WO2012099085A1 - 周波数安定化回路、アンテナ装置および通信端末装置 - Google Patents

周波数安定化回路、アンテナ装置および通信端末装置 Download PDF

Info

Publication number
WO2012099085A1
WO2012099085A1 PCT/JP2012/050767 JP2012050767W WO2012099085A1 WO 2012099085 A1 WO2012099085 A1 WO 2012099085A1 JP 2012050767 W JP2012050767 W JP 2012050767W WO 2012099085 A1 WO2012099085 A1 WO 2012099085A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
reactance element
reactance
circuit
frequency
Prior art date
Application number
PCT/JP2012/050767
Other languages
English (en)
French (fr)
Inventor
石塚健一
加藤登
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201280005897.6A priority Critical patent/CN103348531B/zh
Priority to JP2012553720A priority patent/JP5429409B2/ja
Publication of WO2012099085A1 publication Critical patent/WO2012099085A1/ja
Priority to US13/904,124 priority patent/US9065422B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/461Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source particularly adapted for use in common antenna systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/463Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Definitions

  • the present invention relates to a frequency stabilization circuit connected between a power feeding circuit and an antenna element, an antenna device provided with the frequency stabilization circuit, and a communication terminal device.
  • mobile communication terminals such as mobile phones have been used for communication systems such as GSM (registered trademark) (Global System for mobile Communications), DCS (Digital Communication System), PCS (Personal Communication Service), and UMTS (Universal Mobile Telecommunications System).
  • GSM Global System for mobile Communications
  • DCS Digital Communication System
  • PCS Personal Communication Service
  • UMTS Universal Mobile Telecommunications System
  • GPS Global Positioning System
  • wireless LAN Wireless Local Area Network
  • Bluetooth registered trademark
  • FIG. 1 is an example in which the impedance locus of a simple whip antenna is represented on a Smith chart. The correspondence between each marker and frequency in the figure is as follows.
  • a tunable antenna is known as an antenna that covers a plurality of frequency bands. As disclosed in Patent Document 1 and Patent Document 2, this tunable antenna has a matching circuit including a variable capacitance element.
  • FIG. 2 is a diagram showing a main part of a mobile receiver provided with a matching unit shown in Patent Document 2.
  • An antenna element ANT and a control signal source 6 are connected to the matching unit 1, and an antenna matching circuit 100 is configured by these.
  • the antenna matching circuit 100 receives the channel selection command SEL, and changes the capacity of the matching unit 1 so that the circuit impedance viewed from the receiving circuit 8 is matched according to the reception frequency of the channel. Then, the antenna matching circuit 100 outputs the radio signal received by the antenna ANT to the receiving circuit 8.
  • the reception circuit 8 amplifies the radio signal received from the antenna matching circuit 100 and outputs it as a reception signal RF.
  • a tunable antenna provided with a variable capacitance element generally requires a circuit for controlling the variable capacitance element, that is, a switching circuit for switching a frequency band, so that the circuit configuration tends to be complicated. Moreover, loss and distortion in the switching circuit are large and it is difficult to obtain a sufficient gain. Furthermore, since a certain amount of time is required for tuning, it cannot be applied to applications where the communication frequency band must be switched instantaneously.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an antenna device capable of realizing broadband frequency characteristics with a simple configuration, a frequency stabilization circuit therefor, and a communication terminal using the antenna device. To provide an apparatus.
  • the frequency stabilization circuit of the present invention is A primary circuit having a first reactance element connected to a power supply circuit and a second reactance element connected in series to the first reactance element; A third reactance element that is electromagnetically coupled to the first reactance element; and a third reactance element that is connected in series between the third reactance element and the second reactance element and is electromagnetically coupled to the second reactance element.
  • a secondary circuit having four reactance elements; A first antenna connection portion connected to a connection point between the first reactance element and the second reactance element, or a connection point between the third reactance element and the fourth reactance element; A second antenna connection portion connected to a connection point between the second reactance element and the fourth reactance element; It is provided with.
  • an antenna device having a wideband frequency characteristic can be configured with a simple configuration.
  • the 1st antenna connection part and 2nd antenna connection part as described in (1) are a terminal connected directly or indirectly to a shared antenna as needed. With this configuration, a single shared antenna can be matched in two frequency bands.
  • the 1st antenna connection part and 2nd antenna connection part as described in (1) are terminals connected directly or indirectly to another antenna, respectively.
  • the first and second antennas sharing the frequency band can be used while being a single frequency stabilization circuit.
  • the first to fourth reactance elements described in (1) to (3) are preferably inductance elements mainly having an inductance component. As a result, the degree of coupling between reactance elements can be easily increased, and the insertion loss in the frequency stabilization circuit can be reduced.
  • the first to fourth reactance elements described in (4) are preferably elements each including a capacitance component. With this configuration, the degree of coupling between reactance elements can be easily increased, and insertion loss in the frequency stabilization circuit can be reduced.
  • the inductance element described in (5) is preferably formed of a coiled conductor pattern. With this configuration, the degree of coupling between the inductance elements can be easily increased, and the insertion loss in the frequency stabilization circuit can be reduced.
  • the coiled conductor pattern according to (6) is preferably provided inside a laminate in which a plurality of dielectric layers or magnetic layers are laminated. With this structure, the overall size can be reduced, and unnecessary coupling with an external circuit can be suppressed.
  • the first reactance element and the second reactance element described in (1) to (7) have different inductance values, and the third reactance element and the fourth reactance element have different inductance values. It may be.
  • the impedance differs greatly between the high-band antenna and the low-band antenna, the impedance conversion ratio between the feed circuit and the first antenna connection portion, and the feed circuit and the second antenna connection due to the difference in the inductance value.
  • the impedance conversion ratio with the part can be appropriately varied.
  • a frequency filter any one of a high-pass filter, a low-pass filter, and a band-pass filter is connected to the first antenna connection unit and the second antenna connection unit.
  • the antenna device of the present invention includes: A primary side circuit having a first reactance element connected to a power supply circuit and a second reactance element connected in series to the first reactance element; A third reactance element that is electromagnetically coupled to the first reactance element; and a third reactance element that is connected in series between the third reactance element and the second reactance element and is electromagnetically coupled to the second reactance element.
  • a secondary circuit having four reactance elements;
  • a frequency stabilization circuit having: A first antenna element connected to a connection point between the first reactance element and the second reactance element or a connection point between the second reactance element and the fourth reactance element; A second antenna element connected to a connection point between the third reactance element and the fourth reactance element; It is provided with.
  • the first antenna element and the second antenna element described in (10) are preferably shared antenna elements. With this configuration, a single shared antenna can be matched in two frequency bands.
  • the 1st antenna connection part and 2nd antenna connection part as described in (10) are terminals connected to another antenna respectively directly or indirectly.
  • the first and second antennas sharing the frequency band can be used while being a single frequency stabilization circuit.
  • connection point between the first reactance element and the second reactance element according to any one of (10) to (12), or a connection point between the third reactance element and the fourth reactance element; , A first frequency filter is inserted between the first antenna element, A second frequency filter may be inserted between the connection point between the second reactance element and the fourth reactance element and the second antenna element.
  • the communication terminal apparatus of the present invention A primary side circuit having a first reactance element connected to a power supply terminal and a second reactance element connected in series to the first reactance element; A third reactance element that is electromagnetically coupled to the first reactance element; and a third reactance element that is connected in series between the third reactance element and the second reactance element and is electromagnetically coupled to the second reactance element.
  • a secondary circuit having four reactance elements; A first frequency filter having a first port connected to a connection point between the first reactance element and the second reactance element or a connection point between the third reactance element and the fourth reactance element; A second frequency filter having a first port connected to a connection point between the third reactance element and the fourth reactance element; A first antenna element connected to a second port of the first frequency filter; A second antenna element connected to a second port of the second frequency filter; An antenna device having A communication circuit connected to the power supply terminal; It is provided with.
  • the first antenna element and the second antenna element described in (14) are preferably shared antenna elements. With this configuration, a single shared antenna can be matched in two frequency bands.
  • the 1st antenna connection part and 2nd antenna connection part as described in (14) are terminals connected to another antenna respectively directly or indirectly.
  • the first and second antennas sharing the frequency band can be used while being a single frequency stabilization circuit.
  • connection point between the first reactance element and the second reactance element according to any one of (14) to (16), or a connection point between the third reactance element and the fourth reactance element; , A first frequency filter is inserted between the first antenna element, A second frequency filter may be inserted between the connection point between the second reactance element and the fourth reactance element and the second antenna element.
  • impedance matching between the feeder circuit and the antenna element can be achieved in a wide frequency band. Further, since it is not always necessary to use a variable capacitance element, loss and distortion can be suppressed.
  • FIG. 1 is a diagram showing an impedance locus of the impedance of a simple whip antenna on a Smith chart.
  • FIG. 2 is a diagram showing a main part of a mobile receiver provided with a matching unit shown in Patent Document 2.
  • FIG. 3A is a schematic configuration diagram of a frequency stabilization circuit of the present invention and an antenna device including the same.
  • FIG. 3B is a schematic configuration diagram of an antenna device as a comparative example.
  • FIG. 4 is a circuit diagram of the basic components of the frequency stabilization circuit 25 according to the present invention.
  • FIG. 5 is a diagram showing the relationship of magnetic coupling of the four coiled conductors L1 to L4 of the frequency stabilizing circuit 25. As shown in FIG. FIG. FIG.
  • FIG. 6 is a Smith chart showing the reflection characteristics when the power supply port is viewed from the power supply circuit when the coupling coefficient between the coiled conductors by the coiled conductors L1 to L4 is set to a predetermined value.
  • FIG. 7 is a diagram showing the inductance matching between the antenna element and the power feeding circuit by the frequency stabilization circuit showing the negative inductance.
  • FIG. 8 is a circuit diagram of the frequency stabilization circuit and the antenna device of the first embodiment.
  • FIG. 9 is a diagram illustrating an example of a conductor pattern of each layer when the frequency stabilization circuit 25 according to the first embodiment is configured on a multilayer substrate.
  • FIG. 10 is a circuit diagram of the frequency stabilization circuit and the antenna device of the second embodiment.
  • FIG. 11 is a circuit diagram of a frequency stabilization circuit and an antenna device of the third embodiment.
  • FIG. 12 is a block diagram of a communication terminal apparatus 301 according to the fourth embodiment.
  • FIG. 3A is a schematic configuration diagram of a frequency stabilization circuit of the present invention and an antenna device including the same.
  • FIG. 3B is a schematic configuration diagram of an antenna device as a comparative example.
  • FIG. 3B shows the configuration of the antenna element 10 ⁇ / b> D that is fed by the feeding circuit 30.
  • the conventional antenna design method has a design restriction that the appearance design of a product is determined in advance and the antenna element 10 must be designed so as to be accommodated therein.
  • the goal in designing an antenna is (1) Increase radiation efficiency. Radiate as much power as possible in space. (2) Adjust the frequency. Matching to put power to the antenna.
  • the frequency stabilization circuit 25 according to the present invention shown in FIG. 3A includes a power feeding port and an antenna port, the power feeding circuit 30 is connected to the power feeding port, and the antenna element 10 is connected to the antenna port.
  • the frequency stabilization circuit 25 and the antenna element 10 constitute an antenna device.
  • a mobile communication terminal is constituted by a circuit including the antenna device and the power feeding circuit 30.
  • the antenna element is specialized only in increasing the radiation efficiency with a simple shape with reduced capacitive coupling between the antenna elements and between the antenna element and the ground.
  • the adjustment is left to the frequency stabilization circuit 25. Therefore, the antenna design becomes extremely easy without receiving the trade-off relationship described above, and the development period is greatly shortened.
  • FIG. 4 is a circuit diagram of the basic components of the frequency stabilization circuit 25 according to the present invention.
  • the frequency stabilization circuit 25 includes a primary circuit 26 connected to the power supply circuit 30 and a secondary circuit 27 that is electromagnetically coupled to the primary circuit 26.
  • the primary side circuit 26 is a series circuit of a first coiled conductor L1 and a second coiled conductor L2, and the secondary side circuit 27 is a third coiled conductor L3 and a fourth coiled conductor. It is a series circuit with L4.
  • a primary circuit 26 is connected between the antenna port and the power supply port, and a secondary circuit 27 is connected between the antenna port and the ground.
  • FIG. 5 is a diagram showing the magnetic coupling relationship of the four coiled conductors L1 to L4 of the frequency stabilizing circuit 25.
  • the first coiled conductor L1 and the second coiled conductor L2 are formed of the first coiled conductor L1 and the second coiled conductor L2 by the first closed magnetic circuit (loop indicated by the magnetic flux FP12).
  • the third coiled conductor L3 and the fourth coiled conductor L4 are connected to each other by the third coiled conductor L3 and the fourth coiled conductor L4. It is wound so as to constitute a closed magnetic circuit (a loop indicated by a magnetic flux FP34).
  • the four coiled conductors L1 to L4 are wound so that the magnetic flux FP12 passing through the first closed magnetic path and the magnetic flux FP34 passing through the second closed magnetic path are in opposite directions.
  • 5 represents a magnetic wall that does not couple the two magnetic fluxes FP12 and FP34.
  • an equivalent magnetic wall is generated between the coiled conductors L1 and L3 and between L2 and L4.
  • the frequency stabilization circuit 25 has two main roles as follows. (1) As the antenna becomes smaller, the impedance of the antenna becomes as low as about 3 to 20 ⁇ , for example.
  • the frequency stabilization circuit uses the transformer function to match the real part R of the impedance.
  • the frequency characteristic of the impedance has an upward characteristic, but the frequency stabilization circuit acts as a negative inductance, and the frequency stabilization circuit is combined with the antenna element.
  • FIG. 6 is a Smith chart showing the reflection characteristics when the power supply port is viewed from the power supply circuit when the coupling coefficient between the coiled conductors by the coiled conductors L1 to L4 is set to a predetermined value.
  • each coupling coefficient is as follows.
  • the effective value of L1, L2, L3, and L4 becomes small while the value of the mutual inductance M generated by the above is kept large. Therefore, the coupling coefficient is equivalently 1 or more, and the impedance of the frequency stabilization circuit appears to be a negative inductance. That is, a metamaterial structure can be formed.
  • the coupling between L1 and L2 and the coupling between L3 and L4 are magnetic field couplings that reduce the inductance value, but the coupling between L1 and L3 and the coupling between L2 and L4. Since (the coupling between the coiled conductors in the vertical direction) is not affected by the coupling between the coiled conductors in the horizontal direction, it is assumed that such a new effect is produced.
  • FIG. 7 is a diagram showing inductance matching between the antenna element and the power feeding circuit by the frequency stabilization circuit showing the negative inductance.
  • the horizontal axis represents frequency and the vertical axis represents reactance jx.
  • a curve RI in FIG. 7 represents the impedance jxa of this antenna element.
  • the impedance of the frequency stabilization circuit is a negative inductance, it is represented by a downward-sloping characteristic as represented by a curve (straight line) SI. Therefore, the impedance of the antenna device (impedance seen from the power feeding port) by the frequency stabilization circuit and the antenna element has a frequency characteristic with a small slope as shown by the curve (straight line) AI.
  • FIG. 8 is a circuit diagram of the frequency stabilization circuit and the antenna device of the first embodiment.
  • the frequency stabilization circuit 25 includes a primary circuit 26 connected to the power supply circuit 30 and a secondary circuit 27 that is electromagnetically coupled to the primary circuit 26.
  • the primary side circuit 26 is a series circuit of a first coiled conductor L1 and a second coiled conductor L2, and the secondary side circuit 27 is a third coiled conductor L3 and a fourth coiled conductor. It is a series circuit with L4. One end of the first coiled conductor L1 is connected to the power feeding circuit 30, and one end of the third coiled conductor L3 is grounded.
  • the second coiled conductor L2 and the fourth coiled conductor L4 are connected, and the primary circuit 26 is connected between the connection point and the power feeding circuit 30.
  • a secondary circuit 27 is connected between a connection point between the second coiled conductor L2 and the fourth coiled conductor L4 and the ground.
  • the coiled conductors L1 to L4 correspond to first to fourth reactance elements described in the claims. Between the coiled conductor L1 and the coiled conductor L2 is the first antenna connecting part J1, and between the coiled conductor L2 and the coiled conductor L4 is the second antenna connecting part J2.
  • a high-pass filter 28 is inserted between the first antenna connection portion J1 and the antenna element 10.
  • a low-pass filter 29 is inserted between the second antenna connection portion J2 and the antenna element 10. That is, in this example, the antenna element 10 is indirectly connected to the first antenna connection portion J1 and the second antenna connection portion J2.
  • the high-pass filter 28 includes a capacitor C11 connected in series and an inductor L11 connected to a shunt.
  • the low pass filter 29 includes an inductor L12 connected in series and a capacitor C12 connected to a shunt.
  • the frequency stabilization circuit 25 is as shown in FIG.
  • the frequency stabilization circuit 25 and the frequency filters 28 and 29 constitute a frequency stabilization circuit 101 with a filter.
  • the frequency stabilization circuit 101 with a filter and the antenna element 10 constitute an antenna device 201.
  • the inductances of the coiled conductors L1, L2, L3, and L4 shown in FIG. 8 are represented by the same symbols L1, L2, L3, and L4, the inductances are as follows.
  • L1 20 [nH]
  • L2 20 [nH]
  • L3 5 [nH]
  • the high-pass filter 28 connected to the first antenna connection portion J1 passes a high-band (2 GHz band) signal and blocks a low-band (900 MHz band) signal. Therefore, a high band signal is input / output at the antenna connection portion J1, and a low band signal is input / output at the antenna connection portion J2. As a result, there is no wraparound (leakage) between the high band signal and the low band signal, and matching is performed for each of the high band and the low band.
  • FIG. 9 is a diagram illustrating an example of a conductor pattern of each layer when the frequency stabilization circuit 25 according to the first embodiment is configured on a magnetic or dielectric multilayer substrate.
  • Each layer is composed of a magnetic sheet, and the conductor pattern of each layer is formed on the back surface of the magnetic sheet in the direction shown in FIG. 9, but each conductor pattern is represented by a solid line.
  • the linear conductor pattern has a predetermined line width, it is represented by a simple solid line here.
  • conductor patterns 73 are formed on the back surface of the first layer 51a
  • conductor patterns 72 and 74 are formed on the back surface of the second layer 51b
  • conductor patterns 71 and 75 are formed on the back surface of the third layer 51c.
  • Conductor patterns 61 and 65 are formed on the back surface of the fourth layer 51d
  • conductor patterns 62 and 64 are formed on the back surface of the fifth layer 51e
  • a conductor pattern 63 is formed on the back surface of the sixth layer 51f.
  • a conductor pattern 66, a power supply terminal 41, a ground terminal 42, a first antenna connection terminal 43, and a second antenna connection terminal 44 are formed on the back surface of the seventh layer 51g.
  • the broken lines extending in the vertical direction in FIG. 9 are via conductors, and the conductor patterns are connected between the layers. These via conductors are actually cylindrical electrodes having a predetermined diameter, but are represented here by simple broken lines.
  • the left half of the conductor pattern 63 and the conductor patterns 61 and 62 constitute a first coiled conductor L1.
  • the right half of the conductor pattern 63 and the conductor patterns 64 and 65 constitute a second coiled conductor L2.
  • the left half of the conductor pattern 73 and the conductor patterns 71 and 72 constitute a third coiled conductor L3.
  • the right half of the conductor pattern 73 and the conductor patterns 74 and 75 constitute a fourth coiled conductor L4.
  • the winding axis of each of the coiled conductors L1 to L4 is oriented in the stacking direction of the multilayer substrate.
  • the winding axis of the 1st coiled conductor L1 and the 2nd coiled conductor L2 is juxtaposed in a different relationship.
  • the third coiled conductor L3 and the fourth coiled conductor L4 are juxtaposed with each other with different winding axes.
  • the winding ranges of the first coiled conductor L1 and the third coiled conductor L3 overlap at least partially in plan view, and the second coiled conductor L2 and the fourth coiled conductor L4 respectively.
  • four coil-shaped conductors are constituted by the conductor pattern having an 8-shaped structure.
  • Each layer may be composed of a dielectric sheet. However, if a magnetic material sheet having a high relative permeability is used, the coupling coefficient between the coiled conductors can be further increased.
  • a looped broken line represents a closed magnetic circuit.
  • the closed magnetic circuit CM12 is linked to the coiled conductors L1 and L2.
  • the closed magnetic circuit CM34 is linked to the coiled conductors L3 and L4.
  • the first coiled conductor L1 and the second coiled conductor L2 constitute the first closed magnetic circuit CM12
  • the third coiled conductor L3 and the fourth coiled conductor L4 provide the second.
  • the closed magnetic circuit CM34 is configured.
  • the plane of the two-dot chain line is coupled between the two closed magnetic paths so that the coiled conductors L1 and L3 generate opposite magnetic fields, and L2 and L4 generate opposite magnetic fields.
  • the magnetic wall MW is equivalently generated.
  • the magnetic wall MW confines the magnetic flux in the closed magnetic circuit by the coiled conductors L1 and L2 and the magnetic flux in the closed magnetic circuit by the coiled conductors L3 and L4.
  • capacitances are generated between adjacent coiled conductors, and the coiled conductors are also coupled by these capacities.
  • the frequency stabilization circuit is configured, and impedance conversion can be performed for each of the high-band antenna and the low-band antenna.
  • FIG. 10 is a circuit diagram of the frequency stabilization circuit and the antenna device of the second embodiment.
  • the frequency stabilization circuit 25 is the same as that shown in FIG. 8 in the first embodiment.
  • the configurations of the high-pass filter 28 and the low-pass filter 29 are the same as those shown in FIG. 8 in the first embodiment.
  • the single antenna element 10 is provided. However, in the example shown in FIG. 10, the first antenna element 11 for high band (2 GHz band, for example, 1710 to 2690 MHz) and the low band (900 MHz band, for example, 704). And a second antenna element 12 for 960 MHz).
  • the frequency stabilization circuit 25 and the frequency filters 28 and 29 constitute a frequency stabilization circuit 102 with a filter.
  • the frequency stabilization circuit 102 with filter, the first antenna element 11 and the second antenna element 12 constitute an antenna device 202.
  • the high-band first antenna element 11 is an antenna having a radiation electrode pattern formed in a ground non-formation region of the substrate
  • the low-band second antenna element 12 is a chip antenna mounted on the ground electrode of the substrate.
  • the antenna elements may be individually provided according to the frequency band. This facilitates optimization of the characteristics of each antenna element.
  • the high-band high-pass filter 28 and the low-band low-pass filter 29 are provided. Even when one antenna is not shared, by providing the high-band high-pass filter 28 and the low-band low-pass filter 29, the high-band signal is input / output at the antenna connection portion J1, and the low-band signal is connected to the antenna. The signal is inputted / outputted at the part J2, and the signal sneak in the frequency stabilizing circuit 25 is suppressed.
  • the impedance of the low-band antenna is smaller than the impedance of the high-band antenna due to size constraints.
  • the impedance of the high-band antenna is about 10 to 20 ⁇ , whereas the impedance of the low-band antenna is about 5 to 10 ⁇ . .
  • the impedance of the feeding circuit is usually 50 ⁇ , it is necessary to increase the impedance conversion ratio of the low-band antenna compared to the impedance conversion ratio of the high-band antenna.
  • the transformer ratio (impedance conversion ratio) in the high band is (L2 + L3 + L4) / (L1 + L2 + L3 + L4)
  • the transformer ratio (impedance conversion ratio) in the low band is (L3 + L4) / (L1 + L2 + L3 + L4) Therefore, the impedance conversion ratio applied to the low-band antenna can be made larger than the impedance conversion ratio applied to the high-band antenna.
  • the frequency stabilization circuit of the present invention when a plurality of antennas are used, even if the characteristic impedances of the respective antennas are different, impedance conversion is performed with an impedance conversion ratio corresponding to the characteristic impedance of each antenna. Can do.
  • FIG. 11 is a circuit diagram of a frequency stabilization circuit and an antenna device of the third embodiment.
  • the frequency stabilization circuit 25 is the same as that shown in FIG. 8 in the first embodiment.
  • the configurations of the high-pass filter 28 and the low-pass filter 29 are the same as those shown in FIG. 8 in the first embodiment.
  • the connection point between the first coil-shaped conductor L1 and the second coil-shaped conductor L2 is the first antenna connection portion J1
  • the space between the coil-shaped conductor L2 and the coil-shaped conductor L4 is the second antenna.
  • the connection point between the third coiled conductor L3 and the fourth coiled conductor L4 is the first antenna connecting part J1, the coiled conductor L2, and the coiled conductor L4. Between these is the second antenna connection J2.
  • a high-pass filter is connected to the first antenna connection J1
  • a low-pass filter is connected to the second antenna connection J2.
  • a low-pass filter is connected to the first antenna connection J1.
  • a filter is connected, and a high-pass filter is connected to the second antenna connection portion J2.
  • the frequency stabilization circuit 103 and the frequency filters 28 and 29 constitute a frequency stabilization circuit 103 with a filter.
  • the filter-equipped frequency stabilization circuit 103 and the antenna element 10 constitute an antenna device 203.
  • the transformer ratio by the coiled conductors L1 to L4 when the feeder circuit 30 is input and the antenna connection portion J1 is output is: L3 / (L1 + L2 + L3 + L4) It is.
  • the transformer ratio by the coiled conductors L1 to L4 when the feeder circuit 30 is input and the antenna connection portion J2 is output is: (L3 + L4) / (L1 + L2 + L3 + L4) It is.
  • the antenna connection portion with the larger impedance conversion ratio is used as the connection point between the third coiled conductor L3 and the fourth coiled conductor L4, and the antenna connection portion with the smaller impedance conversion ratio is set as the second connection point.
  • the connection point between the coiled conductor L2 and the fourth coiled conductor L4 may be used.
  • FIG. 12 is a block diagram of a communication terminal device 301 according to the fourth embodiment.
  • the communication terminal device 301 includes a baseband circuit 110, a communication circuit 120, a frequency stabilization circuit 101 with a filter, and an antenna element 10.
  • the frequency stabilizing circuit with filter 101 and the antenna element 10 are as described in the first embodiment.
  • the communication circuit 120 includes a transmission circuit 121, a reception circuit 122, and a duplexer 123.
  • the frequency stabilization circuit with filter and the antenna element shown in the second or third embodiment may be applied instead of the frequency stabilization circuit with filter 101 and the antenna element 10 shown in the first embodiment.
  • the antenna connection portion for the low band has a larger impedance conversion ratio
  • the antenna connection portion for the high band has a smaller impedance conversion ratio.
  • the one with the larger impedance conversion ratio may be the low-band antenna connection
  • the one with the lower impedance conversion ratio may be the high-band antenna connection.
  • the high-pass filter and the low-pass filter are exemplified as the frequency filter, but a band-pass filter may be used. Further, when two antenna elements corresponding to different frequency bands are used as in the second embodiment, the antenna elements may be directly connected to the antenna connection unit without using these filters.
  • the first coiled conductor L1 and the second coiled conductor L2 have the same inductance, and the third coiled conductor L3 and the fourth coiled conductor L4
  • L1 and L2 may be different
  • L3 and L4 may be different.
  • the impedance conversion ratio between the power supply circuit and the first antenna connection portion and the impedance conversion ratio between the power supply circuit and the second antenna connection portion can be appropriately changed.
  • CM12 ... 1st closed magnetic circuit CM34 ... 2nd closed magnetic circuit FP12, FP34 ... Magnetic flux J1 ... 1st antenna connection part J2 ... 2nd antenna connection part L1 ... 1st coiled conductor L2 ... 2nd coiled conductor L3 3rd coiled conductor L4 4th coiled conductor MW Magnetic wall 10
  • Antenna element 11 First antenna element 12
  • Second antenna element 25 Frequency stabilizing circuit 26
  • Primary circuit 27 Secondary circuit 28 ... high-pass filter (frequency filter) 29 ... Low-pass filter (frequency filter) 30 ... feed circuit 41 ... feed terminal 42 ... ground terminal 43 ... first antenna connection terminal 44 ... second antenna connection terminals 51a to 51g ...

Abstract

 周波数安定化回路(25)は、給電回路(30)に接続された1次側回路(26)と、この1次側回路(26)に対して電磁界結合する2次側回路(27)とで構成されている。1次側回路(26)は、第1のコイル状導体(L1)と第2のコイル状導体(L2)との直列回路であり、2次側回路(27)は、第3のコイル状導体(L3)と第4のコイル状導体(L4)との直列回路である。第1のコイル状導体(L1)と第2のコイル状導体(L2)との接続点である第1アンテナ接続部(J1)にハイパスフィルタ(28)を介してアンテナ素子(10)が接続されている。また、第2のコイル状導体(L2)と第4のコイル状導体(L4)との接続点である第2アンテナ接続部(J2)にローパスフィルタ(29)を介してアンテナ素子(10)が接続されている。

Description

周波数安定化回路、アンテナ装置および通信端末装置
 本発明は、給電回路とアンテナ素子との間に接続される周波数安定化回路、この周波数安定化回路を備えたアンテナ装置および通信端末装置に関する。
 近年、携帯電話をはじめとする移動体通信端末は、GSM(登録商標)(Global System for mobile Communications)、DCS(Digital CommunicationSystem)、PCS(PersonalCommunication Services)、UMTS(Universal Mobile Telecommunications System)等の通信システム、さらには、GPS(GlobalPositioning system)やワイヤレスLAN、Bluetooth(登録商標)等への対応が求められることがある。したがって、こうした通信端末装置におけるアンテナは、800MHz~2.4GHzまでの複数の周波数帯域をカバーすることが求められる。
 通常、アンテナは、そのインピーダンスに周波数特性をもっているので、給電回路とアンテナとの間にインピーダンス整合回路を構成したときに、広帯域ではマッチングできないという問題がある。例えば図1は単純なホイップアンテナのインピーダンス軌跡をスミスチャート上に表した例である。図中の各マーカーと周波数との対応関係は次のとおりである。
 m10:824MHz
 m11:960MHz
 m12:1.71GHz
 m13:1.99GHz
 824MHzおよび960MHz帯(ローバンド)でのインピーダンスは約10Ω、1.71GHzおよび1.99GHz帯(ハイバンド)でのインピーダンスは約28Ωである。
 このように扱う周波数範囲が広帯域になると、アンテナのインピーダンスが周波数に応じて大幅に変動するので、単一の整合回路で広帯域に亘ってアンテナのインピーダンスを給電回路のインピーダンス(50Ω)に整合させることは不可能である
 そこで、複数の周波数帯域をカバーするアンテナとして、チューナブルアンテナが知られている。このチューナブルアンテナは、特許文献1や特許文献2に開示されているように、可変容量素子を含む整合回路を有する。
 図2は特許文献2に示されている、整合器を備える移動用受信機の要部を示す図である。整合器1にはアンテナ素子ANTおよび制御信号源6が接続され、これらによってアンテナ整合回路100が構成されている。アンテナ整合回路100は、チャンネル選択指令SELを受け、受信回路8から見た回路インピーダンスが当該チャンネルの受信周波数に応じて整合するように整合器1の容量を変化させる。そして、アンテナ整合回路100は、アンテナANTにより受信された無線信号を受信回路8へ出力する。受信回路8は、アンテナ整合回路100から受けた無線信号を増幅して受信信号RFとして出力する。
特開2000-124728号公報 特開2008-035065号公報
 ところが、可変容量素子を備えたチューナブルアンテナは、一般に、可変容量素子を制御するための回路すなわち周波数帯域を切り替えるための切替回路が必要であるので回路構成が複雑になりやすい。また、切替回路での損失や歪みが大きく十分な利得を得にくい。さらに、チューニングにはある程度の時間が必要であるので、通信周波数帯域を瞬時に切り替えなければならないような用途には適用できない。
 本発明は上述した実情に鑑みてなされたものであり、その目的は、簡易な構成で広帯域の周波数特性を実現し得るアンテナ装置、そのための周波数安定化回路、およびそのアンテナ装置を用いた通信端末装置を提供することにある。
(1)本発明の周波数安定化回路は、
 給電回路に接続される第1リアクタンス素子、および前記第1リアクタンス素子に直列接続される第2リアクタンス素子を有する1次側回路と、
 前記第1リアクタンス素子に対して電磁界結合する第3リアクタンス素子、および前記第3リアクタンス素子と前記第2リアクタンス素子との間に直列接続され、前記第2リアクタンス素子に対して電磁界結合する第4リアクタンス素子を有する2次側回路と、
 前記第1リアクタンス素子と前記第2リアクタンス素子との接続点、または前記第3リアクタンス素子と前記第4リアクタンス素子との接続点に接続された第1アンテナ接続部と、
 前記第2リアクタンス素子と前記第4リアクタンス素子との接続点に接続された第2アンテナ接続部と、
を備えたことを特徴とする。
 この構成により、第1~第4のリアクタンス素子による一つの周波数安定化回路で、広帯域なアンテナと給電回路との整合をとることができる。そのため簡易な構成で広帯域の周波数特性をもつアンテナ装置が構成できる。
(2)必要に応じて、(1)に記載の第1アンテナ接続部と第2アンテナ接続部は共用のアンテナに直接的または間接的に接続される端子であることが好ましい。この構成により、共用の単一のアンテナを二つの周波数帯域で整合させることができる。
(3)必要に応じて、(1)に記載の第1アンテナ接続部と第2アンテナ接続部はそれぞれ別のアンテナに直接的または間接的に接続される端子であることが好ましい。この構成により、単一の周波数安定化回路でありながら、周波数帯域を分担する第1、第2のアンテナを用いることができる。
(4)(1)~(3)に記載の第1~第4リアクタンス素子はそれぞれ主にインダクタンス成分を有するインダクタンス素子であることが好ましい。このことによりリアクタンス素子間の結合度を容易に高められ、周波数安定化回路での挿入損失を低減できる。
(5)(4)に記載の前記第1~第4リアクタンス素子はそれぞれキャパシタンス成分をも含む素子であることが好ましい。この構成により、リアクタンス素子間の結合度を容易に高められ、周波数安定化回路での挿入損失を低減できる。
(6)(5)に記載のインダクタンス素子はコイル状導体パターンで構成されていることが好ましい。この構成により、インダクタンス素子間の結合度を容易に高められ、周波数安定化回路での挿入損失を低減できる。
(7)(6)に記載のコイル状導体パターンは、複数の誘電体層または磁性体層が積層された積層体の内部に設けられていることが好ましい。この構造により、全体に小型化でき、また外部の回路との不要結合を抑制できる。
(8)(1)~(7)に記載の第1リアクタンス素子と第2リアクタンス素子とは互いに異なるインダクタンス値を有し、第3リアクタンス素子と第4リアクタンス素子とは互いに異なるインダクタンス値を有していてもよい。通常、ハイバンド用アンテナとローバンド用アンテナとではインピーダンスが大きく異なるので、前記インダクタンス値の違いによって、給電回路と第1アンテナ接続部との間でのインピーダンス変換比と、給電回路と第2アンテナ接続部との間でのインピーダンス変換比を適宜異ならせることができる。
(9)(1)~(8)において第1アンテナ接続部および第2アンテナ接続部に周波数フィルタ(ハイパスフィルタ、ローパスフィルタまたはバンドパスフィルタのうちいずれか)が接続されていることが好ましい。
 この構成により、周波数帯域毎の信号が二つのアンテナ接続部で入出力される。これにより周波数帯域の異なる信号の回り込み(漏れ)が抑制され、周波数帯域毎について整合がなされる。
(10)本発明のアンテナ装置は、
 給電回路に接続される第1リアクタンス素子、および前記第1リアクタンス素子に直列接続される第2リアクタンス素子を有する1次側回路と、
 前記第1リアクタンス素子に対して電磁界結合する第3リアクタンス素子、および前記第3リアクタンス素子と前記第2リアクタンス素子との間に直列接続され、前記第2リアクタンス素子に対して電磁界結合する第4リアクタンス素子を有する2次側回路と、
を有する周波数安定化回路と、
 前記第1リアクタンス素子と前記第2リアクタンス素子との接続点、または前記第2リアクタンス素子と前記第4リアクタンス素子との接続点に接続された第1アンテナ素子と、
 前記第3リアクタンス素子と前記第4リアクタンス素子との接続点に接続された第2アンテナ素子と、
を備えたことを特徴とする。
 この構成により、第1~第4のリアクタンス素子による一つの周波数安定化回路で、広帯域なアンテナと給電回路との整合をとることができる。そのため広帯域の周波数特性をもつアンテナ装置として作用する。
(11)必要に応じて、(10)に記載の第1アンテナ素子と第2アンテナ素子は共用のアンテナ素子であることが好ましい。この構成により、共用の単一のアンテナを二つの周波数帯域で整合させることができる。
(12)必要に応じて、(10)に記載の第1アンテナ接続部と第2アンテナ接続部はそれぞれ別のアンテナに直接または間接に接続される端子であることが好ましい。この構成により、単一の周波数安定化回路でありながら、周波数帯域を分担する第1、第2のアンテナを用いることができる。
(13)必要に応じて、(10)~(12)のいずれかに記載の第1リアクタンス素子と第2リアクタンス素子との接続点、または第3リアクタンス素子と第4リアクタンス素子との接続点と、第1アンテナ素子との間に第1の周波数フィルタが挿入され、
 第2リアクタンス素子と第4リアクタンス素子との接続点と、第2アンテナ素子との間に第2の周波数フィルタが挿入されてもよい。
(14)本発明の通信端末装置は、
 給電端子に接続される第1リアクタンス素子、および前記第1リアクタンス素子に直列接続される第2リアクタンス素子を有する1次側回路と、
 前記第1リアクタンス素子に対して電磁界結合する第3リアクタンス素子、および前記第3リアクタンス素子と前記第2リアクタンス素子との間に直列接続され、前記第2リアクタンス素子に対して電磁界結合する第4リアクタンス素子を有する2次側回路と、
 前記第1リアクタンス素子と前記第2リアクタンス素子との接続点、または前記第3リアクタンス素子と前記第4リアクタンス素子との接続点に第1ポートが接続された第1の周波数フィルタと、
 前記第3リアクタンス素子と前記第4リアクタンス素子との接続点に第1ポートが接続された第2の周波数フィルタと、
 前記第1の周波数フィルタの第2ポートに接続された第1アンテナ素子と、
 前記第2の周波数フィルタの第2ポートに接続された第2アンテナ素子と、
を有するアンテナ装置と、
 前記給電端子に接続された通信回路と、
を備えたことを特徴とする。
 この構成により、第1~第4のリアクタンス素子による一つの周波数安定化回路で、広帯域なアンテナと給電回路との整合をとることができる。そのため広帯域のアンテナ装置として作用する。
(15)必要に応じて、(14)に記載の第1アンテナ素子と第2アンテナ素子は共用のアンテナ素子であることが好ましい。この構成により、共用の単一のアンテナを二つの周波数帯域で整合させることができる。
(16)必要に応じて、(14)に記載の第1アンテナ接続部と第2アンテナ接続部はそれぞれ別のアンテナに直接または間接に接続される端子であることが好ましい。この構成により、単一の周波数安定化回路でありながら、周波数帯域を分担する第1、第2のアンテナを用いることができる。
(17)必要に応じて、(14)~(16)のいずれかに記載の第1リアクタンス素子と第2リアクタンス素子との接続点、または第3リアクタンス素子と第4リアクタンス素子との接続点と、第1アンテナ素子との間に第1の周波数フィルタが挿入され、
 第2リアクタンス素子と第4リアクタンス素子との接続点と、第2アンテナ素子との間に第2の周波数フィルタが挿入されてもよい。
 本発明のアンテナ装置によれば、広い周波数帯域で給電回路とアンテナ素子とのインピーダンス整合を図ることができる。また、必ずしも可変容量素子を用いる必要がないので、損失や歪みを抑制することもできる。
図1は単純なホイップアンテナのインピーダンスのインピーダンス軌跡をスミスチャート上に表した図である。 図2は特許文献2に示されている、整合器を備える移動用受信機の要部を示す図である。 図3(A)は本発明の周波数安定化回路およびそれを備えたアンテナ装置の概略構成図である。図3(B)は比較例としてのアンテナ装置の概略構成図である。 図4は本発明に係る周波数安定化回路25の基本構成部分の回路図である。 図5は周波数安定化回路25の4つのコイル状導体L1~L4の磁気的結合の関係を示す図である。 図6はコイル状導体L1~L4によるコイル状導体同士の結合係数を所定値に定めたときの、給電回路から給電ポートを見た反射特性をスミスチャート上に表した図である。 図7は負性のインダクタンスを示す周波数安定化回路による、アンテナ素子と給電回路とのインダクタンス整合について示す図である。 図8は第1の実施形態の周波数安定化回路およびアンテナ装置の回路図である。 図9は第1の実施形態に係る周波数安定化回路25を多層基板に構成した場合の各層の導体パターンの例を示す図である。 図10は第2の実施形態の周波数安定化回路およびアンテナ装置の回路図である。 図11は第3の実施形態の周波数安定化回路およびアンテナ装置の回路図である。 図12は第4の実施形態である通信端末装置301のブロック図である。
《第1の実施形態》
 本発明の周波数安定化回路の具体的な実施の形態を示す前に、本発明の周波数安定化回路の目的と作用効果について説明する。
 図3(A)は、本発明の周波数安定化回路およびそれを備えたアンテナ装置の概略構成図である。図3(B)は比較例としてのアンテナ装置の概略構成図である。
 図3(B)は給電回路30によって給電されるアンテナ素子10Dの構成を示している。従来のアンテナ設計手法は、製品の外観デザインが先に決定されて、それに収まるようにアンテナ素子10を設計しなければならない、という設計上の制約があった。アンテナを設計するうえでの目標は、
(1)放射効率を高める。空間になるべく多くの電力を放射させる。
(2)周波数調整をする。アンテナに電力を入れるためのマッチングをとる。
という二点であるが、組み込み先のサイズと形状の限られた筐体に収まるアンテナを設計すると上記アンテナの放射効率と周波数調整とはしばしばトレードオフの関係となる。
 図3(A)に示す本発明に係る周波数安定化回路25は給電ポートとアンテナポートを備え、給電ポートに給電回路30が接続され、アンテナポートにアンテナ素子10が接続される。この周波数安定化回路25とアンテナ素子10とによってアンテナ装置が構成される。さらに、このアンテナ装置と給電回路30を含む回路によって移動体通信端末が構成される。
 本発明の周波数安定化回路25を用いることにより、アンテナ素子は、アンテナ素子間、アンテナ素子-グランド間の容量結合を減らしたシンプルな形状にして放射効率を高めることにだけに特化させ、周波数調整は周波数安定化回路25に任せる。したがって、前述のトレードオフの関係を受けることなくアンテナの設計が極めて容易となり、開発期間も大幅に短縮化される。
 図4は本発明に係る周波数安定化回路25の基本構成部分の回路図である。周波数安定化回路25は、給電回路30に接続された1次側回路26と、この1次側回路26に対して電磁界結合する2次側回路27とで構成されている。1次側回路26は、第1のコイル状導体L1と第2のコイル状導体L2との直列回路であり、2次側回路27は、第3のコイル状導体L3と第4のコイル状導体L4との直列回路である。アンテナポートと給電ポートとの間には1次側回路26が接続され、アンテナポートとグランドとの間には2次側回路27が接続されている。
 図5は前記周波数安定化回路25の4つのコイル状導体L1~L4の磁気的結合の関係を示す図である。このように、第1のコイル状導体L1及び第2のコイル状導体L2は、この第1のコイル状導体L1と第2のコイル状導体L2とによって第1の閉磁路(磁束FP12で示すループ)が構成されるように巻回されていて、第3のコイル状導体L3及び第4のコイル状導体L4は、第3のコイル状導体L3と第4のコイル状導体L4とによって第2の閉磁路(磁束FP34で示すループ)が構成されるように巻回されている。このように、第1の閉磁路を通る磁束FP12と第2の閉磁路を通る磁束FP34とが互いに逆方向になるように4つのコイル状導体L1~L4が巻回されている。図5中の二点鎖線の直線はこの2つの磁束FP12とFP34とを結合させない磁気壁を表している。このようにコイル状導体L1とL3の間、及びL2とL4の間に等価的な磁気壁が生じる。
 前記周波数安定化回路25の主たる役割は次の二つである。
(1)アンテナが小型になるほどアンテナのインピーダンスは例えば3~20Ω程度と低くなる。周波数安定化回路はそのトランス機能でインピーダンスの実部Rのマッチングをとる。
(2)アンテナ素子は基本的にインダクタンス性であるので、インピーダンスの周波数特性は右上がりの特性があるが、周波数安定化回路は負性インダクタンスとして作用し、アンテナ素子に周波数安定化回路を組み合わせることによって、アンテナのインピーダンス(jx)の傾きを緩くする。
 周波数安定化回路が負性インダクタンスとして作用する点について以降に説明する。
 図6は前記コイル状導体L1~L4によるコイル状導体同士の結合係数を所定値に定めたときの、給電回路から給電ポートを見た反射特性をスミスチャート上に表した図である。ここで、各結合係数は次のとおりである。
 L1←→L2 k≒-0.3
 L3←→L4 k≒-0.3
 L1←→L3 k≒-0.8
 L2←→L4 k≒-0.8
 このように、L1とL3,L2とL4を強結合(k=-0.8程度)とし、L1とL2,L3とL4を弱結合(K=-0.3程度)とすることで、結合により発生する相互インダクタンスMの値は大きいままに、L1,L2,L3,L4の実効値は小さくなる。そのため、結合係数は等価的に1以上となって、周波数安定化回路のインピーダンスが負性のインダクタンスに見えることになる。すなわちメタマテリアル構造を成すことが可能となる。
 なお、L1とL2の結合及びL3とL4の結合(横同士のコイル状導体間の結合)はそれぞれインダクタンス値が小さくなる磁界結合となっているが、L1とL3の結合及びL2とL4の結合(縦同士のコイル状導体間の結合)には、前記横同士のコイル状導体間の結合が影響しないため、このような新たな効果が生じているものと推測される。
 図6において、マーカーm9は周波数820MHzにおける入力インピーダンス(S(1,1)=0.358+j0.063)であり、マーカーm10は周波数1.99GHzにおける入力インピーダンス(S(1,1)=0.382-j0.059)である。このように、周波数の低い帯域で誘導性、周波数の高い帯域で容量性となり、且つ実数成分(抵抗成分)が連続的に変化する負性のインダクタンスが得られる。
 図7は前記負性のインダクタンスを示す周波数安定化回路による、アンテナ素子と給電回路とのインダクタンス整合について示す図である。図7において、横軸は周波数、縦軸はリアクタンスjxである。アンテナ素子はそれ自体でインダクタンスを備え、グランドとの間にキャパシタンスを備えている。そのためアンテナ素子のインピーダンスjxaは、jxa=ωL-1/ωCで表される。図7中の曲線RIはこのアンテナ素子のインピーダンスjxaを表している。アンテナ素子の共振周波数はjxa=0のときである。一方、周波数安定化回路のインピーダンスは負性インダクタンスであるので、曲線(直線)SIで表されるように右下がりの特性で表される。したがって、周波数安定化回路とアンテナ素子とによるアンテナ装置のインピーダンス(給電ポートから見たインピーダンス)は曲線(直線)AIで示されるような傾きの小さな周波数特性となる。
 ここで、この共振周波数よりずれた点でのアンテナ素子のインピーダンスの実部をRで表し、jx=Rの関係となる周波数をf1とすると、周波数f1は入力した電力の半分が反射して半分が放射される(3dB落ちの)周波数である。そこで、-Rというものを仮定し、jx=-Rとなる周波数をf2とすると、周波数f2~f1の周波数幅がアンテナの帯域幅(半値全幅)と定義できる。
 周波数安定化回路とアンテナ素子を含めたアンテナ装置のインピーダンスの傾きが緩くなると、jx=Rとなる周波数は前記f1より高くなり、jx=-Rとなる周波数は前記f2より低くなる。そのため、アンテナの帯域幅(3dB落ちの周波数帯域)は広くなる。すなわち広帯域に亘ってインピーダンス整合がとれることになる。これが、負性インダクタンスによる効果である。
 次に、第1の実施形態の周波数安定化回路およびアンテナ装置の構成について、図8、図9を基に説明する。
 図8は第1の実施形態の周波数安定化回路およびアンテナ装置の回路図である。周波数安定化回路25は、給電回路30に接続された1次側回路26と、この1次側回路26に対して電磁界結合する2次側回路27とで構成されている。1次側回路26は、第1のコイル状導体L1と第2のコイル状導体L2との直列回路であり、2次側回路27は、第3のコイル状導体L3と第4のコイル状導体L4との直列回路である。第1のコイル状導体L1の一端は給電回路30に接続され、第3のコイル状導体L3の一端は接地されている。第2のコイル状導体L2と第4のコイル状導体L4とは接続されて、この接続点と給電回路30との間に1次側回路26が接続されている。第2のコイル状導体L2と第4のコイル状導体L4との接続点とグランドとの間に2次側回路27が接続されている。
 前記コイル状導体L1~L4は特許請求の範囲に記載の第1~第4のリアクタンス素子にそれぞれ相当する。コイル状導体L1とコイル状導体L2との間は第1アンテナ接続部J1、コイル状導体L2とコイル状導体L4との間は第2アンテナ接続部J2である。
 第1アンテナ接続部J1とアンテナ素子10との間にハイパスフィルタ28が挿入されている。また、第2アンテナ接続部J2とアンテナ素子10との間にローパスフィルタ29が挿入されている。すなわち、この例では第1アンテナ接続部J1および第2アンテナ接続部J2にアンテナ素子10が間接的に接続されている。
 前記ハイパスフィルタ28はシリーズに接続されたキャパシタC11およびシャントに接続されたインダクタL11とで構成されている。前記ローパスフィルタ29はシリーズに接続されたインダクタL12およびシャントに接続されたキャパシタC12とで構成されている。
 前記周波数安定化回路25は図4に示したとおりである。この周波数安定化回路25および周波数フィルタ28,29によってフィルタ付き周波数安定化回路101が構成される。そして、このフィルタ付き周波数安定化回路101とアンテナ素子10とによってアンテナ装置201が構成される。
 図8に示したコイル状導体L1,L2,L3,L4のインダクタンスを同じ記号L1,L2,L3,L4で表すとそれらのインダクタンスは次のとおりである。
 L1=20[nH]
 L2=20[nH]
 L3= 5[nH]
 L4= 5[nH]
 したがって、給電回路30を入力、アンテナ接続部J1を出力として見たときのコイル状導体L1~L4によるトランス比は、
 (L2+L3+L4)/(L1+L2+L3+L4)
=(20+5+5)/(20+20+5+5)
=3/5
である。
 アンテナ素子10が図1に示した特性を有する場合、ハイバンドでのインピーダンスは28Ωであるので、前記トランス比によるインピーダンス変換は、50×(3/5)=30Ω≒28Ωとなり、整合する。
 また、給電回路30を入力、アンテナ接続部J2を出力として見たときのコイル状導体L1~L4によるトランス比は、
 (L3+L4)/(L1+L2+L3+L4)
=(5+5)/(20+20+5+5)
=1/5
である。
 アンテナ素子10が図1に示した特性を有する場合、ローバンドでのインピーダンスは10Ωであるので、前記トランス比によるインピーダンス変換は、50×(1/5)=10Ωとなり、整合する。
 第1アンテナ接続部J1に接続したハイパスフィルタ28はハイバンド(2GHz帯)の信号を通過し、ローバンド(900MHz帯)の信号を阻止する。そのため、ハイバンドの信号はアンテナ接続部J1で入出力され、ローバンドの信号はアンテナ接続部J2で入出力される。これによりハイバンドの信号とローバンドの信号の回り込み(漏れ)が無く、ハイバンドとローバンドのそれぞれについて整合がなされる。
 図9は第1の実施形態に係る周波数安定化回路25を磁性体または誘電体の多層基板に構成した場合の各層の導体パターンの例を示す図である。各層は磁性体シートで構成され、各層の導体パターンは図9に示す向きでは磁性体シートの裏面に形成されているが、各導体パターンは実線で表している。また、線状の導体パターンは所定の線幅を備えているが、ここでは単純な実線で表している。
 図9に示した範囲で第1層51aの裏面に導体パターン73が形成され、第2層51bの裏面に導体パターン72,74が形成され、第3層51cの裏面に導体パターン71,75が形成されている。第4層51dの裏面に導体パターン61,65が形成され、第5層51eの裏面に導体パターン62,64が形成され、第6層51fの裏面に導体パターン63が形成されている。第7層51gの裏面に導体パターン66、給電端子41、グランド端子42、第1アンテナ接続端子43、第2アンテナ接続端子44がそれぞれ形成されている。図9中の縦方向に延びる破線はビア導体であり、導体パターン同士を層間で接続する。これらのビア導体は実際には所定の径寸法を有する円柱形の電極であるが、ここでは単純な破線で表している。
 図9において、導体パターン63の左半分と導体パターン61,62によって第1のコイル状導体L1を構成している。また、導体パターン63の右半分と導体パターン64,65によって第2のコイル状導体L2を構成している。また、導体パターン73の左半分と導体パターン71,72によって第3のコイル状導体L3を構成している。また、導体パターン73の右半分と導体パターン74,75によって第4のコイル状導体L4を構成している。各コイル状導体L1~L4の巻回軸は多層基板の積層方向に向いている。そして、第1のコイル状導体L1と第2のコイル状導体L2の巻回軸は異なる関係で並置されている。同様に、第3のコイル状導体L3と第4のコイル状導体L4は、それぞれの巻回軸が異なる関係で並置されている。そして、第1のコイル状導体L1と第3のコイル状導体L3のそれぞれの巻回範囲が平面視で少なくとも一部で重なり、第2のコイル状導体L2と第4のコイル状導体L4のそれぞれの巻回範囲が平面視で少なくとも一部で重なる。この例ではほぼ完全に重なる。このようにして8の字構造の導体パターンで4つのコイル状導体を構成している。
 なお、各層は誘電体シートで構成されていてもよい。但し、比透磁率の高い磁性体シートを用いれば、コイル状導体間の結合係数をより高めることができる。
 また、図9においてループ状の破線は閉磁路を表している。閉磁路CM12はコイル状導体L1とL2とに鎖交する。また、閉磁路CM34はコイル状導体L3とL4とに鎖交する。このように、第1のコイル状導体L1と第2のコイル状導体L2とによって第1の閉磁路CM12が構成され、第3のコイル状導体L3と第4のコイル状導体L4とによって第2の閉磁路CM34が構成される。図9において二点鎖線の平面は、前記二つの閉磁路の間にコイル状導体L1とL3が互いに逆向きの磁界を発生し、L2とL4が互いに逆向きの磁界を発生するように結合しているために等価的に生じる磁気壁MWである。換言すると、この磁気壁MWでコイル状導体L1,L2による閉磁路の磁束およびコイル状導体L3,L4による閉磁路の磁束をそれぞれ閉じ込める。
 また、隣接するコイル状導体同士にそれぞれ容量が生じて、コイル状導体同士はこれらの容量によっても結合する。
 このようにして周波数安定化回路を構成するとともに、ハイバンド用アンテナとローバンド用アンテナのそれぞれについてインピーダンス変換を行える。
《第2の実施形態》
 図10は第2の実施形態の周波数安定化回路およびアンテナ装置の回路図である。周波数安定化回路25は、第1の実施形態で図8に示したものと同じである。ハイパスフィルタ28とローパスフィルタ29の構成も第1の実施形態で図8に示したものと同じである。第1の実施形態では単一のアンテナ素子10を備えたが、図10に示した例ではハイバンド(2GHz帯、例えば1710~2690MHz)用の第1アンテナ素子11とローバンド(900MHz帯、例えば704~960MHz)用の第2アンテナ素子12とをそれぞれ備えている。周波数安定化回路25および周波数フィルタ28,29によってフィルタ付き周波数安定化回路102が構成される。そして、このフィルタ付き周波数安定化回路102、第1アンテナ素子11および第2アンテナ素子12によってアンテナ装置202が構成される。
 例えばハイバンド用の第1アンテナ素子11は基板のグランド非形成領域に形成された放射電極パターンによるアンテナ、ローバンド用の第2アンテナ素子12は基板のグランド電極上に実装されたチップアンテナである。このように周波数帯域に応じてアンテナ素子を個別に設けてもよい。そのことによって各アンテナ素子の特性を最適化し易くなる。
 なお、一つのアンテナを共用しない場合でも、ハイバンド用のハイパスフィルタ28とローバンド用のローパスフィルタ29を備えることにより、ハイバンドの信号はアンテナ接続部J1で入出力され、ローバンドの信号はアンテナ接続部J2で入出力され、周波数安定化回路25での信号の回り込みが抑制される。
 なお、通常、移動体通信端末装置では、そのサイズ的な制約上、ローバンド用アンテナのインピーダンスは、ハイバンド用アンテナのインピーダンスに比べて小さい。放射効率に優れたシンプルな形状(たとえば平板状や面状)のアンテナの場合、ハイバンド用アンテナのインピーダンスが10~20Ω程度であるのに対し、ローバンド用アンテナのインピーダンスは5~10Ω程度である。
 他方、給電回路のインピーダンスは、通常、50Ωであるため、ハイバンド用アンテナのインピーダンス変換比に比べ、ローバンド用アンテナのインピーダンス変換比を大きくする必要がある。
 図10に示した第2の実施形態の周波数安定化回路102では、
 ハイバンドにおけるトランス比(インピーダンス変換比)は、
  (L2+L3+L4)/(L1+L2+L3+L4)
 ローバンドにおけるトランス比(インピーダンス変換比)は、
  (L3+L4)/(L1+L2+L3+L4)
であるので、ハイバンド用アンテナに適用するインピーダンス変換比に比べ、ローバンド用アンテナに適用するインピーダンス変換比を大きくできる。
 このように、本発明の周波数安定化回路によれば、複数のアンテナを用いるに際し、各アンテナの特性インピーダンスが異なっていても、各アンテナの特性インピーダンスに応じたインピーダンス変換比でインピーダンス変換を行うことができる。
《第3の実施形態》
 図11は第3の実施形態の周波数安定化回路およびアンテナ装置の回路図である。周波数安定化回路25は、第1の実施形態で図8に示したものと同じである。ハイパスフィルタ28とローパスフィルタ29の構成も第1の実施形態で図8に示したものと同じである。図8に示した例では第1のコイル状導体L1と第2のコイル状導体L2との接続点が第1アンテナ接続部J1、コイル状導体L2とコイル状導体L4との間が第2アンテナ接続部J2であったが、図11の例では、第3のコイル状導体L3と第4のコイル状導体L4との接続点が第1アンテナ接続部J1、コイル状導体L2とコイル状導体L4との間が第2アンテナ接続部J2である。また、図8に示した例では第1アンテナ接続部J1にハイパスフィルタが接続され、第2アンテナ接続部J2にローパスフィルタが接続されたが、図11の例では第1アンテナ接続部J1にローパスフィルタが接続され、第2アンテナ接続部J2にハイパスフィルタが接続されている。周波数安定化回路25および周波数フィルタ28,29によってフィルタ付き周波数安定化回路103が構成される。そして、このフィルタ付き周波数安定化回路103およびアンテナ素子10によってアンテナ装置203が構成される。
図11に示した例では、給電回路30を入力、アンテナ接続部J1を出力として見たときのコイル状導体L1~L4によるトランス比は、
 L3/(L1+L2+L3+L4)
である。
 また、給電回路30を入力、アンテナ接続部J2を出力として見たときのコイル状導体L1~L4によるトランス比は、
 (L3+L4)/(L1+L2+L3+L4)
である。
 このように、インピーダンス変換比の大きな方のアンテナ接続部を第3のコイル状導体L3と第4のコイル状導体L4の接続点とし、それよりインピーダンス変換比の小さな方のアンテナ接続部を第2のコイル状導体L2と第4のコイル状導体L4の接続点としてもよい。
《第4の実施形態》
 図12は第4の実施形態である通信端末装置301のブロック図である。通信端末装置301は、ベースバンド回路110、通信回路120、フィルタ付き周波数安定化回路101およびアンテナ素子10を備えている。フィルタ付き周波数安定化回路101およびアンテナ素子10は第1の実施形態で示したとおりである。通信回路120は送信回路121、受信回路122およびデュプレクサ123を備えている。
 第1の実施形態で示したフィルタ付き周波数安定化回路101およびアンテナ素子10に代えて第2または第3の実施形態で示したフィルタ付き周波数安定化回路およびアンテナ素子を適用してもよい。
《他の実施形態》
 以上に示した各実施形態では、インピーダンス変換比の大きな方がローバンド用のアンテナ接続部、インピーダンス変換比の小さな方がハイバンド用のアンテナ接続部であったが、ローバンドとハイバンドとでアンテナのインピーダンスの高低が逆の関係であるアンテナ素子を接続する場合には、インピーダンス変換比の大きな方をローバンド用のアンテナ接続部、インピーダンス変換比の小さな方をハイバンド用のアンテナ接続部とすればよい。
 また、以上に示した各実施形態では、周波数フィルタとしてハイパスフィルタとローパスフィルタを例に挙げたが、バンドパスフィルタであってもよい。
 さらには、第2の実施形態のように、異なる周波数帯に対応した二つのアンテナ素子を用いる場合には、これらのフィルタを介さずに、アンテナ接続部にアンテナ素子を直接接続してもよい。
 また、以上に示した各実施形態では、第1のコイル状導体L1と第2のコイル状導体L2とが同じインダクタンスを有し、第3のコイル状導体L3と第4のコイル状導体L4とが同じインダクタンスを有する例を示したが、L1とL2が異なり、L3とL4が異なっていてもよい。前記インダクタンス値の違いによって、給電回路と第1アンテナ接続部との間でのインピーダンス変換比と、給電回路と第2アンテナ接続部との間でのインピーダンス変換比を適宜異ならせることができる。
CM12…第1の閉磁路
CM34…第2の閉磁路
FP12,FP34…磁束
J1…第1アンテナ接続部
J2…第2アンテナ接続部
L1…第1のコイル状導体
L2…第2のコイル状導体
L3…第3のコイル状導体
L4…第4のコイル状導体
MW…磁気壁
10…アンテナ素子
11…第1アンテナ素子
12…第2アンテナ素子
25…周波数安定化回路
26…1次側回路
27…2次側回路
28…ハイパスフィルタ(周波数フィルタ)
29…ローパスフィルタ(周波数フィルタ)
30…給電回路
41…給電端子
42…グランド端子
43…第1アンテナ接続端子
44…第2アンテナ接続端子
51a~51g…磁性体層
61~66…導体パターン
71~75…導体パターン
101~103…周波数安定化回路
110…ベースバンド回路
120…通信回路
121…送信回路
122…受信回路
123…デュプレクサ
201~203…アンテナ装置
301…通信端末装置

Claims (17)

  1.  給電回路に接続される第1リアクタンス素子、および前記第1リアクタンス素子に直列接続される第2リアクタンス素子を有する1次側回路と、
     前記第1リアクタンス素子に対して電磁界結合する第3リアクタンス素子、および前記第3リアクタンス素子と前記第2リアクタンス素子との間に直列接続され、前記第2リアクタンス素子に対して電磁界結合する第4リアクタンス素子を有する2次側回路と、
     前記第1リアクタンス素子と前記第2リアクタンス素子との接続点、または前記第3リアクタンス素子と前記第4リアクタンス素子との接続点に接続された第1アンテナ接続部と、
     前記第2リアクタンス素子と前記第4リアクタンス素子との接続点に接続された第2アンテナ接続部と、
    を備えた周波数安定化回路。
  2.  前記第1アンテナ接続部と前記第2アンテナ接続部は共用のアンテナに直接的または間接的に接続される端子である、請求項1に記載の周波数安定化回路。
  3.  前記第1アンテナ接続部と前記第2アンテナ接続部はそれぞれ別のアンテナに直接的または間接的に接続される端子である、請求項1に記載の周波数安定化回路。
  4.  前記第1~第4リアクタンス素子はそれぞれ主にインダクタンス成分を有するインダクタンス素子である、請求項1~3に記載の周波数安定化回路。
  5.  前記第1~第4リアクタンス素子はそれぞれキャパシタンス成分をも含む素子である、請求項4に記載の周波数安定化回路。
  6.  前記インダクタンス素子はコイル状導体パターンで構成されている、請求項5に記載の周波数安定化回路。
  7.  前記コイル状導体パターンは、複数の誘電体層または磁性体層が積層された積層体の内部に設けられている、請求項6に記載の周波数安定化回路。
  8.  前記第1リアクタンス素子と前記第2リアクタンス素子とは互いに異なるインダクタンス値を有し、前記第3リアクタンス素子と前記第4リアクタンス素子とは互いに異なるインダクタンス値を有する、請求項1~7のいずれかに記載の周波数安定化回路。
  9.  前記第1アンテナ接続部および前記第2アンテナ接続部に接続された周波数フィルタを備えた、請求項1~8のいずれかに記載の周波数安定化回路。
  10.  給電回路に接続される第1リアクタンス素子、および前記第1リアクタンス素子に直列接続される第2リアクタンス素子を有する1次側回路と、
     前記第1リアクタンス素子に対して電磁界結合する第3リアクタンス素子、および前記第3リアクタンス素子と前記第2リアクタンス素子との間に直列接続され、前記第2リアクタンス素子に対して電磁界結合する第4リアクタンス素子を有する2次側回路と、
    を有する周波数安定化回路と、
     前記第1リアクタンス素子と前記第2リアクタンス素子との接続点、または前記第2リアクタンス素子と前記第4リアクタンス素子との接続点に接続された第1アンテナ素子と、
     前記第3リアクタンス素子と前記第4リアクタンス素子との接続点に接続された第2アンテナ素子と、
    を備えたことを特徴とするアンテナ装置。
  11.  前記第1アンテナ素子と前記第2アンテナ素子は共用のアンテナ素子である、請求項10に記載のアンテナ装置。
  12.  前記第1アンテナ素子と前記第2アンテナ素子はそれぞれ別のアンテナ素子である、請求項10に記載のアンテナ装置。
  13.  前記第1リアクタンス素子と前記第2リアクタンス素子との接続点、または前記第3リアクタンス素子と前記第4リアクタンス素子との接続点と、前記第1アンテナ素子との間に第1の周波数フィルタが挿入され、
     前記第2リアクタンス素子と前記第4リアクタンス素子との接続点と、前記第2アンテナ素子との間に第2の周波数フィルタが挿入された、請求項10~12のいずれかに記載のアンテナ装置。
  14.  給電端子に接続される第1リアクタンス素子、および前記第1リアクタンス素子に直列接続される第2リアクタンス素子を有する1次側回路と、
     前記第1リアクタンス素子に対して電磁界結合する第3リアクタンス素子、および前記第3リアクタンス素子と前記第2リアクタンス素子との間に直列接続され、前記第2リアクタンス素子に対して電磁界結合する第4リアクタンス素子を有する2次側回路と、
     前記第1リアクタンス素子と前記第2リアクタンス素子との接続点、または前記第3リアクタンス素子と前記第4リアクタンス素子との接続点に接続された第1アンテナ素子と、
     前記第2リアクタンス素子と前記第4リアクタンス素子との接続点に接続された第2アンテナ素子と、
    を有するアンテナ装置と、
     前記給電端子に接続された通信回路と、
    を備えたことを特徴とする通信端末装置。
  15.  前記第1アンテナ素子と前記第2アンテナ素子は共用のアンテナ素子である、請求項14に記載の通信端末装置。
  16.  前記第1アンテナ素子と前記第2アンテナ素子はそれぞれ別のアンテナ素子である、請求項14に記載の通信端末装置。
  17.  前記第1リアクタンス素子と前記第2リアクタンス素子との接続点、または前記第3リアクタンス素子と前記第4リアクタンス素子との接続点と、前記第1アンテナ素子との間に第1の周波数フィルタが挿入され、
     前記第2リアクタンス素子と前記第4リアクタンス素子との接続点と、前記第2アンテナ素子との間に第2の周波数フィルタが挿入された、請求項14~16のいずれかに記載の通信端末装置。
PCT/JP2012/050767 2011-01-20 2012-01-17 周波数安定化回路、アンテナ装置および通信端末装置 WO2012099085A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280005897.6A CN103348531B (zh) 2011-01-20 2012-01-17 稳频电路、天线装置及通信终端装置
JP2012553720A JP5429409B2 (ja) 2011-01-20 2012-01-17 周波数安定化回路、アンテナ装置および通信端末装置
US13/904,124 US9065422B2 (en) 2011-01-20 2013-05-29 Frequency stabilization circuit, antenna device, and communication terminal apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-010120 2011-01-20
JP2011010120 2011-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/904,124 Continuation US9065422B2 (en) 2011-01-20 2013-05-29 Frequency stabilization circuit, antenna device, and communication terminal apparatus

Publications (1)

Publication Number Publication Date
WO2012099085A1 true WO2012099085A1 (ja) 2012-07-26

Family

ID=46515710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050767 WO2012099085A1 (ja) 2011-01-20 2012-01-17 周波数安定化回路、アンテナ装置および通信端末装置

Country Status (4)

Country Link
US (1) US9065422B2 (ja)
JP (1) JP5429409B2 (ja)
CN (1) CN103348531B (ja)
WO (1) WO2012099085A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034587A1 (ja) * 2012-08-28 2014-03-06 株式会社村田製作所 アンテナ装置および通信端末装置
WO2014050482A1 (ja) * 2012-09-28 2014-04-03 株式会社村田製作所 インピーダンス変換回路の設計方法
WO2015068613A1 (ja) * 2013-11-05 2015-05-14 株式会社村田製作所 積層型コイル、インピーダンス変換回路および通信端末装置
JP2015122535A (ja) * 2013-05-23 2015-07-02 株式会社村田製作所 高周波トランス、高周波部品および通信端末装置
WO2015151329A1 (ja) * 2014-04-01 2015-10-08 株式会社村田製作所 アンテナ整合装置
JP2016116145A (ja) * 2014-12-17 2016-06-23 Tdk株式会社 アンテナ素子、アンテナ装置及びこれを用いた無線通信機器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305169B2 (en) * 2015-05-18 2019-05-28 Huawei Technologies Co., Ltd. Antenna apparatus and terminal
KR102386389B1 (ko) 2015-10-05 2022-04-15 삼성전자주식회사 전자 장치 및 그 제어 방법
JP7224716B2 (ja) * 2017-03-29 2023-02-20 株式会社ヨコオ アンテナ装置
CN213184599U (zh) * 2018-04-25 2021-05-11 株式会社村田制作所 天线耦合元件、天线装置以及通信终端装置
WO2019213851A1 (zh) * 2018-05-08 2019-11-14 华为技术有限公司 天线装置和移动终端
WO2020004274A1 (ja) * 2018-06-26 2020-01-02 京セラ株式会社 アンテナ素子、アレイアンテナ、通信ユニット、移動体、および基地局
JP6892044B1 (ja) * 2019-09-19 2021-06-18 株式会社村田製作所 アンテナ装置及び電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151248A (ja) * 1998-11-16 2000-05-30 Nippon Sheet Glass Co Ltd 車両用ガラスアンテナ装置
JP2001036328A (ja) * 1999-07-21 2001-02-09 Yokowo Co Ltd Am・fm帯受信用アンテナ
JP2002280862A (ja) * 2001-03-19 2002-09-27 Murata Mfg Co Ltd 複合型lcフィルタ回路及び複合型lcフィルタ部品
WO2010146944A1 (ja) * 2009-06-19 2010-12-23 株式会社村田製作所 無線icデバイス及び給電回路と放射板との結合方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3939741C2 (de) * 1989-12-01 1994-01-20 Telefunken Microelectron Tunerschaltung
JPH10270969A (ja) * 1997-03-24 1998-10-09 Kokusai Electric Co Ltd アンテナ整合回路の可変素子制御回路
JP3513033B2 (ja) 1998-10-16 2004-03-31 三菱電機株式会社 多周波共用アンテナ装置
JP2000244273A (ja) * 1999-02-18 2000-09-08 Toko Inc ハイブリッド回路及びハイブリッド回路用トランス
JP2004304615A (ja) * 2003-03-31 2004-10-28 Tdk Corp 高周波複合部品
US7015870B2 (en) * 2003-04-03 2006-03-21 Stmicroelectronics S.A. Integrated bi-band inductance and applications
JP4715666B2 (ja) 2006-07-27 2011-07-06 株式会社村田製作所 整合器およびアンテナ整合回路
ES2601803T3 (es) * 2006-11-17 2017-02-16 Nokia Technologies Oy Aparato para permitir a dos elementos compartir una alimentación común
WO2010113353A1 (ja) * 2009-04-01 2010-10-07 株式会社村田製作所 アンテナ整合回路、アンテナ装置及びアンテナ装置の設計方法
KR101244902B1 (ko) * 2010-01-19 2013-03-18 가부시키가이샤 무라타 세이사쿠쇼 안테나 장치 및 통신단말장치
JP5234084B2 (ja) * 2010-11-05 2013-07-10 株式会社村田製作所 アンテナ装置および通信端末装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151248A (ja) * 1998-11-16 2000-05-30 Nippon Sheet Glass Co Ltd 車両用ガラスアンテナ装置
JP2001036328A (ja) * 1999-07-21 2001-02-09 Yokowo Co Ltd Am・fm帯受信用アンテナ
JP2002280862A (ja) * 2001-03-19 2002-09-27 Murata Mfg Co Ltd 複合型lcフィルタ回路及び複合型lcフィルタ部品
WO2010146944A1 (ja) * 2009-06-19 2010-12-23 株式会社村田製作所 無線icデバイス及び給電回路と放射板との結合方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034587A1 (ja) * 2012-08-28 2014-03-06 株式会社村田製作所 アンテナ装置および通信端末装置
US9153865B2 (en) 2012-08-28 2015-10-06 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
JP5505581B1 (ja) * 2012-08-28 2014-05-28 株式会社村田製作所 アンテナ装置および通信端末装置
JP5672416B2 (ja) * 2012-09-28 2015-02-18 株式会社村田製作所 インピーダンス変換回路の設計方法
WO2014050482A1 (ja) * 2012-09-28 2014-04-03 株式会社村田製作所 インピーダンス変換回路の設計方法
US9298873B2 (en) 2012-09-28 2016-03-29 Murata Manufacturing Co., Ltd. Method of designing impedance transformation circuit
JP2015122535A (ja) * 2013-05-23 2015-07-02 株式会社村田製作所 高周波トランス、高周波部品および通信端末装置
WO2015068613A1 (ja) * 2013-11-05 2015-05-14 株式会社村田製作所 積層型コイル、インピーダンス変換回路および通信端末装置
GB2537265A (en) * 2013-11-05 2016-10-12 Murata Manufacturing Co Laminated coil, impedance conversion circuit, and communication-terminal device
US9698831B2 (en) 2013-11-05 2017-07-04 Murata Manufacturing Co., Ltd. Transformer and communication terminal device
GB2537265B (en) * 2013-11-05 2018-07-18 Murata Manufacturing Co Impedance converting circuit, and communication terminal device
WO2015151329A1 (ja) * 2014-04-01 2015-10-08 株式会社村田製作所 アンテナ整合装置
JPWO2015151329A1 (ja) * 2014-04-01 2017-04-13 株式会社村田製作所 アンテナ整合装置
US9774312B2 (en) 2014-04-01 2017-09-26 Murata Manufacturing Co., Ltd. Antenna matching apparatus
JP2016116145A (ja) * 2014-12-17 2016-06-23 Tdk株式会社 アンテナ素子、アンテナ装置及びこれを用いた無線通信機器

Also Published As

Publication number Publication date
JPWO2012099085A1 (ja) 2014-06-30
US9065422B2 (en) 2015-06-23
CN103348531A (zh) 2013-10-09
JP5429409B2 (ja) 2014-02-26
US20130249767A1 (en) 2013-09-26
CN103348531B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5429409B2 (ja) 周波数安定化回路、アンテナ装置および通信端末装置
US9837976B2 (en) Impedance converting circuit and communication terminal apparatus
US9264011B2 (en) Impedance-matching switching circuit, antenna device, high-frequency power amplifying device, and communication terminal apparatus
US9019168B2 (en) Frequency stabilization circuit, frequency stabilization device, antenna apparatus and communication terminal equipment, and impedance conversion element
EP2388858B1 (en) Antenna device and communication terminal apparatus
US8473017B2 (en) Adjustable antenna and methods
JP6075510B2 (ja) アンテナ整合回路、アンテナ整合モジュール、アンテナ装置および無線通信装置
EP2269267B1 (en) Tunable duplexing antenna and methods
EP2092641B1 (en) An apparatus for enabling two elements to share a common feed
US10348266B2 (en) Impedance conversion circuit, antenna apparatus, and wireless communication apparatus
US8723753B2 (en) Antenna device and communication terminal apparatus
JPWO2016152603A1 (ja) 移相器、インピーダンス整合回路、合分波器および通信端末装置
EP2301108B1 (en) An antenna arrangement
KR20110130389A (ko) Rf 전단 모듈 및 안테나 시스템
WO2011057302A2 (en) Rf module and antenna systems
US9287629B2 (en) Impedance conversion device, antenna device and communication terminal device
WO2019076260A1 (zh) 终端多输入多输出天线装置及实现天线信号传输方法
US8797225B2 (en) Antenna device and communication terminal apparatus
WO2024045766A1 (zh) 一种天线组件及电子设备
JP5708327B2 (ja) アンテナ装置および通信端末装置
US10056936B2 (en) Front end circuit and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736306

Country of ref document: EP

Kind code of ref document: A1