WO2017145329A1 - 耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板 - Google Patents

耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板 Download PDF

Info

Publication number
WO2017145329A1
WO2017145329A1 PCT/JP2016/055635 JP2016055635W WO2017145329A1 WO 2017145329 A1 WO2017145329 A1 WO 2017145329A1 JP 2016055635 W JP2016055635 W JP 2016055635W WO 2017145329 A1 WO2017145329 A1 WO 2017145329A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mass
steel sheet
dip galvanized
base material
Prior art date
Application number
PCT/JP2016/055635
Other languages
English (en)
French (fr)
Inventor
健志 安井
裕之 川田
山口 裕司
亮介 駒見
智史 内田
映信 村里
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US16/060,331 priority Critical patent/US10704132B2/en
Priority to PCT/JP2016/055635 priority patent/WO2017145329A1/ja
Priority to BR112018012606-3A priority patent/BR112018012606A2/ja
Priority to CN201680082185.2A priority patent/CN108699664B/zh
Priority to EP16891486.9A priority patent/EP3378965B1/en
Priority to KR1020187023400A priority patent/KR102115278B1/ko
Priority to MX2018008543A priority patent/MX2018008543A/es
Priority to JP2018501502A priority patent/JP6583528B2/ja
Priority to PL16891486T priority patent/PL3378965T3/pl
Priority to ES16891486T priority patent/ES2820311T3/es
Publication of WO2017145329A1 publication Critical patent/WO2017145329A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24983Hardness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2942Plural coatings
    • Y10T428/2949Glass, ceramic or metal oxide in coating

Definitions

  • the present invention relates to a high-strength hot-dip galvanized steel sheet, and more particularly to a high-strength hot-dip galvanized steel sheet excellent in impact resistance and plating adhesion, and more particularly to a plated steel sheet that can be applied as a strength member for automobiles.
  • Hot-dip galvanized steel sheets are widely used for automobiles, home appliances, building materials and the like. Automotive steel sheets that are pressed into complex shapes are required to have extremely high formability, and in recent years, galvanized steel sheets have been applied to automotive steel sheets due to the increasing demand for automotive rust prevention performance. The number of cases being increased.
  • Patent Document 1 discloses a steel plate having a steel plate structure in which three phases of a ferrite phase, a bainite phase, and an austenite phase are mixed. Moreover, it is disclosed that this steel plate is a steel plate utilizing transformation-induced plasticity that exhibits high ductility by transforming residual austenite into martensite during forming.
  • This type of steel sheet contains, for example, 0.05 to 0.4% by mass of C, 0.2 to 3.0% by mass of Si, and 0.1 to 2.5% by mass of Mn. After annealing, the composite structure is formed by controlling the temperature pattern of the cooling process. Therefore, it has a feature that required characteristics can be secured without using an expensive alloy element. In recent years, even for such high-strength steel sheets, there is an increasing need for high-strength hot-dip galvanized steel sheets in which hot-dip galvanizing is performed on the surface of the steel sheet base material in order to ensure rust prevention.
  • Such high-strength steel sheets increase not only the strength members for inner plate applications, but also the opportunity to be applied as outer members that may be subjected to impacts from stones and obstacles flying during vehicle travel. ing. Further, when applied to a complicated shape member, high workability is required.
  • high-strength hot-dip galvanized steel sheet when it is subjected to impacts from stones and obstacles flying during traveling, and when plating adhesion is assumed during strong processing, not only the normal 60 ° V bending test, It is required that plating adhesion can be ensured even by a strict evaluation method such as a ball impact test or a draw bead test.
  • Patent Document 2 discloses that a steel sheet is previously heated in an atmosphere having an air ratio of 0.9 to 1.2 to generate Fe oxide, and then a reduction zone containing H 2. Thus, a method is proposed in which after the oxide thickness is reduced to 500 mm or less, plating is performed in a bath containing Mn and Al.
  • various steel plates containing various additive elements are passed through the actual line, it is difficult to accurately control the thickness of the oxide, and there is a problem that the manufacturing condition range in the actual machine is narrow. It was. Although the effect of improving the wettability and plating adhesion during normal processing can be expected, the effect of improving the plating adhesion during impact and strong processing was small.
  • Patent Document 3 discloses a method of improving plating properties by applying specific plating to the lower layer.
  • this method it is necessary to newly provide a plating facility before the annealing furnace in the hot dipping line, or to perform a plating process in advance in the electroplating line. In either case, a significant increase in manufacturing cost is expected.
  • the effect of improving the plating adhesion at the time of impact or strong processing and the corrosion resistance of the processed part was small.
  • Patent Document 4 discloses a method of manufacturing a hot-dip galvanized steel sheet without adjusting Fe in the steel sheet by adjusting the oxygen potential of the annealing atmosphere during annealing.
  • oxidizable elements such as Si and Mn in steel are internally oxidized by controlling the oxygen potential of the atmosphere, and the formation of an external oxide film is suppressed, thereby achieving an improvement in plating performance. Yes.
  • sufficient adhesion can be secured during normal processing, but the effect of improving plating adhesion during impact or strong processing and corrosion resistance of the processed part cannot be expected.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a high-strength hot-dip galvanized steel sheet excellent in impact peel resistance and processed portion corrosion resistance.
  • the present inventors have intensively studied to solve the above problems. As a result, even when a steel plate containing a large amount of Si or Mn is used as the plating base plate, a convex alloy layer is formed in the plating layer of the high-strength hot-dip galvanized steel plate, so It has been found that the plating adhesion during processing is remarkably improved. At the same time, by controlling the structure of the steel plate base material side to a three-layer structure of a refined layer, a decarburized layer, and an inner layer, even in processing in extremely severe strain conditions such as a 180 ° bending top, It was found that cracks penetrating from the base material to the surface layer of the plating layer and the extension are remarkably suppressed. Furthermore, by making the plating layer and the steel plate base material have the above-described structure, the present inventors have found an effect of significantly improving the corrosion resistance of the processed part while maintaining a high strength of 590 MPa.
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows.
  • the plating layer has a convex alloy layer in contact with the steel plate base material, and the number density of the convex alloy layers is 4 pieces / mm or more per unit length of the interface between the steel plate base material and the plating layer viewed from the cross-sectional direction.
  • the steel plate base material is a refined layer in direct contact with the interface between the steel plate base material and the plating layer, A decarburized layer in contact with the refined layer and present on the inner side of the steel plate base material; An internal layer other than the refined layer and the decarburized layer, The average thickness of the refined layer is 0.1 to 5 ⁇ m, and the average grain size of the ferrite phase in the refined layer is 0.1 to 3 ⁇ m; The average thickness of the decarburized layer is 10 to 200 ⁇ m, the average particle diameter of the ferrite phase in the decarburized layer is 5 to 30 ⁇ m, the average volume fraction of the ferrite phase in the decarburized layer is 70% or more, and the remaining structure is austenite , Bainite, martensite, or perlite, The ratio Hv (surf) / Hv (bulk) between the average Vickers hardness Hv (surf) of the decarburized layer and the
  • the oxide contained in the refined layer, decarburized layer, and convex alloy layer is one or more of SiO 2 , Mn 2 SiO 4 , MnSiO 3 , Fe 2 SiO 4 , FeSiO 3 , MnO.
  • the high-strength hot-dip galvanized steel sheet excellent in impact resistance and processed part corrosion resistance as described in (1) above.
  • the high-strength galvannealed steel sheet of the present invention is based on a high-strength steel sheet containing a large amount of Si or Mn, but can ensure plating adhesion during impact or strong processing, and 180 ° It is possible to provide a high strength alloyed hot-dip galvanized steel sheet that exhibits excellent corrosion resistance even in extremely severe processed parts such as the bending top, and it is possible to provide an inner and outer plate of an automobile and a high strength member. It is extremely effective as a use.
  • the high-strength hot-dip galvanized steel sheet of the present invention is C: 0.05 to 0.4% by mass, Si: 0.4 to 3.0% by mass, Mn: 1.0 to 4.0% by mass, P: 0.0001 to 0.1% by mass, S: 0.0001 to 0.01% by mass, Al: 0.005 to 0.1% by mass, N: 0.0005 to 0.01% by mass, O: 0.0001 to 0.01% by mass And the balance consists of Fe and inevitable impurities, On a steel plate base material having a tensile strength of 590 MPa or more, a hot dip galvanized layer comprising Fe: 0.01 to 6.9% by mass, Al: 0.01 to 1.0% by mass, the balance Zn and inevitable impurities is provided.
  • the plating layer has a convex alloy layer in contact with the steel plate base material, and the number density of the convex alloy layers is 4 pieces / mm or more per unit length of the interface between the steel plate base material and the plating layer viewed from the cross-sectional direction.
  • the steel plate base material is a refined layer in direct contact with the interface between the steel plate base material and the plating layer, A decarburized layer in contact with the refined layer and present on the inner side of the steel plate base material; An internal layer other than the refined layer and the decarburized layer, The average thickness of the refined layer is 0.1 to 5 ⁇ m, and the average grain size of the ferrite phase in the refined layer is 0.1 to 3 ⁇ m; The average thickness of the decarburized layer is 10 to 200 ⁇ m, the average particle size of the ferrite phase in the decarburized layer is 5 to 30 ⁇ m, and the average volume fraction of the ferrite phase in the decarburized layer is 70% or more, The remaining structure consists of austenite, bainite, martensite, or perlite, The ratio Hv (surf) / Hv (bulk) between the average Vickers hardness Hv (surf) of the decarburized layer
  • Convex alloy layer in plating layer In the high-strength hot-dip galvanized steel sheet of the present invention, the plating adhesion during impact or strong processing can be ensured by including a convex alloy layer in the plating layer.
  • the convex alloy layer 2 as shown in FIG. 1 in the plating layer By including the convex alloy layer 2 as shown in FIG. 1 in the plating layer, a large uneven shape can be formed at the interface between the steel plate base material and the plating layer, and the steel plate base material is subjected to impact and strong processing. Even when a strong shearing stress acts in the interface direction between the plating layer and the plating layer, a significant improvement in plating adhesion can be expected due to the anchor effect.
  • the convex alloy layer 2 As a form of the convex alloy layer 2, a higher anchor effect can be expected in a form in which small convex alloy layers are dispersed, rather than a coarse convex alloy layer formed sparsely. Therefore, when the maximum diameter of the convex alloy layer 2 at the interface between the base material 4 and the plating layer 1 shown in FIG. 1 is more than 100 ⁇ m, the effective anchor effect cannot be expected. Therefore, the upper limit of the maximum length (maximum diameter 3) of the convex alloy layer is set to 100 ⁇ m. Preferably, the upper limit is 40 ⁇ m. Further, the lower limit of the maximum length of the convex alloy layer 2 is not particularly limited, but is preferably 3 ⁇ m or more.
  • the number density of the convex alloy layer is set to 4 or more per 1 mm of the interface length between the steel plate base material and the plating layer when the interface between the steel plate base material and the plating layer is viewed from the cross-sectional direction.
  • the effect which improves is expressed.
  • the number density of the convex alloy layers exceeds 100 / mm, not only the effect is saturated but also the chipping resistance may be deteriorated. Therefore, it is desirable that the upper limit of the number density of the convex alloy layer is 100 / mm.
  • the range is 10 to 60 pieces / mm. As shown in FIG.
  • the convex alloy layer 2 is in contact with the interface between the base material 4 and the plating layer 1 and has a structure that enters the plating layer 1 from the interface.
  • the shape of the convex alloy layer 2 is arbitrary as long as it contacts the interface 3 and enters the plating layer 1. Since the convex alloy layer 2 is in contact with the interface with the base material 3 without an Fe—Al phase and protrudes into the plating layer 1, it is considered that the plating adhesion is improved by the anchor effect.
  • the convex alloy layer in the present invention is formed by performing a light alloying heat treatment after immersion in the plating bath, as will be described later.
  • Fine columnar ⁇ phase (FeZn 13 ) and ⁇ 1 phase (FeZn 7 ) fine columnar crystals (hereinafter referred to as crystallization phase in the bath), which are directly crystallized and formed at the interface between the steel plate base metal and molten zinc in the plating bath. ) Does not adversely affect the effect of the present invention even if it coexists with the convex alloy layer, but it cannot be expected to increase the adhesion during impact or strong processing.
  • the thickness of the convex alloy layer is 2 ⁇ m or more, and an Fe—Al phase is formed at the interface between the convex alloy layer and the steel plate base material.
  • the upper limit of the thickness of the convex alloy layer is not particularly limited, but is preferably 90% or less of the total thickness of the plating layer. Crystallization is directly formed at the interface between the convex alloy layer and the steel plate base material, and there is no Fe—Al phase between the interface. Since the convex alloy layer is in direct contact with the base material without interposing the Fe—Al phase, it is considered effective for improving the adhesion.
  • phase constituting the convex alloy layer is not particularly limited, but is a Fe-Zn intermetallic compound phase, ⁇ phase (FeZn 13 ), ⁇ 1 phase (FeZn 7 ), ⁇ 1 phase.
  • ⁇ phase FeZn 13
  • ⁇ 1 phase FeZn 7
  • ⁇ 1 phase FeZn 7
  • Measurement method of convex alloy layer As a measuring method of the maximum length and number density of the convex alloy layer, etching is performed with 0.5% nital after cross-section embedding polishing, a photograph is taken at 200 times the optical microscope, and the number density per unit length is obtained. In the same photograph, the maximum length of the convex alloy layer is measured. Five photographs are taken at a magnification of 200 for one sample, the length of the convex alloy layer is measured for each, and the maximum value among them is taken as the maximum length of the convex alloy layer in the sample.
  • the convex alloy layer is generated by an alloying reaction from the interface between the plating layer and the steel plate base material, but when the convex alloy layer reaches the resurface of the plating layer, the surface gloss is lowered and the appearance uniformity is lowered. . Therefore, in the high-strength hot-dip galvanized steel sheet of the present invention, it is more preferable that no convex alloy layer exists on the outermost surface of the hot-dip galvanized layer.
  • Fe concentration of plating layer As described above, in the high-strength hot-dip galvanized layer of the present invention, it is important to control the shape of the convex alloy layer. By setting the Fe concentration to 0.01% by mass or more, the convex alloy layer can be contained in the plating layer. On the other hand, when the Fe concentration exceeds 6.9% by mass, a part of the alloying reaction proceeds to the surface of the plating layer, and the effect of improving the plating adhesion is reduced. Therefore, the Fe concentration in the plating layer is limited to the range of 0.01 to 6.9% by mass. Preferably, the content is 2.0 to 6.9% by mass.
  • Al concentration of plating layer If the Al concentration in the plating layer is less than 0.01% by mass, the excessive Fe—Zn reaction in the plating bath cannot be controlled, and the structure control of the plating layer becomes difficult. On the other hand, when the Al concentration is 1.0% by mass, a dense Al 2 O 3 film is formed on the surface of the plating layer, which may hinder spot weldability. From the viewpoint of controlling the structure of the plating layer, the Al concentration in the plating layer is more preferably 0.03% by mass to 0.8% by mass. More preferably, it is in the range of 0.1% by mass to 0.5% by mass.
  • the hot dip galvanized layer is made of Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, Sr, In, Cs, One type or two or more types of REM may be contained or mixed. Even if the hot-dip galvanized layer contains or mixes one or more of the above elements, the effects of the present invention are not impaired, and depending on the content, the corrosion resistance and workability are improved. It may be preferable.
  • plating composition measurement method In order to measure the Fe concentration and the Al concentration in the plating layer, the plating layer is dissolved in a 5% HCl aqueous solution to which an inhibitor is added, and the solution is quantified by ICP analysis.
  • the high-strength hot-dip galvanized steel sheet according to the present invention has a refined layer 5 in direct contact with the interface between the steel sheet base material and the plating layer on the steel sheet base material side.
  • the refined layer 5 a layer mainly composed of ultrafine grains of ferrite phase is formed, and cracks from the inside of the steel plate base metal are generated even in extremely severe strained parts such as the top of the 180 ° bending process. Occurrence and subsequent crack extension can be suppressed.
  • the average thickness of the micronized layer 0.1 ⁇ m or more, the effect of suppressing crack generation and extension during processing is exhibited.
  • the average thickness of the refined layer exceeds 5 ⁇ m, alloying proceeds excessively in the plating bath, and the plated layer structure of the present invention cannot be obtained. Therefore, the average thickness of the refined layer is limited to the range of 0.1 to 5 ⁇ m.
  • the average thickness of the miniaturized layer is in the range of 0.1 to 3 ⁇ m.
  • the effect which suppresses the crack generation at the time of a process and extension is expressed by making the average particle diameter of the ferrite phase in a refinement
  • the range is preferably 0.1 to 2 ⁇ m.
  • annealing is performed in a specific temperature range in a specific temperature range in an annealing process.
  • the decarburization reaction proceeds on the surface layer of the steel plate base material in a specific temperature range. Since the steel plate base material is decarburized in the refined layer, the constituent phases in the refined layer are substantially composed mainly of a ferrite phase except for oxides and inclusion particles.
  • the effect of allowing the refined layer to exist on the side of the steel plate base material is to suppress the generation of cracks and extension during strong processing as described above.
  • the ferrite grain size of the surface layer of the steel sheet is made finer in the process of heat alloying after hot dip galvanizing to form a convex alloy layer. It has the effect of promoting the Zn alloying reaction. For this reason, in the state having the refined layer, the amount of heat input required for forming the convex alloy layer can be kept low, and the heating temperature in the alloying process can be lowered. When the heating temperature in the alloying process is lowered, the Fe—Zn reaction rate decreases, so that it is easy to reduce the reaction before the convex alloying layer covers the entire plating layer, and it can be manufactured.
  • the condition range can be expanded.
  • the average crystal grain size of the ferrite phase in the refined layer may be measured.
  • the definition of the refined layer is defined as the presence of the refined layer when the average particle size of the ferrite phase in the steel sheet base material resurfacing layer is 1 ⁇ 2 or less of the average particle size of the ferrite phase in the decarburized layer. Further, a boundary where the average particle diameter of the ferrite phase in the refined layer exceeds 1/2 of the average particle diameter of the ferrite phase in the decarburized layer is defined as a layer boundary between the refined layer and the decarburized layer.
  • decarburized layer In the high-strength hot-dip galvanized steel sheet of the present invention, a decarburized layer 6 as shown in FIG. 1 exists.
  • the volume fraction of the hard phase (remaining structure 9) is lower than that of the inner layer 7, and the strength is also low. It is hard to become, and the crack generation
  • the average thickness of the decarburized layer By setting the average thickness of the decarburized layer to 10 ⁇ m or more, the effect of suppressing the occurrence of cracks also appears at the top of the 180 ° bending process, and when it exceeds 200 ⁇ m, the characteristics of the decarburized layer lower the tensile strength of the entire steel sheet base material. End up. For this reason, it was limited to the range of 10 to 200 ⁇ m. The preferred range is 30 to 150 ⁇ m.
  • a ferrite structure 8 is a main component, and the remaining structure 9 is composed of one or more of an austenite phase, a bainite phase, a martensite phase, and a pearlite phase. It becomes.
  • the volume fraction of the ferrite phase 70% or more in the decarburized layer 6 the average hardness of the decarburized layer 6 is sufficiently lowered with respect to the inner layer 7, and the effect of suppressing the occurrence of cracks at the 180 ° bent head is obtained.
  • the average particle size of the ferrite phase in the decarburized layer is less than 5 ⁇ m, the effect of softening the decarburized layer is poor. If the average particle size of the ferrite phase in the decarburized layer is more than 30 ⁇ m, the low temperature toughness may be inferior. For this reason, the average particle diameter of the ferrite phase in the decarburized layer is limited to the range of 5 to 30 ⁇ m. Further, by making the decarburized layer as in the present invention, the ratio Hv (surf) / Hv (bulk) of the average Vickers hardness Hv (surf) of the decarburized layer and the average Vickers hardness Hv (bulk) of the inner layer is 0.
  • Hv (surf) / Hv (bulk) is less than 0.3, the hardness of the decarburized layer is too low, which may adversely affect the strength of the entire steel sheet base material. Further, if Hv (surf) / Hv (bulk) exceeds 0.8, the decarburized layer is not sufficiently soft with respect to the inner layer, so that cracks occur at the top of the 180 ° bent head. Therefore, in the present invention, Hv (surf) / Hv (bulk) is limited to a range of 0.3 to 0.8. Preferably, Hv (surf) / Hv (bulk) is in the range of 0.3 to 0.6.
  • Measurement method of decarburized layer To measure the thickness of the decarburized layer, first, the cross section of the steel plate is embedded and polished, and the hardness curve is measured with a micro Vickers from the interface between the steel plate base material and the plating layer toward the steel plate base material side, and the hardness of the inner layer is determined. The thickness of the layer whose hardness is reduced is obtained. The thickness of the obtained layer includes both the thickness of the decarburized layer and the thickness of the refined layer, and the value obtained by subtracting the thickness of the refined layer obtained by the above method from the thickness of the layer obtained by Micro Vickers It becomes the charcoal layer thickness. Moreover, what is necessary is just to let the average value of the measurement hardness in a decarburization layer be Hv (surf), and let the average value of the measurement hardness in an internal layer be Hv (bulk).
  • the volume fraction of the ferrite phase in the decarburized layer a sample is taken with the plate thickness section parallel to the rolling direction of the steel plate base material as the observation surface, the observation surface is polished, nital etched, in the decarburization layer, The area fraction of the ferrite phase is measured by observing with FE-SEM, and can be regarded as the volume fraction. At the same time, the particle size of the ferrite phase can be measured.
  • the structure of the inner layer in the present invention is not particularly limited as long as the tensile strength of the steel sheet is 590 MPa or more, and Hv (surf) / Hv (bulk) can ensure a range of 0.3 to 0.8.
  • Hv (surf) / Hv (bulk) can ensure a range of 0.3 to 0.8.
  • the ferrite phase is 50% or more and the remaining structure 9 is a structure composed of martensite, austenite, bainite, and pearlite.
  • the high-strength hot-dip galvanized steel sheet of the present invention has a convex alloy layer in the plating layer, and has a refined layer and a decarburized layer on the steel sheet base metal side.
  • the effects of each single unit are as described above, but by making these all exist as in the present invention, a machined part in an extremely severe strain state, such as a 180 ° bending head, which could not be expected in the past. The effect of significantly improving the corrosion resistance is obtained.
  • the strain of the material is large, the plating layer is deformed following, the adhesion is remarkably lowered near the interface between the steel plate base material and the plating layer, the plating layer is peeled off, and the corrosion resistance of the processed part is lowered.
  • an oxide containing one or more of Si and Mn is contained in the refined layer, the decarburized layer, and the convex alloy layer.
  • the oxide contained in the refined layer, the decarburized layer, and the convex alloy layer is one selected from SiO 2 , Mn 2 SiO 4 , MnSiO 3 , Fe 2 SiO 4 , FeSiO 3 , and MnO, or Two or more types are more preferable.
  • the effect of forming the convex alloy layer 2 in the plating layer 1 is to improve the plating adhesion during impact and during strong processing.
  • an internal oxide is formed on the surface of the steel plate base material in a specific temperature range, and after the hot dip galvanization, a mild alloying heat treatment is performed to form a convex alloy layer.
  • the convex alloy layer 2 as shown in FIG. 1 can be formed by the above reaction, the convex alloy layer inevitably contains an oxide. More preferably, the oxide contained in the convex alloy layer has a maximum diameter of 0.05 to 0.4 ⁇ m and a number density of 20 to 100 / ⁇ m 2 .
  • the miniaturized layer 5 having a structure as shown in FIG. 1 can be formed. Therefore, oxides are inevitably contained in the miniaturized layer. More preferably, the oxide contained in the miniaturized layer has a maximum diameter of 0.01 ⁇ m to 0.2 ⁇ m and a number density of 20 to 100 / ⁇ m 2 .
  • a thin-film sample is fabricated by FIB (Focused Ion Beam) processing of a cross section of a plated steel sheet, and then FE-TEM (Field Emission). This is performed by observing at 30000 times in a Transmission Electron Microscope). For one sample, five fields of view are photographed, and the average value of the number density of oxides throughout the entire field of view is taken as the number density of the sample. Moreover, let the maximum value of the diameter of the oxide measured in the whole visual field be the maximum diameter of the oxide of the sample.
  • “Chemical composition of steel base metal” The chemical component composition of the base steel sheet that forms the high-strength hot-dip galvanized steel sheet according to the embodiment of the present invention will be described.
  • C is an element that increases the strength of steel, and it is effective to contain 0.05% by mass or more. However, if excessively contained, the strength increases excessively and the workability decreases, so the upper limit is 0.4. Mass%. From the viewpoint of workability and weldability, a range of 0.07 to 0.3 mass% is preferable.
  • Si is an effective element that can improve the strength without reducing ductility, and it is effective to add 0.4% by mass or more.
  • the upper limit is set to 3.0% by mass.
  • the range is 0.5 to 2.5% by mass.
  • Mn is an important element for increasing the strength, and is added by 1.0% by mass or more. However, if it exceeds 4.0% by mass, cracks are likely to occur in the slab and the spot weldability deteriorates, so 4.0% by mass is the upper limit. From the viewpoint of strength and workability, it is preferably in the range of 1.5 to 3.5% by mass.
  • P is an element that increases the strength of the steel while lowering the workability, so the upper limit is 0.1% by mass. In order to reduce P to less than 0.0001% by mass, the refining cost increases, so the lower limit is made 0.0001% by mass. From the balance of strength, workability and cost, 0.005 to 0.02 mass% is preferable.
  • S is an element that lowers the hot workability and corrosion resistance of steel. If it exceeds 0.01% by mass, the hot workability and corrosion resistance are deteriorated, so the upper limit is made 0.01% by mass. Moreover, since it is disadvantageous in terms of cost to be less than 0.0001% by mass, the lower limit is set to 0.0001% by mass. However, since it becomes easy to generate a surface defect when S is reduced too much, it is preferable to set it as 0.001 mass% or more.
  • Al is added as a deoxidizing element of steel, and is added in an amount of 0.005% by mass or more in order to improve the material by suppressing the grain refinement of the hot rolled material by AlN and the coarsening of crystal grains in a series of heat treatment steps There is a need. However, if it exceeds 0.1% by mass, the weldability may be deteriorated, so the content is made 0.1% by mass or less. Furthermore, it is preferable to set it as 0.08 mass% or less from a viewpoint of reducing the surface defect by an alumina cluster.
  • N increases the strength of the steel while lowering the workability, so the upper limit is made 0.01% by mass.
  • the content is more preferably 0.005% by mass or less.
  • N is preferably as little as possible, but reducing it to less than 0.0005% by mass requires excessive cost, so the lower limit is made 0.0005% by mass.
  • O forms an oxide and deteriorates ductility and stretch flangeability, so the content needs to be suppressed. If the content of O exceeds 0.010%, deterioration of stretch flangeability becomes significant, so the upper limit of the O content was set to 0.010%. Furthermore, the O content is preferably 0.007% or less, and more preferably 0.005% or less. Although the lower limit of the content of O is not particularly defined, the effect of the present invention can be exhibited. However, if the content of O is less than 0.0001%, a significant increase in production cost is caused. The lower limit was 0001%. The O content is preferably 0.0003% or more, and more preferably 0.0005% or more.
  • the following elements may be added to the steel plate base material of the hot dip galvanized steel plate according to the embodiment of the present invention as necessary.
  • Ti is an element that contributes to increasing the strength of the steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization.
  • the Ti content is more preferably 0.150% or less.
  • the Ti content is more preferably 0.080% or less.
  • the Ti content should be 0.001% or more in order to sufficiently obtain the strength increasing effect due to the addition of Ti. preferable.
  • the Ti content is more preferably 0.010% or more.
  • Nb is an element that contributes to increasing the strength of the steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization.
  • the Nb content is more preferably 0.100% or less.
  • the Nb content is more preferably 0.050% or less.
  • the Nb content is preferably 0.001% or more in order to sufficiently obtain the strength increasing effect due to the addition of Nb. .
  • the Nb content is more preferably 0.010% or more.
  • Mo is an element that suppresses phase transformation at high temperature and is effective for increasing strength, and may be added instead of a part of C and / or Mn. If the Mo content exceeds 2.00%, the hot workability is impaired and the productivity is lowered, so the Mo content is preferably 2.00% or less, and 1.40. More preferably, it is% or less. Although the effect of the present invention is exhibited even if the lower limit of the Mo content is not particularly defined, the Mo content is 0.01% or more in order to sufficiently obtain the effect of increasing the strength by adding Mo. It is preferably 0.10% or more.
  • Cr is an element that suppresses phase transformation at high temperature and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the Cr content exceeds 2.00%, the hot workability is impaired and the productivity is lowered. Therefore, the Cr content is preferably 2.00% or less, and 1.40. More preferably, it is% or less. Although the effect of the present invention is exhibited even if the lower limit of the Cr content is not particularly defined, the Cr content is 0.01% or more in order to sufficiently obtain the effect of increasing the strength by adding Cr. It is preferably 0.10% or more.
  • Ni is an element that suppresses phase transformation at high temperature and is effective for increasing strength, and may be added instead of a part of C and / or Mn. If the Ni content exceeds 2.00%, weldability is impaired. Therefore, the Ni content is preferably 2.00% or less, and more preferably 1.40% or less. Although the effect of the present invention is exhibited even if the lower limit of the Ni content is not particularly defined, the Ni content should be 0.01% or more in order to sufficiently obtain the effect of increasing the strength by adding Ni. Is preferable, and it is further more preferable that it is 0.10% or more.
  • Cu is an element that increases strength by being present in steel as fine particles, and can be added in place of a part of C and / or Mn. If the Cu content exceeds 2.00%, weldability is impaired. Therefore, the Cu content is preferably 2.00% or less, and more preferably 1.40% or less. Although the effect of the present invention is exhibited even if the lower limit of the Cu content is not particularly defined, the Cu content should be 0.01% or more in order to sufficiently obtain the effect of increasing the strength by adding Cu. Is preferable, and it is further more preferable that it is 0.10% or more.
  • B is an element that suppresses phase transformation at high temperature and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the B content exceeds 0.010%, the hot workability is impaired and the productivity is lowered. Therefore, the B content is preferably 0.010% or less. From the viewpoint of productivity, the B content is more preferably 0.006% or less. Although the effect of the present invention is exhibited even if the lower limit of the B content is not particularly defined, the B content is set to 0.0001% or more in order to sufficiently obtain the effect of increasing the strength by adding B. It is preferable. In order to further increase the strength, the B content is more preferably 0.0005% or more.
  • the slab used for hot rolling is not particularly limited, and any slab manufactured by a continuous cast slab, a thin slab caster or the like may be used. It is also compatible with processes such as continuous casting-direct rolling (CC-DR), in which hot rolling is performed immediately after casting.
  • CC-DR continuous casting-direct rolling
  • the finishing temperature of hot rolling is not particularly limited, but is preferably 850 to 970 ° C. from the viewpoint of ensuring the press formability of the steel sheet.
  • the cooling conditions and coiling temperature after hot rolling are not particularly limited, but the coiling temperature is to avoid large material variations at both ends of the coil and to avoid pickling deterioration due to increased scale thickness. Is not more than 750 ° C., and if the coiling temperature is too low, ear cracks are likely to occur during cold rolling. After that, to remove the black scale, after performing normal pickling, the rolling reduction during cold rolling may be under normal conditions, and the rolling rate is 50% or more for the purpose of maximizing workability. More preferably. On the other hand, performing cold rolling at a rolling rate exceeding 85% requires a large cold rolling load, so it is more preferably 85% or less.
  • the atmosphere when hot-dip galvanizing is performed on a steel sheet having the above-described component composition contains 0.1 to 20% by volume of H 2 , The balance is N 2 , H 2 O, O 2 and an inevitable impurity atmosphere, and the atmosphere between 650 and the maximum heating temperature is ⁇ 1.7 ⁇ log (P H2O / P H2 ) ⁇ ⁇ 0.6
  • the atmosphere to be filled after heating and heating at an average heating rate of 0.5 to 5 ° C./s, annealing is continuously performed, and then cooled to 650 ° C.
  • a galvanizing bath is cooled at an average cooling rate of 3 to 200 ° C / s between 650 ° C and 500 ° C, and the galvanizing bath temperature is 450 to 470 ° C and the steel plate temperature when entering the plating bath is 430 to 500 ° C.
  • the alloy is heated at 400-440 ° C for 1-50s. It is preferable to, and then cooled to room temperature.
  • the hot dip galvanizing is preferably performed in a total reduction furnace of a continuous hot dip plating facility.
  • the atmosphere during annealing is 0.1 to 20% by volume of H 2 , and the balance is made of N 2 , H 2 O, O 2 and unavoidable impurities. If the hydrogen content is less than 0.1% by volume, the oxide film present on the surface layer of the steel sheet cannot be sufficiently reduced, and plating wettability cannot be ensured. Therefore, the amount of hydrogen in the reduction annealing atmosphere is set to 0.1% by volume or more. If the hydrogen in the reducing annealing atmosphere exceeds 20% by volume, the dew point (corresponding to the water vapor partial pressure P H2O ) rises too much, and it is necessary to introduce equipment for preventing dew condensation. Since the introduction of new equipment causes an increase in production cost, the hydrogen amount in the reduction annealing atmosphere is set to 20% by volume or less. More preferably, it is 0.5 volume% or more and 15 volume% or less.
  • the refined layer 5 and the decarburized layer 6 as shown in FIG. 1 of the present invention are formed by heating at an average heating rate of 0.5 to 5 ° C./s.
  • the temperature range below 650 ° C. recrystallization of the steel sheet structure is hardly started.
  • the temperature range of 650 ° C. or higher recrystallization starts, and the recrystallized grains that have been nucleated gradually grow.
  • the atmosphere between the temperature of 650 ° C. and the maximum heating temperature is log (P H2O / P H2 ) less than ⁇ 1.7, Si and Mn hardly oxidize internally in the steel sheet surface layer, and the decarburization reaction does not proceed. A refined layer or a decarburized layer cannot be formed. If log (P H2O / P H2 ) exceeds ⁇ 0.6, the thickness of the decarburized layer becomes too large, which adversely affects the strength of the entire steel sheet base material. Therefore, the range of ⁇ 1.7 ⁇ log (P H2O / P H2 ) ⁇ ⁇ 0.6 is preferable. More preferably, ⁇ 1.3 ⁇ log (P H2O / P H2 ) ⁇ ⁇ 0.7.
  • the average temperature rise rate in this temperature range exceeds 5 ° C./s, recrystallization of the steel sheet base material layer proceeds before the formation of the internal oxide particles, and a refined layer cannot be obtained. In addition, a sufficient time for the decarburization reaction to proceed cannot be ensured, and a decarburized layer cannot be formed.
  • the average rate of temperature increase in this temperature range is less than 0.5 ° C./s, the decarburization reaction may proceed excessively and the strength of the entire steel sheet base metal may be reduced. For this reason, it is preferable that the average rate of temperature increase between 650 ° C. and the maximum heating temperature be in the range of 0.5 to 5 ° C./s. More preferably, the average temperature rising rate is in the range of 0.5 to 3 ° C./s.
  • the maximum heating temperature is not particularly limited, but if it exceeds 900 ° C., the shape of the plate during high-temperature feeding may be deteriorated, so it is preferably in the range of 800 to 900 ° C.
  • annealing time is not particularly limited, and conditions may be set as necessary. However, from the viewpoint of economy and surface properties of the plate, it is preferably in the range of 1 s to 300 s. More preferably, the range is from 30 s to 150 s.
  • the average cooling rate from the maximum heating temperature to 650 ° C is 0 . 1 to 200 ° C./s is desirable.
  • the cooling rate is 0. Setting it to less than 1 ° C./s is not desirable because productivity is greatly impaired. In addition, excessively increasing the cooling rate leads to an increase in manufacturing cost, so the upper limit is preferably set to 200 ° C./s.
  • the cooling rate at 650 to 500 ° C. is preferably 3 to 200 ° C./s. If the cooling rate is too low, austenite is transformed into a pearlite structure during the cooling process, and it becomes difficult to secure an austenite volume ratio of 3% or more.
  • the lower limit is preferably 3 ° C./s.
  • the upper limit is preferably set to 200 ° C./s.
  • the cooling method may be roll cooling, air cooling, water cooling, or any combination of these methods.
  • the plating bath temperature in the hot dip galvanizing step is preferably 450 to 470 ° C. If the plating bath temperature is less than 450 ° C., the bath temperature control becomes unstable, and there is a concern that the bath partially solidifies. On the other hand, when the bath temperature exceeds 470 ° C., the service life of equipment such as a sink roll and a zinc pot is shortened. Therefore, the bath temperature of the galvanizing bath is preferably set to 450 to 470 ° C.
  • the temperature of the steel sheet entering the plating bath is preferably 430 to 500 ° C.
  • the entry plate temperature is less than 430 ° C.
  • the plating bath temperature is remarkably lowered, and it is necessary to apply a large amount of heat to the plating bath in order to stabilize the bath temperature. For this reason, it is preferable to make a minimum into 430 degreeC. If the intrusion plate temperature exceeds 500 ° C., the alloying reaction of Fe and Zn in the bath cannot be controlled, and it becomes difficult to control the amount of adhesion. For this reason, it is preferable that an upper limit shall be 500 degreeC.
  • the Al concentration in the plating bath is not particularly limited, but in order to form a convex alloy phase in the plating layer, the effective Al concentration (total Al concentration in the bath ⁇ total Fe concentration in the bath) is set to 0. A range of 0.03 to 0.8% by mass is preferable. More preferably, it is in the range of 0.08 to 0.3% by mass.
  • the convex alloy layer in the high-strength hot-dip galvanized steel sheet of this invention can be formed.
  • the alloying temperature is less than 400 ° C, almost no local alloying reaction occurs, so that the convex alloying layer is not formed, and the lower limit is preferably set to 400 ° C. Further, if it exceeds 440 ° C., the alloying reaction is not localized but expands to the whole, and it becomes difficult to obtain the form of the convex alloy layer.
  • the upper limit is preferably set to 440 ° C. If the heating time is less than 1 s, the convex alloy layer is not formed, and if it exceeds 50 s, the line length of the alloying furnace becomes too long. Therefore, the heating time is preferably in the range of 1 s to 50 s.
  • the convex alloy layer generated from the interface between the plating layer and the steel plate base material reaches the surface of the plating layer.
  • a steel material having the same component as that of the steel material to be manufactured is passed in advance, and in the temperature range of 400 to 440 ° C., the heating time required until the alloying reaction completely proceeds to the surface is obtained in advance. It is desirable to keep it. By maintaining the heating time within 10 to 80% of the heating time (alloying completion time) required for complete alloying obtained in advance, the convex alloy layer can be accurately formed without reaching the plating layer surface. Is possible.
  • the conditions of the examples are one condition example adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this one condition example.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • a slab having the composition shown in Table 1 was heated to 1150 to 1250 ° C. and hot-rolled to a finishing temperature of 850 to 970 ° C. to obtain a hot-rolled steel strip having a thickness of 2.4 mm. After pickling, cold rolling is performed to form a cold rolled steel strip having a thickness of 1.0 mm, and a hot dip galvanizing line is passed under the conditions shown in Table 2. Manufactured.
  • the adhesion amount of the plating layer was determined by a weight method after dissolving the plating layer on the evaluation surface with hydrochloric acid containing inhibitor. At the same time, Fe concentration and Al concentration in the plating layer were measured by quantifying Fe and Al in the solution with ICP.
  • the maximum length and number density of the convex alloy layer in the plating layer are mirror-polished by embedding the cross section, and then immersed in a 0.5 mass% nital etchant for 1 to 3 seconds to perform etching. It was determined by observing at 200 times the optical microscope.
  • the average thickness of the refined layer of the steel plate base material and the average grain size of the ferrite phase in the refined layer are processed by CP processing, and the reflected electron image on the FE-SEM is observed at a magnification of 5000 times. Was measured.
  • the average thickness of the decarburized layer of the steel plate base material is mirror-polished after embedding the cross section, and the hardness curve is measured with a micro Vickers from the interface between the steel plate base material and the plating layer toward the steel plate base material side. It was determined by subtracting the thickness of the refined layer previously determined from the thickness of the layer whose hardness is reduced relative to the hardness of the inner layer.
  • the average particle size of the ferrite phase in the decarburized layer and the average volume fraction of the ferrite phase in the decarburized layer were etched with 3% nital after the cross-section embedding polishing, and in the decarburized layer, secondary electrons of FE-SEM It was determined by observing the image at a magnification of 2000 times.
  • Hv (surf) / Hv (bulk) is the average value Hv (surf) of the micro Vickers hardness of the decarburized layer and the average value Hv (bulk) of the micro Vickers hardness of the inner layer after the cross-section embedding polishing. It was determined by measuring and calculating the ratio.
  • the No. 5 test piece described in JIS Z 2201 was processed from the steel plate of each experimental example, and the tensile strength (MPa) was measured according to the test method described in JIS Z 2241. did.
  • the plating adhesion assuming standard processing was evaluated by a V-bending test.
  • a 60 ° V-bending mold was used for the V-bending test. Using a mold having a curvature radius of 1 mm at the tip so that the evaluation surface comes to the inside of the bend, bending was performed at 60 °, a tape was applied to the inside of the bent portion, and the tape was peeled off. Powdering properties were evaluated from the peeled state of the plating layer peeled off with the tape. The evaluation was ⁇ : no peeling, ⁇ : peeling, x: remarkable peeling, and ⁇ was acceptable.
  • the plating adhesion on the assumption of when subjected to impact and during strong processing was evaluated by a ball impact test.
  • a ball impact test a die having a hemispherical tip of 25 mm in diameter from a height of 60 cm is dropped onto a hot dip plated steel sheet with a weight of 3.2 kg, and the deformed convex part of the hot dip plated steel sheet is observed with a magnifying glass and the tape is peeled off. And evaluated.
  • FIG. 2 shows a cross-sectional photograph of the inner layer of the comparative example estimated to correspond to experiment number 8 and a cross-sectional photograph of the inner layer of the example of the present invention estimated to correspond to experiment number 13.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 引張り強度が590MPa以上である鋼板母材上に、溶融亜鉛めっき層を有 する高強度溶融亜鉛めっき鋼板であって、前記めっき層が、鋼板母材に接する凸状合金層を有し、凸状合金層の個数密度が断面方向から見た鋼板母材とめっき層の界面の単位長さ当たり4個/mm以上であり、該界面における凸状合金層の最大径が100μm以下であって、前記鋼板母材が、鋼板母材とめっき層との界面に直接接する微細化層と、前記微細化層に接し、鋼板母材の内方側に存在する脱炭層と、前記微細化層および脱炭層以外の内部層とを有し、前記微細化層、脱炭層、および凸状合金層の層内に、SiおよびMnの1種または2種以上の酸化物を含有することを特徴とする。

Description

耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板
 本発明は、高強度溶融亜鉛めっき鋼板に係り、さらに詳しくは耐衝撃性およびめっき密着性に優れた高強度溶融亜鉛めっき鋼板として、種々の用途、例えば自動車用強度部材として適用できるめっき鋼板に関する。
 溶融亜鉛めっき鋼板は、自動車用を始めとして、家電、建材等に多用されている。複雑な形状にプレスされる自動車用鋼板には、非常に高い成形性が要求されるとともに、近年では自動車の防錆性能への要求が高まったことによって、溶融亜鉛めっき鋼板が自動車用鋼板に適用されるケースが増加している。
 また近年では、車体軽量化の観点から、強度と延性に優れた高強度鋼板へのニーズが拡大しつつある。例えば、特許文献1には、鋼板組織を、フェライト相、ベイナイト相、及び、オーステナイト相の3相が混合した組織とした鋼板が開示されている。また、この鋼板は、成形加工時に、残留オーステナイトがマルテンサイトに変態することで高延性を示す変態誘起塑性を利用した鋼板であることが開示されている。
 この種の鋼板は、例えば、Cを0.05~0.4質量%、Siを0.2~3.0質量%、Mnを0.1~2.5質量%を含有し、2相域での焼鈍後、冷却過程の温度パターンを制御することで複合組織を形成している。そのため、高価な合金元素を用いることなく、所要の特性を確保できるという特徴を備えている。近年、このような高強度鋼板であっても、防錆性を確保するために、鋼板母材表面に溶融亜鉛めっきを施した、高強度溶融亜鉛めっき鋼板へのニーズが拡大しつつある。
 このような高強度鋼板は、内板用途での強度部材のみならず、車体走行時に飛来してくる石や障害物からの衝撃を受ける可能性のある、外面部材として適用される機会も増加している。さらに、複雑な形状部材に適用された場合は、高加工性が要求される。高強度溶融亜鉛めっき鋼板の場合、走行中に飛来した石や障害物からの衝撃を受けた際や、強加工時などのめっき密着性を想定すると、通常の60°V曲げ試験のみならず、ボールインパクト試験や、ドロービード試験のような厳しい評価法でもめっき密着性が確保できることが求められる。
 さらに、180°曲げ加工頭頂部のような極めて厳しい加工を受けた部位においては、めっきおよび地鉄にクラックが生じるため、化成処理や電着塗装を施した後であっても、当該部位からの腐食が起りやすい。当該部位で少しでも腐食が生じると、腐食部より水素侵入が起り、特に母材が高強度鋼板の場合は、水素脆化割れの恐れが高まる。
 高強度鋼板に連続溶融亜鉛めっき設備で亜鉛めっきを施す場合、鋼板のSi量が0.3質量%を超えていると、めっき濡れ性が大きく低下する。そのため、通常のAl含有めっき浴を用いるゼンジマー法では、不めっきが発生して、外観品質が悪化するという問題がある。また、同時にめっき密着性も大幅に低下するために、衝撃時や強加工時のめっき密着性を確保することは困難であった。
 これは、還元焼鈍時に、鋼板表面に、溶融Znに対する濡れ性が悪いSiやMnを含有する酸化物を含む外部酸化皮膜が生成することが原因であると言われている。
 この問題を解決する手段として、特許文献2には、予め、空気比0.9~1.2の雰囲気中で鋼板を加熱して、Fe酸化物を生成させ、次いで、H2を含む還元帯で、酸化物の厚みを500Å以下にした後、MnとAlとを添加した浴でめっきを行う方法が提案されている。しかしながら、実ラインでは、種々の添加元素を含む多様な鋼板を通板するので、酸化物の厚みを適確に制御することは困難であり、実機での製造条件範囲が狭い、という課題があった。また、濡れ性および通常加工時のめっき密着性を改善する効果は期待できるものの、衝撃時や強加工時のめっき密着性を改善する効果は小さかった。
 他の不めっき抑制手段として、特許文献3には、下層に特定のめっきを付与して、めっき性を改善する方法が開示されている。しかし、この方法では、溶融めっきラインにおいて、焼鈍炉の前段に、新たに、めっき設備を設けるか、又は、電気めっきラインにおいて、予めめっき処理を行う必要がある。いずれの場合にも、大幅な製造コストの増加が見込まれる。また、衝撃時や強加工時のめっき密着性や、加工部耐食性を改善する効果は小さかった。
 一方、特許文献4には、焼鈍時に、焼鈍雰囲気の酸素ポテンシャルを調整して、鋼板中のFeを酸化させずに、溶融亜鉛めっき鋼板を製造する手法が開示されている。この手法においては、鋼中のSiやMn等の易酸化性元素を、雰囲気の酸素ポテンシャルを制御することで内部酸化させ、外部酸化皮膜の形成を抑制して、めっき性の向上を達成している。この手法を適用することにより、通常の加工時においては十分な密着性が確保できるものの、衝撃時や強加工時のめっき密着性、また加工部耐食性を向上させる効果は期待できなかった。
特開平05-59429号公報 特開平04-276057号公報 特開2003-105514号公報 特許第4718782号公報
 本発明は、上記のような現状に鑑みてなされたものであって、耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意検討を行った。その結果、SiやMnを多量に含有する鋼板をめっき原板として用いた場合であっても、高強度溶融亜鉛めっき鋼板のめっき層内に凸状の合金層を形成させることにより、衝撃時や強加工時のめっき密着性が格段に向上することを見出した。また、同時に鋼板母材側の構造を、微細化層、脱炭層、内部層の3層構造に制御することにより、180°曲げ加工頭頂部のような、極めて厳しい歪状態での加工においても、母材を起点としてめっき層表層まで貫通するクラックの発生と伸展を著しく抑制することを見出した。さらに、めっき層と鋼板母材を上記構造とすることにより、590MPaという高強度を保ったまま、加工部耐食性を格段に向上させる効果を見出し、本発明をなした。
 本発明は、上記の知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
(1)
C:0.05~0.4質量%、
Si:0.4~3.0質量%、
Mn:1.0~4.0質量%、
P:0.0001~0.1質量%、
S:0.0001~0.01質量%、
Al:0.005~0.1質量%、
N:0.0005~0.01質量%、
O:0.0001~0.01質量%
を含有し、残部がFeおよび不可避的不純物からなり、
 引張り強度が590MPa以上である鋼板母材上に、Fe:0.01~6.9質量%、Al:0.01~1.0質量%、残部Znおよび不可避的不純物からなる溶融亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板であって、
 前記めっき層が、鋼板母材に接する凸状合金層を有し、凸状合金層の個数密度が断面方向から見た鋼板母材とめっき層の界面の単位長さ当たり4個/mm以上であり、該界面における凸状合金層の最大径が100μm以下であって、
 前記鋼板母材が、鋼板母材とめっき層との界面に直接接する微細化層と、
 前記微細化層に接し、鋼板母材の内方側に存在する脱炭層と、
 前記微細化層および脱炭層以外の内部層とを有し、
 前記微細化層の平均厚さが0.1~5μm、微細化層内におけるフェライト相の平均粒径が0.1~3μmであり、
 前記脱炭層の平均厚さが10~200μm、脱炭層内におけるフェライト相の平均粒径が5~30μmであり、脱炭層におけるフェライト相の平均体積分率が70%以上であり、残部組織がオーステナイト、ベイナイト、マルテンサイト、またはパーライトからなり、
 脱炭層の平均ヴィッカース硬度Hv(surf)と内部層の平均ヴィッカース硬度Hv(bulk)の比Hv(surf)/Hv(bulk)が0.3~0.8であり、
 前記微細化層、脱炭層、および凸状合金層の層内に、SiおよびMnの1種または2種以上の酸化物を含有することを特徴とする、耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
(2)
 前記微細化層、脱炭層、および凸状合金層の層内に含有する酸化物が、SiO2、Mn2SiO4、MnSiO3、Fe2SiO4、FeSiO3、MnOの1種または2種以上であることを特徴とする、前記(1)に記載の耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
(3)
 前記凸状合金層に含有される、酸化物の最大径が0.05~0.4μm、個数密度が20~100個/μm2であることを特徴とする、前記(1)または(2)に記載の、耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
(4)
 前記微細化層中に含有される、酸化物の最大径が0.01~0.2μm、個数密度が20~100個/mm2であることを特徴とする、前記(1)~(3)いずれかに記載の、耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
(5)
 前記溶融亜鉛めっき層の最表面には凸状合金層が存在しないことを特徴とする、前記(1)~(4)のいずれかに記載の、耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
(6)
 鋼板母材が更に、
Ti:0.001~0.15質量%、
Nb:0.001~0.10質量%、
の1種または2種を含有することを特徴とする、前記(1)~(5)のいずれかに記載の、耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
(7)
 鋼板母材が更に、
Mo:0.01~2.0質量%、
Cr:0.01~2.0質量%、
Ni:0.01~2.0質量%、
Cu:0.01~2.0質量%、
B:0.0001~0.01質量%、
の1種または2種以上を含有することを特徴とする、前記(1)~(6)のいずれかに記載の、耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
 本発明の高強度合金化溶融亜鉛めっき鋼板は、SiやMnを多量に含有した高強度鋼板を原板としているが、衝撃時や強加工時のめっき密着性を確保することができ、また180°曲げ加工頭頂部のような極めて厳しい加工部においても、優れた加工部耐食性を示す、高強度合金化溶融亜鉛めっき鋼板を提供することを可能としたものであり、自動車の内外板や高強度部材用途として極めて有効である。
本発明の高強度溶融亜鉛めっき鋼板の断面構造の模式図の一例を示す図である。 比較例の内部層の断面写真と本発明例の内部層の断面写真である。
 以下、本発明の一実施形態に係る、耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法について詳細に説明する。
 本発明の高強度溶融亜鉛めっき鋼板は、
C:0.05~0.4質量%、
Si:0.4~3.0質量%、
Mn:1.0~4.0質量%、
P:0.0001~0.1質量%、
S:0.0001~0.01質量%、
Al:0.005~0.1質量%、
N:0.0005~0.01質量%、
O:0.0001~0.01質量%
を含有し、残部がFeおよび不可避的不純物からなり、
 引張り強度が590MPa以上である鋼板母材上に、Fe:0.01~6.9質量%、Al:0.01~1.0質量%、残部Znおよび不可避的不純物からなる溶融亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板であって、
 前記めっき層が、鋼板母材に接する凸状合金層を有し、凸状合金層の個数密度が断面方向から見た鋼板母材とめっき層の界面の単位長さ当たり4個/mm以上であり、該界面における凸状合金層の最大径が100μm以下であって、
 前記鋼板母材が、鋼板母材とめっき層との界面に直接接する微細化層と、
 前記微細化層に接し、鋼板母材の内方側に存在する脱炭層と、
 前記微細化層および脱炭層以外の内部層とを有し、
 前記微細化層の平均厚さが0.1~5μm、微細化層内におけるフェライト相の平均粒径が0.1~3μmであり、
 前記脱炭層の平均厚さが10~200μm、脱炭層内におけるフェライト相の平均粒径が5~30μmであり、脱炭層におけるフェライト相の平均体積分率が70%以上であり、
 残部組織がオーステナイト、ベイナイト、マルテンサイト、またはパーライトからなり、
 脱炭層の平均ヴィッカース硬度Hv(surf)と内部層の平均ヴィッカース硬度Hv(bulk)の比Hv(surf)/Hv(bulk)が0.3~0.8であり、
 前記微細化層、脱炭層、および凸状合金層の層内に、SiおよびMnの1種または2種以上の酸化物を含有することを特徴とする。
 本発明の高強度溶融亜鉛めっき鋼板における、めっき層、微細化層、脱炭層、および内部層の断面模式図を図1に示す。
「めっき層中の凸状合金層」
 本発明の高強度溶融亜鉛めっき鋼板においては、めっき層中に凸状合金層を含有させることにより、衝撃時や強加工時のめっき密着性を確保することができる。図1に示すような凸状合金層2をめっき層内に含有させることにより、鋼板母材とめっき層の界面に大きな凹凸形状を形成させることができ、衝撃や強加工を受け、鋼板母材とめっき層の界面方向に強いせん断応力が働いた際でも、アンカー効果により著しいめっき密着性の向上効果が期待できる。凸状合金層2の形態としては、粗大な凸状合金層が疎らに形成するよりも、小さな凸状合金層が分散した形態において、より高いアンカー効果が期待できる。そのため、図1の3で示す母材4とめっき層1の界面における凸状合金層2の最大径が、100μm超の場合では大きすぎて有効なアンカー効果が期待できない。そのため凸状合金層の最大長さ(最大径3)の上限を100μmとした。好ましくは、上限を40μmとすることである。また、凸状合金層2の最大長さの下限については特に限定されるものではないが、3μm以上とすることが好ましい。また凸状合金層の個数密度についても、鋼板母材とめっき層の界面を断面方向から見た際の、鋼板母材とめっき層の界面長さ1mm当たり4個以上とすることで、密着性を向上させる効果が発現する。一方、凸状合金層の個数密度が100個/mm超では、その効果が飽和するばかりか、耐チッピング性を悪化させる可能性がある。そのため、凸状合金層の個数密度の上限を100個/mmとすることが望ましい。好ましくは、10~60個/mmの範囲とすることである。図1に示すように、凸状合金層2は、母材4とめっき層1の界面に接触し、界面からめっき層1内に凸状に入り込んだ構造を有している。凸状合金層2は、界面3に接触してめっき層1内に入り込んだものであれば、形状は任意である。凸状合金層2は、母材3との界面にFe-Al相を介さず接触しており、めっき層1中に突出しているため、アンカー効果によりめっき密着性を改善すると考えられる。
 本発明における凸状合金層は、後述するように、めっき浴浸漬後に軽度の合金化熱処理を施すことによって形成させたものである。めっき浴中において、鋼板母材と溶融亜鉛との界面に直接晶出形成する、微細で柱状のζ相(FeZn13)やδ1相(FeZn7)の微細柱状結晶(以下、浴中晶出相)は、凸状合金層と共存していても本発明の効果に何ら悪影響を及ぼすものではないが、衝撃時や強加工時の密着性を高める効果は期待できない。そのため、凸状合金層と浴中晶出相を区別するため、凸状合金層はその厚みが2μm以上であり、また凸状合金層と鋼板母材との界面にはFe-Al相が形成していないもの、と定義する。凸状合金層の厚みの上限については特に限定されるものではないが、めっき層全厚みの90%以下とすることが好ましい。凸状合金層と鋼板母材との界面に直接晶出形成し、界面との間にはFe-Al相が存在しない。凸状合金層は母材とFe-Al相を介さずに直接接触するため、密着性改善に有効と考えられる。
 凸状合金層を構成する相の種類としては、特に限定されるものではないが、Fe-Zn系の金属間化合物相である、ζ相(FeZn13)、δ1相(FeZn7)、Γ1相(Fe5Zn21)、Γ相(Fe3Zn10)から選ばれる、単相構造または複相構造であることがより好ましい。
「凸状合金層の測定方法」
 凸状合金層の最大長さおよび個数密度の測定方法としては、断面埋め込み研磨後に0.5%ナイタールでエッチングし、光学顕微鏡の200倍で写真撮影し、単位長さあたりの個数密度を求める。また、同じ写真において、凸状合金層の最大長さを測定する。1つのサンプルについて200倍で5枚写真を撮影してそれぞれについて凸状合金層の長さを測定し、その中での最大値を、当該サンプルにおける、凸状合金層の最大長さとする。
 また、凸状合金層は、めっき層と鋼板母材の界面から合金化反応によって生成するが、凸状合金層がめっき層の再表面まで到達すると表面光沢を低下させ、外観均一性が低下する。そのため、本発明の高強度溶融亜鉛めっき鋼板においては、溶融亜鉛めっき層の最表面に凸状合金層が存在しないことがより好ましい。
「めっき層のFe濃度」
 前述の通り、本発明の高強度溶融亜鉛めっき層においては、凸状合金層の形態制御が重要となる。Fe濃度を0.01質量%以上とすることで、めっき層中に凸状合金層を含有させることができる。またFe濃度を6.9質量%超とするとめっき層表面まで一部合金化反応が進展し、めっき密着性の改善効果が小さくなる。そのため、めっき層中のFe濃度を0.01~6.9質量%の範囲に限定した。好ましくは2.0~6.9質量%とすることである。
「めっき層のAl濃度」
 めっき層中のAl濃度は、0.01質量%未満ではめっき浴中での過剰なFe-Zn反応を制御することができず、めっき層の構造制御が困難となる。また、Al濃度が1.0質量%では、めっき層表面に緻密なAl23皮膜が形成するために、スポット溶接性を阻害する恐れがある。めっき層の構造制御の観点からは、めっき層中のAl濃度を0.03質量%~0.8質量%とすることがより好ましい。さらに好ましくは、0.1質量%~0.5質量%の範囲とすることである。
「その他不可避的不純物」
 本発明の実施形態においては、溶融亜鉛めっき層は、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、Sr、In、Cs、REMの1種または2種以上を含有、あるいは混入するものであってもよい。溶融亜鉛めっき層が、上記の元素の1種または2種以上を含有、あるいは混入するものであっても、本発明の効果は損なわれず、その含有量によっては耐食性や加工性が改善される等好ましい場合もある。
「めっき組成測定法」
 めっき層中のFe濃度、およびAl濃度を測定するには、めっき層を、インヒビタ添加した5%HCl水溶液中で溶解し、溶解液をICP分析することにより定量すれば良い。
「鋼板母材側の構造」
 本発明の高強度溶融亜鉛めっき鋼板における、鋼板母材側の構造について、以下詳細に説明する。
「微細化層」
 図1に示すように、本発明の高強度溶融亜鉛めっき鋼板においては、鋼板母材側に、鋼板母材とめっき層の界面に直接接する微細化層5を有する。微細化層5では主にフェライト相の極微細粒からなる層が形成されており、180°曲げ加工頭頂部のような、極めて厳しい歪状態の部位であっても、鋼板母材内部からのクラック発生や、その後のクラック伸展を抑制することができる。
 微細化層の平均厚さを0.1μm以上とすることで、加工時のクラック発生や伸展を抑制する効果が発現する。また微細化層の平均厚さを5μm超とすることは、めっき浴中において、過度に合金化が進行し、本発明のめっき層構造が得られない。このため、微細化層の平均厚さを0.1~5μmの範囲に限定した。好ましくは微細化層の平均厚さを0.1~3μmの範囲とすることである。また微細化層内のフェライト相の平均粒径を0.1μm以上とすることで、加工時のクラック発生や伸展を抑制する効果が発現し、3μm超とするとその効果が限定的になる。そのため微細化層内のフェライト相の平均粒径を0.1~3μmの範囲に限定した。好ましくは0.1~2μmの範囲とすることである。
 本発明においては、後述するように微細化層および脱炭層を生成するために、焼鈍工程において特定の温度域で特定の雰囲気に制御した条件で焼鈍する。その結果、特定の温度域で、鋼板母材表層において脱炭反応が進行する。微細化層においては鋼板母材が脱炭しているため、微細化層内の構成相は酸化物や介在物粒子を除いては、実質的にフェライト相が主体の組織である。
 本発明において、鋼板母材側に微細化層を存在させる効果は、前述のように強加工時にクラック発生や伸展を抑制することである。同時に、鋼板母材表層のフェライト粒径を微細化することは、凸状合金層を形成させるための溶融亜鉛めっき後の加熱合金化処理過程において、鋼板母材と溶融亜鉛めっき層とのFe-Zn合金化反応を促進する効果を有する。このため、微細化層を有した状態では、凸状合金層の形成に必要な入熱量を低く抑えられ、合金化処理過程での加熱温度を低温化することが可能となる。合金化処理過程での加熱温度を低温化させると、Fe-Zn反応速度が低下するために、凸状合金化層がめっき層全体を覆う前に反応を低下することが容易となり、製造可能な条件範囲を拡大させることができる。
「微細化層の測定方法」
 微細化層について測定するには、断面をCP(Cross section polisher)装置により加工し、FE-SEM(Field Emission Scanning Electron Microscopy)での反射電子像を5000倍で観察し、微細化層の平均厚さおよび微細化層内のフェライト相の平均結晶粒径を測定すればよい。微細化層の定義は、鋼板母材再表層におけるフェライト相の平均粒径が、脱炭層におけるフェライト相の平均粒径の1/2以下である場合に、微細化層が存在すると定義する。また、微細化層におけるフェライト相の平均粒径が、脱炭層におけるフェライト相の平均粒径の1/2超となる境界を、微細化層と脱炭層の層境界と定義する。
「脱炭層」
 本発明の高強度溶融亜鉛めっき鋼板においては、図1に示すような、脱炭層6が存在する。脱炭層6では内部層7に比べて硬質相(残部組織9)の体積分率が低く、強度も低いために、180°曲げ加工頭頂部において、厳しい歪状態であってもクラックの起点とはなりにくく、180°曲げ加工頭頂部のクラック発生を抑制することができる。脱炭層の平均厚さを10μm以上とすることで、180°曲げ加工頭頂部でもクラック発生を抑制する効果が発現し、200μm超とすると脱炭層の特性が鋼板母材全体の引張り強度を下げてしまう。このため10~200μmの範囲に限定した。好ましくは、30~150μmの範囲とすることである。
「脱炭層における鋼板組織」
 脱炭層6においては、図1に示す通り、フェライト相8が主体であり、残部組織9をオーステナイト相、ベイナイト相、マルテンサイト相、パーライト相のうちの1種または2種以上が占める、混合組織となる。脱炭層6においてフェライト相の体積分率を70%以上とすることで、内部層7に対して脱炭層6の平均硬さが十分下がり、180°曲げ加工頭頂部においてクラック発生を抑制する効果が発現する。脱炭層におけるフェライト相の平均粒径が5μm未満では脱炭層を軟質化する効果に乏しい。また脱炭層におけるフェライト相の平均粒径を30μm超とすると低温靱性に劣る可能性がある。このため、脱炭層におけるフェライト相の平均粒径は5~30μmの範囲に限定する。また、脱炭層を本発明のような構造とすることで、脱炭層の平均ヴィッカース硬度Hv(surf)と内部層の平均ヴィッカース硬度Hv(bulk)の比Hv(surf)/Hv(bulk)を0.3~0.8の範囲とすることができる。180°曲げ加工頭頂部において、鋼板母材とめっき層表層の界面近傍においてクラックの発生を抑制するには、バルク硬さに対して脱炭層の硬さを低くする必要がある。Hv(surf)/Hv(bulk)が0.3未満では脱炭層の硬さが低すぎるため、鋼板母材全体の強度に悪影響を及ぼす可能性がある。また、Hv(surf)/Hv(bulk)が0.8超では、内部層に対し脱炭層が十分軟らかくないために、180°曲げ加工頭頂部においてクラックが発生してしまう。そのため本発明ではHv(surf)/Hv(bulk)を0.3~0.8の範囲に限定した。好ましくは、Hv(surf)/Hv(bulk)を0.3~0.6の範囲とすることである。
「脱炭層の測定法」
 脱炭層の厚みを測定するには、まず鋼板の断面を埋め込み研磨し、鋼板母材とめっき層の界面から鋼板母材側に向かって、マイクロヴィッカースで硬度曲線を測定し、内部層の硬さに対して硬さが低下している層の厚みを求める。求めた層の厚みは脱炭層厚みと微細化層厚みの両方を含んだものであり、マイクロヴィッカースで求めた層の厚みから、前記の方法で求めた微細化層厚みを引いた値が、脱炭層厚みとなる。また、脱炭層における測定硬さの平均値をHv(surf)とし、内部層における測定硬さの平均値をHv(bulk)とすればよい。
 また脱炭層におけるフェライト相の体積分率を求めるには、鋼板母材の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨、ナイタールエッチングし、脱炭層において、FE-SEMで観察してフェライト相の面積分率を測定し、それを持って体積分率と見なすことができる。また同時にフェライト相の粒径も測定することができる。
「内部層の組織」
 本発明における内部層の組織は、鋼板の引張り強度が590MPa以上であり、Hv(surf)/Hv(bulk)が0.3~0.8の範囲を確保できれば特に組織形態は限定されるものではないが、強度と延性のバランスを確保するという観点からは、フェライト相50%以上、残部組織9がマルテンサイト、オーステナイト、ベイナイト、パーライトからなる組織であることが好ましい。
「加工部耐食性の向上効果」
 本発明の高強度溶融亜鉛めっき鋼板においては、めっき層内に凸状合金層を有し、鋼板母材側に微細化層および脱炭層を有する。それぞれ単体での効果は前述した通りであるが、これらを全て本発明の通りに存在させることにより、従来では期待できなかった、180°曲げ加工頭頂部のような、極めて厳しい歪状態の加工部における、耐食性の著しい向上効果が得られる。凸状合金層のみが存在していても、鋼板母材表層に微細化層および脱炭層が存在しなければ180°曲げ加工頭頂部の鋼板母材表層において歪が大きいためにクラックが生じ、結果的にクラックはめっき層表面まで貫通し、加工部耐食性が低下する。また鋼板母材側に微細化層および脱炭層を有していても、凸状合金層が存在していなければ、180°曲げ加工頭頂部において、鋼板母材表層におけるクラックは抑制できるものの、母材の歪が大きいために追従してめっき層が変形し、鋼板母材とめっき層の界面近傍において密着性が著しく低下してめっき層が剥落し、加工部耐食性が低下してしまう。
 本発明では凸状合金層、微細化層、脱炭層の全てが存在する状態においてのみ、180°曲げ加工頭頂部において鋼板母材表層部からのクラックが発生せず、また凸状合金層の存在によるアンカー効果によって、鋼板母材の変形に追従してめっき層が変形した領域であっても、鋼板母材とめっき層界面近傍で密着力が低下することなく、めっきが剥落することもない。このため、加工部耐食性を著しく向上させることができる。
「酸化物」
 本発明の高強度溶融亜鉛めっき鋼板においては、微細化層、脱炭層中、および凸状合金層の層内に、SiおよびMnの1種または2種以上を含有する酸化物を含有する。また、微細化層、脱炭層、凸状合金層に含有する酸化物の種類が、SiO2、Mn2SiO4、MnSiO3、Fe2SiO4、FeSiO3、MnOの中から選ばれる1種または2種以上であることがより好ましい。
「凸状合金層中の酸化物」
 めっき層1中に凸状合金層2を形成させる効果は、前述の通り、衝撃時および強加工時のめっき密着性の向上である。後述するように、鋼板母材の焼鈍中に、特定の温度域において、鋼板母材表面に内部酸化物を形成させ、溶融亜鉛めっき後に軽度の合金化熱処理中を施し、凸状合金層を形成させる。上記反応により、図1に示すような凸状合金層2を形成させることができるため、凸状合金層は不可避的に酸化物を含む。凸状合金層中に含まれる酸化物は、最大径が0.05~0.4μm、個数密度が20~100個/μm2であることがより好ましい。
「微細化層中の酸化物」
 本発明においては、後述するように、焼鈍時に特定の温度域において、鋼板母材内部に内部酸化物を形成させ、内部酸化物粒子によって、鋼板母材表層のフェライト相結晶の成長を抑制させることによって、図1に示すような構造の微細化層5を形成させることが可能となる。そのため微細化層中には不可避的に酸化物が含まれる。微細化層に含まれる酸化物は、最大径が、0.01μm~0.2μm、個数密度が20~100個/μm2であることがより好ましい。
「酸化物の測定」
 酸化物層の存在有無、種類の同定、最大径、個数密度の測定を行うには、めっき鋼板の断面をFIB(Focused Ion Beam)加工して薄膜試料を作製した後、FE-TEM(Field Emission Transmission Electron Microscopy)において、30000倍で観察することにより行う。1つのサンプルについて、5視野撮影し、全視野を通しての酸化物の個数密度の平均値を、当該サンプルの個数密度とする。また、全視野で計測された酸化物の径の最大値を、当該サンプルの、酸化物の最大径とする。
「鋼板母材の化学成分組成」
 本発明の実施形態に係る高強度溶融亜鉛めっき鋼板を構造する、母材鋼板の化学成分組成について説明する。
 C:Cは鋼の強度を高める元素であって0.05質量%以上を含有させることが有効であるが、過剰に含有すると強度が上昇しすぎて加工性が低下するので上限は0.4質量%とする。加工性と溶接性の観点からは、0.07~0.3質量%の範囲とすることが好ましい。
 Si:Siは延性を低下させることなく強度を向上させられる有効な元素であり、0.4質量%以上を添加するのが有効である。一方3.0質量%を超えて添加すると、強度を増す効果が飽和すると共に延性の低下が起こる。まためっき濡れ性の劣化が著しく、外観を大幅に悪化させる。そのため上限を3.0質量%とした。好ましくは、0.5~2.5質量%の範囲とすることである。
 Mn:Mnは高強度化するのに重要な元素であり、1.0質量%以上添加する。しかし、4.0質量%を超えるとスラブに割れが生じやすく、スポット溶接性も劣化するため、4.0質量%を上限とする。強度と加工性の観点からは、1.5~3.5質量%の範囲とすることが好ましい。
 P:Pも鋼の強度を高める一方で加工性を低下させる元素であるので、上限は0.1質量%とする。Pを0.0001質量%未満に低減するためには精錬コストが多大となるので、下限は0.0001質量%とする。強度、加工性とコストのバランスから、0.005~0.02質量%とすることが好ましい。
 S:Sは鋼の熱間加工性、耐食性を低下させる元素である。0.01質量%を超えると熱間加工性、耐食性を悪化させるため、上限を0.01質量%とする。また、0.0001質量%未満とするのはコスト的に不利であるため、下限を0.0001質量%とする。但し、Sを低減し過ぎると表面欠陥が発生し易くなるため、0.001質量%以上とすることが好ましい。
 Al:Alは鋼の脱酸元素として、またAlNによる熱延素材の細粒化、および一連の熱処理工程における結晶粒の粗大化を抑制し材質を改善するために0.005質量%以上添加する必要がある。但し、0.1質量%を超えると溶接性を悪化させる恐れがあるため、0.1質量%以下とする。さらに、アルミナクラスターによる表面欠陥を少なくする観点から、0.08質量%以下とすることが好ましい。
 N:Nは鋼の強度を上昇させる一方で加工性を低下させるので上限は0.01質量%とする。特に高い加工性を必要とする場合には、0.005質量%以下とすることがより好ましい。Nはより少ないほど好ましいが、0.0005質量%未満に低減することは過剰なコストを要するので、下限は0.0005質量%とする。
 O:Oは、酸化物を形成し、延性および伸びフランジ性を劣化させることから、含有量を抑える必要がある。Oの含有量が0.010%を超えると、伸びフランジ性の劣化が顕著となることから、O含有量の上限を0.010%とした。さらにOの含有量は0.007%以下であることが好ましく、0.005%以下であることがより好ましい。Oの含有量の下限は、特に定めなくても本発明の効果は発揮されるが、Oの含有量を0.0001%未満とすることは、製造コストの大幅な増加を伴うため、0.0001%を下限とした。O含有量は0.0003%以上であることが好ましく、0.0005%以上であることがより好ましい。
 その他、本発明の実施形態にかかる溶融亜鉛めっき鋼板の鋼板母材には、必要に応じて以下の元素が添加されていても良い。
 Ti:Tiは、析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化によって、鋼板の強度上昇に寄与する元素である。しかし、Tiの含有量が0.150%を超えると、炭窒化物の析出が多くなって成形性が劣化するため、Tiの含有量は0.150%以下であることがより好ましい。成形性の観点から、Tiの含有量は0.080%以下であることがより好ましい。Tiの含有量の下限は特に定めなくても本発明の効果は発揮されるが、Ti添加による強度上昇効果を十分に得るためには、Tiの含有量は0.001%以上であることが好ましい。鋼板のより一層の高強度化のためには、Tiの含有量は0.010%以上であることがより好ましい。
 Nb:Nbは、析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化により、鋼板の強度上昇に寄与する元素である。しかし、Nbの含有量が0.100%を超えると、炭窒化物の析出が多くなって成形性が劣化するため、Nbの含有量は0.100%以下であることがより好ましい。成形性の観点から、Nbの含有量は0.050%以下であることがより好ましい。Nbの含有量の下限は特に定めなくても本発明の効果は発揮されるが、Nb添加による強度上昇効果を十分に得るには、Nbの含有量は0.001%以上であることが好ましい。鋼板のより一層の高強度化のためには、Nbの含有量は0.010%以上であることがより好ましい。
 Mo:Moは、高温での相変態を抑制し、高強度化に有効な元素であり、Cおよび/又はMnの一部に代えて添加してもよい。Moの含有量が2.00%を超えれば、熱間での加工性が損なわれて生産性が低下することから、Moの含有量は2.00%以下とすることが好ましく、1.40%以下であることがさらに好ましい。Moの含有量の下限は特に定めなくても本発明の効果は発揮されるが、Mo添加による高強度化の効果を十分に得るためには、Moの含有量は0.01%以上であることが好ましく、0.10%以上であることがさらに好ましい。
 Cr:Crは、高温での相変態を抑制し、高強度化に有効な元素であり、Cおよび/又はMnの一部に代えて添加してもよい。Crの含有量が2.00%を超えると、熱間での加工性が損なわれて生産性が低下することから、Crの含有量は2.00%以下とすることが好ましく、1.40%以下であることがさらに好ましい。Crの含有量の下限は特に定めなくても本発明の効果は発揮されるが、Cr添加による高強度化の効果を十分に得るためには、Crの含有量は0.01%以上であることが好ましく、0.10%以上であることがさらに好ましい。
 Ni:Niは、高温での相変態を抑制し、高強度化に有効な元素であり、Cおよび/又はMnの一部に代えて添加してもよい。Niの含有量が2.00%を超えると、溶接性が損なわれることから、Niの含有量は2.00%以下とすることが好ましく、1.40%以下であることがさらに好ましい。Niの含有量の下限は特に定めなくても本発明の効果は発揮されるが、Ni添加による高強度化の効果を十分に得るには、Niの含有量は0.01%以上であることが好ましく、0.10%以上であることがさらに好ましい。
 Cu:Cuは、微細な粒子として鋼中に存在することにより強度を高める元素であり、Cおよび/又はMnの一部に替えて添加することができる。Cuの含有量が2.00%を超えると、溶接性が損なわれることから、Cuの含有量は2.00%以下とすることが好ましく、1.40%以下であることがさらに好ましい。Cuの含有量の下限は特に定めなくても本発明の効果は発揮されるが、Cu添加による高強度化の効果を十分に得るには、Cuの含有量は0.01%以上であることが好ましく、0.10%以上であることがさらに好ましい。
 B:Bは、高温での相変態を抑制し、高強度化に有効な元素であり、Cおよび/又はMnの一部に代えて添加してもよい。Bの含有量が0.010%を超えると、熱間での加工性が損なわれて生産性が低下することから、Bの含有量は0.010%以下とすることが好ましい。生産性の観点からは、Bの含有量は0.006%以下であることがより好ましい。Bの含有量の下限は特に定めなくても本発明の効果は発揮されるが、Bの添加による高強度化の効果を十分に得るには、Bの含有量を0.0001%以上とすることが好ましい。さらなる高強度化のためには、Bの含有量が0.0005%以上であることがより好ましい。
「製造方法」
 次に、本発明の高強度溶融亜鉛めっき鋼板の製造方法について説明する。本発明の高強度溶融亜鉛めっき鋼板の製造方法では、前記に記載の成分組成を有するスラブを原板とし、熱間圧延、冷却、巻き取り、酸洗、冷間圧延した後に、CGLにて加熱焼鈍後、溶融亜鉛めっき浴に浸漬し、高強度溶融亜鉛めっき鋼板とする。
 熱間圧延に供するスラブは特に限定するものではなく、連続鋳造スラブや薄スラブキャスター等で製造したものであれば良い。また鋳造後直ちに熱間圧延を行う連続鋳造―直送圧延(CC-DR)のようなプロセスにも適合する。
 熱間圧延の仕上げ温度は特に限定されるものではないが、鋼板のプレス成形性を確保するという観点から850~970℃とすることがより好ましい。また熱延後の冷却条件や巻取温度は特に限定しないが、巻取温度はコイル両端部での材質ばらつきが大きくなることを避け、またスケール厚の増加による酸洗性の劣化を避けるためには750℃以下とし、また、巻取り温度が低すぎると冷間圧延時に耳割れを生じやすく、極端な場合には板破断することもあるため550℃以上とすることがより好ましい。その後黒皮スケールを除去するため、通常の酸洗を施した後、冷間圧延時の圧下率は通常の条件でよく、加工性の向上を最大限に得る目的からその圧延率は50%以上とすることがより好ましい。一方、85%を超す圧延率で冷間圧延を行うことは多大の冷延負荷が必要となるため、85%以下とすることがより好ましい。
 前述のように冷間圧延を施した後、溶融亜鉛めっきを実施する。本発明の高強度溶融亜鉛めっき鋼板の製造方法の一例としては、前記に記載の成分組成を有する鋼板に溶融亜鉛めっきを施す際の雰囲気を、H2を0.1~20体積%含有し、残部をN2、H2O、O2および不可避的不純物からなる雰囲気とし、650~最高加熱温度の間の雰囲気を、-1.7≦log(PH2O/PH2)≦-0.6を満たす雰囲気として、0.5~5℃/sの平均昇温速度で昇温加熱した後に、連続して焼鈍を行い、その後650℃まで平均冷却速度0.1~200℃/sで冷却し、650℃~500℃の間を平均冷却速度3~200℃/sにて冷却し、亜鉛めっき浴温度:450~470℃、めっき浴進入時の鋼板温度:430~500℃の条件で亜鉛めっき浴に浸漬した後、400~440℃で1~50s加熱合金化処理し、その後室温まで冷却することが好ましい。
 前記溶融亜鉛めっきは、連続式溶融めっき設備の全還元炉で行うことが好ましい。焼鈍時の雰囲気を、H2を0.1~20体積%含有し、残部をN2、H2O、O2および不可避的不純物からなる雰囲気とする。水素が0.1体積%未満であると、鋼板表面層に存在する酸化膜を十分に還元することができず、めっき濡れ性を確保できない。それ故、還元焼鈍雰囲気の水素量は0.1体積%以上とする。還元焼鈍雰囲気中の水素が20体積%を超えると、露点(水蒸気分圧PH2Oに対応する)が上昇し過ぎて、結露を防ぐ設備を導入する必要がある。新たな設備の導入は、生産コストの上昇を招くので、還元焼鈍雰囲気の水素量は20体積%以下とする。より好ましくは、0.5体積%以上15体積%以下とすることである。
 温度650~最高加熱温度の間の雰囲気を、
-1.7≦log(PH2O/PH2)≦-0.6
を満たす雰囲気として、平均昇温速度0.5~5℃/sで昇温加熱することにより本発明の図1に示すような微細化層5や、脱炭層6が形成する。650℃未満の温度域では、鋼板組織の再結晶がほとんど開始していない状態である。650℃以上の温度域では、再結晶が開始し、核生成した再結晶粒が、徐々に粒成長していく。このような温度域において、焼鈍中の雰囲気のlog(PH2O/PH2)を高め、易酸化側の雰囲気とすることにより、鋼板母材中のSiおよびMnを鋼板母材の表層において内部酸化させ、内部酸化物粒子が鋼板母材の再結晶粒の粒成長を抑制するために、鋼板母材表層に微細な再結晶粒が形成し、微細化層5を形成させることができる。また、内部酸化と同時に鋼板母材表層において脱炭反応が進行して鋼板母材表層のフェライト相の体積分率が上昇し、脱炭層6を形成することができる。温度650℃~最高加熱温度の間の雰囲気がlog(PH2O/PH2)が-1.7未満では、鋼板表層においてSiやMnがほとんど内部酸化せず、また脱炭反応も進行しないため、微細化層や脱炭層を形成することができない。またlog(PH2O/PH2)を-0.6超とすると脱炭層厚みが大きくなり過ぎて鋼板母材全体の強度に悪影響を及ぼす。このため-1.7≦log(PH2O/PH2)≦-0.6の範囲とすることが好ましい。より好ましくは、-1.3≦log(PH2O/PH2)≦-0.7とすることである。また本温度域での平均昇温速度が5℃/s超では内部酸化物粒子が形成する前に鋼板母材表層の再結晶が進行し微細化層を得ることができない。また脱炭反応が進行する時間を十分に確保することができず、脱炭層を形成することができない。一方、本温度域での平均昇温速度が0.5℃/s未満では、過度に脱炭反応が進行し鋼板母材全体の強度が低下する恐れがある。このため、650℃~最高加熱温度の間の平均昇温速度を、0.5~5℃/sの範囲とすることが好ましい。より好ましくは平均昇温速度を0.5~3℃/sの範囲とすることである。
 最高加熱温度は特に限定されないが、900℃超では高温通板時の板形状が劣悪になる恐れがあるため、800~900℃の範囲とすることが好ましい。
 本発明では上記昇温加熱の後、連続して焼鈍を行う。焼鈍時間については特に限定されるものではなく、必要に応じて条件を設定すればよいが、経済性および板の表面性状の観点から、1s~300sの範囲とすることが好ましい。より好ましくは30s~150sの範囲とすることである。
 上記焼鈍終了後、めっき浴浸漬温度まで冷却する。最高加熱温度から650℃までの平均冷却速度は、0
.1~200℃/sとすることが望ましい。冷却速度が、0 .1℃/s未満とすることは、生産性が大きく損なわれることから望ましくない。また、過度に冷却速度を上げることは、製造コスト高を招くこととなるので、上限を200℃/sとすることが好ましい。650~500℃での冷却速度は、3~200℃/sとすることが好ましい。冷却速度が小さすぎると、冷却過程にてオーステナイトがパーライト組織へと変態し、3%以上のオーステナイト体積率の確保が困難となる。そこで、下限を3℃/sとすることが好ましい。一方、冷却速度を大きくしたとしても、材質上なんら問題はないが、過度に冷却速度を上げることは、製造コスト高を招くこととなる。そこで、上限を200℃/sとすることが好ましい。冷却方法については、ロール冷却、空冷、水冷およびこれらを併用したいずれの方法でも構わない。
 溶融亜鉛めっき工程におけるめっき浴温度は450~470℃とすることが好ましい。めっき浴温度が450℃未満では浴温制御が不安定となり、浴が一部凝固してしまう懸念がある。また浴温が470℃を超えると、シンクロールや亜鉛ポットなどの設備の寿命が短くなってしまう。それ故、亜鉛めっき浴の浴温は、450~470℃とすることが好ましい。
 めっき浴への鋼板の進入板温は、430~500℃とすることが好ましい。進入板温を430℃未満とすると、めっき浴温度の低下が著しく、浴温を安定させるためにめっき浴に多量の熱量を与える必要が生じる。このため下限を430℃とすることが好ましい。また進入板温が500℃超となると、浴中でのFeとZnの合金化反応を制御することができず、付着量を制御することが困難となる。このため上限を500℃とすることが好ましい。
 めっき浴中のAl濃度については、特に限定されるものではないが、めっき層中に凸状合金相を形成させるには、有効Al濃度(浴中全Al濃度-浴中全Fe濃度)を0.03~0.8質量%の範囲とすることが好ましい。より好ましくは、0.08~0.3質量%の範囲とすることである。
 めっき浴への浸漬後、400~440℃で1s~50s加熱合金化処理し、その後室温まで冷却することが好ましい。本加熱合金化工程において、低温で合金化することによって、局所的な合金化反応を進行させ、本発明の高強度溶融亜鉛めっき鋼板における凸状合金層を形成させることができる。合金化温度が400℃未満ではほとんど局所的な合金化反応が発生しないために凸状合金化層が形成せず、下限を400℃とすることが好ましい。また440℃超では合金化反応が局所的ではなく全体に拡大してしまい、凸状合金層の形態を得るのが困難となるため、上限を440℃とすることが好ましい。また加熱時間1s未満では凸状合金層が形成せず、50s超では合金化炉のライン長が長くなり過ぎるため、加熱時間を1s~50sの範囲とすることが好ましい。
 また、本発明においては、めっき層と鋼板母材の界面から生成する凸状合金層がめっき層の表面に到達する前に、加熱合金化処理を停止することが好ましい。また、製造しようとする鋼材と同一成分の鋼材を事前に通板して、400~440℃の温度範囲において、表面まで完全に合金化反応が進行するまでに必要な加熱時間を事前に求めておくことが望ましい。事前に求めた完全合金化に必要な加熱時間(合金化完了時間)の10~80%の時間で加熱保持することによって、凸状合金層をめっき層表面まで到達させずに精度よく作り込むことが可能となる。
 次に、本発明の実施例について説明する。実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1に示す組成からなるスラブを1150~1250℃に加熱し、仕上げ温度が850~970℃となるように熱間圧延を行って、厚さ2.4mmの熱間圧延鋼帯とした。酸洗後、冷間圧延を施して、厚さ1.0mmの冷間圧延鋼帯とし、表2に示す条件で溶融亜鉛めっきラインを通板し、実験例1~34の溶融亜鉛めっき鋼板を製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記方法によって製造した各実験例の鋼板について、以下のような評価試験を行い、結果を表3-1、3-2に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 めっき層の付着量は、評価面のめっき層をインヒビタ入り塩酸で溶解し、重量法により求めた。同時に、溶解液中のFe、AlをICPで定量することにより、めっき層中Fe濃度、Al濃度を測定した。
 めっき層中の凸状合金層の最大長さ、個数密度は、前述したように、断面埋め込みで鏡面研磨した後に、0.5質量%ナイタール腐食液に1~3秒浸漬してエッチングを行い、光学顕微鏡の200倍で観察することにより求めた。
 鋼板母材の微細化層の平均厚さ、微細化層内におけるフェライト相の平均粒径は、前述したように、断面をCP加工し、FE-SEMでの反射電子像を5000倍で観察することにより測定した。
 鋼板母材の脱炭層の平均厚さは、前述したように、断面埋込後に鏡面研磨し、鋼板母材とめっき層の界面から鋼板母材側に向かって、マイクロヴィッカースで硬度曲線を測定し、内部層の硬さに対して硬さが低下している層の厚みから、先に求めた微細化層厚みを引くことにより求めた。
 脱炭層内におけるフェライト相の平均粒径、脱炭層におけるフェライト相の平均体積分率は、前述したように、断面埋め込み研磨後に3%ナイタールでエッチングし、脱炭層において、FE-SEMの2次電子像2000倍で観察することにより求めた。
 Hv(surf)/Hv(bulk)は、前述したように、断面埋め込み研磨後、脱炭層のマイクロビッカース硬度の平均値Hv(surf)および、内部層のマイクロビッカース硬度の平均値Hv(bulk)を測定し、その比を計算することにより求めた。
 凸状合金層、微細化層、脱炭層における、酸化物の有無、種類、最大径、個数密度を求めるには、前述したように、めっき鋼板の断面をFIB加工して薄膜試料を作製した後、FE-TEMで30000倍で観察することにより実施した。
 引張り試験における、引張り強度については、各実験例の鋼板から、JIS Z 2201に記載の5号試験片を加工して、JIS Z 2241に記載の試験方法に則って、引張り強度(MPa)を測定した。
 標準的な加工を想定しためっき密着性は、V曲げ試験により評価した。V曲げ試験には、60°V曲げ金型を用いた。評価面が、曲げの内側に来るように、先端の曲率半径が1mmである金型を用いて、60°に曲げ加工し、曲げ部内側にテープを貼り、テープを引き剥がした。テープと共に剥離しためっき層の剥離状況から、パウダリング性を評価した。評価は○:剥離なし、△:剥離あり、×:著しい剥離あり、とし、○を合格とした。
 衝撃を受けた際、および強加工時を想定しためっき密着性は、ボールインパクト試験により評価した。ボールインパクト試験は、高さ60cmから、先端部が半球で直径25mmの金型を、重量3.2kgとして溶融めっき鋼板に落下させ、変形した溶融めっき鋼板の凸部を、ルーペ観察およびテープ剥離して評価した。評価は◎◎:剥離・割れなし、◎:微小な割れが局所的に存在するが問題なし、○:微小な割れ・剥離が局所的に存在するが問題なし、△:大きな剥離が存在し問題あり、×:剥離が著しく問題あり、とし、◎◎、◎、○を合格とした。
 また、極めて厳しい加工を受けた部位での加工部耐食性を、0T曲げ(180°密着曲げ)試験後サンプルにより調査した。0T曲げの曲げ外側頭頂部を評価部位として、0T曲げ後サンプルについて下記条件で化成処理・電着塗装を施した。
化成処理:りん酸亜鉛処理
付着量2.5g/m2
電着塗装:Pbフリーエポキシ系電着塗料
膜厚20μm
 その後、JASO-M609-91に示される腐食促進試験を行い、0T曲げ頭頂部から赤錆が発生するサイクル数を評価した。結果について、以下の基準で評点付けし、◎◎、◎、○を合格とした。◎◎:150cyc経過後も赤錆・白錆の発生なし、◎:150cyc経過後赤錆なし・軽微な白錆発生、○:120cyc後赤錆なし・軽微な白錆発生、△:60cyc後赤錆発生、×:30cyc後赤錆発生。
 表3より、本発明例は全て、強加工時のめっき密着性、および強加工時の加工部耐食性が合格レベルとなっている。本発明の範囲を満たさない比較例は、いずれも強加工時のめっき密着性や、強加工時の加工部耐食性に劣る。図2に、実験番号8に相当すると推定される比較例の内部層の断面写真と、実験番号13に相当すると推定される本発明例の内部層の断面写真を示す。
1 めっき層
2 凸状合金層
3 凸状合金層の径の測定方向
4 鋼板母材
5 微細化層
6 脱炭層
7 内部層
8 フェライト相
9 残部組織(オーステナイト相、ベイナイト相、マルテンサイト相、パーライト相のいずれか)

Claims (7)

  1. C:0.05~0.4質量%、
    Si:0.4~3.0質量%、
    Mn:1.0~4.0質量%、
    P:0.0001~0.1質量%、
    S:0.0001~0.01質量%、
    Al:0.005~0.1質量%、
    N:0.0005~0.01質量%、
    O:0.0001~0.01質量%
    を含有し、残部がFeおよび不可避的不純物からなり、
     引張り強度が590MPa以上である鋼板母材上に、Fe:0.01~6.9質量%、Al:0.01~1.0質量%、残部Znおよび不可避的不純物からなる溶融亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板であって、
     前記めっき層が、鋼板母材に接する凸状合金層を有し、凸状合金層の個数密度が断面方向から見た鋼板母材とめっき層の界面の単位長さ当たり4個/mm以上であり、該界面における凸状合金層の最大径が100μm以下であって、
     前記鋼板母材が、鋼板母材とめっき層との界面に直接接する微細化層と、
     前記微細化層に接し、鋼板母材の内方側に存在する脱炭層と、
     前記微細化層および脱炭層以外の内部層とを有し、
     前記微細化層の平均厚さが0.1~5μm、微細化層内におけるフェライト相の平均粒径が0.1~3μmであり、
     前記脱炭層の平均厚さが10~200μm、脱炭層内におけるフェライト相の平均粒径が5~30μmであり、脱炭層におけるフェライト相の平均体積分率が70%以上であり、残部組織がオーステナイト、ベイナイト、マルテンサイト、またはパーライトからなり、
     脱炭層の平均ヴィッカース硬度Hv(surf)と内部層の平均ヴィッカース硬度Hv(bulk)の比Hv(surf)/Hv(bulk)が0.3~0.8であり、
     前記微細化層、脱炭層、および凸状合金層の層内に、SiおよびMnの1種または2種以上の酸化物を含有することを特徴とする、耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
  2.  前記微細化層、脱炭層、および凸状合金層の層内に含有する酸化物が、SiO、MnSiO、MnSiO、FeSiO、FeSiO、MnOの1種または2種以上であることを特徴とする、請求項1に記載の耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
  3.  前記凸状合金層に含有される、酸化物の最大径が0.05~0.4μm、個数密度が20~100個/μmであることを特徴とする、請求項1または2に記載の、耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
  4.  前記微細化層中に含有される、酸化物の最大径が0.01~0.2μm、個数密度が20~100個/mmであることを特徴とする、請求項1~3のいずれか1項に記載の、耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
  5.  前記溶融亜鉛めっき層の最表面には凸状合金層が存在しないことを特徴とする、請求項1~4のいずれか1項に記載の、耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
  6.  鋼板母材が更に、
    Ti:0.001~0.15質量%、
    Nb:0.001~0.10質量%、
    の1種または2種を含有することを特徴とする、請求鋼1~5のいずれか1項に記載の、耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
  7.  鋼板母材が更に、
    Mo:0.01~2.0質量%、
    Cr:0.01~2.0質量%、
    Ni:0.01~2.0質量%、
    Cu:0.01~2.0質量%、
    B:0.0001~0.01質量%、
    の1種または2種以上を含有することを特徴とする、請求鋼1~6のいずれか1項に記載の、耐衝撃性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板。
PCT/JP2016/055635 2016-02-25 2016-02-25 耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板 WO2017145329A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US16/060,331 US10704132B2 (en) 2016-02-25 2016-02-25 High-strength hot-dip galvanized steel sheet excellent in impact peeling resistance and worked portion corrosion resistance
PCT/JP2016/055635 WO2017145329A1 (ja) 2016-02-25 2016-02-25 耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板
BR112018012606-3A BR112018012606A2 (ja) 2016-02-25 2016-02-25 A high intensity hot-dip zinc-coated carbon steel sheet excellent in shock-proof fissility and processing section corrosion resistance
CN201680082185.2A CN108699664B (zh) 2016-02-25 2016-02-25 耐冲击剥离性及加工部耐腐蚀性优异的高强度热浸镀锌钢板
EP16891486.9A EP3378965B1 (en) 2016-02-25 2016-02-25 High-strength hot-dip galvanized steel sheet excellent in impact peeling resistance and worked portion corrosion resistance
KR1020187023400A KR102115278B1 (ko) 2016-02-25 2016-02-25 내충격 박리성 및 가공부 내식성이 우수한 고강도 용융 아연 도금 강판
MX2018008543A MX2018008543A (es) 2016-02-25 2016-02-25 Lamina de acero galvanizada por inmersion en caliente, de alta resistencia, con excelente resistencia a la descamacion por impacto y resistencia a la corrosion en la seccion trabajada.
JP2018501502A JP6583528B2 (ja) 2016-02-25 2016-02-25 耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板
PL16891486T PL3378965T3 (pl) 2016-02-25 2016-02-25 Blacha stalowa cienka o dużej wytrzymałości cynkowana zanurzeniowo na gorąco o doskonałej odporności na łuszczenie przy uderzeniu oraz odporności na korozję obszaru poddawanego obróbce
ES16891486T ES2820311T3 (es) 2016-02-25 2016-02-25 Lámina de acero galvanizado por inmersión en caliente de alta resistencia con excelente resistencia al desprendimiento por impacto y resistencia a la corrosión de la porción mecanizada

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055635 WO2017145329A1 (ja) 2016-02-25 2016-02-25 耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板

Publications (1)

Publication Number Publication Date
WO2017145329A1 true WO2017145329A1 (ja) 2017-08-31

Family

ID=59684956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055635 WO2017145329A1 (ja) 2016-02-25 2016-02-25 耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板

Country Status (10)

Country Link
US (1) US10704132B2 (ja)
EP (1) EP3378965B1 (ja)
JP (1) JP6583528B2 (ja)
KR (1) KR102115278B1 (ja)
CN (1) CN108699664B (ja)
BR (1) BR112018012606A2 (ja)
ES (1) ES2820311T3 (ja)
MX (1) MX2018008543A (ja)
PL (1) PL3378965T3 (ja)
WO (1) WO2017145329A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167576A (ja) * 2018-03-23 2019-10-03 株式会社神戸製鋼所 合金化溶融亜鉛めっき鋼板の製造方法
WO2019212047A1 (ja) * 2018-05-01 2019-11-07 日本製鉄株式会社 亜鉛系めっき鋼板及びその製造方法
JP2023507960A (ja) * 2019-12-20 2023-02-28 ポスコホールディングス インコーポレーティッド 表面品質と電気抵抗スポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP7571140B2 (ja) 2019-12-20 2024-10-22 ポスコホールディングス インコーポレーティッド 表面品質と電気抵抗スポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
CN106244923B (zh) * 2016-08-30 2018-07-06 宝山钢铁股份有限公司 一种磷化性能和成形性能优良的冷轧高强度钢板及其制造方法
CN106350731B (zh) * 2016-08-30 2018-08-10 宝山钢铁股份有限公司 一种具有优良磷化性能和成形性的冷轧高强度钢板及其制造方法
US20180237877A1 (en) * 2017-02-17 2018-08-23 GM Global Technology Operations LLC Mitigating liquid metal embrittlement in zinc-coated press hardened steels
WO2019222950A1 (en) 2018-05-24 2019-11-28 GM Global Technology Operations LLC A method for improving both strength and ductility of a press-hardening steel
US11612926B2 (en) 2018-06-19 2023-03-28 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
CN109594032A (zh) * 2018-11-14 2019-04-09 中国科学院金属研究所 一种提高合金涂层耐冲击性能的方法
MX2021007336A (es) * 2018-12-19 2021-07-15 Jfe Steel Corp Tuberia o tubo de acero soldada por resistencia electrica.
KR102177872B1 (ko) * 2019-01-28 2020-11-12 현대제철 주식회사 도금강판의 박리성 평가방법
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
CN110273111B (zh) * 2019-07-30 2020-11-24 马鞍山钢铁股份有限公司 一种宽热成形加热工艺窗口的锌基镀层热成形钢及其制备方法
CN115210399B (zh) * 2020-03-13 2023-09-22 日铁不锈钢株式会社 包层钢板及其制造方法以及焊接结构物
WO2021224662A1 (en) 2020-05-07 2021-11-11 Arcelormittal Annealing method of steel
KR102305208B1 (ko) 2020-05-19 2021-09-27 현대제철 주식회사 인장시험을 이용한 도금강판의 접합강도 측정방법
KR102330812B1 (ko) 2020-06-30 2021-11-24 현대제철 주식회사 열간 프레스용 강판 및 이의 제조 방법
WO2022129989A1 (en) 2020-12-15 2022-06-23 Arcelormittal Annealing method
CN114686651B (zh) * 2020-12-31 2024-08-13 通用汽车环球科技运作有限责任公司 具有降低的液态金属致脆(lme)敏感性的锌涂覆的钢
CN113151766B (zh) * 2021-03-16 2022-03-04 重庆广仁铁塔制造有限公司 低合金高强度铁塔构件亚光化表面处理方法及亚光铁塔
US20220314377A1 (en) * 2021-04-06 2022-10-06 GM Global Technology Operations LLC High-strength steel sheet blank having decarburized outer layers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299314A (ja) * 1993-04-14 1994-10-25 Sumitomo Metal Ind Ltd 界面密着性に優れた合金化溶融Znめっき鋼板の製造方法
JP2011127216A (ja) * 2009-11-19 2011-06-30 Kobe Steel Ltd めっき鋼板、およびその製造方法
JP2012251229A (ja) * 2011-06-06 2012-12-20 Nippon Steel & Sumitomo Metal Corp 高強度合金化溶融亜鉛めっき鋼板とその製造方法
WO2013047755A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 耐衝撃特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法、並びに、高強度合金化溶融亜鉛めっき鋼板およびその製造方法
WO2013047760A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013154184A1 (ja) * 2012-04-13 2013-10-17 新日鐵住金株式会社 電気めっき用鋼板および電気めっき鋼板ならびにそれらの製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4718782Y1 (ja) 1967-11-02 1972-06-28
JPH04276057A (ja) 1991-03-05 1992-10-01 Nippon Steel Corp めっき密着性の良好な高Si含有高張力合金化溶融亜鉛めっき鋼板の製造方法
JP2601581B2 (ja) 1991-09-03 1997-04-16 新日本製鐵株式会社 加工性に優れた高強度複合組織冷延鋼板の製造方法
JP3536814B2 (ja) 2000-11-29 2004-06-14 住友金属工業株式会社 美麗な溶融亜鉛めっき鋼板およびその製造方法
JP3598087B2 (ja) 2001-10-01 2004-12-08 新日本製鐵株式会社 加工性の優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP2004124187A (ja) 2002-10-03 2004-04-22 Sumitomo Metal Ind Ltd 密着性・溶接性に優れた高強度溶融亜鉛めっき鋼板
JP4718782B2 (ja) 2003-02-06 2011-07-06 新日本製鐵株式会社 合金化溶融亜鉛めっき鋼板、およびその製造方法
JP4555694B2 (ja) * 2005-01-18 2010-10-06 新日本製鐵株式会社 加工性に優れる焼付け硬化型熱延鋼板およびその製造方法
CA2640646C (en) 2006-01-30 2011-07-26 Nippon Steel Corporation High strength hot-dip galvanized steel sheet and high strength hot-dip galvannealed steel sheet and methods of production and apparatuses for production of the same
JP4781836B2 (ja) 2006-02-08 2011-09-28 新日本製鐵株式会社 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法
EP2009127A1 (en) * 2007-06-29 2008-12-31 ArcelorMittal France Process for manufacturing a galvanized or a galvannealed steel sheet by DFF regulation
JP5370104B2 (ja) * 2009-11-30 2013-12-18 新日鐵住金株式会社 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法
KR101597473B1 (ko) 2011-07-29 2016-02-24 신닛테츠스미킨 카부시키카이샤 굽힘성이 우수한 고강도 아연 도금 강판 및 그 제조 방법
WO2013047739A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 機械切断特性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
BR112014007530B1 (pt) 2011-09-30 2018-12-11 Nippon Steel & Sumitomo Metal Corporation chapa de aço galvanizada por imersão a quente de alta resistência e processo para produção da mesma
KR101449119B1 (ko) * 2012-09-04 2014-10-08 주식회사 포스코 우수한 강성 및 연성을 갖는 페라이트계 경량 고강도 강판 및 그 제조방법
WO2014037627A1 (fr) * 2012-09-06 2014-03-13 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication de pieces d'acier revêtues et durcies a la presse, et tôles prerevêtues permettant la fabrication de ces pieces
JP5799997B2 (ja) * 2013-09-12 2015-10-28 Jfeスチール株式会社 外観性とめっき密着性に優れる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299314A (ja) * 1993-04-14 1994-10-25 Sumitomo Metal Ind Ltd 界面密着性に優れた合金化溶融Znめっき鋼板の製造方法
JP2011127216A (ja) * 2009-11-19 2011-06-30 Kobe Steel Ltd めっき鋼板、およびその製造方法
JP2012251229A (ja) * 2011-06-06 2012-12-20 Nippon Steel & Sumitomo Metal Corp 高強度合金化溶融亜鉛めっき鋼板とその製造方法
WO2013047755A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 耐衝撃特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法、並びに、高強度合金化溶融亜鉛めっき鋼板およびその製造方法
WO2013047760A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013154184A1 (ja) * 2012-04-13 2013-10-17 新日鐵住金株式会社 電気めっき用鋼板および電気めっき鋼板ならびにそれらの製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167576A (ja) * 2018-03-23 2019-10-03 株式会社神戸製鋼所 合金化溶融亜鉛めっき鋼板の製造方法
JP7086666B2 (ja) 2018-03-23 2022-06-20 株式会社神戸製鋼所 合金化溶融亜鉛めっき鋼板の製造方法
WO2019212047A1 (ja) * 2018-05-01 2019-11-07 日本製鉄株式会社 亜鉛系めっき鋼板及びその製造方法
JP6645636B1 (ja) * 2018-05-01 2020-02-14 日本製鉄株式会社 亜鉛系めっき鋼板及びその製造方法
CN112074620A (zh) * 2018-05-01 2020-12-11 日本制铁株式会社 镀锌钢板及其制造方法
CN112074620B (zh) * 2018-05-01 2021-09-17 日本制铁株式会社 镀锌钢板及其制造方法
JP2023507960A (ja) * 2019-12-20 2023-02-28 ポスコホールディングス インコーポレーティッド 表面品質と電気抵抗スポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
US12000008B2 (en) 2019-12-20 2024-06-04 Posco Advanced high strength zinc plated steel sheet having excellent surface quality and electrical resistance spot weldability
JP7571140B2 (ja) 2019-12-20 2024-10-22 ポスコホールディングス インコーポレーティッド 表面品質と電気抵抗スポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法

Also Published As

Publication number Publication date
JPWO2017145329A1 (ja) 2018-09-27
US10704132B2 (en) 2020-07-07
CN108699664B (zh) 2020-05-12
BR112018012606A2 (ja) 2018-12-04
EP3378965A4 (en) 2019-05-08
EP3378965A1 (en) 2018-09-26
ES2820311T3 (es) 2021-04-20
MX2018008543A (es) 2018-09-19
CN108699664A (zh) 2018-10-23
US20180312954A1 (en) 2018-11-01
KR102115278B1 (ko) 2020-05-26
EP3378965B1 (en) 2020-08-12
JP6583528B2 (ja) 2019-10-02
PL3378965T3 (pl) 2021-01-25
KR20180102157A (ko) 2018-09-14

Similar Documents

Publication Publication Date Title
JP6583528B2 (ja) 耐衝撃剥離性および加工部耐食性に優れた高強度溶融亜鉛めっき鋼板
JP6599902B2 (ja) 高強度多相鋼、製造方法および使用
KR101913986B1 (ko) 용융 아연 도금 강판
JP2022169693A (ja) ホットスタンピング用の熱間圧延及びコーティングされた鋼板、ホットスタンピングされ、コーティングされた鋼部品及びこれらを製造するための方法
JP6390712B2 (ja) 溶融亜鉛めっき鋼板
TWI441928B (zh) 均勻伸長和鍍覆性優異之高強度熔融鍍鋅鋼板及其製造方法
JP5545414B2 (ja) 冷延鋼板及び冷延鋼板の製造方法
JP5304966B1 (ja) 合金化溶融亜鉛めっき鋼板
JP4837604B2 (ja) 合金化溶融亜鉛めっき鋼板
JP6398967B2 (ja) 表面外観及びめっき密着性に優れた高強度溶融めっき熱延鋼板およびその製造方法
JP2011117040A (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
KR20180095698A (ko) 고항복비형 고강도 아연 도금 강판 및 그의 제조 방법
CN108603262B (zh) 高屈服比型高强度镀锌钢板及其制造方法
WO2018142849A1 (ja) 高強度溶融亜鉛めっき熱延鋼板およびその製造方法
JP4555738B2 (ja) 合金化溶融亜鉛めっき鋼板
JP7063430B1 (ja) 熱間プレス部材、塗装部材、熱間プレス用鋼板、および熱間プレス部材の製造方法ならびに塗装部材の製造方法
WO2022091529A1 (ja) 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法
JP6436268B1 (ja) めっき密着性に優れた高強度溶融亜鉛めっき鋼板の製造方法
TWI592501B (zh) High-strength hot-dip galvanized steel sheet with excellent impact-resistant peelability and machined part corrosion resistance
WO2020110795A1 (ja) 高強度鋼板およびその製造方法
JP4846550B2 (ja) 合金化溶融亜鉛めっき用鋼板及び合金化溶融亜鉛めっき鋼板
JP7311068B1 (ja) 亜鉛めっき鋼板および部材、ならびに、それらの製造方法
JP5092858B2 (ja) 溶融亜鉛めっき用鋼板及び合金化溶融亜鉛めっき鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501502

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 16060331

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018012606

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/008543

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20187023400

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187023400

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112018012606

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180620