WO2023124646A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2023124646A1
WO2023124646A1 PCT/CN2022/133127 CN2022133127W WO2023124646A1 WO 2023124646 A1 WO2023124646 A1 WO 2023124646A1 CN 2022133127 W CN2022133127 W CN 2022133127W WO 2023124646 A1 WO2023124646 A1 WO 2023124646A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
radiator
antenna assembly
matching circuit
connection point
Prior art date
Application number
PCT/CN2022/133127
Other languages
English (en)
French (fr)
Inventor
吴小浦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023124646A1 publication Critical patent/WO2023124646A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors

Definitions

  • the present application relates to the technical field of communications, and in particular to an antenna assembly and electronic equipment.
  • an embodiment of the present application provides an antenna assembly, and the antenna assembly includes:
  • the first radiator includes a first ground terminal, a first free terminal, a first connection point and a second connection point, and the first connection point and the second connection point are located at the first between the ground terminal and the first free terminal;
  • the first matching circuit is electrically connected to the first connection point
  • the first signal source is electrically connected to the first matching circuit
  • a second signal source the second signal source is electrically connected to the second matching circuit;
  • the antenna assembly has a first resonance mode, a second resonance mode and a third resonance mode to support the LB frequency band, and support the MB frequency band , HB frequency band and UHB frequency band in one or two frequency bands.
  • an embodiment of the present application provides an electronic device, where the electronic device includes the antenna assembly as described in the first aspect.
  • FIG. 1 is a schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a return loss curve corresponding to a first resonance mode in the antenna assembly shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of return loss curves of the second resonant mode and the third resonant mode in the antenna assembly shown in FIG. 1 .
  • FIG. 4 is a schematic diagram of the main current flow in the first resonance mode.
  • FIG. 5 is a schematic diagram of the main current flow in the second resonance mode.
  • FIG. 6 is a schematic diagram of the main current flow in the third resonance mode.
  • FIG. 7 to 14 are schematic diagrams of the band-resistance sub-circuits provided in various embodiments, respectively.
  • Fig. 15 is a schematic diagram of an antenna assembly provided in another embodiment of the present application.
  • FIG. 16 is a schematic diagram of return loss curves corresponding to the second resonant mode, the third resonant mode and the fourth resonant mode in the antenna assembly shown in FIG. 15 .
  • FIG. 17 is a schematic diagram of the main current flow of the fourth resonant mode in the antenna assembly provided in FIG. 15 .
  • Fig. 18 is a schematic diagram of an antenna assembly provided in another embodiment of the present application.
  • FIG. 19 is a schematic diagram of a fourth matching circuit in FIG. 18 .
  • FIG. 20 is a schematic diagram of return loss curves corresponding to the return losses of the fifth resonant mode, the sixth resonant mode, and the seventh resonant mode supported by the antenna assembly in FIG. 18 .
  • FIG. 21 is a schematic diagram of the main current flow in the fifth resonance mode.
  • Fig. 22 is a schematic diagram of the main current flow in the sixth resonance mode.
  • FIG. 23 is a schematic diagram of the main current flow in the seventh resonance mode.
  • Fig. 24 is a schematic diagram of an antenna assembly provided in yet another embodiment of the present application.
  • FIG. 25 is a schematic diagram of return loss curves of the second mode, the fourth mode and the eighth mode supported by the antenna assembly in FIG. 24 .
  • FIG. 26 is a schematic diagram of the main current flow in the eighth resonance mode.
  • Fig. 27 is a schematic diagram of an antenna assembly provided in another embodiment of the present application.
  • FIG. 28 is a schematic diagram of return loss curves of the first resonant mode, the second resonant mode and the ninth resonant mode supported by the antenna assembly in FIG. 27 .
  • Fig. 29 is a schematic diagram of an antenna assembly provided in another embodiment of the present application.
  • Fig. 30 is a schematic diagram of the first antenna in the antenna assembly in an embodiment.
  • FIG. 31 is a schematic diagram of the second antenna in the antenna assembly in FIG. 30 .
  • FIG. 32 is a schematic diagram of a third antenna in the antenna assembly in an embodiment.
  • FIG. 33 is a three-dimensional structure diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 34 is a cross-sectional view of the electronic device in FIG. 33 along line I-I provided by an embodiment.
  • FIG. 35 is a schematic diagram of the position of the radiator in the antenna assembly in the electronic device in one embodiment.
  • an embodiment of the present application provides an antenna assembly, and the antenna assembly includes:
  • the first radiator includes a first ground terminal, a first free terminal, a first connection point and a second connection point, and the first connection point and the second connection point are located at the first between the ground terminal and the first free terminal;
  • the first matching circuit is electrically connected to the first connection point
  • the first signal source is electrically connected to the first matching circuit
  • a second signal source the second signal source is electrically connected to the second matching circuit;
  • the antenna assembly has a first resonance mode, a second resonance mode and a third resonance mode to support the LB frequency band, and support the MB frequency band , HB frequency band and UHB frequency band in one or two frequency bands.
  • connection point is adjacent to the first free end compared to the first connection point
  • the first resonance mode is used to support the transceiving of electromagnetic wave signals in the first frequency band
  • the second resonance mode is used to support the transceiving of electromagnetic wave signals in a second frequency band, wherein the frequency of the second frequency band is greater than the frequency of the first frequency band;
  • the third resonance mode is used to support the transceiving of electromagnetic wave signals in a third frequency band, wherein the frequency of the third frequency band is greater than the frequency of the second frequency band.
  • the first resonance mode is a 1/8-1/4 wavelength mode from the first ground terminal to the first free terminal;
  • the second resonant mode is a 1/4 wavelength mode from the first matching circuit to the first free end;
  • the third resonance mode is a 1/4 wavelength mode from the second matching circuit to the first free end.
  • the first frequency band is the LB frequency band; both the second frequency band and the third frequency band are located in the MB frequency band to the UHB frequency band, and the frequency of the second frequency band is lower than the frequency of the third frequency band.
  • the second frequency band is located in the MB frequency band
  • the third frequency band is located in the MB frequency band or the HB frequency band or the UHB frequency band;
  • the second frequency band is located in the HB frequency band
  • the third frequency band is located in the HB frequency band or the UHB frequency band; or,
  • the second frequency band is located in the UHB frequency band
  • the third frequency band is located in the UHB frequency band.
  • the second matching circuit tunes the second frequency band and the third frequency band supported by the first radiator according to preset matching parameters, so that when the second frequency band is in the UHB frequency band and the third When the frequency band is in the UHB frequency band, the second frequency band and the third frequency band jointly support frequency bands N77, N78 and N79.
  • the antenna assembly satisfies at least one of the following: the first matching circuit is used to isolate the second frequency band and the third frequency band; the second matching circuit is used to isolate the first frequency band.
  • the antenna assembly also includes:
  • the second radiator includes a second ground end and a second free end, the second ground end is grounded, and the second free end is adjacent to the first ground end compared to the second ground end
  • the free end is set, and the second free end has a gap with the first free end, and the second radiator is used to support the transmission and reception of electromagnetic wave signals in the fourth frequency band, wherein the frequency of the fourth frequency band is higher than the the frequency of the second frequency band, and the frequency of the fourth frequency band is lower than the frequency of the third frequency band.
  • the antenna assembly also has:
  • a fourth resonance mode where the fourth resonance mode is used to support the transceiving of electromagnetic wave signals in the fourth frequency band.
  • the fourth resonance mode is a 1/4 wavelength mode from the second ground terminal to the slot.
  • the second frequency band includes N77 frequency band
  • the third frequency band includes N79 frequency band
  • the fourth frequency band includes N78 frequency band.
  • At least one of the first radiator and the second radiator supports the full frequency band of WiFi-6E according to preset size parameters.
  • the antenna assembly also includes:
  • the second radiator includes a second ground end and a second free end, the second ground end is grounded, and the second free end is adjacent to the first ground end compared to the second ground end
  • the free end is set, and the second free end has a gap with the first free end, and also has a third connection point and a fourth connection point, and the third connection point and the fourth connection point are located at the first
  • the antenna assembly further includes:
  • the third matching circuit is electrically connected to the third connection point
  • the third signal source is electrically connected to the third matching circuit
  • a fourth matching circuit one end of the fourth matching circuit is electrically connected to the fourth connection point, and one end of the fourth matching circuit is grounded; the second radiator is used to support the transmission and reception of electromagnetic wave signals in the fifth frequency band .
  • the antenna component has a fourth resonant mode
  • the fourth resonant mode is used to support the transmission and reception of electromagnetic wave signals in the fourth frequency band
  • the fourth resonant mode is 1/2 of the fourth matching circuit to the slot
  • the fourth matching circuit is used to implement low impedance to ground for the fourth frequency band supported by the fourth resonance mode.
  • the fourth matching circuit includes:
  • one end of the matching capacitor is electrically connected to the fourth connection point;
  • a matching inductor one end of the matching inductor is electrically connected to the other end of the matching capacitor, and the other end of the matching inductor is grounded.
  • the antenna assembly has a fifth resonant mode, a sixth resonant mode, and a seventh resonant mode to jointly support the fifth frequency band;
  • the fifth resonance mode is a 1/4 wavelength mode from the second ground terminal to the slot;
  • the sixth resonance mode is a 1/4 wavelength mode from the third matching circuit to the slot;
  • the seventh resonance mode is 1/2 wavelength of the sum of the electrical length from the first matching circuit to the slot and the electrical length from the third matching circuit to the slot.
  • the first connection point coincides with the second connection point, and the first radiator is used to support the first frequency band and the second frequency band;
  • the second radiator is based on a preset size parameter, or at least one of the third matching circuit and the fourth matching circuit is based on a preset matching parameter, so that the second radiator has an eighth
  • the resonance mode, the eighth resonance mode is used to support the transmission and reception of electromagnetic wave signals in the third frequency band.
  • the eighth resonance mode is the 3/4 wavelength mode of the second radiator, wherein, the eighth resonance mode corresponds to the first sub-current and the second sub-current, wherein the first sub-current comes from the The slot is connected to the third connection point, and the second sub-current flows from the second ground terminal to the third connection point.
  • the first connection point coincides with the second connection point
  • the first radiator is used to support the first frequency band and the second frequency band
  • the antenna assembly further includes:
  • the third radiator the third radiator is electrically connected to the second matching circuit, the third radiator has a ninth resonant mode, and the ninth resonant mode is used to support the transmission and reception of electromagnetic wave signals in the third frequency band .
  • the length of the third radiator is 1/4 wavelength to 1/2 wavelength of the third frequency band.
  • the antenna assembly also includes:
  • a fifth matching circuit is electrically connected to the first radiator; when the antenna assembly further includes a second radiator, the fifth matching circuit is electrically connected to the first radiator or the second radiator.
  • the antenna assembly includes: a first antenna and a second antenna, the first antenna includes a first radiator, a first matching circuit and a first signal source, the second antenna includes a first radiator, a second The matching circuit, the second signal source, the first antenna and the second antenna are jointly used to implement ENDC and CA in the frequency range of 0MHz-5000MHz.
  • an embodiment of the present application provides an electronic device, wherein the electronic device includes the first aspect or the antenna assembly according to any one of the first aspect.
  • the present application provides an antenna assembly 10 .
  • the antenna assembly 10 can be applied to an electronic device 1 (see FIGS. 33 to 35 ), which includes, but is not limited to, a mobile phone, an Internet device (mobile internet device, MID), an electronic book, a portable playback station, etc. (Play Station Portable, PSP) or Personal Digital Assistant (Personal Digital Assistant, PDA) and other electronic devices with communication functions1.
  • an electronic device 1 includes, but is not limited to, a mobile phone, an Internet device (mobile internet device, MID), an electronic book, a portable playback station, etc. (Play Station Portable, PSP) or Personal Digital Assistant (Personal Digital Assistant, PDA) and other electronic devices with communication functions1.
  • FIG. 1 is a schematic diagram of an antenna assembly provided in an embodiment of the present application
  • FIG. 2 is a return loss curve corresponding to the first resonance mode in the antenna assembly shown in FIG. 1 Schematic diagram
  • FIG. 3 is a schematic diagram of the return loss curves of the second resonant mode and the third resonant mode in the antenna assembly shown in FIG. 1 .
  • the antenna assembly 10 includes a first radiator 110 , a first matching circuit M1 , a first signal source S1 , a second matching circuit M2 and a second signal source S2 .
  • the first radiator 110 includes a first ground terminal 111, a first free terminal 112, a first connection point P1 and a second connection point P2, and the first connection point P1 and the second connection point P2 are located at the Between the first ground end 111 and the first free end 112 .
  • the first matching circuit M1 is electrically connected to the first connection point P1.
  • the first signal source S1 is electrically connected to the first matching circuit M1.
  • the second matching circuit M2 is electrically connected to the second connection point P2.
  • the second signal source S2 is electrically connected to the second matching circuit M2; the antenna assembly 10 has a first resonance mode, a second resonance mode and a third resonance mode to support the LB frequency band, and support the MB frequency band, HB One or two frequency bands among the frequency band and the UHB frequency band.
  • the first radiator 110 can be a flexible printed circuit (Flexible Printed Circuit, FPC) antenna radiator or a laser direct structuring (Laser Direct Structuring, LDS) antenna radiator, or a printing direct structuring (Print Direct Structuring, PDS) Antenna radiator, or a metal branch.
  • FPC Flexible Printed Circuit
  • LDS Laser Direct Structuring
  • PDS printing direct structuring
  • the so-called signal source refers to the device that generates the excitation signal (radio frequency signal).
  • the first signal source S1 can generate a first excitation signal, and the first excitation signal is loaded onto the first radiator 110 through the first matching circuit M1 and the first connection point P1, So that the first radiator 110 radiates electromagnetic wave signals according to the first excitation signal.
  • the second signal source S2 can generate a second excitation signal, and the second excitation signal is loaded onto the first radiator 110 through the second matching circuit M2 and the second connection point P2, So that the first radiator 110 radiates electromagnetic wave signals according to the second excitation signal.
  • the first radiator 110 transmits and receives electromagnetic wave signals in the LB frequency band according to the first excitation signal generated by the first signal source S1.
  • the second radiator 120 transmits and receives electromagnetic wave signals in one or two frequency bands of the MB frequency band, the HB frequency band and the UHB frequency band according to the second excitation signal generated by the first signal source S1.
  • the first radiator 110 transmits and receives electromagnetic wave signals in the LB frequency band according to the first excitation signal generated by the first signal source S1.
  • the first radiator 110 transmits and receives one frequency band among the MB frequency band, the HB frequency band and the UHB frequency band according to the second excitation signal generated by the second signal source S2;
  • the second signal source S2 transmits and receives electromagnetic wave signals in two frequency bands among the MB frequency band, the HB frequency band and the UHB frequency band.
  • the first radiator 110 transmits and receives one frequency band among the MB frequency band, the HB frequency band and the UHB frequency band according to the second excitation signal generated by the second signal source S2
  • the first radiator 110 transmits and receives electromagnetic wave signals in two frequency bands of the MB frequency band, the HB frequency band and the UHB frequency band according to the second signal source S2, it specifically includes: the first radiator 110 according to the The second signal source S2 transmits and receives the MB frequency band and the HB frequency band; or, the MB frequency band and the UHB frequency band; or, the HB frequency band and the UHB frequency band.
  • the first resonance mode is used to support the transmitting and receiving of electromagnetic wave signals in the first frequency band.
  • the second resonance mode is used to support the transceiving of electromagnetic wave signals in a second frequency band, wherein the frequency of the second frequency band is higher than the frequency of the first frequency band.
  • the third resonance mode is used to support the transceiving of electromagnetic wave signals in a third frequency band, wherein the frequency of the third frequency band is greater than the frequency of the second frequency band.
  • the first resonance mode, the second resonance mode and the third resonance mode is used to support the transmitting and receiving of electromagnetic wave signals in the first frequency band.
  • the second resonance mode is used to support the transceiving of electromagnetic wave signals in a second frequency band, wherein the frequency of the second frequency band is higher than the frequency of the first frequency band.
  • the third resonance mode is used to support the transceiving of electromagnetic wave signals in a third frequency band, wherein the frequency of the third frequency band is greater than the frequency of the second frequency band.
  • the first matching circuit M1 is used to adjust the current distribution of the resonant mode supported by the first radiator 110 of the first matching circuit M1, and then adjust the width of the frequency band and the resonant frequency corresponding to the corresponding resonant mode. wait. Specifically, in this embodiment, the first matching circuit M1 is used to adjust the width and resonance frequency of the electromagnetic wave signal of the first frequency band transmitted and received by the first radiator 110 .
  • the second matching circuit M2 is used to adjust the current distribution of the resonant mode supported by the first radiator 110 of the second matching circuit M2, and then adjust the width of the frequency band and the resonant frequency corresponding to the corresponding resonant mode. point. Specifically, in this embodiment, the second matching circuit M2 is used to adjust the resonance frequency of the electromagnetic wave signal of the second frequency band transmitted and received by the first radiator 110; or, the second matching circuit M1 is used to The resonant frequency points of the electromagnetic wave signals of the second frequency band and the third frequency band transmitted and received by the first radiator 110 are adjusted.
  • the specific structures of the first matching circuit M1 and the second matching circuit M2 will be described in detail later.
  • the first connection point P1 does not coincide with the second connection point P2. In other words, the first connection point P1 and the second connection point P2 are spaced apart. In this embodiment, the second connection point P2 is closer to the first free end 112 than the first connection point P1.
  • the frequency of the electromagnetic wave signal in the second frequency band is greater than the frequency of the electromagnetic wave signal in the first frequency band
  • the frequency of the electromagnetic wave signal in the third frequency band is greater than the frequency of the electromagnetic wave signal in the second frequency band (That is, the frequency of the second frequency band is smaller than the frequency of the third frequency band).
  • the first frequency band includes a low frequency (Lower Band, LB) frequency band
  • the second frequency band range is located in an ultra high frequency (Ultra High Band, UHB) frequency band
  • the third frequency band is located in UHB
  • the frequency of the second frequency band is lower than the frequency of the third frequency band.
  • the frequency of the electromagnetic wave signal in the second frequency band is greater than the frequency of the electromagnetic wave signal in the first frequency band
  • the frequency of the electromagnetic wave signal in the third frequency band is greater than that of the electromagnetic wave signal in the second frequency band
  • the frequency of the signal that is, the frequency of the second frequency band is lower than the frequency of the third frequency band
  • the second frequency band and the third frequency band are located in the middle frequency (Middle Band) to ultra high frequency (Ultra High Band, UHB) frequency band.
  • the frequency bands from Middle Band to Ultra High Band (UHB) include: Middle Band (MB), High Band (HB), and Ultra High Band (UHB).
  • the second frequency band and the third frequency band include the following situations.
  • the second frequency band is located in the MB frequency band, and the third frequency band is located in the MB frequency band or the HB frequency band or the UHB frequency band.
  • the second frequency band is located in the HB frequency band, and the third frequency band is located in the HB frequency band or the UHB frequency band.
  • the second frequency band is located in the UHB frequency band, and the third frequency band is located in the UHB frequency band.
  • the so-called LB frequency band refers to a frequency band with a frequency lower than 1000 MHz, that is, the frequency f of the low frequency band satisfies: f ⁇ 1000 MHz.
  • Intermediate frequency and high frequency may be referred to as medium and high frequency (MHB), and the range of the MHB frequency band is: 1000MHz-3000MHz, that is, the frequency f of the MHB frequency band satisfies: 1000MHz ⁇ f ⁇ 3000MHz.
  • the range of the intermediate frequency (MB) frequency band is 1000MHz-2200MHz, that is, the frequency f of the MB frequency band satisfies: 1000MHz ⁇ f ⁇ 2200MHz;
  • the frequency range of the HB frequency band is 2200MHz-3000MHz, that is, the The frequency f of the HB frequency band satisfies: 2200MHz ⁇ f ⁇ 3000MHz.
  • the range of the so-called UHB frequency band is: 3000MHz-10000MHz, that is, the frequency of the UHB frequency band satisfies: 3000MHz ⁇ f ⁇ 10000MHz.
  • the first signal source S1 is electrically connected to the first radiator 110 through the first matching circuit M1
  • the second signal source S2 is electrically connected to the first radiator 110 through the second matching circuit M2.
  • the first radiator 110 so that the antenna assembly 10 has a first resonant mode, a second resonant mode and a third resonant mode, so as to support the LB frequency band, and support one or both of the MB frequency band, the HB frequency band and the UHB frequency band. Therefore, the antenna assembly 10 can support the transmission and reception of electromagnetic wave signals in more frequency bands at the same time, that is, it can support a wider frequency band, so the antenna assembly 10 has better communication performance.
  • the frequency band supported by the first resonant mode correspondingly, through the second The frequency band supported by the second resonance mode can be seen from the return loss curve of the resonance mode, and the frequency band supported by the third resonance mode can be seen from the return loss curve of the third resonance mode.
  • the horizontal axis is frequency (f) in MHz
  • the vertical axis is RL in dB
  • the horizontal axis is frequency (f)
  • the unit is MHz
  • the vertical axis is RL, and the unit is dB.
  • the second connection point P2 is adjacent to the first free end 112 compared to the first connection point P1, and the antenna assembly 10 has a first resonance mode (marked as mode 1 in the figure), a second resonance mode (marked as mode 2 in the figure) and a third resonant mode (marked as mode 3 in the figure).
  • the first resonance mode is used to support the transceiving of electromagnetic wave signals in the first frequency band.
  • the second resonance mode is used to support the transceiving of electromagnetic wave signals in the second frequency band.
  • the third resonance mode is used to support the transceiving of electromagnetic wave signals in the third frequency band.
  • the first matching circuit M1 includes a switch or a variable capacitor, and the first matching circuit M1 sets the switch and the variable capacitor according to preset matching parameters to achieve better coverage of the first frequency band The LB band.
  • the second frequency band supported by the second resonance mode is located in the UHB frequency band
  • the third frequency band supported by the third resonance mode is also located in the UHB frequency band
  • the frequency of the third frequency band is greater than that of the first frequency band.
  • the second matching circuit M2 includes a switch and a variable capacitor, and the second matching circuit M2 adjusts the switch and the variable capacitor according to preset matching parameters, so that the second frequency band and the third frequency band Better coverage of UHB bands, such as N77, N78 and N79.
  • the preset matching parameters in the second matching circuit M2 are related to the second frequency band and the third frequency band, and the preset matching parameters in the first matching circuit M1 are related to the first The frequency band is related, and the preset matching parameters in the second matching circuit M2 are not necessarily related to the preset matching parameters in the first matching circuit M1.
  • the second matching circuit M2 tunes the second frequency band and the third frequency band supported by the first radiator 110 according to preset matching parameters, so that when the second frequency band is in UHB frequency band and the third frequency band is in the UHB frequency band, the second frequency band and the third frequency band jointly support frequency bands N77, N78 and N79.
  • FIG. 4 is a schematic diagram of the main current flow in the first resonance mode. It can be seen from FIG. 4 that the current corresponding to the first resonance mode is from the first ground terminal 111 to the first free terminal 112 . It should be noted that, in this application, the schematic diagrams of the main current flow directions of each mode reflect the main current flow directions in each mode, not all the current flow directions.
  • the first resonance mode is a 1/8-1/4 wavelength mode from the first ground end 111 to the first free end 112 .
  • FIG. 5 is a schematic diagram of the main current flow in the second resonance mode. It can be seen from FIG. 5 that the current corresponding to the second resonance mode flows from the first matching circuit M1 to the first free end 112 .
  • the second resonant mode is a 1/4 wavelength mode from the first matching circuit M1 to the first free end 112 .
  • FIG. 6 is a schematic diagram of the main current flow in the third resonance mode. It can be seen from FIG. 6 that the current corresponding to the third resonance mode flows from the second matching circuit M2 to the first free end 112 .
  • the third resonance mode is a 1/4 wavelength mode from the second matching circuit M2 to the first free end 112 .
  • the antenna component 10 has the first resonant mode, the second resonant mode and the third resonant mode at the same time, therefore, the antenna component 10 can realize simultaneous operation of multiple resonant modes, thereby supporting Wide frequency band, therefore, the antenna assembly 10 has better communication performance.
  • the antenna assembly 10 satisfies at least one of the following: the first matching circuit M1 is used to isolate the second frequency band and the third frequency band; the second matching circuit M2 is used to isolate the first frequency band .
  • the first matching circuit M1 includes one or more band stop sub-circuits 151 to isolate the second frequency band from the first The influence of the frequency band.
  • the first matching circuit M1 includes one or more band stop sub-circuits 151 to isolate the second frequency band and The influence of the third frequency band on the first channel.
  • the second matching circuit M2 includes one or more band stop sub-circuits 151 to isolate the first frequency band from the The impact of the second frequency band described above.
  • the second matching circuit M2 includes one or more band stop sub-circuits 151 to isolate the first frequency band from the The influence of the second frequency band and the third frequency band.
  • the band rejection sub-circuit 151 is also called a frequency selection filter sub-circuit.
  • FIG. 7-FIG. 14 are schematic diagrams of band-stop sub-circuits provided in various implementations.
  • the band resistance sub-circuit 151 includes a circuit formed by an inductor L0 connected in series with the capacitor C0 .
  • the band resistance sub-circuit 151 includes a circuit formed by connecting an inductor L0 and a capacitor C0 in parallel.
  • the band resistance sub-circuit 151 includes an inductor L0 , a first capacitor C1 , and a second capacitor C2 .
  • the inductor L0 is connected in parallel with the first capacitor C1, and the second capacitor C2 is electrically connected to a node where the inductor L0 is electrically connected to the first capacitor C1.
  • the band-stop sub-circuit 151 includes a capacitor C0 , a first inductor L1 , and a second inductor L2 .
  • the capacitor C0 is connected in parallel with the first inductor L1, and the second inductor L2 is electrically connected to a node where the capacitor C0 is electrically connected to the first inductor L1.
  • the band-stop sub-circuit 151 includes an inductor L0 , a first capacitor C1 , and a second capacitor C2 .
  • the inductor L0 is connected in series with the first capacitor C1, and one end of the second capacitor C2 is electrically connected to the first end of the inductor L0 not connected to the first capacitor C1, and the other end of the second capacitor C2 Electrically connect to one end of the first capacitor C1 that is not connected to the inductor L0.
  • the band-stop sub-circuit 151 includes a capacitor C0 , a first inductor L1 , and a second inductor L2 .
  • the capacitor C0 is connected in series with the first inductor L1, one end of the second inductor L2 is electrically connected to one end of the capacitor C0 not connected to the first inductor L1, and the other end of the second inductor L2 is electrically connected to the first inductor L2.
  • An inductor L1 is not connected to one end of the capacitor C0.
  • the band-stop sub-circuit 151 includes a first capacitor C1 , a second capacitor C2 , a first inductor L1 , and a second inductor L2 .
  • the first capacitor C1 is connected in parallel with the first inductance L1
  • the second capacitor C2 is connected in parallel with the second inductance L2
  • the second capacitor C2 is connected in parallel with the second inductance L2 to form one end of the whole
  • One end of the whole formed by the parallel connection of the first capacitor C1 and the first inductor L1 is electrically connected.
  • the band-stop sub-circuit 151 includes a first capacitor C1, a second capacitor C2, a first inductor L1, and a second inductor L2, and the first capacitor C1 and the
  • the first inductor L1 is connected in series to form a first unit 151a
  • the second capacitor C2 and the second inductor L2 are connected in series to form a second unit 151b
  • the first unit 151a and the second unit 151b are connected in parallel.
  • FIG. 15 is a schematic diagram of an antenna assembly provided in another embodiment of the present application.
  • the antenna assembly 10 includes a first radiator 110 , a first matching circuit M1 , a first signal source S1 , a second matching circuit M2 and a second signal source S2 .
  • the first radiator 110 includes a first ground terminal 111, a first free terminal 112, a first connection point P1 and a second connection point P2, and the first connection point P1 and the second connection point P2 are located at the Between the first ground end 111 and the first free end 112 .
  • the first matching circuit M1 is electrically connected to the first connection point P1.
  • the first signal source S1 is electrically connected to the first matching circuit M1.
  • the second matching circuit M2 is electrically connected to the second connection point P2.
  • the second signal source S2 is electrically connected to the second matching circuit M2.
  • the first radiator 110 is used to support the transmission and reception of electromagnetic wave signals in the first frequency band, the second frequency band and the third frequency band.
  • the antenna assembly 10 further includes a second radiator 120 .
  • the second radiator 120 includes a second ground end 121 and a second free end 122, the second ground end 121 is grounded, and the second free end 122 is adjacent to the second ground end 121 compared to the second ground end 121.
  • a free end 112 is provided, and the second free end 122 and the first free end 112 have a gap 120a.
  • the second radiator 120 is used to support the transceiving of electromagnetic wave signals in a fourth frequency band, wherein the frequency of the fourth frequency band is greater than the frequency of the second frequency band, and the frequency of the fourth frequency band is lower than that of the third frequency band. frequency of the band.
  • the second radiator 120 is coupled to the first radiator 110 , and in this embodiment, the second radiator 120 serves as a coupling branch of the first radiator 110 .
  • the second radiator 120 may be a flexible printed circuit (Flexible Printed Circuit, FPC) antenna radiator, or a laser direct structuring (Laser Direct Structuring, LDS) antenna radiator, or a printing direct structuring (Print Direct Structuring, PDS) antenna radiator.
  • FPC Flexible Printed Circuit
  • LDS Laser Direct Structuring
  • PDS printing direct structuring
  • the type of the second radiator 120 may be the same as that of the first radiator 110 or may be different from that of the first radiator 110 , which is not limited in this application.
  • the size d of the gap 120a between the first radiator 110 and the second radiator 120 satisfies: 0.5mm ⁇ d ⁇ 1.5mm.
  • the gap 120a between the radiator of the first antenna 10a and the radiator of the second antenna 10b120 in the antenna assembly 10 satisfies d: 0.5mm ⁇ d ⁇ 1.5mm, so A better coupling effect between the first radiator 110 and the second radiator 120 can be ensured.
  • the dimensions of the first radiator 110 and the second radiator 120 in the antenna assembly 10 are combined into the antenna assembly 10 shown in FIG.
  • the gap 120a between the first radiator 110 and the second radiator 120 is also applicable to the antenna assembly 10 provided in other embodiments.
  • the antenna assembly 10 has the first resonant mode, the second resonant mode and the third resonant mode at the same time, therefore, the antenna assembly 10 can realize multiple The two resonant modes work at the same time, thereby being able to support a wider frequency band, therefore, the antenna assembly 10 has better communication performance.
  • the second radiator 120 is added to support the transmission and reception of electromagnetic wave signals in the fourth frequency band. Therefore, the antenna assembly 10 provided by the embodiment of the present application can support more frequency band, therefore, the antenna assembly 10 has better communication performance.
  • FIG. 16 is a schematic diagram of return loss curves corresponding to the second resonant mode, the third resonant mode and the fourth resonant mode in the antenna assembly shown in FIG. 15 .
  • the horizontal axis represents frequency (f) in MHz
  • the vertical axis represents RL in dB.
  • the antenna assembly 10 has a second resonant mode (abbreviated as mode 2 in the figure), a third resonant mode (abbreviated as mode 3 in the figure) and a fourth resonant mode (abbreviated as mode 4 in the figure).
  • the second resonance mode is used to support the transceiving of electromagnetic wave signals in the second frequency band.
  • the third resonance mode is used to support the transceiving of electromagnetic wave signals in the third frequency band.
  • the fourth resonance mode is used to support the transceiving of electromagnetic wave signals in the fourth frequency band.
  • the antenna assembly 10 can realize simultaneous operation of multiple resonant modes, Furthermore, a wider frequency band can be supported, so the antenna assembly 10 has better communication performance.
  • FIG. 17 is a schematic diagram of the main current flow of the fourth resonant mode in the antenna assembly provided in FIG. 15 . It can be seen from FIG. 17 that the current corresponding to the fourth resonance mode flows from the second ground terminal 121 to the slot 120a.
  • the fourth resonant mode of the antenna assembly 10 is a 1/4 wavelength mode from the second ground terminal 121 to the slot 120a.
  • the second frequency band includes the N77 frequency band
  • the third frequency band includes the N79 frequency band
  • the fourth frequency band includes the N78 frequency band.
  • the second frequency band, the third frequency band and the fourth frequency band may also be located between intermediate frequency (Middle Band) and ultra high frequency (Ultra High Band, UHB) frequency bands Any frequency band, as long as the frequency of the second frequency band is less than the frequency of the fourth frequency band, and the frequency of the fourth frequency band is less than the frequency of the third frequency band.
  • At least one of the first radiator 110 and the second radiator 120 of the antenna assembly 10 supports the full frequency band of WiFi-6E according to preset size parameters.
  • the frequency of the electromagnetic wave signal supported by the antenna assembly 10 is relatively low; correspondingly, when the first radiator 110 and the When the size of the second radiator 120 is small, the frequency of the electromagnetic wave signal supported by the antenna assembly 10 is relatively high.
  • the second frequency band, the third frequency band and the fourth frequency band are located between 3000 MHz and 5000 MHz.
  • the range of WiFi-6E frequency band is: 5150MHz ⁇ 7125MHz.
  • the size of at least one of the first radiator 110 and the second radiator 120 includes at least one of the following situations: the first The size of the radiator 110 is smaller than that of the first radiator 110 in FIG. 15 , and the size of the second radiator 120 is smaller than that of the second radiator 120 in FIG. 15 .
  • at least one of the first radiator 110 and the second radiator 120 supports the full frequency band of WiFi-6E according to preset size parameters.
  • the antenna assembly 10 can support a frequency band with a higher frequency and have better communication effect.
  • the first radiator 110 and the second radiator 120 supports the second resonant mode, the fourth resonant mode and the The third resonance mode jointly supports the full frequency band of WiFi-6E.
  • the fourth resonance mode and the third resonance mode of the antenna component 10 are located in the UHB frequency band (for example, N77, N78 and N79), the antenna component 10
  • the second resonant mode, the fourth resonant mode and the third resonant mode jointly support the WiFi-6E full frequency band
  • the second resonant mode, the fourth resonant mode and the third resonant mode that support the WiFi-6E full frequency band are overall Shifted to high frequency.
  • FIG. 18 is a schematic diagram of an antenna assembly provided in another embodiment of the present application.
  • the antenna assembly 10 includes a first radiator 110 , a first matching circuit M1 , a first signal source S1 , a second matching circuit M2 and a second signal source S2 .
  • the first radiator 110 includes a first ground terminal 111, a first free terminal 112, a first connection point P1 and a second connection point P2, and the first connection point P1 and the second connection point P2 are located at the Between the first ground end 111 and the first free end 112 .
  • the first matching circuit M1 is electrically connected to the first connection point P1.
  • the first signal source S1 is electrically connected to the first matching circuit M1.
  • the second matching circuit M2 is electrically connected to the second connection point P2.
  • the second signal source S2 is electrically connected to the second matching circuit M2.
  • the antenna assembly 10 further includes a second radiator 120 .
  • the second radiator 120 includes a second ground end 121 and a second free end 122 .
  • the second ground terminal 121 is grounded, the second free terminal 122 is arranged adjacent to the first free terminal 112 compared to the second ground terminal 121, and the second free terminal 122 is connected to the first free terminal 122.
  • the end 112 has a slit 120a, and also has a third connection point P3 and a fourth connection point P4, the third connection point P3 and the fourth connection point P4 are located at the second ground terminal 121 and the second free end Between 122.
  • the antenna assembly 10 further includes a third matching circuit M3, a third signal source S3 and a fourth matching circuit M4.
  • the third matching circuit M3 is electrically connected to the third connection point P3.
  • the third signal source S3 is electrically connected to the third matching circuit M3.
  • One end of the fourth matching circuit M4 is electrically connected to the fourth connection point P4, and one end of the fourth matching circuit M4 is grounded; the second radiator 120 is used to support the transmission and reception of electromagnetic wave signals in the fifth frequency band.
  • the second radiator 120 may be a flexible printed circuit (Flexible Printed Circuit, FPC) antenna radiator, or a laser direct structuring (Laser Direct Structuring, LDS) antenna radiator, or a printing direct structuring (Print Direct Structuring, PDS) antenna radiator. Antenna radiator, or a metal branch.
  • the type of the second radiator 120 may be the same as that of the first radiator 110 or may be different from that of the first radiator 110 , which is not limited in this application.
  • the fifth frequency band is an MHB frequency band.
  • the antenna assembly 10 further includes a third matching circuit M3, a third signal source S3, and a fourth matching circuit M4, so that the second radiator 120 in the antenna assembly 10 also supports the fifth frequency band
  • the antenna assembly 10 supports more frequency bands at the same time, and the antenna assembly 10 has a better communication effect.
  • the fourth matching circuit M4 is used to implement a low impedance to ground for the fourth frequency band supported by the fourth resonance mode.
  • the fourth matching circuit M4 is used to support the fourth resonant mode and adjust the current distribution corresponding to the fourth resonant mode, thereby adjusting the width of the fourth frequency band and the resonant frequency point.
  • the fourth matching circuit M4 may be directly connected to the ground, or a large capacitor may be connected to the ground, or a small inductance may be connected to the ground.
  • the fifth frequency band is an MHB frequency band.
  • the fourth matching circuit M4 is used to realize the low impedance to the ground of the fourth frequency band supported by the fourth resonant mode, and the fourth matching circuit M4 presents a small capacitance to the fifth channel, reducing the impact on the The effects of the fifth band.
  • the third matching circuit M3 may include active devices such as switches or variable capacitors.
  • the fourth matching circuit M4 may include a switch or a variable capacitor.
  • FIG. 19 is a schematic diagram of the fourth matching circuit in FIG. 18 .
  • the fourth matching circuit M4 includes a matching capacitor C11 and a matching inductor L11. One end of the matching capacitor C11 is electrically connected to the fourth connection point P4. One end of the matching inductor L11 is electrically connected to the other end of the matching capacitor C11, and the other end of the matching inductor L11 is grounded.
  • the matching capacitor C11 when the fifth frequency band is the MHB frequency band, the matching capacitor C11 has a capacitance of 0.2pF (picofarads), and the matching inductor L11 has an inductance of 6.8nH (nanohenry).
  • FIG. 20 is a schematic diagram of the return loss curves corresponding to the return losses of the fifth resonant mode, the sixth resonant mode and the seventh resonant mode supported by the antenna assembly in FIG. 18 .
  • the horizontal axis represents frequency (f) in MHz
  • the vertical axis represents RL in dB.
  • the antenna assembly 10 has a fifth resonant mode (abbreviated as mode 5 in the figure), a sixth resonant mode (abbreviated as mode 6 in the figure) and a seventh resonant mode (abbreviated as mode 7 in the figure) to jointly support the first Five bands.
  • FIG. 21 is a schematic diagram of the main current flow in the fifth resonance mode.
  • the current corresponding to the fifth resonance mode flows from the second ground terminal 121 to the slot 120a.
  • the fifth resonance mode is a 1/4 wavelength mode from the second ground terminal 121 to the slot 120a.
  • FIG. 22 is a schematic diagram of the main current flow in the sixth resonance mode.
  • the current corresponding to the sixth resonance mode is from the third matching circuit M3 to the gap 120a.
  • the sixth resonant mode is a 1/4 wavelength mode from the third matching circuit M3 to the slot 120a.
  • FIG. 23 is a schematic diagram of the main current flow in the seventh resonance mode.
  • the current corresponding to the seventh resonance mode includes: a sub-current I11 from the first matching circuit M1 to the slot 120a, and a sub-current I22 from the third matching circuit M3 to the slot 120a.
  • the seventh resonant mode is a 1/2 wavelength mode of the sum of the electrical length from the first matching circuit M1 to the slot 120a and the electrical length from the third matching circuit M3 to the slot 120a.
  • the antenna assembly 10 still has a fourth resonance mode, the fourth resonance mode is used to support the transmission and reception of electromagnetic wave signals in the fourth frequency band, and the fourth resonance mode is the
  • the fourth matching circuit M4 is connected to the 1/4 wavelength mode of the slot 120a.
  • FIG. 24 is a schematic diagram of an antenna assembly provided in another embodiment of the present application
  • FIG. 25 is a return to the second mode, the fourth mode, and the eighth mode supported by the antenna assembly in FIG. Schematic diagram of the wave loss curve.
  • the horizontal axis represents frequency (f) in units of MHz
  • the vertical axis represents RL in units of dB.
  • the first connection point P1 and the second connection point P2 are arranged at intervals.
  • the antenna assembly 10 includes a first radiator 110 , a first matching circuit M1 , a first signal source S1 , a second matching circuit M2 and a second signal source S2 .
  • the first radiator 110 includes a first ground terminal 111, a first free terminal 112, a first connection point P1 and a second connection point P2, and the first connection point P1 and the second connection point P2 are located at the Between the first ground end 111 and the first free end 112 .
  • the first matching circuit M1 is electrically connected to the first connection point P1.
  • the first signal source S1 is electrically connected to the first matching circuit M1.
  • the second matching circuit M2 is electrically connected to the second connection point P2.
  • the second signal source S2 is electrically connected to the second matching circuit M2.
  • the antenna assembly 10 further includes a second radiator 120 .
  • the second radiator 120 includes a second ground end 121 and a second free end 122 .
  • the second ground terminal 121 is grounded, the second free terminal 122 is arranged adjacent to the second free terminal 122 compared to the second ground terminal 121, and the second free terminal 122 is connected to the first free terminal 122.
  • the end 112 has a slit 120a, and also has a third connection point P3 and a fourth connection point P4, the third connection point P3 and the fourth connection point P4 are located at the second ground terminal 121 and the second free end Between 122.
  • the antenna assembly 10 further includes a third matching circuit M3, a third signal source S3 and a fourth matching circuit M4.
  • the third matching circuit M3 is electrically connected to the third connection point P3.
  • the third signal source S3 is electrically connected to the third matching circuit M3.
  • One end of the fourth matching circuit M4 is electrically connected to the fourth connection point P4, and one end of the fourth matching circuit M4 is grounded.
  • the first connection point P1 coincides with the second connection point P2, and the first radiator 110 is used to support the first frequency band and the second frequency band.
  • the second radiator 120 is based on a preset size parameter, or at least one of the third matching circuit M3 and the fourth matching circuit M4 is based on a preset matching parameter, so that the second radiator 120 has an eighth resonance mode, and the eighth resonance mode is used to support transceiving of electromagnetic wave signals in the third frequency band.
  • the first connection point P1 coincides with the second connection point P2, the third resonance mode disappears, and the antenna assembly 10 has a second resonance mode (abbreviated as mode 2 in the figure),
  • the fourth resonance mode (abbreviated as mode 4 in the figure)
  • the eighth resonance mode (abbreviated as mode 8 in the figure).
  • the second radiator 120 is based on a preset size parameter, or at least one of the third matching circuit M3 and the fourth matching circuit M4 is based on a preset matching parameter, so that the second radiator 120 has an eighth resonance mode, and the eighth resonance mode is used to support transceiving of electromagnetic wave signals in the third frequency band.
  • the antenna assembly 10 provided by the embodiment of the present application can not only support the transmission and reception of electromagnetic wave signals in the first frequency band and the second frequency band at the same time, but also support the transmission and reception of electromagnetic wave signals in the third frequency band. There are more frequency bands supported at all times, and the antenna assembly 10 has a better communication effect.
  • FIG. 26 is a schematic diagram of main current flow in the eighth resonance mode. It can be seen from FIG. 26 that the eighth resonance mode corresponds to the first sub-current I1 and the second sub-current I2, the first sub-current I1 is from the slit 120a to the third connection point P3, and the second sub-current The current I2 flows from the second ground terminal 121 to the third connection point P3.
  • the eighth resonance mode is the 3/4 wavelength mode of the second radiator 120 .
  • the antenna assembly 10 in addition to supporting the eighth resonance mode, the antenna assembly 10 can still support the fifth resonance mode, the sixth resonance mode and the seventh resonance mode.
  • FIG. 27 is a schematic diagram of an antenna assembly provided in another embodiment of the present application
  • FIG. 28 shows the first resonance mode, the second resonance mode and the ninth resonance supported by the antenna assembly in FIG. 27 Schematic diagram of the return loss curve of the mode.
  • the horizontal axis represents frequency (f) in units of MHz
  • the vertical axis represents RL in units of dB.
  • the antenna assembly 10 provided in this embodiment is basically the same as the antenna assembly 10 provided in FIG. 24 and related descriptions.
  • the first connection point P1 coincides with the second connection point P2.
  • the first radiator 110 is used for The first frequency band and the second frequency band are supported.
  • the antenna assembly 10 further includes a third radiator 130.
  • the third radiator 130 is electrically connected to the second matching circuit M2, the third radiator 130 has a ninth resonant mode, and the ninth resonant mode is used to support the transceiving of electromagnetic wave signals in the third frequency band.
  • the antenna assembly 10 supports the first resonance mode (abbreviated as mode 1 in the figure), the second resonance mode (abbreviated as mode 2 in the figure) and the ninth resonance mode (abbreviated as mode 2 in the figure). Abbreviated as mode 9).
  • the antenna assembly 10 further includes a third radiator 130 combined into the antenna assembly 10 provided in the previous embodiment. It can be understood that the The antenna assembly 10 further includes a third radiator 130 which may also be incorporated into the antenna assembly 10 provided in any of the foregoing implementation manners.
  • the third radiator 130 serves as a parasitic branch of the first radiator 110 .
  • the third radiator 130 can be a flexible circuit board (Flexible Printed Circuit, FPC) antenna radiator or a laser direct structuring (Laser Direct Structuring, LDS) antenna radiator, or a printing direct structuring (Print Direct Structuring, PDS) Antenna radiator, or a metal branch.
  • the type of the third radiator 130 may be the same as that of the first radiator 110 , or may be different from that of the first radiator 110 , which is not limited in this application.
  • the third radiator 130 has a ninth resonant mode, and the ninth resonant mode is used to support the transceiving of electromagnetic wave signals in the third frequency band.
  • the third radiator 130 in the antenna assembly 10 has a ninth resonant mode, thereby replacing the previous third resonant mode. Since the frequency band supported by the ninth resonance mode and the third resonance mode are the same, that is, both support the third frequency band, the antenna assembly 10 provided in the embodiment of the present application has more resonance modes at the same time, That is, it can still support the transmission and reception of electromagnetic wave signals in more frequency bands, and has better communication performance.
  • the length of the third radiator 130 is 1/4 wavelength to 1/2 wavelength of the third frequency band.
  • FIG. 29 is a schematic diagram of an antenna assembly provided in another embodiment of the present application.
  • the antenna assembly 10 further includes a fifth matching circuit M5.
  • the fifth matching circuit M5 is electrically connected to the first radiator 110 or the second radiator 120 .
  • it is illustrated by taking the fifth matching circuit M5 electrically connected to the first radiator 110 as an example.
  • the antenna assembly 10 further includes a fifth matching circuit M5 combined into the antenna assembly 10 provided in the previous embodiment. It can be understood that the The antenna assembly 10 further includes a fifth matching circuit M5 which may also be incorporated into the antenna assembly 10 provided in any of the foregoing implementation manners.
  • the fifth matching circuit M5 is electrically connected to the first radiator 110 or the second radiator 120 , and the fifth matching circuit M5 is used to assist in tuning the frequency band supported by the antenna assembly 10 .
  • the fifth matching circuit M5 may include active devices such as matching sub-circuits or switches. In this implementation manner, it is illustrated by taking the fifth matching circuit M5 electrically connected to the first radiator 110 as an example. One end of the fifth matching circuit M5 is grounded, and the other end is electrically connected between the first ground terminal 111 and the first connection point P1.
  • the antenna assembly 10 includes a first antenna 10a and a second antenna 10b (please refer to FIG. 30 and FIG. 31, FIG. 30 is a schematic diagram of the first antenna in the antenna assembly in an embodiment ; FIG. 31 is a schematic diagram of the second antenna in the antenna assembly in FIG. 30).
  • the first antenna 10a includes a first radiator 110, a first matching circuit M1, and a first signal source S1
  • the second antenna 10b includes a first radiator 110, a second matching circuit M2, and a second signal source S2
  • the first antenna 10a and the second antenna 10b are jointly used to realize dual connectivity (LTE NR Double Connect, ENDC) and carrier aggregation (Carrier Aggregation, CA).
  • ENDC dual connectivity
  • CA Carrier Aggregation
  • the antenna assembly 10 of the present application can realize ENDC, and can support 4G wireless access network and 5G-NR at the same time. Uplink and downlink rate, with better communication effect.
  • the antenna assembly 10 provided in the embodiment of the present application can implement CA and also has a better communication effect.
  • the antenna assembly 10 further includes a second radiator 120, a third matching circuit M3, a fourth matching circuit M4, and a third signal source S3, the antenna assembly 10 further includes a third antenna 10c (please also refer to FIG. 32, FIG. 32 is a schematic diagram of the third antenna in the antenna assembly in an embodiment), in other words, the third antenna 10c includes the second radiator 120, the third matching circuit M3, the fourth matching circuit M4 and the second Three signal sources S3.
  • the first antenna 10a and the second antenna 10b share a first radiator 110.
  • the first radiator 110 can be used to send and receive electromagnetic wave signals.
  • the first radiator 110 is also used to send and receive electromagnetic wave signals, so that the antenna assembly 10 can still work in a wider frequency band with fewer radiators.
  • the three antennas can achieve a common aperture.
  • the third antenna 10c can not only use the second radiator 120 to send and receive electromagnetic wave signals, but also use the first radiator 110 to send and receive electromagnetic wave signals, so that the third antenna 10c can work in a wider frequency band.
  • the first antenna 10a and the second antenna 10b can use not only the first radiator 110 but also the second radiator 120 to send and receive electromagnetic wave signals when working, the third antenna 10c can not only use the second radiation
  • the body 120 can also utilize the first radiator 110 , thus realizing the multiplexing of the radiator in the antenna assembly 10 , and thus helping to reduce the size of the antenna assembly 10 . It can be seen from the above analysis that the size of the antenna assembly 10 is small, and when the antenna assembly 10 is applied in the electronic device 1 , it is convenient to be stacked with other devices in the electronic device 1 .
  • the present application also provides an electronic device 1, which includes, but is not limited to, a mobile phone, an Internet device (mobile internet device, MID), an electronic book, a portable playback station (Play Station Portable, PSP) or a personal digital assistant. (Personal Digital Assistant, PDA) and other electronic devices with communication functions1.
  • an electronic device 1 includes, but is not limited to, a mobile phone, an Internet device (mobile internet device, MID), an electronic book, a portable playback station (Play Station Portable, PSP) or a personal digital assistant. (Personal Digital Assistant, PDA) and other electronic devices with communication functions1.
  • FIG. 33 is a three-dimensional structure diagram of an electronic device provided in an embodiment of the present application.
  • the electronic device 1 includes the antenna assembly 10 described in any of the foregoing implementation manners. For the antenna assembly 10 , please refer to the previous description, and details will not be repeated here.
  • FIG. 34 is a cross-sectional view of the electronic device in FIG. 33 along line I-I according to an embodiment.
  • the electronic device 1 further includes a middle frame 30 , a screen 40 , a circuit board 50 and a battery cover 60 .
  • the material of the middle frame 30 is metal, such as aluminum-magnesium alloy.
  • the middle frame 30 generally constitutes the ground of the electronic device 1 , and when the electronic devices in the electronic device 1 need to be grounded, the middle frame 30 can be connected to the ground.
  • the ground system in the electronic device 1 includes the ground on the circuit board 50 and the ground in the screen 40 in addition to the middle frame 30 .
  • the screen 40 may be a display screen with a display function, or a screen 40 integrated with display and touch functions.
  • the screen 40 is used to display text, images, videos and other information.
  • the screen 40 is carried on the middle frame 30 and is located at one side of the middle frame 30 .
  • the circuit board 50 is usually carried on the middle frame 30 , and the circuit board 50 and the screen 40 are carried on opposite sides of the middle frame 30 .
  • the first signal source S1, the second signal source S2, the first matching circuit M1, the second matching circuit M2, the third matching circuit M3, the fourth matching circuit M4 and the fifth matching circuit M5 in the antenna assembly 10 described above At least one or more of may be provided on the circuit board 50 .
  • the battery cover 60 is arranged on the side of the circuit board 50 away from the middle frame 30, and the battery cover 60, the middle frame 30, the circuit board 50, and the screen 40 cooperate with each other to form a complete assembly.
  • electronic equipment 1 It can be understood that the description of the structure of the electronic device 1 is only a description of the structure of the electronic device 1 , and should not be construed as a limitation on the electronic device 1 , nor should it be construed as a limitation on the antenna assembly 10 .
  • the first radiator 110 is electrically connected to the middle frame 30 so as to be grounded.
  • the first radiator 110 can also be connected to the middle frame 30 through electrical connectors such as connecting ribs or conductive shrapnel.
  • the second radiator 120 is electrically connected to the middle frame 30 to be grounded, and the second radiator 120 can also be connected to the middle frame 30 through electrical connectors such as connecting ribs or conductive shrapnel.
  • the middle frame 30 includes a frame body 310 and a frame 320 .
  • the frame 320 is bent and connected to the periphery of the frame body 310, and any one of the first radiator 110, the second radiator 120, and the third radiator 130 in the above-mentioned embodiments can be formed on the frame 320 .
  • the first radiator 110, the second radiator 120, and the third radiator 130 can also be formed on the frame 320, or they can be FPC antenna radiators or LDS antennas
  • the radiator is either a PDS antenna radiator or a metal branch.
  • FIG. 35 is a schematic diagram of the position of the radiator in the antenna assembly on the electronic device in one embodiment.
  • the electronic device 1 includes a top 1a and a bottom 1b, and the first radiator 110 and the second radiator 120 are both disposed on the top 1a.
  • top 1a refers to the upper part of the electronic device 1 when in use
  • bottom 1b is the lower part of the electronic device 1 opposite to the top 1a.
  • the electronic device 1 in this embodiment includes a first side 11 , a second side 12 , a third side 13 , and a fourth side 14 connected end to end.
  • the first side 11 and the third side 13 are short sides of the electronic device 1
  • the second side 12 and the fourth side 14 are long sides of the electronic device 1 .
  • the first side 11 is opposite to the third side 13 and arranged at intervals
  • the second side 12 is opposite to the fourth side 14 and arranged at intervals
  • the second side 12 is respectively separated from the fourth side 14
  • the first side 11 and the third side 13 are connected by bending
  • the fourth side 14 is respectively connected to the first side 11 and the third side 13 by bending.
  • the junction of the side 14 and the junction of the fourth side 14 and the first side 11 all form corners of the electronic device 1 .
  • the first side 11 is the top side
  • the second side 12 is the right side
  • the third side 13 is the bottom side
  • the fourth side 14 is the left side.
  • the angle formed by the first side 11 and the second side 12 is the upper right corner
  • the angle formed by the first side 11 and the fourth side 14 is the upper left corner.
  • the top 1a includes three situations: the first radiator 110 and the second radiator 120 are arranged at the upper left corner of the electronic device 1; or, the first radiator 110 and the second radiator The body 120 is disposed on the top edge of the electronic device 1 ; or the first radiator 110 and the second radiator 120 are disposed on the upper right corner of the electronic device 1 .
  • the first radiator 110 and the second radiator 120 are arranged on the upper left corner of the electronic device 1, there are several situations as follows: the first radiator 110 is located on the left side, and the second radiator 110 is located on the left side.
  • the other part of a radiator 110 is located on the top edge, and the second radiator 120 is located on the top edge; or, the second radiator 120 is partially located on the top edge, and the other part of the second radiator 120 is located on the left side, and the first radiator 110 is located on the left side.
  • the first radiator 110 and the second radiator 120 are arranged on the upper right corner of the electronic device 1, it includes the following situations: the first radiator 110 is partly located on the top side, and the first The other part of the radiator 110 is located on the right side, and the second radiator 120 is located on the right; or, the second radiator 120 is partially located on the right, and the second radiator 120 is partially located on the top side, and the The first radiator 110 is partially located on the top side.
  • the top 1a of the electronic device 1 is usually away from the ground, and the bottom 1b of the electronic device 1 is usually close to the ground.
  • the first radiator 110 and the second radiator 120 are disposed on the top 1a, the radiation efficiency of the antenna assembly 10 in the upper hemisphere is better, so that the antenna assembly 10 has better communication efficiency.
  • the first radiator 110 and the second radiator 120 can also be arranged corresponding to the bottom 1b of the electronic device 1, although the first radiator 110 and the second radiator
  • the upper hemisphere radiation efficiency of the antenna assembly 10 is not so good, but as long as the upper hemisphere radiation efficiency is greater than or equal to the preset efficiency, it can have a relatively good communication effect.

Landscapes

  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请提供一种天线组件及电子设备。所述天线组件包括第一辐射体、第一匹配电路、第一信号源、第二匹配电路以及第二信号源。所述第一辐射体包括第一接地端、第一自由端以及第一连接点和第二连接点,所述第一连接点和所述第二连接点位于所述第一接地端与所述第一自由端之间;所述第一匹配电路电连接所述第一连接点;所述第一信号源电连接至所述第一匹配电路;所述第二匹配电路电连接所述第二连接点;所述第二信号源电连接至所述第二匹配电路;所述天线组件具有第一谐振模式、第二谐振模式以及第三谐振模式,以支持LB频段,以及支持MB频段、HB频段及UHB频段三者中的一个频段或两个频段。本申请的天线组件的通信性能较好。

Description

天线组件及电子设备
本申请要求2021年12月27日递交的申请名称为“天线组件及电子设备”的申请号为202111616568.2的在先申请优先权,上述在先申请的内容以引用的方式并入本文本中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线组件及电子设备。
背景技术
随着技术的发展,手机等具有通信功能电子设备的普及度越来越高,且功能越来越强大。电子设备中通常包括天线组件以实现电子设备的通信功能。然而,相关技术中的电子设备中的天线组件的通信性能不够好,还有待提升的空间。
发明内容
第一方面,本申请实施方式提供一种天线组件,所述天线组件包括:
第一辐射体,所述第一辐射体包括第一接地端、第一自由端以及第一连接点和第二连接点,所述第一连接点和所述第二连接点位于所述第一接地端与所述第一自由端之间;
第一匹配电路,所述第一匹配电路电连接所述第一连接点;
第一信号源,所述第一信号源电连接至所述第一匹配电路;
第二匹配电路,所述第二匹配电路电连接所述第二连接点;以及
第二信号源,所述第二信号源电连接至所述第二匹配电路;所述天线组件具有第一谐振模式、第二谐振模式以及第三谐振模式,以支持LB频段,以及支持MB频段、HB频段及UHB频段三者中的一个频段或两个频段。
第二方面,本申请实施方式提供一种电子设备,所述电子设备包括如第一方面所述的天线组件。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的天线组件的示意图。
图2为图1中所示的天线组件中第一谐振模式对应的回波损耗曲线示意图。
图3为图1中所示的天线组件中第二谐振模式及第三谐振模式的回波损耗曲线示意图。
图4为第一谐振模式的主要电流流向示意图。
图5为第二谐振模式的主要电流流向示意图。
图6为第三谐振模式的主要电流流向示意图。
图7-图14分别为各个实施方式提供的带阻子电路的示意图。
图15为本申请另一实施方式提供的天线组件的示意图。
图16为图15中所示的天线组件中第二谐振模式、第三谐振模式及第四谐振模式对应的回波损耗曲线示意图。
图17为图15中提供的天线组件中第四谐振模式的主要电流流向示意图。
图18为本申请又一实施方式提供的天线组件的示意图。
图19为图18中第四匹配电路的示意图。
图20为图18中天线组件支持的第五谐振模式、第六谐振模式及第七谐振模式的回波损耗对应的回 波损耗曲线示意图。
图21为第五谐振模式的主要电流流向示意图。
图22为第六谐振模式的主要电流流向示意图。
图23为第七谐振模式的主要电流流向示意图。
图24为本申请再一实施方式提供的天线组件的示意图。
图25为图24中的天线组件支持的第二模式、第四模式及第八模式的回波损耗曲线示意图。
图26为第八谐振模式的主要电流流向示意图。
图27为本申请另一实施方式提供的天线组件的示意图。
图28为图27中的天线组件所支持第一谐振模式、第二谐振模式及第九谐振模式的回波损耗曲线示意图。
图29为本申请另一实施方式提供的天线组件的示意图。
图30为一实施方式中天线组件中第一天线的示意图。
图31为图30中的天线组件中第二天线的示意图。
图32为一实施方式中天线组件中第三天线的示意图。
图33为本申请一实施方式提供的电子设备的立体结构图。
图34为一实施方式提供的图33中的电子设备沿I-I线的剖视图。
图35为一实施方式中天线组件中的辐射体在电子设备的位置示意图。
具体实施方式
第一方面,本申请实施方式提供一种天线组件,所述天线组件包括:
第一辐射体,所述第一辐射体包括第一接地端、第一自由端以及第一连接点和第二连接点,所述第一连接点和所述第二连接点位于所述第一接地端与所述第一自由端之间;
第一匹配电路,所述第一匹配电路电连接所述第一连接点;
第一信号源,所述第一信号源电连接至所述第一匹配电路;
第二匹配电路,所述第二匹配电路电连接所述第二连接点;以及
第二信号源,所述第二信号源电连接至所述第二匹配电路;所述天线组件具有第一谐振模式、第二谐振模式以及第三谐振模式,以支持LB频段,以及支持MB频段、HB频段及UHB频段三者中的一个频段或两个频段。
其中,所述第二连接点相较于所述第一连接点邻近所述第一自由端,
所述第一谐振模式用于支持第一频段的电磁波信号的收发;
所述第二谐振模式用于支持第二频段的电磁波信号的收发,其中,所述第二频段的频率大于所述第一频段的频率;以及
所述第三谐振模式用于支持第三频段的电磁波信号的收发,其中,所述第三频段的频率大于所述第二频段的频率。
其中,所述第一谐振模式为第一接地端到第一自由端的1/8~1/4波长模式;
所述第二谐振模式为第一匹配电路至所述第一自由端的1/4波长模式;
所述第三谐振模式为第二匹配电路至所述第一自由端的1/4波长模式。
其中,所述第一频段为LB频段;所述第二频段及所述第三频段均位于MB频段至UHB频段,且所述第二频段的频率小于所述第三频段的频率。
其中,所述第二频段位于MB频段,且所述第三频段位于MB频段或者HB频段或者UHB频段;或者,
所述第二频段位于HB频段,且所述第三频段位于HB频段或者UHB频段;或者,
所述第二频段位于UHB频段,且所述第三频段位于UHB频段。
其中,所述第二匹配电路根据预设的匹配参数,对所述第一辐射体支持的第二频段及第三频段进行 调谐,以使得当所述第二频段位于UHB频段且所述第三频段位于UHB频段时,所述第二频段及所述第三频段共同支持N77、N78及N79频段。
其中,所述天线组件满足如下中的至少一种:所述第一匹配电路用于隔离所述第二频段及所述第三频段;所述第二匹配电路用于隔离所述第一频段。
其中,所述天线组件还包括:
第二辐射体,所述第二辐射体包括第二接地端及第二自由端,所述第二接地端接地,所述第二自由端相较于所述第二接地端邻近所述第一自由端设置,且所述第二自由端与所述第一自由端具有缝隙,所述第二辐射体用于支持第四频段的电磁波信号的收发,其中,所述第四频段的频率大于所述第二频段的频率,且所述第四频段的频率小于所述第三频段的频率。
其中,所述天线组件还具有:
第四谐振模式,所述第四谐振模式用于支持所述第四频段的电磁波信号的收发。
其中,所述第四谐振模式为所述第二接地端至所述缝隙的1/4波长模式。
其中,所述第二频段包括N77频段、所述第三频段包括N79频段,所述第四频段包括N78频段。
其中,所述第一辐射体及所述第二辐射体中的至少一个根据预设的尺寸参数,以支持WiFi-6E全频段。
其中,所述天线组件还包括:
第二辐射体,所述第二辐射体包括第二接地端及第二自由端,所述第二接地端接地,所述第二自由端相较于所述第二接地端邻近所述第一自由端设置,且所述第二自由端与所述第一自由端具有缝隙,还具有第三连接点及第四连接点,所述第三连接点及所述第四连接点位于所述第二接地端及所述第二自由端之间,所述天线组件还包括:
第三匹配电路,所述第三匹配电路电连接所述第三连接点;
第三信号源,所述第三信号源电连接所述第三匹配电路;以及
第四匹配电路,所述第四匹配电路的一端电连接所述第四连接点,且所述第四匹配电路的一端接地;所述第二辐射体用于支持第五频段的电磁波信号的收发。
其中,所述天线组件具有第四谐振模式,所述第四谐振模式用于支持第四频段的电磁波信号的收发,所述第四谐振模式为所述第四匹配电路到所述缝隙的1/4波长模式,所述第四匹配电路用于实现对所述第四谐振模式支持的第四频段的低阻抗到地。
其中,所述第四匹配电路包括:
匹配电容,所述匹配电容的一端电连接至所述第四连接点;以及
匹配电感,所述匹配电感的一端电连接所述匹配电容的另一端,所述匹配电感的另一端接地。
其中,所述天线组件具有第五谐振模式、第六谐振模式及第七谐振模式以共同支持所述第五频段;其中:
所述第五谐振模式为第二接地端至所述缝隙的1/4波长模式;
所述第六谐振模式为所述第三匹配电路至所述缝隙的1/4波长模式;
所述第七谐振模式为所述第一匹配电路至所述缝隙的电长度与第三匹配电路到所述缝隙的电长度之和的1/2波长。
其中,所述第一连接点与所述第二连接点重合,所述第一辐射体用于支持所述第一频段及所述第二频段;
所述第二辐射体根据预设的尺寸参数,或所述第三匹配电路及所述第四匹配电路中的至少一者根据预设的匹配参数,以使得所述第二辐射体具有第八谐振模式,所述第八谐振模式用于支持第三频段的电磁波信号的收发。
其中,所述第八谐振模式为第二辐射体的3/4波长模式,其中,所述第八谐振模式对应第一子电流及第二子电流,其中,所述第一子电流自所述缝隙到所述第三连接点,所述第二子电流自所述第二接地端流向所述第三连接点。
其中,所述第一连接点与所述第二连接点重合,所述第一辐射体用于支持所述第一频段及所述第二 频段,所述天线组件还包括:
第三辐射体,所述第三辐射体电连接至所述第二匹配电路,所述第三辐射体具有第九谐振模式,所述第九谐振模式用于支持第三频段的电磁波信号的收发。
其中,所述第三辐射体的长度为第三频段的1/4波长~1/2波长。
其中,所述天线组件还包括:
第五匹配电路,所述第五匹配电路电连接至所述第一辐射体;当所述天线组件还包括第二辐射体时,所述第五匹配电路电连接至所述第一辐射体或所述第二辐射体。
其中,所述天线组件包括:第一天线及第二天线,所述第一天线包括第一辐射体、第一匹配电路及第一信号源,所述第二天线包括第一辐射体、第二匹配电路及第二信号源,所述第一天线及所述第二天线共同用于实现0MHz~5000MHz频段范围的ENDC及CA。
第二方面,本申请实施方式提供一种电子设备,其中,所述电子设备包括第一方面或第一方面任意一种所述的天线组件。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请提供了一种天线组件10。所述天线组件10可应用于电子设备1(请参阅图33至图35)中,所述电子设备1包括但不仅限于为手机、互联网设备(mobile internet device,MID)、电子书、便携式播放站(Play Station Portable,PSP)或个人数字助理(Personal Digital Assistant,PDA)等具有通信功能的电子设备1。
请一并参阅图1、图2及图3,图1为本申请一实施方式提供的天线组件的示意图;图2为图1中所示的天线组件中第一谐振模式对应的回波损耗曲线示意图;图3为图1中所示的天线组件中第二谐振模式及第三谐振模式的回波损耗曲线示意图。所述天线组件10包括第一辐射体110、第一匹配电路M1、第一信号源S1、第二匹配电路M2以及第二信号源S2。所述第一辐射体110包括第一接地端111、第一自由端112以及第一连接点P1和第二连接点P2,所述第一连接点P1和所述第二连接点P2位于所述第一接地端111与所述第一自由端112之间。所述第一匹配电路M1电连接所述第一连接点P1。所述第一信号源S1电连接至所述第一匹配电路M1。所述第二匹配电路M2电连接所述第二连接点P2。所述第二信号源S2电连接至所述第二匹配电路M2;所述天线组件10具有第一谐振模式、第二谐振模式以及第三谐振模式,以支持LB频段,以及支持MB频段、HB频段及UHB频段三者中的一个频段或两个频段。
所述第一辐射体110可以为柔性电路板(Flexible Printed Circuit,FPC)天线辐射体或者为激光直接成型(Laser Direct Structuring,LDS)天线辐射体、或者为印刷直接成型(Print Direct Structuring,PDS)天线辐射体、或者为金属枝节。
所谓信号源,是指产生激励信号(射频信号)的器件。具体地,所述第一信号源S1可产生第一激励信号,所述第一激励信号经由所述第一匹配电路M1及所述第一连接点P1加载到所述第一辐射体110上,以使得所述第一辐射体110根据所述第一激励信号辐射电磁波信号。相应地,所述第二信号源S2可产生第二激励信号,所述第二激励信号经由所述第二匹配电路M2及所述第二连接点P2加载到所述第一辐射体110上,以使得所述第一辐射体110根据所述第二激励信号辐射电磁波信号。具体地,在本实施方式中,所述第一辐射体110根据所述第一信号源S1产生的第一激励信号收发LB频段的电磁波信号。相应地,所述第二辐射体120根据所述第一信号源S1产生的第二激励信号收发MB频段、HB频段及UHB频段三者中的一个频段或两个频段的电磁波信号。在其他实施方式中,所述第一辐射体110根据所述第一信号源S1产生的第一激励信号收发LB频段的电磁波信号。相应地,所述第一辐射体110 根据所述第二信号源S2产生的第二激励信号收发MB频段、HB频段及UHB频段三者中的一个频段;或者,所述第一辐射体110根据所述第二信号源S2收发MB频段、HB频段及UHB频段三者中的两个频段的电磁波信号。当所述第一辐射体110根据所述第二信号源S2产生的第二激励信号收发MB频段、HB频段及UHB频段三者中的一个频段时,具体包括:所述第一辐射体110根据所述第二信号源S2产生的第二激励信号收发MB频段、或者HB频段、或者UHB频段。当所述第一辐射体110根据所述第二信号源S2收发MB频段、HB频段及UHB频段三者中的两个频段的电磁波信号时,具体包括:所述第一辐射体110根据所述第二信号源S2收发MB频段及HB频段;或者,MB频段及UHB频段;或者,HB频段及UHB频段。
请一并参阅图2及图3,所述第一谐振模式用于支持第一频段的电磁波信号的收发。所述第二谐振模式用于支持第二频段的电磁波信号的收发,其中,所述第二频段的频率大于所述第一频段的频率。所述第三谐振模式用于支持第三频段的电磁波信号的收发,其中,所述第三频段的频率大于所述第二频段的频率。所述第一谐振模式、所述第二谐振模式及所述第三谐振模式。
所述第一匹配电路M1用于调整经由所述第一匹配电路M1的所述第一辐射体110所支持的谐振模式的电流分布,进而调整相应的谐振模式所对应的频段的宽度及谐振频点等。具体地,在本实施方式中,所述第一匹配电路M1用于调整所述第一辐射体110收发的第一频段的电磁波信号的宽度及谐振频点。
所述第二匹配电路M2用于调整经由所述第二匹配电路M2的所述第一辐射体110所支持的谐振模式的电流分布,进而调整相应的谐振模式所对应的频段的宽度及谐振频点。具体地,在本实施方式中,所述第二匹配电路M2用于调整所述第一辐射体110收发的第二频段的电磁波信号的谐振频点;或者,所述第二匹配电路M1用于调整所述第一辐射体110收发的第二频段及第三频段的电磁波信号的谐振频点。所述第一匹配电路M1及所述第二匹配电路M2的具体结构稍后详细描述。
在本实施方式中,所述第一连接点P1与所述第二连接点P2不重合。换而言之,所述第一连接点P1与所述第二连接点P2间隔设置。在本实施方式中,所述第二连接点P2相较于所述第一连接点P1邻近所述第一自由端112。
在本实施方式中,所述第二频段的电磁波信号的频率大于所述第一频段的电磁波信号的频率,且所述第三频段的电磁波信号的频率大于所述第二频段的电磁波信号的频率(即第二频段的频率小于第三频段的频率)。具体地,在本实施方式中,所述第一频段包括低频(Lower Band,LB)频段,第二频段范围位于超高频(Ultra High Band,UHB)频段,所述第三频段位于UHB,且所述第二频段的频率小于第三频段的频率。
可以理解地,在其他实施方式中,所述第二频段的电磁波信号的频率大于所述第一频段的电磁波信号的频率,所述第三频段的电磁波信号的频率大于所述第二频段的电磁波信号的频率(即第二频段的频率小于第三频段的频率),且所述第二频段及所述第三频段位于中频(Middle Band)至超高频(Ultra High Band,UHB)频段。具体地,中频(Middle Band)至超高频(Ultra High Band,UHB)频段包括:中频(MB)、高频(High Band,HB)、超高频(UHB)。所述第二频段及所述第三频段包括如下几种情况。在一实施方式中,所述第二频段位于MB频段,且所述第三频段位于MB频段或者HB频段或者UHB频段。在另一实施方式中,所述第二频段位于HB频段,且所述第三频段位于HB频段或者UHB频段。在再一实施方式中,所述第二频段位于UHB频段,且所述第三频段位于UHB频段。
所谓LB频段,是指频率低于1000MHz的频段,即,低频频段的频率f满足:f<1000MHz。中频和高频可简称中高频(MHB),MHB频段的范围为:1000MHz-3000MHz,即,MHB频段的频率f满足:1000MHz≤f<3000MHz。其中,所述中频(MB)频段的范围是1000MHz-2200MHz,即,所述MB频段的频率f满足:1000MHz≤f<2200MHz;所述HB频段的频段的范围是2200MHz-3000MHz,即,所述HB频段的频率f满足:2200MHz≤f<3000MHz。所谓UHB频段的范围为:3000MHz-10000MHz,即,所述UHB频段的频率满足:3000MHz≤f<10000MHz。本申请实施方式提供的天线组件10,第一信号源S1通过第一匹配电路M1电连接至所述第一辐射体110,所述第二信号源S2通过第二匹配电路M2电连接至所述第一辐射体110,从而使得天线组件10具有第一谐振模式、第二谐振模式以及第三谐振模式,以支持LB频段,以及支持MB频段、HB频段及UHB频段三者中的一个频段或两个频段, 因此,所述天线组件10能够在同一时刻支持较多频段的电磁波信号的收发,即能够支持较宽的频段,故而,所述天线组件10具有较好的通信性能。
请再次一并参阅图2及图3,通过所述第一谐振模式对应的回波损耗(Return Loss,RL)曲线,可看出所述第一谐振模式支持的频段,相应地,通过第二谐振模式的回波损耗曲线可看出第二谐振模式支持的频段,通过第三谐振模式的回波损耗曲线可看出第三谐振模式支持的频段。在图2中,横轴为频率(f),单位为MHz,纵轴为RL,单位为dB。在图3中,横轴为频率(f),单位为MHz,纵轴为RL,单位为dB。所述第二连接点P2相较于所述第一连接点P1邻近所述第一自由端112,所述天线组件10具有第一谐振模式(在图中标记为模式1)、第二谐振模式(在图中标记为模式2)及第三谐振模式(在图中标记为模式3)。所述第一谐振模式用于支持所述第一频段的电磁波信号的收发。所述第二谐振模式用于支持所述第二频段的电磁波信号的收发。所述第三谐振模式用于支持所述第三频段的电磁波信号的收发。
由图2可见,所述第一谐振模式支持的第一频段落在LB频段。所述第一匹配电路M1中包括开关或可变电容,所述第一匹配电路M1根据预设的匹配参数设置所述开关及所述可变电容,以实现所述第一频段更好地覆盖所述LB频段。
由图3可见,所述第二谐振模式所支持的第二频段位于UHB频段,所述第三谐振模式所支持的第三频段同样位于UHB频段,且所述第三频段的频率大于所述第二频段的频率。所述第二匹配电路M2包括开关及可变电容,所述第二匹配电路M2根据预设的匹配参数调整所述开关及所述可变电容,使得所述第二频段及所述第三频段更好地覆盖UHB频段,比如,N77,N78及N79。可以理解地,所述第二匹配电路M2中的预设的匹配参数和所述第二频段及所述第三频段相关,所述第一匹配电路M1中预设的匹配参数和所述第一频段相关,所述第二匹配电路M2中的预设的匹配参数和第一匹配电路M1中的预设的匹配参数没有必然联系。
在一实施方式中,所述第二匹配电路M2根据预设的匹配参数,对所述第一辐射体110支持的第二频段及第三频段进行调谐,以使得当所述第二频段位于UHB频段且所述第三频段位于UHB频段时,所述第二频段及所述第三频段共同支持N77、N78及N79频段。
请参阅图4,图4为第一谐振模式的主要电流流向示意图。由图4可见,所述第一谐振模式对应的电流自所述第一接地端111到所述第一自由端112。需要说明的是,在本申请中,各个模式的主要电流流向示意图体现了各个模式中主要的电流流向,并非全部的电流流向。所述第一谐振模式为第一接地端111到第一自由端112的1/8~1/4波长模式。
请参阅图5,图5为第二谐振模式的主要电流流向示意图。由图5可见,所述第二谐振模式对应的电流自所述第一匹配电路M1至所述第一自由端112。所述第二谐振模式为第一匹配电路M1至所述第一自由端112的1/4波长模式。
请参阅图6,图6为第三谐振模式的主要电流流向示意图。由图6可见,所述第三谐振模式对应的电流自第二匹配电路M2至所述第一自由端112。所述第三谐振模式为第二匹配电路M2至所述第一自由端112的1/4波长模式。
所述天线组件10在同一时刻同时具有所述第一谐振模式、所述第二谐振模式及所述第三谐振模式,因此,所述天线组件10能够实现多种谐振模式同时工作,进而能够支持较宽的频段,故而,所述天线组件10具有较好的通信性能。
所述天线组件10满足如下中的至少一种:所述第一匹配电路M1用于隔离所述第二频段及所述第三频段;所述第二匹配电路M2用于隔离所述第一频段。
具体情况描述如下。当所述第一辐射体110用于支持第一频段及第二频段时,所述第一匹配电路M1包括一个或多个带阻子电路151,以隔离所述第二频段对所述第一频段的影响。当所述第一辐射体110用于支持第一频段、第二频段及第三频段时,所述第一匹配电路M1包括一个或多个带阻子电路151,以隔离所述第二频段及所述第三频段对所述第一频道的影响。相应地,当所述第一辐射体110用于支持第一频段及第二频段时,所述第二匹配电路M2包括一个或多个带阻子电路151,以隔离所述第一频段对所述第二频段的影响。当所述第一辐射体110用于支持第一频段、第二频段及第三频段时,所述第二 匹配电路M2包括一个或多个带阻子电路151,以隔离所述第一频段对所述第二频段及第三频段的影响。所述带阻子电路151又称为选频滤波子电路。
请一并参阅图7-图14,图7-图14分别为各个实施方式提供的带阻子电路的示意图。
请参阅图7,在图7中,所述带阻子电路151包括电感L0与所述电容C0串联形成的电路。
请参阅图8,在图8中,所述带阻子电路151包括电感L0与电容C0并联形成的电路。
请参阅图9,在图9,所述带阻子电路151包括电感L0、第一电容C1、及第二电容C2。所述电感L0与所述第一电容C1并联,且所述第二电容C2电连接所述电感L0与所述第一电容C1电连接的节点。
请一并参阅图10,在图10中,所述带阻子电路151包括电容C0、第一电感L1、及第二电感L2。所述电容C0与所述第一电感L1并联,且所述第二电感L2电连接所述电容C0与所述第一电感L1电连接的节点。
请一并参阅图11,在图11中,所述带阻子电路151包括电感L0、第一电容C1、及第二电容C2。所述电感L0与所述第一电容C1串联,且所述第二电容C2的一端电连接所述电感L0未连接所述第一电容C1的第一端,所述第二电容C2的另一端电连接所述第一电容C1未连接所述电感L0的一端。
请一并参阅图12,在图12中,所述带阻子电路151包括电容C0、第一电感L1、及第二电感L2。所述电容C0与所述第一电感L1串联,所述第二电感L2的一端电连接所述电容C0未连接第一电感L1的一端,所述第二电感L2的另一端电连接所述第一电感L1未连接所述电容C0的一端。
请一并参阅图13,在图13中,所述带阻子电路151包括第一电容C1、第二电容C2、第一电感L1、及第二电感L2。所述第一电容C1与所述第一电感L1并联,所述第二电容C2与所述第二电感L2并联,且所述第二电容C2与所述第二电感L2并联形成的整体的一端电连接所述第一电容C1与所述第一电感L1并联形成的整体的一端。
请一并参阅图14,在图14中,所述带阻子电路151包括第一电容C1、第二电容C2、第一电感L1、及第二电感L2,所述第一电容C1与所述第一电感L1串联形成第一单元151a,所述第二电容C2与所述第二电感L2串联形成第二单元151b,且所述第一单元151a与所述第二单元151b并联。
请参阅图15,图15为本申请另一实施方式提供的天线组件的示意图。所述天线组件10包括第一辐射体110、第一匹配电路M1、第一信号源S1、第二匹配电路M2以及第二信号源S2。所述第一辐射体110包括第一接地端111、第一自由端112以及第一连接点P1和第二连接点P2,所述第一连接点P1和所述第二连接点P2位于所述第一接地端111与所述第一自由端112之间。所述第一匹配电路M1电连接所述第一连接点P1。所述第一信号源S1电连接至所述第一匹配电路M1。所述第二匹配电路M2电连接所述第二连接点P2。所述第二信号源S2电连接至所述第二匹配电路M2。第一辐射体110用于支持第一频段、第二频段及第三频段的电磁波信号的收发。进一步地,在本实施方式中,所述天线组件10还包括第二辐射体120。所述第二辐射体120包括第二接地端121及第二自由端122,所述第二接地端121接地,所述第二自由端122相较于所述第二接地端121邻近所述第一自由端112设置,且所述第二自由端122与所述第一自由端112具有缝隙120a。所述第二辐射体120用于支持第四频段的电磁波信号的收发,其中,所述第四频段的频率大于所述第二频段的频率,且所述第四频段的频率小于所述第三频段的频率。
所述第二辐射体120与所述第一辐射体110耦合,在本实施方式中,所述第二辐射体120作为所述第一辐射体110的耦合枝节。所述第二辐射体120可以为柔性电路板(Flexible Printed Circuit,FPC)天线辐射体或者为激光直接成型(Laser Direct Structuring,LDS)天线辐射体、或者为印刷直接成型(Print Direct Structuring,PDS)天线辐射体、或者为金属枝节。所述第二辐射体120可以与所述第一辐射体110的类型相同,也可以与所述第一辐射体110的类型不同,在本申请中不做限定。
请继续参阅图15,所述第一辐射体110与所述第二辐射体120之间的缝隙120a的尺寸d满足:0.5mm≤d≤1.5mm。
可以理解地,对于所述天线组件10而言,所述天线组件10中第一天线10a辐射体及第二天线10b120辐射体之间的缝隙120a满足d为:0.5mm≤d≤1.5mm,从而可保证第一辐射体110和第二辐射体120之间具有更好的耦合效果。虽然本实施方式中以天线组件10中第一辐射体110及第二辐射体120的尺寸 结合到图14所示的天线组件10中为例进行说明,但是不应当理解为对本申请的限定,所述第一辐射体110及所述第二辐射体120之间的缝隙120a也适用于其他实施方式提供的天线组件10。
本实施方式提供的天线组件10,所述天线组件10在同一时刻同时具有所述第一谐振模式、所述第二谐振模式及所述第三谐振模式,因此,所述天线组件10能够实现多种谐振模式同时工作,进而能够支持较宽的频段,故而,所述天线组件10具有较好的通信性能。此外,本申请实施方式提供的天线组件10中,增加了第二辐射体120以支持第四频段的电磁波信号的收发,因此,本申请实施方式提供的天线组件10能够在同一时刻支持更多的频段,故而,所述天线组件10具有较好的通信性能。
请一并参阅图16,图16为图15中所示的天线组件中第二谐振模式、第三谐振模式及第四谐振模式对应的回波损耗曲线示意图。在图16中,横轴为频率(f),单位为MHz,纵轴为RL,单位为dB。在本实施方式中,所述天线组件10具有第二谐振模式(图中简写为模式2)、第三谐振模式(图中简写为模式3)及第四谐振模式(图中简写为模式4)。所述第二谐振模式用于支持所述第二频段的电磁波信号的收发。所述第三谐振模式用于支持所述第三频段的电磁波信号的收发。所述第四谐振模式用于支持所述第四频段的电磁波信号的收发。
本实施方式中,通过设置第二辐射体120,能够在同一时刻同时具有第一谐振模式、第二谐振模式及第三谐振模式,因此,所述天线组件10能够实现多种谐振模式同时工作,进而能够支持较宽的频段,故而,所述天线组件10具有较好的通信性能。
请一并参阅图17,图17为图15中提供的天线组件中第四谐振模式的主要电流流向示意图。由图17可见,所述第四谐振模式对应的电流自所述第二接地端121至所述缝隙120a。天线组件10所述第四谐振模式为所述第二接地端121至所述缝隙120a的1/4波长模式。
天线组件10请继续参阅图16,所述第二频段包括N77频段、所述第三频段包括N79频段,所述第四频段包括N78频段。
可以理解地,在其他实施方式中,所述第二频段、所述第三频段及所述第四频段也可位于中频(Middle Band)至超高频(Ultra High Band,UHB)频段之间的任意的频段,只要满足所述第二频段的频率小于所述第四频段的频率,且所述第四频段的频率小于所述第三频段的频率即可。
天线组件10所述第一辐射体110及所述第二辐射体120中的至少一个根据预设的尺寸参数,以支持WiFi-6E全频段。
当所述第一辐射体110及所述第二辐射体120的尺寸较大时,所述天线组件10支持的电磁波信号的频率相对较低;相应地,当所述第一辐射体110及所述第二辐射体120的尺寸较小时,所述天线组件10支持的电磁波信号的频率相对较高。由图16可见,所述第二频段、所述第三频段及所述第四频段位于3000MHz~5000MHz之间。当所述第一辐射体110及所述第二辐射体120中的至少一个的尺寸相较于图15中相应辐射体的尺寸时,所述天线组件10支持的频段往高频偏移,支持WiFi-6E全频段。其中,WiFi-6E频段的范围为:5150MHz~7125MHz。本实施方式中,所述第一辐射体110及所述第二辐射体120中的至少一个的尺寸相较于图15中相应辐射体的尺寸,包括如下情况中的至少一个:所述第一辐射体110小于图15中的第一辐射体110的尺寸,所述第二辐射120小于图15中第二辐射体120的尺寸。换而言之,所述第一辐射体110及所述第二辐射体120中的至少一个根据预设的尺寸参数,以支持WiFi-6E全频段。当所述天线组件10支持WiFi-6E全频段时,所述天线组件10能够支持频率较高的频段,具有更好的通信效果。换而言之,所述第一辐射体110及所述第二辐射体120中的至少一个根据预设的尺寸参数,所述天线组件10支持的第二谐振模式、所述第四谐振模式及所述第三谐振模式共同支持WiFi-6E全频段。相较于所述天线组件10的第二谐振模式、所述第四谐振模式及所述第三谐振模式支持的频段位于UHB频段(比如,N77,N78及N79)而言,所述天线组件10的第二谐振模式、所述第四谐振模式及所述第三谐振模式共同支持WiFi-6E全频段时,支持WiFi-6E全频段的第二谐振模式、第四谐振模式及第三谐振模式整体往高频偏移了。
请参阅图18,图18为本申请又一实施方式提供的天线组件的示意图。在本实施方式中,所述天线组件10包括第一辐射体110、第一匹配电路M1、第一信号源S1、第二匹配电路M2以及第二信号源S2。所述第一辐射体110包括第一接地端111、第一自由端112以及第一连接点P1和第二连接点P2, 所述第一连接点P1和所述第二连接点P2位于所述第一接地端111与所述第一自由端112之间。所述第一匹配电路M1电连接所述第一连接点P1。所述第一信号源S1电连接至所述第一匹配电路M1。所述第二匹配电路M2电连接所述第二连接点P2。所述第二信号源S2电连接至所述第二匹配电路M2。所述天线组件10还包括第二辐射体120。所述第二辐射体120包括第二接地端121及第二自由端122。所述第二接地端121接地,所述第二自由端122相较于所述第二接地端121邻近所述第一自由端112设置,且所述第二自由端122与所述第一自由端112具有缝隙120a,还具有第三连接点P3及第四连接点P4,所述第三连接点P3及所述第四连接点P4位于所述第二接地端121及所述第二自由端122之间。所述天线组件10还包括第三匹配电路M3、第三信号源S3以及第四匹配电路M4。所述第三匹配电路M3电连接所述第三连接点P3。所述第三信号源S3电连接所述第三匹配电路M3。所述第四匹配电路M4的一端电连接所述第四连接点P4,且所述第四匹配电路M4的一端接地;所述第二辐射体120用于支持第五频段的电磁波信号的收发。
所述第二辐射体120可以为柔性电路板(Flexible Printed Circuit,FPC)天线辐射体或者为激光直接成型(Laser Direct Structuring,LDS)天线辐射体、或者为印刷直接成型(Print Direct Structuring,PDS)天线辐射体、或者为金属枝节。所述第二辐射体120可以与所述第一辐射体110的类型相同,也可以与所述第一辐射体110的类型不同,在本申请中不做限定。
在本实施方式中,所述第五频段为MHB频段。在本实施方式中,所述天线组件10还包括第三匹配电路M3、第三信号源S3以及第四匹配电路M4,使得所述天线组件10中的第二辐射体120还支持第五频段的电磁波信号的收发,所述天线组件10在同一时刻所支持的频段较多,所述天线组件10具有较好的通信效果。
具体地,所述第四匹配电路M4用于实现对所述第四谐振模式支持的第四频段的低阻抗到地。换而言之,所述第四匹配电路M4用于支持所述第四谐振模式,并调节所述第四谐振模式对应的电流分布,进而调整所述第四频段的宽度及谐振频点。举例而言,所述第四匹配电路M4可直接到地,或者,大电容到地,或者小电感到地。
在本实施方式中,所述第五频段为MHB频段。所述第四匹配电路M4用于实现对所述第四谐振模式支持的第四频段的低阻抗到地,且所述第四匹配电路M4对所述第五频道呈现小电容,降低对所述第五频段的影响。
具体地,所述第三匹配电路M3中可以包括开关或可变电容等有源器件。所述第四匹配电路M4可包括开关或可变电容。
请一并参阅图19,图19为图18中第四匹配电路的示意图。所述第四匹配电路M4包括匹配电容C11及匹配电感L11。所述匹配电容C11的一端电连接至所述第四连接点P4。所述匹配电感L11的一端电连接所述匹配电容C11的另一端,所述匹配电感L11的另一端接地。
在一实施方式中,当所述第五频段为MHB频段时,所述匹配电容C11的电容值为0.2pF(皮法),所述匹配电感L11的电感值为6.8nH(纳亨)。
请一并参阅图20,图20为图18中天线组件支持的第五谐振模式、第六谐振模式及第七谐振模式的回波损耗对应的回波损耗曲线示意图。在图20中,横轴为频率(f),单位为MHz,纵轴为RL,单位为dB。所述天线组件10具有第五谐振模式(图中简写为模式5)、第六谐振模式(图中简写为模式6)及第七谐振模式(图中简写为模式7)以共同支持所述第五频段。
请一并参阅图21、图22及图23,图21为第五谐振模式的主要电流流向示意图。第五谐振模式对应的电流自第二接地端121至所述缝隙120a。所述第五谐振模式为第二接地端121至所述缝隙120a的1/4波长模式。
请参阅图22,图22为第六谐振模式的主要电流流向示意图。所述第六谐振模式对应的电流自所述第三匹配电路M3至所述缝隙120a。所述第六谐振模式为所述第三匹配电路M3至所述缝隙120a的1/4波长模式。
请一并参阅图23,图23为第七谐振模式的主要电流流向示意图。所述第七谐振模式对应的电流包括:自所述第一匹配电路M1至所述缝隙120a的子电流I11,及自所述第三匹配电路M3至所述缝隙120a 的子电流I22。所述第七谐振模式为所述第一匹配电路M1至所述缝隙120a电长度与所述第三匹配电路M3至所述缝隙120a的电长度之和的1/2波长模式。
需要说明的是,在本实施方式中,所述天线组件10仍然具有第四谐振模式,所述第四谐振模式用于支持第四频段的电磁波信号的收发,所述第四谐振模式为所述第四匹配电路M4到所述缝隙120a的1/4波长模式。
请一并参阅图24及图25,图24为本申请再一实施方式提供的天线组件的示意图;图25为图24中的天线组件支持的第二模式、第四模式及第八模式的回波损耗曲线示意图。在图25中,横轴为频率(f),单位为MHz,纵轴为RL,单位为dB。在前面实施方式提供的天线模组10中,所述第一连接点P1及所述第二连接点P2间隔设置。在本实施方式中所述天线组件10包括第一辐射体110、第一匹配电路M1、第一信号源S1、第二匹配电路M2以及第二信号源S2。所述第一辐射体110包括第一接地端111、第一自由端112以及第一连接点P1和第二连接点P2,所述第一连接点P1和所述第二连接点P2位于所述第一接地端111与所述第一自由端112之间。所述第一匹配电路M1电连接所述第一连接点P1。所述第一信号源S1电连接至所述第一匹配电路M1。所述第二匹配电路M2电连接所述第二连接点P2。所述第二信号源S2电连接至所述第二匹配电路M2。所述天线组件10还包括第二辐射体120。所述第二辐射体120包括第二接地端121及第二自由端122。所述第二接地端121接地,所述第二自由端122相较于所述第二接地端121邻近所述第二自由端122设置,且所述第二自由端122与所述第一自由端112具有缝隙120a,还具有第三连接点P3及第四连接点P4,所述第三连接点P3及所述第四连接点P4位于所述第二接地端121及所述第二自由端122之间。所述天线组件10还包括第三匹配电路M3、第三信号源S3以及第四匹配电路M4。所述第三匹配电路M3电连接所述第三连接点P3。所述第三信号源S3电连接所述第三匹配电路M3。所述第四匹配电路M4的一端电连接所述第四连接点P4,且所述第四匹配电路M4的一端接地。
在本实施方式中,所述第一连接点P1与所述第二连接点P2重合,所述第一辐射体110用于支持所述第一频段及所述第二频段。
所述第二辐射体120根据预设的尺寸参数,或所述第三匹配电路M3及所述第四匹配电路M4中的至少一者根据预设的匹配参数,以使得所述第二辐射体120具有第八谐振模式,所述第八谐振模式用于支持第三频段的电磁波信号的收发。
在本实施方式中,所述第一连接点P1与所述第二连接点P2重合,所述第三谐振模式消失,所述天线组件10具有第二谐振模式(图中简写为模式2)、第四谐振模式(图中简写为模式4)及第八谐振模式(图中简写为模式8)。所述第二辐射体120根据预设的尺寸参数,或所述第三匹配电路M3及所述第四匹配电路M4中的至少一者根据预设的匹配参数,以使得所述第二辐射体120具有第八谐振模式,所述第八谐振模式用于支持第三频段的电磁波信号的收发。
由此可见,本申请实施方式提供的天线组件10在同一时刻除了支持第一频段及第二频段的电磁波信号的收发,仍然可支持第三频段的电磁波信号的收发,所述天线组件10在同一时刻所支持的频段较多,所述天线组件10具有较好的通信效果。
请参阅图26,图26为第八谐振模式的主要电流流向示意图。由图26可见,所述第八谐振模式对应第一子电流I1及第二子电流I2,所述第一子电流I1自所述缝隙120a到所述第三连接点P3,所述第二子电流I2自所述第二接地端121流向所述第三连接点P3。所述第八谐振模式为第二辐射体120的3/4波长模式。
需要说明的是,本申请实施方式中提供的天线组件10中,除了支持第八谐振模式,所述天线组件10仍然可支持第五谐振模式、第六谐振模式及第七谐振模式。
请一并参阅图27及图28,图27为本申请另一实施方式提供的天线组件的示意图;图28为图27中的天线组件所支持第一谐振模式、第二谐振模式及第九谐振模式的回波损耗曲线示意图。在图28中,横轴为频率(f),单位为MHz,纵轴为RL,单位为dB。本实施方式提供的天线组件10与图24及其相关描述中提供的天线组件10基本相同,所述第一连接点P1与所述第二连接点P2重合,所述第一辐射体110用于支持所述第一频段及所述第二频段。不同之处在于,在本实施方式中所述天线组件10还包 括第三辐射体130。所述第三辐射体130电连接至所述第二匹配电路M2,所述第三辐射体130具有第九谐振模式,所述第九谐振模式用于支持第三频段的电磁波信号的收发。换而言之,在本实施方式中,所述天线组件10支持第一谐振模式(图中简写为模式1)、第二谐振模式(图中简写为模式2)及第九谐振模式(图中简写为模式9)。
在本实施方式中提供的天线组件10中,以所述天线组件10还包括第三辐射体130结合到前面的一种实施方式提供的天线组件10中为例进行示意,可以理解地,所述天线组件10还包括第三辐射体130还可以结合到前面任意实施方式提供的天线组件10中。
在本实施方式中,所述第三辐射体130作为所述第一辐射体110的寄生枝节。所述第三辐射体130可以为柔性电路板(Flexible Printed Circuit,FPC)天线辐射体或者为激光直接成型(Laser Direct Structuring,LDS)天线辐射体、或者为印刷直接成型(Print Direct Structuring,PDS)天线辐射体、或者为金属枝节。所述第三辐射体130可以与所述第一辐射体110的类型相同,也可以与所述第一辐射体110的类型不同,在本申请中不做限定。
所述第三辐射体130具有第九谐振模式,所述第九谐振模式用于支持第三频段的电磁波信号的收发。换而言之,在本实施方式中,所述天线组件10中的第三辐射体130具有第九谐振模式,从而取代之前的第三谐振模式。由于所述第九谐振模式与所述第三谐振模式支持的频段相同,即,都支持所述第三频段,因此,本申请实施方式提供的天线组件10在同一时刻具有较多的谐振模式,即仍然能够支持较多的频段的电磁波信号的收发,具有较好的通信性能。
具体地,在本实施方式中,所述第三辐射体130的长度为第三频段的1/4波长~1/2波长。
请一并参阅图29,图29为本申请另一实施方式提供的天线组件的示意图。在本实施方式中,所述天线组件10还包括第五匹配电路M5。所述第五匹配电路M5电连接至所述第一辐射体110或所述第二辐射体120。在本实施方式的示意图中,以所述第五匹配电路M5电连接至所述第一辐射体110为例进行示意。
在本实施方式中提供的天线组件10中,以所述天线组件10还包括第五匹配电路M5结合到前面的一种实施方式提供的天线组件10中为例进行示意,可以理解地,所述天线组件10还包括第五匹配电路M5还可以结合到前面任意实施方式提供的天线组件10中。
所述第五匹配电路M5电连接至所述第一辐射体110或所述第二辐射体120,所述第五匹配电路M5用于辅助实现所述天线组件10所支持的频段的调谐。具体地,所述第五匹配电路M5可包括匹配子电路或开关等有源器件。在本实施方式中以所述第五匹配电路M5电连接至所述第一辐射体110为例进行示意。所述第五匹配电路M5一端接地,另一端电连接至所述第一接地端111与所述第一连接点P1之间。
结合前面各个实施方式提供的天线组件10,所述天线组件10包括第一天线10a及第二天线10b(请参阅图30及图31,图30为一实施方式中天线组件中第一天线的示意图;图31为图30中的天线组件中第二天线的示意图)。所述第一天线10a包括第一辐射体110、第一匹配电路M1及第一信号源S1,所述第二天线10b包括第一辐射体110、第二匹配电路M2及第二信号源S2,所述第一天线10a及所述第二天线10b共同用于实现0MHz~5000MHz频段范围的4G无线接入网与5G-NR的双连接(LTE NR Double Connect,ENDC)及载波聚合(Carrier Aggregation,CA)。换而言之,所述天线组件10可实现LB+MHB+UHB频段范围的ENDC及CA。
由此可见,本申请的天线组件10可实现ENDC,可支持同时支持4G无线接入网与5G-NR,因此,本申请实施方式提供的天线组件10可提升4G及5G的传输带宽,以及提升上行下行速率,具有较好的通信效果。此外,本申请实施方式提供的天线组件10可实现CA,也具有较好的通信效果。
当所述天线组件10还包括第二辐射体120、第三匹配电路M3、第四匹配电路M4及第三信号源S3时,所述天线组件10还包括第三天线10c(请一并参阅图32,图32为一实施方式中天线组件中第三天线的示意图),换而言之,所述第三天线10c包括第二辐射体120、第三匹配电路M3、第四匹配电路M4及第三信号源S3。
所述第一天线10a及所述第二天线10b共用一个第一辐射体110,所述第一天线10a工作时可利用 所述第一辐射体110收发电磁波信号,所述第二天线10b工作时还利用所述第一辐射体110收发电磁波信号,从而使得所述天线组件10在较少的辐射体的情况下,仍然可工作在较宽的频段。
当所述天线组件10包括第一天线10a、第二天线10b及第三天线10c时,可实现三个天线共口径。第三天线10c工作时不但可以利用所述第二辐射体120收发电磁波信号,还可利用所述第一辐射体110收发电磁波信号,从而使得所述第三天线10c可工作在较宽的频段。此外,由于所述第一天线10a及第二天线10b工作时不但可以利用第一辐射体110并且可以利用第二辐射体120收发电磁波信号,所述第三天线10c工作时不但可以利用第二辐射体120还可利用第一辐射体110,因此,实现了天线组件10中辐射体的复用,因此,有利于减小所述天线组件10的尺寸。由上述分析可知,所述天线组件10的尺寸较小,当所述天线组件10应用于电子设备1中时,便于与电子设备1中的其他器件堆叠。
本申请还提供了一种电子设备1,所述电子设备1包括但不仅限于为手机、互联网设备(mobile internet device,MID)、电子书、便携式播放站(Play Station Portable,PSP)或个人数字助理(Personal Digital Assistant,PDA)等具有通信功能的电子设备1。请参阅图33,图33为本申请一实施方式提供的电子设备的立体结构图。所述电子设备1包括前面任意实施方式所述的天线组件10。所述天线组件10请参阅前面描述,在此不再赘述。
请一并参阅图34,图34为一实施方式提供的图33中的电子设备沿I-I线的剖视图。在本实施方式中,所述电子设备1还包括中框30、屏幕40、电路板50及电池盖60。所述中框30的材质为金属,比如为铝镁合金。所述中框30通常构成电子设备1的地,所述电子设备1中的电子器件需要接地时,可连接所述中框30以接地。此外,所述电子设备1中的地系统除了包括所述中框30之外,还包括电路板50上的地以及屏幕40中的地。所述屏幕40可以为具有显示作用的显示屏,也可以为集成有显示及触控作用的屏幕40。所述屏幕40用于显示文字、图像、视频等信息。所述屏幕40承载于所述中框30,且位于所述中框30的一侧。所述电路板50通常也承载于所述中框30,且所述电路板50和所述屏幕40承载于所述中框30相背的两侧。前面介绍的天线组件10中的第一信号源S1、第二信号源S2、第一匹配电路M1、第二匹配电路M2、第三匹配电路M3、第四匹配电路M4及第五匹配电路M5中的至少一个或多个可设置在所述电路板50上。所述电池盖60设置于所述电路板50背离中框30的一侧,所述电池盖60、所述中框30、所述电路板50、及所述屏幕40相互配合以组装成一个完整的电子设备1。可以理解地,所述电子设备1的结构描述仅仅为对电子设备1的结构的一种形态的描述,不应当理解为对电子设备1的限定,也不应当理解为对天线组件10的限定。
所述第一辐射体110电连接至中框30,以接地所述第一辐射体110还可通过连接筋或导电弹片等电连接件连接中框30。同样地,所述第二辐射体120电连接至中框30以接地,所述第二辐射体120还可通过连接筋或者导电弹片等电连接件连接中框30。
所述中框30包括框体本体310及边框320。所述边框320弯折连接于所述框体本体310的周缘,前面所述的各个实施方式中的第一辐射体110、第二辐射体120、第三辐射体130中的任意一个辐射体可形成于所述边框320上。
可以理解地,在其他实施方式中,第一辐射体110、及第二辐射体120、所述第三辐射体130也可形成于所述边框320上,或者为FPC天线辐射体或者为LDS天线辐射体、或者为PDS天线辐射体、或者为金属枝节。
请参阅图35,图35为一实施方式中天线组件中的辐射体在电子设备的位置示意图。在本实施方式中,电子设备1包括顶部1a和底部1b,所述第一辐射体110及所述第二辐射体120均设置于所述顶部1a。
所谓顶部1a,是指电子设备1使用时位于上面的部分,而底部1b是和顶部1a相对的是位于电子设备1的下面的区域。
本实施方式中的电子设备1包括首尾依次相连的第一侧边11、第二侧边12、第三侧边13、及第四侧边14。所述第一侧边11与所述第三侧边13为电子设备1的短边,所述第二侧边12及所述第四侧边14为所述电子设备1的长边。所述第一侧边11与所述第三侧边13相对且间隔设置,所述第二侧边12与所述第四侧边14相对且间隔设置,所述第二侧边12分别与所述第一侧边11及所述第三侧边13弯折 相连,所述第四侧边14分别与所述第一侧边11及所述第三侧边13弯折相连。所述第一侧边11与所述第二侧边12的连接处、所述第二侧边12与所述第三侧边13的连接处、所述第三侧边13与所述第四侧边14的连接处、所述第四侧边14与所述第一侧边11的连接处均形成电子设备1的角。所述第一侧边11为顶边,所述第二侧边12为右边,所述第三侧边13为下边,所述第四侧边14为左边。所述第一侧边11与所述第二侧边12形成的角为右上角,所述第一侧边11与所述第四侧边14形成的角为左上角。
所述顶部1a包括三种情况:所述第一辐射体110及所述第二辐射体120设置于所述电子设备1的左上角;或者,所述第一辐射体110及所述第二辐射体120设置于所述电子设备1的顶边;或者所述第一辐射体110及所述第二辐射体120设置于所述电子设备1的右上角。
当所述第一辐射体110及所述第二辐射体120设置于所述电子设备1的左上角时包括如下几种情况:所述第一辐射体110的部分位于左侧边,所述第一辐射体110的另外部分位于顶边,且所述第二辐射体120均位于所述顶边;或者,所述第二辐射体120部分位于顶边,所述第二辐射体120的另外一部分位于左边,且所述第一辐射体110位于所述左边。
当所述第一辐射体110及所述第二辐射体120设置于所述电子设备1的右上角时,包括如下几种情况:所述第一辐射体110部分位于顶边,所述第一辐射体110的另外部分位于右侧边,且所述第二辐射体120位于右边;或者,所述第二辐射体120部分位于右边,所述第二辐射体120部分位于顶边,且所述第一辐射体110部分位于顶边。
当所述电子设备1立体放置时,所述电子设备1的顶部1a通常背离地面,而所述电子设备1的底部1b通常靠近地面。当所述第一辐射体110及所述第二辐射体120设置在所述顶部1a时,天线组件10的上半球辐射效率较好,从而使得天线组件10具有较好的通信效率。当然,在其他实施方式中,所述第一辐射体110及所述第二辐射体120也可对应所述电子设备1的底部1b设置,虽然所述第一辐射体110及所述第二辐射体120对应所述电子设备1的底部1b设置时,天线组件10的上半球辐射效率没有那么好,但只要满足上半球辐射效率大于等于预设效率也是可以具有较为良好的通信效果的。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (23)

  1. 一种天线组件,其特征在于,所述天线组件包括:
    第一辐射体,所述第一辐射体包括第一接地端、第一自由端以及第一连接点和第二连接点,所述第一连接点和所述第二连接点位于所述第一接地端与所述第一自由端之间;
    第一匹配电路,所述第一匹配电路电连接所述第一连接点;
    第一信号源,所述第一信号源电连接至所述第一匹配电路;
    第二匹配电路,所述第二匹配电路电连接所述第二连接点;以及
    第二信号源,所述第二信号源电连接至所述第二匹配电路;所述天线组件具有第一谐振模式、第二谐振模式以及第三谐振模式,以支持LB频段,以及支持MB频段、HB频段及UHB频段三者中的一个频段或两个频段。
  2. 如权利要求1所述的天线组件,其特征在于,所述第二连接点相较于所述第一连接点邻近所述第一自由端,
    所述第一谐振模式用于支持第一频段的电磁波信号的收发;
    所述第二谐振模式用于支持第二频段的电磁波信号的收发,其中,所述第二频段的频率大于所述第一频段的频率;以及
    所述第三谐振模式用于支持第三频段的电磁波信号的收发,其中,所述第三频段的频率大于所述第二频段的频率。
  3. 如权利要求2所述的天线组件,其特征在于,
    所述第一谐振模式为第一接地端到第一自由端的1/8~1/4波长模式;
    所述第二谐振模式为第一匹配电路至所述第一自由端的1/4波长模式;
    所述第三谐振模式为第二匹配电路至所述第一自由端的1/4波长模式。
  4. 如权利要求3所述的天线组件,其特征在于,所述第一频段为LB频段;所述第二频段及所述第三频段均位于MB频段至UHB频段,且所述第二频段的频率小于所述第三频段的频率。
  5. 如权利要求4所述的天线组件,其特征在于,
    所述第二频段位于MB频段,且所述第三频段位于MB频段或者HB频段或者UHB频段;或者,
    所述第二频段位于HB频段,且所述第三频段位于HB频段或者UHB频段;或者,
    所述第二频段位于UHB频段,且所述第三频段位于UHB频段。
  6. 如权利要求5所述的天线组件,其特征在于,所述第二匹配电路根据预设的匹配参数,对所述第一辐射体支持的第二频段及第三频段进行调谐,以使得当所述第二频段位于UHB频段且所述第三频段位于UHB频段时,所述第二频段及所述第三频段共同支持N77、N78及N79频段。
  7. 如权利要求2所述的天线组件,其特征在于,所述天线组件满足如下中的至少一种:所述第一匹配电路用于隔离所述第二频段及所述第三频段;所述第二匹配电路用于隔离所述第一频段。
  8. 如权利要求2所述的天线组件,其特征在于,所述天线组件还包括:
    第二辐射体,所述第二辐射体包括第二接地端及第二自由端,所述第二接地端接地,所述第二自由端相较于所述第二接地端邻近所述第一自由端设置,且所述第二自由端与所述第一自由端具有缝隙,所述第二辐射体用于支持第四频段的电磁波信号的收发,其中,所述第四频段的频率大于所述第二频段的频率,且所述第四频段的频率小于所述第三频段的频率。
  9. 如权利要求8所述的天线组件,其特征在于,所述天线组件还具有:
    第四谐振模式,所述第四谐振模式用于支持所述第四频段的电磁波信号的收发。
  10. 如权利要求9所述的天线组件,其特征在于,所述第四谐振模式为所述第二接地端至所述缝隙的1/4波长模式。
  11. 如权利要求10所述的天线组件,其特征在于,所述第二频段包括N77频段、所述第三频段包括N79频段,所述第四频段包括N78频段。
  12. 如权利要求8所述的天线组件,其特征在于,所述第一辐射体及所述第二辐射体中的至少一个根据预设的尺寸参数,以支持WiFi-6E全频段。
  13. 如权利要求1所述的天线组件,其特征在于,所述天线组件还包括:
    第二辐射体,所述第二辐射体包括第二接地端及第二自由端,所述第二接地端接地,所述第二自由端相较于所述第二接地端邻近所述第一自由端设置,且所述第二自由端与所述第一自由端具有缝隙,还具有第三连接点及第四连接点,所述第三连接点及所述第四连接点位于所述第二接地端及所述第二自由端之间,所述天线组件还包括:
    第三匹配电路,所述第三匹配电路电连接所述第三连接点;
    第三信号源,所述第三信号源电连接所述第三匹配电路;以及
    第四匹配电路,所述第四匹配电路的一端电连接所述第四连接点,且所述第四匹配电路的一端接地;所述第二辐射体用于支持第五频段的电磁波信号的收发。
  14. 如权利要求13所述的天线组件,其特征在于,所述天线组件具有第四谐振模式,所述第四谐振模式用于支持第四频段的电磁波信号的收发,所述第四谐振模式为所述第四匹配电路到所述缝隙的1/4波长模式,所述第四匹配电路用于实现对所述第四谐振模式支持的第四频段的低阻抗到地。
  15. 如权利要求14所述的天线组件,其特征在于,所述第四匹配电路包括:
    匹配电容,所述匹配电容的一端电连接至所述第四连接点;以及
    匹配电感,所述匹配电感的一端电连接所述匹配电容的另一端,所述匹配电感的另一端接地。
  16. 如权利要求13所述的天线组件,其特征在于,所述天线组件具有第五谐振模式、第六谐振模式及第七谐振模式以共同支持所述第五频段;其中:
    所述第五谐振模式为第二接地端至所述缝隙的1/4波长模式;
    所述第六谐振模式为所述第三匹配电路至所述缝隙的1/4波长模式;
    所述第七谐振模式为所述第一匹配电路至所述缝隙的电长度与第三匹配电路到所述缝隙的电长度之和的1/2波长。
  17. 如权利要求13所述的天线组件,其特征在于,所述第一连接点与所述第二连接点重合,所述第一辐射体用于支持所述第一频段及所述第二频段;
    所述第二辐射体根据预设的尺寸参数,或所述第三匹配电路及所述第四匹配电路中的至少一者根据预设的匹配参数,以使得所述第二辐射体具有第八谐振模式,所述第八谐振模式用于支持第三频段的电磁波信号的收发。
  18. 如权利要求17所述的天线组件,其特征在于,所述第八谐振模式为第二辐射体的3/4波长模式,其中,所述第八谐振模式对应第一子电流及第二子电流,其中,所述第一子电流自所述缝隙到所述第三连接点,所述第二子电流自所述第二接地端流向所述第三连接点。
  19. 如权利要求1所述的天线组件,其特征在于,所述第一连接点与所述第二连接点重合,所述第一辐射体用于支持所述第一频段及所述第二频段,所述天线组件还包括:
    第三辐射体,所述第三辐射体电连接至所述第二匹配电路,所述第三辐射体具有第九谐振模式,所述第九谐振模式用于支持第三频段的电磁波信号的收发。
  20. 如权利要求19所述的天线组件,其特征在于,所述第三辐射体的长度为第三频段的1/4波长~1/2波长。
  21. 如权利要求1-20任意一项所述的天线组件,其特征在于,所述天线组件还包括:
    第五匹配电路,所述第五匹配电路电连接至所述第一辐射体;当所述天线组件还包括第二辐射体时,所述第五匹配电路电连接至所述第一辐射体或所述第二辐射体。
  22. 如权利要求1-21任意一项所述的天线组件,其特征在于,所述天线组件包括:第一天线及第二天线,所述第一天线包括第一辐射体、第一匹配电路及第一信号源,所述第二天线包括第一辐射体、第二匹配电路及第二信号源,所述第一天线及所述第二天线共同用于实现0MHz~5000MHz频段范围的ENDC及CA。
  23. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-22任意一项所述的天线组件。
PCT/CN2022/133127 2021-12-27 2022-11-21 天线组件及电子设备 WO2023124646A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111616568.2A CN114336010A (zh) 2021-12-27 2021-12-27 天线组件及电子设备
CN202111616568.2 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023124646A1 true WO2023124646A1 (zh) 2023-07-06

Family

ID=81014469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133127 WO2023124646A1 (zh) 2021-12-27 2022-11-21 天线组件及电子设备

Country Status (2)

Country Link
CN (1) CN114336010A (zh)
WO (1) WO2023124646A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336010A (zh) * 2021-12-27 2022-04-12 Oppo广东移动通信有限公司 天线组件及电子设备
CN115313030A (zh) * 2022-08-31 2022-11-08 Oppo广东移动通信有限公司 天线组件和电子设备
CN118054201A (zh) * 2022-11-10 2024-05-17 Oppo广东移动通信有限公司 天线组件及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346863A (zh) * 2018-01-29 2018-07-31 维沃移动通信有限公司 一种天线和移动终端
CN210723360U (zh) * 2019-12-11 2020-06-09 维沃移动通信有限公司 电子设备
CN112002994A (zh) * 2020-08-27 2020-11-27 维沃移动通信有限公司 天线结构及电子设备
CN112072291A (zh) * 2020-09-08 2020-12-11 北京字节跳动网络技术有限公司 天线结构和终端
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
US20210391656A1 (en) * 2020-06-12 2021-12-16 Chiun Mai Communication Systems, Inc. Antenna structure and electronic device using same
CN114336010A (zh) * 2021-12-27 2022-04-12 Oppo广东移动通信有限公司 天线组件及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321494B (zh) * 2018-01-19 2021-05-11 Oppo广东移动通信有限公司 天线装置及电子设备
CN109687111B (zh) * 2018-12-29 2021-03-12 维沃移动通信有限公司 一种天线结构及通信终端
CN112086752A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112736461B (zh) * 2020-12-28 2023-06-09 Oppo广东移动通信有限公司 天线装置及电子设备
CN112751204B (zh) * 2020-12-29 2023-04-28 Oppo广东移动通信有限公司 天线组件及电子设备
CN116073130A (zh) * 2020-12-29 2023-05-05 Oppo广东移动通信有限公司 天线组件及电子设备
CN215184540U (zh) * 2021-07-26 2021-12-14 维沃移动通信有限公司 天线结构和电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346863A (zh) * 2018-01-29 2018-07-31 维沃移动通信有限公司 一种天线和移动终端
CN210723360U (zh) * 2019-12-11 2020-06-09 维沃移动通信有限公司 电子设备
US20210391656A1 (en) * 2020-06-12 2021-12-16 Chiun Mai Communication Systems, Inc. Antenna structure and electronic device using same
CN112002994A (zh) * 2020-08-27 2020-11-27 维沃移动通信有限公司 天线结构及电子设备
CN112072291A (zh) * 2020-09-08 2020-12-11 北京字节跳动网络技术有限公司 天线结构和终端
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN114336010A (zh) * 2021-12-27 2022-04-12 Oppo广东移动通信有限公司 天线组件及电子设备

Also Published As

Publication number Publication date
CN114336010A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN112751204B (zh) 天线组件及电子设备
CN113013593B (zh) 天线组件和电子设备
WO2023124646A1 (zh) 天线组件及电子设备
US9264011B2 (en) Impedance-matching switching circuit, antenna device, high-frequency power amplifying device, and communication terminal apparatus
CN110892581B (zh) 天线系统和终端设备
WO2022142822A1 (zh) 天线组件和电子设备
CN112751203B (zh) 天线组件及电子设备
CN212277399U (zh) 天线组件和电子设备
CN109672019B (zh) 一种终端mimo天线装置及实现天线信号传输方法
US9287629B2 (en) Impedance conversion device, antenna device and communication terminal device
WO2023160131A1 (zh) 天线组件和电子设备
US20240072418A1 (en) Antenna assembly and electronic device
WO2024045766A1 (zh) 一种天线组件及电子设备
CN112768900A (zh) 天线系统及电子设备
WO2023273604A1 (zh) 天线模组及电子设备
WO2020134328A1 (zh) 天线模组及移动终端
WO2023273607A1 (zh) 天线模组及电子设备
WO2022068367A1 (zh) 天线组件及电子设备
US20230411847A1 (en) Antenna and electronic device
US20240014556A1 (en) Antenna assembly and electronic device
WO2023045630A1 (zh) 天线组件及电子设备
WO2022183892A1 (zh) 天线组件及电子设备
CN114628892A (zh) Pcb天线及电子设备
JP5714507B2 (ja) Mimoアンテナ装置及び無線通信装置
JP5694953B2 (ja) アンテナ装置及び無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE