WO2019208297A1 - アンテナ結合素子、アンテナ装置及び通信端末装置 - Google Patents

アンテナ結合素子、アンテナ装置及び通信端末装置 Download PDF

Info

Publication number
WO2019208297A1
WO2019208297A1 PCT/JP2019/016120 JP2019016120W WO2019208297A1 WO 2019208297 A1 WO2019208297 A1 WO 2019208297A1 JP 2019016120 W JP2019016120 W JP 2019016120W WO 2019208297 A1 WO2019208297 A1 WO 2019208297A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating element
coil
antenna
resonance frequency
radiating
Prior art date
Application number
PCT/JP2019/016120
Other languages
English (en)
French (fr)
Inventor
貴文 那須
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020516240A priority Critical patent/JP6760545B2/ja
Priority to CN201990000661.0U priority patent/CN213184599U/zh
Publication of WO2019208297A1 publication Critical patent/WO2019208297A1/ja
Priority to US16/992,193 priority patent/US20200373083A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Definitions

  • the present invention relates to an antenna coupling element connected between a plurality of radiating elements and a power feeding circuit, and an antenna apparatus and a communication terminal apparatus including the antenna coupling element.
  • Patent Document 1 discloses an antenna device including two radiating elements and an antenna coupling element that supplies power to the two radiating elements.
  • mobile phone communication antennas are required to cover a wide band such as 0.60 GHz to 2.7 GHz for the purpose of supporting carrier aggregation that increases the transmission rate by simultaneously using multiple frequency bands. is there.
  • a wide band such as 0.60 GHz to 2.7 GHz
  • an antenna device that can simultaneously use a wide band is required.
  • the antenna device shown in Patent Document 1 is obtained by connecting an antenna coupling element between two radiating elements (a feeding radiating element and a parasitic radiating element) and a feeding circuit.
  • the antenna device having this configuration is useful for simultaneously covering a wide band.
  • a small communication terminal has a limited area that can be used to form a radiating element. For this reason, when a long radiating element is to be provided, there is a case where the above two radiating elements must be selected so that at least partly, the two radiating elements extend in substantially the same direction along each other. is there.
  • FIG. 20 shows a conceptual diagram of the frequency characteristics of the radiation efficiency of the antenna device in which the above-described problem occurs.
  • a characteristic E1 is a frequency characteristic of the radiation efficiency of the feeding radiation element alone
  • a characteristic E2 is a frequency of the radiation efficiency of the antenna apparatus with the antenna coupling element and the low-band parasitic radiation element added. It is a characteristic.
  • the relationship between the two radiating elements weakens the magnetic field generated by the feeding radiating element (near 0.96 GHz). The radiation efficiency will decrease.
  • An object of the present invention is to provide an antenna coupling element, an antenna device including the antenna coupling element, and a communication terminal apparatus that suppress a decrease in radiation efficiency due to weakening of magnetic fields generated from at least two radiation elements. is there.
  • An antenna coupling element as an example of the present disclosure includes a first coil connected to the first radiating element and the power feeding circuit, or connected to the first radiating element and the ground, and to the second radiating element.
  • the first coil and the second coil include a direction of a magnetic field generated in the first coil when current flows from the first coil to the first radiating element, and a second coil when current flows from the second coil to the second radiating element.
  • the resonance frequency of the fundamental wave of the second radiating element including the transformer composed of the first coil and the second coil includes the first coil. It is lower than the resonance frequency of the fundamental wave of the first radiating element.
  • an antenna coupling element that suppresses a decrease in radiation efficiency due to weakening of magnetic fields generated from at least two radiation elements, and an antenna device and a communication terminal device including the antenna coupling element can be obtained.
  • FIG. 1 is a perspective view of an antenna coupling element 20 according to the first embodiment.
  • FIG. 2A is a plan view showing main configurations of the antenna device 101A and the communication terminal device 110A including the antenna device 101A.
  • FIG. 2B is an enlarged plan view of the antenna device 101 ⁇ / b> A, in particular, the power feeding part FA (mounting part for the antenna coupling element).
  • FIG. 3 is a circuit diagram of the antenna device 101 ⁇ / b> A including the antenna coupling element 20.
  • FIG. 4 is an exploded plan view showing conductor patterns formed in each layer of the antenna coupling element 20.
  • FIG. 5 is an exploded plan view showing a conductor pattern formed in each layer of the antenna coupling element 20, which is an example different from the example shown in FIG. FIG.
  • FIG. 6A shows the frequency characteristic of the reflection coefficient of the antenna device 101A.
  • FIG. 6B is a diagram illustrating the frequency characteristic of the reflection coefficient of the antenna device of the comparative example.
  • FIG. 7A is a diagram illustrating the frequency characteristics of the current phase of the antenna device 101A.
  • FIG. 7B is a diagram illustrating the frequency characteristics of the current phase of the antenna device of the comparative example.
  • FIG. 8 is a diagram illustrating the frequency characteristics of the reflection coefficient of the antenna device in the frequency range including the high band.
  • FIG. 9 is a diagram illustrating frequency characteristics of the radiation efficiency of the antenna device.
  • FIG. 10 is a plan view showing main configurations of the antenna device 101B and the communication terminal device 110B including the antenna device 101B.
  • FIG. 11 is a diagram illustrating a configuration of an antenna device 102A according to the second embodiment.
  • FIG. 12 is a diagram illustrating a configuration of another antenna device 102B according to the second embodiment.
  • FIG. 13 is a diagram illustrating a configuration of the antenna device 103 according to the third embodiment.
  • FIG. 14 is a diagram illustrating a configuration of another antenna device 104 according to the third embodiment.
  • FIG. 15 is a diagram illustrating a configuration of an antenna device 105 according to the fourth embodiment.
  • FIG. 16 is a diagram illustrating a specific configuration of a conductor pattern of the antenna device 105 according to the fourth embodiment.
  • FIG. 17 is a diagram showing the radiation efficiency in the high band for the antenna device 105 of the fourth embodiment and the antenna device of the comparative example.
  • FIG. 12 is a diagram illustrating a configuration of another antenna device 102B according to the second embodiment.
  • FIG. 13 is a diagram illustrating a configuration of the antenna device 103 according to the third embodiment.
  • FIG. 18 is a diagram illustrating a configuration of another antenna device 106 according to the fourth embodiment.
  • FIG. 19 is a diagram illustrating a configuration of an antenna device as a comparative example with respect to the antenna device of the fourth embodiment.
  • FIG. 20 is a conceptual diagram showing the frequency characteristics of the radiation efficiency of the antenna device when the magnetic fields generated from the two radiating elements are weakened.
  • FIG. 1 is a perspective view of an antenna coupling element 20 according to the first embodiment.
  • the antenna coupling element 20 of this embodiment is a rectangular parallelepiped chip component mounted on a circuit board in an electronic device.
  • the outer shape of the antenna coupling element 20 is represented by a two-dot chain line.
  • a first radiating element connection terminal T1 On the outer surface of the antenna coupling element 20, a first radiating element connection terminal T1, a feeder circuit connection terminal T2, a ground connection terminal T3, and a second radiating element connection terminal T4 are formed.
  • the antenna coupling element 20 includes a first surface MS1 and a second surface MS2 that is a surface opposite to the first surface.
  • the first surface MS1 is a mounting surface.
  • FIG. 2A is a plan view showing a main configuration of the antenna device 101A and the communication terminal device 110A including the antenna device 101A.
  • FIG. 2B is an enlarged plan view of the antenna device 101 ⁇ / b> A, in particular, the power feeding part FA (mounting part for the antenna coupling element).
  • FIG. 2A shows the circuit board of the communication terminal device 110A in particular.
  • the circuit board includes a ground region where the ground conductor pattern 42 is formed and a non-ground region where the ground conductor pattern 42 is not formed.
  • the first radiating element 11 and the second radiating element 12 are formed in the non-ground region.
  • the non-ground region may be formed on a separate substrate provided on the circuit board.
  • the first radiating element connection terminal T 1 of the antenna coupling element 20 is connected to the first radiating element 11, and the second radiating element connecting terminal T 4 is connected to the second radiating element 12.
  • the feeder circuit connection terminal T2 is connected to a transmission line to which the feeder circuit is connected, and the ground connection terminal T3 is connected to the ground conductor pattern 42.
  • the first radiating element 11 is formed of a linear conductor pattern that extends rightward from the power feeding portion FA and folds leftward at the right end portion.
  • the main part of the second radiating element 12 is constituted by a linear conductor pattern extending in the left direction from the power feeding part FA along the boundary between the ground area and the non-ground area.
  • the first radiating element 11 is disposed at a position farther from the ground conductor pattern 42 than the second radiating element 12. With such an arrangement structure, the radiation of the first radiating element 11 is not easily blocked by the ground conductor pattern 42.
  • Both the first radiating element 11 and the second radiating element 12 act as a monopole antenna.
  • the first radiating element 11 is folded halfway, the first radiating element 11 and the second radiating element 12 are formed in a non-ground region having a limited area.
  • the first radiating element 11 and the second radiating element 12 partially extend in substantially the same direction, but as described later, weakening of the magnetic field generated from the first radiating element 11 and the second radiating element 12 is suppressed. Is done.
  • FIG. 3 is a circuit diagram of the antenna device 101A including the antenna coupling element 20 described above.
  • the antenna coupling element 20 includes a first coil L1 and a second coil L2 that are magnetically coupled to each other.
  • M in FIG. 3 represents this magnetic field coupling.
  • the direction of the magnetic field generated in the first coil L1 by the current flowing from the first coil L1 in the direction of the first radiating element 11, and the magnetic field generated in the second coil L2 by the current flowing in the direction of the second radiating element 12 from the second coil L2 These directions are opposite to each other.
  • the dot marks in FIG. 3 indicate this relationship.
  • the ground corresponds to the “reference potential” according to the present invention.
  • the self-inductance of the second coil L2 is larger than the self-inductance of the first coil L1.
  • the coupling coefficient between the first coil L1 and the second coil L2 in order to suppress a decrease in induced electromotive force due to a decrease in frequency, at least one of the coupling coefficient between the first coil L1 and the second coil L2, the self inductance of the first coil L1, and the self inductance of the second coil L2 is set.
  • the self-inductance of the first coil L1 is increased, impedance matching with the first radiating element is lost. Therefore, as described above, it is preferable to increase the self-inductance of the second coil L2.
  • the power feeding circuit 30 shown in FIG. 3 inputs and outputs communication signals in a communication frequency band including a low band and a high band.
  • 4 and 5 are exploded plan views showing conductor patterns formed in each layer of the antenna coupling element 20. 4 and FIG. 5 are different in a part of the conductor pattern formed in each layer of the antenna coupling element 20.
  • terminals T1, T2, T3, and T4 are formed on the lower surface of the insulating base material S1 and the upper surface of the insulating base material S15, which are the lowest layers. After lamination, terminals T1, T2, T3, and T4 are also formed on the side surfaces of the insulating substrates S2 to S14. Conductor patterns L1a and L1b are formed on the upper surfaces of the insulating substrates S5 and S6. Conductor patterns L2a to L2d are formed on the top surfaces of the insulating base materials S7 to S10. Terminals T1, T2, T3, and T4 are formed on the upper surface of the uppermost insulating base material S15.
  • One end of the conductor pattern L1a is connected to the terminal T2 via an interlayer connection conductor formed on the side surface of the multilayer body.
  • the other end of the conductor pattern L1a is connected to one end of the conductor pattern L1b through the interlayer connection conductor V.
  • the other end of the conductor pattern L1b is connected to the terminal T1 via an interlayer connection conductor formed on the side surface of the multilayer body.
  • One end of the conductor pattern L2a is connected to the terminal T3 via an interlayer connection conductor formed on the side surface of the multilayer body.
  • the other end of the conductor pattern L2a is connected to one end of the conductor pattern L2b through the interlayer connection conductor V.
  • the other end of the conductor pattern L2b is connected to one end of the conductor pattern L2c through the interlayer connection conductor V.
  • the other end of the conductor pattern L2c is connected to one end of the conductor pattern L2d through the interlayer connection conductor V.
  • the other end of the conductor pattern L2d is connected to the terminal T4 via an interlayer connection conductor formed on the side surface of the multilayer body.
  • the first coil L1 is composed of the conductor patterns L1a and L1b and the interlayer connection conductor that connects them
  • the second coil L2 is composed of the conductor patterns L2a to L2d and the interlayer connection conductor that connects them.
  • the coil openings of the first coil L1 and the second coil L2 overlap in a plan view of the stacked body.
  • the number of turns of the second coil L2 is larger than the number of turns of the first coil L1
  • the self-inductance of the second coil L2 is larger than the self-inductance of the first coil L1.
  • the structure for making the self-inductance of the second coil L2 larger than the self-inductance of the first coil L1 is limited to increasing the number of formation layers of the conductor pattern for forming the second coil L2, as shown in FIG. Absent. For example, it can be realized by increasing the number of turns of the conductor pattern in each layer without changing the number of layers, reducing the line width of the conductor pattern, or increasing the length of the conductor pattern.
  • the conductor patterns L1a and L1b are upside down. Further, the conductor patterns L2a, L2b, L2c, and L2d are in a reverse relationship. 4 and 5, as shown in FIG. 3, the direction of the magnetic field generated in the first coil L ⁇ b> 1 by the current flowing from the first coil L ⁇ b> 1 toward the first radiating element 11, and the second coil L ⁇ b> 2.
  • the first coil L1 and the second coil L2 are wound so as to be opposite to the direction of the magnetic field generated in the second coil L2 by the current flowing from the first to the second radiating element 12.
  • the insulating base materials S1 to S15 are, for example, liquid crystal polymer (LCP) sheets, and the conductor patterns L1a, L1b, L2a to L2d are, for example, those obtained by patterning copper foil. is there.
  • the insulating base materials S1 to S15 are, for example, low-temperature co-fired ceramics (LTCC [Low Temperature Co-fired Ceramics]), and conductor patterns L1a, L1b, L2a ⁇ L2d is formed by printing a copper paste, for example.
  • the antenna coupling element 20 is not limited to a ceramic multilayer substrate, and may be formed, for example, by repeatedly applying an insulating paste mainly composed of glass by screen printing. In this case, the various conductor patterns are formed by a photolithography process.
  • the base material layer is non-magnetic (not magnetic ferrite), it can be used as a transformer having a predetermined inductance and a predetermined coupling coefficient even in a high frequency band of 0.60 GHz to 2.7 GHz.
  • the conductor patterns L1a, L1b, L2a to L2d are concentrated on the intermediate layer of the multilayer body, the ground conductor and the first coil L1 existing on the circuit board in a state where the antenna coupling element 20 is mounted on the circuit board. And the space
  • FIG. 6A is a diagram showing the frequency characteristic of the reflection coefficient of the antenna device 101A.
  • FIG. 6B is a diagram illustrating the frequency characteristic of the reflection coefficient of the antenna device of the comparative example.
  • FIG. 7A is a diagram illustrating the frequency characteristics of the current phase of the antenna device 101A.
  • FIG. 7B is a diagram illustrating the frequency characteristics of the current phase of the antenna device of the comparative example.
  • the antenna device of this comparative example uses an antenna coupling element having a polarity opposite to that of the example shown in FIG. 3 in the coupling polarity between the first coil L1 and the second coil L2 of the antenna coupling element 20.
  • the horizontal axis represents frequency and the vertical axis represents reflection coefficient.
  • the reflection coefficient R2 is a reflection coefficient when the antenna coupling element 20 side is viewed from the feeder circuit 30 in FIG. 3 (that is, the antenna device 101A).
  • the reflection coefficient R1 is a reflection coefficient when the first radiating element 11 side is viewed from the feeder circuit connection terminal T2 in FIG. 3 (that is, the first radiating element 11 including the first coil L1).
  • the reflection coefficient R3 is a reflection coefficient when the antenna coupling element side is viewed from the feeder circuit in the antenna device of the comparative example (that is, the antenna device of the comparative example).
  • the frequency f11 is the resonance frequency of the first radiating element 11 including the first coil L1 (the resonance frequency due to the first coil L1 and the first radiating element 11).
  • f 21 is the resonance frequency of the fundamental wave generated by the antenna coupling element 20 and the second radiating element 12.
  • the first radiating element 11 including the first coil L1 resonates with the fundamental wave at the frequency f11, and the entire antenna device resonates with the fundamental wave at the frequency f21.
  • the interaction between the first radiating element 11 and the second radiating element 12 is different between the antenna apparatus 101A of the present embodiment and the antenna apparatus of the comparative example.
  • the magnetic coupling between the first radiating element 11 and the second radiating element 12 is mainly strengthened, the apparent inductance component of the radiating element is compared with the comparative example in which the magnetic field is weakened. Increases, and the resonance frequency decreases. The same applies to the reason why the reflection coefficient at the frequency f21 is different between FIG. 6A and FIG.
  • the horizontal axis represents frequency and the vertical axis represents current phase.
  • the phase P1 is the phase of the current flowing through the first radiating element 11 in FIG.
  • the phase P2 is the phase of the current flowing through the second radiating element 12 in FIG.
  • the impedance of the second radiating element 12 changes to inductive at a resonance frequency (0.85 GHz) or higher of the first radiating element 11, and the first radiating element 11
  • the phase difference between the flowing current and the current flowing through the second radiating element 12 is increased.
  • the phase difference exceeds 90 degrees at a frequency of 0.73 GHz or more.
  • the magnetic field generated from the first radiating element 11 is weakened by the magnetic field generated by the second radiating element 12, and the radiation of the first radiating element 11 is prevented.
  • the phase difference is 180 degrees, and the magnetic field generated from the first radiating element 11 acts to weaken the magnetic field generated by the second radiating element 12.
  • phase of the current flowing through the first radiating element 11 is obtained by measuring the phase of the current flowing between the first coil L1 of the antenna coupling element 20 and the first radiating element 11 using a network analyzer or the like.
  • a network analyzer or the like it is necessary to prevent the current probes from being close to each other, which is difficult. Therefore, for example, first, the S parameter of only the first radiating element 11 and the S parameter of only the antenna coupling element 20 are measured, and then the circuit configuration of the antenna device 101A, the S parameter of the first radiating element 11, and the antenna coupling are measured.
  • the “current flowing through the first radiating element 11” is calculated.
  • the phase of the current flowing through the second radiating element 12 That is, the S parameter of only the second radiating element 12 and the S parameter of only the antenna coupling element 20 are measured, and then the circuit configuration of the antenna device 101A, the S parameter of the second radiating element 12, and the antenna coupling element 20 are measured. Is used to calculate the current flowing between the second coil L2 of the antenna coupling element 20 and the second radiating element 12 on the circuit simulator, so that “the phase of the current flowing through the second radiating element 12” is calculated. Get.
  • the phase of the current flowing between the first coil L1 of the antenna coupling element 20 and the first radiating element 11 or the second coil L2 of the antenna coupling element 20 can be measured.
  • the phase difference from the current flowing through 12 does not exceed 90 degrees. Therefore, the magnetic field generated from the first radiating element 11 in the low band is not easily weakened by the magnetic field generated by the second radiating element 12, and the radiation of the first radiating element 11 is not hindered.
  • FIG. 8 is a diagram showing the frequency characteristics of the reflection coefficient of the antenna device in the frequency range including the high band. Similar to FIGS. 6A and 6B, in FIG. 8, the reflection coefficient R2 is the reflection coefficient when the antenna coupling element 20 side is viewed from the feeder circuit 30 in FIG. 3, and the reflection coefficient R1 is the first coil. L1 is a reflection coefficient of the first radiation element 11 including L1, and the reflection coefficient R3 is a reflection coefficient when the antenna coupling element side is viewed from the feeding circuit of the antenna device of the comparative example.
  • the frequency range from 0.60 GHz to 0.96 GHz is the low band, and the frequency range from 1.71 GHz to 2.69 GHz is the high band.
  • FIG. 9 is a diagram showing frequency characteristics of radiation efficiency of the antenna device.
  • RE 1 is the radiation efficiency of the first radiating element 11
  • RE 2 and RE 3 are the radiation efficiency of the antenna apparatus including the transformer and the second radiating element 12.
  • RE2 is the radiation efficiency of the antenna device of this embodiment
  • RE3 is the radiation efficiency of the antenna device of the comparative example.
  • the first radiating element 11 including the first coil L1 resonates at the frequency f11 in the low band and resonates at the third harmonic at the frequency f13 in the high band.
  • a resonance circuit (second radiating element 12 including a transformer) including the transformer and the second radiating element 12 resonates at a fundamental frequency at a frequency f21, and resonates at a third harmonic at a frequency f23.
  • the resonance frequency f21 of the fundamental wave of the second radiating element 12 including this transformer is determined to be lower than the resonance frequency f11 of the fundamental wave of the first radiating element 11 including the first coil L1. This widens the usable frequency band of the antenna device in the low band.
  • the fundamental resonance frequency f21 of the second radiating element 12 including the transformer can be determined to be higher than the resonance frequency f11 of the fundamental radiating element 11 including the first coil L1, but in that case Since the frequency f21 approaches an antiresonance point, which will be described later, the resistance component of the resonance system increases and the power loss increases. Accordingly, as in the example shown in FIG. 8, the resonance frequency f21 of the fundamental wave of the second radiation element 12 including the transformer is lower than the resonance frequency f11 of the fundamental wave of the first radiation element 11 including the first coil L1. It is preferable to determine to.
  • the reflection loss is 0.6 dB in this embodiment and 0.8 dB in the comparative example.
  • the present embodiment includes the first coil L1 as shown in the portion surrounded by the broken line in FIG. 9 by reducing the interference of the current so that the phase difference of the current does not exceed 90 degrees.
  • the radiation efficiency of the antenna device of this embodiment is improved by about 1 dB compared to the antenna device of the comparative example.
  • the third harmonic resonance frequency f23 of the second radiating element 12 including the transformer the resonance frequency f11 of the fundamental wave of the first radiating element including the first coil L1, and the first coil L1 including the first coil L1. It is determined between the third radiating element 11 and the third harmonic resonance frequency f13. As a result, as shown in FIG. 9, the radiation efficiency in the frequency band between the fundamental resonance frequency f21 and the third harmonic resonance frequency f23 of the second radiation element 12 including the transformer can be increased.
  • the antiresonance point of the 1st radiation element 11 containing the 1st coil L1 arises between the resonance frequency of the fundamental wave of the 1st radiation element 11 containing the 1st coil L1, and the 3rd harmonic resonance frequency.
  • the third harmonic resonance frequency f23 of the second radiating element 12 including the transformer is preferably determined between the anti-resonance frequency and the third harmonic resonance frequency f13 of the first radiating element 11 including the first coil L1. This is because the third harmonic resonance of the second radiating element 12 including the transformer is effectively generated.
  • the reflection coefficient in the vicinity of the third harmonic resonance frequency f13 of the first radiating element 11 including the first coil L1 is reduced, and the high-band frequency band can be widened.
  • FIG. 10 is a plan view showing a main configuration of an antenna device 101B having a partially different configuration from the antenna device 101A shown in FIGS. 2A and 2B and a communication terminal device 110B having the antenna device 101B. is there.
  • a conductive member MO such as a metal body is close to the non-ground region that forms the first radiating element 11 and the second radiating element 12 of the antenna device 101B, or the conductive member MO is disposed at that position.
  • the shape of the first radiating element 11 is substantially the same as that shown in FIG. 2A, but the second radiating element 12 is folded in the middle so as to avoid the vicinity of the conductive member MO. .
  • Such a structure can avoid the influence of the conductive member MO on the second radiating element 12. Since the region where the magnetic field strength of the first radiating element 11 and the second radiating element 12 is high is near the antenna coupling element 20, the extending direction of the first radiating element 11 and the second radiating element 12 is the same as in this example. Even if there is a reverse part, the same effects as described above are obtained.
  • Second Embodiment In the second embodiment, some examples having different configurations from the first radiating element and the second radiating element shown in the first embodiment will be described.
  • FIG. 11 is a diagram illustrating a configuration of the antenna device according to the second embodiment.
  • the antenna device 102A includes a first radiating element 11, a second radiating element 12, an antenna coupling element 20, and an inductor L11.
  • the first radiating element 11 acts as a monopole antenna, but in the example shown in FIG. 11, the first radiating element 11 is a loop. Acts as an antenna. That is, the inductor L11 is inserted between the tip of the first radiating element 11 and the ground, and the inductor L11 and the first radiating element 11 constitute a loop.
  • the inductor L11 functions as an element that adjusts the effective electrical length of the first radiating element 11 or an element that adjusts the resonance frequency of the loop antenna. Other configurations are as described in the first embodiment.
  • FIG. 12 is a diagram showing a configuration of another antenna device according to the second embodiment.
  • the antenna device 102B includes a first radiating element 11, a second radiating element 12, an antenna coupling element 20, inductors L11a and L11b, capacitors C11a and C11b, and a switch 4.
  • the switch 4 selectively connects one of the inductors L ⁇ b> 11 a and L ⁇ b> 11 b and the capacitors C ⁇ b> 11 a and C ⁇ b> 11 b to the tip of the first radiating element 11 in accordance with a control signal given from the outside of the antenna device. Therefore, the effective length of the antenna can be changed by the switch 4.
  • Inductor L11a and inductor L11b have different inductances, and capacitor C11a and capacitor C11b have different capacitances.
  • the resonance frequency of the first radiating element 11 is switched depending on which of the reactance elements L11a, L11b, C11a, and C11b is selected. The other configuration is as shown in FIG.
  • a loop antenna is configured including the first radiating element 11, the space of the first radiating element 11 can be reduced. Moreover, if it is a loop antenna structure, the fluctuation
  • FIG. 13 is a diagram illustrating the configuration of another antenna device according to the third embodiment.
  • the antenna device 103 includes a first radiating element 11, a second radiating element 12, and an antenna coupling element 20.
  • the power feeding circuit 30 is connected to the power feeding end of the first radiating element 11 via the first coil L ⁇ b> 1 of the antenna coupling element 20.
  • emission element 11 is open
  • the first radiating element 11 functions as an inverted F antenna.
  • the first radiating element 11 is a conductor having a planar spread, it acts as a PIFA (planar inverted-F antenna). In this way, by using the first radiating element 11 as an inverted F-type antenna or PIFA, the impedance of the first radiating element 11 can be made substantially the same as that of the power feeding circuit, and impedance matching becomes easy.
  • the present invention can also be applied to an antenna device in which the first radiating element 11 is an inverted F antenna or a PIFA.
  • FIG. 14 is a diagram showing a configuration of another antenna device according to the third embodiment.
  • the antenna device 104 includes a first radiating element 11, a second radiating element 12, and an antenna coupling element 20.
  • the first coil L1 of the antenna coupling element 20 is connected as a short pin between a predetermined ground position PS of the first radiating element 11 and the ground.
  • the second radiating element 12 is connected to the second coil L ⁇ b> 2 of the antenna coupling element 20.
  • the first radiating element 11 functions as an inverted F antenna.
  • the first radiating element 11 is a conductor having a planar shape, it acts as a PIFA (planar-inverted-F-antenna).
  • the 1st coil L1 since the 1st coil L1 is connected to the position where the electric current which flows into the 1st radiation element 11 becomes the maximum, the fall of the electromotive force of the 2nd radiation element 12 can further be controlled.
  • the present invention can also be applied to an antenna device in which the first radiating element 11 is an inverted F antenna or a PIFA.
  • FIG. 15 is a diagram illustrating a configuration of another antenna device 105 according to the fourth embodiment.
  • the antenna device 105 includes a first radiating element 11, a second radiating element 12, a third radiating element 13, a diplexer 40, and an antenna coupling element 20.
  • the antenna coupling element 20 is the same as that shown in the first embodiment, for example, as shown in FIGS.
  • the antenna device 105 of the present embodiment bears the low band at the use frequency of the antenna device 105 using the first radiating element 11 and bears the high band using the second radiating element 12 and the third radiating element 13.
  • one radiating element does not carry a band from the low band to the high band, but is an antenna device that widens the low band and the high band using different radiating elements.
  • the diplexer 40 includes a power feeding port P0, a high-band antenna port P1, and a low-band antenna port P2.
  • the feed circuit 30 is connected to the feed port P0, the third radiating element 13 is connected to the antenna port P2, and the first radiating element 11 is connected to the antenna port P1.
  • the second radiating element 12 is coupled to the first radiating element 11 via the antenna coupling element 20 to widen the band on the high band side.
  • the resonance of the fundamental wave of one radiating element can be used in each of the low band and the high band (this resonance includes the antenna coupling element 20).
  • the antenna coupling element 20 can be used for widening the high band side.
  • the antenna coupling element 20 wound so that the directions of the magnetic fields generated in the second coil L2 are opposite to each other when a current flows from the second coil L2 to the second radiating element 12 Is the same as in the previous embodiment.
  • the high band can be similarly widened by using the antenna coupling element 20.
  • FIG. 16 is a diagram showing a specific configuration of the conductor pattern of the antenna device 105 according to the fourth embodiment.
  • the first radiating element 11, the second radiating element 12, and the third radiating element 13 shown in FIG. 16 are all monopole antennas formed of a conductor pattern on a substrate. Since the third radiating element 13 assumes a low band, it is longer than the first radiating element 11 and the second radiating element 12.
  • the second radiating element 12 is longer than the first radiating element 11. As a result, the radiation of the second radiating element 12 is not easily disturbed by the first radiating element 11.
  • the third radiating element 13 and the first radiating element 11, and the third radiating element 13 and the second radiating element 12 extend in opposite directions. Thereby, the mutual interference between the third radiating element 13 and the first radiating element 11 and the mutual interference between the third radiating element 13 and the second radiating element 12 are suppressed.
  • an antenna device as a comparative example is shown in FIG.
  • the antenna device of this comparative example is different from the antenna device of the fourth embodiment in that the second radiating element 12 and the antenna coupling element 20 are not provided.
  • FIG. 17 is a diagram showing the radiation efficiency in the high band for the antenna device 105 of the fourth embodiment and the antenna device of the comparative example.
  • the horizontal axis represents the frequency
  • the vertical axis represents the radiation efficiency
  • the solid line represents the characteristics of the antenna device 105 of the fourth embodiment
  • the broken line represents the characteristics of the antenna device of the comparative example.
  • the radiation efficiency of the antenna device of the fourth embodiment is about 2 dB to 3 dB higher in the vicinity of 1.70 GHz to 1.80 GHz than the comparative example.
  • the difference is 1 dB or less compared to the comparative example, which can be said to be the same as the comparative example.
  • the resonance point of the second radiating element 12 is added to the resonance point of the first radiating element 11 by the antenna coupling element 20.
  • “resonance of the first radiating element 11” and “resonance of the second radiating element 12” include the antenna coupling element 20 instead of the resonance of the first radiating element 11 and the second radiating element 12 respectively. It is resonance.
  • the second radiating element 12 and the antenna coupling element 20 can broaden the bandwidth.
  • the resonance of the fundamental wave of the radiating element can be used even in the high band, so that the high band can be widened.
  • FIG. 18 is a diagram illustrating a configuration of another antenna device 106 according to the fourth embodiment.
  • the antenna device 106 includes a first radiating element 11, a second radiating element 12, a third radiating element 13, a diplexer 40, and an antenna coupling element 20.
  • the antenna coupling element 20 is the same as that shown in the first embodiment.
  • the antenna device 106 bears a high band at the use frequency of the antenna device 106 using the first radiating element 11 and bears a low band using the second radiating element 12 and the third radiating element 13.
  • the diplexer 40 includes a power feeding port P0, a high-band antenna port P1, and a low-band antenna port P2.
  • the feed circuit 30 is connected to the feed port P0, the third radiating element 13 is connected to the antenna port P2, and the first radiating element 11 is connected to the antenna port P1.
  • the second radiating element 12 is coupled to the first radiating element 11 via the antenna coupling element 20 to widen the band on the low band side.
  • FIG. 15 shows an example in which the antenna coupling element 20 is used on the high band side in an antenna device in which the low band and the high band are handled by different radiating elements. However, in the antenna device 106 shown in FIG. can do.
  • first radiating element 11 and the second radiating element 12 may also serve as a conductive member of an electronic device.
  • the first radiating element 11 may be configured by a part of a metal casing of the electronic device.
  • an antenna coupling element including the first coil L1 and the second coil L2 is used, and antenna coupling is performed between the feeding circuit and the first radiating element 11 and the second radiating element 12.
  • antenna coupling element of the present invention can be applied to two of the radiating elements.
  • a communication terminal device including an antenna coupling element, an antenna element, a power feeding circuit, and a ground (conductor) as a reference potential using some of the embodiments described above may be configured.
  • the power supply circuit included in the communication terminal device described above may input or output a low-band communication signal including the fundamental resonance frequency of the first radiating element 11. Further, not only such a low-band signal but also a high-band communication signal including a third harmonic resonance frequency of the first radiating element 11 or a third harmonic resonance frequency of the second radiating element 12 is input / output. It may be a thing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

アンテナ結合素子(20)は、第1放射素子(11)及び給電回路(30)に接続される第1コイル(L1)と、第2放射素子(12)に接続され、第1コイル(L1)に対して電磁界結合する第2コイル(L2)と、を有する。第1コイル(L1)及び第2コイル(L2)は、第1コイル(L1)から第1放射素子(11)の方向へ電流が流れるときに第1コイル(L1)に生じる磁界の方向と、第2コイル(L2)から第2放射素子(12)の方向へ電流が流れるときに第2コイル(L2)に生じる磁界の方向とを互いに逆の関係とする。また、第1コイル(L1)及び第2コイル(L2)は、第1コイル(L1)及び第2コイル(L2)で構成されるトランスを含む第2放射素子(12)の基本波の共振周波数を、第1放射素子(11)の基本波の共振周波数よりも低く定める。

Description

アンテナ結合素子、アンテナ装置及び通信端末装置
 本発明は複数の放射素子と給電回路との間に接続されるアンテナ結合素子と、それを備えたアンテナ装置及び通信端末装置に関するものである。
 アンテナ装置の使用可能周波数帯域を広帯域化するため、又は複数の周波数帯域に対応するために、直接的又は間接的に結合する2つの放射素子を備えるアンテナ装置が用いられている。また、2つの放射素子と、この2つの放射素子に対する給電を行うアンテナ結合素子とを備えたアンテナ装置が特許文献1に示されている。
特許第5505561号公報
 例えば携帯電話の通信用アンテナでは、複数の周波数帯域を同時に使用することで伝送レートを高めるキャリアアグリゲーションに対応させる目的等により0.60GHz~2.7GHzのような広帯域をカバーすることを要求されることがある。しかも、キャリアアグリゲーションに対応するために、広帯域を同時に使用できるアンテナ装置が求められる。
 特許文献1に示されるアンテナ装置は、二つの放射素子(給電放射素子及び無給電放射素子)と給電回路との間に、アンテナ結合素子を接続したものである。この構成のアンテナ装置は、広帯域を同時にカバーするうえで有用なものである。
 ところが、例えばローバンド(0.60GHz~0.96GHz)の帯域におけるアンテナ装置の使用可能周波数帯域を更に広帯域化しようとすると、無給電放射素子の長さをより長くする必要があるが、携帯電話端末等の小型の通信端末では放射素子の形成のために使用可能な面積に限りがある。そのため、長い放射素子を設けようとすると、上記二つの放射素子が少なくとも部分的に、二つの放射素子が互いに沿うように実質的に同方向に延びるような設計を選択せざるを得ない場合がある。
 しかし、アンテナ結合素子を介して、給電回路と二つの放射素子とを接続したアンテナ装置において、二つの放射素子が実質的に同方向に延びる部分があると、その二つの放射素子から発生される磁界を弱めあう、という不具合が生じる場合がある。
 ここで、上記不具合が生じるアンテナ装置の放射効率の周波数特性について、その概念図を図20に示す。図20において、特性E1は給電放射素子単体での放射効率の周波数特性であり、特性E2は上記アンテナ結合素子とローバンド用の無給電放射素子とを付加した状態でのアンテナ装置の放射効率の周波数特性である。アンテナ結合素子とローバンド用の無給電放射素子を付加することで、二つの放射素子から発生される磁界を弱めあう関係になると、このように給電放射素子が受け持っていた周波数帯域(0.96GHz付近)の放射効率が低下してしまう。
 このように、二つの放射素子が実質的に同方向に延びる部分のあるアンテナ装置では、給電放射素子の共振周波数付近において無給電放射素子の存在によって放射が妨げられる場合がある。
 そこで、本発明の目的は、少なくとも二つの放射素子から発生される磁界の弱め合いによる放射効率の低下を抑制する、アンテナ結合素子と、それを備えたアンテナ装置及び通信端末装置を提供することにある。
 本開示の一例としてのアンテナ結合素子は、第1放射素子及び給電回路に接続される、又は第1放射素子及びグランドに接続される第1コイルと、第2放射素子に接続され、第1コイルに対して電磁界結合する第2コイルと、を有する。
 第1コイルと第2コイルは、第1コイルから第1放射素子へ電流が流れるときに第1コイルに生じる磁界の方向と、第2コイルから第2放射素子へ電流が流れるときに第2コイルに生じる磁界の方向とが互いに逆の関係となるように巻回され、第1コイル及び第2コイルで構成されるトランスを含む第2放射素子の基本波の共振周波数は、第1コイルを含む第1放射素子の基本波の共振周波数よりも低い。
 上記構成によれば、第1放射素子の共振周波数帯において、第1コイルから第1放射素子へ電流が流れたときに、第2コイルから第2放射素子の方向へ電流が流れるので、第1放射素子と第2放射素子とに実質的に同方向に延びる部分があっても、第1放射素子と第2放射素子とから発生される磁界が弱められず、放射効率の低下が抑制される。
 本発明によれば、少なくとも二つの放射素子から発生される磁界の弱め合いによる放射効率の低下を抑制するアンテナ結合素子と、それを備えたアンテナ装置及び通信端末装置が得られる。
図1は第1の実施形態に係るアンテナ結合素子20の斜視図である。 図2(A)は、アンテナ装置101Aと、それを備える通信端末装置110Aの主要な構成を示す平面図である。図2(B)はアンテナ装置101Aの、特に給電部FA(アンテナ結合素子の実装部)の拡大平面図である。 図3は、アンテナ結合素子20を含むアンテナ装置101Aの回路図である。 図4は、アンテナ結合素子20の各層に形成されている導体パターンを示す分解平面図である。 図5は、アンテナ結合素子20の各層に形成されている導体パターンを示す分解平面図であり、図4に示した例とは異なる例である。 図6(A)はアンテナ装置101Aの反射係数の周波数特性を示す図である。図6(B)は比較例のアンテナ装置の反射係数の周波数特性を示す図である。 図7(A)はアンテナ装置101Aの電流位相の周波数特性を示す図である。図7(B)は比較例のアンテナ装置の電流位相の周波数特性を示す図である。 図8は、ハイバンドを含む周波数範囲について、アンテナ装置の反射係数の周波数特性を示す図である。 図9はアンテナ装置の放射効率の周波数特性を示す図である。 図10はアンテナ装置101Bと、それを備える通信端末装置110Bの主要な構成を示す平面図である。 図11は第2の実施形態に係るアンテナ装置102Aの構成を示す図である。 図12は第2の実施形態に係る別のアンテナ装置102Bの構成を示す図である。 図13は第3の実施形態に係るアンテナ装置103の構成を示す図である。 図14は第3の実施形態に係る別のアンテナ装置104の構成を示す図である。 図15は第4の実施形態に係るアンテナ装置105の構成を示す図である。 図16は第4の実施形態に係るアンテナ装置105の導体パターンの具体的な構成を示す図である。 図17は、第4の実施形態のアンテナ装置105と比較例のアンテナ装置について、ハイバンドにおける放射効率を示す図である。 図18は第4の実施形態の別のアンテナ装置106の構成を示す図である。 図19は、第4の実施形態のアンテナ装置に対する比較例としてのアンテナ装置の構成を示す図である。 図20は、二つの放射素子から発生される磁界を弱めあう場合の、アンテナ装置の放射効率の周波数特性を示す概念図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を便宜上分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1は第1の実施形態に係るアンテナ結合素子20の斜視図である。本実施形態のアンテナ結合素子20は電子機器内の回路基板に実装される、直方体状のチップ部品である。図1においては、アンテナ結合素子20の外形を二点鎖線で表している。アンテナ結合素子20の外面には、第1放射素子接続端子T1、給電回路接続端子T2、グランド接続端子T3、及び第2放射素子接続端子T4が形成されている。また、アンテナ結合素子20は第1面MS1と当該第1面とは反対側の面である第2面MS2とを備える。本実施形態では、第1面MS1が実装面である。
 図2(A)は、アンテナ装置101Aと、それを備える通信端末装置110Aの主要な構成を示す平面図である。図2(B)はアンテナ装置101Aの、特に給電部FA(アンテナ結合素子の実装部)の拡大平面図である。
 図2(A)では、通信端末装置110Aの特に回路基板について示している。回路基板は、グランド導体パターン42が形成されているグランド領域と、グランド導体パターン42が形成されていない、非グランド領域とを備える。この非グランド領域に第1放射素子11と第2放射素子12が形成されている。なお、この非グランド領域は、この回路基板上に設けた別体の基板に形成してもよい。
 アンテナ結合素子20の第1放射素子接続端子T1は第1放射素子11に接続され、第2放射素子接続端子T4は第2放射素子12に接続される。給電回路接続端子T2は、給電回路が接続される伝送線路に接続され、グランド接続端子T3はグランド導体パターン42に接続される。
 図2(A)に示す向きで、第1放射素子11は給電部FAから右方向に延び、右端部で左方向へ折り返す、線状の導体パターンで構成されている。また、第2放射素子12の主要部はグランド領域と非グランド領域との境界に沿って、給電部FAから左方向に延びる線状の導体パターンで構成されている。第1放射素子11は第2放射素子12に比べてグランド導体パターン42からより離れた位置に配置されている。このような配置構造によって、第1放射素子11の放射はグランド導体パターン42で妨げられ難くなる。第1放射素子11及び第2放射素子12はいずれもモノポールアンテナとして作用する。
 このように、第1放射素子11が途中で折り返されているので、第1放射素子11と第2放射素子12とは、限られた面積の非グランド領域に形成される。第1放射素子11と第2放射素子12とは部分的に実質的に同方向に延びるが、後に示すとおり、第1放射素子11と第2放射素子12から発生される磁界の弱め合いは抑制される。
 図3は、上記アンテナ結合素子20を含むアンテナ装置101Aの回路図である。アンテナ結合素子20は、互いに磁界結合する第1コイルL1及び第2コイルL2を含む。図3中のMは、この磁界結合を表している。第1コイルL1から第1放射素子11の方向へ流れる電流によって第1コイルL1に生じる磁界の方向と、第2コイルL2から第2放射素子12の方向へ流れる電流によって第2コイルL2に生じる磁界の方向とは互いに逆である。図3中のドットマークはこの関係を示す。上記グランドは本発明に係る「基準電位」に相当する。
 後に示すように、第2コイルL2の自己インダクタンスは第1コイルL1の自己インダクタンスよりも大きい。ローバンドでは周波数低下に伴う誘導起電力の低下を抑制するため、第1コイルL1と第2コイルL2との結合係数、第1コイルL1の自己インダクタンス、第2コイルL2の自己インダクタンスの少なくともいずれかを大きくする必要があるが、上記結合係数を大きくすることは、製造プロセス上困難であり、第1コイルL1の自己インダクタンスを大きくすると、第1放射素子とのインピーダンス整合を崩すことになる。したがって、上述のとおり、第2コイルL2の自己インダクタンスを大きくすることが好ましい。
 図3に示す給電回路30は、ローバンドとハイバンドを含む通信周波数帯の通信信号を入出力する。
 図4及び図5は、アンテナ結合素子20の各層に形成されている導体パターンを示す分解平面図である。図4と図5とでは、アンテナ結合素子20の各層に形成されている導体パターンの一部が異なる。
 図4及び図5において、最下層である絶縁基材S1の下面及び絶縁基材S15の上面には端子T1,T2,T3,T4が形成されている。積層後には、絶縁基材S2~S14の側面にも端子T1,T2,T3,T4が形成される。絶縁基材S5,S6の上面には導体パターンL1a,L1bが形成されている。絶縁基材S7~S10の上面には導体パターンL2a~L2dが形成されている。最上層である絶縁基材S15の上面には端子T1,T2,T3,T4が形成されている。
 導体パターンL1aの一端は積層体の側面に形成される層間接続導体を介して端子T2に接続される。導体パターンL1aの他端は層間接続導体Vを介して導体パターンL1bの一端に接続される。そして、導体パターンL1bの他端は積層体の側面に形成される層間接続導体を介して端子T1に接続される。
 導体パターンL2aの一端は積層体の側面に形成される層間接続導体を介して端子T3に接続される。導体パターンL2aの他端は層間接続導体Vを介して導体パターンL2bの一端に接続される。導体パターンL2bの他端は層間接続導体Vを介して導体パターンL2cの一端に接続される。導体パターンL2cの他端は層間接続導体Vを介して導体パターンL2dの一端に接続される。そして、導体パターンL2dの他端は積層体の側面に形成される層間接続導体を介して端子T4に接続される。
 上記導体パターンL1a,L1b及びそれらを層間接続する層間接続導体によって第1コイルL1が構成され、導体パターンL2a~L2d及びそれらを層間接続する層間接続導体によって第2コイルL2が構成される。積層体の平面視で、第1コイルL1と第2コイルL2のコイル開口は重なる。第2コイルL2のターン数は第1コイルL1のターン数より多く、第2コイルL2の自己インダクタンスは第1コイルL1の自己インダクタンスよりも大きい。
 第2コイルL2の自己インダクタンスを第1コイルL1の自己インダクタンスより大きくするための構造は、図4に示したように、第2コイルL2形成用の導体パターンの形成層数を多くすることに限らない。例えば、層数を変えずに各層の中で導体パターンのターン数を増やすことや、導体パターンの線幅を狭くすることや、導体パターンの長さを長くすること、などによっても実現できる。
 図4と図5とでは、導体パターンL1a,L1bが上下逆の関係にある。また、導体パターンL2a,L2b,L2c,L2dが左右逆の関係にある。図4、図5のいずれの例でも、図3に示したように、第1コイルL1から第1放射素子11の方向へ流れる電流によって第1コイルL1に生じる磁界の方向と、第2コイルL2から第2放射素子12の方向へ流れる電流によって第2コイルL2に生じる磁界の方向とは互いに逆となるように、第1コイルL1及び第2コイルL2は巻回されている。
 アンテナ結合素子20を樹脂多層基板で構成する場合、上記絶縁基材S1~S15は例えば液晶ポリマー(LCP)シートであり、導体パターンL1a,L1b,L2a~L2dは例えば銅箔をパターンニングしたものである。また、アンテナ結合素子20をセラミック多層基板で構成する場合、上記絶縁基材S1~S15は例えば低温同時焼成セラミックス(LTCC[Low Temperature Co-fired Ceramics])であり、導体パターンL1a,L1b,L2a~L2dは例えば銅ペーストを印刷形成したものである。また、アンテナ結合素子20は、セラミック多層基板に限らず、例えば、ガラスを主成分とした絶縁ペーストのスクリーン印刷による塗布を繰り返すことで形成してもよい。この場合、フォトリソグラフィ工程により、上記各種導体パターンを形成する。
 このように、基材層が非磁性体であることにより(磁性体フェライトではないので)、0.60GHz~2.7GHzの高周波数帯でも所定インダクタンス、所定結合係数のトランスとして用いることができる。
 なお、導体パターンL1a,L1b,L2a~L2dを積層体の中間層に集中させているので、このアンテナ結合素子20を回路基板に実装した状態で、回路基板に存在するグランド導体と第1コイルL1及び第2コイルL2との間隔が確保される。また、アンテナ結合素子20の上部に何らかの金属部材が近接しても、この金属部材と第1コイルL1及び第2コイルL2との間隔が確保される。そのため、第1コイルL1及び第2コイルL2から生じる磁界が周囲の影響を受けにくくなり、安定した特性が得られる。
 図6(A)はアンテナ装置101Aの反射係数の周波数特性を示す図である。図6(B)は比較例のアンテナ装置の反射係数の周波数特性を示す図である。図7(A)はアンテナ装置101Aの電流位相の周波数特性を示す図である。図7(B)は比較例のアンテナ装置の電流位相の周波数特性を示す図である。この比較例のアンテナ装置は、アンテナ結合素子20の第1コイルL1と第2コイルL2との結合の極性が図3に示した例とは逆のアンテナ結合素子を用いたものである。
 図6(A)、図6(B)において、横軸は周波数、縦軸は反射係数である。ここで、反射係数R2は図3において給電回路30からアンテナ結合素子20側を見た(つまりアンテナ装置101Aの)反射係数である。また、反射係数R1は図3において給電回路接続端子T2から第1放射素子11側を見た(つまり、第1コイルL1を含む第1放射素子11の)反射係数である。反射係数R3は比較例のアンテナ装置において給電回路からアンテナ結合素子側を見た(つまり比較例のアンテナ装置の)反射係数である。
 図6(A)、図6(B)において、周波数f11は第1コイルL1を含む第1放射素子11の共振周波数(第1コイルL1と第1放射素子11とによる共振周波数)であり、周波数f21は、アンテナ結合素子20と第2放射素子12による基本波の共振周波数である。このように、第1コイルL1を含む第1放射素子11は周波数f11で基本波で共振し、アンテナ装置全体では周波数f21でも基本波で共振する。
 本実施形態のアンテナ装置101Aと比較例のアンテナ装置とでは、第1放射素子11と第2放射素子12との相互作用が異なる。本実施形態の方が、第1放射素子11と第2放射素子12との、主に磁界結合が強められるので、磁界を弱め合っている比較例に比べて、見かけ上の放射素子のインダクタンス成分が大きくなり、共振周波数が低くなっている。図6(A)と図6(B)とで、周波数f21での反射係数が異なる理由についても同様である。
 図7(A)、図7(B)において、横軸は周波数、縦軸は電流位相である。ここで、位相P1は、図3において第1放射素子11に流れる電流の位相である。また、位相P2は、図3において第2放射素子12に流れる電流の位相である。
 図7(B)に示すように、比較例のアンテナ装置では、第1放射素子11の共振周波数(0.85GHz)以上で第2放射素子12のインピーダンスは誘導性に変わり、第1放射素子11に流れる電流と第2放射素子12に流れる電流との位相差が大きくなる。図7(B)に示す例では、周波数0.73GHz以上で、上記位相差は90度を超える。このことによって、0.73GHz以上では、第1放射素子11から発生する磁界が、第2放射素子12による磁界によって弱められ、第1放射素子11の放射が妨げられる。第1放射素子11の共振周波数(0.85GHz)付近では、上記位相差は180度になって、第1放射素子11から発生する磁界が、第2放射素子12による磁界を弱めるように作用する。
 上述した「第1放射素子11に流れる電流の位相」は、アンテナ結合素子20の第1コイルL1と第1放射素子11との間に流れる電流の位相をネットワークアナライザなどによって測定することで得られるが、実際に測定するには、電流プローブ間を近接しないようにする必要があり、難しい。そこで、例えば、まず第1放射素子11だけのSパラメータとアンテナ結合素子20だけのSパラメータとを測定し、その後、アンテナ装置101Aの回路構成と、第1放射素子11のSパラメータと、アンテナ結合素子20のSパラメータとを用いて、回路シミュレータ上でアンテナ結合素子20の第1コイルL1と第1放射素子11との間に流れる電流を計算することで、「第1放射素子11に流れる電流の位相」を得る。「第2放射素子12に流れる電流の位相」についても同様である。つまり、第2放射素子12だけのSパラメータとアンテナ結合素子20だけのSパラメータとをそれぞれ測定し、その後、アンテナ装置101Aの回路構成と、第2放射素子12のSパラメータと、アンテナ結合素子20のSパラメータとを用いて、回路シミュレータ上でアンテナ結合素子20の第2コイルL2と第2放射素子12との間に流れる電流を計算することで、「第2放射素子12に流れる電流の位相」を得る。なお、電流プローブを互いに近接させないで測定できるのであれば、アンテナ結合素子20の第1コイルL1と第1放射素子11との間に流れる電流の位相や、アンテナ結合素子20の第2コイルL2と第2放射素子12との間に流れる電流の位相を直接測定することで、「第1放射素子11に流れる電流の位相」や、「第2放射素子12に流れる電流の位相」を得てもよい。
 これに対し、本実施形態のアンテナ装置101Aでは、図6(A)、図7(A)に示すように、0.70GHz以上の周波数帯において、第1放射素子11に流れる電流と第2放射素子12に流れる電流との位相差が90度を超えることはない。したがって、ローバンドで第1放射素子11から発生する磁界が、第2放射素子12による磁界によって弱められにくく、第1放射素子11の放射が妨げられない。
 図8は、ハイバンドを含む周波数範囲について、アンテナ装置の反射係数の周波数特性を示す図である。図6(A)、図6(B)と同様に、図8において、反射係数R2は図3において給電回路30からアンテナ結合素子20側を見た反射係数であり、反射係数R1は第1コイルL1を含む第1放射素子11の反射係数であり、反射係数R3は比較例のアンテナ装置の給電回路からアンテナ結合素子側を見た反射係数である。
 図8において、周波数0.60GHz~0.96GHzがローバンド、周波数1.71GHz~2.69GHzがハイバンドである。
 図9はアンテナ装置の放射効率の周波数特性を示す図である。図9において、RE1は第1放射素子11の放射効率、RE2,RE3は、トランスと第2放射素子12とを含むアンテナ装置の放射効率である。ここで、RE2は本実施形態のアンテナ装置の放射効率であり、RE3は比較例のアンテナ装置の放射効率である。
 図8に表れているように、第1コイルL1を含む第1放射素子11は、上記ローバンド内の周波数f11で基本波共振し、ハイバンド内の周波数f13で3倍波共振する。また、トランスと第2放射素子12とによる共振回路(トランスを含む第2放射素子12)は周波数f21で基本波共振し、周波数f23で3倍波共振する。このトランスを含む第2放射素子12の基本波の共振周波数f21は、第1コイルL1を含む第1放射素子11の基本波の共振周波数f11よりも低くなるように定める。このことにより、ローバンドにおけるアンテナ装置の使用可能周波数帯域が広がる。
 なお、トランスを含む第2放射素子12の基本波共振周波数f21を、第1コイルL1を含む第1放射素子11の基本波の共振周波数f11より高い方に定めることも可能であるが、その場合、周波数f21が、後に言及する反共振点に近づくため、共振系の抵抗成分が大きくなって電力損失が大きくなる。したがって、図8に示した例のように、トランスを含む第2放射素子12の基本波の共振周波数f21を、第1コイルL1を含む第1放射素子11の基本波の共振周波数f11より低い方に定めることが好ましい。
 図8に表れているように、本実施形態のアンテナ装置において給電回路からアンテナ結合素子側を見た反射係数R2と、比較例のアンテナ装置において給電回路からアンテナ結合素子側を見た反射係数R3とで、それぞれ確認できる反射損には大差はない(反射損は本実施形態で0.6dB、比較例で0.8dB)。しかし、本実施形態では、電流の位相差が90度を超えないように電流の干渉が緩和されることによって、図9中の破線で囲む部分に表れているように、第1コイルL1を含む第1放射素子の共振周波数(0.8GHz)付近で、比較例のアンテナ装置に対し、本実施形態のアンテナ装置の放射効率は約1dB改善されている。
 また、本実施形態では、トランスを含む第2放射素子12の3倍波共振周波数f23を、第1コイルL1を含む第1放射素子の基本波の共振周波数f11と、第1コイルL1を含む第1放射素子11の3倍波共振周波数f13との間に定めている。このことにより、図9に表れているように、トランスを含む第2放射素子12の基本波の共振周波数f21と3倍波共振周波数f23との間の周波数帯域における放射効率を上げることができる。
 なお、第1コイルL1を含む第1放射素子11の基本波の共振周波数と3倍波共振周波数との間に、第1コイルL1を含む第1放射素子11の反共振点が生じる。トランスを含む第2放射素子12の3倍波共振周波数f23は、上記反共振周波数と、第1コイルL1を含む第1放射素子11の3倍波共振周波数f13との間に定めることが好ましい。上記トランスを含む第2放射素子12の3倍波共振が効果的に生じるからである。また、第1コイルL1を含む第1放射素子11の3倍波共振周波数f13付近の反射係数が低下し、ハイバンドの周波数帯を広帯域化できるからである。
 図10は、図2(A)、図2(B)に示したアンテナ装置101Aとは一部の構成が異なるアンテナ装置101Bと、それを備える通信端末装置110Bの主要な構成を示す平面図である。この例では、アンテナ装置101Bの第1放射素子11及び第2放射素子12を形成する非グランド領域に金属体などの導電性部材MOが近接する、又はその位置に導電性部材MOが配置される。第1放射素子11の形状は図2(A)に示したものとほぼ同じであるが、第2放射素子12は、導電性部材MOの近傍を避けるように、途中で折り返された形状である。
 このような構造により、導電性部材MOによる第2放射素子12への影響を避けられる。なお、第1放射素子11及び第2放射素子12の磁界強度が高い領域はアンテナ結合素子20付近であるので、この例のように、第1放射素子11と第2放射素子12の延びる方向が逆となる部分があっても、上述と同様の作用効果を奏する。
《第2の実施形態》
 第2の実施形態では、第1の実施形態で示した第1放射素子及び第2放射素子とは構成が異なる幾つかの例について示す。
 図11は第2の実施形態に係るアンテナ装置の構成を示す図である。このアンテナ装置102Aは、第1放射素子11、第2放射素子12、アンテナ結合素子20及びインダクタL11を備える。図2(A)、図2(B)に示した例では、第1放射素子11はモノポールアンテナとして作用する例であったが、この図11に示す例では、第1放射素子11はループアンテナとして作用する。つまり、第1放射素子11の先端とグランドとの間にインダクタL11を挿入して、このインダクタL11と第1放射素子11とでループを構成している。インダクタL11は、第1放射素子11の実効電気長を調整する素子として、又はループアンテナの共振周波数を調整する素子として作用する。その他の構成は第1の実施形態で示したとおりである。
 図12は第2の実施形態に係る別のアンテナ装置の構成を示す図である。このアンテナ装置102Bは、第1放射素子11、第2放射素子12、アンテナ結合素子20、インダクタL11a,L11b、キャパシタC11a,C11b及びスイッチ4を備える。スイッチ4は、アンテナ装置外部から与えられる制御信号に応じて、インダクタL11a,L11b、キャパシタC11a,C11bのうち一つを選択的に第1放射素子11の先端に接続する。したがって、スイッチ4によりアンテナの実効長が変更可能となる。
 インダクタL11aとインダクタL11bとではインダクタンスが異なり、キャパシタC11aとキャパシタC11bとではキャパシタンスが異なる。これらリアクタンス素子L11a,L11b,C11a,C11bのうちどの素子を選択するかによって、第1放射素子11の共振周波数が切り替えられる。その他の構成は図11に示したとおりである。
 図11、図12に示したように、第1放射素子11を含んでループアンテナを構成すれば、この第1放射素子11のスペースを削減できる。また、ループアンテナ構造であれば、人体の近接による第1放射素子11のアンテナ特性の変動を抑制できる。さらに、このループアンテナの構造上の内側にモノポール構造の第2放射素子12を配置することで、人体の近接による第2放射素子12のアンテナ特性の変動も抑制できる。
《第3の実施形態》
 図13は第3の実施形態に係る別のアンテナ装置の構成を示す図である。このアンテナ装置103は、第1放射素子11、第2放射素子12、及びアンテナ結合素子20を備える。第1放射素子11の給電端にアンテナ結合素子20の第1コイルL1を介して給電回路30が接続されている。そして、第1放射素子11の先端は開放されていて、途中の所定の接地位置PSがグランドに接地されている。この構成により、第1放射素子11は逆Fアンテナとして作用する。また、第1放射素子11が面状に拡がりのある導体であれば、PIFA(planar inverted-F antenna)として作用する。このように、第1放射素子11を逆F型アンテナやPIFAとすることによって、第1放射素子11のインピーダンスを給電回路とのインピーダンスと同程度にでき、インピーダンス整合が容易となる。
 本発明はこのように第1放射素子11が逆FアンテナやPIFAであるアンテナ装置にも適用できる。
 図14は第3の実施形態に係る別のアンテナ装置の構成を示す図である。このアンテナ装置104は、第1放射素子11、第2放射素子12、及びアンテナ結合素子20を備える。第1放射素子11の所定の接地位置PSとグランドとの間のショートピンとして、アンテナ結合素子20の第1コイルL1が接続されている。そして、アンテナ結合素子20の第2コイルL2に第2放射素子12が接続されている。この構成により、第1放射素子11は逆Fアンテナとして作用する。また、第1放射素子11が面状に拡がりのある導体であれば、PIFA(planar inverted-F antenna)として作用する。このような実施形態においては、第1放射素子11に流れる電流が最大となる位置に第1コイルL1が接続されているため第2放射素子12の起電力の低下をさらに抑制することができる。
 本発明はこのように第1放射素子11が逆FアンテナやPIFAであるアンテナ装置にも適用できる。
《第4の実施形態》
 図15は第4の実施形態に係る別のアンテナ装置105の構成を示す図である。このアンテナ装置105は、第1放射素子11、第2放射素子12、第3放射素子13、ダイプレクサ40、及びアンテナ結合素子20を備える。アンテナ結合素子20は、第1の実施形態で示したものと同じであり、例えば図4や図5に示したとおりである。
 本実施形態のアンテナ装置105は、第1放射素子11を用いてアンテナ装置105の使用周波数におけるローバンドを担い、第2放射素子12、第3放射素子13を用いてハイバンドを担う。換言すれば、1つの放射素子で、ローバンドからハイバンドまでの帯域を担うわけではなく、ローバンド、ハイバンドのそれぞれを別の放射素子を用いて広帯域化するアンテナ装置である。
 ダイプレクサ40は、給電ポートP0、ハイバンド用のアンテナポートP1及びローバンド用のアンテナポートP2を備える。給電回路30は給電ポートP0に接続され、第3放射素子13はアンテナポートP2に接続され、第1放射素子11はアンテナポートP1に接続される。第2放射素子12はアンテナ結合素子20を介して第1放射素子11と結合し、ハイバンド側の帯域を広帯域化する。
 本実施形態においては、ダイプレクサ40を用いることで、ローバンド、ハイバンドそれぞれにおいて、1つの放射素子の基本波の共振(この共振にはアンテナ結合素子20を含む)を用いることができるため、このように、ハイバンド側の広帯域化にアンテナ結合素子20を用いることができる。ただし、1つの放射素子の基本波の共振において効果的に広帯域化するために、第1コイルL1から第1放射素子11の方向へ電流が流れるときに第1コイルL1に生じる磁界の方向と、第2コイルL2から第2放射素子12の方向へ電流が流れるときに第2コイルL2に生じる磁界の方向とが互いに逆の関係となるように巻回された、アンテナ結合素子20を用いる点においては前出の実施形態と同じである。なお、ダイプレクサ40の代わりに、スイッチで放射素子を切り替える機構を用いたアンテナ装置においても、アンテナ結合素子20を用いることで、ハイバンドを同様に広帯域化できる。
 図16は第4の実施形態に係るアンテナ装置105の導体パターンの具体的な構成を示す図である。図16に示す第1放射素子11、第2放射素子12、第3放射素子13はいずれも基板上の導体パターンで形成されたモノポールアンテナである。第3放射素子13はローバンドを担うため第1放射素子11及び第2放射素子12に比べ長い。また、第2放射素子12は第1放射素子11に比べて長い。このことによって第2放射素子12の放射は第1放射素子11によって妨げられにくい。また、第3放射素子13と第1放射素子11、第3放射素子13と第2放射素子12は互いに逆方向に延伸している。これによって、第3放射素子13と第1放射素子11との相互干渉、及び、第3放射素子13と第2放射素子12との相互干渉は抑制される。
 ここで、比較例としてのアンテナ装置を図19に示す。この比較例のアンテナ装置は、第4の実施形態のアンテナ装置に比べて、第2放射素子12及びアンテナ結合素子20が無い点で異なる。
 図17は、第4の実施形態のアンテナ装置105と比較例のアンテナ装置について、ハイバンドにおける放射効率を示す図である。図17の横軸は周波数、縦軸は放射効率であり、実線は第4の実施形態のアンテナ装置105の特性、破線は比較例のアンテナ装置の特性である。図17に表れているように、第4の実施形態のアンテナ装置の方が、比較例よりも1.70GHz~1.80GHz付近で放射効率が2dB~3dB程度高いことが分かる。その他の周波数帯については、比較例に比べ1dB以下の違いであり、比較例と変わらないと言える。これは、アンテナ結合素子20によって第1放射素子11の共振点に第2放射素子12の共振点が加わったためである。ここで、「第1放射素子11の共振」と「第2放射素子12の共振」とは、それぞれ第1放射素子11、第2放射素子12単体での共振ではなく、アンテナ結合素子20を含んだ共振である。これにより、第4の実施形態の構成においても、第2放射素子12とアンテナ結合素子20によって広帯域化されることが分かる。また、このようにローバンドとハイバンドとを別々の放射素子が担うアンテナ装置においては、ハイバンドにおいても放射素子の基本波の共振を用いることができるため、ハイバンドを広帯域化することができる。
 図18は第4の実施形態の別のアンテナ装置106の構成を示す図である。このアンテナ装置106は、第1放射素子11、第2放射素子12、第3放射素子13、ダイプレクサ40、及びアンテナ結合素子20を備える。アンテナ結合素子20は、第1の実施形態で示したものと同じものである。
 アンテナ装置106は、第1放射素子11を用いてアンテナ装置106の使用周波数におけるハイバンドを担い、第2放射素子12、第3放射素子13を用いてローバンドを担う。
 ダイプレクサ40は、給電ポートP0、ハイバンド用のアンテナポートP1及びローバンド用のアンテナポートP2を備える。給電回路30は給電ポートP0に接続され、第3放射素子13はアンテナポートP2に接続され、第1放射素子11はアンテナポートP1に接続される。第2放射素子12はアンテナ結合素子20を介して第1放射素子11と結合し、ローバンド側の帯域を広帯域化する。
 図15では、ローバンドとハイバンドとを別の放射素子で担うアンテナ装置において、アンテナ結合素子20をハイバンド側に用いる例を示したが、図18に示したアンテナ装置106では、ローバンドを広帯域化することができる。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
 例えば、以上に示した幾つかの実施形態において、第1放射素子11及び第2放射素子12の一方又は両方が、電子機器の導電性部材を兼用してもよい。例えば、電子機器の金属の筐体の一部で第1放射素子11が構成されていてもよい。
 また、以上に示した幾つかの実施形態では、第1コイルL1及び第2コイルL2を備えるアンテナ結合素子を用い、給電回路と第1放射素子11及び第2放射素子12との間にアンテナ結合素子を設けた例を示したが、三つ以上の放射素子を備える場合でも、そのうち二つの放射素子に本発明のアンテナ結合素子を適用することができる。
 また、以上に示した幾つかの実施形態を用いたアンテナ結合素子、アンテナ素子、給電回路、基準電位としてのグランド(導体)とを備えた通信端末装置が構成されていてもよい。
 上述した通信端末装置が備える給電回路は、第1放射素子11の基本波共振周波数を含むローバンドの通信信号を入出力するものであってもよい。また、このようなローバンドの信号だけに限らず、第1放射素子11の3倍波の共振周波数又は第2放射素子12の3倍波の共振周波数を含むハイバンドの通信信号をも入出力するものであってもよい。
C11a,C11b…キャパシタ
FA…給電部
L1…第1コイル
L1a,L1b…導体パターン
L11,L11a,L11b…インダクタ
L2…第2コイル
L2a~L2d…導体パターン
MS1…第1面
MS2…第2面
PS…接地位置
S1~S15…絶縁基材
T1…第1放射素子接続端子
T2…給電回路接続端子
T3…グランド接続端子
T4…第2放射素子接続端子
V…層間接続導体
4…スイッチ
11…第1放射素子
12…第2放射素子
13…第3放射素子
20…アンテナ結合素子
30…給電回路
40…ダイプレクサ
42…グランド導体パターン
101A,101B,102A,102B,103,104,105,106…アンテナ装置
110A,110B…通信端末装置

Claims (10)

  1.  第1放射素子又は給電回路の少なくとも一方に接続される第1コイルと、
     第2放射素子に接続され、前記第1コイルに対して電磁界結合する第2コイルと、を有し、
     前記第1コイルと前記第2コイルは、前記第1コイルから前記第1放射素子の方向へ電流が流れるときに前記第1コイルに生じる磁界の方向と、前記第2コイルから前記第2放射素子の方向へ電流が流れるときに前記第2コイルに生じる磁界の方向とが互いに逆の関係となるように巻回され、
     前記第1コイル及び前記第2コイルによりトランスが構成され、
     前記トランスを含む前記第2放射素子の基本波の共振周波数は、前記第1コイルを含む前記第1放射素子の基本波の共振周波数よりも低い、
     アンテナ結合素子。
  2.  前記第2コイルの自己インダクタンスは前記第1コイルの自己インダクタンスよりも大きい、
     請求項1に記載のアンテナ結合素子。
  3.  前記トランスを含む前記第2放射素子の3倍波共振周波数を、前記第1放射素子の基本波の共振周波数と前記第1放射素子の3倍波共振周波数との間に定める、
     請求項1又は2に記載のアンテナ結合素子。
  4.  請求項1から3のいずれかに記載のアンテナ結合素子と、前記第1放射素子と、前記第2放射素子とを備える、
     アンテナ装置。
  5.  前記第1放射素子の基本波の共振周波数は、0.60GHz以上かつ0.96GHz以下の周波数帯域内にある、
     請求項4に記載のアンテナ装置。
  6.  請求項1から3のいずれかに記載のアンテナ結合素子と、前記第1放射素子と、前記第2放射素子と、前記給電回路とを備えた、
     通信端末装置。
  7.  請求項1から3のいずれかに記載のアンテナ結合素子と、前記第1放射素子と、前記第2放射素子と、前記給電回路とを備え、
     前記給電回路は、前記第1放射素子の基本波の共振周波数を含むローバンドの通信信号を入出力する、
     通信端末装置。
  8.  前記給電回路は、前記第1放射素子の基本波の共振周波数を含むローバンドの通信信号と、前記第1放射素子の3倍波の共振周波数又は前記トランスを含む前記第2放射素子の3倍波の共振周波数を含むハイバンドの通信信号と、を入出力する、
     請求項7に記載の通信端末装置。
  9.  請求項1から3のいずれかに記載のアンテナ結合素子と、前記給電回路と、前記第1放射素子と、前記第2放射素子と、第3放射素子と、ダイプレクサと、を備え、
     前記ダイプレクサは、給電ポート、第1アンテナポート及び第2アンテナポートを有し、
     前記給電回路は前記給電ポートに接続され、
     前記第1放射素子は前記第1アンテナポートに接続され、
     前記第2放射素子は前記アンテナ結合素子を介して前記第1放射素子と結合し、
     前記第3放射素子は前記第2アンテナポートに接続された、
     通信端末装置。
  10.  前記第1放射素子の基本波の共振周波数は1.71GHz以上かつ2.69GHz以下の周波数帯域内にある、請求項9に記載の通信端末装置。
PCT/JP2019/016120 2018-04-25 2019-04-15 アンテナ結合素子、アンテナ装置及び通信端末装置 WO2019208297A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020516240A JP6760545B2 (ja) 2018-04-25 2019-04-15 アンテナ結合素子、アンテナ装置及び通信端末装置
CN201990000661.0U CN213184599U (zh) 2018-04-25 2019-04-15 天线耦合元件、天线装置以及通信终端装置
US16/992,193 US20200373083A1 (en) 2018-04-25 2020-08-13 Antenna coupling element, antenna device, and communication terminal device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-084211 2018-04-25
JP2018084211 2018-04-25
JP2019-027731 2019-02-19
JP2019027731 2019-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/992,193 Continuation US20200373083A1 (en) 2018-04-25 2020-08-13 Antenna coupling element, antenna device, and communication terminal device

Publications (1)

Publication Number Publication Date
WO2019208297A1 true WO2019208297A1 (ja) 2019-10-31

Family

ID=68293878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016120 WO2019208297A1 (ja) 2018-04-25 2019-04-15 アンテナ結合素子、アンテナ装置及び通信端末装置

Country Status (4)

Country Link
US (1) US20200373083A1 (ja)
JP (1) JP6760545B2 (ja)
CN (1) CN213184599U (ja)
WO (1) WO2019208297A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216251107U (zh) * 2019-08-27 2022-04-08 株式会社村田制作所 天线装置以及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109875A (ja) * 2010-11-18 2012-06-07 Fujitsu Ltd アンテナ装置及び無線通信装置
WO2012153690A1 (ja) * 2011-05-09 2012-11-15 株式会社村田製作所 結合度調整回路、アンテナ装置および通信端末装置
JP5505581B1 (ja) * 2012-08-28 2014-05-28 株式会社村田製作所 アンテナ装置および通信端末装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147884A1 (ja) * 2008-06-06 2009-12-10 株式会社村田製作所 アンテナ及び無線通信装置
JP5310855B2 (ja) * 2009-12-01 2013-10-09 株式会社村田製作所 アンテナマッチング装置、アンテナ装置及び移動体通信端末
WO2012099085A1 (ja) * 2011-01-20 2012-07-26 株式会社村田製作所 周波数安定化回路、アンテナ装置および通信端末装置
JP5994500B2 (ja) * 2012-09-07 2016-09-21 株式会社村田製作所 結合度調整素子、アンテナ装置および無線通信装置
JP6288105B2 (ja) * 2013-11-05 2018-03-07 株式会社村田製作所 トランスおよび通信端末装置
JP6168243B2 (ja) * 2015-03-25 2017-07-26 株式会社村田製作所 移相器、インピーダンス整合回路、合分波器および通信端末装置
JP6948525B2 (ja) * 2016-02-18 2021-10-13 パナソニックIpマネジメント株式会社 アンテナ装置及び電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109875A (ja) * 2010-11-18 2012-06-07 Fujitsu Ltd アンテナ装置及び無線通信装置
WO2012153690A1 (ja) * 2011-05-09 2012-11-15 株式会社村田製作所 結合度調整回路、アンテナ装置および通信端末装置
JP5505581B1 (ja) * 2012-08-28 2014-05-28 株式会社村田製作所 アンテナ装置および通信端末装置

Also Published As

Publication number Publication date
JPWO2019208297A1 (ja) 2020-10-01
JP6760545B2 (ja) 2020-09-23
US20200373083A1 (en) 2020-11-26
CN213184599U (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
JP4508190B2 (ja) アンテナ及び無線通信機
JP6436277B2 (ja) 磁界結合素子、アンテナ装置および電子機器
JP6614363B2 (ja) アンテナ装置および電子機器
JP5522177B2 (ja) アンテナ及び無線icデバイス
JP6311833B2 (ja) アンテナ装置
US10340877B2 (en) Antenna matching circuit, antenna device, and communication terminal apparatus
WO2019208044A1 (ja) アンテナ装置及び通信端末装置
WO2015182677A1 (ja) マルチアンテナ及びそれを備える無線装置
JP6760544B2 (ja) アンテナ装置及び通信端末装置
JP5994500B2 (ja) 結合度調整素子、アンテナ装置および無線通信装置
WO2012165149A1 (ja) アンテナ装置および通信端末装置
JP6583599B1 (ja) アンテナ装置、通信システム、及び電子機器
WO2019208297A1 (ja) アンテナ結合素子、アンテナ装置及び通信端末装置
WO2020090184A1 (ja) アンテナ装置
US10511350B2 (en) Antenna device and electronic device
JP6825750B2 (ja) アンテナ装置及び電子機器
JP3156407U (ja) アンテナ及び無線icデバイス
WO2023032511A1 (ja) アンテナ装置、および通信端末装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516240

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793284

Country of ref document: EP

Kind code of ref document: A1