WO2019212047A1 - 亜鉛系めっき鋼板及びその製造方法 - Google Patents

亜鉛系めっき鋼板及びその製造方法 Download PDF

Info

Publication number
WO2019212047A1
WO2019212047A1 PCT/JP2019/017988 JP2019017988W WO2019212047A1 WO 2019212047 A1 WO2019212047 A1 WO 2019212047A1 JP 2019017988 W JP2019017988 W JP 2019017988W WO 2019212047 A1 WO2019212047 A1 WO 2019212047A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
temperature
holding
hydrogen
Prior art date
Application number
PCT/JP2019/017988
Other languages
English (en)
French (fr)
Inventor
卓史 横山
邦夫 林
中田 匡浩
山口 裕司
智史 内田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68386356&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019212047(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980028902.7A priority Critical patent/CN112074620B/zh
Priority to JP2019551714A priority patent/JP6645636B1/ja
Priority to US17/051,110 priority patent/US11685963B2/en
Priority to MX2020011439A priority patent/MX2020011439A/es
Publication of WO2019212047A1 publication Critical patent/WO2019212047A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent

Definitions

  • the present invention relates to a zinc-based plated steel sheet and a method for producing the same.
  • This application claims priority on May 1, 2018 based on Japanese Patent Application No. 2018-088417 for which it applied to Japan, and uses the content here.
  • Such a high-strength hot-dip galvanized steel sheet is formed into various shapes by press working or the like when used as a steel sheet for automobiles.
  • an ultra-high strength steel sheet having a tensile strength exceeding 1470 MPa is applied as a member for an automobile, it is necessary to solve hydrogen embrittlement cracking of the steel sheet as well as its press formability.
  • Hydrogen embrittlement cracking is a phenomenon in which a steel member subjected to high stress under use conditions suddenly breaks due to hydrogen entering the steel from the environment. This phenomenon is also called delayed destruction because of the form of destruction. In general, it is known that hydrogen embrittlement cracking of a steel sheet is more likely to occur as the tensile strength of the steel sheet increases. This is considered to be because the higher the tensile strength of the steel sheet, the greater the stress remaining on the steel sheet after forming the part. This sensitivity to hydrogen embrittlement cracking (delayed fracture) is called hydrogen embrittlement resistance.
  • Patent Document 1 and Patent Document 2 a cold-rolled steel sheet having a predetermined chemical composition is heated to Ac 3 or more, and a steel structure mainly composed of martensite is formed by quenching and tempering. The technique regarding the ultra-high-strength cold-rolled steel sheet which is going to improve is described.
  • Patent Document 3 contains at least 120 kg / mm 2 to improve the resistance to hydrogen embrittlement by containing a small amount of Cu, Cr, Nb, Ni, and the like as a chemical composition and forming a steel structure mainly composed of bainite. A technique relating to a high-strength cold-rolled steel sheet having a tensile strength of 5 is described.
  • Patent Document 4 a steel sheet having a predetermined chemical composition is heated to Ac 3 or more after surface decarburization annealing, and the structure inside the steel is tempered martensite main structure by performing quenching and tempering.
  • a technique related to a cold-rolled steel sheet having a tensile strength of 1270 MPa class or more, which attempts to improve bendability and delayed fracture resistance by softening the surface layer is described.
  • Patent Document 5 discloses a high-strength cold-rolled steel sheet that attempts to improve hydrogen embrittlement resistance by controlling the amount and dispersion form of retained austenite contained in the steel structure and utilizing the hydrogen trap effect of retained austenite. The technology about is described.
  • the hot-dip galvanized layer inhibits hydrogen release from the steel sheet to the atmosphere, so that hydrogen is hardly dissipated to the atmosphere at room temperature. Accordingly, the hot dip galvanized steel sheet is processed as blanking or pressing while containing hydrogen that has intruded during the manufacture of the steel sheet, and used as a member for automobiles.
  • Patent Document 6 describes a technique relating to a hot dip galvanized steel sheet in which the amount of hydrogen entering the steel sheet is reduced by controlling the atmosphere during the heat treatment from the viewpoint of blister suppression. However, Patent Document 6 does not consider the mechanical characteristics and hydrogen embrittlement resistance of the steel sheet.
  • Patent Document 7 describes a technique relating to a high-strength galvanized steel sheet in which the diffusible hydrogen content in the steel sheet of the base material steel sheet is 0.00008% or less (0.8 ppm or less) in mass%. However, Patent Document 7 does not consider hydrogen embrittlement resistance.
  • Japanese Unexamined Patent Publication No. 10-001740 Japanese Laid-Open Patent Publication No. 9-111398 Japanese Laid-Open Patent Publication No. 6-145891 International Publication No. 2011/105385 Japanese Unexamined Patent Publication No. 2007-197819 International Publication No. 2015/029404 International Publication No. 2018/124157
  • the present invention has been made in view of the above circumstances, and is suitably used for automobile parts.
  • Zinc-based plating that is excellent in mechanical properties, reduced intrusion hydrogen amount during production, and excellent in hydrogen embrittlement resistance. It aims at providing a steel plate and its manufacturing method.
  • Another object of the present invention is to provide a zinc-based plated steel sheet having excellent plating adhesion and a method for producing the same, which are the characteristics generally required for a zinc-based plated steel sheet in addition to the above-mentioned various characteristics.
  • the plating adhesion refers to the adhesion between the steel sheet and the hot dip galvanized layer or the alloyed hot dip galvanized layer.
  • a zinc-based plated steel sheet includes a steel sheet and a zinc-based plated layer disposed on a surface of the steel sheet,
  • the steel sheet is in mass%, C: 0.150% to 0.500%, Si: 0.01% to 2.50%, Mn: 1.00% to 5.00% P: 0.100% or less, S: 0.0100% or less, Al: 0.001% to 1.000%, N: 0.0100% or less, O: 0.0100% or less, Cr: 0% to 2.00%, Mo: 0% to 1.00%, B: 0% to 0.010%, Cu: 0% to 1.00%, Ni: 0% to 1.00%, Co: 0% to 1.00% W: 0% to 1.00% Sn: 0% to 1.00% Sb: 0% to 0.50%, Ti: 0% to 0.30%, Nb: 0% to 0.30%, V: 0% to 1.00% Ca: 0% to 0.0100%, M
  • the chemical composition of the steel sheet is Cr: 0.001% to 2.00%, Mo: 0.001% to 1.00%, B: 0.0001% to 0.010%, Cu: 0.001% to 1.00%, Ni: 0.001% to 1.00%, Co: 0.001% to 1.00%, W: 0.001% to 1.00%, Sn: 0.001% to 1.00%, and Sb: 0.001% to 0.50%, You may contain 1 type, or 2 or more types.
  • the chemical composition of the steel sheet is Ti: 0.001% to 0.30%, Nb: 0.001% to 0.30%, and V: 0.001% to 1.00%, You may contain 1 type, or 2 or more types.
  • the zinc-based plated steel sheet according to any one of [1] to [4] may have a ductile-brittle transition temperature of ⁇ 40 ° C. or lower.
  • a method for producing a galvanized steel sheet according to another aspect of the present invention is the method for producing a galvanized steel sheet according to any one of [1] to [5] above, wherein [1] ]
  • the following steps (I) to (IV) are sequentially performed on the steel sheet having the chemical composition according to any one of [4] to [4]: (I) heating temperature: Ac 3 point ⁇ 950 °C, Ac 3 point ⁇ 950 ° C.
  • the step (III) is a step in which the steel sheet is immersed in a hot dip galvanizing bath, alloyed in a temperature range of 460 to 600 ° C., and then cooled until the steel plate temperature becomes less than Ms point ⁇ 150 ° C. Also good.
  • zinc-based plating that is suitably used as a member for automobiles, has excellent mechanical properties, reduces the amount of invading hydrogen during production, and has excellent hydrogen embrittlement resistance and plating adhesion.
  • a steel plate and a manufacturing method thereof can be provided.
  • the zinc-based plated steel sheet according to the present embodiment includes a steel sheet and a zinc-based plated layer disposed on the surface of the steel sheet.
  • the galvanized steel sheet refers to a hot dip galvanized steel sheet or an alloyed hot dip galvanized steel sheet
  • the zinc based plated layer refers to a hot dip galvanized layer or an alloyed hot dip galvanized layer. That means.
  • a steel plate means the base material steel plate which arrange
  • the steel sheet according to the present embodiment is, in mass%, C: 0.150% to 0.500%, Si: 0.01% to 2.50%, Mn: 1.00% to 5.00%, P: 0.100% or less, S: 0.0100% or less, Al: 0.001% to 1.000%, N: 0.0100% or less, O: 0.0100% or less, Cr: 0% to 2.00 %, Mo: 0% to 1.00%, B: 0% to 0.010%, Cu: 0% to 1.00%, Ni: 0% to 1.00%, Co: 0% to 1.00 %, W: 0% to 1.00%, Sn: 0% to 1.00%, Sb: 0% to 0.50%, Ti: 0% to 0.30%, Nb: 0% to 0.30 %, V: 0% to 1.00%, Ca: 0% to 0.0100%, Mg: 0% to 0.0100%, Ce: 0% to 0.0100%, Zr: 0% to 0.0100% %, La: 0% to 0.500
  • the steel sheet according to the present embodiment contains 0% to 0.0100%, with a chemical composition the balance being Fe and impurities.
  • the steel structure in the range of 1/8 thickness to 3/8 thickness centered on 1/4 thickness from the surface is volume%, ferrite: 0 to 10%, bainite: 0 to 20 %, Tempered martensite: 70% or more, fresh martensite: 0 to 10%, retained austenite: 0 to 10% and pearlite: 0 to 5%.
  • the zinc-based plated steel sheet according to this embodiment has a tensile strength of 1470 MPa or more, and no cracks are generated in a U-shaped bending test in which stress equivalent to 1000 MPa is applied for 24 hours.
  • the chemical composition of the steel sheet is Cr: 0.001% to 2.00%, Mo: 0.001% to 1.00%, B: 0.0001% to 0.00.
  • the chemical composition of the steel sheet is Ti: 0.001% to 0.30%, Nb: 0.001% to 0.30%, and V: 0.001% to 1.
  • the chemical composition of the steel sheet is Ca: 0.0001% to 0.0100%, Mg: 0.0001% to 0.0100%, Ce: 0.0001% to 0.00.
  • C is an essential element for obtaining the desired strength of the galvanized steel sheet. If the C content is less than 0.150%, the desired high strength cannot be obtained, so the C content is set to 0.150% or more. Preferably it is 0.180% or more, or 0.190% or more. On the other hand, if the C content exceeds 0.500%, weldability deteriorates, so the C content is set to 0.500% or less. From the viewpoint of suppressing a decrease in weldability of the galvanized steel sheet, the C content is preferably 0.350% or less.
  • Si 0.01% to 2.50%
  • Si is an element that suppresses the formation of iron carbide and contributes to the improvement of the strength and formability of the galvanized steel sheet.
  • the Si content is set to 0.01% or more. Preferably, it is 0.05% or more, or 0.10% or more.
  • the Si content is 2.50% or less. Preferably, it is 2.00% or less, 1.20% or less, or 1.00% or less.
  • Mn 1.00% to 5.00%
  • Mn manganese
  • the Mn content is 1.00% or more. Preferably, it is 1.50% or more, or 2.00% or more.
  • the Mn content is 5.00% or less. Preferably, it is 4.00% or less, or 3.50% or less.
  • P phosphorus
  • P is a solid solution strengthening element and is an element effective for increasing the strength of a zinc-based plated steel sheet.
  • the P content is limited to 0.100% or less. Preferably it is 0.050% or less, More preferably, it is 0.020% or less.
  • the P content is preferably 0.001% or more, or 0.005% or more from the viewpoint of economy.
  • S sulfur
  • S is an element contained as an impurity, and deteriorates the toughness and hole expandability of the galvanized steel sheet by forming MnS in the steel. Therefore, the S content is limited to 0.0100% or less in order not to significantly deteriorate the toughness and hole expandability of the galvanized steel sheet. Preferably it is 0.0050% or less, or 0.0035% or less. However, in order to extremely reduce the S content, the desulfurization cost is increased. Therefore, the S content is preferably 0.0005% or more, or 0.0010% or more from the viewpoint of economy.
  • Al 0.001% to 1.000%
  • Al contains at least 0.001% or more for deoxidation of steel. Preferably it is 0.005% or more, or 0.015% or more. However, even if Al is contained excessively, the above effect is saturated and the cost is increased, and the transformation temperature of the steel is increased to increase the load during hot rolling. Therefore, the Al content is 1.000% or less. Preferably it is 0.500% or less, or 0.400% or less.
  • N nitrogen
  • nitrogen is an element contained in steel as an impurity.
  • the N content exceeds 0.0100%, coarse nitrides are formed in the steel, and the bendability and hole expansion of the galvanized steel sheet Deteriorate the sex. Therefore, the N content is limited to 0.0100% or less. Preferably it is 0.0050% or less, or 0.0045% or less.
  • the N removal cost is increased, and therefore the N content is preferably 0.0005% or more, or 0.0020% or more from the viewpoint of economy.
  • O oxygen
  • oxygen is an element contained in steel as an impurity.
  • the O content exceeds 0.0100%, a coarse oxide is formed in the steel, and the bendability and hole expansion of the galvanized steel sheet. Deteriorate the sex. Therefore, the O content is limited to 0.0100% or less. Preferably it is 0.0050% or less, or 0.0030% or less. However, from the viewpoint of manufacturing cost, the O content is preferably 0.0001% or more, 0.0005% or more, or 0.0010% or more.
  • the amount of hydrogen released when the steel sheet is heated from room temperature to 200 ° C. after removing the zinc-based plating layer 0.40 ppm or less per mass of the steel sheet.
  • the amount of hydrogen released when the steel sheet is heated from room temperature to 200 ° C. is 0.40 ppm or less per steel plate mass. The smaller the amount of hydrogen released, the better, preferably 0.30 ppm or less, and more preferably 0.20 ppm or less.
  • Hydrogen that affects hydrogen embrittlement is hydrogen that is released when the steel sheet is heated at a relatively low temperature, and hydrogen that is released when heated to a relatively high temperature does not affect hydrogen embrittlement.
  • the amount of hydrogen released when the steel sheet is heated from room temperature to 200 ° C. is regarded as one of the factors affecting hydrogen embrittlement cracking, and the amount of hydrogen is limited to 0.40 ppm or less.
  • the room temperature range is 15-25 ° C.
  • the amount of hydrogen released when the steel sheet is heated from room temperature to 200 ° C. is measured by the following method. First, in order to remove the zinc-based plated layer (hot-dip galvanized layer or alloyed hot-dip galvanized layer) of the zinc-based plated steel sheet, the front and back surfaces of the zinc-based plated steel sheet are mechanically ground by 0.1 mm. Thereafter, the cumulative amount of mass of hydrogen released from the steel sheet when heated from room temperature to 200 ° C. (gas chromatograph when heated from room temperature to 200 ° C. by a temperature rising hydrogen analysis method (temperature rising rate: 100 ° C./hour, measured up to 300 ° C.). Measured value).
  • the cumulative amount of hydrogen mass obtained is divided by the mass of the steel plate after the removal of the zinc-based plating layer used for the measurement, and released when the steel plate is heated from room temperature to 200 ° C.
  • the amount of hydrogen (mass ppm) to be obtained is obtained.
  • the mass of the steel sheet (steel sheet after the removal of the zinc-based plating layer) used for the measurement is at least 0.5 g, preferably 1.0 g or more.
  • the steel sheet after removal of the zinc-based plating layer must be stored in liquid nitrogen until the start of analysis.
  • the steel sheet according to the present embodiment has the above-described chemical composition, with the balance being Fe and impurities. “Impurity” is a component that is mixed due to various factors of raw materials such as ores and scraps and manufacturing processes when industrially manufacturing steel sheets.
  • the steel sheet according to the present embodiment may contain the following optional elements as necessary, instead of a part of the remaining Fe. However, since the galvanized steel sheet according to the present embodiment can solve the problem without containing any optional element shown below, the lower limit of the content when the optional element is not contained is 0%.
  • Cr 0% to 2.00%, Mo: 0% to 1.00%, B: 0% to 0.010%, Ni: 0% to 1.00%, Cu: 0% to 1.00% , Co: 0% to 1.00%, W: 0% to 1.00%, Sn: 0% to 1.00%, and Sb: 0% to 0.50%]
  • Cr chromium
  • Mo molybdenum
  • B boron
  • Ni nickel
  • nickel nickel
  • Cu copper
  • Co cobalt
  • W tungsten
  • Sn tin
  • Sb antimony
  • the contents of the above elements are Cr: 0% to 2.00%, Mo: 0% to 1.00%, B: 0% to 0.010%, Ni: 0% to 1.00%, Cu: 0% to 1.00%, Co: 0% to 1.00%, W: 0% to 1.00%, Sn: 0% to 1.00%, and Sb: 0% to 0.50% To do.
  • the content of any one of Cr, Mo, Ni, Cu, Co, W, Sn, and Sb is set to 0.001% or more, or B is contained. The amount is preferably 0.0001% or more.
  • Ti 0% to 0.30%, Nb: 0% to 0.30% and V: 0% to 1.00%, one or more
  • Ti (titanium), Nb (niobium), and V (vanadium) are all carbide-forming elements, and are effective elements for increasing the strength of the galvanized steel sheet, and may be contained as necessary. However, even if it contains the said element excessively, the said effect will be saturated and cost will be raised. Accordingly, the contents of the above elements are Ti: 0% to 0.30%, Nb: 0% to 0.30%, and V: 0% to 1.00%, respectively. In order to further improve the strength of the galvanized steel sheet, the content of one of the above elements is preferably 0.001% or more.
  • Ca 0% to 0.0100%, Mg: 0% to 0.0100%, Ce: 0% to 0.0100%, Zr: 0% to 0.0100%, La: 0% to 0.0100% Hf: 0% to 0.0100%, Bi: 0% to 0.0100%, and REM: 0% to 0.0100%, or one or more types
  • Ca (calcium), Mg (magnesium), Ce (cerium), Zr (zirconium), La (lanthanum), Hf (hafnium) and REM are elements that contribute to fine dispersion of inclusions in steel.
  • Bi bismuth
  • Ca, Mg, Ce, Zr, La, Hf, Bi, and REM each contribute to improving the workability of the steel sheet, and thus are preferably contained as necessary.
  • the content of at least one of the above elements needs to exceed 0%. Preferably it is 0.0001% or more.
  • the content of the above elements is 0.0100% or less.
  • REM in the present embodiment is a rare earth element having an atomic number of 59 to 71, and the content of REM is the total content of these elements. When two or more kinds of rare earth elements are contained, it is good to contain them by adding misch metal.
  • the steel plate according to the present embodiment is composed of Fe and impurities other than the elements described above, but can be contained within a range not impairing the effects of the present invention in addition to the elements described above.
  • % defining the steel structure is “volume%”.
  • the steel structure described below is a steel structure in the range of 1/8 thickness to 3/8 thickness centered on 1/4 thickness from the surface of the steel sheet. The steel structure in this range is defined because the steel structure in this range represents the steel structure of the entire steel sheet.
  • Ferrite is a soft structure but excellent in ductility.
  • the elongation of the galvanized steel sheet increases as the volume percentage of ferrite increases, but the strength decreases. Accordingly, the volume percentage of ferrite is set to 0 to 10%. Preferably, it is 0 to 8%, more preferably 0 to 5%. Since the zinc-based plated steel sheet according to the present embodiment can solve the problem even if ferrite is not included, the volume% of ferrite may be 0%.
  • Residual austenite improves the work hardening characteristics of the galvanized steel sheet by the TRIP effect that transforms into martensite by deformation-induced transformation during deformation of the steel sheet. Since the galvanized steel sheet according to the present embodiment can solve the problem even if the retained austenite is not included, the volume% of retained austenite may be 0%. In order to improve work hardening characteristics and further improve the strength after molding, the volume% of retained austenite may be 3% or more, or 4% or more. On the other hand, martensite transformed by processing-induced transformation is extremely hard, and therefore deteriorates local ductility such as hole expansibility of the galvanized steel sheet. Therefore, the volume% of retained austenite is 10% or less. Preferably, it is 7% or less, or 6% or less.
  • the volume% of pearlite is 5% or less. Preferably, it is 4% or less. Since the zinc-based plated steel sheet according to the present embodiment can solve the problem even if pearlite is not included, the volume% of pearlite may be 0%, but may be 1% or more.
  • Bainite is a structure formed in an intermediate temperature zone between the ferrite transformation temperature and the martensite transformation temperature, and has an intermediate characteristic between ferrite and fresh martensite. Although the strength is higher than that of ferrite, the strength is lower than that of fresh martensite. Therefore, when bainite is generated excessively, a desired strength cannot be obtained. Therefore, the volume% of bainite is 20% or less. Preferably it is 10% or less. Since the galvanized steel sheet according to the present embodiment can solve the problem even if bainite is not included, the volume% of bainite may be 0%. From the viewpoint of securing strength and ductility, the volume percentage of bainite may be 5% or more, or 7% or more.
  • the volume% of fresh martensite is 10% or less. Preferably, it is 8% or less. Since the zinc-based plated steel sheet according to this embodiment can solve the problem even if fresh martensite is not included, the volume percentage of fresh martensite may be 0%, but from the viewpoint of securing strength, 1% It is good also as above or 2% or more.
  • Tempered martensite is a structure that achieves both high strength and high toughness of a galvanized steel sheet.
  • the steel plate according to this embodiment is mainly composed of tempered martensite.
  • the volume% of tempered martensite is 70% or more. Preferably, it is 75% or more, 80% or more, or 85% or more.
  • the tempered martensite may be 100%, but the tempered martensite may be 95% or less, or 90% or less. Tempered martensite is generated by tempering a part of fresh martensite in the second holding step described later.
  • the total volume ratio of ferrite, retained austenite, pearlite, bainite, fresh martensite and tempered martensite is 100%. In this embodiment, inclusions and precipitates are not included in the steel structure.
  • the method for calculating the volume ratio of the steel structure of the steel sheet according to this embodiment is as follows.
  • the volume fraction of retained austenite is measured by an X-ray diffraction method.
  • a test piece is collected from the soaking part of the galvanized steel sheet.
  • the soaking part refers to a part that has been sufficiently heat-treated. In a portion where the heat treatment is not sufficiently performed, the steel sheet according to the present embodiment may not have the metal structure.
  • the collected test specimens were chemically treated with hydrofluoric acid and hydrogen peroxide so that a range of 1/8 to 3/8 thickness centered on 1/4 thickness from the surface of the plate thickness could be observed. Polishing to reveal a surface parallel to the plate surface, and further mirror-finishing it as a measurement surface.
  • the X-ray diffractometer As the X-ray diffractometer, RINT2000 manufactured by Rigaku is used, and Co—K ⁇ 1 line is used as a light source. The scanning range is 2 ⁇ , and measurement is performed in the range of 45 ° to 105 °. The area ratio of the X-ray diffraction pattern of the crystal structure of fcc (residual austenite) is measured by the X-ray diffraction method, and the area ratio is defined as the volume ratio of residual austenite.
  • a cross section in the thickness direction perpendicular to the rolling direction of the steel sheet is cut out, and after mirror polishing, the steel structure is revealed with nital liquid, field emission type A secondary electron image is taken using a scanning electron microscope.
  • the observation position is in the range of 1/8 to 3/8 thickness centered on 1/4 thickness from the surface of the plate thickness, and the total area of 6000 ⁇ m 2 is observed in a plurality of fields of view (imaging magnification: 3000 times).
  • imaging magnification: 3000 times about the obtained structure
  • the fraction of each organization can be measured.
  • the volume ratio can be obtained more accurately as the total number of grid points increases.
  • the lattice spacing is 2 ⁇ m ⁇ 2 ⁇ m
  • the total number of lattice points is 1500.
  • the steel structure of the steel plate according to the present embodiment is an isotropic structure, the fraction of each structure obtained by the point counting method of the cross section can be regarded as the volume ratio.
  • a region having a substructure (lass boundary, block boundary) in a grain and having carbides precipitated with a plurality of variants is determined as tempered martensite.
  • a region where cementite is deposited in a lamellar shape is determined as pearlite.
  • the region where the luminance is low and the substructure is not recognized is determined as ferrite.
  • a region where the luminance is large and the substructure is not revealed by etching is determined as fresh martensite or retained austenite.
  • a region not corresponding to any of the above is determined as bainite.
  • the volume fraction of fresh martensite can be obtained by subtracting the volume fraction of retained austenite obtained by the X-ray diffraction method from the volume fraction of fresh martensite and retained austenite obtained by the point counting method.
  • the tensile strength of the galvanized steel sheet according to the present embodiment is 1470 MPa or more.
  • the tensile strength is measured by taking a JIS No. 5 tensile test piece whose longitudinal direction is perpendicular to the rolling direction and performing a tensile test according to JIS Z 2241: 2011.
  • the crosshead speed is 2 mm / min up to 2% strain and 20 mm / min after 2% strain.
  • being excellent in hydrogen embrittlement resistance means that cracks do not occur in a U-shaped bending test in which stress equivalent to 1000 MPa is applied for 24 hours.
  • the U-shaped bending test will be described with reference to FIG. First, a strip-shaped test piece of 30 mm ⁇ 120 mm is collected from the soaking part of the galvanized steel sheet so that the longitudinal direction of the test piece is perpendicular to the rolling direction of the steel sheet. Bolt fastening holes are drilled on both ends of the strip-shaped test piece. Next, 180 ° bending is performed with a punch having a radius of 10 mm ((1) in FIG. 1). Then, about the U-shaped bending test piece which carried out the spring back ((2) of FIG.
  • the ductile-brittle transition temperature (Trs) of the galvanized steel sheet according to this embodiment is preferably ⁇ 40 ° C. or lower.
  • a ductile-brittle transition temperature of ⁇ 40 ° C. or lower is preferable because of low temperature toughness.
  • the ductile-brittle transition temperature is measured by the Charpy impact test.
  • the Charpy test piece used for the Charpy impact test is taken so that the longitudinal direction of the test piece is parallel to the rolling direction of the galvanized steel sheet, and a V-notch is introduced in the plate width direction.
  • Charpy test pieces are stacked with a plurality of galvanized steel sheets and fastened with bolts to avoid out-of-plane deformation, and after confirming that there are no gaps between the galvanized steel sheets, a V of 2 mm in depth is used. Make a notched specimen.
  • the number of the galvanized steel sheets to be superimposed is set so that the thickness of the test piece after lamination is closest to 10 mm. For example, when the plate thickness is 1.6 mm, 6 sheets are stacked so that the test piece thickness is 9.6 mm.
  • the test temperature is ⁇ 40 ° C. to 60 ° C. and measured at 20 ° C. intervals.
  • the maximum temperature at which the absorbed energy falls below 1/2 of the upper shelf absorbed energy is defined as Trs. Conditions other than the above conform to JIS Z 2242: 2005.
  • the zinc-based plating layer may be a plating layer mainly composed of zinc, and may contain chemical components other than zinc.
  • the plating layer mainly composed of zinc is sufficient if the element having the maximum content among the elements constituting the plating layer is Zn.
  • the zinc-based plating layer may be a hot-dip galvanized layer or an alloyed hot-dip galvanized layer obtained by alloying the hot-dip galvanized layer.
  • the iron content in the hot-dip galvanized layer is preferably less than 7.0% by mass.
  • the zinc-based plating layer is an alloyed hot-dip galvanized layer
  • the iron content in the alloyed hot-dip galvanized layer is preferably 6.0% by mass or more.
  • the weldability can be improved as compared with the case where the zinc-based plated layer is a hot-dip galvanized layer.
  • the amount of the zinc-based plating layer deposited is not particularly limited, but is preferably 5 g / m 2 or more per side and more preferably in the range of 25 to 75 g / m 2 from the viewpoint of corrosion resistance.
  • the zinc-based plated steel sheet according to the present embodiment is a hot-rolled cast slab, and further cold-rolled to produce a steel sheet having the above chemical components, and then continuously melted.
  • hot-rolled sheet annealing may be performed between hot rolling and cold rolling.
  • Cold rolling may be omitted and the hot-rolled steel sheet may be introduced into a continuous hot dip galvanizing line.
  • hot-rolled sheet annealing and pickling may be omitted, or may not be omitted.
  • alloying treatment may or may not be performed.
  • an annealing process In the continuous galvanizing line, an annealing process, a first holding process, a plating process, and a second holding process are sequentially performed.
  • all the temperature in the following description is the surface temperature (steel plate temperature) of a steel plate, and should just measure with a radiation thermometer etc.
  • annealing is performed under the conditions of heating temperature: Ac 3 points to 950 ° C., and holding time 1 to 500 s in a temperature range of Ac 3 points to 950 ° C.
  • the hydrogen concentration in the furnace is always kept at 1.0 to from the time when the steel plate temperature reaches 600 ° C. until the end of the holding in the temperature range of Ac 3 to 950 ° C.
  • the first holding step holding is performed for 20 to 500 s in a temperature range of Ms point to 600 ° C. During this holding, the hydrogen concentration in the furnace is always maintained at 1.0 to 10.0% by volume.
  • the steel sheet is immersed in a hot dip galvanizing bath and then cooled until the steel sheet temperature becomes less than the Ms point minus 150 ° C.
  • alloying treatment may be performed in the temperature range of 460 to 600 ° C. after immersion in the hot dip galvanizing bath, and then the steel sheet may be cooled until the steel sheet temperature becomes less than Ms point ⁇ 150 ° C.
  • the substrate is held for 10 to 1000 seconds in a temperature range of 200 ° C. or more and less than 350 ° C. in an atmosphere having a hydrogen concentration of less than 0.50% by volume, and then wound in a coil shape.
  • Annealing step [Heating temperature: Ac 3 point to 950 ° C, Ac 3 point to 950 ° C holding time: Annealing under conditions of 1 to 500 s] Annealing is performed on the steel sheet after cold rolling or the steel sheet once cooled to room temperature after hot rolling.
  • the term “annealing” as used herein means that the steel sheet is heated to Ac 3 point or higher, held in the temperature range of Ac 3 point to 950 ° C., and then cooled to Ac 3 point or lower.
  • the heating temperature during annealing is set to Ac 3 points or more. Preferably it is Ac 3 point
  • the heating temperature at the time of annealing shall be 950 degrees C or less. Preferably, it is 900 degrees C or less. If the holding time (annealing time) in the temperature range from Ac 3 to 950 ° C. is short, austenitization does not proceed sufficiently, so the holding time in the temperature range from Ac 3 to 950 ° C. is 1 s or longer. Preferably it is 30 s or more, or 50 s or more.
  • the holding time in the temperature range of Ac 3 to 950 ° C. is set to be within 500 s.
  • it may be varied the temperature of the steel strip in a temperature range of Ac 3 point ⁇ 950 ° C., may be kept steel temperature constant in the temperature range of Ac 3 point ⁇ 950 ° C..
  • the hydrogen concentration in the furnace is always 1.0 to 15.0% by volume.
  • the hydrogen concentration in the furnace is from the time when the steel plate temperature reaches 600 ° C until the end of the holding in the temperature range of Ac 3 to 950 ° C. Is always 1.0% by volume or more. In other words, up from steel plate temperature 600 ° C. to the heating temperature of the Ac 3 point ⁇ 950 ° C., and during, the hydrogen concentration in the furnace is always 1.0% by volume or more which is held by the Ac 3 point ⁇ 950 ° C. .
  • the steel sheet is heated in the furnace, since the steel sheet temperature reaches 600 ° C., is heated to a temperature range of Ac 3 point ⁇ 950 ° C., 1 ⁇ in the temperature range of Ac 3 point ⁇ 950 ° C.
  • the hydrogen concentration in the furnace is always 1.0% by volume or more until the steel plate is held for 500 seconds and the steel plate is taken out of the furnace. Preferably, it is 2.0 volume% or more.
  • the hydrogen concentration in the furnace is 15.0% by volume or less. Preferably it is 10.0 volume% or less, or 5.0 volume% or less.
  • the average heating rate until the steel sheet temperature reaches Ac 3 point is not particularly limited, but 0.5 to 10 ° C./s is desirable. When the average heating rate is less than 0.5 ° C./s, austenite is coarsened, so that the steel structure finally obtained may be coarse. If the average heating rate exceeds 10 ° C./s, recrystallization of ferrite does not proceed sufficiently, and the elongation of the galvanized steel sheet may deteriorate.
  • the average heating rate is the difference between the steel plate temperature and the Ac 3 point when the annealing furnace (furnace holding in the temperature range of Ac 3 points to 950 ° C.) is introduced. It is a value divided by the time difference until it reaches 3 points.
  • the steel sheet is cooled to a temperature range of Ms point to 600 ° C. and held at a temperature range of Ms point to 600 ° C. for 20 to 500 s. This is referred to as a first holding step.
  • the average cooling rate when the steel sheet after the annealing process is cooled to a temperature range of Ms point to 600 ° C. is preferably 5 ° C./s or more, for example.
  • the average cooling rate here is a value obtained by dividing the temperature difference between the steel plate temperature at the start of cooling and 600 ° C. by the time difference from the start of cooling to the time when the steel plate temperature reaches 600 ° C.
  • the hydrogen concentration in the furnace is set to 1.0% by volume or more. Preferably, it is 2.0 volume% or more.
  • the hydrogen concentration in the furnace is set to 10.0% by volume or less. Preferably it is 5.0 volume% or less.
  • the holding temperature in the first holding step is lower than the Ms point, the generated martensite is excessively tempered by the subsequent plating and alloying treatment, and a desired strength cannot be obtained.
  • the holding temperature is set to the Ms point or higher.
  • Ms point 100 ° C. or higher.
  • holding temperature shall be 600 degrees C or less.
  • it is 550 degrees C or less.
  • the holding time in the first holding step is preferably as long as possible, but if it is too long, the bainite transformation proceeds excessively and the desired structure fraction cannot be obtained. Therefore, the holding time is 20 to 500 s.
  • a preferred lower limit is 100 s and a preferred upper limit is 300 s.
  • the holding time here refers to the time from when the steel plate temperature reaches 600 ° C. until it is immersed in the hot dip galvanizing bath.
  • the steel plate temperature may be varied in the temperature range from the Ms point to 600 ° C., or the steel plate temperature may be kept constant in the temperature range from the Ms point to 600 ° C.
  • Hot dip galvanization may be performed according to a conventional method.
  • the plating bath temperature may be 440 to 480 ° C.
  • the immersion time may be 5 s or less.
  • the steel plate after the first holding step is reheated or cooled, and the steel plate temperature is brought close to the plating bath temperature, even during continuous production.
  • the plating bath temperature can be stably maintained.
  • the hot dip galvanizing bath preferably contains 0.08 to 0.2% by mass of Al as a component other than zinc, but in addition, impurities Fe, Si, Mg, Mn, Cr, Ti, Ni, Cu, Sn, Sb and Pb may be contained.
  • the basis weight of the zinc-based plating layer is preferably controlled by a known method such as gas wiping. The basis weight is preferably 25 to 75 g / m 2 per side.
  • the alloying temperature is set to 460 ° C. or higher.
  • the alloying temperature is set to 600 ° C. or less.
  • the alloying temperature is set to 600 ° C. or less.
  • it is 580 degrees C or less.
  • the alloying treatment time (retention time in the temperature range of 460 to 600 ° C.) may be, for example, 10 to 60 s.
  • the alloying process may be omitted and cooling may be started after plating.
  • the average cooling rate when cooling to a temperature range below the Ms point of ⁇ 150 ° C. after hot dip galvanization or alloying treatment is preferably 5 ° C./s or more.
  • the average cooling rate here means the temperature difference between the steel sheet temperature at the end of hot dip galvanizing (at the time of pulling up from the hot dip galvanizing bath) or the alloying treatment and the cooling stop temperature at the time of pulling up from the hot dip galvanizing bath or The value is divided by the time difference from the end of alloying to the stop of cooling.
  • (IV) Second holding step [holding for 10 to 1000 seconds in a temperature range of 200 ° C. or more and less than 350 ° C. in an atmosphere with a hydrogen concentration of less than 0.50% by volume, and then winding it in a coil]
  • the step of performing this holding is referred to as a second holding step.
  • the amount of hydrogen in the steel sheet can be reduced and the hydrogen embrittlement resistance can be improved by performing the second holding step under the conditions described later.
  • the holding temperature in the second holding step is less than 200 ° C.
  • the martensite is not sufficiently tempered, so the holding temperature is set to 200 ° C. or higher.
  • it is 230 ° C. or higher.
  • the holding time is 10 s or more.
  • it is 50 s or more, or 100 s or more.
  • the holding temperature in the second holding step is 350 ° C. or higher, or if the holding time exceeds 1000 s, the martensite will be excessively tempered, making it difficult to obtain the desired strength.
  • the holding time is 1000 s or less.
  • the holding temperature is 320 ° C. or lower, or 300 ° C.
  • the holding time here refers to the time from when the steel plate temperature reaches 350 ° C. to when it reaches 200 ° C. However, the time before reaching Ms point -150 ° C is not included.
  • the steel plate temperature may be varied in a temperature range of 200 ° C. or higher and lower than 350 ° C., or the steel plate temperature may be kept constant in a temperature range of 200 ° C. or higher and lower than 350 ° C.
  • the hydrogen concentration in the furnace in the second holding step is less than 0.50% by volume.
  • hydrogen concentration in the furnace is 0.50% by volume or more, hydrogen is not sufficiently diffused into the atmosphere.
  • the second holding step must be performed after hot dip galvanization or after alloying and before winding into a coil. This is because even if the holding is performed in a coiled state, hydrogen is diffused only in the outermost peripheral portion of the coil, and hydrogen is not sufficiently diffused inside the coil.
  • a second holding step may be performed on the zinc-based plated steel sheet, The second holding step may be performed after reheating.
  • the production conditions up to the continuous hot dip galvanizing line need not be particularly limited, but a preferable example will be described below.
  • slab heating temperature is preferably 1150 ° C. or higher.
  • the slab to be used is preferably cast by a continuous casting method from the viewpoint of manufacturability, but may be an ingot-making method or a thin slab casting method. The cast slab may be once cooled to room temperature, or directly sent to the heating furnace without being cooled to room temperature.
  • Rough rolling process Total rolling reduction at 1050 ° C. or higher: 60% or higher
  • Rough rolling is preferably performed so that the total rolling reduction at 1050 ° C. or higher is 60% or higher. If the total rolling reduction is less than 60%, recrystallization during hot rolling becomes insufficient, which may lead to heterogeneity of the hot rolled sheet structure.
  • finish rolling entry temperature 950 to 1060 ° C.
  • finish rolling exit temperature 850 ° C. to 1000 ° C.
  • total rolling reduction 70 to 95%
  • the finish rolling entry temperature is preferably 950 to 1060 ° C, and may be 950 to 1050 ° C.
  • finish rolling exit temperature is less than 850 ° C. or the total rolling reduction exceeds 95%
  • the texture of the hot-rolled steel sheet develops, and the anisotropy in the final product sheet may become apparent.
  • finish rolling exit temperature exceeds 1000 ° C. or the total rolling reduction is less than 70%, the crystal grain size of the hot-rolled steel sheet becomes coarse, which may lead to the coarsening of the final product plate structure and, consequently, workability. is there.
  • Winding process winding temperature: 450-700 ° C
  • the winding temperature is 450 to 700 ° C.
  • the coiling temperature is less than 450 ° C.
  • the hot-rolled sheet strength becomes excessive, and the cold rolling property may be impaired.
  • the coiling temperature exceeds 700 ° C., cementite is coarsened, undissolved cementite remains, and workability may be impaired.
  • the pickling method for the hot-rolled coil may follow a conventional method. Further, skin pass rolling may be performed to correct the shape of the hot-rolled coil and improve the pickling property. Moreover, in order to improve cold-rollability, you may perform softening annealing (hot-rolled sheet annealing). In that case, it is desirable to perform a heat treatment for about 0.5 to 10 hours in a temperature range of 500 to 650 ° C.
  • “Production conditions in the cold rolling process” [Cold rolling ratio: 20-80%] After hot rolling and pickling, heat treatment may be performed as it is in a continuous hot dip galvanizing line, or after cold rolling, heat treatment may be performed in a continuous hot dip galvanizing line.
  • the cold rolling rate (cumulative rolling reduction) is preferably 20% or more.
  • the cold rolling rate is preferably 80% or less.
  • the conditions in the examples are one example of conditions used to confirm the feasibility and effects of the present invention.
  • the present invention is not limited to this one condition example.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Table 1A and Table 1B Steels having the chemical compositions shown in Table 1A and Table 1B were cast to produce slabs.
  • Table 1B shows the Ac 3 point and Ms point of each steel determined by the following relational expression. These slabs were hot-rolled under the conditions shown in Table 2A and Table 2B to produce hot-rolled steel sheets. Thereafter, the hot-rolled steel sheet was pickled and the surface scale was removed. Then, it cold-rolled and obtained the steel plate. About the obtained steel plate, the continuous hot-dip galvanization process was implemented on the conditions shown in Table 3A and Table 3B, and the alloying process was implemented about one part zinc-plated steel plate. Regarding the plating types in Tables 3A to 4B, “GA” indicates an alloyed hot dip galvanized layer, and “GI” indicates a hot dip galvanized layer.
  • the average cooling rate from the start of cooling until reaching 600 ° C. (from the end of the annealing process to the start of the first holding process), and from the end of hot dip galvanization or the end of alloying to the cooling stop temperature.
  • the average cooling rate was 5 ° C./s or more, respectively.
  • the plating bath temperature in the plating step is 440 to 480 ° C.
  • the immersion time is 5 s or less
  • the hot dip galvanizing bath is a hot dip galvanizing bath containing 0.08 to 0.2% by mass of Al in addition to zinc. It was.
  • the alloyed hot-dip galvanized layer after the alloying treatment had an iron content of 6.0% by mass or more, and the hot-dip galvanized layer had an iron content of less than 7.0% by mass.
  • the hydrogen concentration in the annealing process of Table 3A and Table 3B is from the time when the steel plate temperature reaches 600 ° C. to the time when the holding in the temperature range of Ac 3 to 950 ° C.
  • the hydrogen concentration in the furnace in the first holding step is the hydrogen concentration in the furnace during the holding in the temperature range from the Ms point to 600 ° C.
  • No. of Table 3A. No. 21 was described as “ ⁇ ” in the holding time because it was not held in the temperature range of Ac 3 points to 950 ° C. in the annealing step and was held at 820 ° C. for 100 s.
  • the punching conditions were set such that the punch diameter was 10 mm, the die diameter was 0.1 mm pitch, and the one-side clearance was closest to 12%.
  • the hole expansion test was carried out under conditions other than the burr, that is, the condition that the surface of the steel plate that was in contact with the die at the time of punching was on the opposite side of the punch during the hole expansion test, and a 60-degree conical punch and a punch speed of 1 mm / s.
  • the wrinkle holding pressure was 60 tons, the die shoulder R5 mm, and the inner diameter of the die was ⁇ 95 mm.
  • Tensile strength is 1470 MPa or more, and composite value of tensile strength, total elongation and hole expansion ratio (TS [MPa] ⁇ EL [%] ⁇ ⁇ [%] 0.5 ⁇ 10 ⁇ 3 ) is 50 or more Was determined to be acceptable as having good mechanical properties. When one or more conditions were not satisfied, it was determined to be rejected as inferior in mechanical properties.
  • the amount of hydrogen per steel plate mass released when the steel plate was heated from room temperature to 200 ° C. was determined by the following method.
  • the front and back surfaces of the galvanized steel sheet are mechanically ground by 0.1 mm each, and the hydrogen in the steel sheet after plating is removed by gas chromatography.
  • Accumulated amount of mass of hydrogen released from the steel plate while being heated from room temperature to 200 ° C gas chromatograph measured by temperature rising hydrogen analysis method (temperature rising rate: 100 ° C / hour, measured from room temperature to 300 ° C) Measured value).
  • the amount of hydrogen per mass of steel sheet (mass ppm) released when the steel sheet is heated from room temperature to 200 ° C. by dividing the accumulated amount of hydrogen mass (measured value of gas chromatograph) by the mass of the steel sheet.
  • the hydrogen embrittlement resistance test was evaluated by a U-shaped bending test.
  • the U-bending test will be described with reference to FIG. First, a strip-shaped test piece of 30 mm ⁇ 120 mm was collected from the soaking part of the galvanized steel sheet so that the longitudinal direction of the test piece and the rolling direction of the steel sheet were perpendicular. Bolt fastening holes were drilled on both ends of the strip-shaped test piece. Next, it was bent 180 ° with a punch having a radius of 10 mm ((1) in FIG. 1). Then, about the U-shaped bending test piece which carried out the spring back ((2) of FIG. 1), the stress was provided by fastening using a volt
  • a strain gauge of GL 5 mm was attached to the top of the U-shaped bending test piece, and stress equivalent to 1000 MPa or 1200 MPa was applied by controlling the amount of strain. At this time, strain was converted into stress from a stress-strain curve obtained by conducting a tensile test in advance. Note that the end face of the U-shaped bending test piece was left shear cut. The test temperature was room temperature (15 to 25 ° C.).
  • the low temperature toughness of galvanized steel sheet was evaluated by measuring the ductile-brittle transition temperature by Charpy impact test.
  • the Charpy test piece used for the Charpy impact test was taken so that the longitudinal direction of the test piece was parallel to the rolling direction of the galvanized steel sheet, and a V notch was introduced in the plate width direction.
  • Charpy test pieces are stacked with a plurality of galvanized steel sheets and fastened with bolts to avoid out-of-plane deformation, and after confirming that there are no gaps between the galvanized steel sheets, a V of 2 mm in depth is used.
  • a notched specimen was prepared. The number of the galvanized steel sheets to be superimposed was set so that the thickness of the test piece after lamination was closest to 10 mm.
  • the test temperature was ⁇ 40 ° C. to 60 ° C. and measured at 20 ° C. intervals.
  • the maximum temperature at which the absorbed energy was less than 1/2 of the upper shelf absorbed energy was defined as the ductile-brittle transition temperature (Trs).
  • Te ductile-brittle transition temperature
  • Conditions other than the above were in accordance with JIS Z 2242: 2005.
  • the ductile-brittle transition temperature was ⁇ 40 ° C. or lower, it was evaluated that the low-temperature toughness was excellent, and “ ⁇ 40” was described in the table.
  • the ductile-brittle transition temperature is higher than -40 ° C, the table shows the ductile-brittle transition temperature.
  • the plating adhesion was evaluated by a tape peeling test.
  • a test piece of 30 mm ⁇ 100 mm was taken from the soaking part of the galvanized steel sheet and subjected to a 90 ° V bending test.
  • the punch tip radius was 5 mm.
  • a commercially available cello tape (registered trademark) was pasted along the bending ridgeline, and the width of the plating adhered to the tape was measured as the peel width. Evaluation was as follows.
  • the steel structure of the steel plate was measured by the method described above. The above measurement results and test results are shown in Tables 4A and 4B.
  • the holding time in the first holding step was below the prescribed lower limit, so the hydrogen concentration in the steel was high and the hydrogen embrittlement resistance was inferior.
  • the holding time in the second holding step was below the specified lower limit, so the hydrogen concentration in the steel was high and the hydrogen embrittlement resistance was inferior.
  • the holding temperature in the second holding step exceeded the upper limit, and the tempered martensite was excessively tempered, so the tensile strength TS was less than 1470 MPa.
  • the holding temperature in the second holding step was lower than the lower limit, so the hydrogen concentration in the steel was high and the hydrogen embrittlement resistance was inferior.
  • No. No. 13 had a long holding time in the second holding step, and the tempered martensite was excessively tempered, so that the tensile strength TS was less than 1470 MPa.
  • No. No. 22 had a holding time in the first holding step that exceeded the specified upper limit, so the amount of bainite increased and the tensile strength TS was less than 1470 MPa.
  • No. Nos. 38 to 42 were inferior in mechanical properties and / or inferior in hydrogen embrittlement resistance because the chemical composition was out of the range defined by the present invention.
  • zinc-based plating that is suitably used as a member for automobiles, has excellent mechanical properties, reduces the amount of invading hydrogen during production, and has excellent hydrogen embrittlement resistance and plating adhesion.
  • a steel plate and a manufacturing method thereof can be provided. According to a preferred embodiment of the present invention, it is possible to provide a zinc-based plated steel sheet having the above-mentioned characteristics and excellent in low temperature toughness and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

本発明の一態様に係る亜鉛系めっき鋼板は、所定の化学組成を有する鋼板と亜鉛系めっき層とを備える。前記鋼板は、表面から1/4厚を中心とした1/8厚~3/8厚の範囲における鋼組織が、体積%で、フェライト:0~10%、ベイナイト:0~20%、焼戻しマルテンサイト:70%以上、フレッシュマルテンサイト:0~10%、残留オーステナイト:0~10%、パーライト:0~5%を含有する。前記亜鉛系めっき鋼板は、前記亜鉛系めっき層を除去後、前記鋼板を室温から200℃まで加熱した際に放出される水素量が鋼板質量あたり0.40ppm以下であり、引張強度が1470MPa以上であり、1000MPa相当の応力を24時間付与するU字曲げ試験で割れが発生しない。

Description

亜鉛系めっき鋼板及びその製造方法
 本発明は、亜鉛系めっき鋼板及びその製造方法に関する。
 本願は、2018年5月1日に、日本に出願された特願2018-088417号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球温暖化対策に伴う温室効果ガス排出量規制の観点から自動車の燃費向上が求められており、車体の軽量化および衝突安全性確保のために高強度鋼板の適用がますます拡大しつつある。特に最近では、引張強度が1470MPa以上の超高強度鋼板のニーズが高まりつつある。また、車体の中でも防錆性を要求される部位には表面に溶融亜鉛めっきを施した高強度溶融亜鉛めっき鋼板が求められる。
 このような高強度溶融亜鉛めっき鋼板は、自動車用鋼板として用いられる際に、プレス加工等により様々な形状に成形される。しかしながら、引張強度が1470MPaを超えるような超高強度鋼板を自動車用部材として適用する場合、そのプレス成形性もさることながら、鋼板の水素脆化割れを解決する必要がある。
 水素脆化割れとは、使用状況下において高い応力が作用している鋼部材が、環境から鋼中に侵入した水素に起因して、突然破壊する現象である。この現象は、破壊の発生形態から、遅れ破壊とも呼称される。一般に、鋼板の水素脆化割れは、鋼板の引張強度が上昇するほど発生し易くなることが知られている。これは、鋼板の引張強度が高いほど、部品成形後に鋼板に残留する応力が増大するためであると考えられている。この水素脆化割れ(遅れ破壊)に対する感受性のことを耐水素脆化特性と呼称する。
 これまでにも鋼板の耐水素脆化特性を改善しようとする試みが種々なされてきた。その検討事例を以下に示す。
 特許文献1および特許文献2には、所定の化学組成を有する冷延鋼板をAc点以上に加熱し、焼き入れおよび焼き戻しを行うことでマルテンサイト主体の鋼組織とし、耐水素脆化特性を改善しようとする超高強度冷延鋼板に関する技術が記載されている。
 特許文献3には、化学組成としてCu、Cr、NbおよびNi等を微量含有させ、かつ、ベイナイト主体の鋼組織とすることで、耐水素脆化特性を改善しようとする、120kg/mm以上の引張強度を有する高強度冷延鋼板に関する技術が記載されている。
 特許文献4には、所定の化学組成を有する鋼板を、表層脱炭焼鈍後、Ac点以上に加熱し、焼き入れおよび焼き戻しを行うことにより、鋼内部の組織を焼戻しマルテンサイト主体組織としながらも、表層を軟質化させることで曲げ性と耐遅れ破壊特性とを改善しようとする、1270MPa級以上の引張強度を有する冷延鋼板に関する技術が記載されている。
 特許文献5には、鋼組織中に含まれる残留オーステナイトの量および分散形態を制御し、残留オーステナイトの水素トラップ効果を利用することにより、耐水素脆化特性を改善しようとする高強度冷延鋼板に関する技術が記載されている。
 溶融亜鉛めっき鋼板を連続型の溶融亜鉛めっきラインで製造する場合、鋼板表面を還元し、溶融亜鉛めっきとの濡れ性を確保することを目的として、水素含有雰囲気で熱処理を実施する。この時、雰囲気に含まれる水素が熱処理中の鋼板内に侵入する。
 通常、水素原子は室温においても拡散速度が十分大きく、鋼板中の水素は短時間で大気中に放散されるため、非めっき鋼板においては、製造工程で鋼板に侵入する水素は事実上問題にならない。しかしながら、溶融亜鉛めっき鋼板の場合、溶融亜鉛めっき層が鋼板から大気への水素放出を阻害するため、室温において水素はほとんど大気に放散されない。従って、溶融亜鉛めっき鋼板は、鋼板製造時に侵入した水素を含んだまま、ブランキングやプレス等の加工を施され、自動車用部材として使用される。強度が比較的低い溶融亜鉛めっき鋼板では、鋼中水素は事実上問題にならないが、引張強度が1470MPa以上の溶融亜鉛めっき鋼板では、加工条件や負荷される応力によっては、鋼中水素に起因して水素脆化割れが発生するリスクがある。
 しかしながら、水素脆化割れ抑制の観点から、溶融亜鉛めっき鋼板中の侵入水素量を抑制しようとした事例はほとんどない。また、本発明者らは、単に溶融亜鉛めっき鋼板中の侵入水素量を低減するだけでは、耐水素脆化特性を十分に向上できないことを知見した。
 特許文献6には、ブリスター抑制の観点から、熱処理中の雰囲気を制御することにより、鋼板への侵入水素量を低減した溶融亜鉛めっき鋼板に関する技術が記載されている。しかしながら、特許文献6では、鋼板の機械特性および耐水素脆化特性については考慮されていない。
 特許文献7には、母材鋼板の鋼板中の拡散性水素量を質量%で0.00008%以下(0.8ppm以下)とした高強度亜鉛めっき鋼板に関する技術が記載されている。しかしながら、特許文献7では、耐水素脆化特性については考慮されていない。
日本国特開平10-001740号公報 日本国特開平9-111398号公報 日本国特開平6-145891号公報 国際公開第2011/105385号 日本国特開2007-197819号公報 国際公開第2015/029404号 国際公開第2018/124157号
 このように、これまで様々な手法によって溶融亜鉛めっき鋼板の耐水素脆化特性を改善する試みがなされてきたものの、鋼板製造時に侵入する水素を、水素脆化割れ抑制の観点から低減する取り組みは全くなされていない。
 本発明は上記実情に鑑みてなされたものであり、自動車用部材に好適に用いられる、機械特性に優れ、製造時の侵入水素量を低減し、且つ耐水素脆化特性に優れた亜鉛系めっき鋼板及びその製造方法を提供することを目的とする。また、本発明は、上記諸特性を有した上で、亜鉛系めっき鋼板に一般的に要求される特性である、めっき密着性に優れた亜鉛系めっき鋼板およびその製造方法を提供することを目的とする。なお、めっき密着性とは、鋼板と溶融亜鉛めっき層または合金化溶融亜鉛めっき層との密着性のことをいう。
 本発明の要旨は以下の通りである。
[1]本発明の一態様に係る亜鉛系めっき鋼板は、鋼板と、前記鋼板の表面に配された亜鉛系めっき層とを備え、
 前記鋼板が、質量%で、
C:0.150%~0.500%、
Si:0.01%~2.50%、
Mn:1.00%~5.00%、
P:0.100%以下、
S:0.0100%以下、
Al:0.001%~1.000%、
N:0.0100%以下、
O:0.0100%以下、
Cr:0%~2.00%、
Mo:0%~1.00%、
B:0%~0.010%、
Cu:0%~1.00%、
Ni:0%~1.00%、
Co:0%~1.00%、
W:0%~1.00%、
Sn:0%~1.00%、
Sb:0%~0.50%、
Ti:0%~0.30%、
Nb:0%~0.30%、
V:0%~1.00%、
Ca:0%~0.0100%、
Mg:0%~0.0100%、
Ce:0%~0.0100%、
Zr:0%~0.0100%、
La:0%~0.0100%、
Hf:0%~0.0100%、
Bi:0%~0.0100%、および
REM:0%~0.0100%を含有し、
残部がFeおよび不純物からなる化学組成を有し、
 前記鋼板の表面から1/4厚を中心とした1/8厚~3/8厚の範囲における鋼組織が、体積%で、
フェライト:0~10%、
ベイナイト:0~20%、
焼戻しマルテンサイト:70%以上、
フレッシュマルテンサイト:0~10%、
残留オーステナイト:0~10%、および
パーライト:0~5%を含有し、
 前記亜鉛系めっき層を除去後、前記鋼板を室温から200℃まで加熱した際に放出される水素量が鋼板質量あたり0.40ppm以下であり、
 引張強度が1470MPa以上であり、
 1000MPa相当の応力を24時間付与するU字曲げ試験で割れが発生しない。
[2]上記[1]に記載の亜鉛系めっき鋼板は、前記鋼板の前記化学組成が、
Cr:0.001%~2.00%、
Mo:0.001%~1.00%、
B:0.0001%~0.010%、
Cu:0.001%~1.00%、
Ni:0.001%~1.00%、
Co:0.001%~1.00%、
W:0.001%~1.00%、
Sn:0.001%~1.00%、および
Sb:0.001%~0.50%、
のうち一種または二種以上を含有してもよい。
[3]上記[1]または[2]に記載の亜鉛系めっき鋼板は、前記鋼板の前記化学組成が、
Ti:0.001%~0.30%、
Nb:0.001%~0.30%、および
V:0.001%~1.00%、
のうち一種または二種以上を含有してもよい。
[4]上記[1]~[3]の何れか一項に記載の亜鉛系めっき鋼板は、前記鋼板の前記化学組成が、
Ca:0.0001%~0.0100%、
Mg:0.0001%~0.0100%、
Ce:0.0001%~0.0100%、
Zr:0.0001%~0.0100%、
La:0.0001%~0.0100%、
Hf:0.0001%~0.0100%、
Bi:0.0001%~0.0100%、および
REM:0.0001%~0.0100%、
のうち一種または二種以上を含有してもよい。
[5]上記[1]~[4]の何れか一項に記載の亜鉛系めっき鋼板は、延性-脆性遷移温度が-40℃以下であってもよい。
[6]本発明の別の態様に係る亜鉛系めっき鋼板の製造方法は、上記[1]~[5]の何れか一項に記載の亜鉛系めっき鋼板の製造方法であって、上記[1]~[4]の何れか一項に記載の化学組成を有する鋼板に対して、以下の(I)~(IV)の各工程を順次行う:
(I)加熱温度:Ac点~950℃、Ac点~950℃の温度域での保持時間:1~500sの条件で焼鈍するとともに、鋼板温度が600℃に達した時から、Ac点~950℃の温度域での保持が終了する時までの間、炉内の水素濃度を、常に、1.0~15.0体積%に維持する焼鈍工程;
(II)Ms点~600℃の温度域で20~500sの保持を行い、その保持の間、炉内の水素濃度を、常に、1.0~10.0体積%に維持する第一保持工程;
(III)鋼板を溶融亜鉛めっき浴に浸漬後、鋼板温度がMs点-150℃未満になるまで冷却するめっき工程;および
(IV)水素濃度が0.50体積%未満の雰囲気中で、200℃以上350℃未満の温度域で10~1000s間保持した後、コイル状に巻き取る第二保持工程。
[7]上記[6]に記載の亜鉛系めっき鋼板の製造方法では、
 前記(III)の工程が、鋼板を溶融亜鉛めっき浴に浸漬後、460~600℃の温度域で合金化処理してから鋼板温度がMs点-150℃未満になるまで冷却する工程であってもよい。
 本発明に係る上記態様によれば、自動車用部材として好適に用いられる、機械特性に優れ、製造時の侵入水素量を低減し、且つ耐水素脆化特性およびめっき密着性に優れた亜鉛系めっき鋼板及びその製造方法を提供することができる。本発明に係る好ましい態様によれば、上記諸特性を有した上で更に、低温靭性に優れた亜鉛系めっき鋼板およびその製造方法を提供することができる。
鋼板のU字曲げ試験方法を説明する模式図。
 本実施形態に係る亜鉛系めっき鋼板は、鋼板と、鋼板の表面に配された亜鉛系めっき層とを備える。なお、本実施形態において亜鉛系めっき鋼板とは、溶融亜鉛めっき鋼板、または合金化溶融亜鉛めっき鋼板のことをいい、亜鉛系めっき層とは、溶融亜鉛めっき層、または合金化溶融亜鉛めっき層のことをいう。また、本実施形態において鋼板とは、表面に亜鉛系めっき層を配される母材鋼板のことをいう。
 本実施形態に係る鋼板は、質量%で、C:0.150%~0.500%、Si:0.01%~2.50%、Mn:1.00%~5.00%、P:0.100%以下、S:0.0100%以下、Al:0.001%~1.000%、N:0.0100%以下、O:0.0100%以下、Cr:0%~2.00%、Mo:0%~1.00%、B:0%~0.010%、Cu:0%~1.00%、Ni:0%~1.00%、Co:0%~1.00%、W:0%~1.00%、Sn:0%~1.00%、Sb:0%~0.50%、Ti:0%~0.30%、Nb:0%~0.30%、V:0%~1.00%、Ca:0%~0.0100%、Mg:0%~0.0100%、Ce:0%~0.0100%、Zr:0%~0.0100%、La:0%~0.0100%、Hf:0%~0.0100%、Bi:0%~0.0100%およびREM:0%~0.0100%を含有し、残部がFeおよび不純物からなる化学組成を有する。
 本実施形態に係る鋼板は、表面から1/4厚を中心とした1/8厚~3/8厚の範囲における鋼組織が、体積%で、フェライト:0~10%、ベイナイト:0~20%、焼戻しマルテンサイト:70%以上、フレッシュマルテンサイト:0~10%、残留オーステナイト:0~10%およびパーライト:0~5%を含有する。
 本実施形態に係る亜鉛系めっき鋼板は、亜鉛系めっき層を除去後、鋼板を室温から200℃まで加熱した際に放出される水素量が鋼板質量あたり0.40ppm以下である。
 本実施形態に係る亜鉛系めっき鋼板は、引張強度が1470MPa以上であり、1000MPa相当の応力を24時間付与するU字曲げ試験で割れが発生しない。
 本実施形態に係る亜鉛系めっき鋼板は、鋼板の化学組成が、Cr:0.001%~2.00%、Mo:0.001%~1.00%、B:0.0001%~0.010%、Cu:0.001%~1.00%、Ni:0.001%~1.00%、Co:0.001%~1.00%、W:0.001%~1.00%、Sn:0.001%~1.00%およびSb:0.001%~0.50%のうち一種または二種以上を含有してもよい。
 本実施形態に係る亜鉛系めっき鋼板は、鋼板の化学組成が、Ti:0.001%~0.30%、Nb:0.001%~0.30%およびV:0.001%~1.00%のうち一種または二種以上を含有してもよい。
 本実施形態に係る亜鉛系めっき鋼板は、鋼板の化学組成が、Ca:0.0001%~0.0100%、Mg:0.0001%~0.0100%、Ce:0.0001%~0.0100%、Zr:0.0001%~0.0100%、La:0.0001%~0.0100%、Hf:0.0001%~0.0100%、Bi:0.0001%~0.0100%およびREM:0.0001%~0.0100%のうち一種または二種以上を含有してもよい。
 以下、本実施形態に係る亜鉛系めっき鋼板について詳細に説明する。
『化学組成』
 まず、本実施形態に係る鋼板の化学組成を上述のように限定した理由について説明する。なお、本明細書において化学組成を規定する「%」は特に断りのない限り全て「質量%」である。以下に記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「超」、「未満」と示す数値には、その値が数値範囲に含まれない。
[C:0.150%~0.500%]
 C(炭素)は、亜鉛系めっき鋼板の所望の強度を得るために必須の元素である。C含有量が0.150%未満では、所望の高強度が得られないので、C含有量は0.150%以上とする。好ましくは0.180%以上、または0.190%以上である。一方、C含有量が0.500%を超えると溶接性が低下するので、C含有量は0.500%以下とする。亜鉛系めっき鋼板の溶接性の低下を抑制する観点から、C含有量は0.350%以下が好ましい。
[Si:0.01%~2.50%]
 Si(珪素)は、鉄炭化物の生成を抑制し、亜鉛系めっき鋼板の強度および成形性の向上に寄与する元素である。所望の強度および成形性を得るため、Si含有量は0.01%以上とする。好ましくは、0.05%以上、または0.10%以上である。一方、Siを過度に含有させると、亜鉛系めっき鋼板の溶接性が劣化する。従って、Si含有量は2.50%以下とする。好ましくは、2.00%以下、1.20%以下、または1.00%以下である。
[Mn:1.00%~5.00%]
 Mn(マンガン)は強力なオーステナイト安定化元素であり、亜鉛系めっき鋼板の高強度化に有効な元素である。所望の強度を得るため、Mn含有量は1.00%以上とする。好ましくは、1.50%以上、または2.00%以上である。一方、Mnを過度に含有させると、亜鉛系めっき鋼板の溶接性および低温靭性が劣化する。従って、Mn含有量は5.00%以下とする。好ましくは、4.00%以下、または3.50%以下である。
[P:0.100%以下]
 P(リン)は固溶強化元素であり、亜鉛系めっき鋼板の高強度化に有効な元素であるが、Pを過度に含有させると、亜鉛系めっき鋼板の溶接性及び靱性が劣化する。従って、P含有量は0.100%以下に制限する。好ましくは0.050%以下、より好ましくは0.020%以下である。ただし、P含有量を極度に低減させるには、脱Pコストが高くなるため、経済性の観点からP含有量は、0.001%以上、または0.005%以上とすることが好ましい。
[S:0.0100%以下]
 S(硫黄)は不純物として含有される元素であり、鋼中でMnSを形成することで、亜鉛系めっき鋼板の靱性および穴広げ性を劣化させる。したがって、亜鉛系めっき鋼板の靱性および穴広げ性を顕著に劣化させないために、S含有量を0.0100%以下に制限する。好ましくは0.0050%以下、または0.0035%以下である。ただし、S含有量を極度に低減させるには、脱硫コストが高くなるため、経済性の観点からS含有量は0.0005%以上、または0.0010%以上とすることが好ましい。
[Al:0.001%~1.000%]
 Al(アルミニウム)は、鋼の脱酸のため少なくとも0.001%以上を含有させる。好ましくは0.005%以上、または0.015%以上である。しかし、Alを過剰に含有させても上記効果が飽和してコスト上昇を引き起こすばかりか、鋼の変態温度を上昇させて熱間圧延時の負荷を増大させる。従って、Al含有量は1.000%以下とする。好ましくは0.500%以下、または0.400%以下である。
[N:0.0100%以下]
 N(窒素)は不純物として鋼中に含有される元素であり、N含有量が0.0100%を超えると鋼中に粗大な窒化物を形成して、亜鉛系めっき鋼板の曲げ性および穴広げ性を劣化させる。したがって、N含有量は0.0100%以下に制限する。好ましくは0.0050%以下、または0.0045%以下である。ただし、N含有量を極度に低減させるには、脱Nコストが高くなるため、経済性の観点からN含有量は0.0005%以上、または0.0020%以上とすることが好ましい。
[O:0.0100%以下]
 O(酸素)は不純物として鋼中に含有される元素であり、O含有量が0.0100%を超えると鋼中に粗大な酸化物を形成して、亜鉛系めっき鋼板の曲げ性および穴広げ性を劣化させる。従って、O含有量は0.0100%以下に制限する。好ましくは0.0050%以下、または0.0030%以下である。ただし、製造コストの観点から、O含有量は0.0001%以上、0.0005%以上、または0.0010%以上とすることが好ましい。
[亜鉛系めっき層を除去後、鋼板を室温から200℃まで加熱した際に放出される水素量:鋼板質量あたり0.40ppm以下]
 亜鉛系めっき鋼板の耐水素脆化割れを防止するため、鋼板を室温から200℃まで加熱した際に放出される水素量は鋼板質量あたり0.40ppm以下とする。放出される水素量は少なければ少ないほどよく、0.30ppm以下が好ましく、0.20ppm以下だとより好ましい。水素脆化に影響する水素は、鋼板を比較的低温で加熱した場合に放出される水素であり、比較的高温に加熱して放出される水素は、水素脆化に影響しない。本実施形態では、鋼板を室温から200℃まで加熱した際に放出される水素量が水素脆化割れに影響する要素の一つとみなし、この水素量を0.40ppm以下に制限する。室温の範囲は、15~25℃である。
 鋼板を室温から200℃まで加熱した際に放出される水素量は以下の方法で測定する。まず、亜鉛系めっき鋼板の亜鉛系めっき層(溶融亜鉛めっき層あるいは合金化溶融亜鉛めっき層)を除去するため、亜鉛系めっき鋼板の表裏面を0.1mmずつ機械研削する。その後、ガスクロマトグラフによる昇温水素分析法(昇温速度:100℃/時間、300℃まで測定)により、室温から200℃まで加熱した際に鋼板から放出された水素の質量の累積量(ガスクロマトグラフの測定値)を求める。得られた水素の質量の累積量(ガスクロマトグラフの測定値)を、測定に供した亜鉛系めっき層除去後の鋼板の質量で除することで、鋼板を室温から200℃まで加熱した際に放出される水素量(mass ppm)を得る。測定に供する鋼板(亜鉛系めっき層除去後の鋼板)の質量は、少なくとも0.5g以上、好ましくは1.0g以上とすることが望ましい。なお、測定前に水素が大気へ放散することを防止するため、亜鉛系めっき層除去後から1時間以内に分析を開始する必要がある。あるいは、亜鉛系めっき層除去後の鋼板を分析開始まで液体窒素中に保管しなければならない。
 本実施形態に係る鋼板は、上記化学組成を有し、残部がFe及び不純物からなる。「不純物」とは、鋼板を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分である。
 本実施形態に係る鋼板は、残部のFeの一部に代えて、必要に応じて以下の任意元素を含有してもよい。ただし、下記に示す任意元素を含有させなくても本実施形態に係る亜鉛系めっき鋼板はその課題を解決することができるので、任意元素を含有させない場合の含有量の下限は0%である。
[Cr:0%~2.00%、Mo:0%~1.00%、B:0%~0.010%、Ni:0%~1.00%、Cu:0%~1.00%、Co:0%~1.00%、W:0%~1.00%、Sn:0%~1.00%およびSb:0%~0.50%のうち一種または二種以上]
 Cr(クロム)、Mo(モリブデン)、B(ボロン)、Ni(ニッケル)、Cu(銅)、Co(コバルト)、W(タングステン)、Sn(スズ)およびSb(アンチモン)は、いずれも亜鉛系めっき鋼板の高強度化に有効な元素であるため必要に応じて含有させてもよい。しかし、上記元素を過度に含有すると上記効果が飽和してコストの増大を引き起こす。従って、上記元素の含有量はそれぞれ、Cr:0%~2.00%、Mo:0%~1.00%、B:0%~0.010%、Ni:0%~1.00%、Cu:0%~1.00%、Co:0%~1.00%、W:0%~1.00%、Sn:0%~1.00%およびSb:0%~0.50%とする。亜鉛系めっき鋼板の強度をより向上させるためには、Cr、Mo、Ni、Cu、Co、W、SnおよびSbのいずれか1種でもその含有量を0.001%以上とする、あるいはB含有量を0.0001%以上とすることが好ましい。
[Ti:0%~0.30%、Nb:0%~0.30%およびV:0%~1.00%のうち一種または二種以上]
 Ti(チタン)、Nb(ニオブ)およびV(バナジウム)は、いずれも炭化物形成元素であり、亜鉛系めっき鋼板の高強度化に有効な元素であるため必要に応じて含有させてもよい。しかし、上記元素を過度に含有させても上記効果が飽和してコストを上昇させる。従って、上記元素の含有量はそれぞれ、Ti:0%~0.30%、Nb:0%~0.30%、V:0%~1.00%とする。亜鉛系めっき鋼板の強度をより向上させるためには、上記元素のうち1種でもその含有量を0.001%以上とすることが好ましい。
[Ca:0%~0.0100%、Mg:0%~0.0100%、Ce:0%~0.0100%、Zr:0%~0.0100%、La:0%~0.0100%、Hf:0%~0.0100%、Bi:0%~0.0100%およびREM:0%~0.0100%からなる群から一種または二種以上]
 Ca(カルシウム)、Mg(マグネシウム)、Ce(セリウム)、Zr(ジルコニウム)、La(ランタン)、Hf(ハフニウム)およびREMは、鋼中介在物の微細分散化に寄与する元素である。Bi(ビスマス)は、鋼中におけるMnおよびSi等の置換型合金元素のミクロ偏析を軽減する元素である。
 Ca、Mg、Ce、Zr、La、Hf、BiおよびREMはそれぞれ、鋼板の加工性向上に寄与することから、必要に応じて含有させることが好ましい。加工性向上の効果を得るには、上記元素の1種でもその含有量を0%超とする必要がある。好ましくは0.0001%以上である。一方、上記元素の1種でも過度に含有させると、亜鉛系めっき鋼板の延性の劣化を引き起こす。従って、上記元素の含有量はそれぞれ0.0100%以下とする。
 なお、本実施形態におけるREMとは、原子番号59~71の希土類元素であり、REMの含有量とはこれらの元素の合計の含有量とする。2種以上の希土類元素を含有させる場合はミッシュメタルを添加することで含有させるとよい。
 本実施形態に係る鋼板は、上述してきた元素以外は、Fe及び不純物からなるが、以上説明した各元素の他にも、本発明の効果を損なわない範囲で含有させることが出来る。
『鋼組織』
 次に、本実施形態に係る鋼板の鋼組織の限定理由について説明する。鋼組織を規定する「%」は、特に断りのない限り全て「体積%」である。なお、以下に説明する鋼組織は、鋼板を表面から1/4厚を中心とした1/8厚~3/8厚の範囲における鋼組織である。この範囲の鋼組織を規定するのは、この範囲の鋼組織が鋼板全体の鋼組織を代表するためである。
[フェライト:0~10%]
 フェライトは軟質であるが延性に優れる組織である。フェライトの体積%が大きいほど亜鉛系めっき鋼板の伸びは向上するが、強度が低下する。従って、フェライトの体積%は0~10%とする。好ましくは、0~8%であり、より好ましくは0~5%である。フェライトが含まれなくても本実施形態に係る亜鉛系めっき鋼板はその課題を解決することができるため、フェライトの体積%は0%であってもよい。
[残留オーステナイト:0~10%]
 残留オーステナイトは、鋼板の変形中に加工誘起変態によりマルテンサイトへと変態するTRIP効果により亜鉛系めっき鋼板の加工硬化特性を向上させる。残留オーステナイトが含まれなくても本実施形態に係る亜鉛系めっき鋼板はその課題を解決することができるため、残留オーステナイトの体積%は0%でもよい。加工硬化特性を向上させて成形後の強度をより向上させるために、残留オーステナイトの体積%は、3%以上、または4%以上としてもよい。一方、加工誘起変態により変態したマルテンサイトは極めて硬質であるため、亜鉛系めっき鋼板の穴広げ性等の局部延性を劣化させる。そのため、残留オーステナイトの体積%は10%以下とする。好ましくは、7%以下、または6%以下である。
[パーライト:0~5%]
 パーライトは硬質かつ粗大なセメンタイトを含み、塑性変形時に破壊の起点となるため、亜鉛系めっき鋼板の局部延性を劣化させる。従って、パーライトの体積%は5%以下とする。好ましくは、4%以下である。パーライトが含まれなくても本実施形態に係る亜鉛系めっき鋼板はその課題を解決することができるため、パーライトの体積%は0%であってもよいが、1%以上としてもよい。
[ベイナイト:0~20%]
 ベイナイトは、フェライト変態温度とマルテンサイト変態温度との中間温度帯で生成する組織であり、フェライトとフレッシュマルテンサイトとの中間的な特徴を有する。フェライトよりは高強度であるものの、フレッシュマルテンサイトより低強度であるため、ベイナイトが過剰に生成すると所望の強度が得られなくなる。従って、ベイナイトの体積%は20%以下とする。好ましくは10%以下である。ベイナイトが含まれなくても本実施形態に係る亜鉛系めっき鋼板はその課題を解決することができるため、ベイナイトの体積%は0%であってもよい。強度および延性確保の観点から、ベイナイトの体積%は、5%以上、または7%以上としてもよい。
[フレッシュマルテンサイト:0~10%]
 フレッシュマルテンサイトは高強度であるため、強度の確保には有効な組織である。しかし、フレッシュマルテンサイトは脆い組織でもあるため、塑性変形時に破壊の起点となり、亜鉛系めっき鋼板の穴広げ性等の局部延性を劣化させる。従って、フレッシュマルテンサイトの体積%は10%以下とする。好ましくは、8%以下である。フレッシュマルテンサイトが含まれなくても本実施形態に係る亜鉛系めっき鋼板はその課題を解決することができるため、フレッシュマルテンサイトの体積%は0%でもよいが、強度確保の観点から、1%以上、または2%以上としてもよい。
[焼戻しマルテンサイト:70%以上]
 焼戻しマルテンサイトは亜鉛系めっき鋼板の高強度と高靭性とを両立する組織である。本実施形態に係る鋼板は主として焼戻しマルテンサイトから構成される。焼戻しマルテンサイトの体積%は、70%以上とする。好ましくは、75%以上、80%以上、または85%以上である。焼戻しマルテンサイトは100%であってもよいが、焼戻しマルテンサイトは95%以下、または90%以下としてもよい。焼戻しマルテンサイトは、フレッシュマルテンサイトの一部が後述の第二保持工程において焼き戻されることで生成する。
 フェライト、残留オーステナイト、パーライト、ベイナイト、フレッシュマルテンサイトおよび焼戻しマルテンサイトの合計の体積率は100%である。なお、本実施形態では、介在物、析出物は鋼組織に含めないものとする。
 本実施形態に係る鋼板の鋼組織の体積率の算出方法については以下の通りとする。
 残留オーステナイトの体積率は、X線回折法により測定する。まず、亜鉛系めっき鋼板の均熱部位から試験片を採取する。均熱部位とは、熱処理が十分に施された部分のことをいう。熱処理が十分に施されていない部分では、本実施形態に係る鋼板の金属組織を有しない場合がある。採取した試験片について、板厚の表面から1/4厚を中心とした1/8厚~3/8厚の範囲が観察できるように、フッ化水素酸と過酸化水素水とを用いて化学研磨して板面に平行な面を現出させ、更に鏡面に仕上げて測定面とする。X線回折装置はRigaku社製のRINT2000を用い、光源にはCo-Kα線を用いる。走査範囲は2θで45°から105°の範囲で測定を行う。X線回折法によって結晶構造がfccであるもの(残留オーステナイト)のX線回折パターンの面積率を測定し、その面積率を残留オーステナイトの体積率とする。
 フェライト、焼戻しマルテンサイト、フレッシュマルテンサイト、パーライトおよびベイナイトの体積率については、鋼板の圧延方向と直交する板厚方向の断面を切出し、鏡面研磨後、ナイタール液により鋼組織を現出し、電界放射型走査型電子顕微鏡を用いて二次電子像を撮影する。観察位置は板厚の表面から1/4厚を中心とした1/8厚~3/8厚の範囲とし、合計6000μmの面積を複数視野で観察する(撮影倍率:3000倍)。得られた組織写真について、ポイントカウンティング法によって各組織の分率を算出する。まず、組織写真上に等間隔の格子を描く。次に、各格子点における組織がフェライト、焼戻しマルテンサイト、フレッシュマルテンサイトまたは残留オーステナイト、パーライト、あるいはベイナイトのいずれに該当するかを判断する。各組織に該当する格子点数を求め、総格子点数で除することにより、各組織の分率を測定できる。総格子点数が多いほど体積率を正確に求めることができる。本実施形態では、格子間隔は2μm×2μmとし、総格子点数は1500点とする。なお、本実施形態に係る鋼板の鋼組織は等方的な組織であることから、断面のポイントカウンティング法により求めた各組織の分率を体積率とみなすことができる。
 粒内に下部組織(ラス境界、ブロック境界)を有し、かつ、炭化物が複数のバリアントを持って析出している領域を焼戻しマルテンサイトと判断する。また、セメンタイトがラメラ状に析出している領域をパーライトと判断する。輝度が小さく、かつ下部組織が認められない領域をフェライトと判断する。輝度が大きく、かつ下部組織がエッチングにより現出されていない領域をフレッシュマルテンサイトまたは残留オーステナイトと判断する。上記のいずれにも該当しない領域をベイナイトと判断する。フレッシュマルテンサイトの体積率については、ポイントカウンティング法によって求めたフレッシュマルテンサイト及び残留オーステナイトの体積率から、X線回折法により求めた残留オーステナイトの体積率を引くことにより、求めることができる。
『機械特性』
[引張強度が1470MPa以上]
 本実施形態に係る亜鉛系めっき鋼板の引張強度は1470MPa以上とする。引張強度の測定は、圧延方向に直角な方向を長手方向とするJIS5号引張試験片を採取し、JIS Z 2241:2011に準拠して引張試験を行うことにより測定する。クロスヘッド速度は、2%ひずみまでは2mm/minとし、2%ひずみ以降は20mm/minとする。
[1000MPa相当の応力を24時間付与するU字曲げ試験で割れが発生しない]
 本発明者らは、鋼板中の侵入水素量を低減した場合、すなわち、亜鉛系めっき層を除去後、鋼板を室温から200℃まで加熱した際に放出される水素量を鋼板質量あたり0.40ppm以下とした場合であっても、耐水素脆化特性が必ずしも向上しないことを見出した。本発明者らは、後述する第二保持工程を行うことで、鋼板中の水素量を低減することができ、更に、耐水素脆化特性を向上できることを見出した。
 本実施形態において耐水素脆化特性に優れるとは、1000MPa相当の応力を24時間付与するU字曲げ試験で割れが発生しないことをいう。U字曲げ試験について、図1を参照しつつ説明する。
 まず、亜鉛系めっき鋼板の均熱部位から、試験片の長手方向と鋼板の圧延方向とが垂直になるように、30mm×120mmの短冊状試験片を採取する。短冊状試験片の両端には、ボルト締結用の穴開け加工を行う。次に、半径10mmのポンチで180°曲げを行う(図1の(1))。その後、スプリングバックしたU字曲げ試験片について(図1の(2))、ボルトとナットとを用いて締結することで応力を付与する(図1の(3))。この時、U字曲げ試験片の頂部にGL5mmのひずみゲージを貼り付け、ひずみ量制御により1000MPa相当の応力を付与する。このとき、予め実施した引張試験により得た応力-ひずみ曲線から、ひずみを応力に換算する。なお、U字曲げ試験片の端面はシャー切断ままとする。応力付与から24時間経過後に、割れの有無を目視にて観察する。試験温度は室温とする。室温の範囲は15~25℃であり、これを外れる場合は試験室の温度を15~25℃の範囲に調整する。
 なお、U字曲げ試験では1200MPa相当の応力を付与してもよく、この場合であっても割れが発生しなければ、耐水素脆化特性により優れるため、好ましい。
 本実施形態に係る亜鉛系めっき鋼板の延性-脆性遷移温度(Trs)は-40℃以下であることが好ましい。延性-脆性遷移温度が-40℃以下であると、低温靭性に優れるため、好ましい。
 延性-脆性遷移温度は、シャルピー衝撃試験により測定する。シャルピー衝撃試験に用いるシャルピー試験片は、試験片長手方向が亜鉛系めっき鋼板の圧延方向と平行になるように採取し、板幅方向にVノッチを導入する。また、シャルピー試験片は、面外変形を避けるために亜鉛系めっき鋼板を複数枚重ね合わせてボルトで締結し、亜鉛系めっき鋼板間に隙間が無いことを確認した上で、深さ2mmのVノッチ付き試験片を作製する。重ね合わせる亜鉛系めっき鋼板の枚数は、積層後の試験片厚さが10mmに最も近づくように設定する。例えば、板厚が1.6mmの場合は6枚積層し、試験片厚さが9.6mmとなるようにする。試験温度は-40℃~60℃として20℃間隔で測定する。吸収エネルギーが上部棚吸収エネルギーの1/2を下回る最高温度をTrsとする。上記以外の条件は、JIS Z 2242:2005に従う。
『亜鉛系めっき層』
 亜鉛系めっき層は、亜鉛を主体とするめっき層であればよく、亜鉛以外の化学成分を含むものでもよい。亜鉛を主体とするめっき層とは、めっき層を構成する元素のうち最大の含有量を有する元素がZnであればよく、例えばZn以外の残部にAl、Mg、Si、Mn、Fe、Ni、Cu、Sn、Sb、Pb、Cr、Ti等をめっき層中に含んでいてもよい。また、亜鉛系めっき層は、溶融亜鉛めっき層でもよく、溶融亜鉛めっき層を合金化した合金化溶融亜鉛めっき層であってもよい。
 亜鉛系めっき層が溶融亜鉛めっき層である場合、溶融亜鉛めっき層中の鉄含有量は7.0質量%未満であることが好ましい。
 亜鉛系めっき層が合金化溶融亜鉛めっき層である場合、合金化溶融亜鉛めっき層中の鉄含有量は6.0質量%以上であることが好ましい。亜鉛系めっき層を合金化溶融亜鉛めっき層とした場合には、亜鉛系めっき層を溶融亜鉛めっき層とした場合よりも溶接性を向上することができる。
 亜鉛系めっき層のめっき付着量は、特に制約は設けないが、耐食性の観点から片面あたり5g/m以上であることが好ましく、25~75g/mの範囲内であることがより好ましい。
 次に、本実施形態に係る亜鉛系めっき鋼板の製造方法について説明する。本実施形態に係る亜鉛系めっき鋼板は、鋳造した鋳片に対して熱間圧延を行った後、更に冷間圧延を行うことにより、上記の化学成分を有する鋼板を製造し、その後、連続溶融亜鉛めっきラインによって鋼板表面に亜鉛系めっき層を形成することにより製造する。
 本実施形態に係る亜鉛系めっき鋼板の製造方法では、熱間圧延と冷間圧延との間で熱延板焼鈍を行ってもよい。また、酸洗を行ってもよい。
 冷間圧延を省略して、熱間圧延後の鋼板を連続溶融亜鉛めっきラインに導入してもよい。冷間圧延を省略する場合、熱延板焼鈍や酸洗を省略してもよく、省略しなくてもよい。
 更に、めっき工程において、合金化処理を行ってもよく、行わなくてもよい。
 連続溶融亜鉛めっきラインでは、焼鈍工程、第一保持工程、めっき工程及び第二保持工程を順次行う。なお、以下の説明における温度はいずれも鋼板の表面温度(鋼板温度)であり、放射温度計などで測定すればよい。
 焼鈍工程では、加熱温度:Ac点~950℃、Ac点~950℃の温度域での保持時間:1~500sの条件で焼鈍を行う。また、焼鈍工程では、鋼板温度が600℃に達した時から、Ac点~950℃の温度域での保持が終了する時までの間、炉内の水素濃度を、常に、1.0~15.0体積%に維持する。
 第一保持工程では、Ms点~600℃の温度域で20~500sの保持を行う。この保持の間、炉内の水素濃度を、常に、1.0~10.0体積%に維持する。
 めっき工程では、鋼板を溶融亜鉛めっき浴に浸漬後、鋼板温度がMs点-150℃未満になるまで冷却する。また、溶融亜鉛めっき浴浸漬後に460~600℃の温度域で合金化処理を行い、その後、鋼板温度がMs点-150℃未満になるまで冷却してもよい。
 第二保持工程では、水素濃度が0.50体積%未満の雰囲気中で、200℃以上350℃未満の温度域で10~1000s間保持した後、コイル状に巻き取る。
 なお、Ac点及びMs点は、以下の式によって計算された値を用いる。各式における[元素記号]は、各元素の質量%での含有量を示す。元素が含有されない場合は0%を代入する。
 Ac(℃)=912-230.5×[C]+31.6×[Si]-20.4×[Mn]-39.8×[Cu]-18.1×[Ni]-14.8×[Cr]+16.8×[Mo]+100.0×[Al]
 Ms(℃)=550-361×[C]-39×[Mn]-35×[V]-20×[Cr]-17×[Ni]-10×[Cu]-5×[Mo]+30×[Al]
 以下、各工程について詳細に説明する。
(I)焼鈍工程
[加熱温度:Ac点~950℃、Ac点~950℃の温度域での保持時間:1~500sの条件での焼鈍]
 冷間圧延後の鋼板、あるいは熱間圧延後、一旦室温まで冷却した鋼板に対して焼鈍を行う。なお、ここでいう焼鈍とは、鋼板がAc点以上まで加熱されて、Ac点~950℃の温度域で保持された後、Ac点以下まで冷却されることをいう。オーステナイト化を十分に進行させるため、焼鈍時の加熱温度はAc点以上とする。好ましくはAc点+20℃以上である。一方、焼鈍時の加熱温度を過剰に高めると、オーステナイト粒径の粗大化による靭性の劣化を引き起こすばかりか、焼鈍設備の損傷の原因にもなる。そのため、焼鈍時の加熱温度は950℃以下とする。好ましくは、900℃以下である。
 Ac点~950℃の温度域での保持時間(焼鈍時間)が短いとオーステナイト化が十分に進行しないため、Ac点~950℃の温度域での保持時間は1s以上とする。好ましくは30s以上、または50s以上である。一方、Ac点~950℃の温度域での保持時間が長すぎると生産性を阻害することから、Ac点~950℃の温度域での保持時間は500s以内とする。
 なお、焼鈍時には、Ac点~950℃の温度域で鋼板温度を変動させてもよいし、Ac点~950℃の温度域で鋼板温度を一定に保ってもよい。
[鋼板温度が600℃に達した時から、Ac点~950℃の温度域での保持が終了する時までの間、炉内の水素濃度が、常に、1.0~15.0体積%]
 鋼板と溶融亜鉛めっきとの濡れ性を確保するため、鋼板温度が600℃に達した時から、Ac点~950℃の温度域での保持が終了する時までの間、炉内の水素濃度は常に1.0体積%以上とする。換言すると、鋼板温度が600℃からAc点~950℃の加熱温度まで上昇して、Ac点~950℃で保持される間、炉内の水素濃度は常に1.0体積%以上とする。更に換言すると、鋼板が炉内で加熱されて、鋼板温度が600℃に達した時から、Ac点~950℃の温度域まで加熱されて、Ac点~950℃の温度域で1~500s間保持され、鋼板が炉から出されるまでの間、炉内の水素濃度を常に1.0体積%以上とする。好ましくは、2.0体積%以上である。一方、水素濃度が高すぎると、鋼板中に侵入する水素量が増大し、水素脆化割れのリスクが高まるため、炉内の水素濃度は15.0体積%以下とする。好ましくは10.0体積%以下、または5.0体積%以下である。
 鋼板温度がAc点に到達するまでの平均加熱速度については特に制限する必要はないが、0.5~10℃/sが望ましい。平均加熱速度が0.5℃/sを下回ると、オーステナイトが粗大化するため、最終的に得られる鋼組織が粗大なものとなる場合がある。平均加熱速度が10℃/sを超えると、フェライトの再結晶が十分進行せず、亜鉛系めっき鋼板の伸びが劣化する場合がある。なお、平均加熱速度は、焼鈍炉(Ac点~950℃の温度域での保持を行う炉)導入時の鋼板温度とAc点との温度差を、焼鈍炉導入時から鋼板温度がAc点に到達した時までの時間差で除した値とする。
(II)第一保持工程
[Ms点~600℃の温度域で20~500sの保持を行い、その保持の間、炉内の水素濃度が、常に、1.0~10.0体積%]
 焼鈍工程の後、鋼板をMs点以上、600℃以下の温度域まで冷却し、Ms点~600℃の温度域で20~500sの間保持を行う。これを第一保持工程と称する。焼鈍工程後の鋼板をMs点~600℃の温度域に冷却する際の平均冷却速度は例えば5℃/s以上がよい。ここでいう平均冷却速度とは、冷却開始時の鋼板温度と600℃との温度差を、冷却開始時から鋼板温度が600℃に達した時までの時間差で除した値とする。
 溶融亜鉛めっき浴浸漬前にMs点~600℃の温度域で保持を行うことにより、焼鈍工程で鋼板中に侵入した水素が外気に放散し、鋼板中の侵入水素量を低減できる。水素放散の観点からは炉内の水素濃度は低いほど好ましいが、低すぎると鋼板表面が酸化し、溶融亜鉛めっきとの濡れ性が劣化する。そのため、炉内の水素濃度は1.0体積%以上とする。好ましくは、2.0体積%以上である。一方、炉内の水素濃度が10.0体積%超であると、鋼板中の水素が十分に外気に放散しない。そのため、炉内の水素濃度は10.0体積%以下とする。好ましくは5.0体積%以下である。
 第一保持工程における保持温度がMs点未満になると、生成したマルテンサイトがその後のめっきおよび合金化処理により過剰に焼き戻されてしまい、所望の強度が得られなくなる。そのため、保持温度はMs点以上とする。好ましくは、Ms点+100℃以上である。一方、第一保持工程における保持温度が600℃を超えると、フェライトが過剰に生成し、所望の鋼組織が得られなくなる。そのため、保持温度は600℃以下とする。好ましくは、550℃以下である。
 また、水素放散の観点からは、第一保持工程における保持時間は長いほど好ましいが、長すぎるとベイナイト変態が過剰に進行し、所望の組織分率が得られなくなる。従って、保持時間は20~500sとする。好ましい下限は100sであり、好ましい上限は300sである。ここでいう保持時間とは、鋼板温度が600℃に達した時から、溶融亜鉛めっき浴に浸漬するまでの時間のことをいう。
 なお、第一保持工程では、Ms点~600℃の温度域で鋼板温度を変動させてもよいし、Ms点~600℃の温度域で鋼板温度を一定に保ってもよい。
(III)めっき工程
 第一保持工程の後、鋼板を溶融亜鉛めっき浴に浸漬する。溶融亜鉛めっきは常法に従って行えばよい。例えば、めっき浴温は440~480℃、浸漬時間は5s以下とすればよい。この時、第一保持工程での保持温度がめっき浴温と大きく異なる場合は、第一保持工程後の鋼板を再加熱または冷却し、鋼板温度をめっき浴温に近づけることで、連続製造時もめっき浴温を安定的に維持できる。溶融亜鉛めっき浴は、亜鉛以外の成分として、Alを0.08~0.2質量%含有することが好ましいが、その他、不純物のFe、Si、Mg、Mn、Cr、Ti、Ni、Cu、Sn、SbおよびPbを含有してもよい。また、亜鉛系めっき層(溶融亜鉛めっき層)の目付量を、ガスワイピング等の公知の方法で制御することが好ましい。目付量は、片面あたり25~75g/mが好ましい。
[合金化温度:460~600℃]
 溶融亜鉛めっき層を形成した亜鉛系めっき鋼板に対して、必要に応じて合金化処理を行ってもよい。その場合、合金化温度が460℃未満であると、合金化速度が遅くなり生産性を損なうばかりでなく、合金化処理むらが発生するので、合金化温度は460℃以上とする。好ましくは480℃以上である。一方、合金化温度が600℃を超えると、合金化が過度に進行して、亜鉛系めっき鋼板のめっき密着性が劣化するので、合金化温度は600℃以下とする。好ましくは580℃以下である。合金化処理の時間(460~600℃の温度域での保持時間)は、例えば10~60sとすればよい。
 溶融亜鉛めっき層を合金化しない場合は、合金化処理を省略して、めっき後に冷却を開始するとよい。
[溶融亜鉛めっき後または合金化処理後、Ms点-150℃未満に冷却]
 溶融亜鉛めっき後(溶融亜鉛めっき浴から引き上げ後)または合金化処理後に、Ms点-150℃未満の温度域まで冷却することで、オーステナイトの一部をマルテンサイト変態させる。この時に生成したマルテンサイトは、その後の第二保持工程により焼き戻されて、焼戻しマルテンサイトとなる。冷却停止温度がMs点-150℃以上になると、最終的に得られる焼戻しマルテンサイトの生成量が不十分となるため、所望の鋼組織を得ることができない。そのため、冷却停止温度はMs点-150℃未満とする。
 溶融亜鉛めっき後または合金化処理後に、Ms点-150℃未満の温度域に冷却する際の平均冷却速度は、5℃/s以上がよい。ここでいう平均冷却速度とは、溶融亜鉛めっき終了時(溶融亜鉛めっき浴から引き上げ時)または合金化処理終了時の鋼板温度と冷却停止温度との温度差を、溶融亜鉛めっき浴から引き上げ時または合金化処理終了時から冷却停止時までの時間差で除した値とする。
(IV)第二保持工程
[水素濃度が0.50体積%未満の雰囲気で、200℃以上350℃未満の温度域で10~1000s間保持した後、コイル状に巻き取る]
 溶融亜鉛めっき後または合金化処理後に生成したマルテンサイトを焼き戻すと同時に、鋼板内部、鋼板と亜鉛系めっき層との界面および亜鉛系めっき層中に存在する水素を外気に放散させることを目的として保持を行う。この保持を行う工程を、第二保持工程と称する。本実施形態では、後述する条件で第二保持工程を行うことで、鋼板中の水素量を低減することができ、且つ耐水素脆化特性を向上することができる。
 第二保持工程における保持温度が200℃未満の場合、マルテンサイトが十分に焼き戻されないため、保持温度は200℃以上とする。好ましくは、230℃以上である。保持時間が10sを下回ると、水素の放散が不十分となるため、保持時間は10s以上とする。好ましくは、50s以上、または100s以上である。
 第二保持工程における保持温度が350℃以上となる、あるいは保持時間が1000sを超えると、マルテンサイトが過剰に焼き戻されてしまい、所望の強度を得ることが困難となるため、保持温度は350℃未満とし、保持時間は1000s以下とする。好ましくは、保持温度は320℃以下、または300℃以下であり、保持時間は700s以下、または500s以下である。ここでいう保持時間とは、鋼板温度が350℃に達した時から、200℃に達する時までの時間のことをいう。但し、Ms点-150℃に到達する以前の時間は含めない。
 なお、第二保持工程では、200℃以上350℃未満の温度域で鋼板温度を変動させてもよいし、200℃以上350℃未満の温度域で鋼板温度を一定に保ってもよい。
 第二保持工程における炉内の水素濃度は0.50体積%未満とする。炉内の水素濃度が0.50体積%以上では、水素が大気中に十分に放散されない。炉内の水素濃度は低ければ低いほど好ましく、0.30体積%以下、0.20体積%以下、または0.10体積%未満が好ましい。
 第二保持工程は溶融亜鉛めっき後または合金化処理後、且つコイル状に巻き取るまでの間に行わなければならない。コイル状に巻き取った状態で保持を行っても、水素が放散されるのはコイルの最外周部分のみであり、コイル内部は水素が十分に放散しないためである。
 なお、溶融亜鉛めっき後且つMs点-150℃未満まで冷却後、または合金化処理後且つMs点-150℃未満まで冷却後に、亜鉛系めっき鋼板に対して第二保持工程を行ってもよく、再加熱してから、第二保持工程を行ってもよい。
 本実施形態では、連続溶融亜鉛めっきラインに至るまでの製造条件については特に限定する必要はないが、以下に好ましい一例を記載する。
『熱間圧延工程における製造条件』
[スラブ加熱工程、スラブ加熱温度:1150℃以上]
 ホウ化物や炭化物などを十分に溶解するため、スラブ加熱温度は1150℃以上とすることが好ましい。なお使用するスラブは、製造性の観点から連続鋳造法によって鋳造することが好ましいが、造塊法、薄スラブ鋳造法でもよい。また、鋳造したスラブは一旦室温まで冷却してもよく、室温まで冷却することなく加熱炉に直送しても構わない。
[粗圧延工程、1050℃以上での総圧下率:60%以上]
 1050℃以上での総圧下率が60%以上となるように粗圧延することが好ましい。総圧下率が60%未満であると、熱間圧延中の再結晶が不十分となるため、熱延板組織の不均質化につながる場合がある。
[仕上げ圧延工程、仕上げ圧延入側温度:950~1060℃、仕上げ圧延出側温度:850℃~1000℃、総圧下率:70~95%]
 仕上げ圧延入側温度は950~1060℃が好ましく、950~1050℃でもよい。
 仕上げ圧延出側温度が850℃未満、あるいは、総圧下率が95%を超える場合、熱延鋼板の集合組織が発達するため、最終製品板における異方性が顕在化する場合がある。仕上げ圧延出側温度が1000℃を超える、あるいは、総圧下率が70%未満の場合、熱延鋼板の結晶粒径が粗大化し、最終製品板組織の粗大化ひいては加工性の劣化に繋がる場合がある。
[巻取り工程、巻取り温度:450~700℃]
 巻取り温度は450~700℃とする。巻取り温度が450℃未満では、熱延板強度が過大となり、冷間圧延性を損なう場合がある。一方、巻取り温度が700℃を超えると、セメンタイトが粗大化し、未溶解のセメンタイトが残存し、加工性を損なう場合がある。
 熱延コイルの酸洗方法は常法に従えばよい。また、熱延コイルの形状矯正および酸洗性向上のためにスキンパス圧延を行ってもよい。また、冷間圧延性を改善するために軟質化焼鈍(熱延板焼鈍)を行ってもよい。その場合は500~650℃の温度域で、0.5~10時間程度の熱処理を施すことが望ましい。
『冷間圧延工程における製造条件』
[冷間圧延率:20~80%]
 熱間圧延、酸洗後は、そのまま連続溶融亜鉛めっきラインで熱処理を施してもよいし、冷間圧延を施した後、連続溶融亜鉛めっきラインで熱処理してもよい。冷間圧延を施す場合、冷間圧延率(累積圧下率)は20%以上とすることが好ましい。一方、過度の圧下は圧延加重が過大となり冷延ミルの負荷増大を引き起こすため、冷間圧延率は80%以下とすることが好ましい。
 次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例である。本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 表1A及び表1Bに示す化学組成を有する鋼を鋳造し、スラブを作製した。表1Bには、下記の関係式により求めた各鋼のAc点及びMs点を示す。これらのスラブを表2Aおよび表2Bに示す条件で熱間圧延を行い、熱延鋼板を製造した。その後、熱延鋼板を酸洗し、表面のスケールを除去した。その後、冷間圧延を行って鋼板を得た。得られた鋼板について、表3Aおよび表3Bに示す条件で連続溶融亜鉛めっき処理を実施し、一部の亜鉛系めっき鋼板については合金化処理を実施した。表3A~表4Bのめっき種について、「GA」は合金化溶融亜鉛めっき層を示し、「GI」は溶融亜鉛めっき層を示す。
 Ac(℃)=912-230.5×[C]+31.6×[Si]-20.4×[Mn]-39.8×[Cu]-18.1×[Ni]-14.8×[Cr]+16.8×[Mo]+100.0×[Al]
 Ms(℃)=550-361×[C]-39×[Mn]-35×[V]-20×[Cr]-17×[Ni]-10×[Cu]-5×[Mo]+30×[Al]
 ただし、各式における元素記号は、各元素の質量%での含有量を示す。元素が含有されない場合は0%を代入した。
 なお、冷却開始時から600℃到達時(焼鈍工程終了時から第一保持工程開始時)までの平均冷却速度、及び、溶融亜鉛めっき終了時若しくは合金化処理終了時から冷却停止温度に至るまでの平均冷却速度は、それぞれ5℃/s以上とした。また、めっき工程におけるめっき浴温は440~480℃とし、浸漬時間は5s以下とし、溶融亜鉛めっき浴は、亜鉛の他に、Alを0.08~0.2質量%含有する溶融亜鉛めっき浴とした。合金化処理後の合金化溶融亜鉛めっき層は鉄含有量が6.0質量%以上であり、溶融亜鉛めっき層は鉄含有量が7.0質量%未満であった。
 表3Aおよび表3Bの焼鈍工程における水素濃度は、鋼板温度が600℃に達した時からAc点~950℃の温度域での保持が終了する時までの間(換言すると、鋼板が炉内で加熱されて、鋼板温度が600℃に達した時から、Ac点~950℃の温度域まで加熱されて、Ac点~950℃の温度域で保持され、鋼板が炉から出されるまでの間)の炉内の水素濃度であり、第一保持工程における水素濃度は、Ms点~600℃の温度域での保持中の炉内の水素濃度である。
 なお、表3AのNo.21は、焼鈍工程でAc点~950℃の温度域での保持が施されず、820℃で100sの保持が施されたため、保持時間に「-」と記載した。
 得られた亜鉛系めっき鋼板から、圧延方向に直角な方向を長手方向とするJIS5号引張試験片を採取し、JIS Z 2241:2011に準拠して引張試験を行い、引張強度(TS)および全伸び(El)を測定した。引張試験において、クロスヘッド速度は、2%ひずみまでは2mm/minとし、2%ひずみ以降は20mm/minとした。全伸びは破断後のサンプルを突き合わせることで測定した。
 また、日本鉄鋼連盟規格の「JFS T 1001-1996 穴拡げ試験方法」を行い、穴広げ率(λ)を測定した。ブランクサイズは150mmとした。打ち抜き条件は、ポンチ径を10mmとし、ダイス径は0.1mmピッチで片側クリアランスが12%に最も近づくように設定した。穴広げ試験は、バリ外の条件、すなわち打ち抜き時にダイに接していた鋼板の表面が穴広げ試験時にパンチの反対側となる条件とし、60度円錐ポンチ、ポンチ速度1mm/sとして実施した。また、しわ押さえ圧は60ton、ダイス肩R5mm、ダイスの内径はφ95mmとした。試験数はN=3とし、それらの平均値を算出することで穴広げ率λを得た。
 引張強度が1470MPa以上であり、かつ、引張強度、全伸びおよび穴広げ率の複合値(TS[MPa]×EL[%]×λ[%]0.5×10-3)が50以上のものを機械特性が良好であるとして合格と判定した。一つ以上の条件を満たさない場合、機械特性に劣るとして不合格と判定した。
 鋼板を室温から200℃まで加熱した際に放出される鋼板質量あたりの水素量は、次の方法により求めた。亜鉛系めっき層(溶融亜鉛めっき層あるいは合金化溶融亜鉛めっき層)を除去するため亜鉛系めっき鋼板の表裏面を0.1mmずつ機械研削後、めっき除去後の鋼板中の水素を、ガスクロマトグラフによる昇温水素分析法(昇温速度:100℃/時間、室温から300℃まで測定)により測定し、室温から200℃まで加熱される間に鋼板から放出された水素の質量の累積量(ガスクロマトグラフの測定値)を求めた。得られた水素の質量の累積量(ガスクロマトグラフの測定値)を鋼板の質量で除することにより、鋼板を室温から200℃まで加熱した際に放出される鋼板質量あたりの水素量(mass ppm)を得た。
 耐水素脆化試験は、U字曲げ試験により評価した。U字曲げ試験について図1を参照しつつ説明する。
 まず、亜鉛系めっき鋼板の均熱部位から、試験片の長手方向と鋼板の圧延方向とが垂直になるように、30mm×120mmの短冊状試験片を採取した。この短冊状試験片の両端にボルト締結用の穴開け加工を行った。次に、半径10mmのポンチで180°曲げを行った(図1の(1))。その後、スプリングバックしたU字曲げ試験片について(図1の(2))、ボルトとナットとを用いて締結することで応力を付与した(図1の(3))。この時、U字曲げ試験片の頂部にGL5mmのひずみゲージを貼り付け、ひずみ量制御により1000MPa、1200MPa相当の応力を付与した。このとき、予め引張試験を行うことで得た応力-ひずみ曲線から、ひずみを応力に換算した。なお、U字曲げ試験片の端面はシャー切断ままとした。また、試験温度は室温(15~25℃)とした。
 応力付与から24時間経過後、割れの有無を目視にて観察した。1000MPaで割れが認められたものを「<1000」、1000MPaで割れが認められず、1200MPaで割れが認められたものを「1000~1200」、1200MPaで割れが認められなかったものを「>1200」と表中に記載した。1000MPaで割れが認められなかったものを耐水素脆化に優れるとして合格と判定し、1000MPaで割れが認められたものを耐水素脆化に劣るとして不合格と判定した。
 亜鉛系めっき鋼板の低温靭性は、シャルピー衝撃試験により延性-脆性遷移温度を測定することで評価した。
 シャルピー衝撃試験に用いるシャルピー試験片は、試験片長手方向が亜鉛系めっき鋼板の圧延方向と平行になるように採取し、板幅方向にVノッチを導入した。また、シャルピー試験片は、面外変形を避けるために亜鉛系めっき鋼板を複数枚重ね合わせてボルトで締結し、亜鉛系めっき鋼板間に隙間が無いことを確認した上で、深さ2mmのVノッチ付き試験片を作製した。重ね合わせる亜鉛系めっき鋼板の枚数は、積層後の試験片厚さが10mmに最も近づくように設定した。試験温度は-40℃~60℃として20℃間隔で測定した。吸収エネルギーが上部棚吸収エネルギーの1/2を下回る最高温度を延性-脆性遷移温度(Trs)とした。上記以外の条件は、JIS Z 2242:2005に従った。
 延性-脆性遷移温度が-40℃以下の場合、低温靭性に優れると評価し、表中に「<-40」と記載した。延性-脆性遷移温度が-40℃超の場合、表中には延性-脆性遷移温度を記載した。
 めっき密着性をテープ剥離試験により評価した。亜鉛系めっき鋼板の均熱部位から、30mm×100mmの試験片を採取し、90°V曲げ試験を行った。ポンチの先端半径は5mmとした。その後、市販のセロテープ(登録商標)を曲げ稜線に沿って貼付け、テープに付着しためっきの幅を剥離幅として測定した。評価は以下の通りとした。
 G(Good):めっき剥離小、または実用上差し支えない程度の剥離(剥離幅0~10mm未満)
 B(Bad):剥離が激しいもの(剥離幅10mm以上)
 鋼板の鋼組織は、上述の方法により測定した。
 以上の測定結果および試験結果を表4A及び表4Bに示す。
 表4Aおよび表4Bを見ると、本発明例はいずれも機械特性、耐水素脆化特性およびめっき密着性に優れ、且つ製造時の侵入水素量を低減できたことが分かる。一方、化学組成および鋼組織の1つ以上が本発明の範囲外である比較例は、上記特性の少なくとも1つが合格基準に達しなかったことが分かる。
 No.2は第一保持工程におけるH濃度が規定の上限を上回ったため、鋼中水素濃度が高くなり、耐水素脆化特性が劣った。
 No.3は第一保持工程における保持時間が規定の下限を下回ったため、鋼中水素濃度が高くなり、耐水素脆化特性が劣った。
 No.4は第一保持工程における保持温度が規定の上限を上回ったため、フェライト量が増大し、引張強度TSが1470MPa未満となった。
 No.5は合金化処理後の冷却停止温度が規定の上限を上回ったため、ベイナイト量およびフレッシュマルテンサイト量が増加し、機械特性が劣位となった。
 No.6は第二保持工程における保持時間が規定の下限を下回ったため、鋼中水素濃度が高くなり、耐水素脆化特性が劣った。
 No.8は第二保持工程におけるH濃度が規定の上限を上回ったため、鋼中水素濃度が高くなり、耐水素脆化特性が劣った。
 No.10は第二保持工程における保持温度が上限を上回り、焼戻しマルテンサイトが過剰に焼き戻されたため、引張強度TSが1470MPa未満となった。
 No.11は第二保持工程における保持温度が下限を下回ったため、鋼中水素濃度が高くなり、耐水素脆化特性が劣った。
 No.13は第二保持工程における保持時間が長く、焼戻しマルテンサイトが過剰に焼き戻されたため、引張強度TSが1470MPa未満となった。
 No.16は第二保持工程を行わなかったため、鋼中水素濃度が高くなり、耐水素脆化特性が劣った。
 No.19は第一保持工程における保持温度が下限を下回ったため、マルテンサイトが合金化処理時に焼き戻され、引張強度TSが1470MPa未満となった。
 No.20は焼鈍工程におけるH濃度が規定の上限を上回ったため、鋼中水素濃度が高くなり、耐水素脆化特性が劣った。
 No.21は焼鈍工程における加熱温度が規定の下限を下回ったため、フェライト量が増大し、引張強度TSが1470MPa未満となった。
 No.22は第一保持工程における保持時間が規定の上限を上回ったため、ベイナイト量が増大し、引張強度TSが1470MPa未満となった。
 No.38~42は化学組成が本発明の規定する範囲から外れたため、機械特性が劣位となった、および/または耐水素脆化特性が劣った。
 No.43は第二保持工程を行わなかったため、フレッシュマルテンサイト量が増大し、耐水素脆化特性が劣った。
 No.44は第二保持工程における保持温度が規定の下限を下回ったため、フレッシュマルテンサイト量が増大し、耐水素脆化特性が劣った。
 No.45は第二保持工程における保持時間が規定の下限を下回ったため、フレッシュマルテンサイト量が増大し、耐水素脆化特性が劣った。
 No.48は第二保持工程におけるH濃度が規定の上限を上回ったため、鋼中水素濃度が高くなり、耐水素脆化特性が劣った
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明に係る上記態様によれば、自動車用部材として好適に用いられる、機械特性に優れ、製造時の侵入水素量を低減し、且つ耐水素脆化特性およびめっき密着性に優れた亜鉛系めっき鋼板及びその製造方法を提供することができる。本発明の好ましい態様によれば、上記諸特性を有した上で更に、低温靭性に優れた亜鉛系めっき鋼板およびその製造方法を提供することができる。

Claims (7)

  1.  鋼板と、前記鋼板の表面に配された亜鉛系めっき層とを備え、
     前記鋼板が、質量%で、
    C:0.150%~0.500%、
    Si:0.01%~2.50%、
    Mn:1.00%~5.00%、
    P:0.100%以下、
    S:0.0100%以下、
    Al:0.001%~1.000%、
    N:0.0100%以下、
    O:0.0100%以下、
    Cr:0%~2.00%、
    Mo:0%~1.00%、
    B:0%~0.010%、
    Cu:0%~1.00%、
    Ni:0%~1.00%、
    Co:0%~1.00%、
    W:0%~1.00%、
    Sn:0%~1.00%、
    Sb:0%~0.50%、
    Ti:0%~0.30%、
    Nb:0%~0.30%、
    V:0%~1.00%、
    Ca:0%~0.0100%、
    Mg:0%~0.0100%、
    Ce:0%~0.0100%、
    Zr:0%~0.0100%、
    La:0%~0.0100%、
    Hf:0%~0.0100%、
    Bi:0%~0.0100%、および
    REM:0%~0.0100%を含有し、
    残部がFeおよび不純物からなる化学組成を有し、
     前記鋼板の表面から1/4厚を中心とした1/8厚~3/8厚の範囲における鋼組織が、体積%で、
    フェライト:0~10%、
    ベイナイト:0~20%、
    焼戻しマルテンサイト:70%以上、
    フレッシュマルテンサイト:0~10%、
    残留オーステナイト:0~10%、および
    パーライト:0~5%を含有し、
     前記亜鉛系めっき層を除去後、前記鋼板を室温から200℃まで加熱した際に放出される水素量が鋼板質量あたり0.40ppm以下であり、
     引張強度が1470MPa以上であり、
     1000MPa相当の応力を24時間付与するU字曲げ試験で割れが発生しないことを特徴とする亜鉛系めっき鋼板。
  2.  前記鋼板の前記化学組成が、
    Cr:0.001%~2.00%、
    Mo:0.001%~1.00%、
    B:0.0001%~0.010%、
    Cu:0.001%~1.00%、
    Ni:0.001%~1.00%、
    Co:0.001%~1.00%、
    W:0.001%~1.00%、
    Sn:0.001%~1.00%、および
    Sb:0.001%~0.50%、
    のうち一種または二種以上を含有することを特徴とする、請求項1に記載の亜鉛系めっき鋼板。
  3.  前記鋼板の前記化学組成が、
    Ti:0.001%~0.30%、
    Nb:0.001%~0.30%、および
    V:0.001%~1.00%、
    のうち一種または二種以上を含有することを特徴とする、請求項1または請求項2に記載の亜鉛系めっき鋼板。
  4.  前記鋼板の前記化学組成が、
    Ca:0.0001%~0.0100%、
    Mg:0.0001%~0.0100%、
    Ce:0.0001%~0.0100%、
    Zr:0.0001%~0.0100%、
    La:0.0001%~0.0100%、
    Hf:0.0001%~0.0100%、
    Bi:0.0001%~0.0100%、および
    REM:0.0001%~0.0100%、
    のうち一種または二種以上を含有することを特徴とする、請求項1~3の何れか一項に記載の亜鉛系めっき鋼板。
  5.  延性-脆性遷移温度が-40℃以下であることを特徴とする、請求項1~4の何れか一項に記載の亜鉛系めっき鋼板。
  6.  請求項1~4の何れか一項に記載の化学組成を有する鋼板に対して、以下の(I)~(IV)の各工程を順次行うことを特徴とする、請求項1~5の何れか一項に記載の亜鉛系めっき鋼板の製造方法:
    (I)加熱温度:Ac点~950℃、Ac点~950℃の温度域での保持時間:1~500sの条件で焼鈍するとともに、鋼板温度が600℃に達した時から、Ac点~950℃の温度域での保持が終了する時までの間、炉内の水素濃度を、常に、1.0~15.0体積%に維持する焼鈍工程;
    (II)Ms点~600℃の温度域で20~500sの保持を行い、その保持の間、炉内の水素濃度を、常に、1.0~10.0体積%に維持する第一保持工程;
    (III)鋼板を溶融亜鉛めっき浴に浸漬後、鋼板温度がMs点-150℃未満になるまで冷却するめっき工程;および
    (IV)水素濃度が0.50体積%未満の雰囲気中で、200℃以上350℃未満の温度域で10~1000s間保持した後、コイル状に巻き取る第二保持工程。
  7.  前記(III)の工程が、鋼板を溶融亜鉛めっき浴に浸漬後、460~600℃の温度域で合金化処理してから鋼板温度がMs点-150℃未満になるまで冷却する工程である
    ことを特徴とする請求項6に記載の亜鉛系めっき鋼板の製造方法。
PCT/JP2019/017988 2018-05-01 2019-04-26 亜鉛系めっき鋼板及びその製造方法 WO2019212047A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980028902.7A CN112074620B (zh) 2018-05-01 2019-04-26 镀锌钢板及其制造方法
JP2019551714A JP6645636B1 (ja) 2018-05-01 2019-04-26 亜鉛系めっき鋼板及びその製造方法
US17/051,110 US11685963B2 (en) 2018-05-01 2019-04-26 Zinc-plated steel sheet and manufacturing method thereof
MX2020011439A MX2020011439A (es) 2018-05-01 2019-04-26 Lamina de acero enchapada con zinc y metodo de fabricacion de la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-088417 2018-05-01
JP2018088417 2018-05-01

Publications (1)

Publication Number Publication Date
WO2019212047A1 true WO2019212047A1 (ja) 2019-11-07

Family

ID=68386356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017988 WO2019212047A1 (ja) 2018-05-01 2019-04-26 亜鉛系めっき鋼板及びその製造方法

Country Status (6)

Country Link
US (1) US11685963B2 (ja)
JP (1) JP6645636B1 (ja)
CN (1) CN112074620B (ja)
MX (1) MX2020011439A (ja)
TW (1) TW201945559A (ja)
WO (1) WO2019212047A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162562A1 (ja) * 2019-02-06 2020-08-13 日本製鉄株式会社 溶融亜鉛めっき鋼板およびその製造方法
WO2021045168A1 (ja) * 2019-09-03 2021-03-11 日本製鉄株式会社 鋼板
WO2022202107A1 (ja) * 2021-03-24 2022-09-29 Jfeスチール株式会社 亜鉛系めっき鋼板および冷延鋼板
WO2022202108A1 (ja) * 2021-03-24 2022-09-29 Jfeスチール株式会社 亜鉛系めっき鋼板およびその製造方法
CN115298344A (zh) * 2020-03-27 2022-11-04 日本制铁株式会社 热压成型体
JP2023508240A (ja) * 2020-03-02 2023-03-01 アルセロールミタル 高強度冷間圧延合金化溶融亜鉛めっき鋼板及びその製造方法
WO2024029145A1 (ja) * 2022-08-03 2024-02-08 日本製鉄株式会社 鋼板
WO2024048133A1 (ja) * 2022-08-29 2024-03-07 Jfeスチール株式会社 高強度鋼板およびその製造方法ならびに部材およびその製造方法
WO2024048132A1 (ja) * 2022-08-29 2024-03-07 Jfeスチール株式会社 高強度鋼板およびその製造方法ならびに部材およびその製造方法
WO2024048131A1 (ja) * 2022-08-29 2024-03-07 Jfeスチール株式会社 高強度亜鉛めっき鋼板およびその製造方法ならびに部材およびその製造方法
WO2024070889A1 (ja) * 2022-09-30 2024-04-04 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
WO2024070890A1 (ja) * 2022-09-30 2024-04-04 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088244B2 (ja) * 2020-09-03 2022-06-21 Jfeスチール株式会社 鋼帯の鋼中水素量予測方法、鋼中水素量制御方法、製造方法、鋼中水素量予測モデルの生成方法及び鋼中水素量予測装置
WO2022049859A1 (ja) * 2020-09-03 2022-03-10 Jfeスチール株式会社 鋼帯の鋼中水素量予測方法、鋼中水素量制御方法、製造方法、鋼中水素量予測モデルの生成方法及び鋼中水素量予測装置
CN113403529B (zh) * 2021-05-21 2022-07-19 鞍钢股份有限公司 冷冲压用1470MPa级合金化镀锌钢板及其制备方法
CN113403550B (zh) * 2021-05-21 2022-08-16 鞍钢股份有限公司 高塑性耐疲劳的冷轧热镀锌dh1180钢板及制备方法
CN113684443B (zh) * 2021-08-31 2023-12-15 盐城科奥机械有限公司 一种附属钢及其制备方法
CN115125439B (zh) * 2022-06-16 2023-10-31 唐山钢铁集团高强汽车板有限公司 一种锌基镀层1800Mpa级热冲压成型钢及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097725A (ja) * 2003-09-05 2005-04-14 Nippon Steel Corp 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
JP2013147750A (ja) * 2013-03-07 2013-08-01 Nippon Steel & Sumitomo Metal Corp 靭性及び耐水素脆化特性に優れた高強度ホットスタンピング成形品及びその製造方法
WO2015151428A1 (ja) * 2014-03-31 2015-10-08 Jfeスチール株式会社 材質均一性に優れた高強度冷延鋼板およびその製造方法
WO2016111271A1 (ja) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
WO2017009936A1 (ja) * 2015-07-13 2017-01-19 新日鐵住金株式会社 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2017145329A1 (ja) * 2016-02-25 2017-08-31 新日鐵住金株式会社 耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247907B2 (ja) 1992-11-05 2002-01-21 川崎製鉄株式会社 延性と耐遅れ破壊特性に優れた高強度冷延鋼板およびその製造方法
JP3514276B2 (ja) 1995-10-19 2004-03-31 Jfeスチール株式会社 耐遅れ破壊特性に優れた超高強度鋼板及びその製造方法
JPH101740A (ja) 1996-06-12 1998-01-06 Kobe Steel Ltd 耐遅れ破壊特性にすぐれる超高強度鋼板及びその製造方法
CN100410409C (zh) * 2004-12-28 2008-08-13 株式会社神户制钢所 耐氢脆化特性及加工性优异的超高强度薄钢板
CN100510141C (zh) * 2004-12-28 2009-07-08 株式会社神户制钢所 耐氢脆化特性优良的超高强度薄钢板
CN101351570B (zh) 2005-12-28 2013-01-30 株式会社神户制钢所 超高强度薄钢板
JP4174592B2 (ja) 2005-12-28 2008-11-05 株式会社神戸製鋼所 超高強度薄鋼板
JP5423072B2 (ja) * 2009-03-16 2014-02-19 Jfeスチール株式会社 曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板およびその製造方法
EP2508640B1 (en) * 2009-11-30 2019-09-11 Nippon Steel Corporation High-strength steel sheet having excellent hydrogen embrittlement resistance and ultimate tensile strength of 900 mpa or more, and process for production thereof
JP4977879B2 (ja) 2010-02-26 2012-07-18 Jfeスチール株式会社 曲げ性に優れた超高強度冷延鋼板
BR112014007432B1 (pt) 2011-09-30 2019-04-02 Nippon Steel & Sumitomo Metal Corporation Chapa de aço galvanizada e método de fabricação da mesma
EP3040440B1 (en) 2013-08-26 2019-03-06 JFE Steel Corporation High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP6452454B2 (ja) * 2014-02-28 2019-01-16 株式会社神戸製鋼所 高強度ばね用圧延材および高強度ばね用ワイヤ
EP3216886A4 (en) 2014-11-05 2018-04-11 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet
CN110121568B (zh) 2016-12-27 2021-02-19 杰富意钢铁株式会社 高强度镀锌钢板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097725A (ja) * 2003-09-05 2005-04-14 Nippon Steel Corp 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
JP2013147750A (ja) * 2013-03-07 2013-08-01 Nippon Steel & Sumitomo Metal Corp 靭性及び耐水素脆化特性に優れた高強度ホットスタンピング成形品及びその製造方法
WO2015151428A1 (ja) * 2014-03-31 2015-10-08 Jfeスチール株式会社 材質均一性に優れた高強度冷延鋼板およびその製造方法
WO2016111271A1 (ja) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
WO2017009936A1 (ja) * 2015-07-13 2017-01-19 新日鐵住金株式会社 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2017145329A1 (ja) * 2016-02-25 2017-08-31 新日鐵住金株式会社 耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6750771B1 (ja) * 2019-02-06 2020-09-02 日本製鉄株式会社 溶融亜鉛めっき鋼板およびその製造方法
WO2020162562A1 (ja) * 2019-02-06 2020-08-13 日本製鉄株式会社 溶融亜鉛めっき鋼板およびその製造方法
WO2021045168A1 (ja) * 2019-09-03 2021-03-11 日本製鉄株式会社 鋼板
JP7488351B2 (ja) 2020-03-02 2024-05-21 アルセロールミタル 高強度冷間圧延合金化溶融亜鉛めっき鋼板及びその製造方法
JP2023508240A (ja) * 2020-03-02 2023-03-01 アルセロールミタル 高強度冷間圧延合金化溶融亜鉛めっき鋼板及びその製造方法
CN115298344A (zh) * 2020-03-27 2022-11-04 日本制铁株式会社 热压成型体
CN115298344B (zh) * 2020-03-27 2023-05-12 日本制铁株式会社 热压成型体
WO2022202108A1 (ja) * 2021-03-24 2022-09-29 Jfeスチール株式会社 亜鉛系めっき鋼板およびその製造方法
JP7144711B1 (ja) * 2021-03-24 2022-09-30 Jfeスチール株式会社 亜鉛系めっき鋼板およびその製造方法
JP7144710B1 (ja) * 2021-03-24 2022-09-30 Jfeスチール株式会社 亜鉛系めっき鋼板および冷延鋼板
WO2022202107A1 (ja) * 2021-03-24 2022-09-29 Jfeスチール株式会社 亜鉛系めっき鋼板および冷延鋼板
WO2024029145A1 (ja) * 2022-08-03 2024-02-08 日本製鉄株式会社 鋼板
WO2024048133A1 (ja) * 2022-08-29 2024-03-07 Jfeスチール株式会社 高強度鋼板およびその製造方法ならびに部材およびその製造方法
WO2024048132A1 (ja) * 2022-08-29 2024-03-07 Jfeスチール株式会社 高強度鋼板およびその製造方法ならびに部材およびその製造方法
WO2024048131A1 (ja) * 2022-08-29 2024-03-07 Jfeスチール株式会社 高強度亜鉛めっき鋼板およびその製造方法ならびに部材およびその製造方法
JP7509327B1 (ja) 2022-08-29 2024-07-02 Jfeスチール株式会社 高強度亜鉛めっき鋼板およびその製造方法ならびに部材およびその製造方法
WO2024070889A1 (ja) * 2022-09-30 2024-04-04 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
WO2024070890A1 (ja) * 2022-09-30 2024-04-04 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法

Also Published As

Publication number Publication date
US11685963B2 (en) 2023-06-27
CN112074620B (zh) 2021-09-17
TW201945559A (zh) 2019-12-01
JP6645636B1 (ja) 2020-02-14
US20210230712A1 (en) 2021-07-29
CN112074620A (zh) 2020-12-11
MX2020011439A (es) 2020-12-07
JPWO2019212047A1 (ja) 2020-05-28

Similar Documents

Publication Publication Date Title
JP6645636B1 (ja) 亜鉛系めっき鋼板及びその製造方法
JP6631765B1 (ja) 亜鉛系めっき鋼板及びその製造方法
CN110121568B (zh) 高强度镀锌钢板及其制造方法
KR102220940B1 (ko) 강판 및 도금 강판
JP6465256B1 (ja) 鋼板
JP6314520B2 (ja) 引張最大強度1300MPa以上を有する成形性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、及び、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法
US11827947B2 (en) Hot press-formed member having excellent crack propagation resistance and ductility, and method for producing same
WO2012063969A1 (ja) 均一伸びとめっき性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5344100B2 (ja) 溶融亜鉛メッキ鋼板およびその製造方法
JP6750772B1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
EP2816129B1 (en) Cold-rolled steel sheet, plated steel sheet, and method for manufacturing the same
JP6274360B2 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
KR20210110357A (ko) 용융 아연 도금 강판 및 그 제조 방법
CN113710823B (zh) 钢板及其制造方法
JP6750771B1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
WO2017009938A1 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6460238B2 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
EP2740813A1 (en) Hot-dip galvanized steel sheet and production method therefor
WO2023013372A1 (ja) 高強度鋼板
CN114945690B (zh) 钢板及其制造方法
JP7191796B2 (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019551714

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19797125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19797125

Country of ref document: EP

Kind code of ref document: A1