WO2022183892A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2022183892A1
WO2022183892A1 PCT/CN2022/075871 CN2022075871W WO2022183892A1 WO 2022183892 A1 WO2022183892 A1 WO 2022183892A1 CN 2022075871 W CN2022075871 W CN 2022075871W WO 2022183892 A1 WO2022183892 A1 WO 2022183892A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
radiator
antenna assembly
resonance mode
frequency band
Prior art date
Application number
PCT/CN2022/075871
Other languages
English (en)
French (fr)
Inventor
吴小浦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP22762359.2A priority Critical patent/EP4277028A4/en
Publication of WO2022183892A1 publication Critical patent/WO2022183892A1/zh
Priority to US18/446,163 priority patent/US20230387594A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/392Combination of fed elements with parasitic elements the parasitic elements having dual-band or multi-band characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an antenna assembly and an electronic device.
  • the present application provides an antenna assembly and an electronic device for improving data transmission rate and communication quality.
  • an antenna assembly including:
  • a radiator including a first sub-radiator and a second sub-radiator, the first sub-radiator and the second sub-radiator have a coupling gap, the first sub-radiator and the second sub-radiator are coupled through the coupling slot;
  • the first sub-radiator includes a free end, a first coupling end, a ground point and a feeding point between the free end and the first coupling end, the The grounding point is grounded, and the feeding point is located between the grounding point and the first coupling end;
  • the second sub-radiator includes a second coupling end and a grounding end, the first coupling end and the first coupling end A coupling gap is formed between the two coupling ends, and the grounding end is grounded;
  • one end of the first matching circuit is electrically connected to the feeding point
  • the signal source is electrically connected to the other end of the first matching circuit.
  • an embodiment of the present application provides an electronic device, including a housing and the antenna assembly, and the radiator is provided on or in the housing.
  • the ground point of the first sub-radiator is designed to be located between two ends of the first sub-radiator, and the second sub-radiator is capacitively coupled with the first sub-radiator, so that the first sub-radiator is capacitively coupled to the first sub-radiator.
  • the currents of a sub-radiator and the second sub-radiator have various distribution modes, thereby generating various resonance modes, so that the antenna assembly can support a wider bandwidth, thereby improving the throughput and data when the antenna assembly is applied to electronic equipment.
  • the transmission rate is improved to increase the communication quality of electronic equipment.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is the disassembly structure schematic diagram of the electronic device shown in Fig. 1;
  • FIG. 3 is a schematic structural diagram of a first antenna assembly provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of multiple resonance modes generated by the antenna assembly provided in FIG. 3;
  • FIG. 5 is a schematic diagram of a first current distribution of the antenna assembly provided in FIG. 3;
  • FIG. 6 is a schematic diagram of a first current density distribution of the antenna assembly provided in FIG. 3;
  • FIG. 7 is a schematic diagram of a second current distribution of the antenna assembly provided in FIG. 3;
  • FIG. 8 is a schematic diagram of a second current density distribution of the antenna assembly provided in FIG. 3;
  • FIG. 9 is a schematic diagram of a third current distribution of the antenna assembly provided in FIG. 3;
  • FIG. 10 is a schematic diagram of a third current density distribution of the antenna assembly provided in FIG. 3;
  • FIG. 11 is a radiation efficiency graph of the antenna assembly provided in FIG. 3;
  • FIG. 12 is a schematic structural diagram of a first first matching circuit provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a second type of first matching circuit provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a third first matching circuit provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a fourth first matching circuit provided by an embodiment of the present application.
  • 16 is a schematic structural diagram of a fifth first matching circuit provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a sixth first matching circuit provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a seventh first matching circuit provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of an eighth first matching circuit provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a second antenna assembly provided by an embodiment of the present application.
  • 21 is a schematic structural diagram of a third antenna assembly provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a fourth antenna assembly provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a fifth antenna assembly provided by an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a sixth antenna assembly provided by an embodiment of the present application.
  • 25 is a schematic structural diagram of a first setting position of an antenna assembly provided by an embodiment of the present application.
  • 26 is a schematic structural diagram of a second arrangement position of the antenna assembly provided by the embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a third setting position of the antenna assembly provided by the embodiment of the present application.
  • Fig. 28 is the structural representation of the frame provided by Fig. 2;
  • FIG. 29 is a schematic structural diagram of a first arrangement of an antenna assembly and a frame provided by an embodiment of the present application.
  • FIG. 30 is a schematic structural diagram of a second arrangement manner of an antenna assembly and a frame provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Electronic device 1000 includes antenna assembly 100 .
  • the antenna assembly 100 is used for transmitting and receiving electromagnetic wave signals, so as to realize the communication function of the electronic device 1000 .
  • the present application does not specifically limit the position of the antenna assembly 100 in the electronic device 1000 .
  • the electronic device 1000 further includes a display screen 300 and a casing 200 that are connected to each other by covering.
  • the antenna assembly 100 may be disposed inside the casing 200 of the electronic device 1000 , or partially integrated with the casing 200 , or partially disposed outside the casing 200 .
  • the antenna assembly 100 can also be provided on the retractable assembly of the electronic device 1000, in other words, at least part of the antenna assembly 100 can also extend out of the electronic device 1000 along with the retractable assembly of the electronic device 1000, and can be extended with the retractable assembly of the electronic device 1000.
  • the assembly retracts into the electronic device 1000; alternatively, the overall length of the antenna assembly 100 extends as the retractable assembly of the electronic device 1000 extends.
  • the electronic device 1000 includes, but is not limited to, telephones, televisions, tablet computers, mobile phones, cameras, personal computers, notebook computers, in-vehicle devices, headphones, watches, wearable devices, base stations, in-vehicle radars, and customer premise equipment (CPE). ) and other devices capable of sending and receiving electromagnetic wave signals.
  • the electronic device 1000 is taken as an example of a mobile phone.
  • CPE customer premise equipment
  • the width direction of the electronic device 1000 is defined as the X-axis direction
  • the length direction of the electronic device 1000 is defined as the Y-axis direction
  • the thickness direction of the electronic device 1000 is defined as the Z-axis direction axis direction.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are perpendicular to each other. Among them, the direction indicated by the arrow is the forward direction.
  • the casing 200 includes a frame 210 and a back cover 220 .
  • a middle plate 410 is formed in the frame 210 by injection molding, and a plurality of installation grooves for installing various electronic devices are formed on the middle plate 410 .
  • the middle plate 410 and the frame 210 together become the middle frame 420 of the electronic device 100 .
  • the middle frame 420 and the back cover 220 are closed, a receiving space is formed on both sides of the middle frame 420 .
  • the electronic device 1000 also includes a battery, a camera, a microphone, a receiver, a speaker, a face recognition module, a fingerprint recognition module, etc., which are arranged in the accommodating space and can realize the basic functions of the mobile phone, which will not be repeated in this embodiment. .
  • the antenna assembly 100 provided by the present application will be specifically described below with reference to the accompanying drawings.
  • the antenna assembly 100 provided by the present application includes but is not limited to the following embodiments.
  • the antenna assembly 100 at least includes a radiator 10 , a first matching circuit M1 and a signal source 20 .
  • the radiator 10 includes a first sub-radiator 11 and a second sub-radiator 12 .
  • a coupling slot 13 exists between the first sub-radiator 11 and the second sub-radiator 12 .
  • the first sub-radiator 11 and the second sub-radiator 12 are coupled through a coupling slot 13 .
  • the shapes of the first sub-radiator 11 and the second sub-radiator 12 are both straight and bar-shaped as an example for description.
  • the shape of the first sub-radiator 11 and the second sub-radiator 12 may also be a bent strip shape or other shapes.
  • the first sub-radiator 11 includes a free end 111 and a first coupling end 112 .
  • the free end 111 and the first coupling end 112 are opposite ends of the first sub-radiator 11 in the shape of a straight line.
  • the first sub-radiator 11 is in a bent shape, the free end 111 and the first coupling end 112 may not be opposite to each other in a straight line, but the free end 111 and the first coupling end 112 are the first sub-radiator 11 . both ends.
  • the first sub-radiator 11 also has a grounding point A and a feeding point B which are arranged between the free end 111 and the first coupling end 112 .
  • the ground point A is used to ground GND1.
  • the feed point B is located between the ground point A and the first coupling terminal 112 .
  • the present application does not limit the specific positions of the grounding point A and the feeding point B on the first sub-radiator 11 .
  • the second sub-radiator 12 includes a second coupling terminal 121 and a ground terminal 122 .
  • the second coupling end 121 and the grounding end 122 are opposite ends of the first sub-radiator 11 in the shape of a straight line.
  • the first sub-radiators 11 and the second sub-radiators 12 may be arranged in a straight line or approximately in a straight line (ie, with a small tolerance in the design process).
  • the first sub-radiator 11 and the second sub-radiator 12 may also be staggered in the extending direction to form an escape space or the like.
  • the first coupling end 112 and the second coupling end 121 are opposite to each other and disposed at intervals.
  • a coupling gap 13 exists between the first coupling end 112 and the second coupling end 121 .
  • the coupling slot 13 is a gap between the first coupling end 112 of the first sub-radiator 11 and the second coupling end 121 of the second sub-radiator 12 . Limited to this size.
  • the first sub-radiator 11 and the second sub-radiator 12 can be capacitively coupled through the coupling slot 13 . In one of the viewing angles, the first sub-radiator 11 and the second sub-radiator 12 can be regarded as two parts formed by the radiator 10 being separated by the coupling slot 13 .
  • the first sub-radiator 11 and the second sub-radiator 12 are capacitively coupled through the coupling slot 13 .
  • capacitively coupling means that an electric field is generated between the first sub-radiator 11 and the second sub-radiator 12, and the signal of the first sub-radiator 11 can be transmitted to the second sub-radiator 12 through the electric field, and the second sub-radiator 12
  • the signal of the sub-radiator 12 can be transmitted to the first sub-radiator 11 through the electric field, so that the first sub-radiator 11 and the second sub-radiator 12 can achieve electrical signal conduction even when the first sub-radiator 11 and the second sub-radiator 12 are disconnected.
  • the first sub-radiator 11 can generate an electric field under the excitation of the signal source 20 , and the electric field energy can be transferred to the second sub-radiator 12 through the coupling slot 13 , thereby causing the second sub-radiator 12 to generate an excitation current .
  • the ground terminal 122 of the second sub-radiator 12 is used for grounding GND2.
  • the first matching circuit M1 is electrically connected to the feeding point B.
  • the signal source 20 is electrically connected to the other end of the first matching circuit M1.
  • the signal source 20 is a radio frequency transceiver chip for transmitting radio frequency signals or a power feeder electrically connected to the radio frequency transceiver chip for transmitting radio frequency signals.
  • the first matching circuit M1 may include multiple selection branches formed by switches-capacitors-inductors-resistors, etc., and adjustable devices such as variable capacitors.
  • the radiator 10 generates multiple resonance modes (eg, a, b, and c in FIG. 4 ) under the excitation of the signal source 20 .
  • the resonant mode is characterized by that the antenna assembly 100 has high electromagnetic wave transceiving efficiency at and near the resonant frequency.
  • the radiator 10 has high transmission and reception efficiency of electromagnetic waves at and near multiple resonant frequencies under the excitation of the signal source 20 , so as to support the transmission and reception of electromagnetic wave signals in multiple frequency bands.
  • the absolute value of the return loss curve is greater than or equal to 5 dB as a reference value with high electromagnetic wave transceiving efficiency.
  • the various frequency bands supported by the radiator 10 are continuous or discontinuous.
  • the multiple frequency bands being continuous means that two adjacent frequency bands supported by the radiator 10 at least partially overlap.
  • the discontinuity of multiple frequency bands means that there is no overlap between two adjacent frequency bands supported by the radiator 10 .
  • the multiple frequency bands supported by the radiator 10 are continuous and form wider bandwidth H.
  • the bandwidth H covered by the multiple resonance modes is greater than or equal to 1G.
  • the radiator 10 simultaneously generates the above-mentioned multiple resonance modes under the excitation of the signal source 20, and the above multiple resonance modes form a continuous and wider bandwidth H, so as to improve the performance of the antenna assembly 100 when applied to the electronic device 1000.
  • the data throughput and data transmission rate are improved and the communication quality of the electronic device 1000 is improved.
  • the bandwidth of the antenna assembly 100 is wide, there is no need for an adjustable device to switch between different frequency bands, thereby eliminating the need for an adjustable device, saving costs, and realizing a simple structure of the antenna assembly 100 .
  • the ground point A of the first sub-radiator 11 is designed to be located between two ends of the first sub-radiator 11 , the second sub-radiator 12 and the first sub-radiator 11 Capacitive coupling, so that the currents of the first sub-radiator 11 and the second sub-radiator 12 have multiple distribution modes, thereby generating multiple resonance modes, and the bandwidth covered by the multiple resonance modes is greater than or equal to 1G, so that the antenna assembly can
  • the 100 can support a wider bandwidth, thereby improving the throughput and data transmission rate when the antenna assembly 100 is applied to the electronic device 1000 , and improving the communication quality of the electronic device 1000 .
  • the shape and structure of the first sub-radiator 11 and the second sub-radiator 12 are not specifically limited in this application.
  • the shapes of the first sub-radiator 11 and the second sub-radiator 12 include but are not limited to strips, sheets shape, rod shape, coating, film, etc.
  • the application does not limit the extension trajectories of the first sub-radiator 11 and the second sub-radiator 12, so the first sub-radiator 11,
  • the second sub-radiators 12 can all extend in a straight line, a curve, and multiple bends.
  • the above-mentioned radiator 10 may be a line with a uniform width on the extending track, or may be a bar with a gradual width, a widened area, or the like with different widths.
  • the radiator 10 with respect to the antenna assembly 100 is grounded.
  • the antenna assembly 100 itself has a reference ground.
  • the specific form of the reference ground includes, but is not limited to, a metal plate, a metal layer formed inside the flexible circuit board, and the like.
  • the ground point A of the first sub-radiator 11 is electrically connected to the reference ground through conductive parts such as ground springs, solder, and conductive adhesive.
  • the reference ground of the antenna assembly 100 is electrically connected to the reference ground of the electronic device 1000 .
  • the antenna assembly 100 itself does not have a reference ground, and the radiator 10 of the antenna assembly 100 is electrically connected to the reference ground of the electronic device 1000 or the reference of the electronic device in the electronic device 1000 through direct electrical connection or through an intermediate conductive connection. land.
  • the antenna assembly 100 when the antenna assembly 100 is installed in the electronic device 1000 , the display screen 200 and the metal alloy on the middle plate 410 of the electronic device 1000 are used as reference grounds.
  • the ground point and the ground terminal of the antenna assembly 100 are electrically connected to the reference ground of the electronic device 1000 through conductive parts such as ground springs, solder, and conductive adhesive.
  • the effective efficiency bandwidth of the antenna is not wide enough, for example, in the coverage of the middle and high frequency bands (1000MHz-3000MHz).
  • the middle and high frequency bands 1000MHz-3000MHz.
  • B3/N3+B1/N1+B7/N7 1710MHz-2690MHz
  • at least two resonant modes are used to cover, and these resonant modes have small bandwidths and are spaced apart from each other, making it difficult to cover B3/N at the same time.
  • N3+B1/N1 to cover B1/N1+B7/N7 at the same time, and it is even more difficult to cover B3/N3+B1/N1+B7/N7 at the same time, resulting in poor signal coverage or insufficient miniaturization of the antenna in some frequency bands.
  • the above frequency bands are only examples, and cannot be used as limitations on the frequency bands that can be radiated by this application.
  • the structures and grounding points of the first sub-radiator 11 and the second sub-radiator 12 are designed, so that the currents of the first sub-radiator 11 and the second sub-radiator 12 have more currents. In this way, the structure of the antenna assembly 100 is simple, and at the same time, multiple resonance modes are generated.
  • the bandwidths of the frequency bands that can be supported by the multiple resonance modes are greater than or equal to 1G, so that the antenna assembly 100 can support a wider bandwidth, thereby improving the The throughput and data transmission rate when the antenna assembly 100 is applied to the electronic device 1000, when the antenna assembly 100 is applied to the above-mentioned middle and high frequency bands (for example, 1710MHz-2690MHz), can simultaneously support B3/N3+B1/N1+B7/N7, Therefore, the antenna assembly 100 has at least simple structure, miniaturization, and high efficiency and data transmission rate in the application frequency band of B3/N3+B1/N1+B7/N7.
  • B3/N3 includes the case where either one or both of B3 and N3 are selected.
  • the definitions of B1/N1 and B7/N7 are similar to those of B3/N3, and will not be repeated here.
  • the antenna assembly 100 provided in this application can also be applied to 1000MHz-2000MHz, 3000MHz-6000MHz, and so on.
  • the radiator 10 generates at least three resonance modes under the excitation of the signal source 20 .
  • the at least three resonance modes include, but are not limited to, a first resonance mode a, a second resonance mode b, and a third resonance mode c.
  • the first resonance mode a, the second resonance mode b and the third resonance mode c are all generated simultaneously.
  • the resonance frequency of the first resonance mode a, the resonance frequency of the second resonance mode b, and the resonance frequency of the third resonance mode c are the first frequency f1, the second frequency f2, and the third frequency f3, respectively.
  • the magnitude relationship of the first frequency f1 , the second frequency f2 and the third frequency f3 is that the first frequency f1 , the second frequency f2 and the third frequency f3 increase in sequence.
  • the first frequency f1, the second frequency f2 and the third frequency f3 are close to each other so that the return loss value of the first resonance mode a, the return loss value of the second resonance mode b, and the return loss value of the third resonance mode c
  • the value is continuous below -5dB (-5dB is only an example value, not limited to this value), and the continuous frequency bands form a wider bandwidth, which supports multiple different frequency bands planned by multiple groups of operators at the same time, such as B1, B3, B7, N1, N3, N7, etc., are beneficial to meet the indicators of different operators.
  • the first resonance mode a can support B3/N3, the second resonance mode b can support B1/N1, and the third resonance mode c can support B7/N7.
  • the frequency band A1 supported by the first resonant mode a, the frequency band B1 supported by the second resonant mode b, and the frequency band C1 supported by the third resonant mode c are continuous and can cover a bandwidth greater than or equal to 1G .
  • the antenna assembly 100 of the present application can simultaneously support B3/N3+B1/N1+B7/N7.
  • the first sub-radiator 11 generates at least one of the first resonance mode a, the second resonance mode b and the third resonance mode c under the excitation of the signal source 20
  • the second sub-radiator 12 generates at least one of the first resonance mode a, the second resonance mode b and the third resonance mode c under the excitation of the signal source 20 .
  • the effective electrical length of the radiator 10 supporting the first resonance mode a and the radiator supporting the second resonance mode b decrease sequentially.
  • the ground point A and the feeding point B can divide the first sub-radiator 11, so that the first sub-radiator 11 can form multiple sections Radiation segments with different effective electrical lengths, for example, a radiation segment may be formed between the free end 111 and the first coupling end 112, and another radiation segment may be formed between the ground point A and the first coupling end 112, these radiation segments can make The first sub-radiator 11 generates a plurality of resonance modes.
  • the first sub-radiator 11 is used to generate the first resonance mode a under the excitation of the signal source 20, and the first sub-radiator 11 and the second sub-radiator 12 are in the signal source 20 is used to generate the second resonant mode b under the excitation of is used to generate the third resonance mode c under the excitation of .
  • the frequency of the third resonance mode c is relatively high, and the required electrical length of the radiator 10 is relatively short.
  • the length of the radiator 10 is relatively short, so that the entire length of the radiator 10 is relatively small, the stacking size of the antenna assembly 100 is reduced, and the miniaturization of the antenna assembly 100 is promoted.
  • the frequency band supported by the first resonance mode a is the first frequency band T1 .
  • the frequency band supported by the second resonance mode b is the second frequency band T2.
  • the frequency band supported by the third resonance mode c is the third frequency band T3.
  • the first frequency band T1, the second frequency band T2 and the third frequency band T3 are aggregated to form a target application frequency band T4.
  • the bandwidth H of the target application frequency band T4 is greater than or equal to 1.4G.
  • the relative bandwidth is greater than or equal to 50%.
  • the first frequency band T1 supported by the first resonant mode a, the second frequency band T2 supported by the second resonant mode b, and the third frequency band T3 supported by the third resonant mode c all have a return loss of -5dB.
  • the first frequency band T1, the second frequency band T2 and the third frequency band T3 are continuous (the parts that overlap with each other are continuous) and aggregated to form the target application frequency band T4.
  • the difference between the maximum frequency and the minimum frequency of the target application frequency band T4 is greater than or equal to 1.4G. It should be noted in this application that by adjusting the effective electrical length and feeding position of the radiator 10 , the width of the target application frequency band T4 can also be adjusted to 1.8G, 2G, 2.5G, 3G, and so on.
  • the antenna assembly 100 From the perspective of the current side, the antenna assembly 100 generates at least three current distributions under the excitation of the signal source 20 , including a first current distribution R1 , a second current distribution R2 and a third current distribution R3 respectively.
  • the current distribution corresponding to the first resonance mode a includes but is not limited to the first current distribution R1 : flowing from the first coupling terminal 112 to the ground point A and from the free terminal 111 to the ground point A. Specifically, a part of the current flows from the first coupling end 112 to the ground point A, and another part of the current flows from the free end 111 to the ground point A, wherein the currents of the two parts flow in opposite directions.
  • a small amount of current is also generated by the coupling between the second sub-radiator 12 and the first sub-radiator 11 , and the current flows from the ground terminal 122 to the second coupling terminal 121 .
  • the above current distribution produces the first resonance mode a.
  • the current distribution corresponding to the second resonance mode b includes but is not limited to the second current distribution R2 : flowing from the ground terminal 122 to the ground point A and to the free terminal 111 .
  • the current on the first sub-radiator 11 flows from the first coupling end 112 to the free end 111
  • the second sub-radiator 12 generates a current under the coupling action of the first sub-radiator 11
  • the current flows from the grounding end 122 to the free end 111 .
  • the second coupling terminal 121 In other words, the current of the first sub-radiator 11 flows in the same direction as the current of the second sub-radiator 12 .
  • the second current distribution R2 includes a first sub-current distribution R21 and a second sub-current distribution R22.
  • the first sub-current distribution R21 is the current distribution on the first sub-radiator 11 to generate the first sub-resonance mode b1;
  • the second sub-current distribution R22 is the current distribution on the second sub-radiator 12 to generate the first sub-radiator 12
  • the first sub-resonance mode b1 and the second sub-resonance mode b2 together form a second resonance mode b.
  • the second resonance mode b includes the first sub-resonance mode b1 and the second sub-resonance mode b2.
  • the first sub-resonance mode b1 is generated by the first sub-radiator 11 under the excitation of the signal source 20 .
  • the second sub-resonance mode b2 is generated by the second sub-radiator 12 under the capacitive coupling action of the first sub-radiator 11 .
  • the first sub-resonance mode b1 is a dipole mode
  • the second sub-resonance mode b2 is a parasitic radiation mode generated by the second sub-radiator 12 . In this way, since the current of the first sub-radiator 11 and the current of the second sub-radiator 12 flow in the same direction, the parasitic radiation mode and the dipole mode can be mutually enhanced to generate stronger radiation efficiency.
  • the second resonant mode b substantially has the aggregation of two sub-resonant modes, the resonant frequencies of the two resonant modes are close to each other, thereby forming one resonant mode to enhance radiation efficiency and bandwidth.
  • the current distribution corresponding to the third resonance mode c includes but is not limited to the third current distribution R3 : flowing from the first coupling end 112 to the ground point A and flowing from the second coupling end 121 to the ground end 122 .
  • the current of the first coupling end 112 flows to the ground point A and returns to the ground
  • the current of the second coupling end 121 flows to the ground end 122 and returns to the ground.
  • the current of the first sub-radiator 11 and the current of the second sub-radiator 12 flow in opposite directions.
  • a third resonance is generated between the first coupling end 112 of the first sub-radiator 11 and the ground point A, and the second coupling end 121 of the second sub-radiator 12 and the ground end 122 under the action of the signal source 20 . mode c.
  • the currents corresponding to the first resonance mode a, the second resonance mode b and the third resonance mode c have partial The same flow direction of , for example, the flow direction from the first coupling end 112 to the ground point A, in this way, the three resonance modes can strengthen each other.
  • the target application frequency band T4 formed by the aggregation of the first frequency band T1, the second frequency band T2 and the third frequency band T3 includes but is not limited to 1.6GHz-3GHz, 2GHz-3.4GHz, 2.6GHz-4GHz, 3.6GHz-5GHz, etc.
  • the target application frequency band T4 formed by the aggregation of the first frequency band T1 includes but is not limited to 1GHz-3GHz, 2GHz-4GHz, 3GHz-6GHz, etc. No more examples will be given here.
  • the target application frequency band T4 formed by the aggregation of the first frequency band T1, the second frequency band T2 and the third frequency band T3 covers 1.6 GHz-3 GHz.
  • the target application frequency band T4 can support either or both of the LTE 4G frequency band and the NR 5G frequency band.
  • the supported frequency bands of the antenna assembly 100 for the LTE 4G frequency band include but are not limited to B1, B2, B3 , at least one of B4, B7, B32, B38, B39, B40, B41, B48, and B66
  • the supported frequency bands of the antenna assembly 100 for the NR 5G frequency band include but are not limited to N1, N2, N3, N4, N7, N32, At least one of N38, N39, N40, N41, N48, N66.
  • the antenna assembly 100 can cover any combination of the above-mentioned NR 5G frequency band and LTE 4G frequency band.
  • the antenna assembly 100 can be loaded with 4G LTE signals alone, or with 5G NR signals alone, or can also be loaded with 4G LTE signals and 5G NR signals at the same time, that is, to realize dual connection between 4G wireless access network and 5G-NR (LTE NR Double Connect, EN-DC).
  • 5G-NR LTE NR Double Connect, EN-DC
  • the frequency band transmitted and received by the antenna assembly 100 provided in this embodiment includes aggregating multiple carriers (carriers are radio waves of a specific frequency), that is, carrier aggregation (CA) is implemented to increase transmission bandwidth, improve throughput, and improve signal Transmission rate.
  • carrier aggregation CA
  • the frequency bands listed above may be mid-to-high frequency frequency bands applied by multiple operators.
  • the antenna assembly 100 provided by the present application can simultaneously support any one or a combination of the above frequency bands, so that the antenna assembly 100 provided by the present application can support multiple frequency bands.
  • the ground point A of the first sub-radiator 11 is located between the free end 111 and the first coupling end 112 , so that the first sub-radiator 11 and the signal source 20 to form a similar "T"-shaped antenna, the "T"-shaped antenna can form the first current distribution R1 and the first sub-current distribution R21, so that the first sub-radiator 11 is in the middle and high frequency bands ( It is not limited to the middle and high frequency bands) to generate multiple resonant modes.
  • the above-mentioned first resonance mode a and the first sub-resonance mode b1, and the resonance frequencies of the first resonance mode a and the first sub-resonance mode b1 are close to each other, thus forming a wider bandwidth.
  • the second sub-radiator 12 is coupled with the first sub-radiator 11 to generate a second sub-current distribution R22 on the second sub-radiator 12, so that the first sub-current distribution R21 and the second sub-current are The distribution R22 collectively produces the second resonant mode b.
  • a third current distribution R3 is also generated on the first sub-radiator 11 and the second sub-radiator 12, thereby generating a third resonance mode c.
  • the wavelength corresponding to the resonance frequency of the first resonance mode a is the first wavelength.
  • the length of the radiator 10 between the free end 111 and the first coupling end 112 is (1/4)-(3/4) times of the first wavelength.
  • the length of the radiator 10 between the free end 111 and the first coupling end 112 is 1/2 times of the first wavelength in the case where no other matching circuit is provided except the first matching circuit M1, so that the subsequent antenna
  • the component 100 creates conditions for higher signal transceiving efficiency at the first frequency f1 and the second frequency f2.
  • the connected matching circuit can adjust the effective electrical length of the first sub-radiator 11.
  • the free end can be adjusted
  • the length of the radiator 10 between 111 and the first coupling end 112 is reduced, and the inductive matching circuit is connected to increase the length of the radiator 10 between the free end 111 and the first coupling end 112, and then the free end
  • the length of the radiator 10 between 111 and the first coupling end 112 is adjusted to be (1/4) times to (3/4) times the first wavelength.
  • the length of the radiator 10 between the free end 111 and the first coupling end 112 is adjusted to be (1/5) times, (4/5) times, and so on, the first wavelength.
  • the range of the first frequency f1 includes but is not limited to (1.71GHz-1.88GHz).
  • f1 is 1.72 GHz as an example, in this way, the length range of the first sub-radiator 11 can be determined.
  • the first frequency f1 may vary with the frequency band covered by the target application frequency.
  • the present application does not limit the specific location of the grounding point A.
  • the length of the radiator 10 between the ground point A and the free end 111 is (1/8)-(3/4) times the length of the first sub-radiator 11 .
  • the position of the ground point A may be within the range of (1/8)-(3/4) from the free end 111 on the first sub-radiator 11 .
  • the current distribution generates the first resonance mode a, the first sub-resonance mode b1 and the auxiliary generation of the third resonance mode c, thereby generating a wider bandwidth and improving the throughput and the number transmission rate.
  • the optional range of the position of the ground connection piece is larger.
  • the position selection range of the ground connection piece is larger.
  • the optional position range of the antenna assembly 100 is made larger, which is more conducive to the installation of the antenna assembly 100 in the electronic device 1000 .
  • the length of the radiator 10 between the ground point A and the free end 111 may be slightly smaller than the length of the first sub-radiator 11 1/8 of , or slightly larger than 3/4 of the length of the first sub-radiator 11 .
  • the length of the radiator 10 between the ground point A and the free end 111 may also be (1/4)-(3/4) times the length of the first sub-radiator 11 .
  • the position of the ground point A may be in the range of (1/4)-(3/4) from the free end 111 on the first sub-radiator 11 .
  • the position of the ground point A is closer to the middle part of the first sub-radiator 11 , which is beneficial to increase the bandwidth and efficiency of the antenna assembly 100 .
  • the length of the radiator 10 between the ground point A and the free end 111 is (3/8)-(5/8) times the length of the first sub-radiator 11 .
  • the position of the ground point A may be in the range of (3/8)-(5/8) from the free end 111 on the first sub-radiator 11 .
  • the position of the ground point A is closer to the middle part of the first sub-radiator 11 , which is beneficial to increase the bandwidth and efficiency of the antenna assembly 100 .
  • the ground point A may be close to the middle portion of the first sub-radiator 11 .
  • the length between the ground point A and the free end 111 may be slightly greater than the length between the ground point A and the first coupling end 121, for example, the length between the ground point A and the free end 111 is about 18 mm, and the ground point A and the first coupling end 121 are about 16 mm.
  • the length of the radiator 10 between the free end 111 and the first coupling end 112 is (1/2) times the first wavelength.
  • the length of the radiator 10 between the ground point A and the free end 111 is 1/2 times the length of the first sub-radiator 11. At this time, the length of the radiator 10 between the ground point A and the free end 111 is 1/2 of the first wavelength. (1/4) times.
  • the length of the first sub-radiator 11 between the ground point A and the free end 111 can be reduced, thereby realizing the realization of the ground point A and the free end.
  • the length of the radiator 10 between 111 is 1/4 times the length of the first sub-radiator 11. In practical applications, of course, it is not limited to this, and may also be 1/5, 2/5, and so on.
  • the length of the first sub-radiator 11 between the ground point A and the first coupling terminal 112 can be reduced, thereby realizing the ground point A
  • the length of the radiator 10 between the free end 111 and the free end 111 is 3/4 times the length of the first sub-radiator 11 . In practical applications, of course, it is not limited to this, and may also be 3/5, 4/5, and so on.
  • the length of the radiator 10 between the ground point A and the free end 111 is (1/8)-(3/8) times the first wavelength.
  • the wavelength corresponding to the resonance frequency of the third resonance mode c is the second wavelength.
  • the length of the radiator 10 between the second coupling end 121 and the grounding end 122 is (1/8)-(3/8) times the second wavelength.
  • the length of the second sub-radiator 12 is (1/8)-(3/8) times the wavelength corresponding to the third frequency f3.
  • the length of the second sub-radiator 12 is (1/4) times the wavelength corresponding to the third frequency f3, so that the second sub-radiator 12 is at the third frequency A higher transceiving efficiency is generated at f3, and further resonance is generated at the third frequency f3 to form a third resonance mode c.
  • the length of the second sub-radiator 12 may be 1/8 times the wavelength corresponding to the third frequency f3.
  • the length of the second sub-radiator 12 may be 3/8 times the wavelength corresponding to the third frequency f3.
  • the range of the third frequency f3 includes but is not limited to (2.5GHz-3GHz).
  • the third frequency f3 Taking 2.76 GHz as an example, in this way, the length range of the second sub-radiator 12 can be determined.
  • the third frequency f3 may vary with the frequency band covered by the target application frequency.
  • the position of the second frequency f2 can be adjusted so that the first frequency f1, the second frequency f2, and the third frequency f3 are close to each other and can support a wider bandwidth.
  • the present application designs the structure of the antenna assembly 100 so that the radiator 10 of the antenna assembly 100 includes the first sub-radiator 11 and the second sub-radiator 12 , wherein the grounding point of the first sub-radiator 11 A is located between two ends of the first sub-radiator 11, the second sub-radiator 12 is a parasitic radiator of the first sub-radiator 11, and the first sub-radiator 11 is similar to the radiator of the "T" type antenna, so , the first sub-radiator 11 generates at least two resonance modes.
  • the second sub-radiator 12 can strengthen the resonance mode of the second sub-radiator 12 , so that the first sub-radiator 11 can generate the first resonance mode a, and the first sub-radiator 11 and the second sub-radiator 12 can jointly generate
  • the length of the first sub-radiator 11 and the position of the ground point A are designed and optimized so that the resonant frequency of the first resonant mode a and the resonant frequency of the second resonant mode b are close to form Larger bandwidth, and covers the frequency band that needs to be covered.
  • the first sub-radiator 11 and the second sub-radiator 12 Since a part of the first sub-radiator 11 and a part of the second sub-radiator 12 form an antenna structure with both ends returning to the ground, in this way, the first sub-radiator 11 and the second sub-radiator 12 generate a third resonance mode c, which passes through
  • the length of the second sub-radiator 12 is designed and optimized so that the resonant frequency of the third resonant mode c is close to the resonant frequency of the third resonant mode c, and the first resonant mode a, the second resonant mode b,
  • the resonant frequency of the third resonant mode c is continuous and forms a bandwidth greater than or equal to 1G bandwidth, thereby improving the throughput of the antenna assembly 100 and the Internet access rate of the electronic device 1000 .
  • FIG. 11 shows the efficiency of the antenna assembly 100 provided by the present application in an extreme full-screen environment.
  • the dotted line in FIG. 11 is the radiation efficiency curve of the antenna assembly 100 .
  • the solid line is the matched overall efficiency curve of the antenna assembly 100 .
  • the display screen 200 and the metal alloy in the middle frame 420 are used as the reference ground GND, and the distance between the radiator 10 of the antenna assembly 100 and the reference ground GND is less than or equal to 0.5 mm.
  • the clearance area of the antenna assembly 100 is 0.5mm, which fully meets the environmental requirements of current electronic devices such as mobile phones 1000.
  • the antenna assembly 100 maintains a high efficiency between 1.7 GHz and 2.7 GHz even in a very small headroom area.
  • the efficiency of the antenna assembly 100 is greater than or equal to -5dB between 1.7GHz-2.7GHz.
  • the antenna assembly 100 provided by the present application still has a relatively high radiation efficiency in a very small clearance area. Therefore, the antenna assembly 100 applied to the electronic device 1000 has a relatively small clearance area, which is larger than that of other applications. Only a clear area can be used to have an antenna with higher efficiency, and the overall volume of the electronic device 1000 can be reduced.
  • FIG. 12 to FIG. 19 are schematic diagrams of the first matching circuit M1 provided by various embodiments, respectively.
  • the present application does not limit the specific structure of the first matching circuit.
  • the first matching circuit M1 includes one or more of the following frequency selection filter circuits.
  • the first matching circuit M1 includes a band-pass circuit formed by an inductor L0 and a capacitor C0 connected in series.
  • the first matching circuit M1 includes a band-stop circuit formed by an inductor L0 and a capacitor C0 in parallel.
  • the first matching circuit M1 includes a band-pass or band-stop circuit formed by an inductor L0 , a first capacitor C1 , and a second capacitor C2 .
  • the inductor L0 is connected in parallel with the first capacitor C1, and the second capacitor C2 is electrically connected to a node where the inductor L0 and the first capacitor C1 are electrically connected.
  • the first matching circuit M1 includes a band-pass or band-stop circuit formed by a capacitor C0 , a first inductor L1 , and a second inductor L2 .
  • the capacitor C0 is connected in parallel with the first inductor L1
  • the second inductor L2 is electrically connected to a node where the capacitor C0 and the first inductor L1 are electrically connected.
  • the first matching circuit M1 includes a band-pass or band-stop circuit formed by an inductor L0, a first capacitor C1, and a second capacitor C2.
  • the inductor L0 is connected in series with the first capacitor C1, and one end of the second capacitor C2 is electrically connected to the first end of the inductor L0 that is not connected to the first capacitor C1, and the other end of the second capacitor C2 is electrically connected to one end of the first capacitor C1 that is not connected to the inductor L0.
  • the first matching circuit M1 includes a band-pass or band-stop circuit formed by a capacitor C0 , a first inductor L1 , and a second inductor L2 .
  • the capacitor C0 is connected in series with the first inductor L1, one end of the second inductor L2 is electrically connected to the end of the capacitor C0 not connected to the first inductor L1, and the other end of the second inductor L2 is electrically connected to the end of the first inductor L1 not connected to the capacitor C0.
  • the first matching circuit M1 includes a first capacitor C1, a second capacitor C2, a first inductor L1, and a second inductor L2.
  • the first capacitor C1 is connected in parallel with the first inductor L1
  • the second capacitor C2 is connected in parallel with the second inductor L2, and one end of the whole formed by the second capacitor C2 and the second inductor L2 in parallel is electrically connected to the first capacitor C1 and the first inductor L1 in parallel. form one end of the whole.
  • the first matching circuit M1 includes a first capacitor C1, a second capacitor C2, a first inductor L1, and a second inductor L2.
  • the first capacitor C1 and the first inductor L1 are connected in series to form a first unit 101, and the second
  • the capacitor C2 and the second inductor L2 are connected in series to form the second unit 102 , and the first unit 101 and the second unit 102 are connected in parallel.
  • the antenna assembly 100 is provided in the electronic device 1000 .
  • the antenna assembly 100 is at least partially integrated on the casing 200 or completely disposed in the casing 200 .
  • the radiator 10 of the antenna assembly 100 is disposed on or in the casing 200 .
  • the antenna assembly 100 is further optimized through the following embodiments to further reduce the stack size of the antenna assembly 100 .
  • the first matching circuit M1 includes a first sub-circuit M11.
  • the first sub-circuit M11 is electrically connected to the feeding point B.
  • the first sub-circuit M11 is capacitive when working in the fourth frequency band.
  • the fourth frequency band is located in the frequency band corresponding to the first resonance mode a, the second resonance mode b, and the third resonance mode c.
  • the fourth frequency band may be a continuous frequency band formed by the first resonance mode a, the second resonance mode b and the third resonance mode c.
  • the first sub-circuit M11 When the first sub-circuit M11 operates in the fourth frequency band, it is capacitive, which can make the resonance frequencies of the first resonance mode a, the second resonance mode b, and the third resonance mode c move toward the low frequency end.
  • the first sub-circuit M11 is similar to The first sub-radiator 11 between the ground point A and the first coupling end 112 is "connected with an effective electrical length", so that the ground point A and the The actual length of the first sub-radiator 11 between the first coupling ends 112 . In this way, miniaturization of the first sub-radiator 11 is achieved.
  • the first sub-circuit M11 includes, but is not limited to, a capacitor, a series or parallel circuit including a capacitor, an inductor, and a resistor, and the like.
  • the first sub-radiator 11 further has a first matching point C between the free end 111 and the ground point A.
  • the antenna assembly 100 also includes a second matching circuit M2. One end of the second matching circuit M2 is electrically connected to the first matching point C. The other end of the second matching circuit M2 is grounded.
  • the second matching circuit M2 includes a plurality of selection branches formed by switches-capacitors-inductors-resistors, etc., and adjustable devices such as variable capacitors. These tunable devices are used to adjust the three resonant mode positions, and the change of the mode positions can also improve the performance of a single frequency band, and can also better meet the ENDC/CA combination of different frequency bands.
  • the second matching circuit M2 can adjust the resonance frequencies of the first resonance mode a and the second resonance mode b. For example, when the second matching circuit M2 is capacitive, the first resonance mode can be adjusted The resonant frequencies of the mode a and the second resonant mode b move toward the low frequency end; when the second matching circuit M2 is inductive, the resonant frequencies of the first resonant mode a and the second resonant mode b can move toward the high frequency end.
  • the first resonant mode a and the second resonant mode b can cover the actually required frequency band and generate resonance at the actually required frequency.
  • the second matching circuit M2 includes a second sub-circuit M21.
  • the second sub-circuit M21 is electrically connected to the first matching point C.
  • the second sub-circuit M21 is capacitive when it operates in the fifth frequency band.
  • the fifth frequency band is located in the frequency band corresponding to the first resonance mode a and the second resonance mode b.
  • the fifth frequency band may be a continuous frequency band formed by the first resonance mode a and the second resonance mode b.
  • the second sub-circuit M21 operates in the fifth frequency band, it is capacitive, which can make the resonant frequencies of the first resonant mode a and the second resonant mode b move toward the low frequency end.
  • the second sub-circuit M21 is similar to the connection between the free end 111 and the connection
  • the first sub-radiator 11 between the points A is "connected with an effective electrical length", so that the first sub-radiator 11 between the free end 111 and the ground point A can be relatively reduced when the position of the frequency that needs to be resonated remains unchanged.
  • the actual length of the sub-radiator 11. In this way, miniaturization of the first sub-radiator 11 is achieved.
  • the grounding point A may be connected to a position of 1/8-3/4 of the first sub-radiator 11 .
  • the second sub-circuit M21 includes, but is not limited to, a capacitor, a series or parallel circuit including a capacitor, an inductor, and a resistor, and the like.
  • the second sub-radiator 12 further has a second matching point D between the second coupling end 121 and the grounding end 122 .
  • the antenna assembly 100 also includes a third matching circuit M3.
  • One end of the third matching circuit M3 is electrically connected to the second matching point D.
  • the other end of the third matching circuit M3 is grounded.
  • the third matching circuit M3 includes a plurality of selection branches formed by switches-capacitors-inductors-resistors, etc., and adjustable devices such as variable capacitors. These tunable devices are used to adjust the three resonant mode positions, and the change of the mode positions can also improve the performance of a single frequency band, and can also better meet the ENDC/CA combination of different frequency bands.
  • the third matching circuit M3 can adjust the resonance frequencies of the second resonance mode b and the third resonance mode c. For example, when the third matching circuit M3 is capacitive, the second resonance mode can be adjusted The resonant frequencies of the mode b and the third resonant mode c move toward the low frequency end; when the third matching circuit M3 is inductive, the resonant frequencies of the second resonant mode b and the third resonant mode c can move toward the high frequency end.
  • the second resonant mode b and the third resonant mode c can cover the actually required frequency band and generate resonance at the actually required frequency.
  • the third matching circuit M3 includes a third sub-circuit M31.
  • the third sub-circuit M31 is electrically connected to the second matching point D.
  • the third sub-circuit M31 is capacitive when it operates in the sixth frequency band.
  • the sixth frequency band is located in the frequency band corresponding to the second resonance mode b and the third resonance mode c.
  • the sixth frequency band may be a continuous frequency band formed by the second resonance mode b and the third resonance mode c.
  • the third sub-circuit M31 operates in the sixth frequency band, it is capacitive, which can make the resonant frequencies of the second resonance mode b and the third resonance mode c move toward the low frequency end.
  • the third sub-circuit M31 is similar to that at the second coupling end 121
  • the second sub-radiator 12 between the ground terminal 122 and the second sub-radiator 12 is “connected with an effective electrical length”, so that the distance between the second coupling terminal 121 and the ground terminal 122 can be relatively reduced under the condition that the position of the frequency that needs to be resonated remains unchanged.
  • the third sub-circuit M31 includes, but is not limited to, a capacitor, a series or parallel circuit including a capacitor, an inductor, and a resistor, and the like.
  • one or two of the first matching circuit M1, the second matching circuit M2, and the third matching circuit M3 may be selected and set at corresponding positions, or the first matching circuit M1 may be selected.
  • the circuit M1 , the second matching circuit M2 , and the third matching circuit M3 are all disposed at corresponding positions, so that the stacking size of the radiator 10 can be further reduced.
  • This application does not specifically limit the specific position where the radiator 10 of the antenna assembly 100 is arranged on the electronic device 1000 .
  • the radiator 10 is arranged at the corner of the electronic device 1000 .
  • the following embodiments are used for illustration.
  • the frame 210 includes a plurality of side frames connected end to end. Among the multiple side frames of the frame 210, two adjacent side frames intersect, for example, two adjacent side frames are perpendicular.
  • the plurality of side frames include a top frame 212 and a bottom frame 213 disposed opposite to each other, and a first side frame 214 and a second side frame 215 connected between the top frame 212 and the bottom frame 213 .
  • the connection between two adjacent side frames is the corner portion 216 .
  • the top frame 212 and the bottom frame 213 are parallel and equal.
  • the first side frame 214 and the second side frame 215 are parallel and equal.
  • the length of the first side frame 214 is greater than the length of the top frame 212 .
  • the radiator 10 of the antenna assembly 100 is integrated with the frame 210 .
  • the material of the frame 210 is a metal material.
  • the first sub-radiator 11 , the second sub-radiator 12 and the frame 210 are all integrated into one body.
  • the above-mentioned radiator 10 can also be integrated with the back cover 220 .
  • the first sub-radiator 11 and the second sub-radiator 12 are integrated into a part of the housing 200 .
  • the reference ground GND of the antenna assembly 100 , the signal source 20 , the first to third matching circuits M3 and the like are all disposed on the circuit board.
  • the first sub-radiator 11 and the second sub-radiator 12 are formed on the surface of the frame 210 .
  • the basic forms of the first sub-radiator 11 and the second sub-radiator 12 include but are not limited to patch radiators, laser direct structuring (LDS), and printing direct structuring (PDS) and other processes are formed on the inner surface of the frame 210.
  • the material of the frame 210 may be a non-conductive material.
  • the above-mentioned radiator 10 may also be provided on the rear cover 220 .
  • the first sub-radiator 11 and the second sub-radiator 12 are provided on the flexible circuit board.
  • the flexible circuit board is attached to the surface of the frame 210 .
  • the first sub-radiator 11 and the second sub-radiator 12 can be integrated on the flexible circuit board, and the flexible circuit board can be attached to the inner surface of the middle frame 420 by adhesive or the like.
  • the material of the frame 210 can be It is a non-conductive material.
  • the above-mentioned radiator 10 can also be disposed on the inner surface of the back cover 220 .
  • the top frame 212 is the side away from the ground when the operator holds the electronic device 1000 facing the front of the electronic device 1000 for use, and the bottom frame 213 is the side facing the ground.
  • the radiator 10 is completely disposed on the top frame 210 , so that when the user uses the electronic device 1000 in the vertical screen, the radiator 10 faces the outside space and is less blocked, so the efficiency of the antenna assembly 100 is high.
  • the radiator 10 is completely disposed on the second side frame 215.
  • the radiator 10 faces the outside space and is less blocked.
  • the efficiency of the antenna assembly 100 is high.
  • the radiator 10 may also be completely disposed on the first side frame 214 .
  • the radiator 10 can be arranged at the corner 216 of the electronic device 1000 , and the efficiency of the antenna assembly 100 placed at the corner 216 will be better. It is also better, and the stacking of the whole machine is also easier to achieve. Specifically, a part of the radiator 10 is provided on at least one side frame, and the other part is provided on the corner portion 216 .
  • the second sub-radiator 12 is disposed on the top frame 210
  • the coupling slot 13 is disposed on the side of the top frame 210
  • a part of the first sub-radiator 11 is disposed corresponding to the top frame 210
  • another part of the first sub-radiator 11 is disposed It is disposed at the corner portion 216
  • another part of the first sub-radiator 11 is disposed on the side where the second side frame 215 is located.
  • the radiator 10 is disposed at the corner portion 216 , so that when the electronic device 1000 is held, the radiator 10 is less shielded, which further improves the radiation efficiency of the radiator 10 .
  • the various resonance modes are excited, and these resonance modes can achieve ultra-wideband coverage, thereby achieving multi-band ENDC/CA performance and improving performance.
  • the throughput and download speed can be improved, and the user experience can be improved;
  • the various modes generated by the antenna assembly 100 of the present application can be mutually reinforcing, so it can efficiently cover the ultra-wide bandwidth, save costs, and help meet the needs of major Operator metrics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请公开了一种天线组件及电子设备,天线组件包括辐射体、第一匹配电路及信号源。辐射体包括第一子辐射体及第二子辐射体,第一子辐射体与第二子辐射体存在耦合缝隙,第一子辐射体与第二子辐射体之间通过耦合缝隙耦合;第一子辐射体包括自由端、第一耦合端及设于自由端与第一耦合端之间的接地点及馈电点,接地点接地,馈电点位于接地点与第一耦合端之间。第二子辐射体包括第二耦合端及接地端,第一耦合端与第二耦合端之间为耦合缝隙,接地端接地。第一匹配电路的一端电连接馈电点。信号源电连接第一匹配电路的另一端。本申请提供了一种提高数据传输速率,提高通信质量的天线组件及电子设备。

Description

天线组件及电子设备
本申请要求于2021年03月03日提交中国专利局、申请号为2021102374199、申请名称为“天线组件及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线组件及电子设备。
背景技术
随着通信技术的发展,具有通信功能电子设备的普及度越来越高,且对于上网速度的要求越来越高。因此,如何提高电子设备的数据传输速率,提高电子设备的通信质量,成为需要解决的技术问题。
发明内容
本申请提供了一种提高数据传输速率,提高通信质量的天线组件及电子设备。
第一方面,本申请实施例提供了一种天线组件,包括:
辐射体,包括第一子辐射体及第二子辐射体,所述第一子辐射体与所述第二子辐射体存在耦合缝隙,所述第一子辐射体与所述第二子辐射体之间通过所述耦合缝隙耦合;所述第一子辐射体包括自由端、第一耦合端及设于所述自由端与所述第一耦合端之间的接地点及馈电点,所述接地点接地,所述馈电点位于所述接地点与所述第一耦合端之间;所述第二子辐射体包括第二耦合端及接地端,所述第一耦合端与所述第二耦合端之间为耦合缝隙,所述接地端接地;
第一匹配电路,所述第一匹配电路的一端电连接所述馈电点;及
信号源,所述信号源电连接所述第一匹配电路的另一端。
第二方面,本申请实施例提供了一种电子设备,包括壳体及所述的天线组件,所述辐射体设于所述壳体上或所述壳体内。
本申请提供的天线组件及电子设备,通过设计第一子辐射体的接地点位于第一子辐射体的两端之间,第二子辐射体与第一子辐射体容性耦合,以使第一子辐射体、第二子辐射体的电流具有多种分布方式,进而产生多种谐振模式,以使天线组件能够支持较宽的带宽,进而提高天线组件应用于电子设备时的吞吐量及数据传输速率,提高增加电子设备的通信质量。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1所示的电子设备的拆分结构示意图;
图3是本申请实施例提供的第一种天线组件的结构示意图;
图4是图3提供的天线组件产生的多种谐振模式的示意图;
图5是图3提供的天线组件的第一电流分布示意图;
图6是图3提供的天线组件的第一电流密度分布示意图;
图7是图3提供的天线组件的第二电流分布示意图;
图8是图3提供的天线组件的第二电流密度分布示意图;
图9是图3提供的天线组件的第三电流分布示意图;
图10是图3提供的天线组件的第三电流密度分布示意图;
图11是图3提供的天线组件的辐射效率曲线图;
图12是本申请实施例提供的第一种第一匹配电路的结构示意图;
图13是本申请实施例提供的第二种第一匹配电路的结构示意图;
图14是本申请实施例提供的第三种第一匹配电路的结构示意图;
图15是本申请实施例提供的第四种第一匹配电路的结构示意图;
图16是本申请实施例提供的第五种第一匹配电路的结构示意图;
图17是本申请实施例提供的第六种第一匹配电路的结构示意图;
图18是本申请实施例提供的第七种第一匹配电路的结构示意图;
图19是本申请实施例提供的第八种第一匹配电路的结构示意图;
图20是本申请实施例提供的第二种天线组件的结构示意图;
图21是本申请实施例提供的第三种天线组件的结构示意图;
图22是本申请实施例提供的第四种天线组件的结构示意图;
图23是本申请实施例提供的第五种天线组件的结构示意图;
图24是本申请实施例提供的第六种天线组件的结构示意图;
图25是本申请实施例提供的天线组件的第一种设置位置的结构示意图;
图26是本申请实施例提供的天线组件的第二种设置位置的结构示意图;
图27是本申请实施例提供的天线组件的第三种设置位置的结构示意图;
图28是图2提供的边框的结构示意图;
图29是本申请实施例提供的天线组件与边框的第一种设置方式的结构示意图;
图30是本申请实施例提供的天线组件与边框的第二种设置方式的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。此外,在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参照图1,图1为本申请实施例提供的一种电子设备的结构示意图。电子设备1000包括天线组件100。天线组件100用于收发电磁波信号,以实现电子设备1000的通信功能。本申请对于天线组件100在电子设备1000内的位置不做具体的限定。电子设备1000还包括相互盖合连接的显示屏300及壳体200。天线组件100可设于电子设备1000的壳体200内部、或部分与壳体200集成为一体、或部分设于壳体200外。当然,天线组件100还可以设于电子设备1000的可伸缩组件上,换言之,天线组件100的至少部分还能够随着电子设备1000的可伸缩组件伸出电子设备1000之外,及随着可伸缩组件缩回至电子设备1000内;或者,天线组件100的整体长度随着电子设备1000的可伸缩组件的伸长而伸长。
电子设备1000包括不限于为电话、电视、平板电脑、手机、照相机、个人计算机、笔记 本电脑、车载设备、耳机、手表、可穿戴设备、基站、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备。本申请中以电子设备1000为手机为例,其他的设备可参考本申请中的具体描述。
为了便于描述,以电子设备1000处于图1中的视角为参照,电子设备1000的宽度方向定义为X轴方向,电子设备1000的长度方向定义为Y轴方向,电子设备1000的厚度方向定义为Z轴方向。X轴方向、Y轴方向及Z轴方向两两垂直。其中,箭头所指示的方向为正向。
请参阅图2,壳体200包括边框210及后盖220。边框210内通过注塑形成中板410,中板410上形成多个用于安装各种电子器件的安装槽。中板410与边框210一起成为电子设备100的中框420。显示屏300、中框420及后盖220盖合后在中框420的两侧皆形成收容空间。电子设备1000还包括设于收容空间内的电池、摄像头、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组等等能够实现手机的基本功能的器件,在本实施例中不再赘述。
以下结合附图对于本申请提供的天线组件100进行具体的说明,当然,本申请提供的天线组件100包括但不限于以下的实施方式。
请参阅图3,天线组件100至少包括辐射体10、第一匹配电路M1及信号源20。
请参阅图3,辐射体10包括第一子辐射体11及第二子辐射体12。第一子辐射体11与第二子辐射体12之间存在耦合缝隙13。第一子辐射体11与第二子辐射体12通过耦合缝隙13耦合。本实施例中第一子辐射体11、第二子辐射体12的形状皆为直线条形为例进行说明。当然,在其他实施方式中,第一子辐射体11、第二子辐射体12的形状还可以为弯折条形或其他形状等。
请参阅图3,第一子辐射体11包括自由端111和第一耦合端112。本实施例中,自由端111与第一耦合端112为呈直线条形的第一子辐射体11的相对两端。在其他实施方式中,第一子辐射体11呈弯折状,自由端111和第一耦合端112可不沿直线方向相对,但自由端111和第一耦合端112为第一子辐射体11的两个末端。第一子辐射体11还具有设于自由端111与第一耦合端112之间的接地点A及馈电点B。其中,接地点A用于接地GND1。馈电点B位于接地点A与第一耦合端112之间。本申请对于接地点A、馈电点B在第一子辐射体11上的具体位置不做限定。
请参阅图3,第二子辐射体12包括第二耦合端121及接地端122。本实施例中,第二耦合端121及接地端122为呈直线条形的第一子辐射体11的相对两端。第一子辐射体11与第二子辐射体12可沿直线排列或大致沿直线排列(即在设计过程中具有较小的公差)。当然,在其他实施方式中,第一子辐射体11与第二子辐射体12还可在延伸方向上错开设置,以形成避让空间等。
请参阅图3,第一耦合端112与第二耦合端121相对且间隔设置。第一耦合端112与第二耦合端121之间存在耦合缝隙13。耦合缝隙13为第一子辐射体11的第一耦合端112与第二子辐射体12的第二耦合端121部之间的断缝,例如,耦合缝隙13的宽度为0.5-2mm,但不限于此尺寸。第一子辐射体11与第二子辐射体12能够通过耦合缝隙13产生容性耦合。在其中一个视角中,第一子辐射体11和第二子辐射体12可看作为辐射体10被耦合缝隙13隔断而形成的两个部分。
第一子辐射体11与第二子辐射体12通过耦合缝隙13进行容性耦合。其中,“容性耦合”是指,第一子辐射体11与第二子辐射体12之间产生电场,第一子辐射体11的信号能够通过电场传递至第二子辐射体12,第二子辐射体12的信号能够通过电场传递至第一子辐射体11,以使第一子辐射体11与第二子辐射体12即使在断开的状态下也能够实现电信号导通。本实 施例中,第一子辐射体11能够在信号源20的激励下产生电场,该电场能量能够通过耦合缝隙13传递至第二子辐射体12,进而使得第二子辐射体12产生激励电流。
第二子辐射体12的接地端122用于接地GND2。
请参阅图3,第一匹配电路M1的一端电连接馈电点B。信号源20电连接第一匹配电路M1的另一端。信号源20为用于发送射频信号的射频收发芯片或电连接用于发送射频信号的射频收发芯片的馈电部。第一匹配电路M1可包含开关-电容-电感-电阻等形成的多条选择支路、可变电容等可调器件。
请参阅图4,辐射体10在信号源20的激励下产生多种谐振模式(例如图4中的a、b、c)。其中,谐振模式表征为天线组件100在谐振频率处及谐振频率附近具有较高的电磁波收发效率。本申请中,辐射体10在信号源20的激励下在多个谐振频率处及其附近皆具有较高的电磁波收发效率,进而能够支持多段频段的电磁波信号的收发。本实施例中,取回波损耗曲线的绝对值大于或等于5dB为具有较高的电磁波收发效率的参考值。
可以理解的,辐射体10所支持的多种频段相连续或不连续。多种频段连续是指辐射体10所支持的相邻的两个频段至少部分重合。多种频段不连续是指辐射体10所支持的相邻的两个频段之间无重合。
请参阅图4,本实施例中,辐射体10所支持的多个频段中的至少部分(例如三种谐振模式中的两个谐振模式、三个谐振模式或所有的谐振模式)相连续并形成较宽的带宽H。多种谐振模式覆盖的带宽H大于或等于1G。可以理解的,辐射体10在信号源20的激励下同时产生上述的多种谐振模式,以上的多种谐振模式形成连续且较宽的带宽H,以提高天线组件100应用于电子设备1000时的数据吞吐量及数据传输速率,提高增加电子设备1000的通信质量。此外,当天线组件100的带宽较宽时,无需可调器件去切换不同的频段,从而省去可调器件,节约成本,及实现天线组件100的结构简单。
本申请提供的天线组件100及电子设备1000,通过设计第一子辐射体11的接地点A位于第一子辐射体11的两端之间,第二子辐射体12与第一子辐射体11容性耦合,以使第一子辐射体11、第二子辐射体12的电流具有多种分布方式,进而产生多种谐振模式,多种谐振模式覆盖的带宽大于或等于1G,以使天线组件100能够支持较宽的带宽,进而提高天线组件100应用于电子设备1000时的吞吐量及数据传输速率,提高增加电子设备1000的通信质量。
本申请对于第一子辐射体11、第二子辐射体12的形状、构造不做具体的限定,第一子辐射体11、第二子辐射体12的形状皆包括但不限于条状、片状、杆状、涂层、薄膜等。当第一子辐射体11、第二子辐射体12呈条状时,本申请对于第一子辐射体11、第二子辐射体12的延伸轨迹不做限定,故第一子辐射体11、第二子辐射体12皆可呈直线、曲线、多段弯折等轨迹延伸。上述的辐射体10在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
关于天线组件100的辐射体10接地。可选的,天线组件100自身具有参考地。该参考地的具体形式包括但不限于金属板件、成型于柔性电路板内部的金属层等。第一子辐射体11的接地点A通过接地弹片、焊锡、导电粘胶等导电件电连接参考地。当天线组件100设于电子设备1000内时,天线组件100的参考地电连接电子设备1000的参考地。再可选的,天线组件100本身不具有参考地,天线组件100的辐射体10通过直接电连接或通过中间的导电连接件电连接电子设备1000的参考地或电子设备1000内的电子器件的参考地。本申请中,以天线组件100设于电子设备1000内时,以电子设备1000的显示屏200、中板410上的金属合金作为参考地。天线组件100的接地点和接地端通过接地弹片、焊锡、导电粘胶等导电件电 连接电子设备1000的参考地。
在一般技术中,天线的有效效率带宽不够宽,例如在中高频段(1000MHz-3000MHz)的覆盖上。比如1710MHz-2690MHz(B3/N3+B1/N1+B7/N7)情况,采用至少两个谐振模式去覆盖,而这些谐振模式的频宽较小且相互之间间隔设置,很难同时覆盖B3/N3+B1/N1、也难以同时覆盖B1/N1+B7/N7,更难以同时覆盖B3/N3+B1/N1+B7/N7,导致天线在某些频段的覆盖上信号不良或不够小型化。需要说明的是,以上的频段仅仅是举例,不能作为本申请所能够辐射的频段的限制。
本申请提供的天线组件100,通过对第一子辐射体11、第二子辐射体12的构造、接地点进行设计,以使第一子辐射体11、第二子辐射体12的电流具有多种分布方式,进而实现天线组件100结构简单的同时还产生了多种谐振模式,多种谐振模式能够支持的频段的带宽大于或等于1G,以使天线组件100能够支持较宽的带宽,进而提高天线组件100应用于电子设备1000时的吞吐量及数据传输速率,当天线组件100应用于上述中高频段(例如1710MHz-2690MHz)时,能够同时支持B3/N3+B1/N1+B7/N7,故天线组件100至少具有结构简单、小型化及在B3/N3+B1/N1+B7/N7的应用频段上具有较高的效率及数据传输速率。其中,B3/N3包括B3、N3中选择任意一者或两者都存在的情况。B1/N1、B7/N7的定义与B3/N3类似,在此不再赘述。当然,本申请提供的天线组件100还可以应用于1000MHz-2000MHz,3000MHz-6000MHz等。
请参阅图4,辐射体10在信号源20的激励下产生至少三种谐振模式。换言之,辐射体10在信号源20的激励下至少在三个频率处具有较高的收发效率。其中,至少三种谐振模式包括但不限于第一谐振模式a、第二谐振模式b及第三谐振模式c。第一谐振模式a、第二谐振模式b及第三谐振模式c皆同时产生。其中,第一谐振模式a的谐振频率、第二谐振模式b的谐振频率、第三谐振模式c的谐振频率分别为第一频率f1、第二频率f2及第三频率f3。为了后续的描述,第一频率f1、第二频率f2及第三频率f3的大小关系为第一频率f1、第二频率f2及第三频率f3依次增加。第一频率f1、第二频率f2及第三频率f3相互靠近,以使第一谐振模式a的回波损耗值、第二谐振模式b的回波损耗值、第三谐振模式c的回波损耗值在-5dB(-5dB仅仅为举例值,不限于此值)以下相连续,连续的频段构成较宽的带宽,进而同时支持多组运营商所规划的多个不同的频段,例如,B1、B3、B7、N1、N3、N7等,有利于满足不同运营商指标。
请参阅图4,第一谐振模式a能够支持B3/N3,第二谐振模式b能够支持B1/N1,第三谐振模式c能够支持B7/N7。从图4中可以看出第一谐振模式a所支持的频段A1、第二谐振模式b所支持的频段B1及第三谐振模式c所支持的频段C1相连续且能够覆盖大于或等于1G的带宽。换言之,本申请的天线组件100能够同时支持B3/N3+B1/N1+B7/N7。
在一些可能的实施方式中,请参阅图3及图4,第一子辐射体11在信号源20的激励下产生第一谐振模式a、第二谐振模式b及第三谐振模式c中的至少两者,第二子辐射体12在信号源20的激励下产生第一谐振模式a、第二谐振模式b及第三谐振模式c中的至少一者。
由于第一谐振模式a、第二谐振模式b、第三谐振模式c的谐振频率依次增大,所以支持第一谐振模式a的辐射体10的有效电长度、支持第二谐振模式b的辐射体10的有效电长度、支持第三谐振模式c的辐射体10的有效电长度依次减小。由于第一子辐射体11的中间部分接地及电连接信号源20,换言之,接地点A和馈电点B可对第一子辐射体11进行分割,以使第一子辐射体11可形成多段有效电长度不同的辐射段,例如,自由端111与第一耦合端112之间可形成一辐射段,接地点A与第一耦合端112之间可形成另一辐射段,这些辐射段 能够使得第一子辐射体11产生多个谐振模式。
例如,所述第一子辐射体11在所述信号源20的激励下用于产生第一谐振模式a,所述第一子辐射体11及所述第二子辐射体12在所述信号源20的激励下用于产生第二谐振模式b,所述接地点A至所述第一耦合端112之间的第一子辐射体11及所述第二子辐射体12在所述信号源20的激励下用于产生第三谐振模式c。其中,第三谐振模式c的频率相对较高,所需要的辐射体10电长度相度较短,通过设置第二子辐射体12协助产生第三谐振模式c,以使第二子辐射体12的长度相对较短,以使辐射体10的整个长度相对较小,减小天线组件100的叠加尺寸,促进天线组件100的小型化。
请参阅图4,第一谐振模式a所支持的频段为第一频段T1。第二谐振模式b所支持的频段为第二频段T2。第三谐振模式c所支持的频段为第三频段T3。第一频段T1、第二频段T2及第三频段T3聚合形成目标应用频段T4。目标应用频段T4的带宽H大于或等于1.4G。相对带宽大于或等于50%。可选的,第一谐振模式a所支持的第一频段T1、第二谐振模式b所支持的第二频段T2、第三谐振模式c所支持的第三频段T3皆为回波损耗为-5dB以下对应的频段。第一频段T1、第二频段T2及第三频段T3连续(相互之间具有重合的部分进行实现连续)并聚合形成目标应用频段T4。该目标应用频段T4的最大频率与最小频率之差大于或等于1.4G。本申请需要说明的是,通过调节辐射体10的有效电长度及馈电位置,还可以调节目标应用频段T4的宽度为1.8G、2G、2.5G、3G等等。
从电流侧的角度,天线组件100在信号源20的激励下产生至少三种电流分布,分别包括第一电流分布R1,第二电流分布R2及第三电流分布R3。
请参阅图5及图6,第一谐振模式a对应的电流分布包括但不限于为第一电流分布R1:从第一耦合端112流向接地点A及从自由端111流向接地点A。具体的,一部分电流从第一耦合端112流向接地点A,另一部分电流从自由端111流向接地点A,其中,上述的两个部分的电流的流向相反。在第一谐振模式a下,第二子辐射体12与第一子辐射体11的耦合作用下也产生少量的电流,该电流流向为从接地端122流向第二耦合端121。以上的电流分布产生第一谐振模式a。
请参阅图7及图8,第二谐振模式b对应的电流分布包括但不限于第二电流分布R2:从接地端122流向接地点A并流向自由端111。具体的,第一子辐射体11上的电流从第一耦合端112流向自由端111,第二子辐射体12在第一子辐射体11的耦合作用下产生电流,该电流从接地端122流向第二耦合端121。换言之,第一子辐射体11的电流与第二子辐射体12的电流流向相同。
其中,请参阅图7及图8,第二电流分布R2包括第一子电流分布R21及第二子电流分布R22。其中,第一子电流分布R21为第一子辐射体11上的电流分布,以产生第一子谐振模式b1;第二子电流分布R22为第二子辐射体12上的电流分布,以产生第二子谐振模式b2。第一子谐振模式b1与第二子谐振模式b2共同形成第二谐振模式b。换言之,第二谐振模式b包括第一子谐振模式b1和第二子谐振模式b2。第一子谐振模式b1为第一子辐射体11在信号源20的激励下产生。第二子谐振模式b2为第二子辐射体12在第一子辐射体11的容性耦合作用下产生。可选的,第一子谐振模式b1为偶极子模式,第二子谐振模式b2为第二子辐射体12产生的寄生辐射模式。如此,由于第一子辐射体11的电流与第二子辐射体12的电流流向相同,寄生辐射模式与偶极子模式可相互增强,以产生较强的辐射效率。换言之,由于第二谐振模式b实质上具有两个子谐振模式的聚合,这两个谐振模式的谐振频率相靠近,进而形成一个谐振模式,以增强辐射效率及频宽。
请参阅图9及图10,第三谐振模式c对应的电流分布包括但不限于第三电流分布R3:从第一耦合端112流向接地点A及从第二耦合端121流向接地端122。其中,第一耦合端112的电流流向接地点A回地,所述第二耦合端121的电流流向接地端122回地。换言之,第一子辐射体11的电流与第二子辐射体12的电流流向相反。第一子辐射体11的第一耦合端112至接地点A之间、与第二子辐射体12的第二耦合端121至接地端122之间在信号源20的作用下共同产生第三谐振模式c。
可以理解的,从第一谐振模式a、第二谐振模式b及第三谐振模式c的电流分布来看,第一谐振模式a、第二谐振模式b及第三谐振模式c对应的电流具有部分的相同流向,例如从第一耦合端112至接地点A的流向,如此,三种谐振模式可相互增强。
本申请中,请参阅图4,第一频段T1、第二频段T2及第三频段T3聚合形成的目标应用频段T4包括但不限于为1.6GHz-3GHz,2GHz-3.4GHz,2.6GHz-4GHz,3.6GHz-5GHz等。当然,当目标应用频段T4的带宽为2G、3G等时,第一频段T1、第二频段T2及第三频段T3聚合形成的目标应用频段T4包括但不限于为1GHz-3GHz、2GHz-4GHz、3GHz-6GHz等。在此不再一一举例。本实施例中,第一频段T1、第二频段T2及第三频段T3聚合形成的目标应用频段T4覆盖1.6GHz-3GHz。
可选的,目标应用频段T4能够支持LTE 4G频段和NR 5G频段中的任意一者或两者同时支持。其中,当第一频段T1、第二频段T2及第三频段T3聚合形成的目标应用频段T4覆盖1.6GHz-3GHz时,天线组件100对于LTE 4G频段的支持频段包括但不限于B1、B2、B3、B4、B7、B32、B38、B39、B40、B41、B48、B66中的至少一者,天线组件100对于NR 5G频段的支持频段包括但不限于N1、N2、N3、N4、N7、N32、N38、N39、N40、N41、N48、N66中的至少一者。本申请提供的天线组件100能够覆盖上述NR 5G频段和LTE 4G频段的任意组合。当然,天线组件100可单独加载4G LTE信号,或单独加载5G NR信号,或还可以为同时加载4G LTE信号与5G NR信号,即实现4G无线接入网与5G-NR的双连接(LTE NR Double Connect,EN-DC)。
本实施提供的天线组件100所收发的频段包括多个载波(载波即特定频率的无线电波)聚合而成,即实现载波聚合(Carrier Aggregation,CA),以增加传输带宽,提升吞吐量,提升信号传输速率。
以上列举频段可能为多个运营商会应用到的中高频段,本申请提供的天线组件100可同时支持上述的任意一种或多种频段的组合,以使本申请提供的天线组件100能够支持多个不同的运营商所对应的电子设备1000机型,无需针对不同的运营商采用不同的天线结构,进一步地提高天线组件100的应用范围和兼容性。
从天线组件100结构的角度,请参阅图5、图7及图9,第一子辐射体11的接地点A位于自由端111与第一耦合端112之间,以使第一子辐射体11及信号源20形成类似“T”字型的天线,该“T”字型的天线能够形成第一电流分布R1、第一子电流分布R21,以使第一子辐射体11在中高频段(不限于中高频段)内产生多个谐振模式。例如,上述的第一谐振模式a和第一子谐振模式b1,且第一谐振模式a和第一子谐振模式b1的谐振频率相接近,如此,形成较宽的带宽。进一步地,结合第二子辐射体12与第一子辐射体11相耦合,以在第二子辐射体12上产生第二子电流分布R22,以使第一子电流分布R21与第二子电流分布R22共同产生第二谐振模式b。第一子辐射体11与第二子辐射体12上还产生第三电流分布R3,进而产生了第三谐振模式c。通过设置第一子辐射体11、第二子辐射体12的长度,以使第一谐振模式a、第二谐振模式b、第三谐振模式c的谐振频率皆相近,以形成较宽的带宽。
可选的,第一谐振模式a的谐振频率所对应的波长为第一波长。自由端111与第一耦合端112之间的辐射体10长度为第一波长的(1/4)-(3/4)倍。其中,在除了第一匹配电路M1之外未设置其他的匹配电路情况下,自由端111与第一耦合端112之间的辐射体10长度为第一波长的1/2倍,以为后续的天线组件100在第一频率f1、第二频率f2处产生较高的信号收发效率创造条件。当然,在除了第一匹配电路M1之外还设置匹配电路的情况下,接入的匹配电路可以调节第一子辐射体11的有效电长度,例如,接入容性匹配电路,可以使得自由端111与第一耦合端112之间的辐射体10的长度减小,接入感性匹配电路,可以使得自由端111与第一耦合端112之间的辐射体10的长度增大,进而将自由端111与第一耦合端112之间的辐射体10的长度调节为第一波长的(1/4)倍-(3/4)倍。当然,在实际应用过程中,自由端111与第一耦合端112之间的辐射体10长度调节为第一波长的(1/5)倍、(4/5)倍等等。
举例而言,当目标应用频率覆盖B3/N3+B1/N1+B7/N7时,第一频率f1的范围包括但不限于为(1.71GHz-1.88GHz),本实施例中,以第一频率f1是1.72GHz为例,如此,可以确定出第一子辐射体11的长度范围。当然,第一频率f1可以随着目标应用频率所覆盖的频段的变化而变化。
本申请对于接地点A的具体位置不做限定。可选的,接地点A与自由端111之间的辐射体10长度是第一子辐射体11长度的(1/8)-(3/4)倍。换言之,接地点A的位置可以为第一子辐射体11上从自由端111起的(1/8)-(3/4)的范围内。通过上述的设计或结合对于第一子辐射体11上的匹配电路的设计(后续有详细的说明),使第一子辐射体11能够形成如第一电流分布R1、第一子电流分布R21等电流分布,进而产生第一谐振模式a、第一子谐振模式b1及辅助产生第三谐振模式c,进而产生较宽的带宽,提升吞吐量及数量传输速率。此外,接地点A具有较大的设置位置范围,则设置的接地连接件的位置可选范围较大,当天线组件100设于电子设备1000上时,接地连接件的位置可选范围较大,使得天线组件100可选的位置范围较大,更加利于天线组件100在电子设备1000的安装。
当然,1/8和3/4仅仅为举例说明,并不限于此,在其他实施方式中,接地点A与自由端111之间的辐射体10长度还可以稍小于第一子辐射体11长度的1/8,或稍大于第一子辐射体11长度的3/4。
可选的,接地点A与自由端111之间的辐射体10长度还可以是第一子辐射体11长度的(1/4)-(3/4)倍。换言之,接地点A的位置可以为第一子辐射体11上从自由端111起的(1/4)-(3/4)的范围内。通过上述的设计,以使接地点A的位置更靠近第一子辐射体11的中间部分,利于增加天线组件100的带宽及效率。
可选的,在接地点A与自由端111之间的辐射体10长度是第一子辐射体11长度的(3/8)-(5/8)倍。换言之,接地点A的位置可以为第一子辐射体11上从自由端111起的(3/8)-(5/8)的范围内。通过上述的设计,以使接地点A的位置更靠近第一子辐射体11的中间部分,利于增加天线组件100的带宽及效率。
举例而言,接地点A可以靠近第一子辐射体11的中间部分。进一步地,接地点A与自由端111之间的长度可稍大于接地点A与第一耦合端121之间的长度,例如,接地点A与自由端111之间的长度为18mm左右,接地点A与第一耦合端121为16mm左右。
以自由端111与第一耦合端112之间的辐射体10长度为第一波长的(1/2)倍为例。接地点A与自由端111之间的辐射体10长度是第一子辐射体11长度的1/2倍,此时,接地点A与自由端111之间的辐射体10长度为第一波长的(1/4)倍。
进一步地,通过在接地点A与自由端111之间设置容性的匹配电路,可以减小接地点A与自由端111之间的第一子辐射体11长度,进而实现接地点A与自由端111之间的辐射体10长度是第一子辐射体11长度的1/4倍,在实际应用中,当然不限于此,还可以为1/5、2/5等等。通过在接地点A与第一耦合端112之间设置接地的容性的匹配电路,可以减小接地点A与第一耦合端112之间的第一子辐射体11长度,进而实现接地点A与自由端111之间的辐射体10长度是第一子辐射体11长度的3/4倍,在实际应用中,当然不限于此,还可以为3/5、4/5等等。相对应地,接地点A与自由端111之间的辐射体10长度为第一波长的(1/8)-(3/8)倍。
第三谐振模式c的谐振频率所对应的波长为第二波长。第二耦合端121与接地端122之间的辐射体10长度为第二波长的(1/8)-(3/8)倍。换言之,第二子辐射体12的长度为第三频率f3对应的波长的(1/8)-(3/8)倍。当第二子辐射体12上未设置匹配电路时,第二子辐射体12的长度为第三频率f3对应的波长的(1/4)倍,以使第二子辐射体12在第三频率f3下产生较高的收发效率,进而在第三频率f3处产生谐振,以形成第三谐振模式c。当在第二子辐射体12上设置容性匹配电路时,第二子辐射体12的长度可以为第三频率f3对应的波长的1/8倍。当在第二子辐射体12上设置感性匹配电路时,第二子辐射体12的长度可以为第三频率f3对应的波长的3/8倍。
举例而言,当目标应用频率覆盖B3/N3+B1/N1+B7/N7时,第三频率f3的范围包括但不限于为(2.5GHz-3GHz),本实施例中,以第三频率f3是2.76GHz为例,如此,可以确定出第二子辐射体12的长度范围。当然,第三频率f3可以随着目标应用频率所覆盖的频段的变化而变化。
进一步地,通过调节第一子辐射体11的长度、第二子辐射体12的长度、馈电点B的位置、接地点A的位置,可以调节第二频率f2的位置,以使第一频率f1、第二频率f2、第三频率f3相互靠近且能够支持较宽的频宽。
综上可知,本申请对于天线组件100的结构进行设计,以使天线组件100的辐射体10包括第一子辐射体11和第二子辐射体12,其中,第一子辐射体11的接地点A位于第一子辐射体11的两端之间,第二子辐射体12为第一子辐射体11的寄生辐射体,第一子辐射体11类似于“T”型天线的辐射体,如此,第一子辐射体11至少产生两个谐振模式。第二子辐射体12能够加强第二子辐射体12的谐振模式,如此,第一子辐射体11可产生第一谐振模式a,第一子辐射体11与第二子辐射体12可共同产生第二谐振模式b,通过对第一子辐射体11的长度,接地点A的位置进行设计和优化,以使第一谐振模式a的谐振频率和第二谐振模式b的谐振频率相靠近以形成较大的带宽,且覆盖所需要覆盖的频段。由于第一子辐射体11的一部分与第二子辐射体12的一部分形成两端回地的天线结构,如此,第一子辐射体11与第二子辐射体12产生第三谐振模式c,通过对第二子辐射体12的长度进行设计和优化,以使第三谐振模式c的谐振频率与第三谐振模式c的谐振频率相靠近,并使得第一谐振模式a、第二谐振模式b、第三谐振模式c的谐振频率连续并形成带宽大于或等于1G带宽,进而提高天线组件100的吞吐量及提高电子设备1000的上网速率。
请参阅图11,图11是本申请提供的天线组件100在极致全面屏环境下的效率。图11中虚线为天线组件100的辐射效率曲线。实线为天线组件100的匹配总效率曲线。本申请以显示屏200、中框420内的金属合金等作为参考地GND,天线组件100的辐射体10与参考地GND之间的距离小于或等于0.5mm,换言之,天线组件100的净空区域为0.5mm,完全满足现在手机等电子设备1000的环境需求。由图11可知,即使在极小的净空区域下,天线组件100在 1.7GHz-2.7GHz之间保持较高的效率。例如,天线组件100在1.7GHz-2.7GHz之间的效率大于或等于-5dB。
由上可知,本申请提供的天线组件100在极小的净空区域下仍具有较高的辐射效率,则天线组件100应用于电子设备1000中具有较小的净空区域,相较于其他需要较大的净空区域才能具有较高的效率的天线,能够减小电子设备1000的整体体积。
请一并参阅图12至图19,图12-图19分别为各个实施方式提供的第一匹配电路M1的示意图。本申请对于第一匹配电路的具体结构不做限定。第一匹配电路M1包括以下一种或多种选频滤波电路。
请参阅图12,第一匹配电路M1包括电感L0与电容C0串联形成的带通电路。
请参阅图13,第一匹配电路M1包括电感L0与电容C0并联形成的带阻电路。
请参阅图14,第一匹配电路M1包括电感L0、第一电容C1、及第二电容C2形成的带通或带阻电路。电感L0与第一电容C1并联,且第二电容C2电连接电感L0与第一电容C1电连接的节点。
请参阅图15,第一匹配电路M1包括电容C0、第一电感L1、及第二电感L2形成的带通或带阻电路。电容C0与第一电感L1并联,且第二电感L2电连接电容C0与第一电感L1电连接的节点。
请参阅图16,第一匹配电路M1包括电感L0、第一电容C1、及第二电容C2形成的带通或带阻电路。电感L0与第一电容C1串联,且第二电容C2的一端电连接电感L0未连接第一电容C1的第一端,第二电容C2的另一端电连接第一电容C1未连接电感L0的一端。
请参阅图17,第一匹配电路M1包括电容C0、第一电感L1、及第二电感L2形成的带通或带阻电路。电容C0与第一电感L1串联,第二电感L2的一端电连接电容C0未连接第一电感L1的一端,第二电感L2的另一端电连接第一电感L1未连接电容C0的一端。
请参阅图18,第一匹配电路M1包括第一电容C1、第二电容C2、第一电感L1、及第二电感L2。第一电容C1与第一电感L1并联,第二电容C2与第二电感L2并联,且第二电容C2与第二电感L2并联形成的整体的一端电连接第一电容C1与第一电感L1并联形成的整体的一端。
请参阅图19,第一匹配电路M1包括第一电容C1、第二电容C2、第一电感L1、及第二电感L2,第一电容C1与第一电感L1串联形成第一单元101,第二电容C2与第二电感L2串联形成第二单元102,且第一单元101与第二单元102并联。
以上为天线组件100的具体结构的举例说明。在一些实施方式中,天线组件100设于电子设备1000中。以下通过实施方式对于天线组件100设于电子设备1000的实施方式进行举例说明。对于电子设备1000而言,天线组件100至少部分集成于壳体200上或全部设于壳体200内。天线组件100的辐射体10设于壳体200上或壳体200内。
以上为天线组件100的基本结构,通过以下实施方式对于天线组件100进行进一步的优化,以进一步地减小天线组件100的堆叠尺寸。
可选的,请参阅图20,第一匹配电路M1包括第一子电路M11。第一子电路M11电连接馈电点B。第一子电路M11工作在第四频段时呈容性。第四频段位于第一谐振模式a、第二谐振模式b和第三谐振模式c对应的频段内。举例而言,第四频段可以为第一谐振模式a、第二谐振模式b和第三谐振模式c所形成的连续频段。当第一子电路M11工作在第四频段时呈容性,可使得第一谐振模式a、第二谐振模式b、第三谐振模式c的谐振频率朝向低频端移动,第一子电路M11类似于在接地点A与第一耦合端112之间的第一子辐射体11上“接上一段 有效电长度”,所以在需要谐振的频率位置不变的情况下,可以相对减小接地点A与第一耦合端112之间的第一子辐射体11的实际长度。如此,实现第一子辐射体11的小型化。
可选的,第一子电路M11包括但不限于电容,含有电容、电感、电阻的串联或并联电路等。
请参阅图21,第一子辐射体11还具有位于自由端111与接地点A之间的第一匹配点C。天线组件100还包括第二匹配电路M2。第二匹配电路M2的一端电连接第一匹配点C。第二匹配电路M2的另一端接地。第二匹配电路M2包括开关-电容-电感-电阻等形成的多条选择支路、可变电容等可调器件。这些可调器件用来调节三个谐振模式位置,模式位置的改变也可以提升单频段的性能,还可以更好的满足不同频段的ENDC/CA组合。
通过增设第二匹配电路M2,第二匹配电路M2可以实现对于第一谐振模式a、第二谐振模式b的谐振频率的调节,例如,第二匹配电路M2呈容性时,可将第一谐振模式a、第二谐振模式b的谐振频率朝向低频端移动;第二匹配电路M2呈感性时,可将第一谐振模式a、第二谐振模式b的谐振频率朝向高频端移动。通过上述的调节,可以使得第一谐振模式a、第二谐振模式b覆盖实际所需的频段及在实际所需的频率产生谐振。
可选的,请参阅图22,第二匹配电路M2包括第二子电路M21。第二子电路M21电连接第一匹配点C。第二子电路M21工作在第五频段时呈容性。第五频段位于第一谐振模式a和第二谐振模式b对应的频段内。举例而言,第五频段可以为第一谐振模式a和第二谐振模式b所形成的连续频段。当第二子电路M21工作在第五频段时呈容性,可使得第一谐振模式a、第二谐振模式b的谐振频率朝向低频端移动,第二子电路M21类似于在自由端111与接地点A之间的第一子辐射体11上“接上一段有效电长度”,所以在需要谐振的频率位置不变的情况下,可以相对减小自由端111与接地点A之间的第一子辐射体11的实际长度。如此,实现第一子辐射体11的小型化。在接地点A到自由端111之间的距离减小后,接地点A可以接入第一子辐射体11的1/8-3/4位置处。
可选的,第二子电路M21包括但不限于电容,含有电容、电感、电阻的串联或并联电路等。
可选的,请参阅图23,第二子辐射体12还具有位于第二耦合端121与接地端122之间的第二匹配点D。
天线组件100还包括第三匹配电路M3。第三匹配电路M3的一端电连接第二匹配点D。第三匹配电路M3的另一端接地。第三匹配电路M3包括开关-电容-电感-电阻等形成的多条选择支路、可变电容等可调器件。这些可调器件用来调节三个谐振模式位置,模式位置的改变也可以提升单频段的性能,还可以更好的满足不同频段的ENDC/CA组合。
通过增设第三匹配电路M3,第三匹配电路M3可以实现对于第二谐振模式b、第三谐振模式c的谐振频率的调节,例如,第三匹配电路M3呈容性时,可将第二谐振模式b、第三谐振模式c的谐振频率朝向低频端移动;第三匹配电路M3呈感性时,可将第二谐振模式b、第三谐振模式c的谐振频率朝向高频端移动。通过上述的调节,可以使得第二谐振模式b、第三谐振模式c覆盖实际所需的频段及在实际所需的频率产生谐振。
请参阅图24,第三匹配电路M3包括第三子电路M31。第三子电路M31电连接第二匹配点D。第三子电路M31工作在第六频段时呈容性。第六频段位于第二谐振模式b和第三谐振模式c对应的频段内。举例而言,第六频段可以为第二谐振模式b和第三谐振模式c所形成的连续频段。当第三子电路M31工作在第六频段时呈容性,可使得第二谐振模式b、第三谐振模式c的谐振频率朝向低频端移动,第三子电路M31类似于在第二耦合端121与接地端122之 间的第二子辐射体12上“接上一段有效电长度”,所以在需要谐振的频率位置不变的情况下,可以相对减小第二耦合端121与接地端122之间的第二子辐射体12的实际长度。如此,实现第二子辐射体12的小型化。
可选的,第三子电路M31包括但不限于电容,含有电容、电感、电阻的串联或并联电路等。
可以理解的,在实际设计天线组件100时,可以在第一匹配电路M1、第二匹配电路M2、第三匹配电路M3中选择一个或两个设于相对应的位置,也可以将第一匹配电路M1、第二匹配电路M2、第三匹配电路M3皆设于相对应的位置,如此,可以进一步地减小辐射体10的堆叠尺寸。
本申请对于天线组件100的辐射体10设于电子设备1000的具体位置不做具体的限定,例如,请参阅图25及图26,天线组件100的辐射体10可全部设于电子设备1000的一侧;或者,请参阅图27,辐射体10设于电子设备1000的拐角部。具体通过以下实施方式进行举例说明。
请参阅图2及图28,边框210的一侧围接于后盖220的周沿。边框210的另一侧围接于显示屏300的周沿。边框210包括多个首尾相连的侧边框。边框210的多个侧边框中,相邻的两个侧边框相交,例如相邻的两个侧边框垂直。多个侧边框包括相对设置的顶边框212和底边框213,及连接于顶边框212与底边框213之间的第一侧边框214和第二侧边框215。相邻的两个侧边框之间的连接处为拐角部216。其中,顶边框212和底边框213平行且相等。第一侧边框214和第二侧边框215平行且相等。第一侧边框214的长度大于顶边框212的长度。
可选的,请参阅图28及图29,天线组件100的辐射体10的至少部分与边框210集成为一体。例如,边框210的材质为金属材质。第一子辐射体11、第二子辐射体12与边框210皆集成为一体。当然,在其他实施方式中,上述的辐射体10还可与后盖220集成为一体。换言之,第一子辐射体11、第二子辐射体12集成为壳体200的一部分。具体的,天线组件100的参考地GND、信号源20、第一至第三匹配电路M3等皆设于电路板上。
可选的,请参阅图28及图30,第一子辐射体11、第二子辐射体12通过成型于边框210的表面。具体的,第一子辐射体11、第二子辐射体12的基本形式包括但不限于贴片辐射体、通过激光直接成型(Laser Direct Structuring,LDS)、印刷直接成型(Print Direct Structuring,PDS)等工艺成型在边框210的内表面上,此实施方式中,边框210的材质可为非导电材质。当然,上述的辐射体10还可以设于后盖220上。
可选的,第一子辐射体11、第二子辐射体12设于柔性电路板。柔性电路板贴设于边框210的表面。第一子辐射体11、第二子辐射体12可集成于柔性电路板上,并将柔性电路板通过粘胶等贴设于中框420的内表面,此实施方式中,边框210的材质可为非导电材质。当然,上述的辐射体10还可设于后盖220的内表面。
请参阅图25及图28,顶边框212为操作者手持电子设备1000朝向电子设备1000的正面使用时远离地面的边,底边框213为朝向地面的边。可选的,辐射体10完全设于顶边框210上,如此,用户在竖屏使用电子设备1000时,辐射体10朝向外部空间且遮挡较少,如此,天线组件100的效率较高。
请参阅图26及图28,可选的,辐射体10完全设于第二侧边框215上,如此,用户在横屏使用电子设备1000时,辐射体10朝向外部空间且遮挡较少,如此,天线组件100的效率较高。当然,辐射体10还可以完全设于第一侧边框214。
请参阅图27及图28,可选的,辐射体10可设于电子设备1000的拐角部216,放在拐角部216的天线组件100的效率会更好,在整机中的天线组件100环境也较优,整机堆叠也比较容易实现。具体的,辐射体10的一部分设于至少一个侧边框上,另一部分设于拐角部216。具体的,第二子辐射体12设于顶边框210、耦合缝隙13设于顶边框210所在侧、第一子辐射体11的一部分对应于顶边框210设置,第一子辐射体11的另一部分设于拐角部216,第一子辐射体11的再一部分设于第二侧边框215所在侧。换言之,辐射体10设于拐角部216,如此,在手持电子设备1000时,辐射体10受到的遮挡较少,进一步提高辐射体10的辐射效率。
本申请提供的天线组件100,通过设计辐射体10的结构和接地点A的位置,激励起多种谐振模式,这些谐振模式能够实现超宽带覆盖,从而实现多频段的ENDC/CA性能,提升下载带宽,这样就可以提升吞吐量下载速度,用户体验得到提升;本申请天线组件100所产生的多种模式之间能够相互加强,所以可以高效率覆盖超宽带宽,节约成本,有利于满足各大运营商指标。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线组件,包括:
    辐射体,包括第一子辐射体及第二子辐射体,所述第一子辐射体与所述第二子辐射体存在耦合缝隙,所述第一子辐射体与所述第二子辐射体之间通过所述耦合缝隙耦合;所述第一子辐射体包括自由端、第一耦合端及设于所述自由端与所述第一耦合端之间的接地点及馈电点,所述接地点接地,所述馈电点位于所述接地点与所述第一耦合端之间;所述第二子辐射体包括第二耦合端及接地端,所述第二耦合端与所述第一耦合端之间为所述耦合缝隙,所述接地端接地;
    第一匹配电路,所述第一匹配电路的一端电连接所述馈电点;及
    信号源,所述信号源电连接所述第一匹配电路的另一端。
  2. 如权利要求1所述的天线组件,所述第一子辐射体在所述信号源的激励下用于产生第一谐振模式,所述第一子辐射体及所述第二子辐射体在所述信号源的激励下用于产生第二谐振模式,所述接地点至所述第一耦合端之间的第一子辐射体及所述第二子辐射体在所述信号源的激励下用于产生第三谐振模式。
  3. 如权利要求2所述的天线组件,所述第一谐振模式支持第一频段,所述第二谐振模式支持第二频段,所述第三谐振模式支持第三频段,所述第一频段、所述第二频段及所述第三频段聚合形成目标应用频段。
  4. 如权利要求2所述的天线组件,所述第一谐振模式对应的电流从所述第一耦合端及所述自由端流向所述接地点;所述第二谐振模式对应的电流从所述接地端流向所述接地点并流向所述自由端;所述第三谐振模式对应的电流从所述第一耦合端流向所述接地点,及从所述第二耦合端流向所述接地端。
  5. 如权利要求2所述的天线组件,所述第二谐振模式包括第一子谐振模式和第二子谐振模式,所述第一子谐振模式为所述第一子辐射体在所述信号源的激励下产生,所述第二子谐振模式为所述第二子辐射体在所述第一子辐射体的容性耦合作用下产生。
  6. 如权利要求2所述的天线组件,所述第一谐振模式的谐振频率、所述第二谐振模式的谐振频率、所述第三谐振模式的谐振频率依次增加。
  7. 如权利要求3所述的天线组件,所述目标应用频段覆盖1.6GHz-3GHz;和/或,所述目标应用频段支持LTE 4G频段和NR 5G频段。
  8. 如权利要求1-7任意一项所述的天线组件,所述接地点与所述自由端之间的辐射体长度是所述第一子辐射体长度的(1/8)-(3/4)倍。
  9. 如权利要求8所述的天线组件,所述接地点与所述自由端之间的长度为所述第一子辐射体长度的(1/4)-(3/4)倍。
  10. 如权利要求9所述的天线组件,所述接地点与所述自由端之间的长度为所述第一子辐射体长度的(3/8)-(5/8)倍。
  11. 如权利要求2-7任意一项所述的天线组件,所述第一谐振模式的谐振频率所对应的波长为第一波长,所述接地点与所述自由端之间的辐射体长度为所述第一波长的(1/8)-(3/8)倍。
  12. 如权利要求11所述的天线组件,所述自由端与所述第一耦合端之间的辐射体长度为所述第一波长的(1/4)-(3/4)倍。
  13. 如权利要求2-7任意一项所述的天线组件,所述第三谐振模式的谐振频率所对应的波长为第二波长,所述第二耦合端与所述接地端之间的辐射体长度为所述第二波长的(1/8)- (3/8)倍。
  14. 如权利要求2-7任意一项所述的天线组件,所述第一匹配电路包括第一子电路,所述第一子电路电连接所述馈电点,所述第一子电路工作在第四频段时呈容性,所述第四频段位于所述第一谐振模式、所述第二谐振模式和所述第三谐振模式对应的频段内。
  15. 如权利要求2-7任意一项所述的天线组件,所述第一子辐射体还具有位于所述自由端与所述接地点之间的第一匹配点;
    所述天线组件还包括第二匹配电路,所述第二匹配电路的一端电连接所述第一匹配点;所述第二匹配电路的另一端接地。
  16. 如权利要求15所述的天线组件,所述第二匹配电路包括第二子电路,所述第二子电路电连接所述第一匹配点,所述第二子电路工作在第五频段时呈容性,所述第五频段位于所述第一谐振模式和所述第二谐振模式对应的频段内。
  17. 如权利要求2-7任意一项所述的天线组件,所述第二子辐射体还具有位于所述第二耦合端与所述接地端之间的第二匹配点;
    所述天线组件还包括第三匹配电路,所述第三匹配电路的一端电连接所述第二匹配点;所述第三匹配电路的另一端接地。
  18. 如权利要求17所述的天线组件,所述第三匹配电路包括第三子电路,所述第三子电路电连接所述第二匹配点,所述第三子电路工作在第六频段时呈容性,所述第六频段位于所述第二谐振模式和所述第三谐振模式对应的频段内。
  19. 一种电子设备,包括壳体及如权利要求1-18任意一项所述的天线组件,所述辐射体设于所述壳体上或所述壳体内。
  20. 如权利要求19所述的电子设备,所述壳体包括多个首尾相连的侧边框,相邻的两个所述侧边框之间的连接处为拐角部,所述辐射体全部设于所述侧边框上,或者,所述辐射体的一部分设于至少一个所述侧边框上,另一部分设于所述拐角部。
PCT/CN2022/075871 2021-03-03 2022-02-10 天线组件及电子设备 WO2022183892A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22762359.2A EP4277028A4 (en) 2021-03-03 2022-02-10 ANTENNA AND ELECTRONIC DEVICE ASSEMBLY
US18/446,163 US20230387594A1 (en) 2021-03-03 2023-08-08 Antenna assembly and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110237419.9 2021-03-03
CN202110237419.9A CN115036674B (zh) 2021-03-03 2021-03-03 天线组件及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/446,163 Continuation US20230387594A1 (en) 2021-03-03 2023-08-08 Antenna assembly and electronic device

Publications (1)

Publication Number Publication Date
WO2022183892A1 true WO2022183892A1 (zh) 2022-09-09

Family

ID=83117668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075871 WO2022183892A1 (zh) 2021-03-03 2022-02-10 天线组件及电子设备

Country Status (4)

Country Link
US (1) US20230387594A1 (zh)
EP (1) EP4277028A4 (zh)
CN (1) CN115036674B (zh)
WO (1) WO2022183892A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118040292A (zh) * 2022-11-11 2024-05-14 Oppo广东移动通信有限公司 天线装置及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645041A (zh) * 2016-07-21 2018-01-30 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
TW201911644A (zh) * 2017-08-05 2019-03-16 群邁通訊股份有限公司 天線結構及具有該天線結構之無線通訊裝置
CN208637584U (zh) * 2018-08-24 2019-03-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN109687111A (zh) * 2018-12-29 2019-04-26 维沃移动通信有限公司 一种天线结构及通信终端
CN211350950U (zh) * 2020-03-12 2020-08-25 Oppo广东移动通信有限公司 天线组件和电子设备
CN111786091A (zh) * 2020-07-10 2020-10-16 Oppo广东移动通信有限公司 一种天线模组和终端
US10862216B1 (en) * 2019-06-28 2020-12-08 Apple Inc. Electronic devices having indirectly-fed slot antenna elements
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
WO2021023182A1 (zh) * 2019-08-08 2021-02-11 维沃移动通信有限公司 天线模组及电子设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10389010B2 (en) * 2016-07-21 2019-08-20 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN107425258B (zh) * 2017-06-22 2020-02-18 瑞声科技(新加坡)有限公司 天线系统及移动终端
TW201911653A (zh) * 2017-08-03 2019-03-16 廣達電腦股份有限公司 雙頻帶天線結構
WO2019071848A1 (zh) * 2017-10-09 2019-04-18 华为技术有限公司 天线装置及移动终端
TWI656696B (zh) * 2017-12-08 2019-04-11 財團法人工業技術研究院 多頻多天線陣列
CN108631041B (zh) * 2018-04-25 2020-04-03 Oppo广东移动通信有限公司 天线组件及电子装置
CN110459856A (zh) * 2018-05-08 2019-11-15 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN108808222B (zh) * 2018-06-19 2021-02-02 深圳市万普拉斯科技有限公司 天线系统及电子设备
CN109659693B (zh) * 2018-12-12 2021-08-24 维沃移动通信有限公司 一种天线结构及通信终端
CN112151939A (zh) * 2019-06-28 2020-12-29 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN110600881A (zh) * 2019-09-25 2019-12-20 南昌黑鲨科技有限公司 天线装置及移动终端
CN111180872B (zh) * 2020-02-14 2022-10-28 维沃移动通信有限公司 一种天线装置和电子设备
CN212136686U (zh) * 2020-03-12 2020-12-11 Oppo广东移动通信有限公司 天线组件和电子设备
CN111244616B (zh) * 2020-03-27 2022-01-11 维沃移动通信有限公司 一种天线结构及电子设备
CN112086752A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645041A (zh) * 2016-07-21 2018-01-30 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
TW201911644A (zh) * 2017-08-05 2019-03-16 群邁通訊股份有限公司 天線結構及具有該天線結構之無線通訊裝置
CN208637584U (zh) * 2018-08-24 2019-03-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN109687111A (zh) * 2018-12-29 2019-04-26 维沃移动通信有限公司 一种天线结构及通信终端
US10862216B1 (en) * 2019-06-28 2020-12-08 Apple Inc. Electronic devices having indirectly-fed slot antenna elements
WO2021023182A1 (zh) * 2019-08-08 2021-02-11 维沃移动通信有限公司 天线模组及电子设备
CN211350950U (zh) * 2020-03-12 2020-08-25 Oppo广东移动通信有限公司 天线组件和电子设备
CN111786091A (zh) * 2020-07-10 2020-10-16 Oppo广东移动通信有限公司 一种天线模组和终端
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4277028A4

Also Published As

Publication number Publication date
US20230387594A1 (en) 2023-11-30
EP4277028A4 (en) 2024-07-24
CN115036674A (zh) 2022-09-09
CN115036674B (zh) 2023-06-27
EP4277028A1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
WO2022206237A1 (zh) 天线组件及电子设备
EP3855567B1 (en) Coupled antenna device and electronic device
TWI478437B (zh) 天線模組及使用該天線模組之可攜式電子裝置
US20230344152A1 (en) Antenna assembly and electronic device
US10566681B2 (en) Antenna structure and wireless communication device using same
WO2022042147A1 (zh) 一种天线结构及电子设备
US10498010B2 (en) Antenna structure and wireless communication device using same
CN113517546A (zh) 一种电子设备
US20240072418A1 (en) Antenna assembly and electronic device
JP2014533474A (ja) マルチモードブロードバンドアンテナモジュールおよびワイヤレス端末
US20240072440A1 (en) Antenna assembly and electronic device
US20230163457A1 (en) Electronic Device
WO2023273604A1 (zh) 天线模组及电子设备
WO2023273607A1 (zh) 天线模组及电子设备
US20240014556A1 (en) Antenna assembly and electronic device
US20230387594A1 (en) Antenna assembly and electronic device
WO2023045630A1 (zh) 天线组件及电子设备
JP2002171111A (ja) 携帯無線機及び携帯無線機用アンテナ
CN115036676A (zh) 天线组件及电子设备
WO2022068373A1 (zh) 天线组件和电子设备
WO2024045853A1 (zh) 天线组件及电子设备
WO2024060819A1 (zh) 天线组件及电子设备
CN118315793A (zh) 天线组件及电子设备
CN118676576A (zh) 天线装置及电子设备
CN115313030A (zh) 天线组件和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022762359

Country of ref document: EP

Effective date: 20230809

NENP Non-entry into the national phase

Ref country code: DE