ether type epoxy compound) and the like.
  • numerator it can select and use arbitrarily from well-known and usual things.
  • said alicyclic epoxy group a cyclohexene oxide group is preferable and the compound represented by following formula (i) is especially preferable.
  • Y represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of a carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and the like. And a group in which a plurality of are connected.
  • One or more hydrogen atoms of the cyclohexane ring in formula (i) may be substituted with a substituent such as an alkyl group having 1 to 6 carbon atoms.
  • Examples of the divalent hydrocarbon group include linear or branched alkylene groups having 1 to 18 carbon atoms, and divalent alicyclic hydrocarbon groups.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
  • divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, And divalent cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group and cyclohexylidene group.
  • alkenylene group in the alkenylene group in which part or all of the carbon-carbon double bond is epoxidized include, for example, vinylene group, propenylene group, 1-butenylene group And straight-chain or branched alkenylene groups having 2 to 8 carbon atoms such as 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group and the like.
  • the epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, more preferably 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. Alkenylene group.
  • alicyclic epoxy compound represented by the above formula (i) include (3,4,3 ′, 4′-diepoxy) bicyclohexyl, and the following formulas (i-1) to (i-10): ) And the like.
  • l and m each represents an integer of 1 to 30.
  • R ′ in the following formula (i-5) is an alkylene group having 1 to 8 carbon atoms, and among them, a straight chain or branched chain having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group, and an isopropylene group.
  • a chain alkylene group is preferred.
  • n1 to n6 each represents an integer of 1 to 30.
  • Other examples of the alicyclic epoxy compound represented by the above formula (i) include 2,2-bis (3,4-epoxycyclohexyl) propane and 1,2-bis (3,4-epoxycyclohexyl). ) Ethane, 2,3-bis (3,4-epoxycyclohexyl) oxirane, bis (3,4-epoxycyclohexylmethyl) ether and the like.
  • Examples of the compound (2) in which the epoxy group is directly bonded to the alicyclic ring with a single bond include compounds represented by the following formula (ii).
  • R ′′ is a group obtained by removing p hydroxyl groups (—OH) from the structural formula of p-valent alcohol (p-valent organic group), and p and n each represent a natural number.
  • the divalent alcohol [R ′′ (OH) p ] include polyhydric alcohols (such as alcohols having 1 to 15 carbon atoms) such as 2,2-bis (hydroxymethyl) -1-butanol.
  • p is preferably 1 to 6, and n is preferably 1 to 30.
  • n in each () (inside parenthesis) may be the same or different.
  • Examples of the compound (3) having an alicyclic ring and a glycidyl ether group in the molecule include glycidyl ethers of alicyclic alcohols (particularly alicyclic polyhydric alcohols). More specifically, for example, 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5-dimethyl-4- (2,3-epoxypropoxy) Compound obtained by hydrogenating bisphenol A type epoxy compound such as cyclohexyl] propane (hydrogenated bisphenol A type epoxy compound); bis [o, o- (2,3-epoxypropoxy) cyclohexyl] methane, bis [o , P- (2,3-epoxypropoxy) cyclohexyl] methane, bis [p, p- (2,3-epoxypropoxy) cyclohexyl] methane, bis [3,5-dimethyl-4- (2, 3-epoxypropoxy) cycl
  • aromatic epoxy compound examples include epibis type glycidyl ether type epoxy resins obtained by condensation reaction of bisphenols [for example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol and the like] and epihalohydrin; High molecular weight epibis type glycidyl ether type epoxy resin obtained by addition reaction of bis type glycidyl ether type epoxy resin with the above bisphenols; phenols [eg, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, bisphenol S, etc.] and aldehyde [eg, formaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, salicy A novolak alkyl type glycidyl ether type epoxy resin obtained by further condensing a polyhydric alcohol obtained by condensation reaction with aldehyde and the like with an epihalohydrin; two phenol skeleton
  • Examples of the aliphatic epoxy compound include a glycidyl ether of an alcohol having no q-valent cyclic structure (q is a natural number); a monovalent or polyvalent carboxylic acid [for example, acetic acid, propionic acid, butyric acid, stearic acid, Adipic acid, sebacic acid, maleic acid, itaconic acid, etc.] glycidyl ester; epoxidized oils and fats having double bonds such as epoxidized linseed oil, epoxidized soybean oil, epoxidized castor oil; polyolefins such as epoxidized polybutadiene (poly And epoxidized products of alkadienes).
  • a monovalent or polyvalent carboxylic acid for example, acetic acid, propionic acid, butyric acid, stearic acid, Adipic acid, sebacic acid, maleic acid, itaconic acid, etc.
  • the above epoxy compounds can be used alone or in combination of two or more.
  • the epoxy compound is preferably an alicyclic epoxy compound from the viewpoint of surface hardness, flexibility, bending durability, etc. of the cured product (resin layer), and (2) the epoxy group is directly bonded to the alicyclic ring with a single bond.
  • the compound represented by the above formula (ii) [for example, trade name “EHPE3150” (manufactured by Daicel Corporation) and the like] is particularly preferable.
  • the content (blending amount) of the epoxy compound is, for example, 0.5 to 100 parts by weight, preferably 1 to 80 parts by weight with respect to 100 parts by weight of the total amount of the polyorganosilsesquioxane of the present invention. More preferably, it is 5 to 50 parts by weight.
  • the content of the epoxy compound is 0.5 parts by weight or more, the surface hardness of the cured product (resin layer) becomes higher and tends to be more excellent in flexibility, flexibility, workability, and bending durability.
  • the content of the epoxy compound to 100 parts by weight or less, the scratch resistance of the cured product tends to be further improved.
  • the curable composition of the present invention may contain “silica particles having a group containing a (meth) acryloyl group on the surface”.
  • Silica particles having a group containing a (meth) acryloyl group on the surface have innumerable hydroxyl groups (Si—OH groups) on the surface of the silica particles, and when cured, the hydroxyl groups and the polyorganosilsesquioxane of the present invention Reacts to improve the crosslink density after curing of the polyorganosilsesquioxane.
  • the crosslink density after hardening improves because the (meth) acryloyl group in several said silica particle couple
  • the abrasion resistance in a resin layer improves because the crosslinking density after hardening improves.
  • a layer having a function such as antifouling property or low reflectivity is provided on the resin layer, the adhesion between the resin layer and the functional layer is weak, and the functional layer may peel off. There may be no so-called recoatability.
  • recoatability can be imparted, and processability (workability) when the functional layer is provided on the surface of the resin layer can be improved.
  • the silica particles may have a functional group other than the (meth) acryloyl group (for example, a silicone-modified group).
  • the (meth) acryloyl group is a general term for an acryloyl group (acrylic group) and a methacryloyl group (methacrylic group).
  • the proportion thereof is, for example, 0.01 with respect to 100 parts by weight of the polyorganosilsesquioxane of the present invention. -20 parts by weight, preferably 0.05-15 parts by weight, more preferably 0.01-10 parts by weight, still more preferably 0.2-5 parts by weight.
  • the ratio of the silica particles 0.01 parts by weight or more, the appearance of the surface of the resin layer can be improved and sufficient recoatability can be imparted.
  • the surface hardness of a resin layer can be made high by the ratio of a silica particle being 20 weight part or less.
  • Silicon acrylate (silicone acrylate) is a kind of additive having at least a silicon atom and a (meth) acryloyl group.
  • the silicon acrylate may have a functional group (for example, a hydroxyl group) other than the (meth) acryloyl group.
  • the silicon acrylate may be silicon diacrylate, silicon triacrylate, silicon tetraacrylate, silicon pentaacrylate, silicon hexaacrylate, silicon heptaacrylate, or silicon octaacrylate.
  • the (meth) acryloyl group is a general term for an acryloyl group (acrylic group) and a methacryloyl group (methacrylic group).
  • the silicon acrylate may be a dispersion (dispersion) in a state of being dispersed in a known or commonly used general dispersion medium such as an organic solvent (for example, acetone, toluene, methanol, ethanol).
  • a known or commonly used general dispersion medium such as an organic solvent (for example, acetone, toluene, methanol, ethanol).
  • organic solvent for example, acetone, toluene, methanol, ethanol.
  • trade names “KRM8479”, “EBECRYL 350”, “EBECRYL 1360” manufactured by Daicel Ornex Co., Ltd.
  • the proportion thereof is, for example, 0.01 to 15 parts by weight, preferably 0.05 to 10 parts by weight with respect to 100 parts by weight of the polyorganosilsesquioxane. Parts, more preferably 0.01 to 5 parts by weight, still more preferably 0.2 to 3 parts by weight.
  • the ratio of the silicon acrylate 0.01 parts by weight or more it is possible to improve the scratch resistance and antifouling property when the resin layer is formed.
  • the surface hardness when it is set as a resin layer can be made higher by making the ratio of a silicon acrylate 15 parts weight or less.
  • the curable composition of the present invention may have a leveling agent.
  • the leveling agent include silicone leveling agents, fluorine leveling agents, and silicone leveling agents having a hydroxyl group.
  • the leveling agent does not include the above-described fluorine-containing photopolymerizable resin.
  • silicone leveling agent commercially available silicone leveling agents can be used. For example, trade names “BYK-300”, “BYK-301 / 302”, “BYK-306”, “BYK-307”, “BYK” -310 ",” BYK-315 “,” BYK-313 “,” BYK-320 “,” BYK-322 “,” BYK-323 “,” BYK-325 “,” BYK-330 “,” BYK-331 “ ”,“ BYK-333 ”,“ BYK-337 ”,“ BYK-341 ”,“ BYK-344 ”,“ BYK-345 / 346 ”,“ BYK-347 ”,“ BYK-348 ”,“ BYK-349 ” ”,“ BYK-370 ”,“ BYK-375 ”,“ BYK-377 ”,“ BYK-378 ”,“ BYK-UV3500 ”,“ BYK-UV3510 ”,“ “YK-UV3570", "B
  • fluorine leveling agent commercially available fluorine leveling agents can be used.
  • fluorine leveling agents commercially available fluorine leveling agents.
  • trade names “OPTOOL DSX” and “OPTOOL DAC-HP” manufactured by Daikin Industries, Ltd.
  • silicone-based leveling agent having a hydroxyl group examples include a polyether-modified polyorganosiloxane in which a polyether group is introduced into the main chain or side chain of a polyorganosiloxane skeleton (polydimethylsiloxane, etc.), and a polyorganosiloxane skeleton.
  • examples thereof include a polyester-modified polyorganosiloxane having a polyester group introduced into a chain or a side chain, and a silicone-modified (meth) acrylic resin having a polyorganosiloxane introduced into a (meth) acrylic resin.
  • the hydroxyl group may have a polyorganosiloxane skeleton, or may have a polyether group or a polyester group.
  • leveling agents for example, trade names “BYK-370”, “BYK-SILCLEAN3700”, “BYK-SILCLEAN3720” and the like can be used.
  • the proportion thereof is, for example, 0.01 to 20 parts by weight, preferably 0. 0 parts by weight with respect to 100 parts by weight of the polyorganosilsesquioxane of the present invention.
  • the amount is from 05 to 15 parts by weight, more preferably from 0.01 to 10 parts by weight, still more preferably from 0.2 to 5 parts by weight. If the ratio of the leveling agent is too small, the surface smoothness of the resin layer may be lowered, and if it is too much, the surface hardness of the resin layer may be lowered.
  • the curable composition of the present invention further includes, as other optional components, precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate.
  • the curable composition of this invention is not specifically limited, It can prepare by stirring and mixing each said component, heating at room temperature or as needed.
  • the curable composition can also be used as a one-component composition in which components are mixed in advance, for example, two or more components stored separately before use. It can also be used as a multi-component (for example, two-component) composition used by mixing at a predetermined ratio.
  • the curable composition of the present invention is not particularly limited, but is preferably liquid at normal temperature (about 25 ° C.). More specifically, the curable composition has a viscosity at 300C of a liquid diluted to 20% of a solvent [particularly, a curable composition (solution) in which the proportion of methyl isobutyl ketone is 20% by weight]. Is preferably 20,000 mPa ⁇ s, more preferably 500 to 10000 mPa ⁇ s, and still more preferably 1000 to 8000 mPa ⁇ s. When the viscosity is 300 mPa ⁇ s or more, the heat resistance of the resin layer tends to be further improved.
  • the viscosity of the curable composition was measured using a viscometer (trade name “MCR301”, manufactured by Anton Paar Co., Ltd.) with a swing angle of 5%, a frequency of 0.1 to 100 (1 / s), and a temperature of 25 ° C. Measured at conditions.
  • the resin layer in the present invention can be obtained by proceeding the polymerization reaction of a cationic curable compound (such as the polyorganosilsesquioxane of the present invention) contained in the curable composition and curing it.
  • a cationic curable compound such as the polyorganosilsesquioxane of the present invention
  • the surface of the resin layer may be subjected to surface treatment such as corona discharge treatment for modifying the surface by corona discharge irradiation, plasma discharge treatment, ozone exposure treatment, or excimer treatment.
  • corona discharge treatment is more preferable from the viewpoint that the recoatability can be easily improved.
  • the corona discharge treatment is a treatment for processing the surface of the resin layer by generating a non-uniform electric field around a sharp electrode (needle electrode) and generating a continuous discharge.
  • the plasma discharge treatment is a treatment for processing the resin layer surface by generating positive and negative charged particles activated by discharging in the atmosphere.
  • the ozone exposure treatment is, for example, a treatment for processing the resin layer surface by generating ozone by ultraviolet irradiation using a low-pressure mercury lamp or the like in the presence of oxygen.
  • the excimer process is a process of processing the resin layer surface by ultraviolet irradiation or laser irradiation using an excimer lamp in a vacuum state.
  • Examples of functional layers that can be provided on the resin layer include layers having functions such as scratch resistance, abrasion resistance, antifouling properties (contamination resistance), anti-fingerprint properties, and antireflection properties (low reflection properties). Is mentioned.
  • the functional layer is a general known or commonly used functional layer having the above-described functions used in a resin layer in a display device such as a mobile phone or a smartphone.
  • Examples of the material constituting the functional layer include acrylic materials, fluorine materials, and silicone materials.
  • Examples of the method for providing the functional layer on the resin layer include a method by coating similar to the laminated film described later, and a method by vapor deposition and sputtering.
  • the laminated film of the present invention can be produced according to a known or commonly used method for producing a hard coat film, and the production method is not particularly limited, but the curable composition is applied to at least one surface of a support. And it can manufacture by forming a resin layer by hardening
  • the curing method in the resin layer can be appropriately selected from known methods, and examples thereof include irradiation with active energy rays and / or heating.
  • active energy ray for example, any of infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like can be used. Among these, ultraviolet rays are preferable in terms of excellent handleability.
  • the curing conditions by irradiation of active energy rays in the resin layer can be appropriately adjusted according to the type and energy of the active energy rays to be irradiated, the shape and size of the resin layer, etc., and are not particularly limited, but are irradiated with ultraviolet rays. In this case, for example, it is preferably about 1 to 1000 mJ / cm 2 .
  • a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, sunlight, an LED lamp, a laser, or the like can be used.
  • a heating treatment annealing or aging
  • the conditions for curing by heating in the resin layer are not particularly limited, but are preferably 30 to 200 ° C., and more preferably 50 to 190 ° C., for example.
  • the curing time can be appropriately set.
  • the laminated film of the present invention is composed of a resin layer excellent in flexibility and workability, it can be manufactured by a roll-to-roll method. By producing the laminated film of the present invention by the roll-to-roll method, the productivity can be remarkably increased.
  • a known or conventional roll-to-roll method can be adopted, and although not particularly limited, a step of feeding a support wound in a roll shape (Step A) and applying the curable composition to at least one surface of the extended support, and then removing the solvent by drying as necessary, followed by curing the curable composition to obtain a resin layer And a step of rewinding the obtained laminate on a roll (step C) as essential steps, and these steps (steps A to C) are continuously performed.
  • Step A a step of feeding a support wound in a roll shape
  • step C a step of rewinding the obtained laminate on a roll
  • the laminated film of the present invention Since the laminated film of the present invention has high surface hardness and excellent bending durability, it is suitably used as a surface protective material for foldable devices that are repeatedly folded and used in addition to a surface protective material for a normal image display device. be able to.
  • the flexible device includes, for example, a portable information terminal such as a smartphone, a tablet, and a wearable terminal. Display films), protective films, barrier films, TFT substrates and the like. Since the foldable device of the present invention includes the laminated film of the present invention having excellent bending durability, the resin layer does not crack even when bending and stretching are repeated, and is excellent in reliability.
  • a foldable device such as a portable information terminal provided with the laminated film having excellent transparency has excellent visibility.
  • the molecular weight of the product was measured using Alliance HPLC system 2695 (manufactured by Waters), Refractive Index Detector 2414 (manufactured by Waters), column: Tskel GMH HR- M ⁇ 2 (manufactured by Tosoh Corporation), guard column: Tskel guard column H HR L (manufactured by Tosoh Corporation), column oven: COLUMN HEATER U-620 (manufactured by Sugai), solvent: THF, measurement conditions: 40 ° C. Further, the ratio of T2 body to T3 body [T3 body / T2 body] in the product was measured by 29 Si-NMR spectrum measurement with JEOL ECA500 (500 MHz).
  • aqueous layer is extracted, washed with water until the lower layer solution is neutral, and after the upper layer solution is separated, the solvent is distilled off from the upper layer solution at 1 mmHg and 50 ° C. 75.18 g of a colorless transparent liquid product (epoxy group-containing low molecular weight polyorganosilsesquioxane) containing 5% by weight was obtained.
  • Analysis of the product revealed a number average molecular weight of 2235 and a molecular weight dispersity of 1.54.
  • the ratio of T2 body and T3 body [T3 body / T2 body] calculated from the 29 Si-NMR spectrum of the product was 11.9.
  • a 1 H-NMR chart and a 29 Si-NMR chart of the resulting epoxy group-containing low molecular weight polyorganosilsesquioxane are shown in FIG. 4, respectively.
  • Production Example 2 Production of epoxy group-containing high molecular weight polyorganosilsesquioxane Production example in a 1000 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube under a nitrogen stream
  • the mixture (75 g) containing the epoxy group-containing low molecular weight polyorganosilsesquioxane obtained in 1 was charged, and 100 ppm (5 ppm of potassium hydroxide with respect to the net content of the epoxy group-containing low molecular weight polyorganosilsesquioxane) .6 mg), 2000 ppm (112 mg) of water was added, and when heated and heated at 80 ° C.
  • Example 1 Production of Hard Coat Film
  • a mixed solution having a blending ratio shown in Table 1 was prepared and used as a hard coat liquid (curable composition).
  • the surface of the PEN film (trade name “Teonex Q65HWA”, manufactured by Teijin Ltd.) using wire bar # 14 so that the thickness of the hard coat layer after curing the hard coat solution obtained above is 10 ⁇ m.
  • After being applied to the film it was left in an oven at 150 ° C. for 2 minutes, and then irradiated with ultraviolet rays at an illuminance of 600 mJ / cm 2 using a high-pressure mercury lamp (produced by Eye Graphics Co., Ltd.). Thereafter, the coating film of the hard coat solution was cured by heat treatment at 150 ° C. for 60 minutes to produce a hard coat film having a hard coat layer.
  • Examples 2 to 5 Production of hard coat film A hard coat film was produced in the same manner as in Example 1 except that the thickness of the hard coat layer was changed to 20 to 50 ⁇ m.
  • Example 6 Production of hard coat film A hard coat film was produced in the same manner as in Example 1 except that the hard coat liquid having the compounding ratio shown in Table 2 was used and the thickness of the hard coat layer was changed to 40 ⁇ m. did.
  • Example 7 Production of hard coat film A hard coat film was produced in the same manner as in Example 1 except that the hard coat solution having the compounding ratio shown in Table 3 was used and the thickness of the hard coat layer was changed to 40 ⁇ m. did.
  • Example 8 Production of hard coat film A hard coat film was produced in the same manner as in Example 1 except that the hard coat solution having the compounding ratio shown in Table 4 was used and the thickness of the hard coat layer was changed to 40 ⁇ m. did.
  • Comparative Examples 1 to 3 Production of Hard Coat Film A hard coat film was prepared in the same manner as in Example 1 except that the hard coat liquid having the compounding ratio shown in Table 5 was used and the thickness of the hard coat layer was changed to 40 ⁇ m. Was made.
  • ⁇ Haze and total light transmittance> The haze and total light transmittance of the hard coat film obtained above were measured using a haze meter (NDH-5000W, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • ⁇ Abrasion resistance> The # 0000 steel wool was reciprocated at a load of 1000 g / cm 2 against the hard coat layer surface of the hard coat film obtained above, and the presence or absence of scratches on the hard coat layer surface was confirmed. The scratch resistance was evaluated by the number of times until the scratch was confirmed. In addition, “1K ⁇ ” was displayed when no scratches could be confirmed even after reciprocating 1000 times or more.
  • ⁇ Bending durability (2)> The continuous bending durability of the hard coat film obtained above was measured using a planar unloaded U-shaped expansion / contraction tester (manufactured by Yuasa System Equipment Co., Ltd., Z-044). The measurement is performed with the hard coat layer surface convex (outside), the bending radius is 4.0 mm, and the speed is 30 to 60 times / minute. The number of times until the hard coat layer cracks is the bending durability (2). (See FIGS. 1 and 2). When cracks did not occur even after 100,000 times, “100K ⁇ ” was displayed.
  • the water contact angle (°) of the surface of the hard coat film obtained above was measured by a droplet method.
  • Production Example 1 Epoxy group-containing low molecular weight polyorganosilsesquioxane obtained in Production Example 1 (polyorganosilsesquioxane of the present invention) 200PA-E5: trade name “epoxy ester 200PA-E5”, tripropylene glycol diglycidyl ether half (meth) acrylate (having one or more thermally polymerizable functional groups and one or more photopolymerizable functional groups in the molecule) Compound), manufactured by Kyoeisha Chemical Co., Ltd.
  • Light ester G trade name “Light ester G”, glycidyl methacrylate (compound having one or more thermopolymerizable functional groups and one or more photopolymerizable functional groups in the molecule) ), Manufactured by Kyoeisha Chemical Co., Ltd.
  • EA-1010N trade name “NK OLIGO EA1010N”, bisphenol A epoxy half acrylate (having one or more thermopolymerizable functional groups and one or more photopolymerizable functional groups in the molecule) Compound), EHPE3150 manufactured by Shin-Nakamura Chemical Co., Ltd., trade name "EHPE3150” Compound bonded by a single bond), Celoxide 2021P manufactured by Daicel Corporation, trade name “Celoxide 2021P”, 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, manufactured by Daicel Corporation [polymerization Initiator]
  • CPI-310PG trade name “CPI-310PG”, photocationic polymerization initiator, manufactured by San Apro Co., Ltd.
  • CPI-210S trade name “CPI-210S”, photocationic polymerization initiator, manufactured by San Apro Co., Ltd.
  • FT601ADH2 Trade name “Futgent 601ADH2”, manufactured by Neos Corporation
  • RS-76-E Trade name “Megafuck RS-76-E”, manufactured by DIC Corporation
  • Surflon S243 Trade name “Surflon S243” (fluorine leveling agent), manufactured by AGC Seimi Chemical Co., Ltd.
  • solvent MIBK: Methyl isobutyl ketone
  • MEK Methyl ethyl ketone
  • a support A laminated film having a resin layer laminated on at least one surface of the support, The laminated film characterized in that the resin layer (one resin layer when the resin layers are laminated on both sides of the support) satisfies the following (Condition 1) and (Condition 2).
  • the pencil hardness in the pencil hardness test (750 g load) specified in JIS K5600-5-4 (1999) on the resin layer surface of the laminated film is F or more.
  • the bending durability (1) in the following bending durability test (1) is 50,000 times or more.
  • Bending durability test (1) From the state in which the laminated film is stretched, the operation of bending 180 ° so that the bending radius becomes 2.5 mm in the direction in which the surface of the resin layer becomes concave, and extending again is once, and the speed is 30 to 60 times / minute. When the operation is performed, the number of times until the resin layer of the laminated film is cracked is used as an index of bending durability (1).
  • the pencil hardness is 1H or more (preferably 2H or more, more preferably 3H or more, more preferably 4H or more, more preferably 5H or more, more preferably 6H or more, more preferably 7H or more, still more preferably 8H or more, and particularly preferably 9H). .
  • the bending durability (1) is 60,000 times or more (preferably 70,000 times or more, more preferably 80,000 times or more, more preferably 90,000 times or more, more preferably 100,000 times or more, further preferably The laminated film according to [1] or [2], which is 150,000 times or more, particularly preferably 200,000 times or more.
  • a support A laminated film having a resin layer laminated on at least one surface of the support, The laminated film characterized in that the resin layer (one resin layer when resin layers are laminated on both sides of the support) satisfies the following (Condition 1) and (Condition 3).
  • the pencil hardness in the pencil hardness test (750 g load) specified in JIS K5600-5-4 (1999) on the resin layer surface of the laminated film is F or more.
  • the bending durability (2) in the following bending durability test (2) is 10,000 times or more. Bending durability test (2): From the state in which the laminated film is stretched, the operation of bending 180 ° in the direction in which the surface of the resin layer becomes convex so that the bending radius becomes 4.0 mm, and extending again is once, and the speed is 30 to 60 times / minute. When the operation is performed, the number of times until the resin layer of the laminated film is cracked is used as an index of bending durability (2).
  • the pencil hardness is 1H or more (preferably 2H or more, more preferably 3H or more, more preferably 4H or more, more preferably 5H or more, more preferably 6H or more, more preferably 7H or more, still more preferably 8H or more, and particularly preferably 9H).
  • the bending durability (2) is 20,000 times or more (preferably 30,000 times or more, more preferably 40,000 times or more, more preferably 50,000 times or more, more preferably 60,000 times or more, more preferably 70,000 times or more, more preferably 80,000 times or more, more preferably 90,000 times or more, more preferably 100,000 times or more, still more preferably 150,000 times or more, particularly preferably 200,000 times or more.
  • the resin layer (one resin layer when the resin layers are laminated on both sides of the support) satisfies the following (Condition 4): [1] to [6] The laminated film according to any one of the above.
  • Condition 4 In a cylindrical mandrel test specified in JIS K5600-5-1 (1999) in which the surface of the resin layer of the laminated film is convex, the bending radius is 5 mm (preferably 4.5 mm, more preferably 4.0 mm). More preferably 3.5 mm, more preferably 3.0 mm, still more preferably 2.5 mm, particularly preferably 2.0 mm), and no cracks occur on the surface of the resin layer.
  • the water contact angle of the surface of any one of the resin layers is 95 ° or more (preferably 96 ° or more, more preferably 97 ° or more, more preferably 98 ° or more, more Preferably it is 99 ° or more, more preferably 100 ° or more, more preferably 101 ° or more, more preferably 102 ° or more, more preferably 103 ° or more, and even more preferably 10
  • the resin layer (one resin layer in the case where resin layers are laminated on both sides of the support) satisfies the following (Condition 5): [1] to [8] The laminated film according to any one of the above. (Condition 5) While applying a load of 1 kg / cm 2 with # 0000 steel wool, the surface of the resin layer was applied 30 times (preferably 100 times, more preferably 200 times, more preferably 300 times, more preferably 500 times). No scratches are visually observed in the steel wool test in which reciprocating friction is performed, more preferably 700 times, still more preferably 1000 times, particularly preferably 2000 times.
  • the haze of the resin layer (one resin layer when resin layers are laminated on both sides of the support) is 1.0% or less (preferably 0.5% or less, more preferably 0).
  • Haze is 7% or less (preferably 6% or less, more preferably 5% or less, more preferably 4% or less, further preferably 3% or less, particularly preferably 2% or less, most preferably 1% or less.
  • [12] The laminated film according to any one of [1] to [11], wherein the total light transmittance is 85% or more (preferably 90% or more).
  • the thickness (total thickness of the support / resin layer) is 1 to 10000 ⁇ m (preferably 10 to 1000 ⁇ m, more preferably 15 to 800 ⁇ m, still more preferably 20 to 700 ⁇ m, particularly preferably 30 to 500 ⁇ m).
  • the support is a polyester film (especially PET, PEN), a polyimide film, a cyclic polyolefin film, a polycarbonate film, a TAC film, or a PMMA film (preferably a polyester film (especially PET, PEN), or a polyimide film)
  • the laminated film according to any one of [1] to [13], wherein [15]
  • the support has a thickness of 1 to 1000 ⁇ m (preferably 5 to 500 ⁇ m, more preferably 10 to 400 ⁇ m, more preferably 15 to 400 ⁇ m, still more preferably 20 to 300 ⁇ m, particularly preferably 25 to 200 ⁇ m).
  • the laminated film according to any one of [1] to [14].
  • the haze of the support is 7% or less (preferably 6% or less, more preferably 5% or less, more preferably 4% or less, still more preferably 3% or less, particularly preferably 2% or less, most preferably Is 1% or less), and the laminated film according to any one of [1] to [15].
  • the thickness of the resin layer is 1 to 100 ⁇ m (preferably 2 to 80 ⁇ m, more preferably 3 to 60 ⁇ m, still more preferably 5 to 50 ⁇ m, most preferably 10 to 40 ⁇ m). 17].
  • the group containing the cationic polymerizable functional group is a group represented by the following formula (1a), a group represented by the following formula (1b), a group represented by the following formula (1c), and the following: At least one selected from the group consisting of groups represented by the formula (1d) (preferably at least selected from the group consisting of groups represented by the following formula (1a) and groups represented by the following formula (1c)
  • R 1a represents a linear or branched alkylene group.
  • R 1b represents a linear or branched alkylene group.
  • R 1c represents a linear or branched alkylene group.
  • R 1d represents a linear or branched alkylene group.
  • R 1 is a group represented by the above formula (1a), and R 1a is an ethylene group [in particular, a 2- (3 ′, 4′-epoxycyclohexyl) ethyl group].
  • the laminated film according to any one of [22] to [24].
  • R 2 represents a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted group.
  • a substituted alkenyl group is shown.
  • R 2 is a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted alkenyl group (preferably a substituted or unsubstituted aryl group, more preferably a phenyl group).
  • the polyorganosilsesquioxane is a structural unit represented by the following formula (I) (sometimes referred to as “T3 body”) and a structural unit represented by the following formula (II) (“T2
  • T2 The laminated film according to any one of [22] to [27], which may be referred to as a “body”.
  • R a in the above formula (I) and R b in the formula (II) are a group containing a cationically polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted group, respectively.
  • R c in the above formula (II) represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the ratio [T3 body / T2 body] of the structural unit represented by the above formula (I) (T3 body) and the structural unit represented by the above formula (II) (T2 body) is 5 or more (for example, The laminated film according to [28], which is 5 or more and 500 or less).
  • the lower limit of the ratio [T3 / T2] is 5 (preferably 6, more preferably 7), and the upper limit is less than 20 (preferably 18, more preferably 16, more preferably 14).
  • Ratio (total amount) of the structural unit represented by the formula (1) and the structural unit represented by the formula (4) to the total amount (100 mol%) of the siloxane structural unit in the polyorganosilsesquioxane. ) Is 55 to 100 mol% (preferably 65 to 100 mol%, more preferably 80 to 99 mol%).
  • R 2 is the same as that in formula (2).
  • R c is the same as in formula (II).
  • Ratio of the structural unit represented by the formula (2) and the structural unit represented by the formula (5) to the total amount (100 mol%) of the siloxane structural unit in the polyorganosilsesquioxane (total amount) ) Is 0 to 70 mol% (preferably 0 to 60 mol%, more preferably 0 to 40 mol%, particularly preferably 1 to 15 mol%).
  • the proportion (total amount) of the structural unit represented by 4) and the structural unit represented by the formula (5) is 60 to 100 mol% (preferably 70 to 100 mol%, more preferably 80 to 100 mol%).
  • the content (blending amount) of the polyorganosilsesquioxane in the curable composition is 50% by weight or more and 100% by weight with respect to the total amount (100% by weight) of the curable composition excluding the solvent. % (Preferably 60 to 99% by weight, more preferably 70 to 95% by weight).
  • the ratio of the polyorganosilsesquioxane to the total amount (100% by weight) of the cationic curable compound contained in the curable composition is 60 to 99% by weight (preferably 65 to 98% by weight, more preferably 70 to 95% by weight) The laminated film according to any one of [21] to [43].
  • the laminated film according to any one of [21] to [44], wherein the curable composition further contains a curing catalyst.
  • the content (blending amount) of the curing catalyst is 0.01 to 3.0 parts by weight (preferably 0.05 to 3.0 parts by weight) with respect to 100 parts by weight of the polyorganosilsesquioxane.
  • the laminated film according to any one of [45] to [47] more preferably 0.1 to 1.0 part by weight, and still more preferably 0.3 to 1.0 part by weight.
  • the compound A is 3,4-epoxycyclohexylmethyl (meth) acrylate, glycidyl (meth) acrylate, tripropylene glycol diglycidyl ether half (meth) acrylate, bisphenol A epoxy half (meth) acrylate, bisphenol F epoxy
  • the content (blending amount) of the compound A is 1 to 100 parts by weight (preferably 3 to 75 parts by weight, more preferably, as solid content with respect to 100 parts by weight of the polyorganosilsesquioxane.
  • the content (blending amount) of the fluorine-containing photopolymerizable resin is 0.01 to 15 parts by weight (preferably 0.05) with respect to 100 parts by weight of the polyorganosilsesquioxane as a solid content.
  • the laminated film according to [67] which is at least one kind.
  • the alicyclic epoxy compound represented by the formula (i) is (3,4,3 ′, 4′-diepoxy) bicyclohexyl, 2,2-bis (3,4-epoxycyclohexyl) propane, 1,2-bis (3,4-epoxycyclohexyl) ethane, 2,3-bis (3,4-epoxycyclohexyl) oxirane, bis (3,4-epoxycyclohexylmethyl) ether, and the following formula (i-1)
  • the laminated film according to [69] which is at least one selected from the group consisting of compounds represented by (i-10).
  • R ′′ represents a group (p-valent organic group) obtained by removing p hydroxyl groups (—OH) from the structural formula of a p-valent alcohol.
  • P and n each represents a natural number. When p is 2 or more, the n's in the respective parentheses (inside parentheses) may be the same or different.
  • the epoxy compound is (2) a compound (preferably a compound represented by the above formula (ii)) in which an epoxy group is directly bonded to the alicyclic ring with a single bond.
  • the laminated film as described in any one of the above.
  • the content (blending amount) of the epoxy compound is 0.5 to 100 parts by weight (preferably 1 to 80 parts by weight, more preferably 100 parts by weight based on the total amount of the polyorganosilsesquioxane).
  • [74] The laminated film according to any one of [1] to [73], wherein the support is a transparent support.
  • a foldable device comprising the laminated film according to any one of [1] to [74].
  • the foldable device according to [75] which is an image display device.
  • the foldable device according to [76], wherein the image display device is an organic electroluminescence display device.
  • the laminated film of the present invention has high surface hardness and excellent bending durability, it is suitable as a surface protective material for foldable devices such as organic electroluminescence display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)

Abstract

高い表面硬度と優れた屈曲耐久性を有し、フォルダブルデバイスの表面保護材として好適な積層フィルムを提供する。支持体と、該支持体の少なくとも一方の面に積層された樹脂層を有する積層フィルムであって、該樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が下記(条件1)及び(条件2)を充足する。(条件1)積層フィルムの樹脂層表面のJIS K5600-5-4(1999)に規定する鉛筆硬度試験(750g荷重)の鉛筆硬度が、F以上。(条件2)下記屈曲耐久性試験(1)における屈曲耐久性(1)が5万以上。屈曲耐久性試験(1):積層フィルムを伸ばした状態から、樹脂層の面が凹となる方向に屈曲半径が2.5mmとなるように180°折り曲げ、再び伸ばす動作を1回とし、30~60回/分の速さで前記動作を行った際における、積層フィルムの樹脂層にクラックが生じるまでの回数を屈曲耐久性(1)の指標とする。

Description

積層フィルム、及びフォルダブルデバイス
 本発明は、高い表面硬度と優れた屈曲耐久性を備える積層フィルム、及び前記積層フィルムを備えたフォルダブルデバイスに関する。
 スマートフォンやタブレット等の携帯情報端末の携帯性をさらに高めるため、折り畳み可能なディスプレイ、タッチパネルなどのフォルダブルデバイスの需要が高まっている。フォルダブルデバイスは、携帯性を高めるために、小さな屈曲半径(例えば、屈曲半径2.5mm程度)で180°に折り曲げる必要があり、極めて高い屈曲性(可とう性)が求められる。また、フォルダブルデバイスは、折り畳んだ状態で携帯し、使用時に開き、使用後は再び折り畳んで繰り返し使用されるため、高い屈曲耐久性、すなわち、繰り返し折り畳んでもクラック等が発生しない耐久性も求められる。
 フォルダブルデバイスには、有機EL等のフレキシブル性の高い画像表示装置が用いられるが、取り扱い時に画像表示面に傷がつかないように耐擦傷性を付与するため、支持体フィルムにハードコート層を形成させた積層フィルム(ハードコートフィルム)で保護することにより、画像表示装置の画像表示面の耐擦傷性を向上させることが一般になされている(例えば、特許文献1)。
特開2014-186210号公報
 しかしながら、従来のハードコートフィルムは、表面硬度と屈曲性には優れるものの、繰り返し折り畳むとハードコート層にクラックが発生し、屈曲耐久性が低く、フォルダブルデバイスの表面を保護する部材として使用できないという問題があった。
 従って、本発明の目的は、高い表面硬度と、優れた屈曲耐久性を有し、フォルダブルデバイスの表面保護材として好適な積層フィルムを提供することである。
 また、本発明の他の目的は、上記積層フィルムを備えたフォルダブルデバイスを提供することである。
 すなわち、本発明は、支持体と、
 該支持体の少なくとも一方の面に積層された樹脂層を有する積層フィルムであって、
 該樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が下記(条件1)及び(条件2)を充足することを特徴とする積層フィルム(1)を提供する。
(条件1)前記積層フィルムの樹脂層表面のJIS K5600-5-4(1999)に規定する鉛筆硬度試験(750g荷重)の鉛筆硬度が、F以上である。
(条件2)下記屈曲耐久性試験(1)における屈曲耐久性(1)が5万回以上である。
屈曲耐久性試験(1):
 積層フィルムを伸ばした状態から、樹脂層の面が凹となる方向に屈曲半径が2.5mmとなるように180°折り曲げ、再び伸ばす動作を1回とし、30~60回/分の速さで前記動作を行った際における、積層フィルムの樹脂層にクラックが生じるまでの回数を屈曲耐久性(1)の指標とする
 また、本発明は、支持体と、
 該支持体の少なくとも一方の面に積層された樹脂層を有する積層フィルムであって、
 該樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が下記(条件1)及び(条件3)を充足することを特徴とする積層フィルム(2)を提供する。
(条件1)前記積層フィルムの樹脂層表面のJIS K5600-5-4(1999)に規定する鉛筆硬度試験(750g荷重)の鉛筆硬度が、F以上である。
(条件3)下記屈曲耐久性試験(2)における屈曲耐久性(2)が1万回以上である。
屈曲耐久性試験(2):
 積層フィルムを伸ばした状態から、樹脂層の面が凸となる方向に屈曲半径が4.0mmとなるように180°折り曲げ、再び伸ばす動作を1回とし、30~60回/分の速さで前記動作を行った際における、積層フィルムの樹脂層にクラックが生じるまでの回数を屈曲耐久性(2)の指標とする
 前記積層フィルム(1)及び(2)において、さらに、前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)は下記(条件4)を充足することが好ましい。
(条件4)積層フィルムの樹脂層の面が凸となるJIS K5600-5-1(1999)に規定する円筒形マンドレル試験において、屈曲半径が5mmで樹脂層の面にクラックが発生しない
 前記積層フィルム(1)及び(2)において、前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)の面の水接触角は95°以上であることが好ましい。
 前記積層フィルム(1)及び(2)において、前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)は下記(条件5)を充足することが好ましい。
(条件5)#0000番のスチールウールで1kg/cm2の荷重をかけながら、前記樹脂層の表面を30回往復摩擦させる耐スチールウール試験において目視で傷が生じない。
 前記積層フィルム(1)及び(2)において、前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)のヘイズは1.0%以下であることが好ましい。
 前記積層フィルム(1)及び(2)において、前記樹脂層は、さらに、1種以上の硬化性化合物を含む硬化性組成物の硬化物であり、硬化性化合物の少なくとも1種がポリオルガノシルセスキオキサンであることが好ましい。
 前記積層フィルム(1)及び(2)において、前記硬化性組成物は、分子内に1個以上の熱重合性官能基と1個以上の光重合性官能基を有する化合物を含むことが好ましい。
 前記積層フィルム(1)及び(2)において、前記硬化性組成物は、さらに、硬化触媒を含むことが好ましい。
 前記硬化触媒は光カチオン重合開始剤であってもよい。
 前記硬化触媒は熱カチオン重合開始剤であってもよい。
 前記積層フィルム(1)及び(2)において、前記硬化性組成物は、さらに、フッ素含有光重合性樹脂を含むことが好ましい。
 前記積層フィルム(1)及び(2)において、前記支持体は、透明支持体であることが好ましい。
 また、本発明は、前記積層フィルム(1)又は(2)を備えるフォルダブルデバイスを提供する。
 前記フォルダブルデバイスは、画像表示装置であってもよい。
 前記フォルダブルデバイスにおいて、前記画像表示装置は、有機エレクトロルミネセンス表示装置であってもよい。
 本発明の積層フィルムは、高い表面硬度と、優れた屈曲耐久性を有する。このため、本発明の積層フィルムは、折り畳み式画像表示装置などのフォルダブルデバイスの表面保護材として好適に使用することができる。
本発明における屈曲耐久性の試験方法(R曲げ方法)(積層フィルムを樹脂層の面が凹又は凸となる方向に屈曲半径(R)が2.5mm又は4.0mmとなるように180°折り曲げ、伸ばす1回の動作)を示す模式図(側面図)である。 図1の(4)を拡大して示した図である。 製造例1で得られたエポキシ基含有低分子量ポリオルガノシルセスキオキサンの1H-NMRチャートである。 製造例1で得られたエポキシ基含有低分子量ポリオルガノシルセスキオキサンの29Si-NMRチャートである。 製造例2で得られたエポキシ基含有高分子量ポリオルガノシルセスキオキサンの1H-NMRチャートである。 製造例2で得られたエポキシ基含有高分子量ポリオルガノシルセスキオキサンの29Si-NMRチャートである。
[積層フィルム]
 本発明の積層フィルムの一の態様(以下、「積層フィルム(1)」と称する場合がある。)は、支持体と、該支持体の少なくとも一方の面に積層された樹脂層を有する積層フィルムであって、該樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が下記(条件1)及び(条件2)を充足することを特徴とする。
(条件1)前記積層フィルムの樹脂層表面のJIS K5600-5-4(1999)に規定する鉛筆硬度試験(750g荷重)の鉛筆硬度が、F以上である。
(条件2)下記屈曲耐久性試験(1)における屈曲耐久性(1)が5万回以上である。
屈曲耐久性試験(1):
 積層フィルムを伸ばした状態から、樹脂層の面が凹となる方向に屈曲半径が2.5mmとなるように180°折り曲げ、再び伸ばす動作を1回とし、30~60回/分の速さで前記動作を行った際における、積層フィルムの樹脂層にクラックが生じるまでの回数を屈曲耐久性(1)の指標とする
 本発明の積層フィルム(1)は、極めて優れた表面硬度、及び屈曲耐久性を有し、有機EL表示装置などのフォルダブルデバイスの表面保護材として、好適に用いることができる。
 すなわち、本発明の積層フィルム(1)において、前記樹脂層は上述の(条件1)及び(条件2)を充足する。
 なお、本発明の積層フィルム(1)において、前記樹脂層が前記支持体の両面に積層されている場合、いずれか一方の樹脂層が(条件1)及び(条件2)を充足していればよく、他方の樹脂層は(条件1)及び/又は(条件2)を充足していても、充足していなくてもよい。
 上記条件1は、本発明の積層フィルム(1)の樹脂層表面が優れた表面硬度を有することを示す条件である。上記樹脂層表面のJIS K5600-5-4(1999)に規定する鉛筆硬度試験(750g荷重)の鉛筆硬度は、F以上であり、好ましくは1H以上、より好ましくは2H以上、より好ましくは3H以上、より好ましくは4H以上、より好ましくは5H以上、より好ましくは6H以上、より好ましくは7H以上、さらに好ましくは8H以上、特に好ましくは9Hである。前記樹脂層表面の鉛筆硬度がF未満であると、本発明の積層フィルム(1)の表面硬度が不充分となり、フォルダブルデバイスの表面保護材として使用しづらくなる場合がある。
 上記条件2は、本発明の積層フィルム(1)が優れた屈曲耐久性、すなわち、繰り返しで折り畳んでも樹脂層にクラックなどの不具合が生じにくい特性を有することを示す条件であり、具体的には、樹脂層の面が凹(内側)になるように繰り返しで折り畳んだ場合の耐久性(以下、「屈曲耐久性(1)」と称する場合がある)を有することを示す条件である。
 図1は、上記条件2に示す屈曲耐久性試験(1)における、積層フィルム(1)(図1の1)を伸ばした状態(図1(1))から、樹脂層の面が凹(内側)となる方向(図示略)に屈曲半径(R)が2.5mmとなるように180°折り曲げ、再び伸ばす動作の1回を示す模式図(側面図)である。図2は、図1(4)を拡大図であり、Rは屈曲半径を示す。屈曲耐久性試験(1)においては、屈曲半径が2.5mmになるように積層フィルム(1)の樹脂層面の屈曲部に半径2.5mmの円筒形マンドレルを巻き付けて行うことができる。屈曲耐久性試験(1)においては、1分間に30~60回の速さで前記動作を行った際における、積層フィルム(1)の樹脂層にクラックが生じるまでの回数を屈曲耐久性(1)の指標とする。
 本発明の積層フィルム(1)の屈曲耐久性試験(1)における屈曲耐久性(1)は5万回以上であり、好ましくは6万回以上、より好ましくは7万回以上、より好ましくは8万回以上、より好ましくは9万回以上、より好ましくは10万回以上、さらに好ましくは15万回以上、特に好ましくは20万回以上である。屈曲耐久性(1)が5万回未満では、本発明の積層フィルム(1)の屈曲耐久性(1)が不充分となり、フォルダブルデバイス(特に、内側に折り曲げる表示装置等)の表面保護材として使用しづらくなる場合がある。
 本発明の積層フィルムの別の態様(以下、「積層フィルム(2)」と称する場合がある。)としては、前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が上述の(条件1)及び下記(条件3)を充足する態様も好ましい。
(条件3)下記屈曲耐久性試験(2)における屈曲耐久性(2)が1万回以上である。
屈曲耐久性試験(2):
 積層フィルムを伸ばした状態から、樹脂層の面が凸となる方向に屈曲半径が4.0mmとなるように180°折り曲げ、再び伸ばす動作を1回とし、30~60回/分の速さで前記動作を行った際における、積層フィルムの樹脂層にクラックが生じるまでの回数を屈曲耐久性(2)の指標とする
 なお、本発明の積層フィルム(2)において、前記樹脂層が前記支持体の両面に積層されている場合、いずれか一方の樹脂層が(条件1)及び(条件3)を充足していればよく、他方の樹脂層は(条件1)及び/又は(条件3)を充足していても、充足していなくてもよい。
 本発明の積層フィルム(2)の条件1における鉛筆硬度試験の測定方法、及び好ましい鉛筆硬度は、上記積層フィルム(1)と同様である。
 上記条件3は、本発明の積層フィルム(2)の屈曲耐久性のうち、樹脂層の面が凸(外側)になるように繰り返しで折り畳んだ場合の耐久性(以下、「屈曲耐久性(2)」と称する場合がある)を有することを示す条件である。屈曲耐久性(2)のための屈曲耐久性試験(2)は、樹脂層の面が凸(外側)となる方向にし、屈曲半径(R)を4.0mmとしたこと以外は、上述の屈曲耐久性試験(1)と同じ条件で測定することができる。
 本発明の積層フィルム(2)の屈曲耐久性試験(2)における屈曲耐久性(2)は1万回以上であり、より好ましくは2万回以上、より好ましくは3万回以上、より好ましくは4万回以上、より好ましくは5万回以上、より好ましくは6万回以上、より好ましくは7万回以上、より好ましくは8万回以上、より好ましくは9万回以上、より好ましくは10万回以上、さらに好ましくは15万回以上、特に好ましくは20万回以上である。屈曲耐久性(2)が1万回未満では、本発明の積層フィルム(2)の屈曲耐久性(2)が不充分となり、フォルダブルデバイス(特に、外側に折り曲げる表示装置等)の表面保護材として使用しづらくなる場合がある。
 本発明の積層フィルム(1)及び積層フィルム(2)(以下、まとめて、単に「本発明の積層フィルム」と称する場合がある。)は、前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が上述の(条件1)~(条件3)の全てを充足する態様がさらに好ましい。
 本発明の積層フィルム(積層フィルム(1)及び積層フィルム(2)を含む。以下、同様。)は、さらに、前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が以下の(条件4)を満たすことが好ましい。
(条件4)積層フィルムの樹脂層の面が凸となるJIS K5600-5-1(1999)に規定する円筒形マンドレル試験において、屈曲半径が5mmで樹脂層の面にクラックが発生しない(以下、例えば、「屈曲性が5mm以下」と称する場合がある)
 なお、本発明の積層フィルムにおいて、前記樹脂層が前記支持体の両面に積層されている場合、いずれか一方の樹脂層が(条件4)を充足していればよく、他方の樹脂層は(条件4)を充足していても、充足していなくてもよい。
 上記条件4は、本発明の積層フィルムが優れた屈曲性を有することを示す条件である。本発明の積層フィルムの屈曲性は、5mm以下であり、好ましくは4.5mm以下、より好ましくは4.0mm以下、より好ましくは3.5mm以下、より好ましくは3.0mm以下、さらに好ましくは2.5mm以下、特に好ましくは2.0mm以下である。屈曲性が5mmを超えると、本発明の積層フィルムの屈曲性が不充分となり、フォルダブルデバイス(特に、外側に折り曲げる表示装置等)の表面保護材として使用しづらくなる場合がある。
 本発明の積層フィルムは、さらに、前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が以下の(条件5)を満たすことが好ましい。
(条件5)#0000番のスチールウールで1kg/cm2の荷重をかけながら、前記樹脂層の表面を30回往復摩擦させる耐スチールウール試験において目視で傷が生じない(以下、例えば、「耐擦傷性が30回以上」と称する場合がある)
 なお、本発明の積層フィルムにおいて、前記樹脂層が前記支持体の両面に積層されている場合、いずれか一方の樹脂層が(条件5)を充足していればよく、他方の樹脂層は(条件5)を充足していても、充足していなくてもよい。
 上記条件5は、本発明の積層フィルムが優れた耐擦傷性を有することを示す条件である。本発明の積層フィルムの耐擦傷性は、30回以上であり、好ましくは100回以上、より好ましく200回以上、より好ましくは300回以上、より好ましくは500回以上、より好ましくは700回以上、さらに好ましくは1000回以上、特に好ましくは2000回以上である。耐擦傷性が30回未満では、本発明の積層フィルムの耐擦傷性が不充分となり、フォルダブルデバイスの表面保護材として使用しづらくなる場合がある。
 本発明の積層フィルムは、支持体、樹脂層以外の層、例えばアンカー層、粘着剤層、低反射層、防汚層、撥水層、撥油層、防曇層、保護フィルム層、印刷層、導電層、電磁波シールド層、紫外線吸収層、赤外線吸収層、ブルーライトカット層等を有していてもよい。上記樹脂層は、上記支持体の表面において、一部のみに形成されていてもよいし、全面に形成されていてもよい。
 本発明の積層フィルムのヘイズは、例えば7%以下であり、好ましくは6%以下であり、より好ましくは5%以下であり、より好ましくは4%以下であり、さらに好ましくは3%以下であり、特に好ましくは2%以下であり、最も好ましくは1%以下である。なお、ヘイズの下限は、例えば0.1%である。ヘイズを特に7%以下とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。本発明のヘイズは、例えば、支持体として後述の透明基材を使用することによって容易に上記範囲に制御することができる。なお、本明細書においてヘイズは、JIS K7136に準拠して測定することができる。
 本発明の積層フィルムの全光線透過率は、例えば85%以上であり、好ましくは90%以上である。全光線透過率を特に90%以上とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。本発明の全光線透過率は、例えば、支持体として後述の透明基材を使用することによって容易に上記範囲に制御することができる。なお、本明細書において全光線透過率は、JIS K7361-1に準拠して測定することができる。
 本発明の積層フィルムの厚み(支持体/樹脂層の総厚み)は、例えば1~10000μmの範囲から適宜選択することができ、好ましくは10~1000μmであり、より好ましくは15~800μmであり、さらに好ましくは20~700μmであり、特に好ましくは30~500μmである。
 本発明の積層フィルムにおいて、樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)の面の水接触角が95°以上であることが好ましく、より好ましくは96°以上、より好ましくは97°以上、より好ましくは98°以上、より好ましくは99°以上、より好ましくは100°以上、より好ましくは101°以上、より好ましくは102°以上、より好ましくは103°以上、さらに好ましくは104°以上、特に好ましくは105°以上である。水接触角が95°未満では、本発明の積層フィルムの防汚性が不充分となり、フォルダブルデバイスの表面保護材として使用しづらくなる場合がある。
 なお、本発明の積層フィルムにおいて、前記樹脂層が前記支持体の両面に積層されている場合、いずれか一方の樹脂層の水接触角が95°以上であればよく、他方の樹脂層の水接触角は限定されず、95°以上であっても95°未満であってもよい。
 上述した性能を備える本発明の積層フィルムは、後述の支持体の材料の選択及び支持体の厚みの制御、並びに、樹脂層の成分や厚み、支持体への積層方法を制御することで得ることができる。
(支持体)
 本発明の積層フィルムにおける支持体としては、プラスチック基材、金属基材、セラミックス基材、半導体基材、ガラス基材、紙基材、木基材(木製基材)、表面が塗装表面である基材等の公知乃至慣用の支持体を用いることができ、特に限定されない。中でも、プラスチック基材が好ましい。前記支持体は、単層の構成を有していてもよいし、多層(積層)の構成を有していてもよく、その構成(構造)は特に限定されない。
 上記プラスチック基材を構成するプラスチック材料は、特に限定されないが、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ポリイミド;ポリカーボネート;ポリアミド;ポリアセタール;ポリフェニレンオキサイド;ポリフェニレンサルファイド;ポリエーテルスルホン;ポリエーテルエーテルケトン;ノルボルネン系モノマーの単独重合体(付加重合体や開環重合体等)、ノルボルネンとエチレンの共重合体等のノルボルネン系モノマーとオレフィン系モノマーの共重合体(付加重合体や開環重合体等の環状オレフィンコポリマー等)、これらの誘導体等の環状ポリオレフィン;ビニル系重合体(例えば、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリスチレン、ポリ塩化ビニル、アクリロニトリル-スチレン-ブタジエン樹脂(ABS樹脂)等);ビニリデン系重合体(例えば、ポリ塩化ビニリデン等);トリアセチルセルロース(TAC)等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;メラミン樹脂;ユリア樹脂;マレイミド樹脂;シリコーン等の各種プラスチック材料が挙げられる。なお、上記プラスチック基材は、1種のみのプラスチック材料により構成されたものであってもよいし、2種以上のプラスチック材料により構成されたものであってもよい。
 中でも、上記プラスチック基材としては、透明性・屈曲耐久性に優れた積層フィルムを得るためには、透明性・屈曲耐久性に優れた支持体(透明支持体)を用いることが好ましく、より好ましくはポリエステルフィルム(特に、PET、PEN)、ポリイミドフィルム、環状ポリオレフィンフィルム、ポリカーボネートフィルム、TACフィルム、PMMAフィルムであり、さらに好ましくはポリエステルフィルム(特に、PET、PEN)、ポリイミドフィルムである。
 前記支持体(特に、プラスチック基材)は、必要に応じて、酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定剤、結晶核剤、難燃剤、難燃助剤、充填剤、可塑剤、耐衝撃性改良剤、補強剤、分散剤、帯電防止剤、発泡剤、抗菌剤等のその他の添加剤を含んでいてもよい。なお、添加剤は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 前記支持体(特に、プラスチック基材)の表面の一部又は全部には、粗化処理、易接着処理、静電気防止処理、サンドブラスト処理(サンドマット処理)、コロナ放電処理、プラズマ処理、ケミカルエッチング処理、ウォーターマット処理、火炎処理、酸処理、アルカリ処理、酸化処理、紫外線照射処理、シランカップリング剤処理等の公知乃至慣用の表面処理が施されていてもよい。なお、上記プラスチック基材は、未延伸フィルムであってもよいし、延伸フィルム(一軸延伸フィルム、二軸延伸フィルム等)であってもよい。なお、支持体としては、市販品を使用することもできる。
 前記支持体の厚みは、例えば、1~1000μm程度、好ましくは5~500μm、より好ましく10~400μm、より好ましくは15~400μm、さらに好ましくは20~300μm、特に好ましくは25~200μmである。
 本発明の支持体のヘイズは、例えば7%以下であり、好ましくは6%以下であり、より好ましくは5%以下であり、より好ましくは4%以下であり、さらに好ましくは3%以下であり、特に好ましくは2%以下であり、最も好ましくは1%以下である。なお、ヘイズの下限は、例えば0.1%である。ヘイズを特に7%以下とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。
 本発明の支持体の全光線透過率は、例えば85%以上であり、好ましくは90%以上である。全光線透過率を特に90%以上とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。
(樹脂層)
 本発明において上記樹脂層は、後述する硬化性組成物の硬化物で形成されている。すなわち、樹脂層は、当該硬化性組成物により形成された硬化物からなる層であり、上記の(条件1)、及び(条件2)又は(条件3)を充足し、好ましくは上記の(条件4)及び/又は(条件5)を充足する層である。なお、上記樹脂層は、後述する積層フィルムの製造方法により、硬化性組成物から作製することができる。
 上記樹脂層の厚みは、表面硬度と耐擦傷性の観点から、例えば1~100μm、好ましくは2~80μm、より好ましくは3~60μm、さらに好ましくは5~50μm、最も好ましくは10~40μmである。樹脂層の厚みが1μmより薄い場合、高い表面硬度を維持できない場合がある。また、樹脂層の厚みが100μmより厚い場合は、大きなカールが発生する等の不具合が生じやすくなる。
 上記樹脂層のヘイズは、例えば1.0以下であり、好ましくは0.5%以下であり、より好ましくは0.1%以下である。なお、樹脂層のヘイズの下限は、例えば0.1%である。上記樹脂層のヘイズを特に1.0%以下とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。樹脂層のヘイズは、上述の積層フィルム(支持体/樹脂層)のヘイズから支持体のヘイズを減じた差により求めることができる。
 上記樹脂層の全光線透過率は、例えば85%以上であり、好ましくは90%以上である。全光線透過率を85%以上とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。樹脂層の全光線透過率は、例えば、上述の硬化性組成物を硬化後の厚みが本発明の積層フィルムの樹脂層と同じ厚みになるように離型基材に塗布、硬化させ、硬化膜を剥離した後に、JIS K7361-1に準拠して測定することより求めることができる。
 上記樹脂層は、表面の平滑性にも優れており、算術平均粗さRaが、JIS B0601に準拠した方法において、例えば0.1~20nmであり、好ましくは0.1~10nmであり、より好ましくは0.1~5nmである。
 上記樹脂層は、上記支持体の一方の面のみに積層されていてもよく、両面に積層されていてもよい。樹脂層が支持体の両面に積層されている場合、同一の樹脂層であっても、異なる樹脂層であってもよい。また、樹脂層が支持体の両面に積層されている場合、一方の樹脂層が上記の(条件1)、及び(条件2)又は(条件3)を充足し、好ましくは上記の(条件4)及び/又は(条件5)を充足していればよく、他方の樹脂層は(条件1~5)のいずれか1以上を充足していても、充足していなくてもよい。
(硬化性組成物)
 本発明の積層フィルムにおける樹脂層を形成するための硬化性組成物は、特に限定されず、公知のハードコートフィルムのハードコート層に使用されるものを特に限定なく採用することができ、具体的には、1種以上の硬化性化合物を含む硬化性組成物の硬化物により形成することができる。
 上記硬化性組成物を構成する硬化性化合物としては、公知のハードコートフィルムのハードコート層を形成するための成分を特に限定なく採用することができ、例えば、(メタ)アクリレート化合物、カチオン硬化性シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ビニルエーテル樹脂、オキセタン樹脂などが挙げられる。本発明の積層フィルムにおける上述の性能(条件1~5)を充足するためには、カチオン硬化性シリコーン樹脂が好ましい。
 上記カチオン硬化性シリコーン樹脂は、ポリオルガノシルセスキオキサンを含む態様が好ましく、具体的には、下記式(1)で表される構成単位を有するポリオルガノシルセスキオキサン(以下、「本発明のポリオルガノシルセスキオキサン」と称する場合がある)を含む硬化性組成物(以下、「本発明の硬化性組成物」と称する場合がある)から形成されることが好ましい。
Figure JPOXMLDOC01-appb-C000001
[式(1)中、R1は、カチオン重合性官能基を含有する基を示す。]
 本発明の硬化性組成物は、上述の本発明のポリオルガノシルセスキオキサンを必須成分として含む硬化性組成物(硬化性樹脂組成物)であり、本発明の積層フィルムにおける樹脂層を形成するための硬化性組成物として使用されるものである。後述のように、本発明の硬化性組成物は、さらに、硬化触媒(特に光カチオン重合開始剤、ラジカル重合性開始剤)や、分子内に1個以上の熱重合性官能基と1個以上の光重合性官能基を有する化合物、フッ素含有光重合性樹脂、表面調整剤あるいは表面改質剤等のその他の成分を含んでいてもよい。
(ポリオルガノシルセスキオキサン)
 本発明のポリオルガノシルセスキオキサンは、上記式(1)で表される構成単位を有することを特徴とする。
 また、本発明のポリオルガノシルセスキオキサンは、下記式(I)で表される構成単位(「T3体」と称する場合がある)と、下記式(II)で表される構成単位(「T2体」と称する場合がある)を有することが好ましい。
 さらに、本発明のポリオルガノシルセスキオキサンは、後述の式(4)で表される構成単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 上記式(1)で表される構成単位は、一般に[RSiO3/2]で表されるシルセスキオキサン構成単位(いわゆるT単位)である。なお、上記式中のRは、水素原子又は一価の有機基を示し、以下においても同じである。上記式(1)で表される構成単位は、対応する加水分解性三官能シラン化合物(具体的には、例えば、後述の式(a)で表される化合物)の加水分解及び縮合反応により形成される。
 式(1)中のR1は、カチオン重合性官能基を含有する基(一価の基)を示す。即ち、本発明のポリオルガノシルセスキオキサンは、分子内にカチオン重合性官能基を少なくとも有する、カチオン硬化性化合物(カチオン重合性化合物)である。
 上記カチオン重合性官能基を含有する基における「カチオン重合性官能基」としては、カチオン重合性を有するものである限り特に限定されず、例えば、エポキシ基、オキセタン基、ビニルエーテル基、ビニルフェニル基等が挙げられる。
 カチオン重合性官能基としては、樹脂層の表面硬度(例えば、F以上)の観点から、エポキシ基が特に好ましい。
 上記カチオン重合性官能基を含有する基としては、オキシラン環を有する公知乃至慣用の基が挙げられ、特に限定されないが、硬化性組成物の硬化性、硬化物(樹脂層)の表面硬度や耐熱性の観点で、下記式(1a)で表される基、下記式(1b)で表される基、下記式(1c)で表される基、下記式(1d)で表される基が好ましく、より好ましくは下記式(1a)で表される基、下記式(1c)で表される基、さらに好ましくは下記式(1a)で表される基である。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 上記式(1a)中、R1aは、直鎖又は分岐鎖状のアルキレン基を示す。直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、デカメチレン基等の炭素数1~10の直鎖又は分岐鎖状のアルキレン基が挙げられる。中でも、R1aとしては、硬化物(樹脂層)の表面硬度や硬化性の観点で、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記式(1b)中、R1bは、直鎖又は分岐鎖状のアルキレン基を示し、R1aと同様の基が例示される。中でも、R1bとしては、硬化物(樹脂層)の表面硬度や硬化性の観点で、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記式(1c)中、R1cは、直鎖又は分岐鎖状のアルキレン基を示し、R1aと同様の基が例示される。中でも、R1cとしては、硬化物(樹脂層)の表面硬度や硬化性の観点で、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記式(1d)中、R1dは、直鎖又は分岐鎖状のアルキレン基を示し、R1aと同様の基が例示される。中でも、R1dとしては、硬化物(樹脂層)の表面硬度や硬化性の観点で、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 式(1)中のR1としては、特に、上記式(1a)で表される基であって、R1aがエチレン基である基[中でも、2-(3’,4’-エポキシシクロヘキシル)エチル基]が好ましい。
 上記オキセタン基を含有する基としては、オキセタン環を有する公知乃至慣用の基が挙げられ、特に限定されないが、例えば、オキセタン基そのもの、アルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基)の水素原子(通常1つ以上、好ましくは1つの水素原子)をオキセタン基で置換してなる基が挙げられる。硬化性組成物の硬化性、硬化物(樹脂層)の耐熱性の観点で、3-オキセタニル基、オキセタン-3-イルメチル基、3-エチルオキセタン-3-イルメチル基、2-(オキセタン-3-イル)エチル基、2-(3-エチルオキセタン-3-イル)エチル基、3-(オキセタン-3-イルメトキシ)プロピル基、3-(3-エチルオキセタン-3-イルメトキシ)プロピル基等が好ましい。
 上記ビニルエーテル基を含有する基としては、ビニルエーテル基を有する公知乃至慣用の基が挙げられ、特に限定されないが、例えば、ビニルエーテル基そのもの、アルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基)の水素原子(通常1つ以上、好ましくは1つの水素原子)をビニルエーテル基で置換してなる基が挙げられる。硬化性組成物の硬化性、硬化物(樹脂層)の耐熱性の観点で、ビニルオキシメチル基、2-(ビニルオキシ)エチル基、3-(ビニルオキシ)プロピル基等が好ましい。
 上記ビニルフェニル基を含有する基としては、ビニルフェニル基を有する公知乃至慣用の基が挙げられ、特に限定されないが、例えば、ビニルフェニル基そのもの、アルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基)の水素原子(通常1つ以上、好ましくは1つの水素原子)をビニルフェニル基で置換してなる基が挙げられる。硬化性組成物の硬化性、硬化物(樹脂層)の耐熱性の観点で、4-ビニルフェニル基、3-ビニルフェニル基、2-ビニルフェニル基等が好ましい。
 本発明のポリオルガノシルセスキオキサンは、上記式(1)で表される構成単位を1種のみ有するものであってもよいし、上記式(1)で表される構成単位を2種以上有するものであってもよい。
 本発明のポリオルガノシルセスキオキサンは、シルセスキオキサン構成単位[RSiO3/2]として、上記式(1)で表される構成単位以外にも、下記式(2)で表される構成単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000008
 上記式(2)で表される構成単位は、一般に[RSiO3/2]で表されるシルセスキオキサン構成単位(T単位)である。即ち、上記式(2)で表される構成単位は、対応する加水分解性三官能シラン化合物(具体的には、例えば、後述の式(b)で表される化合物)の加水分解及び縮合反応により形成される。
 上記式(2)中のR2は、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。上記アリール基としては、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。上記アラルキル基としては、例えば、ベンジル基、フェネチル基等が挙げられる。上記シクロアルキル基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基等の直鎖又は分岐鎖状のアルキル基が挙げられる。上記アルケニル基としては、例えば、ビニル基、アリル基、イソプロペニル基等の直鎖又は分岐鎖状のアルケニル基が挙げられる。
 上述の置換アリール基、置換アラルキル基、置換シクロアルキル基、置換アルキル基、置換アルケニル基としては、上述のアリール基、アラルキル基、シクロアルキル基、アルキル基、アルケニル基のそれぞれにおける水素原子又は主鎖骨格の一部若しくは全部が、エーテル基、エステル基、カルボニル基、シロキサン基、ハロゲン原子(フッ素原子等)、アクリル基、メタクリル基、メルカプト基、アミノ基、及びヒドロキシ基(水酸基)からなる群より選択された少なくとも1種で置換された基が挙げられる。
 中でも、R2としては、置換若しくは無置換のアリール基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基が好ましく、より好ましくは置換若しくは無置換のアリール基、さらに好ましくはフェニル基である。
 本発明のポリオルガノシルセスキオキサンにおける上述の各シルセスキオキサン構成単位(式(1)で表される構成単位、式(2)で表される構成単位)の割合は、これらの構成単位を形成するための原料(加水分解性三官能シラン)の組成により適宜調整することが可能である。
 本発明のポリオルガノシルセスキオキサンは、上記式(1)で表される構成単位及び式(2)で表される構成単位以外にも、さらに、上記式(1)で表される構成単位及び式(2)で表される構成単位以外のシルセスキオキサン構成単位[RSiO3/2]、[R3SiO1/2]で表される構成単位(いわゆるM単位)、[R2SiO2/2]で表される構成単位(いわゆるD単位)、及び[SiO4/2]で表される構成単位(いわゆるQ単位)からなる群より選択される少なくとも1種のシロキサン構成単位を有していてもよい。なお、上記式(1)で表される構成単位及び式(2)で表される構成単位以外のシルセスキオキサン構成単位としては、例えば、下記式(3)で表される構成単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 本発明のポリオルガノシルセスキオキサンが、上記式(I)で表される構成単位(T3体)と、上記式(II)で表される構成単位(T2体)とを有する場合、その割合[T3体/T2体]は、特に限定されないが、例えば、5以上(例えば、5以上、500以下)の範囲から適宜選択可能である。本発明のポリオルガノシルセスキオキサンの一の態様の上記割合[T3体/T2体]の下限値は、好ましくは5、より好ましくは6、さらに好ましくは7であり、上限値は、好ましくは20未満、より好ましくは18、より好ましくは16、さらに好ましくは14である。上記割合[T3体/T2体]を5以上とすることにより、樹脂層の表面硬度が向上する傾向がある。上記割合[T3体/T2体]を20未満(好ましくは18以下)とすることにより、硬化性組成物における他の成分との相溶性が向上し、粘度も抑制もされるため、取扱いが容易となり、塗工しやすくなる。
 本発明のポリオルガノシルセスキオキサンの別の態様の上記割合[T3体/T2体]の下限値は、好ましくは20、より好ましくは21、より好ましくは23、さらに好ましくは25であり、上限値は、好ましくは500、より好ましくは100、より好ましくは50、さらに好ましくは40である。上記割合[T3体/T2体]を20以上とすることにより、表面硬度や密着性の向上に加えて、未硬化又は半硬化の樹脂層としたときの表面がタックフリーになりやすく、耐ブロッキング性が向上して、ロールに巻き取り取りやすくなる。一方、上記割合[T3体/T2体]を500以下とすることにより、硬化性組成物における他の成分との相溶性が向上し、粘度も抑制もされるため、取扱いが容易となり、塗工しやすくなる。
 なお、上記式(I)で表される構成単位をより詳細に記載すると、下記式(I’)で表される。また、上記式(II)で表される構成単位をより詳細に記載すると、下記式(II’)で表される。下記式(I’)で表される構造中に示されるケイ素原子に結合した3つの酸素原子はそれぞれ、他のケイ素原子(式(I’)に示されていないケイ素原子)と結合している。一方、下記式(II’)で表される構造中に示されるケイ素原子の上と下に位置する2つの酸素原子はそれぞれ、他のケイ素原子(式(II’)に示されていないケイ素原子)に結合している。即ち、上記T3体及びT2体は、いずれも対応する加水分解性三官能シラン化合物の加水分解及び縮合反応により形成される構成単位(T単位)である。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 上記式(I)中のRa(式(I’)中のRaも同じ)及び式(II)中のRb(式(II’)中のRbも同じ)は、それぞれ、カチオン重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。Ra及びRbの具体例としては、上記式(1)におけるR1、上記式(2)におけるR2と同様のものが例示される。なお、式(I)中のRa及び式(II)中のRbは、それぞれ、本発明のポリオルガノシルセスキオキサンの原料として使用した加水分解性三官能シラン化合物におけるケイ素原子に結合した基(アルコキシ基及びハロゲン原子以外の基;例えば、後述の式(a)~(c)におけるR1、R2、水素原子等)に由来する。
 上記式(II)中のRc(式(II’)中のRcも同じ)は、水素原子又は炭素数1~4のアルキル基を示す。炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等の炭素数1~4の直鎖又は分岐鎖状のアルキル基が挙げられる。式(II)中のRcにおけるアルキル基は、一般的には、本発明のポリオルガノシルセスキオキサンの原料として使用した加水分解性シラン化合物におけるアルコキシ基(例えば、後述のX1~X3としてのアルコキシ基等)を形成するアルキル基に由来する。
 本発明のポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]は、例えば、29Si-NMRスペクトル測定により求めることができる。29Si-NMRスペクトルにおいて、上記式(I)で表される構成単位(T3体)におけるケイ素原子と、上記式(II)で表される構成単位(T2体)におけるケイ素原子とは、異なる位置(化学シフト)にシグナル(ピーク)を示すため、これらそれぞれのピークの積分比を算出することにより、上記割合[T3体/T2体]が求められる。具体的には、例えば、本発明のポリオルガノシルセスキオキサンが、上記式(1)で表され、R1が2-(3’,4’-エポキシシクロヘキシル)エチル基である構成単位を有する場合には、上記式(I)で表される構造(T3体)におけるケイ素原子のシグナルは-64~-70ppmに現れ、上記式(II)で表される構造(T2体)におけるケイ素原子のシグナルは-54~-60ppmに現れる。従って、この場合、-64~-70ppmのシグナル(T3体)と-54~-60ppmのシグナル(T2体)の積分比を算出することによって、上記割合[T3体/T2体]を求めることができる。R1が2-(3’,4’-エポキシシクロヘキシル)エチル基以外のカチオン重合性官能基を含む基である場合も、同様にして[T3体/T2体]を求めることができる。
 本発明のポリオルガノシルセスキオキサンの29Si-NMRスペクトルは、例えば、下記の装置及び条件により測定することができる。
 測定装置:商品名「JNM-ECA500NMR」(日本電子(株)製)
 溶媒:重クロロホルム
 積算回数:1800回
 測定温度:25℃
 本発明のポリオルガノシルセスキオキサンの上記割合[T3体/T2体]が上記範囲(例えば、5以上、500以下)である場合は、本発明のポリオルガノシルセスキオキサンにおいてT3体に対して一定量のT2体存在していることを意味する。このようなT2体としては、例えば、下記式(4)で表される構成単位、下記式(5)で表される構成単位、下記式(6)で表される構成単位等が挙げられる。下記式(4)におけるR1及び下記式(5)におけるR2は、それぞれ上記式(1)におけるR1及び上記式(2)におけるR2と同じである。下記式(4)~(6)におけるRcは、式(II)におけるRcと同じく、水素原子又は炭素数1~4のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 本発明のポリオルガノシルセスキオキサンは、カゴ型、不完全カゴ型、ラダー型、ランダム型のいずれのシルセスキオキサン構造を有していてもよく、これらシルセスキオキサン構造の2以上を組み合わせて有していてもよい。
 本発明のポリオルガノシルセスキオキサンが上記式(4)で表される構成単位を有する場合、シロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(1)で表される構成単位及び上記式(4)で表される構成単位の割合(総量)は、特に限定されないが、好ましくは55~100モル%であり、より好ましくは65~100モル%、さらに好ましくは80~99モル%である。上記割合を55モル%以上とすることにより、硬化性組成物の硬化性が向上し、また、硬化物(樹脂層)の表面硬度や接着性が著しく高くなる。なお、本発明のポリオルガノシルセスキオキサンにおける各シロキサン構成単位の割合は、例えば、原料の組成やNMRスペクトル測定等により算出できる。
 本発明のポリオルガノシルセスキオキサンにおけるシロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(2)で表される構成単位及び上記式(5)で表される構成単位の割合(総量)は、特に限定されないが、0~70モル%が好ましく、より好ましくは0~60モル%、さらに好ましくは0~40モル%、特に好ましくは1~15モル%である。上記割合を70モル%以下とすることにより、相対的に式(1)で表される構成単位及び式(4)で表される構成単位の割合を多くすることができるため、硬化性組成物の硬化性が向上し、硬化物(樹脂層)の表面硬度や接着性がより高くなる傾向がある。一方、上記割合を1モル%以上とすることにより、硬化物(樹脂層)のガスバリア性が向上する傾向がある。
 本発明のポリオルガノシルセスキオキサンにおけるシロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(1)で表される構成単位、上記式(2)で表される構成単位、上記式(4)で表される構成単位、及び上記式(5)で表される構成単位の割合(総量)は、特に限定されないが、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。上記割合を60モル%以上とすることにより、硬化物(樹脂層)の表面硬度や接着性がより高くなる傾向がある。
 本発明のポリオルガノシルセスキオキサンのゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)は、特に限定されないが、例えば、1000~50000の範囲から適宜選択することができる。本発明のポリオルガノシルセスキオキサンの一の態様の数平均分子量の下限値は、好ましくは1000、より好ましくは1100であり、上限値は、好ましくは3000、より好ましくは2800、さらに好ましくは2600である。数平均分子量を1000以上とすることにより、硬化物(樹脂層)の耐熱性、耐擦傷性、接着性がより向上する傾向がある。数平均分子量を3000以下とすることにより、硬化性組成物における他の成分との相溶性が向上し、硬化物(樹脂層)の耐熱性がより向上する傾向がある。
 本発明のポリオルガノシルセスキオキサンの別の態様の数平均分子量の下限値は、好ましくは2500、より好ましくは2800、さらに好ましくは3000であり、上限値は、好ましくは50000、より好ましくは10000、さらに好ましくは8000である。数平均分子量を2500以上とすることにより、硬化物(樹脂層)の耐熱性、耐擦傷性、接着性の向上に加えて、未硬化又は半硬化の樹脂層としたときの表面がタックフリーになりやすく、耐ブロッキング性が向上して、ロールに巻き取り取りやすくなる。数平均分子量を50000以下とすることにより、硬化性組成物における他の成分との相溶性が向上し、硬化物(樹脂層)の耐熱性がより向上する傾向がある。
 本発明のポリオルガノシルセスキオキサンのゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の分子量分散度(Mw/Mn)は、特に限定されないが、1.0~4.0の範囲から適宜選択することができる。分子量分散度の下限値は、好ましくは1.0、より好ましくは1.1、さらに好ましくは1.2である。分子量分散度を1.1以上とすることにより、液状となりやすく、取り扱い性が向上する傾向がある。一方、分子量分散度の上限値は、好ましくは4.0、より好ましくは3.0、さらに好ましくは2.5(例えば、好ましくは3.0、より好ましくは2.0、さらに好ましくは1.9)である。分子量分散度を4.0以下(例えば、3.0以下)とすることにより、硬化物(樹脂層)の表面硬度や接着性がより高くなる傾向がある。
 なお、本発明のポリオルガノシルセスキオキサンの数平均分子量、分子量分散度は、下記の装置及び条件により測定することができる。
 測定装置:商品名「LC-20AD」((株)島津製作所製)
 カラム:Shodex KF-801×2本、KF-802、及びKF-803(昭和電工(株)製)
 測定温度:40℃
 溶離液:THF、試料濃度0.1~0.2重量%
 流量:1mL/分
 検出器:UV-VIS検出器(商品名「SPD-20A」、(株)島津製作所製)
 分子量:標準ポリスチレン換算
 本発明のポリオルガノシルセスキオキサンの空気雰囲気下における5%重量減少温度(Td5)は、特に限定されないが、330℃以上(例えば、330~450℃)が好ましく、より好ましくは340℃以上、さらに好ましくは350℃以上である。5%重量減少温度が330℃以上であることにより、硬化物(樹脂層)の耐熱性がより向上する傾向がある。特に、本発明のポリオルガノシルセスキオキサンが、上記割合[T3体/T2体]が5以上500以下であって、数平均分子量が1000~50000、分子量分散度が1.0~4.0であるものであることにより、その5%重量減少温度は330℃以上に制御される。なお、5%重量減少温度は、一定の昇温速度で加熱した時に加熱前の重量の5%が減少した時点での温度であり、耐熱性の指標となる。上記5%重量減少温度は、TGA(熱重量分析)により、空気雰囲気下、昇温速度5℃/分の条件で測定することができる。
 本発明のポリオルガノシルセスキオキサンは、公知乃至慣用のポリシロキサンの製造方法により製造することができ、特に限定されないが、例えば、1種又は2種以上の加水分解性シラン化合物を加水分解及び縮合させる方法により製造できる。但し、上記加水分解性シラン化合物としては、上述の式(1)で表される構成単位を形成するための加水分解性三官能シラン化合物(下記式(a)で表される化合物)を必須の加水分解性シラン化合物として使用する必要がある。
 より具体的には、例えば、本発明のポリオルガノシルセスキオキサンにおけるシルセスキオキサン構成単位(T単位)を形成するための加水分解性シラン化合物である下記式(a)で表される化合物、必要に応じてさらに、下記式(b)で表される化合物、下記式(c)で表される化合物を、加水分解及び縮合させる方法により、本発明のポリオルガノシルセスキオキサンを製造できる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 上記式(a)で表される化合物は、本発明のポリオルガノシルセスキオキサンにおける式(1)で表される構成単位を形成する化合物である。式(a)中のR1は、上記式(1)におけるR1と同じく、カチオン重合性官能基を含有する基を示す。即ち、式(a)中のR1としては、上記式(1a)で表される基、上記式(1b)で表される基、上記式(1c)で表される基、上記式(1d)で表される基が好ましく、より好ましくは上記式(1a)で表される基、上記式(1c)で表される基、さらに好ましくは上記式(1a)で表される基、特に好ましくは上記式(1a)で表される基であって、R1aがエチレン基である基[中でも、2-(3’,4’-エポキシシクロヘキシル)エチル基]である。
 上記式(a)中のX1は、アルコキシ基又はハロゲン原子を示す。X1におけるアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等の炭素数1~4のアルコキシ基等が挙げられる。また、X1におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。中でもX1としては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのX1は、それぞれ同一であってもよいし、異なっていてもよい。
 上記式(b)で表される化合物は、本発明のポリオルガノシルセスキオキサンにおける式(2)で表される構成単位を形成する化合物である。式(b)中のR2は、上記式(2)におけるR2と同じく、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。即ち、式(b)中のR2としては、置換若しくは無置換のアリール基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基が好ましく、より好ましくは置換若しくは無置換のアリール基、さらに好ましくはフェニル基である。
 上記式(b)中のX2は、アルコキシ基又はハロゲン原子を示す。X2の具体例としては、X1として例示したものが挙げられる。中でも、X2としては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのX2は、それぞれ同一であってもよいし、異なっていてもよい。
 上記式(c)で表される化合物は、本発明のポリオルガノシルセスキオキサンにおける式(3)で表される構成単位を形成する化合物である。上記式(c)中のX3は、アルコキシ基又はハロゲン原子を示す。X3の具体例としては、X1として例示したものが挙げられる。中でも、X3としては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのX3は、それぞれ同一であってもよいし、異なっていてもよい。
 上記加水分解性シラン化合物としては、上記式(a)~(c)で表される化合物以外の加水分解性シラン化合物を併用してもよい。例えば、上記式(a)~(c)で表される化合物以外の加水分解性三官能シラン化合物、M単位を形成する加水分解性単官能シラン化合物、D単位を形成する加水分解性二官能シラン化合物、Q単位を形成する加水分解性四官能シラン化合物等が挙げられる。
 上記加水分解性シラン化合物の使用量や組成は、所望する本発明のポリオルガノシルセスキオキサンの構造に応じて適宜調整できる。例えば、上記式(a)で表される化合物の使用量は、特に限定されないが、使用する加水分解性シラン化合物の全量(100モル%)に対して、55~100モル%が好ましく、より好ましくは65~100モル%、さらに好ましくは80~99モル%である。
 また、上記式(b)で表される化合物の使用量は、特に限定されないが、使用する加水分解性シラン化合物の全量(100モル%)に対して、0~70モル%が好ましく、より好ましくは0~60モル%、さらに好ましくは0~40モル%、特に好ましくは1~15モル%である。
 さらに、使用する加水分解性シラン化合物の全量(100モル%)に対する式(a)で表される化合物と式(b)で表される化合物の割合(総量の割合)は、特に限定されないが、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。
 また、上記加水分解性シラン化合物として2種以上を併用する場合、これらの加水分解性シラン化合物の加水分解及び縮合反応は、同時に行うこともできるし、逐次行うこともできる。上記反応を逐次行う場合、反応を行う順序は特に限定されない。
 上記加水分解性シラン化合物の加水分解及び縮合反応は、1段階で行ってもよいし、2段階以上に分けて行ってもよい。例えば、上記割合[T3体/T2体]が20未満及び/又は数平均分子量が2500未満の本発明のポリオルガノシルセスキオキサン(以下、「低分子量ポリオルガノシルセスキオキサン」と称する場合がある)を効率よく製造するためには、加水分解及び縮合反応を1段階で行うことが好ましい。また、上記割合[T3体/T2体]が20以上及び/又は数平均分子量が2500以上の本発明のポリオルガノシルセスキオキサン(以下、「高分子量ポリオルガノシルセスキオキサン」と称する場合がある)を効率よく製造するためには、加水分解及び縮合反応を2段階以上(好ましくは、2段階)で加水分解及び縮合反応を行うこと、即ち、上記低分子量ポリオルガノシルセスキオキサンを原料としてさらに1回以上で加水分解及び縮合反応を行うことが好ましい。以下に、加水分解性シラン化合物の加水分解及び縮合反応を1段階で行って低分子量ポリオルガノシルセスキオキサンを得て、さらに低分子量ポリオルガノシルセスキオキサンを加水分解及び縮合反応に付すことにより高分子量ポリオルガノシルセスキオキサンを得る態様について説明するが、本発明のポリオルガノシルセスキオキサンの製造方法はこれに限定されない。
 本発明の加水分解及び縮合反応を2段階で行う場合、好ましくは、第1段目の加水分解及び縮合反応で、上記割合[T3体/T2体]が5以上20未満であり、数平均分子量が1000以上2500未満である低分子量ポリオルガノシルセスキオキサンを得、第2段目で、該低分子量ポリオルガノシルセスキオキサンを、さらに加水分解及び縮合反応に付すことにより、上記割合[T3体/T2体]が20以上500以下であり、数平均分子量が2500以上50000以下である高分子量ポリオルガノシルセスキオキサンを得ることができる。
 第1段目の加水分解及び縮合反応は、溶媒の存在下で行うこともできるし、非存在下で行うこともできる。中でも溶媒の存在下で行うことが好ましい。上記溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル;メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール等が挙げられる。上記溶媒としては、中でも、ケトン、エーテルが好ましい。なお、溶媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 第1段目の加水分解及び縮合反応における溶媒の使用量は、特に限定されず、加水分解性シラン化合物の全量100重量部に対して、0~2000重量部の範囲内で、所望の反応時間等に応じて、適宜調整することができる。
 第1段目の加水分解及び縮合反応は、触媒及び水の存在下で進行させることが好ましい。上記触媒は、酸触媒であってもアルカリ触媒であってもよいが、エポキシ基等のカチオン重合性官能基の分解を抑制するためにはアルカリ触媒が好ましい。上記酸触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、ホウ酸等の鉱酸;リン酸エステル;酢酸、蟻酸、トリフルオロ酢酸等のカルボン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等のスルホン酸;活性白土等の固体酸;塩化鉄等のルイス酸等が挙げられる。上記アルカリ触媒としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩;炭酸マグネシウム等のアルカリ土類金属の炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等のアルカリ金属の炭酸水素塩;酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム等のアルカリ金属の有機酸塩(例えば、酢酸塩);酢酸マグネシウム等のアルカリ土類金属の有機酸塩(例えば、酢酸塩);リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシド、カリウムエトキシド、カリウムt-ブトキシド等のアルカリ金属のアルコキシド;ナトリウムフェノキシド等のアルカリ金属のフェノキシド;トリエチルアミン、N-メチルピペリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等のアミン類(第3級アミン等);ピリジン、2,2’-ビピリジル、1,10-フェナントロリン等の含窒素芳香族複素環化合物等が挙げられる。なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水や溶媒等に溶解又は分散させた状態で使用することもできる。
 第1段目の加水分解及び縮合反応における上記触媒の使用量は、特に限定されず、加水分解性シラン化合物の全量1モルに対して、0.002~0.200モルの範囲内で、適宜調整することができる。
 第1段目の加水分解及び縮合反応に際しての水の使用量は、特に限定されず、加水分解性シラン化合物の全量1モルに対して、0.5~20モルの範囲内で、適宜調整することができる。
 第1段目の加水分解及び縮合反応における上記水の添加方法は、特に限定されず、使用する水の全量(全使用量)を一括で添加してもよいし、逐次的に添加してもよい。逐次的に添加する際には、連続的に添加してもよいし、間欠的に添加してもよい。
 第1段目の加水分解及び縮合反応の反応条件としては、特に、低分子量ポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]が5以上20未満となるような反応条件を選択することが重要である。第1段目の加水分解及び縮合反応の反応温度は、特に限定されないが、40~100℃が好ましく、より好ましくは45~80℃である。反応温度を上記範囲に制御することにより、上記割合[T3体/T2体]をより効率的に5以上20未満に制御できる傾向がある。また、第1段目の加水分解及び縮合反応の反応時間は、特に限定されないが、0.1~10時間が好ましく、より好ましくは1.5~8時間である。また、第1段目の加水分解及び縮合反応は、常圧下で行うこともできるし、加圧下又は減圧下で行うこともできる。なお、第1段目の加水分解及び縮合反応を行う際の雰囲気は、特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下、空気下等の酸素存在下等のいずれであってもよいが、不活性ガス雰囲気下が好ましい。
 上記第1段目の加水分解及び縮合反応により、低分子量ポリオルガノシルセスキオキサンが得られる。上記第1段目の加水分解及び縮合反応の終了後には、エポキシ基の開環等のカチオン重合性官能基の分解を抑制するために触媒を中和することが好ましい。また、低分子量ポリオルガノシルセスキオキサンを、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段等により分離精製してもよい。
 第1段目の加水分解及び縮合反応により得られた低分子量ポリオルガノシルセスキオキサンを、第2段目の加水分解及び縮合反応に付すことにより、高分子量ポリオルガノシルセスキオキサンを製造することができる。
 第2段目の加水分解及び縮合反応は、溶媒の存在下で行うこともできるし、非存在下で行うこともできる。第2段目の加水分解及び縮合反応を溶媒の存在下で行う場合、第1段目の加水分解及び縮合反応で挙げられた溶媒を用いることができる。第2段目の加水分解及び縮合反応の溶媒としては、第1段目の加水分解及び縮合反応の反応溶媒、抽出溶媒等を含む低分子量ポリオルガノシルセスキオキサンをそのまま、又は一部留去したものを用いてもよい。なお、溶媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 第2段目の加水分解及び縮合反応において溶媒を使用する場合、その使用量は、特に限定されず、低分子量ポリオルガノシルセスキオキサン100重量部に対して、0~2000重量部の範囲内で、所望の反応時間等に応じて、適宜調整することができる。
 第2段目の加水分解及び縮合反応は、触媒及び水の存在下で進行させることが好ましい。上記触媒は、第1段目の加水分解及び縮合反応で挙げられた触媒を用いることができ、エポキシ基等のカチオン重合性官能基の分解を抑制するためには、好ましくはアルカリ触媒であり、さらに好ましくは水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩である。なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水や溶媒等に溶解又は分散させた状態で使用することもできる。
 第2段目の加水分解及び縮合反応における上記触媒の使用量は、特に限定されず、低分子量ポリオルガノシルセスキオキサン(1000000ppm)に対して、好ましくは0.01~10000ppm、より好ましくは0.1~1000ppmの範囲内で、適宜調整することができる。
 第2段目の加水分解及び縮合反応に際しての水の使用量は、特に限定されず、低分子量ポリオルガノシルセスキオキサン(1000000ppm)に対して、好ましくは10~100000ppm、より好ましくは100~20000ppmの範囲内で、適宜調整することができる。水の使用量が100000ppmよりも大きいと、高分子量ポリオルガノシルセスキオキサンの割合[T3体/T2体]や数平均分子量が、所定の範囲に制御しにくくなる傾向がある。
 第2段目の加水分解及び縮合反応における上記水の添加方法は、特に限定されず、使用する水の全量(全使用量)を一括で添加してもよいし、逐次的に添加してもよい。逐次的に添加する際には、連続的に添加してもよいし、間欠的に添加してもよい。
 第2段目の加水分解及び縮合反応の反応条件としては、特に、高分子量ポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]が20以上500以下、数平均分子量が2500~50000となるような反応条件を選択することが重要である。第2段目の加水分解及び縮合反応の反応温度は、使用する触媒により変動し、特に限定されないが、5~200℃が好ましく、より好ましくは30~100℃である。反応温度を上記範囲に制御することにより、上記割合[T3体/T2体]、数平均分子量をより効率的に所望の範囲に制御できる傾向がある。また、第2段目の加水分解及び縮合反応の反応時間は、特に限定されないが、0.5~1000時間が好ましく、より好ましくは1~500時間である。
 また、上記反応温度の範囲内にて加水分解及び縮合反応を行いながら適時サンプリングを行って、上記割合[T3体/T2体]、数平均分子量をモニターしながら反応を行うことによって、所望の割合[T3体/T2体]、数平均分子量を有する高分子量ポリオルガノシルセスキオキサンを得ることもできる。
 第2段目の加水分解及び縮合反応は、常圧下で行うこともできるし、加圧下又は減圧下で行うこともできる。なお、第2段目の加水分解及び縮合反応を行う際の雰囲気は、特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下、空気下等の酸素存在下等のいずれであってもよいが、不活性ガス雰囲気下が好ましい。
 上記第2段目の加水分解及び縮合反応により、高分子量ポリオルガノシルセスキオキサンが得られる。上記第2段目の加水分解及び縮合反応の終了後には、エポキシ基の開環等のカチオン重合性官能基の分解を抑制するために触媒を中和することが好ましい。また、高分子量ポリオルガノシルセスキオキサンを、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段等により分離精製してもよい。
 本発明のポリオルガノシルセスキオキサンは上述の構成を有するため、該ポリオルガノシルセスキオキサンを必須成分として含む硬化性組成物を硬化させた樹脂層は、高い表面硬度と共に、優れた屈曲耐久性が付与され、上述の(条件1~5)を充足する樹脂層を形成しやすくなる。
 本発明の硬化性組成物において本発明のポリオルガノシルセスキオキサンは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本発明の硬化性組成物における本発明のポリオルガノシルセスキオキサンの含有量(配合量)は、特に限定されないが、溶媒を除く硬化性組成物の全量(100重量%)に対して、50重量%以上、100重量%未満が好ましく、より好ましくは60~99重量%、さらに好ましくは70~95重量%である。本発明のポリオルガノシルセスキオキサンの含有量を50重量%以上とすることにより、硬化物(樹脂層)の表面硬度や接着性がより向上する傾向がある。一方、本発明のポリオルガノシルセスキオキサンの含有量を100重量%未満(例えば、95重量%以下)とすることにより、硬化触媒、後述の分子内に1個以上の熱重合性官能基と1個以上の光重合性官能基を有する化合物、エポキシ化合物やフッ素含有光重合性樹脂等を含有させることができ、これにより硬化性組成物の硬化をより効率的に進行させることができると共に、表面硬度・屈曲耐久性が向上する傾向がある。
 本発明の硬化性組成物に含まれるカチオン硬化性化合物の全量(100重量%)に対する本発明のポリオルガノシルセスキオキサンの割合は、特に限定されないが、60~99重量%が好ましく、より好ましくは65~98重量%、さらに好ましくは70~95重量%である。本発明のポリオルガノシルセスキオキサンの含有量を60重量%以上とすることにより、硬化物(樹脂層)の表面硬度や接着性がより向上する傾向がある。一方、本発明のポリオルガノシルセスキオキサンの含有量を99重量%以下とすることにより、後述の分子内に1個以上の熱重合性官能基と1個以上の光重合性官能基を有する化合物やエポキシ化合物等を含有させることができ、これにより表面硬度・屈曲耐久性が向上する傾向がある。
(硬化触媒)
 本発明の硬化性組成物は、さらに、硬化触媒を含むことが好ましい。中でも、よりタックフリーとなるまでの硬化時間が短縮できる点で、硬化触媒としてカチオン重合開始剤又はラジカル重合開始剤を含むことが特に好ましい。
 上記カチオン重合開始剤は、本発明のポリオルガノシルセスキオキサン等のカチオン硬化性化合物のカチオン重合反応を開始乃至促進することができる化合物である。上記カチオン重合開始剤としては、特に限定されないが、例えば、光カチオン重合開始剤(光酸発生剤)、熱カチオン重合開始剤(熱酸発生剤)等が挙げられる。
 上記光カチオン重合開始剤としては、公知乃至慣用の光カチオン重合開始剤を使用することができ、例えば、スルホニウム塩(スルホニウムイオンとアニオンとの塩)、ヨードニウム塩(ヨードニウムイオンとアニオンとの塩)、セレニウム塩(セレニウムイオンとアニオンとの塩)、アンモニウム塩(アンモニウムイオンとアニオンとの塩)、ホスホニウム塩(ホスホニウムイオンとアニオンとの塩)、遷移金属錯体イオンとアニオンとの塩等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
 上記スルホニウム塩としては、例えば、[4-(4-ビフェニリルチオ)フェニル]-4-ビフェニリルフェニルスルホニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート、トリフェニルスルホニウム塩、トリ-p-トリルスルホニウム塩、トリ-o-トリルスルホニウム塩、トリス(4-メトキシフェニル)スルホニウム塩、1-ナフチルジフェニルスルホニウム塩、2-ナフチルジフェニルスルホニウム塩、トリス(4-フルオロフェニル)スルホニウム塩、トリ-1-ナフチルスルホニウム塩、トリ-2-ナフチルスルホニウム塩、トリス(4-ヒドロキシフェニル)スルホニウム塩、ジフェニル[4-(フェニルチオ)フェニル]スルホニウム塩、4-(p-トリルチオ)フェニルジ-(p-フェニル)スルホニウム塩等のトリアリールスルホニウム塩;ジフェニルフェナシルスルホニウム塩、ジフェニル4-ニトロフェナシルスルホニウム塩、ジフェニルベンジルスルホニウム塩、ジフェニルメチルスルホニウム塩等のジアリールスルホニウム塩;フェニルメチルベンジルスルホニウム塩、4-ヒドロキシフェニルメチルベンジルスルホニウム塩、4-メトキシフェニルメチルベンジルスルホニウム塩等のモノアリールスルホニウム塩;ジメチルフェナシルスルホニウム塩、フェナシルテトラヒドロチオフェニウム塩、ジメチルベンジルスルホニウム塩等のトリアルキルスルホニウム塩等が挙げられる。
 上記ジフェニル[4-(フェニルチオ)フェニル]スルホニウム塩としては、例えば、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロアンチモネート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロホスファート等を使用できる。
 上記ヨードニウム塩としては、例えば、商品名「UV9380C」(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、ビス(4-ドデシルフェニル)ヨードニウム=ヘキサフルオロアンチモネート45%アルキルグリシジルエーテル溶液)、商品名「RHODORSIL PHOTOINITIATOR 2074」(ローディア・ジャパン(株)製、テトラキス(ペンタフルオロフェニル)ボレート=[(1-メチルエチル)フェニル](メチルフェニル)ヨードニウム)、商品名「WPI-124」(和光純薬工業(株)製)、ジフェニルヨードニウム塩、ジ-p-トリルヨードニウム塩、ビス(4-ドデシルフェニル)ヨードニウム塩、ビス(4-メトキシフェニル)ヨードニウム塩等が挙げられる。
 上記セレニウム塩としては、例えば、トリフェニルセレニウム塩、トリ-p-トリルセレニウム塩、トリ-o-トリルセレニウム塩、トリス(4-メトキシフェニル)セレニウム塩、1-ナフチルジフェニルセレニウム塩等のトリアリールセレニウム塩;ジフェニルフェナシルセレニウム塩、ジフェニルベンジルセレニウム塩、ジフェニルメチルセレニウム塩等のジアリールセレニウム塩;フェニルメチルベンジルセレニウム塩等のモノアリールセレニウム塩;ジメチルフェナシルセレニウム塩等のトリアルキルセレニウム塩等が挙げられる。
 上記アンモニウム塩としては、例えば、テトラメチルアンモニウム塩、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、トリエチルメチルアンモニウム塩、テトラエチルアンモニウム塩、トリメチル-n-プロピルアンモニウム塩、トリメチル-n-ブチルアンモニウム塩等のテトラアルキルアンモニウム塩;N,N-ジメチルピロリジウム塩、N-エチル-N-メチルピロリジウム塩等のピロリジウム塩;N,N’-ジメチルイミダゾリニウム塩、N,N’-ジエチルイミダゾリニウム塩等のイミダゾリニウム塩;N,N’-ジメチルテトラヒドロピリミジウム塩、N,N’-ジエチルテトラヒドロピリミジウム塩等のテトラヒドロピリミジウム塩;N,N-ジメチルモルホリニウム塩、N,N-ジエチルモルホリニウム塩等のモルホリニウム塩;N,N-ジメチルピペリジニウム塩、N,N-ジエチルピペリジニウム塩等のピペリジニウム塩;N-メチルピリジニウム塩、N-エチルピリジニウム塩等のピリジニウム塩;N,N’-ジメチルイミダゾリウム塩等のイミダゾリウム塩;N-メチルキノリウム塩等のキノリウム塩;N-メチルイソキノリウム塩等のイソキノリウム塩;ベンジルベンゾチアゾニウム塩等のチアゾニウム塩;ベンジルアクリジウム塩等のアクリジウム塩等が挙げられる。
 上記ホスホニウム塩としては、例えば、テトラフェニルホスホニウム塩、テトラ-p-トリルホスホニウム塩、テトラキス(2-メトキシフェニル)ホスホニウム塩等のテトラアリールホスホニウム塩;トリフェニルベンジルホスホニウム塩等のトリアリールホスホニウム塩;トリエチルベンジルホスホニウム塩、トリブチルベンジルホスホニウム塩、テトラエチルホスホニウム塩、テトラブチルホスホニウム塩、トリエチルフェナシルホスホニウム塩等のテトラアルキルホスホニウム塩等が挙げられる。
 上記遷移金属錯体イオンの塩としては、例えば、(η5-シクロペンタジエニル)(η6-トルエン)Cr+、(η5-シクロペンタジエニル)(η6-キシレン)Cr+等のクロム錯体カチオンの塩;(η5-シクロペンタジエニル)(η6-トルエン)Fe+、(η5-シクロペンタジエニル)(η6-キシレン)Fe+等の鉄錯体カチオンの塩等が挙げられる。
 上述の塩を構成するアニオンとしては、例えば、SbF6 -、PF6 -、BF4 -、(CF3CF23PF3 -、(CF3CF2CF23PF3 -、(C654-、(C654Ga-、スルホン酸アニオン(トリフルオロメタンスルホン酸アニオン、ペンタフルオロエタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、メタンスルホン酸アニオン、ベンゼンスルホン酸アニオン、p-トルエンスルホン酸アニオン等)、(CF3SO23-、(CF3SO22-、過ハロゲン酸イオン、ハロゲン化スルホン酸イオン、硫酸イオン、炭酸イオン、アルミン酸イオン、ヘキサフルオロビスマス酸イオン、カルボン酸イオン、アリールホウ酸イオン、チオシアン酸イオン、硝酸イオン等が挙げられる。
 上記熱カチオン重合開始剤としては、例えば、アリールスルホニウム塩、アリールヨードニウム塩、アレン-イオン錯体、第4級アンモニウム塩、アルミニウムキレート、三フッ化ホウ素アミン錯体等が挙げられる。
 上記アリールスルホニウム塩としては、例えば、ヘキサフルオロアンチモネート塩等が挙げられる。本発明の硬化性組成物においては、例えば、商品名「SP-66」、「SP-77」(以上、(株)ADEKA製);商品名「サンエイドSI-60L」、「サンエイドSI-80L」、「サンエイドSI-100L」、「サンエイドSI-150L」(以上、三新化学工業(株)製)等の市販品を使用することができる。上記アルミニウムキレートとしては、例えば、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。また、上記三フッ化ホウ素アミン錯体としては、例えば、三フッ化ホウ素モノエチルアミン錯体、三フッ化ホウ素イミダゾール錯体、三フッ化ホウ素ピペリジン錯体等が挙げられる。
 なお、本発明の硬化性組成物において硬化触媒は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本発明の硬化性組成物における上記硬化触媒の含有量(配合量)は、特に限定されないが、本発明のポリオルガノシルセスキオキサン100重量部に対して、0.01~3.0重量部が好ましく、より好ましくは0.05~3.0重量部、さらに好ましくは0.1~1.0重量部(例えば、0.3~1.0重量部)である。硬化触媒の含有量を0.01重量部以上とすることにより、硬化反応を効率的に十分に進行させることができ、硬化物(樹脂層)の表面硬度や接着性がより向上する傾向がある。一方、硬化触媒の含有量を3.0重量部以下とすることにより、硬化性組成物の保存性がいっそう向上したり、硬化物(樹脂層)の着色が抑制される傾向がある。
(分子内に1個以上の熱重合性官能基と1個以上の光重合性官能基を有する化合物)
 本発明の硬化性組成物は、分子内に1個以上の熱重合性官能基と1個以上の光重合性官能基を有する化合物(以下、「化合物A」と称する場合がある。)を含むことが好ましい。本発明の硬化性組成物が、本発明のポリオルガノシルセスキオキサンと共に化合物Aを含むことにより、硬化物としたときの架橋密度を効果的に高めることができ、硬化物(樹脂層)に高い表面硬度と優れた屈曲耐久性が付与されやすくなる。
 化合物Aが有する「熱重合性官能基」は、化合物Aに熱により重合性を付与する官能基である限り特に限定されないが、例えば、水酸基、エポキシ基、オキセタニル基、ビニルエーテル基などが挙げられ、本発明の樹脂層の表面硬度、屈曲耐久性の観点から、水酸基、エポキシ基が好ましい。なお、化合物Aが2個以上の熱重合性官能基を有する場合、これらの熱重合性官能基はそれぞれ同一であってもよいし、異なっていてもよい。
 化合物Aが有する「光重合性官能基」は、化合物Aに光(例えば、紫外線)により重合性を付与する官能基である限り特に限定されないが、例えば、(メタ)アクリロイル基、ビニル基などが挙げられ、本発明の樹脂層の表面硬度、屈曲耐久性の観点から、(メタ)アクリロイル基が好ましい。なお、化合物Aが2個以上の光重合性官能基を有する場合、これらの光重合性官能基はそれぞれ同一であってもよいし、異なっていてもよい。
 化合物Aが1分子内に有する熱重合性官能基の数は1個以上であればよく、特に限定されないが、例えば、1~5個が好ましく、より好ましくは1~3個、さらに好ましくは1個又は2個である。また、化合物Aが1分子内に有する光重合性官能基の数は1個以上であればよく、特に限定されないが、例えば、1~5個が好ましく、より好ましくは1~3個、さらに好ましくは1個又は2個である。
 化合物Aの熱重合性官能基の官能基当量は、特に限定されないが、50~500が好ましく、より好ましくは80~480、さらに好ましくは120~450である。上記官能基当量が50未満であると、硬化物(樹脂層)の屈曲耐久性が不十分となる場合がある。一方、上記官能基当量が500を超えると、硬化物(樹脂層)の表面硬度が低下する場合がある。なお、化合物Aの熱重合性官能基の官能基当量は、下記式により算出することができる。
 [熱重合性官能基の官能基当量]=[化合物Aの分子量]/[化合物Aが有する熱重合性官能基の数]
 化合物Aの光重合性官能基の官能基当量は、特に限定されないが、50~500が好ましく、より好ましくは80~480、さらに好ましくは120~450である。上記官能基当量が50未満であると、硬化物(樹脂層)の屈曲耐久性が不十分となる場合がある。一方、上記官能基当量が500を超えると、硬化物(樹脂層)の表面硬度が低下する場合がある。なお、化合物Aの光重合性官能基の官能基当量は、下記式により算出することができる。
 [光重合性官能基の官能基当量]=[化合物Aの分子量]/[化合物Aが有する光重合性官能基の数]
 化合物Aとしては、具体的には、例えば、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、グリシジル(メタ)アクリレート、トリプロピレングリコールジグリシジルエーテルジ(メタ)アクリレート(トリプロピレングリコールジグリシジルエーテルの両方のエポキシ基に(メタ)アクリル酸を反応させて得られる化合物)、トリプロピレングリコールジグリシジルエーテルハーフ(メタ)アクリレート(トリプロピレングリコールジグリシジルエーテルの一方のエポキシ基に(メタ)アクリル酸を反応させて得られる化合物)、ビスフェノールAエポキシジ(メタ)アクリレート(ビスフェノールAジグリシジルエーテルの両方のエポキシ基に(メタ)アクリル酸を反応させて得られる化合物)、ビスフェノールAエポキシハーフ(メタ)アクリレート(ビスフェノールAジグリシジルエーテルの一方のエポキシ基に(メタ)アクリル酸又はその誘導体を反応させて得られる化合物)、ビスフェノールFエポキシジ(メタ)アクリレート、ビスフェノールFエポキシハーフ(メタ)アクリレート、ビスフェノールSエポキシジ(メタ)アクリレート、ビスフェノールSエポキシハーフ(メタ)アクリレートなどの1分子内にエポキシ基及び又は水酸基と(メタ)アクリロイル基とを有する化合物;3-オキセタニルメチル(メタ)アクリレート、3-メチル-3-オキセタニルメチル(メタ)アクリレート、3-エチル-3-オキセタニルメチル(メタ)アクリレート、3-ブチル-3-オキセタニルメチル(メタ)アクリレート、3-へキシル-3-オキセタニルメチル(メタ)アクリレートなどの1分子内にオキセタニル基と(メタ)アクリロイル基とを有する化合物;(メタ)アクリル酸2-ビニロキシエチル、(メタ)アクリル酸3-ビニロキシプロピル、(メタ)アクリル酸1-メチル-2-ビニロキシエチル、(メタ)アクリル酸2-ビニロキシプロピル、(メタ)アクリル酸4-ビニロキシブチル、(メタ)アクリル酸1-メチル-3-ビニロキシプロピル、(メタ)アクリル酸1-ビニロキシメチルプロピル、(メタ)アクリル酸2-メチル-3-ビニロキシプロピル、(メタ)アクリル酸1,1-ジメチル-2-ビニロキシエチル、(メタ)アクリル酸3-ビニロキシブチル、(メタ)アクリル酸1-メチル-2-ビニロキシプロピル、(メタ)アクリル酸2-ビニロキシブチル、(メタ)アクリル酸4-ビニロキシシクロヘキシル、(メタ)アクリル酸6-ビニロキシヘキシル、(メタ)アクリル酸4-ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸3-ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸2-ビニロキシシクロヘキシルメチル、(メタ)アクリル酸p-ビニロキシメチルフェニルメチル、(メタ)アクリル酸m-ビニロキシメチルフェニルメチル、(メタ)アクリル酸o-ビニロキシメチルフェニルメチル、(メタ)アクリル酸2-(ビニロキシエトキシ)エチル、(メタ)アクリル酸2-(ビニロキシイソプロポキシ)エチル、(メタ)アクリル酸2-(ビニロキシエトキシ)プロピル、(メタ)アクリル酸2-(ビニロキシエトキシ)イソプロピル、(メタ)アクリル酸2-(ビニロキシイソプロポキシ)プロピル、(メタ)アクリル酸2-(ビニロキシイソプロポキシ)イソプロピル、(メタ)アクリル酸2-(ビニロキシエトキシエトキシ)エチル、(メタ)アクリル酸2-(ビニロキシエトキシイソプロポキシ)エチル、(メタ)アクリル酸2-(ビニロキシイソプロポキシエトキシ)エチル、(メタ)アクリル酸2-(ビニロキシイソプロポキシイソプロポキシ)エチル、(メタ)アクリル酸2-(ビニロキシエトキシエトキシ)プロピル、(メタ)アクリル酸2-(ビニロキシエトキシイソプロポキシ)プロピル、(メタ)アクリル酸2-(ビニロキシイソプロポキシエトキシ)プロピル、(メタ)アクリル酸2-(ビニロキシイソプロポキシイソプロポキシ)プロピル、(メタ)アクリル酸2-(ビニロキシエトキシエトキシ)イソプロピル、(メタ)アクリル酸2-(ビニロキシエトキシイソプロポキシ)イソプロピル、(メタ)アクリル酸2-(ビニロキシイソプロポキシエトキシ)イソプロピル、(メタ)アクリル酸2-(ビニロキシイソプロポキシイソプロポキシ)イソプロピル、(メタ)アクリル酸2-(ビニロキシエトキシエトキシエトキシ)エチル、(メタ)アクリル酸2-(ビニロキシエトキシエトキシエトキシエトキシ)エチル、(メタ)アクリル酸2-(イソプロペノキシエトキシ)エチル、(メタ)アクリル酸2-(イソプロペノキシエトキシエトキシ)エチル、(メタ)アクリル酸2-(イソプロペノキシエトキシエトキシエトキシ)エチル、(メタ)アクリル酸2-(イソプロペノキシエトキシエトキシエトキシエトキシ)エチル、(メタ)アクリル酸ポリエチレングリコールモノビニルエーテル、(メタ)アクリル酸ポリプロピレングリコールモノビニルエーテルなどの1分子内にビニルエーテル基と(メタ)アクリロイル基とを有する化合物などが挙げられる。
 硬化物(樹脂層)の屈曲耐久性及び表面硬度の観点から、化合物Aとしては、1分子内に熱重合性官能基としてエポキシ基及び/又は水酸基と、光重合性官能基として(メタ)アクリロイル基とを有する化合物が好ましく、具体的は、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、グリシジル(メタ)アクリレート、トリプロピレングリコールジグリシジルエーテルハーフ(メタ)アクリレート、ビスフェノールAエポキシハーフ(メタ)アクリレート、ビスフェノールFエポキシハーフ(メタ)アクリレート、ビスフェノールSエポキシハーフ(メタ)アクリレートなどが好ましい。
 なお、本発明の硬化性組成物において化合物Aは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。化合物Aは、公知の方法により製造することができ、例えば、1分子内に2個以上の熱重合性官能基(例えば、エポキシ基、水酸基)を有する化合物の該熱重合性官能基の一部を、光重合性官能基を有するカルボン酸(例えば、アクリル酸、メタクリル酸等)又はその誘導体と反応させる方法などにより得られる。また、上記化合物Aとしては、例えば、商品名「ライトエステルG」、「エポキシエステル200PA」、「エポキシエステル200PA-E5」(以上、共栄社化学(株)製)、商品名「NK OLIGO EA1010N」(新中村化学工業(株)製)などの市販品を使用することもできる。
 本発明の硬化性組成物における上記化合物Aの含有量(配合量)は、特に限定されないが、固形分として、本発明のポリオルガノシルセスキオキサン100重量部に対して、1~100重量部が好ましく、より好ましくは3~75重量部、さらに好ましくは5~50重量部である。化合物Aの含有量を1重量部以上とすることにより、硬化物(樹脂層)の屈曲耐久性がより向上する傾向がある。一方、化合物Aの含有量を100重量部以下とすることにより、硬化物(樹脂層)の表面硬度を維持できる傾向がある。
(フッ素含有光重合性樹脂)
 本発明の硬化性組成物は、フッ素含有光重合性樹脂を含むことが好ましい。フッ素含有光重合性樹脂は、分子内にフルオロ脂肪族炭化水素骨格等のフッ素含有基と光重合性官能基を有する樹脂(オリゴマー)である。本発明の硬化性組成物が、本発明のポリオルガノシルセスキオキサンや化合物Aと共にフッ素含有光重合性樹脂を含むことにより、硬化物としたときの樹脂層表面の架橋密度を効果的に高めることができ、硬化物(樹脂層)の表面の平滑性などの外観を向上させ、表面硬度、耐擦傷性及び防汚性を向上させる性質を有する。特に、フッ素含有光重合性樹脂は、化合物Aと共に本発明の硬化性組成物に配合されることにより、その効果は顕著となる。
 フッ素含有光重合性樹脂が有する光重合性官能基としては、上記の化合物Aが有する「光重合性官能基」と同様のものが挙げられ、本発明の樹脂層の耐擦傷性、防汚性の観点から、(メタ)アクリロイル基が好ましい。なお、フッ素含有光重合性樹脂が2個以上の光重合性官能基を有する場合、これらの光重合性官能基はそれぞれ同一であってもよいし、異なっていてもよい。
 上記フッ素含有光重合性樹脂が1分子内に有する光重合性官能基の数は1個以上であればよく、特に限定されないが、例えば、1~5個が好ましく、より好ましくは1~3個である。
 上記フッ素含有光重合性樹脂が有する「フッ素含有基」は、フッ素原子を有するものであれば、特に限定されないが、例えば、フルオロ脂肪族炭化水素骨格を有するものが挙げられる。フルオロ脂肪族炭化水素骨格としては、例えばフルオロメタン、フルオロエタン、フルオロプロパン、フルオロイソプロパン、フルオロブタン、フルオロイソブタン、フルオロt-ブタン、フルオロペンタン、フルオロヘキサン等のフルオロC1-10アルカン等を挙げることができる。
 これらのフルオロ脂肪族炭化水素骨格は、少なくとも一部の水素原子がフッ素原子に置換されていればよいが、樹脂層の耐擦傷性、滑り性及び防汚性を向上できる点から、全ての水素原子がフッ素原子で置換されたパーフルオロ脂肪族炭化水素骨格が好ましい。
 さらに、フルオロ脂肪族炭化水素骨格は、エーテル結合を介した繰り返し単位であるポリフルオロアルキレンエーテル骨格を形成していてもよい。繰り返し単位としてのフルオロ脂肪族炭化水素基は、フルオロメチレン、フルオロエチレン、フルオロプロピレン、フルオロイソプロピレン等のフルオロC1-4アルキレン基からなる群より選択された少なくとも1種であってもよい。ポリフルオロアルキレンエーテル単位の繰り返し数(重合度)は、例えば10~3000であり、好ましくは30~1000であり、より好ましくは50~500である。
 上記フッ素含有光重合性樹脂は、上記の「光重合性官能基」、「フッ素含有基」に加えて、シリコーン含有基を有していてもよい。フッ素含有光重合性樹脂が、さらにシリコーン含有基を有することにより、本発明のポリオルガノシルセスキオキサンとの親和性が向上し、硬化物(樹脂層)の表面硬度、耐擦傷性、防汚性が、さらに向上する傾向がある。シリコーン含有基はポリオルガノシロキサン骨格を有する基であり、M単位、D単位、T単位、Q単位で形成されたポリオルガノシロキサンであればよいが、通常、D単位で形成されたポリオルガノシロキサンが好ましく使用される。ポリオルガノシロキサンの有機基としては、通常、C1-4アルキル基、アリール基が使用され、メチル基、フェニル基(特にメチル基)が汎用される。シロキサン単位の繰り返し数(重合度)は、例えば2~3000であり、好ましくは3~2000であり、より好ましくは5~1000である。
 上記フッ素含有光重合性樹脂としては、市販品を使用でき、例えば、商品名「メガファックRS-56」、「メガファックRS-75」、「メガファックRS-72-K」、「メガファックRS-76-E」、「メガファックRS-76-E」、「メガファックRS-76-NS」、「メガファックRS-78」、「メガファックRS-90」(以上、DIC(株)製);商品名「フタージェント601AD」、「フタージェント601ADH2」、「フタージェント602A」、「フタージェント650AC」、「フタージェント681」(以上、ネオス(株)製)等を使用することができる。
 これらのフッ素含有光重合性樹脂は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本発明の硬化性組成物における上記フッ素含有光重合性樹脂の含有量(配合量)は、特に限定されないが、固形分として、本発明のポリオルガノシルセスキオキサン100重量部に対して、例えば0.01~15重量部、好ましくは0.05~10重量部、より好ましくは0.01~5重量部、さらに好ましくは0.2~3重量部である。フッ素含有光重合性樹脂の含有量を0.01重量部以上とすることにより、硬化物(樹脂層)の耐擦傷性・防汚性がより向上する傾向がある。
(エポキシ化合物)
 上記硬化性組成物は、本発明のポリオルガノシルセスキオキサン以外のエポキシ化合物(以下、単に「エポキシ化合物」と称する場合がある)を含んでいてもよい。本発明のポリオルガノシルセスキオキサンに加えて、エポキシ化合物を含むことにより、高い表面硬度を有し、柔軟性、可とう性及び加工性に優れた硬化物(樹脂層)を形成できる。
 上記エポキシ化合物としては、分子内に1以上のエポキシ基(オキシラン環)を有する公知慣用の化合物を使用することができ、特に限定されないが、脂環式エポキシ化合物(脂環式エポキシ樹脂)、芳香族エポキシ化合物(芳香族エポキシ樹脂)、脂肪族エポキシ化合物(脂肪族エポキシ樹脂)等を挙げることができる。なかでも、脂環式エポキシ化合物が好ましい。
 上記脂環式エポキシ化合物としては、分子内に1個以上の脂環と1個以上のエポキシ基とを有する公知慣用の化合物が挙げられ、特に限定されないが、例えば、(1)分子内に脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(「脂環エポキシ基」と称する)を有する化合物;(2)脂環にエポキシ基が直接単結合で結合している化合物;(3)分子内に脂環及びグリシジルエーテル基を有する化合物(グリシジルエーテル型エポキシ化合物)等を挙げることができる。
 上記(1)分子内に脂環エポキシ基を有する化合物としては、公知慣用のものの中から任意に選択して使用することができる。なかでも、上記脂環エポキシ基としては、シクロヘキセンオキシド基が好ましく、特に、下記式(i)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000018
 上記式(i)中、Yは単結合又は連結基(1以上の原子を有する二価の基)を示す。上記連結基としては、例えば、二価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基等を挙げることができる。式(i)中のシクロヘキサン環の水素原子の1個以上は、炭素数1~6のアルキル基などの置換基で置換されていてもよい。
 上記二価の炭化水素基としては、炭素数が1~18の直鎖又は分岐鎖状のアルキレン基、二価の脂環式炭化水素基等を挙げることができる。炭素数が1~18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等を挙げることができる。上記二価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の二価のシクロアルキレン基(シクロアルキリデン基を含む)等を挙げることができる。
 上記炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2~8の直鎖又は分岐鎖状のアルケニレン基等を挙げることができる。特に、上記エポキシ化アルケニレン基としては、炭素-炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素-炭素二重結合の全部がエポキシ化された炭素数2~4のアルケニレン基である。
 上記式(i)で表される脂環式エポキシ化合物の代表的な例としては、(3,4,3’,4’-ジエポキシ)ビシクロヘキシル、下記式(i-1)~(i-10)で表される化合物等を挙げることができる。なお、下記式(i-5)、(i-7)中のl、mは、それぞれ1~30の整数を表す。下記式(i-5)中のR’は炭素数1~8のアルキレン基であり、なかでも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(i-9)、(i-10)中のn1~n6は、それぞれ1~30の整数を示す。また、上記式(i)で表される脂環式エポキシ化合物としては、その他、例えば、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、1,2-ビス(3,4-エポキシシクロヘキシル)エタン、2,3-ビス(3,4-エポキシシクロヘキシル)オキシラン、ビス(3,4-エポキシシクロヘキシルメチル)エーテル等を挙げることができる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上述の(2)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(ii)で表される化合物等を挙げることができる。
Figure JPOXMLDOC01-appb-C000021
 式(ii)中、R"は、p価のアルコールの構造式からp個の水酸基(-OH)を除いた基(p価の有機基)であり、p、nはそれぞれ自然数を表す。p価のアルコール[R"(OH)p]としては、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコール(炭素数1~15のアルコール等)等を挙げることができる。pは1~6が好ましく、nは1~30が好ましい。pが2以上の場合、それぞれの( )内(外側の括弧内)の基におけるnは同一でもよく異なっていてもよい。上記式(ii)で表される化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物[例えば、商品名「EHPE3150」((株)ダイセル製)等]等を挙げることができる。
 上述の(3)分子内に脂環及びグリシジルエーテル基を有する化合物としては、例えば、脂環式アルコール(特に、脂環式多価アルコール)のグリシジルエーテルを挙げることができる。より詳しくは、例えば、2,2-ビス[4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン、2,2-ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン等のビスフェノールA型エポキシ化合物を水素化した化合物(水素化ビスフェノールA型エポキシ化合物);ビス[o,o-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[o,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[p,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]メタン等のビスフェノールF型エポキシ化合物を水素化した化合物(水素化ビスフェノールF型エポキシ化合物);水素化ビフェノール型エポキシ化合物;水素化フェノールノボラック型エポキシ化合物;水素化クレゾールノボラック型エポキシ化合物;ビスフェノールAの水素化クレゾールノボラック型エポキシ化合物;水素化ナフタレン型エポキシ化合物;トリスフェノールメタンから得られるエポキシ化合物の水素化エポキシ化合物;下記芳香族エポキシ化合物の水素化エポキシ化合物等を挙げることができる。
 上記芳香族エポキシ化合物としては、例えば、ビスフェノール類[例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等]と、エピハロヒドリンとの縮合反応により得られるエピビスタイプグリシジルエーテル型エポキシ樹脂;これらのエピビスタイプグリシジルエーテル型エポキシ樹脂を上記ビスフェノール類とさらに付加反応させることにより得られる高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂;フェノール類[例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS等]とアルデヒド[例えば、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、サリチルアルデヒド等]とを縮合反応させて得られる多価アルコール類を、さらにエピハロヒドリンと縮合反応させることにより得られるノボラック・アルキルタイプグリシジルエーテル型エポキシ樹脂;フルオレン環の9位に2つのフェノール骨格が結合し、かつこれらフェノール骨格のヒドロキシ基から水素原子を除いた酸素原子に、それぞれ、直接又はアルキレンオキシ基を介してグリシジル基が結合しているエポキシ化合物等を挙げることができる。
 上記脂肪族エポキシ化合物としては、例えば、q価の環状構造を有しないアルコール(qは自然数である)のグリシジルエーテル;一価又は多価カルボン酸[例えば、酢酸、プロピオン酸、酪酸、ステアリン酸、アジピン酸、セバシン酸、マレイン酸、イタコン酸等]のグリシジルエステル;エポキシ化亜麻仁油、エポキシ化大豆油、エポキシ化ひまし油等の二重結合を有する油脂のエポキシ化物;エポキシ化ポリブタジエン等のポリオレフィン(ポリアルカジエンを含む)のエポキシ化物等を挙げることができる。なお、上記q価の環状構造を有しないアルコールとしては、例えば、メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコール、1-ブタノール等の一価のアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の二価のアルコール;グリセリン、ジグリセリン、エリスリトール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ソルビトール等の三価以上の多価アルコール等を挙げることができる。また、q価のアルコールは、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール等であってもよい。
 上記エポキシ化合物は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。エポキシ化合物としては、硬化物(樹脂層)の表面硬度、屈曲性、屈曲耐久性等の観点から、脂環式エポキシ化合物が好ましく、(2)脂環にエポキシ基が直接単結合で結合している化合物がより好ましく、上記式(ii)で表される化合物[例えば、商品名「EHPE3150」((株)ダイセル製)等]が特に好ましい。
 上記エポキシ化合物の含有量(配合量)は、本発明のポリオルガノシルセスキオキサンの全量100重量部に対して、例えば0.5~100重量部であり、好ましくは1~80重量部であり、より好ましくは5~50重量部である。上記エポキシ化合物の含有量を0.5重量部以上とすることにより、硬化物(樹脂層)の表面硬度がより高くなり、柔軟性、可とう性、加工性、屈曲耐久性により優れる傾向がある。一方、上記エポキシ化合物の含有量を100重量部以下とすることにより、硬化物の耐擦傷性がより向上する傾向がある。
(表面に(メタ)アクリロイル基を含む基を有するシリカ粒子)
 本発明の硬化性組成物は、「表面に(メタ)アクリロイル基を含む基を有するシリカ粒子」を含んでいてもよい。表面に(メタ)アクリロイル基を含む基を有するシリカ粒子は、シリカ粒子の表面に無数の水酸基(Si-OH基)が存在し、硬化時に当該水酸基と前記本発明のポリオルガノシルセスキオキサンとが反応することで、ポリオルガノシルセスキオキサンの硬化後の架橋密度が向上する。また、硬化時に複数の前記シリカ粒子における(メタ)アクリロイル基どうしが結合することで、硬化後の架橋密度が向上する。このように硬化後の架橋密度が向上することで、樹脂層における耐擦傷性が向上する。また、樹脂層の上に防汚性や低反射性などの機能を有する層(機能層)を設けると、樹脂層と機能層の密着性が弱く、機能層の剥がれが発生する場合があり、いわゆるリコート性がないということがある。しかし、前記シリカ粒子を用いると、リコート性を付与することができ、また、樹脂層表面に対する上記の機能層を設ける際の加工性(加工適性)も良くすることができる。
 さらに、前記シリカ粒子は、表面に(メタ)アクリロイル基を有することで、硬化性組成物における安定性を付与できると考えられる。前記の安定性とは、硬化前の硬化性組成物の調製段階において、前記シリカ粒子とポリオルガノシルセスキオキサンとが反応して、硬化性組成物の粘度が著しく上昇(ゲル化)したり、固化したりしないことを言う。(メタ)アクリロイル基を含む基などの官能基を表面に有さない通常のシリカ粒子(SiO2粒子)を用いた場合、シリカ粒子どうしが凝集し、硬化性組成物がゲル化するおそれがある。前記シリカ粒子は、(メタ)アクリロイル基以外の官能基(例えば、シリコーン変性基)を有していてもよい。なお、(メタ)アクリロイル基は、アクリロイル基(アクリル基)及びメタアクリロイル基(メタクリル基)の総称である。
 前記シリカ粒子は、水や有機溶媒などの公知乃至慣用の一般的な分散媒に分散させた状態の分散液(ディスパージョン)を用いてもよい。また、シリカ粒子に(メタ)アクリロイル基を含む基を有するシランカップリング剤を反応させたものを前記シリカ粒子として用いてもよい。前記シリカ粒子としては、例えば、商品名「BYK-LPX 22699」、「NANOBYK-3650」、「NANOBYK-3651」、「NANOBYK-3652」(以上、ビックケミー・ジャパン(株)製)を用いることができる。
 前記シリカ粒子の粒径は、例えば、1~100nm、好ましくは3~50nm、より好ましくは5~30nmである。
 本発明の硬化性組成物が表面に(メタ)アクリロイル基を含む基を有するシリカ粒子を含む場合、その割合は、本発明のポリオルガノシルセスキオキサン100重量部に対して、例えば0.01~20重量部、好ましくは0.05~15重量部、より好ましくは0.01~10重量部、さらに好ましくは0.2~5重量部である。前記シリカ粒子の割合を0.01重量部以上とすることにより、樹脂層表面の外観を良くすることができ、十分なリコート性を付与できる。また、シリカ粒子の割合を20重量部以下とすることにより、樹脂層の表面硬度を高くすることができる。
(シリコンアクリレート)
 本発明の硬化性組成物は、「シリコンアクリレート」を含んでいてもよい。シリコンアクリレート(シリコーンアクリレート)は、ケイ素原子と(メタ)アクリロイル基とを少なくとも有する添加剤の一種である。前記シリコンアクリレートは、(メタ)アクリロイル基以外の官能基(例えば、ヒドロキシル基)を有していてもよい。前記シリコンアクリレートは、シリコンジアクリレート、シリコントリアクリレート、シリコンテトラアクリレート、シリコンペンタアクリレート、シリコンヘキサアクリレート、シリコンヘプタアクリレート、シリコンオクタアクリレートであってもよい。前記シリコンアクリレートは、前記ポリオルガノシルセスキオキサンとともに硬化性組成物に用いることで、樹脂層としたときの樹脂層表面の架橋密度を効果的に高めることができ、樹脂層の表面の平滑性などの外観を向上させ、表面硬度、耐擦傷性及び防汚性を向上させる性質を有する。なお、(メタ)アクリロイル基は、アクリロイル基(アクリル基)及びメタアクリロイル基(メタクリル基)の総称である。
 前記シリコンアクリレートは、有機溶媒(例えば、アセトン、トルエン、メタノール、エタノール)などの公知乃至慣用の一般的な分散媒に分散させた状態の分散液(ディスパージョン)を用いてもよい。シリコンアクリレートとしては、例えば、商品名「KRM8479」、「EBECRYL 350」、「EBECRYL 1360」(ダイセル・オルネクス(株)製)を用いることができる。
 本発明の硬化性組成物が前記シリコンアクリレートを含む場合、その割合は、前記ポリオルガノシルセスキオキサン100重量部に対して、例えば0.01~15重量部、好ましくは0.05~10重量部、より好ましくは0.01~5重量部、さらに好ましくは0.2~3重量部である。前記シリコンアクリレートの割合を0.01重量部以上とすることにより、樹脂層としたときの耐擦傷性と防汚性を向上することができる。また、シリコンアクリレートの割合を15重量部以下とすることにより、樹脂層としたときの表面硬度をより高くすることができる。
 樹脂層の外観をさらに向上させ、表面硬度を高くし、耐擦傷性を向上させる点で、シリコンアクリレートと、表面に(メタ)アクリロイル基を含む基を有するシリカ粒子とを両方を用いることが好ましい。シリコンアクリレートと前記シリカ粒子を両方含む場合のシリコンアクリレートと前記シリカ粒子の合計の割合は、前記ポリオルガノシルセスキオキサン100重量部に対して、例えば0.01~20重量部、好ましくは0.05~15重量部、より好ましくは0.01~10重量部、さらに好ましくは0.2~5重量部である。前記割合を0.01重量部以上とすることにより、樹脂層としたときの耐擦傷性を向上することができる。また、前記割合を20重量部以下とすることにより、樹脂層としたときの表面硬度をより高くすることができる。
(レベリング剤)
 本発明の硬化性組成物は、レベリング剤を有していてもよい。上記レベリング剤としては、例えば、シリコーン系レベリング剤、フッ素系レベリング剤、ヒドロキシル基を有するシリコーン系レベリング剤等が挙げられる。但し、レベリング剤は、上述のフッ素含有光重合性樹脂は含まないものとする。
 上記シリコーン系レベリング剤としては、市販のシリコーン系レベリング剤を使用でき、例えば、商品名「BYK-300」、「BYK-301/302」、「BYK-306」、「BYK-307」、「BYK-310」、「BYK-315」、「BYK-313」、「BYK-320」、「BYK-322」、「BYK-323」、「BYK-325」、「BYK-330」、「BYK-331」、「BYK-333」、「BYK-337」、「BYK-341」、「BYK-344」、「BYK-345/346」、「BYK-347」、「BYK-348」、「BYK-349」、「BYK-370」、「BYK-375」、「BYK-377」、「BYK-378」、「BYK-UV3500」、「BYK-UV3510」、「BYK-UV3570」、「BYK-3550」、「BYK-SILCLEAN3700」、「BYK-SILCLEAN3720」(以上、ビックケミー・ジャパン(株)製);商品名「AC FS 180」、「AC FS 360」、「AC S 20」(以上、Algin Chemie製);商品名「ポリフローKL-400X」、「ポリフローKL-400HF」、「ポリフローKL-401」、「ポリフローKL-402」、「ポリフローKL-403」、「ポリフローKL-404」(以上、共栄社化学(株)製);商品名「KP-323」、「KP-326」、「KP-341」、「KP-104」、「KP-110」、「KP-112」(以上、信越化学工業(株)製);商品名「LP-7001」、「LP-7002」、「8032 ADDITIVE」、「57 ADDITIVE」、「L-7604」、「FZ-2110」、「FZ-2105」、「67 ADDITIVE」、「8618 ADDITIVE」、「3 ADDITIVE」、「56 ADDITIVE」(以上、東レ・ダウコーニング(株)製)等の市販品を使用することができる。
 上記フッ素系レベリング剤としては、市販のフッ素系レベリング剤を使用でき、例えば、商品名「オプツールDSX」、「オプツールDAC-HP」(以上、ダイキン工業(株)製);商品名「サーフロンS-242」、「サーフロンS-243」、「サーフロンS-420」、「サーフロンS-611」、「サーフロンS-651」、「サーフロンS-386」(以上、AGCセイミケミカル(株)製);商品名「BYK-340」(ビックケミー・ジャパン(株)製);商品名「AC 110a」、「AC 100a」(以上、Algin Chemie製);商品名「メガファックF-114」、「メガファックF-410」、「メガファックF-444」、「メガファックEXP TP-2066」、「メガファックF-430」、「メガファックF-472SF」、「メガファックF-477」、「メガファックF-552」、「メガファックF-553」、「メガファックF-554」、「メガファックF-555」、「メガファックR-94」、「メガファックRS-72-K」、「メガファックRS-75」、「メガファックF-556」、「メガファックEXP TF-1367」、「メガファックEXP TF-1437」、「メガファックF-558」、「メガファックEXP TF-1537」(以上、DIC(株)製);商品名「FC-4430」、「FC-4432」(以上、住友スリーエム(株)製);商品名「フタージェント 100」、「フタージェント 100C」、「フタージェント 110」、「フタージェント 150」、「フタージェント 150CH」、「フタージェント A-K」、「フタージェント 501」、「フタージェント 250」、「フタージェント 251」、「フタージェント 222F」、「フタージェント 208G」、「フタージェント 300」、「フタージェント 310」、「フタージェント 400SW」(以上、(株)ネオス製);商品名「PF-136A」、「PF-156A」、「PF-151N」、「PF-636」、「PF-6320」、「PF-656」、「PF-6520」、「PF-651」、「PF-652」、「PF-3320」(以上、北村化学産業(株)製)等の市販品を使用することができる。
 上記ヒドロキシル基を有するシリコーン系レベリング剤としては、例えば、ポリオルガノシロキサン骨格(ポリジメチルシロキサン等)の主鎖又は側鎖にポリエーテル基を導入したポリエーテル変性ポリオルガノシロキサン、ポリオルガノシロキサン骨格の主鎖又は側鎖にポリエステル基を導入したポリエステル変性ポリオルガノシロキサン、(メタ)アクリル系樹脂にポリオルガノシロキサンを導入したシリコーン変性(メタ)アクリル系樹脂等を挙げることができる。これらのレベリング剤において、ヒドロキシル基は、ポリオルガノシロキサン骨格を有していてもよく、ポリエーテル基、ポリエステル基を有していてもよい。このようなレベリング剤の市販品としては、例えば、商品名「BYK-370」、「BYK-SILCLEAN3700」、「BYK-SILCLEAN3720」等を使用することができる。
 本発明の硬化性組成物が上記レベリング剤を含む場合、その割合は、本発明のポリオルガノシルセスキオキサン100重量部に対して、例えば0.01~20重量部であり、好ましくは0.05~15重量部であり、より好ましくは0.01~10重量部であり、さらに好ましくは0.2~5重量部である。レベリング剤の割合が少な過ぎると、樹脂層の表面平滑性が低下するおそれがあり、多過ぎると、樹脂層の表面硬度が低下するおそれがある。
 本発明の硬化性組成物は、さらに、その他任意の成分として、沈降シリカ、湿式シリカ、ヒュームドシリカ、焼成シリカ、酸化チタン、アルミナ、ガラス、石英、アルミノケイ酸、酸化鉄、酸化亜鉛、炭酸カルシウム、カーボンブラック、炭化ケイ素、窒化ケイ素、窒化ホウ素等の無機質充填剤、これらの充填剤をオルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物により処理した無機質充填剤;シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂微粉末;銀、銅等の導電性金属粉末等の充填剤、硬化助剤、溶剤(有機溶剤等)、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤、重金属不活性化剤など)、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など)、難燃助剤、補強材(他の充填剤など)、核剤、カップリング剤(シランカップリング剤等)、滑剤、ワックス、可塑剤、離型剤、耐衝撃改良剤、色相改良剤、透明化剤、レオロジー調整剤(流動性改良剤など)、加工性改良剤、着色剤(染料、顔料など)、帯電防止剤、分散剤、消泡剤、ワキ防止剤、表面改質剤(スリップ剤など)、艶消し剤、消泡剤、抑泡剤、脱泡剤、抗菌剤、防腐剤、粘度調整剤、増粘剤、光増感剤、発泡剤などの慣用の添加剤を含んでいてもよい。これらの添加剤は1種を単独で、又は2種以上を組み合わせて使用できる。
(硬化性組成物の製造方法)
 本発明の硬化性組成物は、特に限定されないが、上記の各成分を室温で又は必要に応じて加熱しながら攪拌・混合することにより調製することができる。なお、硬化性組成物は、各成分があらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、別々に保管しておいた2以上の成分を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。
 本発明の硬化性組成物は、特に限定されないが、常温(約25℃)で液体であることが好ましい。より具体的には、前記硬化性組成物は、溶媒20%に希釈した液[特に、メチルイソブチルケトンの割合が20重量%である硬化性組成物(溶液)]の25℃における粘度として、300~20000mPa・sが好ましく、より好ましくは500~10000mPa・s、さらに好ましくは1000~8000mPa・sである。上記粘度を300mPa・s以上とすることにより、樹脂層の耐熱性がより向上する傾向がある。一方、上記粘度を20000mPa・s以下とすることにより、硬化性組成物の調製や取り扱いが容易となり、また、樹脂層中に気泡が残存しにくくなる傾向がある。なお、硬化性組成物の粘度は、粘度計(商品名「MCR301」、アントンパール社製)を用いて、振り角5%、周波数0.1~100(1/s)、温度:25℃の条件で測定される。
 本発明における樹脂層は、前記硬化性組成物に含まれるカチオン硬化性化合物(本発明のポリオルガノシルセスキオキサン等)の重合反応を進行させて、硬化させることにより得ることができる。
 樹脂層のリコート性をより向上させるために、樹脂層の表面にコロナ放電照射により表面を改質させるコロナ放電処理、プラズマ放電処理、オゾン暴露処理、エキシマ処理等の表面処理をしてもよい。なかでも容易にリコート性を向上させることができる点よりコロナ放電処理がより好ましい。
 コロナ放電処理は、尖った電極(針電極)の周りに不均一な電界を生じさせ、持続的な放電を発生させることで樹脂層表面を加工する処理である。プラズマ放電処理は、大気中で放電することによって活性化したプラスとマイナスの帯電粒子を発生させて樹脂層表面を加工する処理である。オゾン暴露処理は、例えば、酸素存在下で低圧水銀ランプ等を用いた紫外線照射によってオゾンを発生させて樹脂層表面を加工する処理である。エキシマ処理は、真空状態でエキシマランプを用いた紫外線照射やレーザー照射によって樹脂層表面を加工する処理である。
 樹脂層上に設けることができる機能層としては、例えば、耐擦傷性、耐摩耗性、防汚性(耐汚染性)、防指紋性、反射防止性(低反射性)等の機能を有する層が挙げられる。機能層は、携帯電話やスマートフォンなどの表示装置における樹脂層において用いられる上記で挙げた機能を有する一般的な公知乃至慣用の機能層である。機能層を構成する材料としては、例えば、アクリル系材料、フッ素系材料、シリコーン系材料が挙げられる。樹脂層上に機能層を設ける方法としては、後記の積層フィルムと同様の塗布による方法、蒸着やスパッタリングなどによる方法が挙げられる。
(積層フィルムの製造方法)
 本発明の積層フィルムは、公知乃至慣用のハードコートフィルムの製造方法に準じて製造することができ、その製造方法は特に限定されないが、支持体の少なくとも一方の面に前記硬化性組成物を塗布し、硬化性組成物を硬化させることにより樹脂層を形成させることにより製造できる。
 前記樹脂層における硬化の方法は、周知の方法より適宜選択でき、例えば、活性エネルギー線の照射、及び/又は、加熱する方法が挙げられる。上記活性エネルギー線としては、例えば、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等のいずれを使用することもできる。中でも、取り扱い性に優れる点で、紫外線が好ましい。
 前記樹脂層における活性エネルギー線の照射による硬化の条件は、照射する活性エネルギー線の種類やエネルギー、樹脂層の形状やサイズ等に応じて適宜調整することができ、特に限定されないが、紫外線を照射する場合には、例えば1~1000mJ/cm2程度とすることが好ましい。なお、活性エネルギー線の照射には、例えば、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、カーボンアーク、メタルハライドランプ、太陽光、LEDランプ、レーザー等を使用することができる。活性エネルギー線の照射後には、さらに加熱処理(アニール、エージング)を施してさらに硬化反応を進行させることができる。
 前記樹脂層における加熱による硬化の条件は、特に限定されないが、例えば、30~200℃が好ましく、より好ましくは50~190℃である。硬化時間は適宜設定可能である。
 本発明の積層フィルムは、可撓性及び加工性に優れた樹脂層から構成されるため、ロールトゥロール方式での製造が可能である。本発明の積層フィルムをロールトゥロール方式で製造することにより、その生産性を著しく高めることが可能である。本発明の積層フィルムをロールトゥロール方式で製造する方法としては、公知乃至慣用のロールトゥロール方式の製造方法を採用することができ、特に限定されないが、ロール状に巻いた支持体を繰り出す工程(工程A)と、繰り出した支持体の少なくとも一方の表面に硬化性組成物を塗布し、次いで、必要に応じて溶剤を乾燥によって除去した後、該硬化性組成物を硬化させることにより樹脂層を形成する工程(工程B)と、その後、得られた積層物を再びロールに巻き取る工程(工程C)とを必須の工程として含み、これら工程(工程A~C)を連続的に実施する方法等が挙げられる。なお、当該方法は、工程A~C以外の工程を含んでいてもよい。
[フォルダブルデバイス]
 本発明の積層フィルムは、高い表面硬度と優れた屈曲耐久性を有するため、通常の画像表示装置の表面保護材の他、繰り返し折り畳んで使用されるフォルダブルデバイスの表面保護材として好適に使用することができる。
 フレキシブルデバイスには、例えば、スマートフォンやタブレットやウェアラブル端末等の携帯情報端末等が含まれ、例えば、本発明の積層フィルムは、これらフレキシブルデバイス用のディスプレイ(例えば、タッチパネル、ウェアラブル端末、有機ELディスプレイ等に使用されるディスプレイ)の保護フィルム、バリアフィルム、TFT基板等が含まれる。本発明のフォルダブルデバイスは屈曲耐久性に優れる本発明の積層フィルムを備えるため、屈曲-伸展を繰り返しても樹脂層にクラックが発生することが無く、信頼性に優れる。また、透明性に優れる上記積層フィルムを備えた携帯情報端末等のフォルダブルデバイスは、視認性に優れる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、生成物の分子量の測定は、Alliance HPLCシステム 2695(Waters製)、Refractive Index Detector 2414(Waters製)、カラム:Tskgel GMHHR-M×2(東ソー(株)製)、ガードカラム:Tskgel guard column HHRL(東ソー(株)製)、カラムオーブン:COLUMN HEATER U-620(Sugai製)、溶媒:THF、測定条件:40℃により行った。また、生成物におけるT2体とT3体の割合[T3体/T2体]の測定は、JEOL ECA500(500MHz)による29Si-NMRスペクトル測定により行った。
製造例1:エポキシ基含有低分子量ポリオルガノシルセスキオキサンの製造
 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた1000ミリリットルのフラスコ(反応容器)に、窒素気流下で2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン277.2ミリモル(68.30g)、フェニルトリメトキシシラン3.0ミリモル(0.56g)、及びアセトン275.4gを仕込み、50℃に昇温した。このようにして得られた混合物に、5%炭酸カリウム水溶液7.74g(炭酸カリウムとして2.8ミリモル)を5分で添加した後、水2800.0ミリモル(50.40g)を20分かけて添加した。なお、添加の間、著しい温度上昇は起こらなかった。その後、50℃のまま、重縮合反応を窒素気流下で5時間行った。
 その後、反応溶液を冷却すると同時に、メチルイソブチルケトン137.70gと5%食塩水100.60gとを投入した。この溶液を1Lの分液ロートに移し、再度メチルイソブチルケトン137.70gを投入し、水洗を行った。分液後、水層を抜き取り、下層液が中性になるまで水洗を行い、上層液を分取した後、1mmHg、50℃の条件で上層液から溶媒を留去し、メチルイソブチルケトンを23重量%含有する無色透明で液状の生成物(エポキシ基含有低分子量ポリオルガノシルセスキオキサン)を75.18g得た。
 生成物を分析したところ、数平均分子量は2235であり、分子量分散度は1.54であった。上記生成物の29Si-NMRスペクトルから算出されるT2体とT3体の割合[T3体/T2体]は11.9であった。
 得られたエポキシ基含有低分子量ポリオルガノシルセスキオキサンの1H-NMRチャートを図3、29Si-NMRチャートを図4にそれぞれ示す。
製造例2:エポキシ基含有高分子量ポリオルガノシルセスキオキサンの製造
 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた1000ミリリットルのフラスコ(反応容器)に、窒素気流下に製造例1で得られたエポキシ基含有低分子量ポリオルガノシルセスキオキサンを含む混合物(75g)を仕込み、エポキシ基含有低分子量ポリオルガノシルセスキオキサンの正味含有量に対して水酸化カリウムを100ppm(5.6mg)、水を2000ppm(112mg)添加し、80℃で18時間加熱した時点でサンプリングして分子量を測定したところ、数平均分子量Mnが6000まで上昇しており、その後室温まで冷却し、メチルイソブチルケトンを300mL添加し、水を300mL添加し、水洗を繰り返すことでアルカリ成分を除去して濃縮すると、メチルイソブチルケトンを25重量%含有する無色透明で液状の生成物(エポキシ基含有高分子量ポリオルガノシルセスキオキサン1)を74.5g得た。
 生成物を分析したところ、数平均分子量は6176であり、分子量分散度は2.31であった。上記生成物の29Si-NMRスペクトルから算出されるT2体とT3体の割合[T3体/T2体]は50.2であった。
 得られたエポキシ基含有高分子量ポリオルガノシルセスキオキサン1の1H-NMRチャートを図5、29Si-NMRチャートを図6にそれぞれ示す。
実施例1:ハードコートフィルムの製造
 表1に示す配合比の混合溶液を作製し、これをハードコート液(硬化性組成物)として使用した。上記で得られたハードコート液を硬化後のハードコート層の厚さが10μmとなるようにワイヤーバー#14を用いて、PENフィルム(商品名「テオネックスQ65HWA」、帝人(株)製)の表面へ塗布した後、150℃のオーブンで2分間放置し、次いで、高圧水銀ランプ(アイグラフィックス(株)社製)を用いて600mJ/cm2の照度で紫外線を照射した。その後、150℃で60分間熱処理することによってハードコート液の塗工膜を硬化させ、ハードコート層を有するハードコートフィルムを作製した。
Figure JPOXMLDOC01-appb-T000022
実施例2~5:ハードコートフィルムの製造
 ハードコート層の厚さを20~50μmに変更したこと以外は実施例1と同様にして、ハードコートフィルムを作製した。
実施例6:ハードコートフィルムの製造
 表2に示す配合比のハードコート液を使用し、ハードコート層の厚さを40μmに変更したこと以外は実施例1と同様にして、ハードコートフィルムを作製した。
Figure JPOXMLDOC01-appb-T000023
実施例7:ハードコートフィルムの製造
 表3に示す配合比のハードコート液を使用し、ハードコート層の厚さを40μmに変更したこと以外は実施例1と同様にして、ハードコートフィルムを作製した。
Figure JPOXMLDOC01-appb-T000024
実施例8:ハードコートフィルムの製造
 表4に示す配合比のハードコート液を使用し、ハードコート層の厚さを40μmに変更したこと以外は実施例1と同様にして、ハードコートフィルムを作製した。
Figure JPOXMLDOC01-appb-T000025
比較例1~3:ハードコートフィルムの製造
 表5に示す配合比のハードコート液を使用し、ハードコート層の厚さを40μmに変更したこと以外は実施例1と同様にして、ハードコートフィルムを作製した。
Figure JPOXMLDOC01-appb-T000026
 実施例、比較例で得られたハードコートフィルムについて以下の評価を行った。結果を表6に示す。
<ヘイズ及び全光線透過率>
 上記で得たハードコートフィルムのヘイズ及び全光線透過率を、ヘイズメータ(日本電色工業(株)製、NDH-5000W)を使用して測定した。
<表面硬度(鉛筆硬度)>
 上記で得たハードコートフィルムにおけるハードコート層表面の鉛筆硬度を、JIS K5600-5-4(750g荷重)に準じて評価した。
<耐擦傷性>
 上記で得たハードコートフィルムにおけるハードコート層表面に対し、#0000スチールウールを荷重1000g/cm2にて往復させ、ハードコート層表面に付いた傷の有無を確認し、ハードコート層の表面に傷が確認できるまでの回数で耐擦傷性を評価した。なお、1000回以上往復させても傷が確認できない場合は「1K<」と表示した。
<屈曲性(1)(円筒形マンドレル法)>
 上記で得たハードコートフィルムの屈曲性を、ハードコート表面が凹(内側)になるように円筒形マンドレルを使用してJIS K5600-5-1に準じて、ハードコート層の表面にクラックが発生しない屈曲半径(mm)で屈曲性(1)を評価した。
<屈曲性(2)(円筒形マンドレル法)>
 上記で得たハードコートフィルムの屈曲性を、ハードコート表面が凸(外側)になるように円筒形マンドレルを使用してJIS K5600-5-1に準じて、ハードコート層の表面にクラックが発生しない屈曲半径(mm)で屈曲性(2)を評価した。
<連続屈曲耐久性(1)>
 上記で得たハードコートフィルムの連続屈曲耐久性を、面状体無負荷U字伸縮試験機(ユアサシステム機器(株)製、Z-044)を使用して測定した。測定はハードコート層の面を凹(内側)として、屈曲半径2.5mm、30~60回/分の速さで行い、ハードコート層にクラックが生じるまでの回数を屈曲耐久性(1)とした(図1、2参照)。なお、100000回以上でもクラックが発生しない場合は、「100K<」と表示した。
<屈曲耐久性(2)>
 上記で得たハードコートフィルムの連続屈曲耐久性を、面状体無負荷U字伸縮試験機(ユアサシステム機器(株)製、Z-044)を使用して測定した。測定はハードコート層の面を凸(外側)として、屈曲半径4.0mm、30~60回/分の速さで行い、ハードコート層にクラックが生じるまでの回数を屈曲耐久性(2)とした(図1、2参照)。なお、100000回以上でもクラックが発生しない場合は、「100K<」と表示した。
<水接触角>
 上記で得られたハードコートフィルムの表面(ハードコート層の表面)の水接触角(°)を液滴法で測定した。
Figure JPOXMLDOC01-appb-T000027
 実施例、比較例で使用した成分は、以下の通りである。
[樹脂]
 製造例1:製造例1で得られたエポキシ基含有低分子量ポリオルガノシルセスキオキサン(本発明のポリオルガノシルセスキオキサン)
 200PA-E5:商品名「エポキシエステル200PA-E5」、トリプロピレングリコールジグリシジルエーテルハーフ(メタ)アクリレート(分子内に1個以上の熱重合性官能基と1個以上の光重合性官能基を有する化合物)、共栄社化学(株)製
 ライトエステルG::商品名「ライトエステルG」、グリシジルメタクリレート(分子内に1個以上の熱重合性官能基と1個以上の光重合性官能基を有する化合物)、共栄社化学(株)製
 EA-1010N:商品名「NK OLIGO EA1010N」、ビスフェノールAエポキシハーフアクリレート(分子内に1個以上の熱重合性官能基と1個以上の光重合性官能基を有する化合物)、新中村化学工業(株)製
 EHPE3150、商品名「EHPE3150」(脂環にエポキシ基が直接単結合で結合している化合物)、(株)ダイセル製
 セロキサイド2021P:商品名「セロキサイド2021P」、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製
[重合開始剤]
 CPI-310PG:商品名「CPI-310PG」、光カチオン重合開始剤、サンアプロ(株)製
 CPI-210S:商品名「CPI-210S」、光カチオン重合開始剤、サンアプロ(株)製
[フッ素含有光重合性樹脂]
 FT601ADH2:商品名「フタージェント601ADH2」、ネオス(株)製
 RS-76-E:商品名「メガファックRS-76-E」、DIC(株)製
[表面調整剤]
 サーフロンS243:商品名「サーフロンS243」(フッ素系レベリング剤)、AGCセイミケミカル(株)製
[溶媒]
 MIBK:メチルイソブチルケトン
 MEK:メチルエチルケトン
 上記で説明した本発明のバリエーションを以下に付記する。
[1]支持体と、
 該支持体の少なくとも一方の面に積層された樹脂層を有する積層フィルムであって、
 該樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が下記(条件1)及び(条件2)を充足することを特徴とする積層フィルム。
(条件1)前記積層フィルムの樹脂層表面のJIS K5600-5-4(1999)に規定する鉛筆硬度試験(750g荷重)の鉛筆硬度が、F以上である。
(条件2)下記屈曲耐久性試験(1)における屈曲耐久性(1)が5万回以上である。
屈曲耐久性試験(1):
 積層フィルムを伸ばした状態から、樹脂層の面が凹となる方向に屈曲半径が2.5mmとなるように180°折り曲げ、再び伸ばす動作を1回とし、30~60回/分の速さで前記動作を行った際における、積層フィルムの樹脂層にクラックが生じるまでの回数を屈曲耐久性(1)の指標とする
[2]前記鉛筆硬度が、1H以上(好ましくは2H以上、より好ましくは3H以上、より好ましくは4H以上、より好ましくは5H以上、より好ましくは6H以上、より好ましくは7H以上、さらに好ましくは8H以上、特に好ましくは9H)である、前記[1]に記載の積層フィルム。
[3]前記屈曲耐久性(1)が6万回以上(好ましくは7万回以上、より好ましくは8万回以上、より好ましくは9万回以上、より好ましくは10万回以上、さらに好ましくは15万回以上、特に好ましくは20万回以上)である、前記[1]又は[2]に記載の積層フィルム。
[4]支持体と、
 該支持体の少なくとも一方の面に積層された樹脂層を有する積層フィルムであって、
 該樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が下記(条件1)及び(条件3)を充足することを特徴とする積層フィルム。
(条件1)前記積層フィルムの樹脂層表面のJIS K5600-5-4(1999)に規定する鉛筆硬度試験(750g荷重)の鉛筆硬度が、F以上である。
(条件3)下記屈曲耐久性試験(2)における屈曲耐久性(2)が1万回以上である。
屈曲耐久性試験(2):
 積層フィルムを伸ばした状態から、樹脂層の面が凸となる方向に屈曲半径が4.0mmとなるように180°折り曲げ、再び伸ばす動作を1回とし、30~60回/分の速さで前記動作を行った際における、積層フィルムの樹脂層にクラックが生じるまでの回数を屈曲耐久性(2)の指標とする
[5]前記鉛筆硬度が、1H以上(好ましくは2H以上、より好ましくは3H以上、より好ましくは4H以上、より好ましくは5H以上、より好ましくは6H以上、より好ましくは7H以上、さらに好ましくは8H以上、特に好ましくは9H)である、前記[4]に記載の積層フィルム。
[6]前記屈曲耐久性(2)が2万回以上(好ましくは3万回以上、より好ましくは4万回以上、より好ましくは5万回以上、より好ましくは6万回以上、より好ましくは7万回以上、より好ましくは8万回以上、より好ましくは9万回以上、より好ましくは10万回以上、さらに好ましくは15万回以上、特に好ましくは20万回以上)である、前記[4]又は[5]に記載の積層フィルム。
[7]さらに、前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が下記(条件4)を充足する、前記[1]~[6]のいずれか1つに記載の積層フィルム。
(条件4)積層フィルムの樹脂層の面が凸となるJIS K5600-5-1(1999)に規定する円筒形マンドレル試験において、屈曲半径が5mm(好ましくは4.5mm、より好ましくは4.0mm、より好ましくは3.5mm、より好ましくは3.0mm、さらに好ましくは2.5mm、特に好ましくは2.0mm)で樹脂層の面にクラックが発生しない
[8]前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)の面の水接触角が95°以上(好ましくは96°以上、より好ましくは97°以上、より好ましくは98°以上、より好ましくは99°以上、より好ましくは100°以上、より好ましくは101°以上、より好ましくは102°以上、より好ましくは103°以上、さらに好ましくは104°以上、特に好ましくは105°以上)である、前記[1]~[7]のいずれか1つに記載の積層フィルム。
[9]さらに、前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が下記(条件5)を充足する、前記[1]~[8]のいずれか1つに記載の積層フィルム。
(条件5)#0000番のスチールウールで1kg/cm2の荷重をかけながら、前記樹脂層の表面を30回(好ましくは100回、より好ましく200回、より好ましくは300回、より好ましくは500回、より好ましくは700回、さらに好ましくは1000回、特に好ましくは2000回)往復摩擦させる耐スチールウール試験において目視で傷が生じない。
[10]前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)のヘイズが1.0%以下(好ましくは0.5%以下、より好ましくは0.1%以下)である、前記[1]~[9]のいずれか1つに記載の積層フィルム。
[11]ヘイズが、7%以下(好ましくは6%以下、より好ましくは5%以下、より好ましくは4%以下、さらに好ましくは3%以下、特に好ましくは2%以下、最も好ましくは1%以下)である、前記[1]~[10]のいずれか1つに記載の積層フィルム。
[12]全光線透過率が、85%以上(好ましくは90%以上)である、前記[1]~[11]のいずれか1つに記載の積層フィルム。
[13]厚み(支持体/樹脂層の総厚み)が、1~10000μm(好ましくは10~1000μm、より好ましくは15~800μm、さらに好ましくは20~700μm、特に好ましくは30~500μm)である、前記[1]~[12]のいずれか1つに記載の積層フィルム。
[14]前記支持体が、ポリエステルフィルム(特に、PET、PEN)、ポリイミドフィルム、環状ポリオレフィンフィルム、ポリカーボネートフィルム、TACフィルム、又はPMMAフィルム(好ましくはポリエステルフィルム(特に、PET、PEN)、又はポリイミドフィルム)である、前記[1]~[13]のいずれか1つに記載の積層フィルム。
[15]前記支持体の厚みが、1~1000μm(好ましくは5~500μm、より好ましく10~400μm、より好ましくは15~400μm、さらに好ましくは20~300μm、特に好ましくは25~200μm)である、前記[1]~[14]のいずれか1つに記載の積層フィルム。
[16]前記支持体のヘイズが、7%以下(好ましくは6%以下、より好ましくは5%以下、より好ましくは4%以下、さらに好ましくは3%以下、特に好ましくは2%以下、最も好ましくは1%以下)である、前記[1]~[15]のいずれか1つに記載の積層フィルム。
[17]支持体の全光線透過率が、85%以上(好ましくは90%以上)である、前記[1]~[16]のいずれか1つに記載の積層フィルム。
[18]前記樹脂層の厚みが、1~100μm(好ましくは2~80μm、より好ましくは3~60μm、さらに好ましくは5~50μm、最も好ましくは10~40μm)である、前記[1]~[17]のいずれか1つに記載の積層フィルム。
[19]前記樹脂層の全光線透過率が、85%以上(好ましくは90%以上)である、前記[1]~[18]のいずれか1つに記載の積層フィルム。
[20]前記樹脂層の算術平均粗さRaが、JIS B0601に準拠した方法において、0.1~20nm(好ましくは0.1~10nm、より好ましくは0.1~5nm)である、前記[1]~[19]のいずれか1つに記載の積層フィルム。
[21]前記樹脂層が、1種以上の硬化性化合物を含む硬化性組成物の硬化物であり、硬化性化合物の少なくとも1種がポリオルガノシルセスキオキサンである、前記[1]~[20]のいずれか1つに記載の積層フィルム。
[22]前記硬化性組成物が、下記式(1)で表される構成単位を有するポリオルガノシルセスキオキサンを含む、前記[21]に記載の積層フィルム。
Figure JPOXMLDOC01-appb-C000028
[式(1)中、R1は、カチオン重合性官能基を含有する基を示す。]
[23]前記カチオン重合性官能基が、エポキシ基、オキセタン基、ビニルエーテル基、及びビニルフェニル基からなる群から選ばれる少なくとも1種(好ましくはエポキシ基)である、前記[22]に記載の積層フィルム。
[24]前記カチオン重合性官能基を含有する基が、下記式(1a)で表される基、下記式(1b)で表される基、下記式(1c)で表される基、及び下記式(1d)で表される基からなる群から選ばれる少なくとも1種(好ましくは下記式(1a)で表される基、及び下記式(1c)で表される基からなる群から選ばれる少なくとも1種、さらに好ましくは下記式(1a)で表される基)である、前記[22]又は[23]に記載の積層フィルム。
Figure JPOXMLDOC01-appb-C000029
[上記式(1a)中、R1aは、直鎖又は分岐鎖状のアルキレン基を示す。]
Figure JPOXMLDOC01-appb-C000030
[上記式(1b)中、R1bは、直鎖又は分岐鎖状のアルキレン基を示す。]
Figure JPOXMLDOC01-appb-C000031
[上記式(1c)中、R1cは、直鎖又は分岐鎖状のアルキレン基を示す。]
Figure JPOXMLDOC01-appb-C000032
[上記式(1d)中、R1dは、直鎖又は分岐鎖状のアルキレン基を示す。]
[25]R1が、上記式(1a)で表される基であって、R1aがエチレン基である基[中でも、2-(3’,4’-エポキシシクロヘキシル)エチル基]である、前記[22]~[24]のいずれか1つに記載の積層フィルム。
[26]前記ポリオルガノシルセスキオキサンが、さらに、下記式(2)で表される構成単位を有する、前記[22]~[25]のいずれか1つに記載の積層フィルム。
Figure JPOXMLDOC01-appb-C000033
[上記式(2)中、R2は、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。]
[27]前記R2が、置換若しくは無置換のアリール基、置換若しくは無置換のアルキル基、又は置換若しくは無置換のアルケニル基(好ましくは置換若しくは無置換のアリール基、より好ましくはフェニル基)である、前記[26]に記載の積層フィルム。
[28]前記ポリオルガノシルセスキオキサンが、下記式(I)で表される構成単位(「T3体」と称する場合がある)と、下記式(II)で表される構成単位(「T2体」と称する場合がある)を有する、前記[22]~[27]のいずれか1つに記載の積層フィルム。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
[上記式(I)中のRa及び式(II)中のRbは、それぞれ、カチオン重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。上記式(II)中のRcは、水素原子又は炭素数1~4のアルキル基を示す。]
[29]上記式(I)で表される構成単位(T3体)と、上記式(II)で表される構成単位(T2体)の割合[T3体/T2体]が5以上(例えば、5以上、500以下)である、前記[28]に記載の積層フィルム。
[30]前記割合[T3体/T2体]の下限値が5(好ましくは6、さらに好ましくは7)であり、上限値が20未満(好ましくは18、より好ましくは16、さらに好ましくは14)である、前記[29]に記載の積層フィルム。
[31]前記割合[T3体/T2体]の下限値が20(好ましくは21、より好ましくは23、さらに好ましくは25)であり、上限値が500(好ましくは100、より好ましくは50、さらに好ましくは40)である、前記[29]に記載の積層フィルム。
[32]前記ポリオルガノシルセスキオキサンが、下記式(4)で表される構成単位を有する、前記[22]~[31]のいずれか1つに記載の積層フィルム。
Figure JPOXMLDOC01-appb-C000036
 [式(4)中、R1は、式(1)におけるものと同じ。Rcは、式(II)におけるものと同じ。]
[33]前記ポリオルガノシルセスキオキサンにおけるシロキサン構成単位の全量(100モル%)に対する、前記式(1)で表される構成単位及び前記式(4)で表される構成単位の割合(総量)が55~100モル%(好ましくは65~100モル%、さらに好ましくは80~99モル%)である、前記[32]に記載の積層フィルム。
[34]前記ポリオルガノシルセスキオキサンが下記式(5)で表される構成単位を有する、前記[22]~[33]のいずれか1つに記載の積層フィルム。
Figure JPOXMLDOC01-appb-C000037
 [式(5)中、R2は、式(2)におけるものと同じ。Rcは、式(II)におけるものと同じ。]
[35]前記ポリオルガノシルセスキオキサンにおけるシロキサン構成単位の全量(100モル%)に対する、前記式(2)で表される構成単位及び前記式(5)で表される構成単位の割合(総量)が0~70モル%(好ましくは0~60モル%、より好ましくは0~40モル%、特に好ましくは1~15モル%)である、前記[34]に記載の積層フィルム。
[36]前記ポリオルガノシルセスキオキサンにおけるシロキサン構成単位の全量(100モル%)に対する、前記式(1)で表される構成単位、前記式(2)で表される構成単位、前記式(4)で表される構成単位、及び前記式(5)で表される構成単位の割合(総量)が60~100モル%(好ましくは70~100モル%、より好ましくは80~100モル%)である、前記[32]~[35]のいずれか1つに記載の積層フィルム。
[37]前記ポリオルガノシルセスキオキサンの数平均分子量の下限値が1000(好ましくは1100)であり、上限値が3000(好ましくは2800、より好ましくは2600)である、前記[21]~[36]のいずれか1つに記載の積層フィルム。
[38]前記ポリオルガノシルセスキオキサンの数平均分子量の下限値が2500(好ましくは2800、より好ましくは3000)であり、上限値が50000(好ましくは10000、より好ましくは8000)である、前記[21]~[36]のいずれか1つに記載の積層フィルム。
[39]前記ポリオルガノシルセスキオキサンの分子量分散度の下限値が1.0(好ましくは1.1、より好ましくは1.2)である、前記[21]~[38]のいずれか1つに記載の積層フィルム。
[40]前記ポリオルガノシルセスキオキサンの分子量分散度の上限値が3.0(好ましくは2.0、より好ましくは1.9)である、前記[21]~[39]のいずれか1つに記載の積層フィルム。
[41]前記ポリオルガノシルセスキオキサンの分子量分散度の上限値が4.0(好ましくは3.0、より好ましくは2.5)である、前記[21]~[39]のいずれか1つに記載の積層フィルム。
[42]前記ポリオルガノシルセスキオキサンの空気雰囲気下における5%重量減少温度(Td5)が330℃以上(例えば、330~450℃、好ましくは340℃以上、より好ましくは350℃以上)である、前記[21]~[41]のいずれか1つに記載の積層フィルム。
[43]前記硬化性組成物における前記ポリオルガノシルセスキオキサンの含有量(配合量)が、溶媒を除く硬化性組成物の全量(100重量%)に対して、50重量%以上、100重量%未満(好ましくは60~99重量%、より好ましくは70~95重量%)である、前記[21]~[42]のいずれか1つに記載の積層フィルム。
[44]前記硬化性組成物に含まれるカチオン硬化性化合物の全量(100重量%)に対する前記ポリオルガノシルセスキオキサンの割合が60~99重量%(好ましくは65~98重量%、より好ましくは70~95重量%)である、前記[21]~[43]のいずれか1つに記載の積層フィルム。
[45]前記硬化性組成物が、さらに、硬化触媒を含む、前記[21]~[44]のいずれか1つに記載の積層フィルム。
[46]前記硬化触媒が光カチオン重合開始剤である、前記[45]に記載の積層フィルム。
[47]前記硬化触媒が熱カチオン重合開始剤である、前記[45]に記載の積層フィルム。
[48]前記硬化触媒の含有量(配合量)が、前記ポリオルガノシルセスキオキサン100重量部に対して、0.01~3.0重量部(好ましくは0.05~3.0重量部、より好ましくは0.1~1.0重量部、さらに好ましくは0.3~1.0重量部)である、前記[45]~[47]のいずれか1つに記載の積層フィルム。
[49]前記硬化性組成物が、分子内に1個以上の熱重合性官能基と1個以上の光重合性官能基を有する化合物(以下、「化合物A」と称する場合がある。)を含む、前記[21]~[48]のいずれか1つに記載の積層フィルム。
[50]前記化合物Aが有する「熱重合性官能基」が、水酸基、エポキシ基、オキセタニル基、及びビニルエーテル基からなる群から選ばれる少なくとも1種(好ましくは水酸基、及びエポキシ基からなる群から選ばれる少なくとも1種)である、前記[49]に記載の積層フィルム。
[51]前記化合物Aが有する「光重合性官能基」が、(メタ)アクリロイル基、及びビニル基からなる群から選ばれる少なくとも1種(好ましくは(メタ)アクリロイル基)である、前記[49]又は[50]に記載の積層フィルム。
[52]前記化合物Aが1分子内に有する熱重合性官能基の数が1~5個(好ましくは1~3個、より好ましくは1個又は2個)である、前記[49]~[51]のいずれか1つに記載の積層フィルム。
[53]前記化合物Aが1分子内に有する光重合性官能基の数が1~5個(好ましくは1~3個、より好ましくは1個又は2個)である、前記[49]~[52]のいずれか1つに記載の積層フィルム。
[54]前記化合物Aの熱重合性官能基の官能基当量が50~500(好ましくは80~480、より好ましくは120~450)である、前記[49]~[53]のいずれか1つに記載の積層フィルム。
[55]前記化合物Aの光重合性官能基の官能基当量が50~500(好ましくは80~480、より好ましくは120~450)である、前記[49]~[54]のいずれか1つに記載の積層フィルム。
[56]前記化合物Aが、1分子内に熱重合性官能基としてエポキシ基及び/又は水酸基と、光重合性官能基として(メタ)アクリロイル基とを有する化合物である、前記[49]~[55]のいずれか1つに記載の積層フィルム。
[57]前記化合物Aが、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、グリシジル(メタ)アクリレート、トリプロピレングリコールジグリシジルエーテルハーフ(メタ)アクリレート、ビスフェノールAエポキシハーフ(メタ)アクリレート、ビスフェノールFエポキシハーフ(メタ)アクリレート、及びビスフェノールSエポキシハーフ(メタ)アクリレートからなる群から選ばれる少なくとも1種である、前記[49]~[56]のいずれか1つに記載の積層フィルム。
[58]前記化合物Aの含有量(配合量)が、固形分として、前記ポリオルガノシルセスキオキサン100重量部に対して、1~100重量部(好ましくは3~75重量部、より好ましくは5~50重量部)である、前記[49]~[57]のいずれか1つに記載の積層フィルム。
[59]前記硬化性組成物が、さらに、フッ素含有光重合性樹脂を含む、前記[21]~[58]のいずれか1つに記載の積層フィルム。
[60]前記フッ素含有光重合性樹脂が有する光重合性官能基が、(メタ)アクリロイル基、及びビニル基からなる群から選ばれる少なくとも1種(好ましくは(メタ)アクリロイル基)である、前記[59]に記載の積層フィルム。
[61]前記フッ素含有光重合性樹脂が1分子内に有する光重合性官能基の数が1~5個(好ましくは1~3個)である、前記[59]又は[60]に記載の積層フィルム。
[62]前記フッ素含有光重合性樹脂が有するフッ素含有基が、フルオロ脂肪族炭化水素骨格を有する基である、前記[59]~[61]のいずれか1つに記載の積層フィルム。
[63]前記フルオロ脂肪族炭化水素骨格が、エーテル結合を介した繰り返し単位であるポリフルオロアルキレンエーテル骨格を形成する、前記[62]に記載の積層フィルム。
[64]前記フッ素含有光重合性樹脂が、シリコーン含有基を有する、前記[59]~[63]のいずれか1つに記載の積層フィルム。
[65]前記フッ素含有光重合性樹脂の含有量(配合量)が、固形分として、前記ポリオルガノシルセスキオキサン100重量部に対して、0.01~15重量部(好ましくは0.05~10重量部、より好ましくは0.01~5重量部、さらに好ましくは0.2~3重量部)である、前記[59]~[64]のいずれか1つに記載の積層フィルム。
[66]前記硬化性組成物が、さらに、前記ポリオルガノシルセスキオキサン以外のエポキシ化合物(以下、単に「エポキシ化合物」と称する場合がある)を含む、前記[21]~[65]のいずれか1つに記載の積層フィルム。
[67]前記エポキシ化合物が、脂環式エポキシ化合物、芳香族エポキシ化合物、及び脂肪族エポキシ化合物からなる群から選ばれる少なくとも1種(好ましくは脂環式エポキシ化合物)である、前記[66]に記載の積層フィルム。
[68]前記脂環式エポキシ化合物が、(1)分子内に脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(「脂環エポキシ基」と称する)を有する化合物;(2)脂環にエポキシ基が直接単結合で結合している化合物;及び(3)分子内に脂環及びグリシジルエーテル基を有する化合物(グリシジルエーテル型エポキシ化合物)からなる群から選ばれる少なくとも1種である、前記[67]に記載の積層フィルム。
[69]前記(1)分子内に脂環エポキシ基を有する化合物が、下記式(i)で表される化合物である、前記[68]に記載の積層フィルム。
Figure JPOXMLDOC01-appb-C000038
[上記式(i)中、Yは単結合又は連結基(1以上の原子を有する二価の基)を示す。式(i)中のシクロヘキサン環の水素原子の1個以上は、炭素数1~6のアルキル基などの置換基で置換されていてもよい。]
[70]前記式(i)で表される脂環式エポキシ化合物が、(3,4,3’,4’-ジエポキシ)ビシクロヘキシル、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、1,2-ビス(3,4-エポキシシクロヘキシル)エタン、2,3-ビス(3,4-エポキシシクロヘキシル)オキシラン、ビス(3,4-エポキシシクロヘキシルメチル)エーテル、及び下記式(i-1)~(i-10)で表される化合物からなる群から選ばれる少なくとも1種である、前記[69]に記載の積層フィルム。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
[上記式(i-5)、(i-7)中のl、mは、それぞれ1~30の整数を表す。上記式(i-5)中のR’は炭素数1~8のアルキレン基を示す。上記式(i-9)、(i-10)中のn1~n6は、それぞれ1~30の整数を示す。]
[71]前記(2)脂環にエポキシ基が直接単結合で結合している化合物が、下記式(ii)で表される化合物である、前記[68]~[70]のいずれか1つに記載の積層フィルム。
Figure JPOXMLDOC01-appb-C000041
[式(ii)中、R”は、p価のアルコールの構造式からp個の水酸基(-OH)を除いた基(p価の有機基)を示す。p、nはそれぞれ自然数を表す。pが2以上の場合、それぞれの( )内(外側の括弧内)の基におけるnは同一でもよく異なっていてもよい。]
[72]前記エポキシ化合物が、(2)脂環にエポキシ基が直接単結合で結合している化合物(好ましく、上記式(ii)で表される化合物)である、前記[68]~[71]のいずれか1つに記載の積層フィルム。
[73]前記エポキシ化合物の含有量(配合量)が、前記ポリオルガノシルセスキオキサンの全量100重量部に対して、0.5~100重量部(好ましくは1~80重量部、より好ましくは5~50重量部)である、前記[66]~[72]のいずれか1つに記載の積層フィルム。
[74]前記支持体が、透明支持体である、前記[1]~[73]のいずれか1つに記載の積層フィルム。
[75]、前記[1]~[74]のいずれか1つに記載の積層フィルムを備えるフォルダブルデバイス。
[76]画像表示装置である、前記[75]に記載のフォルダブルデバイス。
[77]前記画像表示装置が、有機エレクトロルミネセンス表示装置である、前記[76]に記載のフォルダブルデバイス。
 本発明の積層フィルムは、高い表面硬度と、優れた屈曲耐久性を有するため、有機エレクトロルミネセンス表示装置などのフォルダブルデバイスの表面保護材として好適である。

Claims (16)

  1.  支持体と、
     該支持体の少なくとも一方の面に積層された樹脂層を有する積層フィルムであって、
     該樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が下記(条件1)及び(条件2)を充足することを特徴とする積層フィルム。
    (条件1)前記積層フィルムの樹脂層表面のJIS K5600-5-4(1999)に規定する鉛筆硬度試験(750g荷重)の鉛筆硬度が、F以上である。
    (条件2)下記屈曲耐久性試験(1)における屈曲耐久性(1)が5万回以上である。
    屈曲耐久性試験(1):
     積層フィルムを伸ばした状態から、樹脂層の面が凹となる方向に屈曲半径が2.5mmとなるように180°折り曲げ、再び伸ばす動作を1回とし、30~60回/分の速さで前記動作を行った際における、積層フィルムの樹脂層にクラックが生じるまでの回数を屈曲耐久性(1)の指標とする
  2.  支持体と、
     該支持体の少なくとも一方の面に積層された樹脂層を有する積層フィルムであって、
     該樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が下記(条件1)及び(条件3)を充足することを特徴とする積層フィルム。
    (条件1)前記積層フィルムの樹脂層表面のJIS K5600-5-4(1999)に規定する鉛筆硬度試験(750g荷重)の鉛筆硬度が、F以上である。
    (条件3)下記屈曲耐久性試験(2)における屈曲耐久性(2)が1万回以上である。
    屈曲耐久性試験(2):
     積層フィルムを伸ばした状態から、樹脂層の面が凸となる方向に屈曲半径が4.0mmとなるように180°折り曲げ、再び伸ばす動作を1回とし、30~60回/分の速さで前記動作を行った際における、積層フィルムの樹脂層にクラックが生じるまでの回数を屈曲耐久性(2)の指標とする
  3.  さらに、前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が下記(条件4)を充足する請求項1又は2に記載の積層フィルム。
    (条件4)積層フィルムの樹脂層の面が凸となるJIS K5600-5-1(1999)に規定する円筒形マンドレル試験において、屈曲半径が5mmで樹脂層の面にクラックが発生しない
  4.  前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)の面の水接触角が95°以上である請求項1~3のいずれか1項に記載の積層フィルム。
  5.  さらに、前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)が下記(条件5)を充足する請求項1~4のいずれか1項に記載の積層フィルム。
    (条件5)#0000番のスチールウールで1kg/cm2の荷重をかけながら、前記樹脂層の表面を30回往復摩擦させる耐スチールウール試験において目視で傷が生じない。
  6.  前記樹脂層(前記支持体の両面に樹脂層が積層されている場合はいずれか一方の樹脂層)のヘイズが1.0%以下である請求項1~5のいずれか1項に記載の積層フィルム。
  7.  前記樹脂層が、1種以上の硬化性化合物を含む硬化性組成物の硬化物であり、硬化性化合物の少なくとも1種がポリオルガノシルセスキオキサンである請求項1~6のいずれか1項に記載の積層フィルム。
  8.  前記硬化性組成物が、分子内に1個以上の熱重合性官能基と1個以上の光重合性官能基を有する化合物を含む請求項7に記載の積層フィルム。
  9.  前記硬化性組成物が、さらに、硬化触媒を含む請求項7又は8に記載の積層フィルム。
  10.  前記硬化触媒が光カチオン重合開始剤である請求項9に記載の積層フィルム。
  11.  前記硬化触媒が熱カチオン重合開始剤である請求項9に記載の積層フィルム。
  12.  前記硬化性組成物が、さらに、フッ素含有光重合性樹脂を含む請求項7~11のいずれか1項に記載の積層フィルム。
  13.  前記支持体が、透明支持体である請求項1~12のいずれか1項に記載の積層フィルム。
  14.  請求項1~12のいずれか1項に記載の積層フィルムを備えるフォルダブルデバイス。
  15.  画像表示装置である請求項14に記載のフォルダブルデバイス。
  16.  前記画像表示装置が、有機エレクトロルミネセンス表示装置である請求項15に記載のフォルダブルデバイス。
PCT/JP2018/019400 2018-05-18 2018-05-18 積層フィルム、及びフォルダブルデバイス WO2019220642A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207036051A KR102469951B1 (ko) 2018-05-18 2018-05-18 적층 필름 및 폴더블 디바이스
CN201880093576.3A CN112135731B (zh) 2018-05-18 2018-05-18 层叠膜及可折叠设备
JP2020518938A JP7049447B2 (ja) 2018-05-18 2018-05-18 積層フィルム、及びフォルダブルデバイス
PCT/JP2018/019400 WO2019220642A1 (ja) 2018-05-18 2018-05-18 積層フィルム、及びフォルダブルデバイス
TW108116361A TWI787508B (zh) 2018-05-18 2019-05-13 積層膜及可折器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019400 WO2019220642A1 (ja) 2018-05-18 2018-05-18 積層フィルム、及びフォルダブルデバイス

Publications (1)

Publication Number Publication Date
WO2019220642A1 true WO2019220642A1 (ja) 2019-11-21

Family

ID=68540023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019400 WO2019220642A1 (ja) 2018-05-18 2018-05-18 積層フィルム、及びフォルダブルデバイス

Country Status (5)

Country Link
JP (1) JP7049447B2 (ja)
KR (1) KR102469951B1 (ja)
CN (1) CN112135731B (ja)
TW (1) TWI787508B (ja)
WO (1) WO2019220642A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020059726A1 (ja) * 2018-09-18 2021-06-10 富士フイルム株式会社 ハードコート組成物、ハードコートフィルム、ハードコートフィルムを有する物品、画像表示装置、及びハードコートフィルムの製造方法
WO2022102736A1 (ja) * 2020-11-16 2022-05-19 株式会社ダイセル 積層フィルム、及びフレキシブルデバイス
CN116023839A (zh) * 2021-10-25 2023-04-28 南亚塑胶工业股份有限公司 涂层的制造方法、叠层结构、及涂层组成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112599A (ja) * 2013-12-11 2015-06-22 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー エポキシシロキサン樹脂組成物を用いたハードコーティング膜及びその製造方法
WO2016203957A1 (ja) * 2015-06-17 2016-12-22 株式会社ダイセル 硬化性組成物、及び成形体
WO2018003713A1 (ja) * 2016-06-29 2018-01-04 日本ゼオン株式会社 導電性フィルム
JP2018055098A (ja) * 2016-09-27 2018-04-05 三星電子株式会社Samsung Electronics Co.,Ltd. 表示装置用ウィンドウおよび表示装置
JP2018059062A (ja) * 2016-09-30 2018-04-12 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. ハードコーティング組成物及びこれを用いたハードコーティングフィルム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186210A (ja) 2013-03-25 2014-10-02 Toppan Printing Co Ltd ハードコートフィルム
JP6530027B2 (ja) * 2013-12-13 2019-06-12 株式会社ダイセル ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
JP6219250B2 (ja) * 2013-12-13 2017-10-25 株式会社ダイセル ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
JP2015179898A (ja) * 2014-03-18 2015-10-08 富士通株式会社 無線装置、無線システム及び無線方法
JP6595813B2 (ja) * 2015-06-17 2019-10-23 株式会社ダイセル ポリオルガノシルセスキオキサン
JP6619954B2 (ja) * 2015-06-17 2019-12-11 株式会社ダイセル 成形体
KR102094450B1 (ko) * 2015-08-03 2020-03-27 주식회사 엘지화학 플렉시블 플라스틱 필름
JPWO2017169651A1 (ja) * 2016-03-30 2019-02-14 コニカミノルタ株式会社 表示装置表面部材及びその製造方法
JP6767783B2 (ja) * 2016-06-09 2020-10-14 株式会社ダイセル 硬化性組成物、硬化物、硬化物の製造方法、及び成形体
TWI713788B (zh) * 2016-09-15 2020-12-21 日商尤尼吉可股份有限公司 硬塗膜
KR102031660B1 (ko) * 2016-09-30 2019-10-14 동우 화인켐 주식회사 하드코팅 조성물 및 이를 이용한 하드코팅 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112599A (ja) * 2013-12-11 2015-06-22 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー エポキシシロキサン樹脂組成物を用いたハードコーティング膜及びその製造方法
WO2016203957A1 (ja) * 2015-06-17 2016-12-22 株式会社ダイセル 硬化性組成物、及び成形体
WO2018003713A1 (ja) * 2016-06-29 2018-01-04 日本ゼオン株式会社 導電性フィルム
JP2018055098A (ja) * 2016-09-27 2018-04-05 三星電子株式会社Samsung Electronics Co.,Ltd. 表示装置用ウィンドウおよび表示装置
JP2018059062A (ja) * 2016-09-30 2018-04-12 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. ハードコーティング組成物及びこれを用いたハードコーティングフィルム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020059726A1 (ja) * 2018-09-18 2021-06-10 富士フイルム株式会社 ハードコート組成物、ハードコートフィルム、ハードコートフィルムを有する物品、画像表示装置、及びハードコートフィルムの製造方法
JP7291150B2 (ja) 2018-09-18 2023-06-14 富士フイルム株式会社 ハードコート組成物、ハードコートフィルム、ハードコートフィルムを有する物品、画像表示装置、及びハードコートフィルムの製造方法
WO2022102736A1 (ja) * 2020-11-16 2022-05-19 株式会社ダイセル 積層フィルム、及びフレキシブルデバイス
JP7074825B1 (ja) 2020-11-16 2022-05-24 株式会社ダイセル 積層フィルム、及びフォルダブルデバイス
JP2022081716A (ja) * 2020-11-16 2022-06-01 株式会社ダイセル 積層フィルム、及びフォルダブルデバイス
CN116023839A (zh) * 2021-10-25 2023-04-28 南亚塑胶工业股份有限公司 涂层的制造方法、叠层结构、及涂层组成物
JP7436596B2 (ja) 2021-10-25 2024-02-21 南亞塑膠工業股▲分▼有限公司 コーティング層の製造方法、積層構造及びコーティング組成物

Also Published As

Publication number Publication date
CN112135731B (zh) 2023-03-24
JP7049447B2 (ja) 2022-04-06
TWI787508B (zh) 2022-12-21
KR102469951B1 (ko) 2022-11-23
CN112135731A (zh) 2020-12-25
TW202005802A (zh) 2020-02-01
JPWO2019220642A1 (ja) 2021-07-01
KR20210013087A (ko) 2021-02-03

Similar Documents

Publication Publication Date Title
JP6219250B2 (ja) ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
WO2018207914A1 (ja) カールが抑制されたハードコートフィルム及びその製造方法
JP6619955B2 (ja) 傷回復フィルム
JP6795498B2 (ja) 硬化性組成物、及び成形体
CN110494466B (zh) 固化性组合物、固化物及硬涂膜
WO2018189946A1 (ja) 積層体
JP6931526B2 (ja) ハードコートフィルム
JP2018189800A (ja) 曲面ディスプレイ用ハードコートフィルム、ハードコートフィルム付き透明基板及びディスプレイ装置
JP6619954B2 (ja) 成形体
JP6557521B2 (ja) ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、積層物及び装置
JP2018177952A (ja) 硬化性組成物、硬化物及びハードコートフィルム
WO2019220642A1 (ja) 積層フィルム、及びフォルダブルデバイス
TWI796000B (zh) 積層膜、及可撓性裝置
JP2019143161A (ja) ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207036051

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18918699

Country of ref document: EP

Kind code of ref document: A1