WO2024045766A1 - 一种天线组件及电子设备 - Google Patents

一种天线组件及电子设备 Download PDF

Info

Publication number
WO2024045766A1
WO2024045766A1 PCT/CN2023/100260 CN2023100260W WO2024045766A1 WO 2024045766 A1 WO2024045766 A1 WO 2024045766A1 CN 2023100260 W CN2023100260 W CN 2023100260W WO 2024045766 A1 WO2024045766 A1 WO 2024045766A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
frequency band
antenna assembly
antenna
ground
Prior art date
Application number
PCT/CN2023/100260
Other languages
English (en)
French (fr)
Inventor
张云帆
吴小浦
闫金锋
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024045766A1 publication Critical patent/WO2024045766A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • This application relates to but is not limited to communication technology, and in particular, an antenna component and electronic equipment.
  • Electronic devices with communication functions such as mobile phones are becoming more and more popular and their functions are becoming more and more powerful.
  • Electronic devices usually include antenna components to implement communication functions of the electronic device.
  • the communication performance of antenna components in electronic devices in the related art is not good enough, and there is still room for improvement.
  • the present application provides an antenna component and an electronic device, which can improve the communication performance of the antenna component.
  • An embodiment of the present application provides an antenna assembly, including: a first antenna unit and a second antenna unit; wherein,
  • the first antenna unit includes a first radiator and a first feed source.
  • the first feed source is electrically connected to the first radiator and is used to excite the first radiator to resonate in the first frequency band and the second frequency band. frequency band;
  • the second antenna unit includes a second radiator and a second feed source, the second feed source is electrically connected to the second radiator and is used to excite the second radiator to resonate in a third frequency band;
  • the first radiator includes a first ground end and a first free end
  • the second radiator includes a second ground end and a second free end; the first free end and the second free end are spaced apart by A gap is formed, and the first radiator and the second radiator are coupled through the gap; the first ground terminal is grounded, and the second ground terminal is grounded;
  • the distance between the connection point where the second feed source is electrically connected to the second radiator and the second ground terminal is greater than the preset distance, and/or the second ground terminal returns to the radiator on the ground side.
  • the width is smaller than the width of the second radiator.
  • An embodiment of the present application provides an antenna assembly.
  • the first antenna unit and the second antenna unit included in the antenna assembly are common-aperture antennas; on the other hand, through reasonable design, the second feed source and the second antenna unit included in the second antenna unit are The distance between the connection point where the second radiator is electrically connected and the second ground terminal is such that the connection point where the second feed source is electrically connected to the second radiator Further away from the second ground terminal, and the width of the radiator on the ground side of the second ground terminal is smaller than the width of the second radiator, which significantly improves the performance of the third frequency band, thereby improving the communication performance of the antenna assembly.
  • the antenna assembly provided by the embodiment of the present application also includes: a first isolation capacitor, a second isolation capacitor, a loop inductor, and a near field communication NFC chip; wherein,
  • the first isolation capacitor is electrically connected between the first radiator and the first reference ground, and the first isolation capacitor is used to isolate NFC current;
  • the second isolation capacitor is electrically connected between the second radiator and the second reference ground, and the second isolation capacitor is used to isolate NFC current;
  • the loop inductor is electrically connected between a first feed point where the first matching circuit is connected to the first radiator, and a second feed point where the second matching circuit is connected to the second radiator. During the period, the loop inductor is used to connect the first radiator and the second radiator to form a current path of the NFC antenna;
  • the first differential signal port of the NFC chip is connected to the first connection point of the first ground terminal, and the second differential signal port of the NFC chip is connected to the second connection point of the second ground terminal.
  • the NFC chip is used to provide a differential excitation current; the conductive path formed by the radiator portion between the first connection point and the second connection point is used to transmit the differential excitation current generated by the NFC chip.
  • the first antenna unit and the second antenna unit in the antenna assembly are coupled through the gap to form a common aperture antenna.
  • the connection point between the second feed source and the second radiator included in the second antenna unit is electrically connected, it is more Far away from the second ground terminal, and the radiator on the ground side of the second ground terminal is thinned, which improves the performance of the third frequency band, thereby improving the communication performance of the antenna assembly; on the other hand, it also uses the first isolation capacitor and the third 2.
  • the clever setting of the isolation capacitor and loop inductance realizes the connection with the NFC chip, constitutes the NFC current path, and realizes the NFC antenna community. Moreover, due to the large value of the loop inductance, it will not affect the first antenna unit and the third antenna unit. The performance of the two antenna units is affected.
  • An embodiment of the present application further provides an electronic device, including the antenna assembly described in any one of the embodiments of the present application.
  • Figure 1 is a schematic structural diagram of the first embodiment of the antenna assembly in the embodiment of the present application.
  • Figure 2(a) is a schematic circuit diagram of the first embodiment of the matching circuit of the antenna assembly in the embodiment of the present application;
  • Figure 2(b) is a schematic circuit diagram of the second embodiment of the matching circuit of the antenna component in the embodiment of the present application;
  • Figure 2(c) is a schematic circuit diagram of the third embodiment of the matching circuit of the antenna component in the embodiment of the present application.
  • Figure 2(d) is a schematic circuit diagram of the fourth embodiment of the matching circuit of the antenna component in the embodiment of the present application;
  • Figure 2(e) is a schematic circuit diagram of the fifth embodiment of the matching circuit of the antenna assembly in the embodiment of the present application;
  • Figure 2(f) is a schematic circuit diagram of the sixth embodiment of the matching circuit of the antenna component in the embodiment of the present application.
  • Figure 2(g) is a schematic circuit diagram of the seventh embodiment of the matching circuit of the antenna component in the embodiment of the present application.
  • Figure 2(h) is a schematic circuit diagram of the eighth embodiment of the matching circuit of the antenna component in the embodiment of the present application.
  • Figure 3 is a schematic structural diagram of the second embodiment of the antenna assembly in the embodiment of the present application.
  • Figure 4 is a schematic diagram of the NFC current path in the second embodiment of the antenna assembly in the embodiment of the present application.
  • Figure 5(a) is a schematic diagram of the principle of mode 1 excited by the first antenna unit in the embodiment of the present application;
  • Figure 5(b) is a schematic diagram of the principle of mode 2 excited by the first antenna unit in the embodiment of the present application;
  • Figure 5(c) is a schematic diagram of the principle of mode 3 excited by the first antenna unit in the embodiment of the present application.
  • Figure 5(d) is a schematic diagram of the principle of mode 4 excited by the first antenna unit in the embodiment of the present application.
  • Figure 6 is an S parameter curve diagram of the first antenna unit in the embodiment of the present application.
  • Figure 7 is a schematic diagram of the principle of mode 5 excited by the second antenna unit in the embodiment of the present application.
  • Figure 8 is an S-parameter curve diagram of the second antenna unit in the embodiment of the present application.
  • Figure 9 is an efficiency curve diagram of the second antenna unit in the embodiment of the present application.
  • Figure 10 is an efficiency curve diagram of the first antenna unit in the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of the third embodiment of the antenna assembly in the embodiment of the present application.
  • Figure 12 is a schematic diagram of the layout of an antenna assembly in an electronic device according to an embodiment of the present application.
  • first and second used in this application are only used for descriptive purposes and cannot be understood to indicate or imply the relative importance or implicitly indicate the number of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include at least one of these features. In the description of this application, “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection”, etc. if the connected circuits, modules, units, etc. have the transmission of electrical signals or data between each other.
  • the antenna assembly 10 can be applied to electronic devices 1, which include but are not limited to mobile phones, Internet devices (mobile internet devices, MIDs), e-books, portable play stations (Play Station Portable, PSP) or personal devices. Electronic devices with communication functions such as Personal Digital Assistant (PDA).
  • PDA Personal Digital Assistant
  • FIG. 1 is a schematic structural diagram of the first embodiment of the antenna assembly in the embodiment of the present application.
  • the antenna assembly 10 in the first embodiment may include: a first antenna unit 110 and a second antenna unit 120; in,
  • the first antenna unit 110 includes a first radiator 111 and a first feed source 11.
  • the first feed source 11 is electrically connected to the first radiator 111 and is used to excite the first radiator 111 to resonate in the first frequency band and the second frequency band;
  • the second antenna unit 120 includes a second radiator 121 and a second feed source 12.
  • the second feed source 12 is electrically connected to the second radiator 121 and is used to excite the second radiator 121 to resonate in the third frequency band;
  • the first radiator 111 includes a first ground terminal 1111 and a first free end 1112
  • the second radiator 121 includes a second ground terminal 1211 and a second free end 1212;
  • the first free end 1112 of the first radiator 111 and the second free end 1212 of the second radiator 121 are spaced apart to form a gap 1122.
  • the first radiator 111 and the second radiator 121 are coupled through the gap 1122; the first radiator The first ground terminal 1111 of 111 is grounded, and the second ground terminal 1211 of the second radiator 121 is grounded;
  • the distance between the electrical connection point of the second feed source 12 and the second radiator 121 and the second ground terminal 1211 is greater than the preset distance, and/or the second ground terminal 1211 returns to the radiator 121121 on the ground side (as shown in the figure
  • the shaded part in 1 (shown) is smaller than the width of the second radiator 121.
  • the preset distance and the width of the radiator 121121 on the ground side of the second ground terminal 1211 can be determined according to the actual application scenario, in order to increase the electrical connection between the second feed source 12 and the second radiator 121 .
  • the distance between the connected connection point and the second ground terminal 1211, as well as thinning the radiator on the ground side of the second ground terminal 1211, are used to improve third frequency band performance.
  • the second free end 1212 and the first free end 1112 are spaced apart and form a coupling gap 1122.
  • the first antenna unit 110 can not only utilize the first radiator 111 when working
  • the second radiator 121 can also be used so that the first antenna unit 110 can support the first frequency band and the second frequency band. Therefore, the antenna assembly 10 has better communication effect.
  • the second antenna unit 120 can not only use the second radiator 121 but also the first radiator 111 when working. In other words, the first antenna unit 110 and the second antenna unit 120 are common-aperture antennas.
  • the second feed source 12 is electrically connected to the second radiator 121.
  • the point is further away from the second ground terminal 1211, and the width of the radiator 121121 on the side of the second ground terminal 1211 (shown as the shaded part in Figure 1) is smaller than the width of the second radiator 121, that is, the second ground is thinned
  • the radiator on the ground side of terminal 1211 significantly improves the performance of the third frequency band, thereby improving the communication performance of the antenna assembly 10 .
  • the first frequency band includes a middle high band (MHB, Middle High Band) frequency band
  • the second frequency band includes an ultra high frequency (UHB, Ultra High Band) frequency band
  • the third frequency band includes a GPS frequency band or a low frequency (LB, Low Band) frequency band.
  • the frequency band range of MHB is 1000MHz 3000MHz
  • the frequency band range of UHB is 3000MHz 6000MHz
  • the GPS frequency band can include such as GPS-L1 frequency band, GPS-L5 frequency band, etc.
  • the range of LB frequency band is less than 1000MHz.
  • the LB frequency band may include all low-frequency electromagnetic wave signals such as 4G (also called LTE-LB) and 5G (also called NR-LB).
  • the MHB frequency band can include electromagnetic wave signals in all mid- and high-frequency bands such as LTE-MHB and NR-MHB.
  • the antenna assembly provided by the embodiment of the present application may also include a first matching circuit M1 and/or a second matching circuit M2; the first feed source 11 passes through the first matching circuit M1 Electrically connected to the first radiator 111, the second feed source 12 is electrically connected to the second radiator 121 through the second matching circuit M2.
  • the first matching circuit M1 is provided between the first feed point A and the first feed source 11 .
  • the output terminal of the first feed source 11 is electrically connected to the input terminal of the first matching circuit M1
  • the output terminal of the first matching circuit M1 is electrically connected to the first feed point A of the first radiator 111 .
  • the first feed source 11 is used to generate an excitation signal (also called a radio frequency signal)
  • the first matching circuit M1 is used to filter the noise of the excitation signal transmitted by the first feed source 11 to form the first radio frequency signal in the first frequency band and the first radio frequency signal.
  • the second RF signal of the second band and the first The radio frequency signal and the second radio frequency signal are transmitted to the first radiator 111 to excite the first radiator 111 to resonate in the first frequency band and the second frequency band.
  • the second matching circuit M2 is disposed between the second feed point B and the second feed source 12 .
  • the output terminal of the second feed source 12 is electrically connected to the input terminal of the second matching circuit M2
  • the output terminal of the second matching circuit M2 is electrically connected to the second feed point B of the second radiator 121 .
  • the second feed source 12 is used to generate an excitation signal (also called a radio frequency signal)
  • the second matching circuit M2 is used to filter the noise of the excitation signal transmitted by the second feed source 12 to form a third radio frequency signal in the third frequency band and
  • the third radio frequency signal is transmitted to the second radiator 121 to excite the second radiator 121 to resonate in the third frequency band.
  • the matching circuits in the embodiments of the present application may include but are not limited to frequency-selective filter networks such as capacitors, inductors, and resistors arranged in series and/or in parallel.
  • the matching circuit may include multiple Branches formed by series and/or parallel capacitors, inductors, and resistors, and switches that control the on/off of multiple branches. By controlling the on and off of different switches, the frequency selection parameters of the matching circuit (such as resistance value, inductance value and capacitance value) can be adjusted, and then the filtering range of the matching circuit can be adjusted, so that the matching circuit can emit from the feed source it is connected to.
  • the radio frequency signal is obtained from the excitation signal, thereby causing the antenna to transmit the electromagnetic wave signal of the radio frequency signal.
  • Different matching circuits can be different, and their specific circuit implementation is not used to limit the protection scope of this application.
  • Matching circuits are used to adjust the impedance of the radiator to which it is electrically connected so that the impedance of the radiator to which it is electrically connected matches the frequency at which it resonates, thereby achieving greater transmitting and receiving power of the radiator. Therefore, matching circuits are also It is called FM circuit.
  • the resonant frequency of each antenna can be moved along the low frequency or high frequency, realizing the ultra-wideband of the antenna assembly 10 and increasing the antenna signal coverage and communication quality of the antenna assembly 10 .
  • FIGs 2(a) to 2(h) are schematic diagrams of matching circuits in embodiments of the present application provided by respective embodiments.
  • the matching circuit may include a circuit formed by an inductor L0 and a capacitor C0 connected in series.
  • the matching circuit may include a circuit formed by a parallel connection of an inductor L0 and a capacitor C0.
  • the matching circuit may include an inductor L0, a first capacitor C1, and a second capacitor C2.
  • the inductor L0 and the first capacitor C1 are connected in parallel, and the second capacitor C2 is electrically connected to the node where the inductor L0 and the first capacitor C1 are electrically connected.
  • the matching circuit may include a capacitor C0, a first inductor L1, and a second inductor L2. , wherein the capacitor C0 is connected in parallel with the first inductor L1, and the second inductor L2 is electrically connected to the node where the capacitor C0 and the first inductor L1 are electrically connected.
  • the matching circuit may include an inductor L0, a first capacitor C1 and a second capacitor C2.
  • the inductor L0 is connected in series with the first capacitor C1, and one end of the second capacitor C2 is electrically connected to an end of the inductor L0 that is not connected to the first capacitor C1, and the other end of the second capacitor C2 is electrically connected to an end of the first capacitor C1 that is not connected to the inductor L0.
  • the matching circuit may include a capacitor C0, a first inductor L1, and a second inductor L2.
  • the capacitor C0 is connected in series with the first inductor L1, one end of the second inductor L2 is electrically connected to the end of the capacitor C0 that is not connected to the first inductor L1, and the other end of the second inductor L2 is electrically connected to the end of the first inductor L1 that is not connected to the capacitor C0.
  • the matching circuit may include a first capacitor C1, a second capacitor C2, a first inductor L1, and a second inductor L2.
  • the first capacitor C1 is connected in parallel with the first inductor L1
  • the second capacitor C2 is connected in parallel with the second inductor L2
  • one end of the whole formed by the parallel connection of the second capacitor C2 and the second inductor L2 is electrically connected to the first capacitor C1 and the first inductor.
  • L1 is connected in parallel to form one end of the whole.
  • the matching circuit may include a first capacitor C1, a second capacitor C2, a first inductor L1, and a second inductor L2.
  • the first capacitor C1 and the first inductor L1 are connected in series to form a first unit circuit
  • the second capacitor C2 and the second inductor L2 are connected in series to form a second unit circuit
  • the first unit circuit and the second unit circuit are connected in parallel.
  • the matching circuit in the embodiment of the present application may also include adjustable devices such as switches and variable capacitors.
  • the first radiator 111 is a Flexible Printed Circuit (FPC) antenna radiator or a Laser Direct Structuring (LDS) antenna radiator, or a Printed Direct Structuring (PDS) , Print Direct Structuring) antenna radiator, or metal branches.
  • the second radiator 121 is an FPC antenna radiator, an LDS antenna radiator, a PDS antenna radiator, or a metal branch.
  • the first radiator 111 is of the same type as the second radiator 121 . In one embodiment, the type of the first radiator 111 and the type of the second radiator 121 may be different.
  • FIG 3 is a schematic structural diagram of the second embodiment of the antenna assembly in the embodiment of the present application.
  • the antenna assembly provided by the embodiment of the present application may also include a first isolation capacitor C11, a second isolation capacitor C22, a loop Inductor L12, and near field communication (NFC, Near Field Communication) chip 131; among them,
  • the first isolation capacitor C11 is electrically connected between the first radiator 111 and the first reference ground GND1. That is, the first radiator 111 is electrically connected to the first reference ground GND1 through the first isolation capacitor C11.
  • the first isolation capacitor C11 is used for isolation. NFC current.
  • one end of the first radiator 111 away from the gap 1122 is the first ground terminal G1, and the first isolation capacitor C11 is electrically connected between the first ground terminal G1 and the first reference ground GND1.
  • the second isolation capacitor C22 is electrically connected between the second radiator 121 and the second reference ground GND2. That is, the second radiator 121 is electrically connected to the second reference ground GND2 through the second isolation capacitor C22.
  • the second isolation capacitor C22 is used for isolation. NFC current.
  • one end of the second radiator 121 away from the gap 1122 is a second ground.
  • the terminal G2 and the second isolation capacitor C22 are electrically connected between the second ground terminal G2 and the second reference ground GND2.
  • the loop inductor L12 is electrically connected between the first feed point A where the first matching circuit M1 is connected to the first radiator 111, and the second feed point B where the second matching circuit M2 is connected to the second radiator 121.
  • the loop inductor L12 is The inductor L12 is used to connect the first radiator 111 and the second radiator 121 to form a current path of the NFC antenna, as shown by the dotted line in Figure 4 .
  • the first differential signal port of the NFC chip 131 is connected to the first connection point of the first ground terminal 1111 of the first radiator 111
  • the second differential signal port of the NFC chip 131 is connected to the second ground of the second radiator 121
  • the NFC chip 131 is used to provide a differential excitation current; the conductive path formed by the radiator portion between the first connection point and the second connection point is used to transmit the differential excitation generated by the NFC chip. current.
  • the value of the first isolation capacitor C11 is 100 pF. In one embodiment, the value of the second isolation capacitor C22 is 100 pF.
  • the loop inductance L12 is a large inductance. In one embodiment, the value of the loop inductance L12 is not less than 10 nH.
  • the first antenna unit 110 and the second antenna unit 120 are coupled through a gap to form a common-aperture antenna, and because the second feed source 12 and the second radiator 121 are electrically
  • the connection point is further away from the second ground terminal 1211, and the radiator on the ground side of the second ground terminal 1211 is thinned, thereby improving the performance of the third frequency band, thereby improving the communication performance of the antenna assembly 10;
  • the connection with the NFC chip is realized, forming the NFC current path and realizing the common NFC antenna.
  • due to the value of the loop inductor L12 It is larger and will not affect the performance of the first antenna unit 110 and the second antenna unit 120 .
  • the first antenna (Ant1) (corresponding to the first feed source 11) works in the MHB+UHB frequency band
  • the first reference ground GND1 is the return ground of Ant1
  • the first isolation capacitor C11 is 100pF.
  • the second antenna (Ant2) (corresponding to the first feed 12) works in the GPS-L5 frequency band.
  • the second reference ground GND2 is the return ground of Ant2.
  • the second isolation capacitor C22 is 100pF, which is used to isolate the NFC current.
  • the first matching circuit M1 of Ant1 is connected to the second matching circuit M2 of Ant2 through a larger loop inductance L12, such as greater than 10 nH, to connect Ant1 and Ant12 to form a current path of the NFC antenna.
  • FIG. 5(a) to 5(d) the working principle of Ant1 is shown in Figures 5(a) to 5(d), which respectively represent the four main modes excited by Ant1, as shown by the thick arrow lines in the figure. shown.
  • Figure 6 is a schematic diagram of the return loss curve of Ant1 in the antenna assembly shown in Figure 3 for transmitting and/or receiving electromagnetic wave signals in the first frequency band and the second frequency band.
  • the horizontal axis is frequency, and the unit is MHz; the vertical axis is return loss (RL, Return Loss), unit is dB.
  • Mode 1 is: a quarter-wavelength mode from the first reference ground GND1 to the gap 1122, which is used to support the transmission and/or reception of electromagnetic wave signals in the first sub-band.
  • mode 2 is: the one-eighth to one-quarter wavelength mode from the second reference ground GND2 to the gap 1122, and at the same time, a strong current passes through the gap.
  • 1122 is coupled to the ground below the first reference ground GND1 and is used to support the transmission and/or reception of electromagnetic wave signals in the second sub-band.
  • mode 3 It is: the quarter-wavelength mode from the first feed source 11 to the gap 1122, and at the same time, a strong current flows from the first reference ground GND1 to the ground, which is used to support the transmission and/or reception of electromagnetic wave signals in the third sub-band, in order to For convenience of illustration, it is marked as 3 in Figure 6; as shown in Figure 5(d), mode 4 is: the quarter-wavelength mode from the second feed source 12 to the gap 1122, and at the same time, a strong current flows from the first feed source 12 to the gap 1122.
  • the source 11 is grounded and used to support the transmission and/or reception of electromagnetic wave signals in the fourth sub-band.
  • the four main modes excited by Ant1 in the embodiment of the present application can cover the MHB frequency band and the UHB frequency band, such as B1/B2/B3/B4/ B7/B32/B39/B40/B41, WIFI2.4G, N41/N 77/N 78/N 79 and other frequency bands.
  • FIG 7 is a schematic diagram of the return loss curve of Ant2 transmitting and/or receiving electromagnetic wave signals in the third frequency band in the antenna assembly shown in Figure 3.
  • the horizontal axis is frequency in MHz; the vertical axis is RL, the unit is dB.
  • mode 5 is Ant2 excited in the form of composite right/left-handed (CRLH, Composite right/left-handed). For convenience of illustration, it is marked as 5 in Figure 8.
  • the mode 5 excited by Ant2 in the embodiment of the present application can cover the GPS-L5 frequency band.
  • the second ground terminal 1211 is electrically connected.
  • the connection point where the second feed source 12 is electrically connected to the second radiator 121 is further away from the second ground terminal 1211, and the width of the radiator 121121 (shown as the shaded part in Figure 1) on the ground side of the second ground terminal 1211 is less than
  • the width of the second radiator 121 that is, thinning the radiator on the ground side of the second ground terminal 1211, significantly improves the performance of the third frequency band, thereby improving the communication performance of the antenna assembly 10, as shown in Figure 9.
  • the third frequency band is the GPS-L5 frequency band as an example.
  • the GPS-L5 efficiency of the antenna assembly provided by the embodiment of the present application is -6.5dB, which is much higher than -8 to -10dB in related technologies.
  • the efficiency of the first antenna unit 110 in the antenna assembly provided by the embodiment of the present application is shown in Figure 10, combined with the second antenna unit 120 of the antenna assembly provided by the embodiment of the present application shown in Figure 9
  • the efficiency of the antenna assembly provided by the second embodiment of the present application not only realizes the NFC antenna community, but also does not affect the performance of the first antenna unit 110 and the second antenna unit 120; moreover, since the second feed source 12 and second spoke
  • the electrical connection point of the radiator 121 is further away from the second ground terminal 1211, and the radiator on the ground side of the second ground terminal 1211 is thinned, which also improves the performance of the third frequency band, thereby improving the communication performance of the antenna assembly 10 .
  • the antenna assembly 10 in addition to the first antenna unit 110 and the second antenna unit 120 as two parts of the radiator and the NFC community, more antenna units can be further added.
  • Radiator integrated with NFC.
  • a third radiator 141 and/or a third radiator is added. Or the fourth radiator 151.
  • the third ground terminal G3 can be electrically connected to the third reference ground GND3 through the third isolation capacitor C33
  • the fourth ground terminal G4 can be electrically connected to the third reference ground GND3 through the third isolation capacitor C33.
  • the isolation capacitor C44 is electrically connected to the fourth reference ground GND4.
  • the first ground terminal G1 and the third ground terminal G3 may also be directly electrically connected to the first reference ground GND1 and the third reference ground GND3 respectively.
  • An embodiment of the present application also provides an electronic device, including the antenna assembly described in any one of the above.
  • electronic devices may include but are not limited to: mobile phones, tablet computers, notebook computers, PDAs, vehicle-mounted electronic devices, wearable devices, Ultra Mobile Personal Computers (UMPC, Ultra Mobile Personal Computer), netbooks or personal digital assistants ( PDA, Personal Digital Assistant), Network Attached Storage (NAS Network Attached Storage), Personal Computer (PC, Personal Computer), TV, teller machine or self-service machine, etc., are not specifically limited in the embodiments of this application.
  • UMPC Ultra Mobile Personal Computer
  • PDA Personal Digital Assistant
  • NAS Network Attached Storage Network Attached Storage
  • PC Personal Computer
  • TV teller machine or self-service machine, etc.
  • Figure 12 is a schematic diagram of the layout of the antenna assembly in the electronic device according to the embodiment of the present application.
  • the first antenna unit 110 is placed on the top, and the second antenna unit 120 is placed on the top. horn.
  • Ant1 corresponds to the first feed source 11
  • Ant2 corresponds to the second feed source 12 .
  • FIG. 12 is only an example. The layout of the antenna assembly 10 on the electronic device can be adjusted according to the actual situation. FIG. 12 is not used to limit the scope of protection of the present application.
  • the electronic device provided by the embodiments of the present application is equipped with the antenna assembly 10 provided by any embodiment of the present application, so that the electronic device realizes a multi-antenna community, improves communication quality, and is conducive to the overall miniaturization of the electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请公开了一种天线组件及电子设备,一方面,天线组件的第一天线单元及第二天线单元为共口径天线;另一方面,通过合理设计第二天线单元包括的第二馈源与第二辐射体电连接的连接点和第二接地端之间的距离,使得第二馈源与第二辐射体电连接的连接点更加远离第二接地端,并且,第二接地端回地一侧的辐射体宽度小于第二辐射体的宽度,显著提高了第三频段性能,从而提高了天线组件的通信性能。

Description

一种天线组件及电子设备
本申请要求于2022年08月31日提交中国专利局、申请号为202211059162.3、申请名称为“一种天线组件及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及但不限于通信技术,尤指一种天线组件及电子设备。
背景技术
随着技术的发展,手机等具有通信功能电子设备的普及度越来越高,且功能越来越强大。电子设备中通常包括天线组件以实现电子设备的通信功能。然而,相关技术中的电子设备中的天线组件的通信性能不够好,还有待提升的空间。
发明内容
本申请提供一种天线组件及电子设备,能够提高天线组件的通信性能。
本申请实施例提供一种天线组件,包括:第一天线单元、第二天线单元;其中,
所述第一天线单元包括第一辐射体及第一馈源,所述第一馈源与所述第一辐射体电连接,用于激励所述第一辐射体谐振于第一频段及第二频段;
所述第二天线单元包括第二辐射体和第二馈源,所述第二馈源与所述第二辐射体电连接,用于激励所述第二辐射体谐振于第三频段;
所述第一辐射体包括第一接地端及第一自由端,所述第二辐射体包括第二接地端及第二自由端;所述第一自由端与所述第二自由端间隔设置以形成缝隙,所述第一辐射体与所述第二辐射体通过所述缝隙耦合;所述第一接地端接地,所述第二接地端接地;
所述第二馈源与所述第二辐射体电连接的连接点与所述第二接地端之间的距离大于预设距离,和/或所述第二接地端回地一侧的辐射体的宽度小于所述第二辐射体的宽度。
本申请实施例提供的一种天线组件,一方面,天线组件包括的第一天线单元及第二天线单元为共口径天线;另一方面,通过合理设计第二天线单元包括的第二馈源与第二辐射体电连接的连接点和第二接地端之间的距离,使得第二馈源与第二辐射体电连接的连接点 更加远离第二接地端,并且,第二接地端回地一侧的辐射体宽度小于第二辐射体的宽度,显著提高了第三频段性能,从而提高了天线组件的通信性能。
在一种实施例中,本申请实施例提供的天线组件,还包括:第一隔离电容、第二隔离电容、回路电感,以及近场通信NFC芯片;其中,
所述第一隔离电容电连接在所述第一辐射体与所述第一参考地之间,所述第一隔离电容用于隔离NFC电流;
所述第二隔离电容电连接在所述第二辐射体与所述第二参考地之间,所述第二隔离电容用于隔离NFC电流;
所述回路电感电连接在所述第一匹配电路与所述第一辐射体连接的第一馈电点,和所述第二匹配电路与所述第二辐射体连接的第二馈电点之间,所述回路电感用于连接所述第一辐射体和所述第二辐射体以构成NFC天线的电流路径;
所述NFC芯片的第一差分信号的端口连接于所述第一接地端的第一连接点,所述NFC芯片的第二差分信号的端口连接于所述第二接地端的第二连接点,所述NFC芯片用于提供差分激励电流;所述第一连接点至所述第二连接点之间的辐射体部分形成的导电路径,用于传输所述NFC芯片所产生的差分激励电流。
一方面,天线组件中的第一天线单元与第二天线单元间通过缝隙耦合,形成共口径天线,而且,由于第二天线单元包括的第二馈源与第二辐射体电连接的连接点更加远离第二接地端,且打薄了第二接地端回地一侧的辐射体,提高了第三频段性能,从而提高了天线组件的通信性能;另一方面,还通过第一隔离电容、第二隔离电容和回路电感的巧妙设置,实现了和NFC芯片的连接,构成了NFC电流路径,实现了NFC天线共体,而且由于回路电感的取值较大,不会对第一天线单元、第二天线单元性能产生影响。
本申请实施例还提供一种电子设备,包括本申请实施例任一项所述的天线组件。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请实施例中天线组件的第一实施例的组成结构示意图;
图2(a)为本申请实施例中天线组件的匹配电路的第一实施例的组成电路示意图;
图2(b)为本申请实施例中天线组件的匹配电路的第二实施例的组成电路示意图;
图2(c)为本申请实施例中天线组件的匹配电路的第三实施例的组成电路示意图;
图2(d)为本申请实施例中天线组件的匹配电路的第四实施例的组成电路示意图;
图2(e)为本申请实施例中天线组件的匹配电路的第五实施例的组成电路示意图;
图2(f)为本申请实施例中天线组件的匹配电路的第六实施例的组成电路示意图;
图2(g)为本申请实施例中天线组件的匹配电路的第七实施例的组成电路示意图;
图2(h)为本申请实施例中天线组件的匹配电路的第八实施例的组成电路示意图;
图3为本申请实施例中天线组件的第二实施例的组成结构示意图;
图4为本申请实施例中天线组件的第二实施例中NFC电流路径示意图;
图5(a)为本申请实施例中第一天线单元激起的模式1的原理示意图;
图5(b)为本申请实施例中第一天线单元激起的模式2的原理示意图;
图5(c)为本申请实施例中第一天线单元激起的模式3的原理示意图;
图5(d)为本申请实施例中第一天线单元激起的模式4的原理示意图;
图6为本申请实施例中第一天线单元的S参数曲线图;
图7为本申请实施例中第二天线单元激起的模式5的原理示意图;
图8为本申请实施例中第二天线单元的S参数曲线图;
图9为本申请实施例中第二天线单元的效率曲线图;
图10为本申请实施例中第一天线单元的效率曲线图;
图11为本申请实施例中天线组件的第三实施例的组成结构示意图;
图12为本申请实施例中天线组件在电子设备中的布局示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描 述具体的实施例的目的,不是旨在于限制本申请。
可以理解,本申请所使用的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
可以理解,以下实施例中的“连接”,如果被连接的电路、模块、单元等相互之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中使用的术语“和/或”包括相关所列项目的任何及所有组合。
本申请提供了一种天线组件10。所述天线组件10可应用于电子设备1中,所述电子设备1包括但不仅限于为手机、联网设备(mobile internet device,MID)、电子书、便携式播放站(Play Station Portable,PSP)或个人数字助理(Personal Digital Assistant,PDA)等具有通信功能的电子设备。
图1为本申请实施例中天线组件的第一实施例的组成结构示意图,如图1所示,第一实施例中的天线组件10可以包括:第一天线单元110及第二天线单元120;其中,
第一天线单元110包括第一辐射体111及第一馈源11,第一馈源11与第一辐射体111电连接,用于激励第一辐射体111谐振于第一频段及第二频段;
第二天线单元120包括第二辐射体121和第二馈源12,第二馈源12与第二辐射体121电连接,用于激励第二辐射体121谐振于第三频段;
第一辐射体111包括第一接地端1111及第一自由端1112,第二辐射体121包括第二接地端1211及第二自由端1212;
第一辐射体111的第一自由端1112与第二辐射体121的第二自由端1212间隔设置以形成缝隙1122,第一辐射体111与第二辐射体121通过缝隙1122耦合;第一辐射体111的第一接地端1111接地,第二辐射体121的第二接地端1211接地;
第二馈源12与第二辐射体121电连接的连接点与第二接地端1211之间的距离大于预设距离,和/或第二接地端1211回地一侧的辐射体121121(如图1中阴影部分所 示)的宽度小于第二辐射体121的宽度。
在一种示例性实例中,预设距离及第二接地端1211回地一侧的辐射体121121宽度可以根据实际应用场景确定,目的就是通过加大第二馈源12与第二辐射体121电连接的连接点与第二接地端1211之间的距离,以及打薄第二接地端1211回地一侧的辐射体,来提高第三频段性能。
本申请实施例提供的天线组件10,一方面,第二自由端1212与第一自由端1112间隔设置且形成耦合缝隙1122,这样,第一天线单元110工作时不但可以利用第一辐射体111,还可以利用第二辐射体121,使得第一天线单元110能够支持第一频段及第二频段,因此,天线组件10具有较好的通信效果。相应地,第二天线单元120工作时不但可以利用第二辐射体121,还可以利用第一辐射体111。换而言之,第一天线单元110及第二天线单元120为共口径天线。另一方面,通过合理设计第二馈源12与第二辐射体121电连接的连接点和第二接地端1211之间的距离,使得第二馈源12与第二辐射体121电连接的连接点更加远离第二接地端1211,并且,第二接地端1211回地一侧的辐射体121121(如图1中阴影部分所示)宽度小于第二辐射体121的宽度,即打薄第二接地端1211回地一侧的辐射体,显著提高了第三频段性能,从而提高了天线组件10的通信性能。
在一种示例性实例中,第一频段包括中高频(MHB,Middle High Band)频段,第二频段包括超高频(UHB,Ultra High Band)频段,第三频段包括GPS频段或低频(LB,Low Band)频段。需要说明的是,MHB的频段范围在1000MHz 3000MHz,UHB的频段范围在3000MHz 6000MHz,GPS频段可以包括如GPS-L1频段、GPS-L5频段等,LB频段的范围为低于1000MHz。其中,LB频段可以包括如4G(也称为LTE-LB)与5G(也称为NR-LB)的所有低频段的电磁波信号。MHB频段可以包括如LTE-MHB与NR-MHB的所有中高频频段的电磁波信号。
在一种示例性实例中,如图1所示,本申请实施例提供的天线组件还可以包括第一匹配电路M1和/或第二匹配电路M2;第一馈源11通过第一匹配电路M1电连接至第一辐射体111,第二馈源12通过第二匹配电路M2电连接至第二辐射体121。
在一种示例性实例中,第一匹配电路M1设置于第一馈电点A与第一馈源11之间。在一种实施例中,第一馈源11的输出端电连接第一匹配电路M1的输入端,第一匹配电路M1的输出端电连接至第一辐射体111的第一馈电点A。第一馈源11用于产生激励信号(也称为射频信号),第一匹配电路M1用于过滤第一馈源11传送的激励信号的杂波,形成第一频段的第一射频信号及第二频段的第二射频信号,并将第一 射频信号及第二射频信号传送至第一辐射体111,以激励第一辐射体111谐振于第一频段及第二频段。
在一种示例性实例中,第二匹配电路M2设置于第二馈电点B与第二馈源12之间。在一种实施例中,第二馈源12的输出端电连接第二匹配电路M2的输入端,第二匹配电路M2的输出端电连接至第二辐射体121的第二馈电点B。第二馈源12用于产生激励信号(也称为射频信号),第二匹配电路M2用于过滤第二馈源12传送的激励信号的杂波,形成第三频段的第三射频信号并将第三射频信号传送至第二辐射体121,以激励第二辐射体121谐振于第三频段。
本申请实施例中的匹配电路如第一匹配电路M1、第二匹配电路M2,可以包括但不限于串联和/或并联设置的电容、电感、电阻等选频滤波网络,匹配电路可以包括多个串联和/或并联的电容、电感、电阻形成的支路,及控制多个支路的通断的开关。通过控制不同开关的通断,可以调节匹配电路的选频参数(如包括电阻值、电感值及电容值),进而调节匹配电路的滤波范围,从而可使匹配电路从自身所连接的馈源发射的激励信号中获取射频信号,进而使得天线传输该射频信号的电磁波信号。不同的匹配电路可以不同,其具体电路实现并不用于限定本申请的保护范围。匹配电路皆用于对其所电连接的辐射体进行阻抗调节,使其所电连接的辐射体的阻抗与其产生谐振的频率相匹配,进而实现辐射体的收发功率较大,因此,匹配电路也称为调频电路。通过设置调频电路及对调频电路的参数进行调节,可使得各天线的谐振频率沿低频或高频移动,实现了天线组件10超宽带,增加了天线组件10的天线信号的覆盖度及通信质量。
如图2(a)~图2(h)所示,分别为各个实施例提供的本申请实施例中的匹配电路的示意图。
如图2(a)所示,匹配电路可以包括电感L0与电容C0串联形成的电路。
如图2(b)所示,匹配电路可以包括电感L0与电容C0并联形成的电路。
如图2(c)所示,匹配电路可以包括电感L0、第一电容C1及第二电容C2。其中,电感L0与第一电容C1并联,且第二电容C2电连接电感L0与第一电容C1电连接的节点。
如图2(d)所示,匹配电路可以包括电容C0、第一电感L1及第二电感L2。,其中,电容C0与第一电感L1并联,且第二电感L2电连接电容C0与第一电感L1电连接的节点。
如图2(e)所示,匹配电路可以包括电感L0、第一电容C1及第二电容C2。其中, 电感L0与第一电容C1串联,且第二电容C2的一端电连接电感L0未连接第一电容C1的一端,第二电容C2的另一端电连接第一电容C1未连接电感L0的一端。
如图2(f)所示,匹配电路可以包括电容C0、第一电感L1及第二电感L2。其中,电容C0与第一电感L1串联,第二电感L2的一端电连接电容C0未连接第一电感L1的一端,第二电感L2的另一端电连接第一电感L1未连接电容C0的一端。
如图2(g)所示,匹配电路可以包括第一电容C1、第二电容C2、第一电感L1及第二电感L2。其中,第一电容C1与第一电感L1并联,第二电容C2与第二电感L2并联,且第二电容C2与第二电感L2并联形成的整体的一端电连接第一电容C1与第一电感L1并联形成的整体的一端。
如图2(h)所示,匹配电路可以包括第一电容C1、第二电容C2、第一电感L1及第二电感L2。其中,第一电容C1与第一电感L1串联形成第一单元电路,第二电容C2与第二电感L2串联形成第二单元电路,且第一单元电路与第二单元电路并联。
在一种实施例中,本申请实施例中的匹配电路也可以包括如开关、可变电容等可调器件。
在一种示例性实例中,第一辐射体111为柔性电路板(FPC,Flexible Printed Circuit)天线辐射体或者为激光直接成型(LDS,Laser Direct Structuring)天线辐射体、或者为印刷直接成型(PDS,Print Direct Structuring)天线辐射体、或者为金属枝节。在一种示例性实例中,第二辐射体121为FPC天线辐射体或者为LDS天线辐射体、或者为PDS天线辐射体、或者为金属枝节。在一种实施例中,第一辐射体111的类型与第二辐射体121的类型相同。在一种实施例中,第一辐射体111的类型与第二辐射体121的类型可以不相同。
图3为本申请实施例中天线组件的第二实施例的组成结构示意图,如图3所示,本申请实施例提供的天线组件还可以包括第一隔离电容C11、第二隔离电容C22、回路电感L12,以及近场通信(NFC,Near Field Communication)芯片131;其中,
第一隔离电容C11电连接在第一辐射体111与第一参考地GND1之间,即第一辐射体111通过第一隔离电容C11电连接第一参考地GND1,第一隔离电容C11用于隔离NFC电流。在一种实施例中,第一辐射体111的远离缝隙1122的一端为第一接地端G1,第一隔离电容C11电连接在第一接地端G1与第一参考地GND1之间。
第二隔离电容C22电连接在第二辐射体121与第二参考地GND2之间,即第二辐射体121通过第二隔离电容C22电连接第二参考地GND2,第二隔离电容C22用于隔离NFC电流。在一种实施例中,第二辐射体121的远离缝隙1122的一端为第二接地 端G2,第二隔离电容C22电连接在第二接地端G2与第二参考地GND2之间。
回路电感L12电连接在第一匹配电路M1与第一辐射体111连接的第一馈电点A,和第二匹配电路M2与第二辐射体121连接的第二馈电点B之间,回路电感L12用于连接第一辐射体111和第二辐射体121,以构成NFC天线的电流路径,如图4虚线所示。
NFC芯片131的第一差分信号的端口连接于第一辐射体111的第一接地端1111的第一连接点,NFC芯片131的第二差分信号的端口连接于第二辐射体121的第二接地端1211的第二连接点,NFC芯片131用于提供差分激励电流;第一连接点至第二连接点之间的辐射体部分形成的导电路径,用于传输所述NFC芯片所产生的差分激励电流。
在一种实施例中,第一隔离电容C11的值为100pF。在一种实施例中,第二隔离电容C22的值为100pF。
在一种实施例中,回路电感L12为一大电感,在一种实施例中,回路电感L12的值不小于10nH。
本申请第二实施例提供的天线组件,一方面,第一天线单元110与第二天线单元120间通过缝隙耦合,形成共口径天线,而且,由于第二馈源12与第二辐射体121电连接的连接点更加远离第二接地端1211,且打薄了第二接地端1211回地一侧的辐射体,提高了第三频段性能,从而提高了天线组件10的通信性能;另一方面,还通过第一隔离电容C11、第二隔离电容C22和回路电感L12的巧妙设置,实现了和NFC芯片的连接,构成了NFC电流路径,实现了NFC天线共体,而且由于回路电感L12的取值较大,不会对第一天线单元110、第二天线单元120性能产生影响。
在一种示例性实例中,第一天线(Ant1)(对应第一馈源11)工作在MHB+UHB频段,第一参考地GND1为Ant1的回地,第一隔离电容C11为100pF,用于隔离NFC电流,第二天线(Ant2)(对应第一馈源12)工作在GPS-L5频段,第二参考地GND2为Ant2的回地,第二隔离电容C22为100pF,用于隔离NFC电流,Ant1的第一匹配电路M1通过较大如大于10nH的回路电感L12连接至Ant2的第二匹配电路M2,以连接Ant1和Ant12,构成NFC天线的电流路径。
以本申请第二实施例的天线组件为例,Ant1的工作原理如图5(a)~图5(d)所示,分别表示Ant1激励起的四个主模式,如图中的粗箭头线所示。结合图6,图6为图3所示的天线组件中Ant1发射和/或接收第一频段及第二频段的电磁波信号的回波损耗曲线示意图,在图6中,横轴为频率,单位为MHz;纵轴为回波损耗(RL,Return  Loss),单位为dB。如图5(a)所示,模式1为:第一参考地GND1到缝隙1122的四分之一波长模式,用于支持第一子频段的电磁波信号的发射和/或接收,为了方便示意,在图6中标注为1;如图5(b)所示,模式2为:第二参考地GND2到缝隙1122的八分之一至四分之一波长模式,同时有较强的电流经过缝隙1122耦合在第一参考地GND1下地,用于支持第二子频段的电磁波信号的发射和/或接收,为了方便示意,在图6中标注为2;如图5(c)所示,模式3为:第一馈源11到缝隙1122的四分之一波长模式,同时有较强的电流从第一参考地GND1下地,用于支持第三子频段的电磁波信号的发射和/或接收,为了方便示意,在图6中标注为3;如图5(d)所示,模式4为:第二馈源12到缝隙1122的四分之一波长模式,同时有较强的电流从第一馈源11下地,用于支持第四子频段的电磁波信号的发射和/或接收,为了方便示意,在图6中标注为4。在一种实施例中,如图6所示,本申请实施例中的Ant1激励起的四个主模式即模式1~模式4可以覆盖MHB频段和UHB频段,如B1/B2/B3/B4/B7/B32/B39/B40/B41,WIFI2.4G,N41/N 77/N 78/N 79等频段。
以本申请第二实施例的天线组件为例,Ant2的工作原理如图7所示,表示Ant2激励起模式5,如图中的粗箭头线所示。结合图8,图8为图3所示的天线组件中Ant2发射和/或接收第三频段的电磁波信号的回波损耗曲线示意图,在图8中,横轴为频率,单位为MHz;纵轴为RL,单位为dB。如图7所示,模式5为Ant2通过复合左右手(CRLH,Composite right/left-handed)形式激励,为了方便示意,在图8中标注为5。在一种实施例中,如图8所示,本申请实施例中的Ant2激励起的模式5可以覆盖GPS-L5频段。
在一种示例性实例中,本申请实施例提供的天线组件中,通过合理设计第二馈源12与第二辐射体121电连接的连接点和第二接地端1211之间的距离,使得第二馈源12与第二辐射体121电连接的连接点更加远离第二接地端1211,并且,第二接地端1211回地一侧的辐射体121121(如图1中阴影部分所示)宽度小于第二辐射体121的宽度,即打薄第二接地端1211回地一侧的辐射体,显著提高了第三频段的性能,从而提高了天线组件10的通信性能,如图9所示,以第三频段为GPS-L5频段为例,本申请实施例提供的天线组件中GPS-L5的效率为-6.5dB,远高于相关技术中的-8至-10dB。
在一种示例性实例中,本申请实施例提供的天线组件中第一天线单元110的效率如图10所示,结合图9所示的本申请实施例提供的天线组件中第二天线单元120的效率,本申请第二实施例提供的天线组件,不仅实现了NFC天线共体,而且不会对第一天线单元110、第二天线单元120性能产生影响;而且,由于第二馈源12与第二辐 射体121电连接的连接点更加远离第二接地端1211,且打薄了第二接地端1211回地一侧的辐射体,还提高了第三频段性能,进而提高了天线组件10的通信性能。
在一种示例性实例中,本申请实施例提供的天线组件10中,除了第一天线单元110、第二天线单元120两部分辐射体与NFC共体外,还可以进一步增加更多的天线单元和辐射体,与NFC共体。在一种实施例中,如图11所示,向第一辐射体111的第一接地端1111和/或第二辐射体121的第二接地端1211外侧延伸,增加第三辐射体141和/或第四辐射体151,在一种实施例中,为了更好地保证第一天线单元110和第二天线单元120与新增天线单元之间的隔离度,可以在第一接地端G1和/或第二接地端G2外侧增加第三接地端G3和/或第四接地端G4,第三接地端G3可以通过第三隔离电容C33电连接第三参考地GND3,第四接地端G4通过第四隔离电容C44电连接第四参考地GND4。在一种实施例中,第一接地端G1和第三接地端G3也可以分别直接电连接第一参考地GND1和第三参考地GND3。
本申请实施例还提供一种电子设备,包括上述任一项所述的天线组件。示例性的,电子设备可以包括但不限于:手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(UMPC,Ultra Mobile Personal Computer)、上网本或者个人数字助理(PDA,Personal Digital Assistant)、网络附属存储器(NAS Network Attached Storage)、个人计算机(PC,Personal Computer)、电视机、柜员机或者自助机等,本申请实施例不作具体限定。以电子设备1为手机为例,图12为本申请实施例中天线组件在电子设备中的布局示意图,如图12所示,第一天线单元110设置在顶部,第二天线单元120设置在上边角。图12中,Ant1对应第一馈源11,Ant2对应第二馈源12。需要说明的是,图12仅仅是一个示例,天线组件10在电子设备上的布局可以根据实际情况调整,图12并不用于限定本申请的保护范围。
本申请实施例提供的电子设备设置有本申请任一实施例提供的天线组件10,使得电子设备实现了多天线共体,提高了通信质量,而且有利于电子设备的整体小型化。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (17)

  1. 一种天线组件,其特征在于,包括:第一天线单元、第二天线单元;其中,
    所述第一天线单元包括第一辐射体及第一馈源,所述第一馈源与所述第一辐射体电连接,用于激励所述第一辐射体谐振于第一频段及第二频段;
    所述第二天线单元包括第二辐射体和第二馈源,所述第二馈源与所述第二辐射体电连接,用于激励所述第二辐射体谐振于第三频段;
    所述第一辐射体包括第一接地端及第一自由端,所述第二辐射体包括第二接地端及第二自由端;所述第一自由端与所述第二自由端间隔设置以形成缝隙,所述第一辐射体与所述第二辐射体通过所述缝隙耦合;所述第一接地端接地,所述第二接地端接地;
    所述第二馈源与所述第二辐射体电连接的连接点与所述第二接地端之间的距离大于预设距离,和/或所述第二接地端回地一侧的辐射体的宽度小于所述第二辐射体的宽度。
  2. 根据权利要求1所述的天线组件,其中,所述第一频段包括中高频MHB频段,所述第二频段包括超高频UHB频段,所述第三频段包括GPS-L5频段或GPS-L1频段或低频LB频段。
  3. 根据权利要求1所述的天线组件,所述第一辐射体具有第一馈电点;所述第一天线单元还包括:设置于所述第一馈电点与所述第一馈源之间的第一匹配电路;所述第一匹配电路用于过滤所述第一馈源传送的激励信号的杂波,形成所述第一频段的第一射频信号及所述第二频段的第二射频信号,并将所述第一射频信号及所述第二射频信号传送至所述第一辐射体,以激励所述第一辐射体谐振于所述第一频段及所述第二频段;
    和/或,
    所述第二辐射体具有第二馈电点;所述第二天线单元还包括:设置于所述第二馈电点与所述第二馈源之间的第二匹配电路;所述第二匹配电路用于过滤所述第二馈源传送的激励信号的杂波,形成所述第三频段的第三射频信号并将所述第三射频信号传送至所述第二辐射体,以激励所述第二辐射体谐振于所述第三频段。
  4. 根据权利要求3所述的天线组件,还包括:第二隔离电容、回路电感,以及近场通信NFC芯片;其中,
    所述第二隔离电容电连接在所述第二辐射体与所述第二参考地之间,所述第二隔离电容用于隔离NFC电流;
    所述回路电感电连接在所述第一匹配电路与所述第一辐射体连接的第一馈电点,和所述第二匹配电路与所述第二辐射体连接的第二馈电点之间,所述回路电感用于连接所述第一辐射体和所述第二辐射体以构成NFC天线的电流路径;
    所述NFC芯片的第一差分信号的端口连接于所述第一接地端的第一连接点,所述NFC芯片的第二差分信号的端口连接于所述第二接地端的第二连接点,所述NFC芯片用于提供差分激励电流;所述第一连接点至所述第二连接点之间的辐射体部分形成的导电路径,用于传输所述NFC芯片所产生的差分激励电流。
  5. 根据权利要求4所述的天线组件,还包括:第一隔离电容;
    所述第一隔离电容电连接在所述第一辐射体与所述第一参考地之间,所述第一隔离电容用于隔离NFC电流。
  6. 根据权利要求5所述的天线组件,其中,所述第一隔离电容的值为100pF;所述第二隔离电容的值为100pF;所述回路电感为一大电感。
  7. 根据权利要求6所述的天线组件,其中,所述回路电感的值不小于10nH。
  8. 根据权利要求1、4或5所述的天线组件,还包括:向所述第一辐射体的所述第一接地端外侧延伸的第三辐射体;和/或,
    向所述第二辐射体的所述第二接地端外侧延伸的第四辐射体。
  9. 根据权利要求8所述的天线组件,还包括:设置在所述第一接地端外侧的用于接地的第三接地端;和/或,设置在所述第二接地端外侧的用于接地的第四接地端。
  10. 根据权利要求9所述的天线组件,对于包括所述第四辐射体的情况,所述天线组件还包括:第四隔离电容;所述第四接地端通过所述第四隔离电容电连接第四参考地。
  11. 根据权利要求10所述的天线组件,对于包括所述第三辐射体的情况,所述天线组件还包括:第三隔离电容;所述第三接地端通过所述第三隔离电容电连接第三参考地。
  12. 根据权利要求1、3、4、5或8所述的天线组件,其中,所述第一接地端通过第一参考地接地;对应所述第一馈源的第一天线用于产生:
    所述第一参考地到所述缝隙的四分之一波长模式,用于支持第一子频段的电磁波信号的发射和/或接收;
    所述第二参考地到所述缝隙的八分之一至四分之一波长模式,同时存在电流经过所述缝隙耦合在所述第一参考地下地,用于支持第二子频段的电磁波信号的发射和/或接收;
    所述第一馈源到所述缝隙的四分之一波长模式,同时存在电流从所述第一参考地下地,用于支持第三子频段的电磁波信号的发射和/或接收;
    所述第二馈源到所述缝隙的四分之一波长模式,同时存在电流从所述第一馈源下 地,用于支持第四子频段的电磁波信号的发射和/或接收。
  13. 根据权利要求12所述的天线组件,其中,所述模式覆盖B1/B2/B3/B4/B7/B32/B39/B40/B41,WIFI2.4G,N41/N 77/N 78/N 79频段。
  14. 根据权利要求1、3、4、5或8所述的天线组件,其中,所述第二接地端通过第二参考地接地;对应所述第二馈源的第二天线的模式通过复合左右手CRLH形式激励。
  15. 根据权利要求14所述的天线组件,其中,所述模式覆盖GPS-L5频段或GPS-L1频段或LB频段。
  16. 一种电子设备,其特征在于,包括权利要求1~15任一项所述的天线组件。
  17. 根据权利要求16所述的电子设备,其中,所述天线组件中的第一天线单元设置在所述电子设备的顶部,所述天线组件中的第二天线单元设置在所述电子设备的上边角。
PCT/CN2023/100260 2022-08-31 2023-06-14 一种天线组件及电子设备 WO2024045766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211059162.3A CN115313037A (zh) 2022-08-31 2022-08-31 一种天线组件及电子设备
CN202211059162.3 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024045766A1 true WO2024045766A1 (zh) 2024-03-07

Family

ID=83863922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100260 WO2024045766A1 (zh) 2022-08-31 2023-06-14 一种天线组件及电子设备

Country Status (2)

Country Link
CN (1) CN115313037A (zh)
WO (1) WO2024045766A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116799523A (zh) * 2022-03-18 2023-09-22 荣耀终端有限公司 一种mimo天线系统
CN115313037A (zh) * 2022-08-31 2022-11-08 Oppo广东移动通信有限公司 一种天线组件及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170162948A1 (en) * 2015-12-08 2017-06-08 Industrial Technology Research Institute Antenna array
CN111279549A (zh) * 2018-04-24 2020-06-12 华为技术有限公司 一种近场通信天线系统和终端设备
CN113437520A (zh) * 2021-06-29 2021-09-24 RealMe重庆移动通信有限公司 天线装置及电子设备
CN114552181A (zh) * 2022-01-30 2022-05-27 Oppo广东移动通信有限公司 天线组件及电子设备
CN115313037A (zh) * 2022-08-31 2022-11-08 Oppo广东移动通信有限公司 一种天线组件及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170162948A1 (en) * 2015-12-08 2017-06-08 Industrial Technology Research Institute Antenna array
CN111279549A (zh) * 2018-04-24 2020-06-12 华为技术有限公司 一种近场通信天线系统和终端设备
CN113437520A (zh) * 2021-06-29 2021-09-24 RealMe重庆移动通信有限公司 天线装置及电子设备
CN114552181A (zh) * 2022-01-30 2022-05-27 Oppo广东移动通信有限公司 天线组件及电子设备
CN115313037A (zh) * 2022-08-31 2022-11-08 Oppo广东移动通信有限公司 一种天线组件及电子设备

Also Published As

Publication number Publication date
CN115313037A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
EP3896790B1 (en) Antenna structure and communication terminal
US9264011B2 (en) Impedance-matching switching circuit, antenna device, high-frequency power amplifying device, and communication terminal apparatus
WO2024045766A1 (zh) 一种天线组件及电子设备
CN113013594B (zh) 天线组件和电子设备
US11735809B2 (en) Antenna system and terminal device
US8525734B2 (en) Antenna device
CN109672019B (zh) 一种终端mimo天线装置及实现天线信号传输方法
US9065422B2 (en) Frequency stabilization circuit, antenna device, and communication terminal apparatus
CN103141031B (zh) 阻抗变换电路以及通信终端装置
EP2092641B1 (en) An apparatus for enabling two elements to share a common feed
WO2022142822A1 (zh) 天线组件和电子设备
US7834814B2 (en) Antenna arrangement
WO2004036687A1 (ja) 小型のマルチモードアンテナ及びそれを用いた高周波モジュール
US20190280383A1 (en) Apparatus with Partitioned Radio Frequency Antenna and Matching Network and Associated Methods
WO2023226392A1 (zh) 一种天线组件及电子设备
WO2013175903A1 (ja) アンテナ装置及びmimo無線装置
WO2023124646A1 (zh) 天线组件及电子设备
CN110829023B (zh) 天线模组及终端
WO2023160131A1 (zh) 天线组件和电子设备
US20220216608A1 (en) Apparatus with Partitioned Radio Frequency Antenna and Matching Network and Associated Methods
CN115133269A (zh) 天线组件及电子设备
WO2022218124A1 (zh) 天线和电子设备
WO2023273604A1 (zh) 天线模组及电子设备
WO2023273607A1 (zh) 天线模组及电子设备
CN114069227B (zh) 多频段天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858805

Country of ref document: EP

Kind code of ref document: A1