WO2020090184A1 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
WO2020090184A1
WO2020090184A1 PCT/JP2019/031612 JP2019031612W WO2020090184A1 WO 2020090184 A1 WO2020090184 A1 WO 2020090184A1 JP 2019031612 W JP2019031612 W JP 2019031612W WO 2020090184 A1 WO2020090184 A1 WO 2020090184A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary coil
coil conductor
radiating element
conductor pattern
primary coil
Prior art date
Application number
PCT/JP2019/031612
Other languages
English (en)
French (fr)
Inventor
冬夢 田邊
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020546179A priority Critical patent/JP6791465B2/ja
Priority to CN201990001056.5U priority patent/CN214542540U/zh
Publication of WO2020090184A1 publication Critical patent/WO2020090184A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements

Definitions

  • the present invention relates to an antenna device that supports a wide frequency band or a plurality of frequency bands.
  • Patent Document 1 discloses an antenna device in which a band is widened by adding a transformer and a parasitic radiating element to a feeding radiating element to make the antenna multiple resonance.
  • the self-inductance of the primary coil of the transformer is L1
  • the self-inductance of the secondary coil is L2
  • the mutual inductance is M
  • the coupling coefficient between the primary coil and the secondary coil is k
  • M k ⁇ ( L1 and L2).
  • the feeding radiating element and the primary coil of the transformer connected to the feeding radiating element. It is preferable not to change the configuration of. Further, it is difficult to increase the coupling coefficient k in manufacturing. Therefore, in order to increase the mutual inductance M, the number of turns of the secondary coil of the transformer may be set larger than the number of turns of the primary coil, but as a result, the parasitic capacitance generated in the secondary coil increases, so that the transformer is increased. The self-resonant frequency of will become low.
  • an object of the present invention is to provide an antenna device which includes a feeding radiating element and a parasitic radiating element and which has a gain of an antenna corresponding to a wide frequency band or a plurality of frequency bands and the frequency band thereof is secured.
  • An antenna device as an example of the present disclosure, A first radiating element to which the power feeding circuit is connected, a second radiating element, and a coupling element having a laminated structure having a primary coil and a secondary coil,
  • the first radiating element has a first resonance frequency and a second resonance frequency that is higher than the first resonance frequency
  • the second radiating element has a resonance frequency closer to the first resonance frequency than the second resonance frequency
  • the primary coil includes a plurality of primary coil conductor patterns
  • the secondary coil includes a plurality of secondary coil conductor patterns, When viewed from the stacking direction of the primary coil and the secondary coil, the primary coil and the secondary coil overlap each other, The primary coil and the secondary coil are magnetically coupled, One end of the primary coil is connected to the first radiating element,
  • the secondary coil is connected between the second radiating element and the ground,
  • the number of turns of the secondary coil is greater than the number of turns of the primary coil
  • the plurality of secondary coil conductor patterns include a plurality of conductor patterns in which at
  • an antenna device including a feeding radiating element and a parasitic radiating element, in which the gain of the antenna corresponding to a wide frequency band or a plurality of frequency bands and the frequency band thereof are secured.
  • FIG. 1 is a circuit diagram of an antenna device 101 according to the first embodiment.
  • FIG. 2 is a perspective view of the coupling element 2.
  • FIG. 3 is a plan view of each layer of the multilayer substrate forming the coupling element 2 included in the antenna device 101 according to the first embodiment.
  • FIG. 4 is a plan view of each layer of the multilayer substrate forming the coupling element 2 having a conductor pattern different from the conductor pattern shown in FIG.
  • FIG. 5 is a plan view of each layer of the multilayer substrate forming the coupling element 2 having a conductor pattern different from the conductor pattern shown in FIG.
  • FIG. 6 is an equivalent circuit diagram of the coupling element 2.
  • FIG. 7A is a diagram showing a frequency characteristic of reflection loss of the antenna device 101 of the first embodiment.
  • FIG. 7A is a diagram showing a frequency characteristic of reflection loss of the antenna device 101 of the first embodiment.
  • FIG. 7B is a diagram showing a frequency characteristic of reflection loss of an antenna device as a comparative example.
  • FIG. 8 is a diagram relating to the coupling element included in the antenna device according to the second embodiment, and is a plan view of each layer of the multilayer substrate that constitutes the coupling element.
  • FIG. 9 is a plan view of each layer of the multilayer substrate forming the coupling element, which has a conductor pattern different from the conductor pattern shown in FIG.
  • FIG. 10 is a plan view of each layer of the multilayer substrate that constitutes the coupling element and has a conductor pattern different from the conductor pattern shown in FIG.
  • FIG. 11 is a circuit diagram of the antenna device 102A according to the third embodiment.
  • FIG. 12 is a circuit diagram of another antenna device 102B according to the third embodiment.
  • FIG. 13 is a circuit diagram of still another antenna device 102C according to the third embodiment.
  • the antenna device is as described in the means for solving the problems, and includes a first radiating element, a second radiating element, a primary coil and a secondary coil to which a power feeding circuit is connected. And a coupling element having a laminated structure having The first radiating element has a first resonance frequency and a second resonance frequency that is higher than the first resonance frequency, The second radiating element has a resonance frequency closer to the first resonance frequency than the second resonance frequency,
  • the primary coil includes a plurality of primary coil conductor patterns
  • the secondary coil includes a plurality of secondary coil conductor patterns, When viewed from the stacking direction of the primary coil and the secondary coil, the primary coil and the secondary coil overlap each other, The primary coil and the secondary coil are magnetically coupled, One end of the primary coil is connected to the first radiating element, The secondary coil is connected between the second radiating element and the ground, The number of turns of the secondary coil is greater than the number of turns of the primary coil,
  • the plurality of secondary coil conductor patterns include a plurality of conductor patterns
  • the vicinity of the first resonance frequency of the first radiating element is increased in gain and widened in band by the resonance frequency characteristic of the second radiating element. Moreover, the parasitic capacitance generated between the secondary coil conductor patterns is suppressed, and the self-resonant frequency of the coupling element is increased.
  • the electromotive force for the second radiating element is secured, and the gain on the low band side is sufficiently increased. Further, as the self-resonant frequency of the coupling element increases, this self-resonant frequency falls outside the used frequency band, and radiation inhibition due to self-resonance is prevented.
  • the primary coil and the secondary coil have a direction of a magnetic flux generated in the primary coil when a current flows from the power feeding circuit toward the first radiating element.
  • the direction of the magnetic flux generated in the secondary coil when the current flows from the ground toward the second radiating element is opposite to each other.
  • the inner edges of the plurality of primary coil conductor patterns substantially overlap each other in a plan view. According to this structure, the coupling coefficient between the primary coil and the secondary coil can be effectively increased.
  • the antenna device of the fourth aspect according to the present invention among the plurality of secondary coil conductor patterns, at least one of the positions of inner edges or the positions of outer edges of two secondary coil conductor patterns adjacent to each other in the stacking direction. , Different from each other in a plan view. According to this structure, the parasitic capacitance between the secondary coil conductor patterns is effectively suppressed. Further, as a secondary effect, stacking is suppressed in the coupling element that is a laminated body.
  • the inner edge of the plurality of primary coil conductor patterns has a winding axis shared by the plurality of secondary coil conductor patterns among the plurality of secondary coil conductor patterns.
  • the predetermined coupling coefficient can be maintained without significantly reducing the coupling coefficient between the primary coil and the secondary coil.
  • the plurality of primary coil conductor patterns include a first closest coil conductor pattern that is closest to the secondary coil conductor pattern, and the plurality of secondary coil conductor patterns. Includes a second closest coil conductor pattern closest to the primary coil conductor pattern, and an area where the first closest coil conductor pattern and the second closest coil conductor pattern overlap each other when viewed from the stacking direction.
  • the conductor pattern other than the first closest coil conductor pattern and the second closest coil conductor pattern are smaller than the overlapping area. According to this structure, the parasitic capacitance between the primary coil and the secondary coil is also suppressed, and the self-resonant frequency of the coupling element is further increased. As a result, radiation inhibition due to self-resonance is effectively prevented.
  • the inner edge of the first closest coil conductor pattern substantially overlaps the inner edge of the second closest coil conductor pattern. According to this structure, the coil openings through which the magnetic flux passes are aligned, and the coupling between the primary coil and the secondary coil is strengthened.
  • FIG. 1 is a circuit diagram of an antenna device 101 according to the first embodiment.
  • the antenna device 101 includes a first radiating element 10, a second radiating element 20, and a coupling element 2.
  • the coupling element 2 is composed of a primary coil L1 and a secondary coil L2 that are magnetically coupled to each other.
  • One end of the primary coil L1 of the coupling element 2 is connected to the feeding end of the first radiating element 10.
  • the feeding circuit 1 is connected between the other end of the primary coil L1 and the ground. That is, the feeding circuit 1 is connected to the feeding end of the first radiating element 10 via the primary coil L1 of the coupling element 2.
  • One end of the second radiating element 20 is connected to one end of the secondary coil L2 of the coupling element 2, and the other end of the secondary coil L2 is connected to the ground.
  • the first radiating element 10 is a feeding radiating element and the second radiating element 20 is a parasitic radiating element.
  • the first radiating element 10 has a first resonance frequency and a second resonance frequency that is higher than the first resonance frequency.
  • the second radiating element 20 has a resonance frequency closer to the first resonance frequency than the second resonance frequency.
  • the resonance frequency of the first radiating element 10 is determined by the respective inductance values of the first radiating element 10 and the primary coil L1 of the coupling element 2.
  • the resonance frequency of the second radiating element 20 is determined by the respective inductance values of the second radiating element 20 and the secondary coil L2.
  • the resonance frequencies of the first radiating element 10 and the second radiating element 20 may change each other due to the magnetic field coupling (which may include electric field coupling) of the coupling element 2.
  • the “resonance frequency” in the specification of the present application includes such a change.
  • the first radiating element 10 is directly fed by the feeding circuit 1 via the primary coil L1 of the coupling element 2, and the second radiating element 20 is indirectly fed by the feeding circuit 1 via the coupling element 2.
  • the second radiating element 20 is also optionally fed to the first radiating element 10 by electric field coupling, magnetic field coupling, or electric field coupling and magnetic field coupling.
  • FIG. 2 is a perspective view of the coupling element 2
  • FIG. 3 is a plan view of each layer of the multilayer substrate forming the coupling element 2.
  • the coupling element 2 is a rectangular parallelepiped chip component mounted on a circuit board.
  • the outer shape of the coupling element 2 is shown by a chain double-dashed line.
  • a feeding circuit connecting terminal PF On the outer surface of the coupling element 2, a feeding circuit connecting terminal PF, a feeding radiating element connecting terminal PA, a ground terminal PG, and a parasitic radiating element connecting terminal PS are formed.
  • the coupling element 2 includes a first surface MS1 and a second surface MS2 that is a surface opposite to the first surface.
  • the first surface MS1 is the mounting surface, and this surface faces the circuit board.
  • FIG. 3 shows a plurality of insulating base materials forming the central layer ML in FIG.
  • Primary coil conductor patterns L11 and L12 are formed on the insulating substrates S11 and S12, respectively.
  • Secondary coil conductor patterns L21, L22, L23, and L24 are formed on the insulating substrates S21, S22, S23, and S24, respectively.
  • the primary coil conductor pattern L11 and the primary coil conductor pattern L12 are connected via the interlayer connection conductor V1.
  • the secondary coil conductor pattern L21 and the secondary coil conductor pattern L22 are connected via an interlayer connecting conductor V2
  • the secondary coil conductor pattern L22 and the secondary coil conductor pattern L23 are connected via an interlayer connecting conductor V3.
  • the secondary coil conductor pattern L23 and the secondary coil conductor pattern L24 are connected to each other through the interlayer connection conductor V4.
  • the primary coil conductor patterns L11 and L12 and the interlayer connection conductor V1 constitute a primary coil L1
  • the secondary coil conductor patterns L21 to L24 and the interlayer connection conductors V2, V3 and V4 constitute a secondary coil L2.
  • One end of the primary coil conductor pattern L11 is connected to the feeding circuit connecting terminal PF, and one end of the primary coil conductor pattern L12 is connected to the feeding radiating element connecting terminal PA. Further, one end of the secondary coil conductor pattern L21 is connected to the parasitic radiation element connection terminal PS, and one end of the secondary coil conductor pattern L24 is connected to the ground terminal PG.
  • the primary coil L1 is a coil of about 1.5 turns from the feeding circuit connecting terminal PF to the feeding radiating element connecting terminal PA.
  • the primary coil conductor patterns L11 and L12 overlap each other in the plan view over the entire width of the line width. That is, the inner edges of the primary coil conductor patterns L11 and L12 substantially overlap each other. However, the difference in position due to manufacturing accuracy is included in "almost overlapping".
  • the secondary coil L2 is a coil of about 3.5 turns from the parasitic element connection terminal PS to the ground terminal PG.
  • the inner edges of the secondary coil conductor patterns L21 and L23 are small-diameter coil conductor patterns that are substantially equal to each other, and the inner edges of the secondary coil conductor patterns L22 and L24 are large-diameter coil conductor patterns that are substantially equal to each other.
  • the small-diameter coil conductor pattern has a smaller average coil diameter than the large-diameter coil conductor pattern, and the inner edge of the small-diameter coil conductor pattern is inside the inner edge of the large-diameter coil conductor pattern. That is, the secondary coil conductor patterns L21 to L24 include a plurality of conductor patterns having different inner edges.
  • the inner edges of the small-diameter coil secondary coil conductor patterns L21 and L23 do not overlap with the large-diameter coil secondary coil conductor patterns L22 and L24 in a plan view.
  • the outer edges of the small-diameter secondary coil conductor patterns L21 and L23 overlap the large-diameter secondary coil conductor patterns L22 and L24 in a plan view.
  • the outer edges of the primary coil conductor patterns L11 and L12 substantially overlap with the outer edges of the secondary coil conductor patterns L21 and L23 in a plan view, and the inner edges of the primary coil conductor patterns L11 and L12 are a secondary coil conductor pattern in a plan view. It almost overlaps the inner edges of L22 and L24. That is, the inner and outer edges of the primary coil conductor patterns L11 and L12 are not significantly different from any of the inner and outer edges of the secondary coil conductor patterns L21 to L24.
  • the primary coil conductor patterns L11 and L12 also overlap the portion where the small-diameter secondary coil conductor patterns L21 and L23 and the large-diameter secondary coil conductor patterns L22 and L24 overlap in a plan view.
  • the primary coil conductor pattern L12 is a conductor pattern closest to the secondary coil conductor patterns L21 to L24, and corresponds to the "first closest coil conductor pattern" according to the present invention.
  • the secondary coil conductor pattern L21 is a conductor pattern closest to the primary coil conductor patterns L11 and L12, and corresponds to the "second closest coil conductor pattern” according to the invention.
  • FIGS. 4 and 5 are plan views of each layer of the multilayer substrate of the coupling element 2.
  • the conductor pattern shown in FIGS. 4 and 5 is partially different from the conductor pattern shown in FIG.
  • the primary coil conductor pattern L11 and the primary coil conductor pattern L12 are connected via the interlayer connection conductor V1.
  • the secondary coil conductor pattern L21 and the secondary coil conductor pattern L22 are connected via an interlayer connecting conductor V2, and the secondary coil conductor pattern L22 and the secondary coil conductor pattern L23 are connected via an interlayer connecting conductor V3.
  • the secondary coil conductor pattern L23 and the secondary coil conductor pattern L24 are connected to each other through the interlayer connection conductor V4.
  • the primary coil conductor patterns L11 and L12 and the interlayer connection conductor V1 constitute a primary coil L1
  • the secondary coil conductor patterns L21 to L24 and the interlayer connection conductors V2, V3 and V4 constitute a secondary coil L2.
  • One end of the primary coil conductor pattern L11 is connected to the feeding circuit connection terminal PF, and one end of the primary coil conductor pattern L12 is connected to the feeding radiation element connection terminal PA. Further, one end of the secondary coil conductor pattern L21 is connected to the parasitic radiation element connection terminal PS, and one end of the secondary coil conductor pattern L24 is connected to the ground terminal PG.
  • the primary The primary coil L1 is arranged so that the direction of the magnetic field generated in the coil L1 and the direction of the magnetic field generated in the secondary coil L2 when current flows from the ground terminal PG to the parasitic radiation element connection terminal PS are opposite to each other.
  • the secondary coil L2 is wound.
  • FIG. 6 is an equivalent circuit diagram of the coupling element 2.
  • a parasitic capacitance C12 is a parasitic capacitance between the primary coil L1 and the secondary coil L2
  • a parasitic capacitance C2 is a parasitic capacitance generated in the secondary coil L2.
  • the parasitic capacitance C2 between the secondary coil conductor patterns is effectively suppressed.
  • the primary coil conductor pattern L12 which is the first closest coil conductor pattern
  • the secondary coil conductor pattern L21 which is the second closest coil conductor pattern
  • the parasitic capacitance generated in the primary coil L1 is negligibly smaller than the parasitic capacitance C2 generated in the secondary coil L2.
  • the primary coil conductor patterns L11 and L12 have a smaller line width and a smaller number of layers (two layers) than the secondary coil conductor patterns L21 to L24. From such characteristics, it can be said that the parasitic capacitance generated in the primary coil L1 is negligibly smaller than the parasitic capacitance C2 generated in the secondary coil L2.
  • the coupling element 2 having the above-described structure has more turns of the secondary coil than that of the primary coil, so that it is possible to achieve high gain and wide band even on the low resonance frequency side of the first radiating element 10. Specifically, the electromotive force for the second radiating element 20 is secured, and the gain can be sufficiently increased even at a low resonance frequency. Moreover, since the unnecessary coupling capacitance of the coupling element 2 can be suppressed, the self-resonant frequency of the coupling element 2 increases. This prevents radiation inhibition due to self-resonance, as shown below.
  • FIG. 7A is a diagram showing frequency characteristics of reflection loss of the antenna device 101 of this embodiment.
  • FIG. 7B is a diagram showing a frequency characteristic of reflection loss of an antenna device as a comparative example.
  • the antenna device of this comparative example is provided with coupling elements in which all the inner edges and outer edges of the secondary coil conductor patterns L21 to L24 shown in FIG. 3 overlap the inner edges and outer edges of the primary coil conductor patterns L11 and L12, respectively. Is.
  • the solid line represents the reflection coefficient (resonance characteristic) of the first radiating element 10 alone, and the broken line represents the reflection coefficient (resonance characteristic) of the second radiating element 20 including the coupling element 2.
  • the frequency f1L is the frequency of the fundamental resonance (1/4 wavelength resonance) of the first radiating element 10
  • the frequency f1H is the higher resonance (eg, 3/4 wavelength resonance) frequency of the first radiating element 10.
  • the frequency f2L is the frequency of the fundamental resonance (1/4 wavelength resonance) of the second radiating element 20 including the coupling element 2
  • the frequency SR is the self-resonance frequency of the coupling element 2. This self-resonance does not contribute to the radiation but also hinders the radiation of the high band HB by the first radiation element 10.
  • the self-resonant frequency band SB represents a frequency band that inhibits radiation in the high band HB.
  • the antenna device 101 of the present embodiment covers the low band LB with the basic resonance frequency f1L of the first radiating element 10 and the basic resonance frequency f2L of the second radiating element 20, and with the higher resonance frequency f1H of the first radiating element 10. It covers the high band HB. Further, the high band HB may be covered by the higher resonance frequency of the second radiating element 20.
  • the low band LB is a frequency band of 0.70 GHz to 0.96 GHz
  • the high band HB is a frequency band of 0.96 GHz to 3.6 GHz, for example.
  • the self-resonant frequency of the coupling element 2 is greatly affected by the parasitic capacitance of the coupling element 2.
  • the self-resonant frequency SR of the coupling element 2 shifts to a frequency outside the used frequency band of the high band HB, as is clear from comparison with FIG. is doing.
  • the predetermined gain is secured without the radiation of the high band HB due to the higher resonance frequency f1H of the first radiating element 10 being hindered by the self-resonance.
  • FIGS. 3, 4, and 5 an example in which the small-diameter secondary coil conductor patterns L21 and L23 and the large-diameter secondary coil conductor patterns L22 and L24 partially overlap each other in a plan view is shown. Further, an example is shown in which the small-diameter secondary coil conductor patterns L21 and L23 and the large-diameter secondary coil conductor patterns L22 and L24 are alternately laminated. According to such a structure, there is little variation in the overlapping amount of the coil conductor patterns due to the misalignment of the insulating substrates S21, S22, S23, and S24. That is, there is little variation in the parasitic capacitance of the secondary coil due to the alignment and the dimensional accuracy during manufacturing. Therefore, variations in electrical characteristics are suppressed.
  • the patterns of the secondary coil conductor patterns L21 to L24 have a large difference between the inner and outer edges of the secondary coil conductor patterns L21 and L23 and the inner and outer edges of the secondary coil conductor patterns L22 and L24 in plan view. Then, the secondary coil conductor patterns L21 and L23 and the secondary coil conductor patterns L22 and L24 may not overlap with each other in plan view. With this structure, the parasitic capacitance of the secondary coil can be effectively suppressed.
  • FIGS. 3, 4 and 5 show an example in which the small-diameter coil conductor patterns and the large-diameter coil conductor patterns are alternately laminated, the small-diameter coil conductor patterns are adjacent to each other in the laminating direction. May be. Similarly, large-diameter coil conductor patterns may be adjacent to each other in the stacking direction.
  • FIGS. 3, 4, and 5 an example in which the secondary coil is composed of small-diameter secondary coil conductor patterns L21, L23 and large-diameter secondary coil conductor patterns L22, L24 is shown.
  • the inner edge of the second closest coil conductor pattern substantially overlaps the inner edge of the primary coil conductor pattern because the coil openings through which magnetic flux passes are aligned and the coupling between the primary coil and the secondary coil is strengthened.
  • the second embodiment shows an antenna device in which the first closest coil conductor pattern is different from the first closest coil conductor pattern shown in the first embodiment.
  • FIG. 8 is a diagram regarding a coupling element included in the antenna device according to the second embodiment, and is a plan view of each layer of a multilayer substrate that constitutes the coupling element.
  • Primary coil conductor patterns L11 and L12 are formed on the insulating substrates S11 and S12, respectively.
  • Secondary coil conductor patterns L21, L22, L23, and L24 are formed on the insulating substrates S21, S22, S23, and S24, respectively.
  • the primary coil conductor pattern L11 and the primary coil conductor pattern L12 are connected via the interlayer connection conductor V1.
  • the secondary coil conductor pattern L21 and the secondary coil conductor pattern L22 are connected via an interlayer connecting conductor V2
  • the secondary coil conductor pattern L22 and the secondary coil conductor pattern L23 are connected via an interlayer connecting conductor V3.
  • the secondary coil conductor pattern L23 and the secondary coil conductor pattern L24 are connected to each other through the interlayer connection conductor V4.
  • the primary coil conductor patterns L11 and L12 and the interlayer connection conductor V1 constitute a primary coil L1
  • the secondary coil conductor patterns L21 to L24 and the interlayer connection conductors V2, V3 and V4 constitute a secondary coil L2.
  • FIGS. 9 and 10 are plan views of each layer of the multilayer substrate of the coupling element according to the second embodiment.
  • the conductor pattern shown in FIGS. 9 and 10 is partially different from the conductor pattern shown in FIG.
  • the primary coil conductor pattern L11 and the primary coil conductor pattern L12 are connected via the interlayer connection conductor V1.
  • the secondary coil conductor pattern L21 and the secondary coil conductor pattern L22 are connected via an interlayer connecting conductor V2, and the secondary coil conductor pattern L22 and the secondary coil conductor pattern L23 are connected via an interlayer connecting conductor V3.
  • the secondary coil conductor pattern L23 and the secondary coil conductor pattern L24 are connected to each other through the interlayer connection conductor V4.
  • the primary coil conductor patterns L11 and L12 and the interlayer connection conductor V1 constitute a primary coil L1
  • the secondary coil conductor patterns L21 to L24 and the interlayer connection conductors V2, V3 and V4 constitute a secondary coil L2.
  • One end of the primary coil conductor pattern L11 is connected to the feeding circuit connection terminal PF, and one end of the primary coil conductor pattern L12 is connected to the feeding radiation element connection terminal PA. Further, one end of the secondary coil conductor pattern L21 is connected to the parasitic radiation element connection terminal PS, and one end of the secondary coil conductor pattern L24 is connected to the ground terminal PG.
  • the primary The primary coil L1 is arranged so that the direction of the magnetic field generated in the coil L1 and the direction of the magnetic field generated in the secondary coil L2 when current flows from the ground terminal PG to the parasitic radiation element connection terminal PS are opposite to each other.
  • the secondary coil L2 is wound.
  • the shapes of the primary coil conductor patterns L11 and L12 are different from the examples shown in FIGS. 3, 4, and 5, respectively.
  • the primary coil conductor pattern L12 which is the first closest conductor pattern
  • the primary coil conductor pattern L12 which is the first closest conductor pattern
  • the primary coil conductor pattern L12 which is the first closest conductor pattern
  • the facing area between the primary coil conductor pattern L12 and the secondary coil conductor pattern L21 (second closest conductor pattern) is smaller.
  • the parasitic capacitance between the primary coil L1 and the secondary coil L2 is also suppressed, and the self-resonant frequency of the coupling element is further increased. As a result, radiation inhibition is prevented, which is advantageous for widening the communication band of the antenna device.
  • the third embodiment shows an example of an antenna device in which the structures of the first radiating element and the second radiating element are different from those shown in the first embodiment.
  • FIG. 11 is a circuit diagram of the antenna device 102A according to the third embodiment.
  • the antenna device 102A includes a first radiating element 10 having an inverted F antenna or PIFA structure and a second radiating element 20 having an inverted L antenna structure.
  • the feed radiating element connection terminal PA of the coupling element 2 is connected to the ground end of the first radiating element 10. Further, the feeding circuit 1 is connected between the feeding end of the first radiating element 10 and the ground.
  • the parasitic radiating element connection terminal PS is connected to the feeding end of the second radiating element 20.
  • the ground terminal PG of the coupling element 2 is connected to the ground.
  • the first radiating element 10 of the antenna device 102A acts as an inverted F antenna or a PIFA (Planar Inverted-F Antenna).
  • the second radiating element 20 is indirectly fed by the feeding circuit 1 via the coupling element 2.
  • the second radiating element 20 is also fed with electric power by magnetic field coupling or magnetic field coupling with the first radiating element 10.
  • FIG. 12 is a circuit diagram of another antenna device 102B according to the third embodiment.
  • the antenna device 102B includes a first radiating element 10 having an inverted F antenna or PIFA structure and a second radiating element 20 having an inverted L antenna structure. The position of the feeding end and the grounding end of the first radiating element 10 is different from the example shown in FIG.
  • the feeding radiating element connection terminal PA of the coupling element 2 is connected to the feeding end of the first radiating element 10.
  • the feeding circuit 1 is connected between the feeding circuit connection terminal PF of the coupling element 2 and the ground.
  • the ground end of the first radiating element 10 is connected to the ground.
  • the parasitic radiating element connection terminal PS is connected to the feeding end of the second radiating element 20.
  • the ground terminal PG of the coupling element 2 is connected to the ground.
  • the first radiating element 10 of the antenna device 102B acts as an inverted F antenna or PIFA.
  • the second radiating element 20 is indirectly fed by the feeding circuit 1 via the coupling element 2.
  • the second radiating element 20 is also fed with electric power by magnetic field coupling or magnetic field coupling with the first radiating element 10.
  • FIG. 13 is a circuit diagram of still another antenna device 102C according to the third embodiment.
  • the antenna device 102C includes a first radiating element 10 of a monopole type and a second radiating element 20 of an inverted F antenna or PIFA structure.
  • the feeding radiating element connection terminal PA of the coupling element 2 is connected to the feeding end of the first radiating element 10.
  • the feeding circuit 1 is connected between the feeding circuit connection terminal PF of the coupling element 2 and the ground.
  • the parasitic radiating element connection terminal PS of the coupling element 2 is connected to the feeding end of the second radiating element 20.
  • the ground end of the second radiating element 20 is connected to the ground.
  • the first radiating element and the second radiating element may be inverted F antennas, PIFAs, inverted L antennas, or the like. Also in these cases, a multi-band antenna device using the basic resonance mode and the higher-order resonance modes of the first radiating element 10 and the second radiating element 20 is configured, and the high band is effectively widened.
  • the low band is covered by the basic resonance frequency f1L of the first radiating element 10 and the basic resonance frequency f2L of the second radiating element 20, and the high resonance frequency f1H of the first radiating element 10 is high.
  • the first radiating element 10 and the second radiating element 20 may be used as the radiating element that covers the full band from the low band to the high band.

Landscapes

  • Details Of Aerials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

アンテナ装置(101)は、給電回路(1)が接続される第1放射素子(10)と、第2放射素子(20)と、1次コイル(L1)及び2次コイル(L2)を有する積層構造の結合素子(2)と、を備える。第1放射素子(10)は、第1共振周波数及び第1共振周波数よりも高い周波数である第2共振周波数を有し、第2放射素子(20)は、第2共振周波数よりも第1共振周波数に近い共振周波数を有する。平面視で1次コイル(L1)と2次コイル(L2)とは重なる。1次コイル(L1)の一端は第1放射素子(10)に接続され、2次コイル(L2)は第2放射素子(20)とグランドとの間に接続され、2次コイル(L2)の巻回数は1次コイル(L1)の巻回数より多く、複数の2次コイル導体パターンは、平面視で、内縁同士の位置及び外縁同士の位置の少なくとも一方が異なる複数の導体パターンを含む。

Description

アンテナ装置
 本発明は、広周波数帯域又は複数の周波数帯域に対応するアンテナ装置に関するものである。
 携帯電話におけるデータ通信用のアンテナでは、例えば0.7GHz~3.6GHzのような広帯域に亘って所定の利得を確保する必要がある。従来は、アンテナの共振周波数を選択的に変化させる付加回路を設け、この付加回路のスイッチを切り替えることによって、使用周波数帯域に対応させることが一般的であった。
 しかし、複数の周波数帯域を同時に利用することで伝送レートを高めるキャリアアグリゲーションに対応させるために、広帯域を同時にカバーできるアンテナが求められるようになった。このような要求に対応して、給電放射素子にトランスと無給電放射素子とを追加してアンテナを複共振化することで広帯域化したアンテナ装置が特許文献1に示されている。
特許第5505561号公報
 特許文献1に記載のアンテナ装置のように、給電放射素子にトランスと無給電放射素子とを追加したアンテナ装置では、給電放射素子は給電回路から直接的に給電されるので、無給電放射素子に比べて起電力が周波数に依存しにくい。ここで、トランスの2次コイルの起電力をV、1次コイルの電流をI1、トランスの相互インダクタンスをM、周波数をfで表し、2次コイル電流を0とすると、V=2πfM・I1 の関係が成り立つ。つまり、周波数fが低いローバンドでは、上記起電力Vが低下する。したがって、ハイバンドと同程度の利得を得るためには、相互インダクタンスMを大きくして、トランスの2次側の起電力を高めなければならない。
 ここで、トランスの1次コイルの自己インダクタンスをL1、2次コイルの自己インダクタンスをL2、相互インダクタンスをM、1次コイルと2次コイルとの結合係数をkで表すと、M=k√(L1・L2)の関係にある。
 トランスの1次コイルを用いて給電回路と給電放射素子とが既にマッチングしている状態で、無給電放射素子による広帯域化が可能となるので、給電放射素子及びそれに接続されるトランスの1次コイルの構成は変更しない方が好ましい。また、結合係数kを高めることは製造上困難である。したがって、相互インダクタンスMを高めるためには、トランスの2次コイルの巻回数を1次コイルの巻回数よりも多くすればよいが、その結果、2次コイルに生じる寄生容量が増加するため、トランスの自己共振周波数が低くなってしまう。
 そこで、本発明の目的は、給電放射素子及び無給電放射素子を備える、広周波帯域又は複数の周波数帯域に対応するアンテナの利得及びその周波数帯域が確保されたアンテナ装置を提供することにある。
 本開示の一例としてのアンテナ装置は、
 給電回路が接続される第1放射素子と、第2放射素子と、1次コイル及び2次コイルを有する積層構造の結合素子と、を備え、
 前記第1放射素子は、第1共振周波数及び前記第1共振周波数よりも高い周波数である第2共振周波数を有し、
 前記第2放射素子は、前記第2共振周波数よりも前記第1共振周波数に近い共振周波数を有し、
 前記1次コイルは複数の1次コイル導体パターンを含み、
 前記2次コイルは複数の2次コイル導体パターンを含み、
 前記1次コイル及び前記2次コイルの積層方向から視て、前記1次コイルと前記2次コイルとは重なり、
 前記1次コイルと前記2次コイルとは磁界結合し、
 前記1次コイルの一端は前記第1放射素子に接続され、
 前記2次コイルは前記第2放射素子とグランドとの間に接続され、
 前記2次コイルの巻回数は前記1次コイルの巻回数より多く、
 前記複数の2次コイル導体パターンは、平面視で、内縁同士の位置及び外縁同士の位置の少なくとも一方が異なる複数の導体パターンを含む。
 本発明によれば、給電放射素子及び無給電放射素子を備える、広周波帯域又は複数の周波数帯域に対応するアンテナの利得及びその周波数帯域が確保されたアンテナ装置が得られる。
図1は第1の実施形態に係るアンテナ装置101の回路図である。 図2は結合素子2の斜視図である。 図3は第1の実施形態に係るアンテナ装置101が備える結合素子2を構成する多層基板の各層の平面図である。 図4は、図3に示す導体パターンとは異なる導体パターンを有する、結合素子2を構成する多層基板の各層の平面図である。 図5は、図3に示す導体パターンとは異なる導体パターンを有する、結合素子2を構成する多層基板の各層の平面図である。 図6は結合素子2の等価回路図である。 図7(A)は第1の実施形態のアンテナ装置101の反射損失の周波数特性を示す図である。図7(B)は比較例としてのアンテナ装置の反射損失の周波数特性を示す図である。 図8は第2の実施形態に係るアンテナ装置が備える結合素子に関する図であり、結合素子を構成する多層基板の各層の平面図である。 図9は、図8に示す導体パターンとは異なる導体パターンを有する、結合素子を構成する多層基板の各層の平面図である。 図10は、図8に示す導体パターンとは異なる導体パターンを有する、結合素子を構成する多層基板の各層の平面図である。 図11は第3の実施形態に係るアンテナ装置102Aの回路図である。 図12は第3の実施形態に係る別のアンテナ装置102Bの回路図である。 図13は第3の実施形態に係る更に別のアンテナ装置102Cの回路図である。
 まず、本発明に係るアンテナ装置の幾つかの態様について記載する。
 本発明に係る第1の態様のアンテナ装置は、課題を解決する手段で記述したとおりであり、給電回路が接続される第1放射素子と、第2放射素子と、1次コイル及び2次コイルを有する積層構造の結合素子と、を備え、
 前記第1放射素子は、第1共振周波数及び前記第1共振周波数よりも高い周波数である第2共振周波数を有し、
 前記第2放射素子は、前記第2共振周波数よりも前記第1共振周波数に近い共振周波数を有し、
 前記1次コイルは複数の1次コイル導体パターンを含み、
 前記2次コイルは複数の2次コイル導体パターンを含み、
 前記1次コイル及び前記2次コイルの積層方向から視て、前記1次コイルと前記2次コイルとは重なり、
 前記1次コイルと前記2次コイルとは磁界結合し、
 前記1次コイルの一端は前記第1放射素子に接続され、
 前記2次コイルは前記第2放射素子とグランドとの間に接続され、
 前記2次コイルの巻回数は前記1次コイルの巻回数より多く、
 前記複数の2次コイル導体パターンは、平面視で、内縁同士の位置及び外縁同士の位置の少なくとも一方が異なる複数の導体パターンを含む。
 上記構成によれば、第1放射素子の第1共振周波数付近が、第2放射素子の共振周波数特性によって、高利得化され、広帯域化される。また、2次コイル導体パターン同士の間に生じる寄生容量が抑制され、結合素子の自己共振周波数が高まる。
 したがって、第2放射素子に対する起電力が確保され、ローバンド側の利得が充分に高められる。また、結合素子の自己共振周波数が高まることによって、この自己共振周波数が使用周波数帯域外となって、自己共振による放射阻害が防止される。
 本発明に係る第2の態様のアンテナ装置では、前記1次コイル及び前記2次コイルは、前記給電回路から前記第1放射素子に向かって電流が流れるときに前記1次コイルに生じる磁束の向きと、前記グランドから前記第2放射素子に向かって電流が流れるときに前記2次コイルに生じる磁束の向きとが互いに逆となるように巻回されている。この構成によれば、第1放射素子と第2放射素子が実質的に同方向に延びる部分がある場合であっても、2つの素子から発生される磁束は強め合う方向に1次コイル及び2次コイルが巻回されているため、放射効率の低下が抑制される。このような構造による効果は、特に、放射素子が相対的に長くなるローバンド用のアンテナ装置において顕著である。
 本発明に係る第3の態様のアンテナ装置では、前記複数の1次コイル導体パターンの内縁は平面視でほぼ重なる。この構造によれば、1次コイルと2次コイルとの結合係数を効果的に高めることができる。
 本発明に係る第4の態様のアンテナ装置では、前記複数の2次コイル導体パターンのうち、積層方向に隣接する二つの2次コイル導体パターンの内縁同士の位置又は外縁同士の位置の少なくとも一方は、平面視で互いに異なる。この構造によれば、2次コイル導体パターン同士の寄生容量が効果的に抑制される。また、副次的な効果として、積層体である結合素子において積みずれが抑制される。
 本発明に係る第5の態様のアンテナ装置では、前記複数の1次コイル導体パターンの内縁は、前記複数の2次コイル導体パターンのうち、当該複数の2次コイル導体パターンが共有する巻回軸に最も近い2次コイル導体パターンの内縁から、前記巻回軸から最も遠い2次コイル導体パターンの内縁までの範囲に収まる。この構造によれば、1次コイルと2次コイルとの結合係数を大きく低下させることなく、所定の結合係数を維持できる。
 本発明に係る第6の態様のアンテナ装置では、前記複数の1次コイル導体パターンは、前記2次コイル導体パターンと最近接する第1最近接コイル導体パターンを含み、前記複数の2次コイル導体パターンは、前記1次コイル導体パターンと最近接する第2最近接コイル導体パターンを含み、前記積層方向から視て、前記第1最近接コイル導体パターンと前記第2最近接コイル導体パターンとが重なる面積は、前記複数の1次コイル導体パターンのうち前記第1最近接コイル導体パターン以外の導体パターンと前記第2最近接コイル導体パターンとが重なる面積よりも小さい。この構造によれば、1次コイルと2次コイルとの間の寄生容量も抑制されて、結合素子の自己共振周波数が更に高められる。その結果、自己共振による放射阻害が効果的に防止される。
 本発明に係る第7の態様のアンテナ装置では、上記第5の態様において、前記第1最近接コイル導体パターンの内縁は、前記第2最近接コイル導体パターンの内縁とほぼ重なる。この構造によれば、磁束が通過するコイル開口が揃い、1次コイルと2次コイルの結合が強まる。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を説明の便宜上分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1は第1の実施形態に係るアンテナ装置101の回路図である。このアンテナ装置101は、第1放射素子10、第2放射素子20及び結合素子2を備える。結合素子2は、互いに磁界結合する1次コイルL1及び2次コイルL2で構成されている。第1放射素子10の給電端には結合素子2の1次コイルL1の一端が接続されている。1次コイルL1の他端とグランドとの間には給電回路1が接続される。つまり、第1放射素子10の給電端には結合素子2の1次コイルL1を介して給電回路1が接続される。
 第2放射素子20の一端は結合素子2の2次コイルL2の一端に接続されていて、2次コイルL2の他端はグランドに接続されている。
 本実施形態のアンテナ装置101において、第1放射素子10は給電放射素子であり、第2放射素子20は無給電放射素子である。第1放射素子10は第1共振周波数と、第1共振周波数より高い周波数である第2共振周波数とを有している。第2放射素子20は、第2共振周波数よりも第1共振周波数に近い共振周波数を有している。なお、第1放射素子10が有する共振周波数は第1放射素子10と結合素子2の1次コイルL1とのそれぞれのインダクタンス値によって定められる。また、第2放射素子20が有する共振周波数は第2放射素子20と2次コイルL2とのそれぞれのインダクタンス値によって定められる。さらに、第1放射素子10と第2放射素子20とが有する共振周波数は、結合素子2の磁界結合(電界結合を含んでいてもよい。)によって、相互に変化する場合がある。本願明細書における「共振周波数」にはそのような変化も含まれている。
 第1放射素子10は結合素子2の1次コイルL1を介して給電回路1によって直接的に給電され、第2放射素子20は結合素子2を介して給電回路1によって間接的に給電される。また、第2放射素子20は場合によって、第1放射素子10に対して電界結合、磁界結合、又は電界結合及び磁界結合、によっても給電される。
 図2は結合素子2の斜視図であり、図3は結合素子2を構成する多層基板の各層の平面図である。
 結合素子2は回路基板に実装される直方体状のチップ部品である。図2においては、結合素子2の外形を二点鎖線で表している。結合素子2の外面には、給電回路接続端子PF、給電放射素子接続端子PA、グランド端子PG、及び無給電放射素子接続端子PSが形成されている。また、結合素子2は第1面MS1と当該第1面とは反対側の面である第2面MS2とを備える。本実施形態では、第1面MS1が実装面であり、この面が回路基板に対向する。
 図3は、図2における中央の層MLを構成する複数の絶縁基材について表している。絶縁基板S11,S12には、1次コイル導体パターンL11,L12がそれぞれ形成されている。絶縁基板S21,S22,S23,S24には、2次コイル導体パターンL21,L22,L23,L24がそれぞれ形成されている。
 1次コイル導体パターンL11と1次コイル導体パターンL12とは層間接続導体V1を介して接続されている。2次コイル導体パターンL21と2次コイル導体パターンL22とは層間接続導体V2を介して接続されていて、2次コイル導体パターンL22と2次コイル導体パターンL23とは層間接続導体V3を介して接続されていて、2次コイル導体パターンL23と2次コイル導体パターンL24とは層間接続導体V4を介して接続されている。
 1次コイル導体パターンL11,L12及び層間接続導体V1によって1次コイルL1が構成されていて、2次コイル導体パターンL21~L24及び層間接続導体V2,V3,V4によって2次コイルL2が構成されている。
 1次コイル導体パターンL11の一端は給電回路接続端子PFに接続されていて、1次コイル導体パターンL12の一端は給電放射素子接続端子PAに接続されている。また、2次コイル導体パターンL21の一端は無給電放射素子接続端子PSに接続されていて、2次コイル導体パターンL24の一端はグランド端子PGに接続されている。
 1次コイルL1は、給電回路接続端子PFから給電放射素子接続端子PAまで約1.5ターンのコイルである。1次コイル導体パターンL11,L12は線幅の全幅に亘って、平面視で互いに重なる。つまり、1次コイル導体パターンL11,L12は互いの内縁がほぼ重なる。ただし、製造精度による位置の違いは「ほぼ重なる」に含まれる。
 2次コイルL2は、無給電放射素子接続端子PSからグランド端子PGまで約3.5ターンのコイルである。2次コイル導体パターンL21,L23の内縁はそれぞれ互いにほぼ等しい小径コイル導体パターンであり、2次コイル導体パターンL22,L24の内縁はそれぞれ互いにほぼ等しい大径コイル導体パターンである。小径コイル導体パターンは、大径コイル導体パターンよりも平均コイル径が小さく、小径コイル導体パターンの内縁は、大径コイル導体パターンの内縁よりも内側にある。つまり、2次コイル導体パターンL21~L24は、互いに内縁が異なる複数の導体パターンを含む。
 図3に示す例では、小径のコイル2次コイル導体パターンL21,L23の内縁は、平面視で大径のコイル2次コイル導体パターンL22,L24と重ならない。また、小径の2次コイル導体パターンL21,L23の外縁は、平面視で大径の2次コイル導体パターンL22,L24と重なる。
 1次コイル導体パターンL11,L12の外縁は、平面視で、2次コイル導体パターンL21,L23の外縁にほぼ重なり、1次コイル導体パターンL11,L12の内縁は平面視で、2次コイル導体パターンL22,L24の内縁にほぼ重なる。つまり、1次コイル導体パターンL11,L12の内縁及び外縁が2次コイル導体パターンL21~L24のいずれの内縁及び外縁とも大きく異なっているわけではない。ただし、小径の2次コイル導体パターンL21,L23と大径の2次コイル導体パターンL22,L24とが、平面視で重なる部分に1次コイル導体パターンL11,L12も重なることは必須ではない。
 図3において、1次コイル導体パターンL12は2次コイル導体パターンL21~L24と最近接する導体パターンであり、本発明に係る「第1最近接コイル導体パターン」に相当する。また、2次コイル導体パターンL21は1次コイル導体パターンL11,L12と最近接する導体パターンであり、本発明に係る「第2最近接コイル導体パターン」に相当する。
 次に、結合素子2を構成する多層基板の各層に形成される導体パターンの別の例について示す。図4及び図5は、いずれも結合素子2の多層基板の各層の平面図である。図4及び図5に示す導体パターンは、図3に示した導体パターンとは部分的に異なる。
 1次コイル導体パターンL11と1次コイル導体パターンL12とは層間接続導体V1を介して接続されている。2次コイル導体パターンL21と2次コイル導体パターンL22とは層間接続導体V2を介して接続されていて、2次コイル導体パターンL22と2次コイル導体パターンL23とは層間接続導体V3を介して接続されていて、2次コイル導体パターンL23と2次コイル導体パターンL24とは層間接続導体V4を介して接続されている。1次コイル導体パターンL11,L12及び層間接続導体V1によって1次コイルL1が構成されていて、2次コイル導体パターンL21~L24及び層間接続導体V2,V3,V4によって2次コイルL2が構成されている。1次コイル導体パターンL11の一端は給電回路接続端子PFに接続されていて、1次コイル導体パターンL12の一端は給電放射素子接続端子PAに接続されている。また、2次コイル導体パターンL21の一端は無給電放射素子接続端子PSに接続されていて、2次コイル導体パターンL24の一端はグランド端子PGに接続されている。
 図4に示した例、図5に示した例のいずれにおいても、図3に示した例とは異なり、給電回路接続端子PFから給電放射素子接続端子PAの方向に電流が流れた時に1次コイルL1に生じる磁界の向きと、グランド端子PGから無給電放射素子接続端子PSの方向に電流が流れた時に2次コイルL2に生じる磁界の向きとが互いに逆になるように、1次コイルL1と2次コイルL2が巻回されている。この構造によって、例えば、第1放射素子10と第2放射素子20とが実質的に同方向に延びる部分があっても、この2つの素子から発生される磁束は強めあう方向に1次コイルL1及び2次コイルL2が巻回されているため、放射効率の低下が抑制される。このような構造による効果は、特に、放射素子が相対的に長くなるローバンド用のアンテナ装置において顕著である。
 図6は結合素子2の等価回路図である。図6において寄生容量C12は1次コイルL1と2次コイルL2との間の寄生容量、寄生容量C2は2次コイルL2に生じる寄生容量である。図3に示した構造によれば、積層方向に隣接する導体パターン同士の対向面積が小さくので、2次コイル導体パターン同士の寄生容量C2が効果的に抑制される。また、第1最近接コイル導体パターンである1次コイル導体パターンL12と、第2最近接コイル導体パターンである2次コイル導体パターンL21との対向面積が小さいので、1次コイルL1と2次コイルL2との間の寄生容量C12も抑制される。
 なお、1次コイルの巻回数は少ないので、1次コイルL1に生じる寄生容量は2次コイルL2に生じる寄生容量C2に比べて無視できる程度に小さい。特に、図3、図4及び図5においては、1次コイル導体パターンL11,L12は2次コイル導体パターンL21~L24に比べ、線幅が細く、層数が少ない(2層)。このような特徴からも、1次コイルL1に生じる寄生容量は2次コイルL2に生じる寄生容量C2に比べて無視できる程度に小さいといえる。
 以上に示した構造の結合素子2は、2次コイルの巻回数が1次コイルよりも多いため、第1放射素子10が有する低い共振周波数側においても高利得化及び広帯域化を可能とする。具体的には、第2放射素子20に対する起電力が確保され、低い共振周波数であっても利得を充分に高めることができる。また、結合素子2の不要な結合容量を抑制できるため、結合素子2の自己共振周波数が高まる。このことにより、以下に示すように、自己共振による放射阻害が防止される。
 図7(A)は本実施形態のアンテナ装置101の反射損失の周波数特性を示す図である。図7(B)は比較例としてのアンテナ装置の反射損失の周波数特性を示す図である。この比較例のアンテナ装置は、図3に示した2次コイル導体パターンL21~L24の全ての内縁及び外縁が1次コイル導体パターンL11,L12の内縁及び外縁のそれぞれに重なる結合素子を備えるアンテナ装置である。
 図7(A)、図7(B)において、実線は第1放射素子10単体での反射係数(共振特性)であり、破線は結合素子2を含む第2放射素子20の反射係数(共振特性)である。図7(A)、図7(B)においては、隣接する二つの二点鎖線の間は図示を省略している。周波数f1Lは第1放射素子10の基本共振(1/4波長共振)の周波数、周波数f1Hは第1放射素子10の高次共振(例えば3/4波長共振)周波数である。また、周波数f2Lは結合素子2を含む第2放射素子20の基本共振(1/4波長共振)の周波数、周波数SRは結合素子2の自己共振周波数である。この自己共振は放射には寄与しないばかりか、第1放射素子10によるハイバンドHBの放射を阻害する。図7(B)において、自己共振周波数の帯域SBはハイバンドHB内での放射を阻害する周波数帯域を表している。
 本実施形態のアンテナ装置101は、第1放射素子10の基本共振周波数f1Lと第2放射素子20の基本共振周波数f2LとでローバンドLBをカバーし、第1放射素子10の高次共振周波数f1HでハイバンドHBをカバーする。さらに第2放射素子20の高次共振周波数でハイバンドHBをカバーしてもよい。この例では、ローバンドLBは0.70GHz~0.96GHzの周波数帯であり、ハイバンドHBは例えば0.96GHz~3.6GHzの周波数帯である。
 結合素子2の自己共振周波数は、結合素子2の寄生容量の影響を大きく受ける。図7(A)に示す本実施形態のアンテナ装置101では、図7(B)と比較すれば明らかなように、結合素子2の自己共振周波数SRはハイバンドHBの使用周波数帯外にまでシフトしている。これに伴って、第1放射素子10の高次共振周波数f1HによるハイバンドHBの放射が上記自己共振によって阻害されることなく、所定の利得が確保される。
 なお、図3、図4及び図5では、小径の2次コイル導体パターンL21,L23と大径の2次コイル導体パターンL22,L24とが平面視で部分的に重なる例を示した。また、小径の2次コイル導体パターンL21,L23と大径の2次コイル導体パターンL22,L24とが交互に積層された例を示した。このような構造によれば、絶縁基板S21,S22,S23,S24の積みずれに対するコイル導体パターンの重なり量のばらつきが少ない。つまり、製造時の位置合わせや寸法精度に起因する、2次コイルの寄生容量のばらつきが少ない。したがって、電気的特性のばらつきが抑制される。
 2次コイル導体パターンL21~L24のパターンは、2次コイル導体パターンL21,L23の内縁及び外縁と2次コイル導体パターンL22,L24の内縁及び外縁とのそれぞれの平面視での距離の差を大きくして、2次コイル導体パターンL21,L23と2次コイル導体パターンL22,L24とが平面視で重ならない関係であってもよい。この構造であれば、2次コイルの寄生容量を効果的に抑制できる。
 また、図3、図4及び図5では、小径のコイル導体パターンと大径のコイル導体パターンとが交互に積層された例を示したが、小径のコイル導体パターン同士が積層方向で隣接していてもよい。同様に、大径のコイル導体パターン同士が積層方向で隣接していてもよい。
 また、図3、図4及び図5では、2次コイルが、小径の2次コイル導体パターンL21,L23と大径の2次コイル導体パターンL22,L24とで構成される例を示したが、複数の2次コイル導体が共有する巻回軸からの距離が異なる内縁及び外縁を有する2次コイル導体が3種以上あってもよい。
 また、第2最近接コイル導体パターンの内縁が1次コイル導体パターンの内縁とほぼ重なると、磁束が通過するコイル開口が揃い、1次コイルと2次コイルの結合が強まるため、好ましい。
《第2の実施形態》
 第2の実施形態では、第1最近接コイル導体パターンが第1の実施形態で示した第1最近接コイル導体パターンとは異なるアンテナ装置について示す。
 図8は第2の実施形態に係るアンテナ装置が備える結合素子に関する図であり、結合素子を構成する多層基板の各層の平面図である。
 絶縁基板S11,S12には、1次コイル導体パターンL11,L12がそれぞれ形成されている。絶縁基板S21,S22,S23,S24には、2次コイル導体パターンL21,L22,L23,L24がそれぞれ形成されている。
 1次コイル導体パターンL11と1次コイル導体パターンL12とは層間接続導体V1を介して接続されている。2次コイル導体パターンL21と2次コイル導体パターンL22とは層間接続導体V2を介して接続されていて、2次コイル導体パターンL22と2次コイル導体パターンL23とは層間接続導体V3を介して接続されていて、2次コイル導体パターンL23と2次コイル導体パターンL24とは層間接続導体V4を介して接続されている。
 1次コイル導体パターンL11,L12及び層間接続導体V1によって1次コイルL1が構成されていて、2次コイル導体パターンL21~L24及び層間接続導体V2,V3,V4によって2次コイルL2が構成されている。
 次に、第2の実施形態に係る結合素子を構成する多層基板の各層に形成される導体パターンの別の例について示す。図9及び図10は、いずれも第2の実施形態に係る結合素子の多層基板の各層の平面図である。図9及び図10に示す導体パターンは、図8に示した導体パターンとは部分的に異なる。
 1次コイル導体パターンL11と1次コイル導体パターンL12とは層間接続導体V1を介して接続されている。2次コイル導体パターンL21と2次コイル導体パターンL22とは層間接続導体V2を介して接続されていて、2次コイル導体パターンL22と2次コイル導体パターンL23とは層間接続導体V3を介して接続されていて、2次コイル導体パターンL23と2次コイル導体パターンL24とは層間接続導体V4を介して接続されている。1次コイル導体パターンL11,L12及び層間接続導体V1によって1次コイルL1が構成されていて、2次コイル導体パターンL21~L24及び層間接続導体V2,V3,V4によって2次コイルL2が構成されている。1次コイル導体パターンL11の一端は給電回路接続端子PFに接続されていて、1次コイル導体パターンL12の一端は給電放射素子接続端子PAに接続されている。また、2次コイル導体パターンL21の一端は無給電放射素子接続端子PSに接続されていて、2次コイル導体パターンL24の一端はグランド端子PGに接続されている。
 図9に示した例、図10に示した例のいずれにおいても、図8に示した例とは異なり、給電回路接続端子PFから給電放射素子接続端子PAの方向に電流が流れた時に1次コイルL1に生じる磁界の向きと、グランド端子PGから無給電放射素子接続端子PSの方向に電流が流れた時に2次コイルL2に生じる磁界の向きとが互いに逆になるように、1次コイルL1と2次コイルL2が巻回されている。この構造によって、例えば、第1放射素子10と第2放射素子20とが実質的に同方向に延びる部分があっても、この2つの素子から発生される磁束は強めあう方向に1次コイルL1及び2次コイルL2が巻回されているため、放射効率の低下が抑制される。このような構造による効果は、特に、放射素子が相対的に長くなるローバンド用のアンテナ装置において顕著である。
 図3、図4及び図5に示した例とは、1次コイル導体パターンL11,L12の形状がそれぞれ異なる。図3、図4及び図5に示した例では、第1最近接導体パターンである1次コイル導体パターンL12が約1ターンであったのに対し、図8、図9及び図10に示す例では、第1最近接導体パターンである1次コイル導体パターンL12が約1/2ターンである。そのため、図3、図4及び図5に示した例に比べて、1次コイル導体パターンL12と2次コイル導体パターンL21(第2最近接導体パターン)との対向面積は小さい。そのため、1次コイルL1と2次コイルL2との間の寄生容量も抑制されて、結合素子の自己共振周波数が更に高められる。その結果、放射阻害が防止され、アンテナ装置の通信帯域の広帯域化に有利となる。
《第3の実施形態》
 第3の実施形態では、第1放射素子及び第2放射素子の構造が第1の実施形態で示したものとは異なるアンテナ装置の例を示す。
 図11は第3の実施形態に係るアンテナ装置102Aの回路図である。アンテナ装置102Aは、逆Fアンテナ又はPIFA構造の第1放射素子10と逆Lアンテナ構造の第2放射素子20とを備える。第1放射素子10の接地端には結合素子2の給電放射素子接続端子PAが接続されている。また、第1放射素子10の給電端とグランドとの間に給電回路1が接続されている。第2放射素子20の給電端には無給電放射素子接続端子PSが接続されている。結合素子2のグランド端子PGはグランドに接続されている。
 アンテナ装置102Aの第1放射素子10は逆Fアンテナ又はPIFA(Planar Inverted-F Antenna)として作用する。第2放射素子20は結合素子2を介して給電回路1によって間接的に給電される。また、第2放射素子20は第1放射素子10と電界結合又は磁界結合することによっても給電される。
 図12は第3の実施形態に係る別のアンテナ装置102Bの回路図である。アンテナ装置102Bは、逆Fアンテナ又はPIFA構造の第1放射素子10と逆Lアンテナ構造の第2放射素子20とを備える。図11に示した例とは、第1放射素子10の給電端及び接地端の位置が異なる。第1放射素子10の給電端には結合素子2の給電放射素子接続端子PAが接続されている。結合素子2の給電回路接続端子PFとグランドとの間に給電回路1が接続されている。第1放射素子10の接地端はグランドに接続されている。第2放射素子20の給電端には無給電放射素子接続端子PSが接続されている。結合素子2のグランド端子PGはグランドに接続されている。
 アンテナ装置102Bの第1放射素子10は逆Fアンテナ又はPIFAとして作用する。第2放射素子20は結合素子2を介して給電回路1によって間接的に給電される。また、第2放射素子20は第1放射素子10と電界結合又は磁界結合することによっても給電される。
 図13は第3の実施形態に係る更に別のアンテナ装置102Cの回路図である。アンテナ装置102Cは、モノポール型の第1放射素子10と、逆Fアンテナ又はPIFA構造の第2放射素子20とを備える。第1放射素子10の給電端には結合素子2の給電放射素子接続端子PAが接続されている。結合素子2の給電回路接続端子PFとグランドとの間に給電回路1が接続されている。第2放射素子20の給電端には結合素子2の無給電放射素子接続端子PSが接続されている。第2放射素子20の接地端はグランドに接続されている。
 以上例示したように、第1放射素子及び第2放射素子は、逆Fアンテナ、PIFA、逆Lアンテナ等であってもよい。これらの場合でも、第1放射素子10及び第2放射素子20の基本共振モード及び高次共振モードを利用したマルチバンドのアンテナ装置が構成され、ハイバンドが効果的に広帯域化される。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
 例えば、図7(A)では、第1放射素子10の基本共振周波数f1Lと第2放射素子20の基本共振周波数f2Lとでローバンドをカバーし、第1放射素子10の高次共振周波数f1Hでハイバンドをカバーする例を示したが、ローバンドからハイバンドに亘るフルバンドをカバーする放射素子として、第1放射素子10及び第2放射素子20を用いてもよい。
C2,C12…寄生容量
L1…1次コイル
L2…2次コイル
L11,L12…1次コイル導体パターン
L21,L22,L23,L24…2次コイル導体パターン
ML…層
MS1…第1面
MS2…第2面
PA…給電放射素子接続端子
PF…給電回路接続端子
PG…グランド端子
PS…無給電放射素子接続端子
S11,S12,S21,S22,S23,S24…絶縁基板
V1,V2,V3,V4…層間接続導体
1…給電回路
2…結合素子
10…第1放射素子
20…第2放射素子
101,102A,102B,102C…アンテナ装置

Claims (7)

  1.  給電回路が接続される第1放射素子と、第2放射素子と、1次コイル及び2次コイルを有する積層構造の結合素子と、を備え、
     前記第1放射素子は、第1共振周波数及び前記第1共振周波数よりも高い周波数である第2共振周波数を有し、
     前記第2放射素子は、前記第2共振周波数よりも前記第1共振周波数に近い共振周波数を有し、
     前記1次コイルは複数の1次コイル導体パターンを含み、
     前記2次コイルは複数の2次コイル導体パターンを含み、
     前記1次コイル及び前記2次コイルの積層方向から視て、前記1次コイルと前記2次コイルとは重なり、
     前記1次コイルと前記2次コイルとは磁界結合し、
     前記1次コイルの一端は前記第1放射素子に接続され、
     前記2次コイルは前記第2放射素子とグランドとの間に接続され、
     前記2次コイルの巻回数は前記1次コイルの巻回数より多く、
     前記複数の2次コイル導体パターンは、平面視で、内縁同士の位置及び外縁同士の位置の少なくとも一方が異なる複数の導体パターンを含む、
     アンテナ装置。
  2.  前記1次コイル及び前記2次コイルは、前記給電回路から前記第1放射素子に向かって電流が流れるときに前記1次コイルに生じる磁束の向きと、前記グランドから前記第2放射素子に向かって電流が流れるときに前記2次コイルに生じる磁束の向きとが互いに逆となるように巻回されている、請求項1に記載のアンテナ装置。
  3.  前記複数の1次コイル導体パターンの内縁は平面視でほぼ重なる、請求項1又は2に記載のアンテナ装置。
  4.  前記複数の2次コイル導体パターンのうち、積層方向に隣接する二つの2次コイル導体パターンの内縁同士の位置又は外縁同士の位置の少なくとも一方は、平面視で互いに異なる、
     請求項1から3のいずれかに記載のアンテナ装置。
  5.  前記複数の1次コイル導体パターンの内縁は、前記複数の2次コイル導体パターンのうち、当該複数の2次コイル導体パターンが共有する巻回軸に最も近い2次コイル導体パターンの内縁から、前記巻回軸から最も遠い2次コイル導体パターンの内縁までの範囲に収まる、
     請求項1から4のいずれかに記載のアンテナ装置。
  6.  前記複数の1次コイル導体パターンは、前記2次コイル導体パターンと最近接する第1最近接コイル導体パターンを含み、
     前記複数の2次コイル導体パターンは、前記1次コイル導体パターンと最近接する第2最近接コイル導体パターンを含み、
     前記積層方向から視て、前記第1最近接コイル導体パターンと前記第2最近接コイル導体パターンとが重なる面積は、前記複数の1次コイル導体パターンのうち前記第1最近接コイル導体パターン以外の導体パターンと前記第2最近接コイル導体パターンとが重なる面積よりも小さい、
     請求項1から5のいずれかに記載のアンテナ装置。
  7.  前記第1最近接コイル導体パターンの内縁は、前記第2最近接コイル導体パターンの内縁とほぼ重なる、請求項6に記載のアンテナ装置。
PCT/JP2019/031612 2018-10-31 2019-08-09 アンテナ装置 WO2020090184A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020546179A JP6791465B2 (ja) 2018-10-31 2019-08-09 アンテナ装置
CN201990001056.5U CN214542540U (zh) 2018-10-31 2019-08-09 天线装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-204976 2018-10-31
JP2018204976 2018-10-31
JP2019-040356 2019-03-06
JP2019040356 2019-03-06

Publications (1)

Publication Number Publication Date
WO2020090184A1 true WO2020090184A1 (ja) 2020-05-07

Family

ID=70464409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031612 WO2020090184A1 (ja) 2018-10-31 2019-08-09 アンテナ装置

Country Status (3)

Country Link
JP (1) JP6791465B2 (ja)
CN (1) CN214542540U (ja)
WO (1) WO2020090184A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157666A1 (ja) * 2022-02-16 2023-08-24 株式会社村田製作所 インダクタ、およびインダクタを備えた電子部品
WO2023176637A1 (ja) * 2022-03-16 2023-09-21 株式会社村田製作所 アンテナ装置、および通信機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013438A1 (ja) * 2009-07-27 2011-02-03 シャープ株式会社 アンテナ装置、無線通信端末
US20160365623A1 (en) * 2015-06-11 2016-12-15 Samsung Electronics Co., Ltd. Antenna and electronic device including the same
WO2018101285A1 (ja) * 2016-11-29 2018-06-07 株式会社村田製作所 磁界結合素子、アンテナ装置および電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013438A1 (ja) * 2009-07-27 2011-02-03 シャープ株式会社 アンテナ装置、無線通信端末
US20160365623A1 (en) * 2015-06-11 2016-12-15 Samsung Electronics Co., Ltd. Antenna and electronic device including the same
WO2018101285A1 (ja) * 2016-11-29 2018-06-07 株式会社村田製作所 磁界結合素子、アンテナ装置および電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157666A1 (ja) * 2022-02-16 2023-08-24 株式会社村田製作所 インダクタ、およびインダクタを備えた電子部品
WO2023176637A1 (ja) * 2022-03-16 2023-09-21 株式会社村田製作所 アンテナ装置、および通信機器

Also Published As

Publication number Publication date
JP6791465B2 (ja) 2020-11-25
JPWO2020090184A1 (ja) 2021-02-15
CN214542540U (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
JP6311833B2 (ja) アンテナ装置
JP6260729B2 (ja) 給電素子
JP6436277B2 (ja) 磁界結合素子、アンテナ装置および電子機器
JP6614363B2 (ja) アンテナ装置および電子機器
US8638268B2 (en) Coil antenna and antenna structure
US9698831B2 (en) Transformer and communication terminal device
WO2012014939A1 (ja) アンテナ装置および通信端末機器
JP5957816B2 (ja) インピーダンス変換デバイス、アンテナ装置および通信端末装置
US20190386389A1 (en) Antenna device, communication system, and electronic apparatus
US9893708B2 (en) Impedance conversion ratio setting method, impedance conversion circuit, and communication terminal apparatus
JP6791465B2 (ja) アンテナ装置
JP7067670B2 (ja) アンテナ結合回路、アンテナ結合素子及びアンテナ装置
US7167132B2 (en) Small antenna and a multiband antenna
US10559883B2 (en) Antenna device and electronic apparatus
JP6369666B1 (ja) アンテナ装置および電子機器
JP4845052B2 (ja) 小型アンテナ
US10511350B2 (en) Antenna device and electronic device
WO2019208297A1 (ja) アンテナ結合素子、アンテナ装置及び通信端末装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878512

Country of ref document: EP

Kind code of ref document: A1