WO2022206237A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2022206237A1
WO2022206237A1 PCT/CN2022/077946 CN2022077946W WO2022206237A1 WO 2022206237 A1 WO2022206237 A1 WO 2022206237A1 CN 2022077946 W CN2022077946 W CN 2022077946W WO 2022206237 A1 WO2022206237 A1 WO 2022206237A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
frequency band
antenna
branch
antenna assembly
Prior art date
Application number
PCT/CN2022/077946
Other languages
English (en)
French (fr)
Inventor
王泽东
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP22778422.0A priority Critical patent/EP4311024A1/en
Publication of WO2022206237A1 publication Critical patent/WO2022206237A1/zh
Priority to US18/476,118 priority patent/US20240021998A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/392Combination of fed elements with parasitic elements the parasitic elements having dual-band or multi-band characteristics

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an antenna assembly and an electronic device.
  • the present application provides an antenna assembly and an electronic device for improving antenna efficiency.
  • the present application provides an antenna assembly, including a first antenna unit, the first antenna unit includes a first radiator, a ground stub and a first signal source; the first radiator includes a first radiator interconnected as a whole A branch and a second radiating branch, the connection between the first radiating branch and the second radiating branch is a first feeding point; one end of the ground return branch is electrically connected to the first feeding point, and the return branch is electrically connected to the first feeding point. The other end of the ground branch is electrically connected to the reference ground, the first signal source is electrically connected to the first feeding point, and the first signal source is used to excite the first radiation branch and the second radiation the branches respectively resonate in the first wavelength mode of the first frequency band; and
  • the second antenna unit includes a second radiator, a second signal source and the first radiator, a coupling gap exists between the second radiator and the first radiator, the The second signal source is electrically connected to the second radiator, and the second signal source is used to excite the second radiator to resonate in the first wavelength mode of the second frequency band, and to excite the first wavelength mode through the coupling slot
  • the radiator resonates in the second wavelength mode of the second frequency band.
  • the present application provides an electronic device, comprising a casing and the antenna assembly, at least a part of the antenna assembly is provided inside the casing, or, at least a part of the antenna assembly is disposed outside the casing, or, At least a portion of the antenna assembly is integrated with the housing.
  • the ground stub is provided at the feeding point of the first radiator, so that the first radiating stub and the second radiating stub are respectively resonated in the first signal source under the excitation of the first signal source.
  • the first wavelength mode of the first frequency band in this way, the first antenna unit has higher efficiency in the first frequency band, and the radiation performance of the antenna assembly is improved;
  • the first wavelength mode of the frequency band, the first radiator excites the second wavelength mode that resonates in the second frequency band at the second signal source, the second radiator and the coupling slot.
  • the radiator of the first antenna unit also acts as a The multiplexing of the radiator of the second antenna unit, relatively speaking, saves the stacking space of the first radiator of the first antenna unit and the second radiator of the second antenna unit, reduces the overall volume of the antenna assembly, and the antenna
  • the component can cover more frequency bands or cover a wide frequency band width; when the antenna component is installed in the electronic device, the electronic device does not need to install additional efficiency-enhancing devices due to the antenna component, which can effectively improve the efficiency of the antenna. At the same time reduce components and save space.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is the structural disassembly schematic diagram of the electronic device that Fig. 1 provides;
  • Fig. 3 is the partial structure schematic diagram of the electronic device that Fig. 2 provides;
  • FIG. 4 is a schematic structural diagram of an antenna assembly provided in FIG. 3;
  • FIG. 5 is a schematic structural diagram of the first antenna unit provided in FIG. 4;
  • FIG. 6 is a schematic structural diagram of the first sub-antenna in FIG. 5;
  • FIG. 7 is a schematic structural diagram of the second sub-antenna in FIG. 5;
  • FIG. 8 is a schematic structural diagram of the first antenna unit in FIG. 5 provided with a switch circuit
  • Fig. 9a is a schematic diagram of a first arrangement position of the first feeding point in the antenna assembly shown in Fig. 8;
  • Fig. 9b is a schematic diagram of the second setting position of the first feeding point in the antenna assembly shown in Fig. 8;
  • Fig. 9c is a schematic diagram of a third setting position of the first feeding point in the antenna assembly shown in Fig. 8;
  • Fig. 9d is a schematic diagram of a fourth arrangement position of the first feeding point in the antenna assembly shown in Fig. 8;
  • Fig. 9e is a schematic diagram of a fifth arrangement position of the first feeding point in the antenna assembly shown in Fig. 8;
  • Fig. 9f is a schematic diagram of a sixth arrangement position of the first feeding point in the antenna assembly shown in Fig. 8;
  • FIG. 10 is a schematic structural diagram of the first sub-antenna and the reference ground shown in FIG. 9a;
  • FIG. 11 is a schematic structural diagram of the second sub-antenna and the reference ground shown in FIG. 9a;
  • Fig. 12 is a mode distribution diagram of the first sub-antenna shown in Fig. 10;
  • FIG. 13 is a mode distribution diagram of the second sub-antenna shown in FIG. 11;
  • FIG. 14 is a current distribution diagram of the first sub-antenna shown in FIG. 10 in a first radiation mode
  • FIG. 15 is a far-field pattern of the first sub-antenna shown in FIG. 10 in a first radiation pattern
  • FIG. 16 is a current distribution diagram of the second sub-antenna shown in FIG. 11 in the fifth radiation mode
  • FIG. 17 is a far-field pattern of the second sub-antenna shown in FIG. 11 in a fifth radiation pattern
  • FIG. 18 is a radiation performance comparison curve of the antenna assembly provided by the embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of the antenna assembly and the reference ground shown in FIG. 4;
  • FIG. 20 is a graph of S-parameters of the antenna assembly shown in FIG. 19;
  • FIG. 21 is a current distribution diagram of the antenna assembly shown in FIG. 19 under excitation by a second signal source;
  • FIG. 22 is a graph of the efficiency of the antenna assembly shown in FIG. 19;
  • FIG. 23 is a schematic structural diagram of the first installation method of the antenna assembly and the frame shown in FIG. 21;
  • FIG. 24 is a schematic structural diagram of the second installation method of the antenna assembly and the frame shown in FIG. 21 .
  • the antenna assembly provided by the embodiment of the present application improves the antenna efficiency by improving the antenna structure (the antenna efficiency refers to the receiving conversion efficiency and the transmitting conversion efficiency of the antenna assembly for electromagnetic waves, which will not be described in the following), and can be effectively applied to the current A versatile and full-screen electronic device.
  • This application does not specifically limit the product types of electronic devices to which the antenna assembly is applied, and electronic devices include but are not limited to telephones, televisions, tablet computers, smart phones, cameras, personal computers, notebook computers, in-vehicle devices, earphones, watches, Wearable devices, base stations, vehicle radars, Customer Premise Equipment (CPE) and other devices that can send and receive electromagnetic wave signals.
  • the electronic device is a smartphone as an example, for other devices, reference may be made to the specific description in this application.
  • FIG. 1 is a schematic structural diagram of an electronic device 1000 according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a structural disassembly of the electronic device 1000 in FIG. 1 .
  • the electronic device 1000 includes an antenna assembly 100 , a casing 200 and a display screen 300 that are covered and connected to each other.
  • a receiving space is formed between the display screen 300 and the casing 200 .
  • the antenna assembly 100 is disposed inside or outside the receiving space.
  • the electronic device 1000 also includes a circuit board 400, a battery 500, a camera, a microphone, a receiver, a speaker, a face recognition module, a fingerprint recognition module, etc., which are arranged in the accommodating space and can realize the basic functions of the mobile phone. The example will not be repeated.
  • the present application does not limit the form of the electronic device 1000 .
  • the electronic device 1000 may be in a non-deformable, stretchable, bendable, and bendable state.
  • the antenna assembly 100 is provided on the retractable assembly of the electronic device 1000 .
  • the antenna assembly 100 can also extend out of the electronic device 1000 with the retractable element of the electronic device 1000 and as the retractable element retracts into the electronic device 1000 to increase when extending the electronic device 1000
  • the clearance space of the radiator further improves the efficiency of the antenna and increases the portability of the electronic device 1000 when retracted;
  • the length extension of the antenna assembly 100 includes, but is not limited to, the radiator being multiple sections that can be spliced into a longer length; it may also be the extension of the distance between the radiator and the radio frequency chip and other electronic devices to increase the length of the antenna assembly 100. Clear space to further improve antenna efficiency.
  • the antenna assembly 100 is disposed in the receiving space of the electronic device 1000 , or a part of the antenna assembly 100 is integrated with the casing 200 , or a part of the antenna assembly 100 is disposed outside the casing 200 .
  • the electronic device 1000 described above is only a description of the electronic device 1000 to which the antenna assembly 100 is applied, and the specific structure of the electronic device 1000 should not be construed as a limitation on the antenna assembly 100 provided in this application.
  • the antenna assembly 100 described in this application at least includes a radio frequency transceiver chip 101 , a matching module 102 and a radiator 103 .
  • the radio frequency transceiver chip 101 can be disposed on the circuit board 400 and electrically connected to the battery 500 or the power management chip, so that the battery 500 can supply power to the radio frequency transceiver chip 101 .
  • the matching module 102 can be disposed on the circuit board 400 together with the radio frequency transceiver chip 101 , and can also be disposed on another circuit board 400 together with the radiator 103 .
  • the radiator 103 may be disposed on a support member in the receiving space or disposed on the surface of the casing 200 or integrated with the casing 200 , and specific examples will be described in the following.
  • the antenna assembly 100 provided by the present application includes but is not limited to the following embodiments.
  • the antenna assembly 100 includes at least a first antenna unit 110 .
  • the antenna assembly 100 includes at least a first antenna unit 110 and a second antenna unit 120 .
  • the antenna assembly 100 may only include the first antenna unit 110 .
  • the first antenna unit 110 at least includes a first radiator 111 , a first signal source 113 and a ground branch 114 .
  • the first radiator 111 includes a first radiating branch 115 and a second radiating branch 116 which are integrally interconnected.
  • the connection between the first radiation branch 115 and the second radiation branch 116 is the first feeding point 117 .
  • the first radiating branch 115 has a first free end 118 away from the first feeding point 117 .
  • the second radiating branch 116 has a second free end 119 away from the first feeding point 117 .
  • the first radiator 111 has a first free end 118 and a second free end 119 disposed opposite to each other, and a first feeding point 117 disposed between the first free end 118 and the second free end 119 .
  • the radiator 103 between the first feeding point 117 and the first free end 118 is the first radiating branch 115
  • one of the radiators 103 between the first feeding point 117 and the second free end 119 In between is the second radiating branch 116 .
  • the present application does not limit the specific position of the first feeding point 117 on the first radiator 111 .
  • the lengths of the first radiating branches 115 and the second radiating branches 116 may be equal or unequal, which are not specifically limited in this application.
  • the shape of the first radiator 111 is in the shape of a bar, and its extension direction may be in a straight line, a curve, a bending line, or the like.
  • the first radiator 111 is in the shape of a straight line
  • the first free end 118 and the second free end 119 are two opposite ends.
  • the first radiator 111 is in the shape of a bent strip
  • the first free end 118 and the second free end 119 are two ends along the extending direction thereof.
  • the first radiator 111 may also be in the shape of a strip curve, a sheet, a coating, a rod, a film, and the like.
  • the above-mentioned first radiator 111 may be a line with a uniform width on the extending track, or may be a bar shape with a gradual width, a widened area, or the like with different widths.
  • the first signal source 113 is electrically connected to the first feeding point 117 for providing a radio frequency signal (electromagnetic energy) to the first radiator 111 via the first feeding point 117 .
  • the first antenna unit 110 of the antenna assembly 100 further includes a first matching circuit 112 , and one end of the first matching circuit 112 is electrically connected to the first feeding point 117 .
  • the first signal source 113 is electrically connected to the other end of the first matching circuit 112 .
  • the first signal source 113 is the radio frequency transceiver chip 101 for transmitting radio frequency signals (electromagnetic energy) or a feeder that is electrically connected to the radio frequency transceiver chip 101 for transmitting radio frequency signals (electromagnetic energy).
  • the first signal source 113 is used for feeding electromagnetic energy to the first radiation branch 115 and the second radiation branch 116 through the first matching circuit 112 .
  • the first matching circuit 112 includes at least one of a plurality of selection branches formed by switch-capacitor-inductor-resistor, a tuning circuit formed by capacitor-inductor-resistor, etc., and a variable capacitor.
  • the first matching circuit 112 is used to tune the impedance on the feeder (the first signal source 113 to the first radiator 111 ), improve the conversion efficiency of converting the radio frequency signal into an electromagnetic wave signal, and improve the conversion efficiency of the received electromagnetic wave signal into the radio frequency signal. Conversion efficiency.
  • one end of the grounding branch 114 is electrically connected to the first feeding point 117 , and the other end of the grounding branch 114 is electrically connected to the reference ground GND.
  • the antenna assembly 100 has a reference ground GND.
  • the specific form of the reference ground GND includes, but is not limited to, a metal plate, a metal layer formed inside the flexible circuit board 400 , and the like.
  • the reference ground GND is the metal alloy plate in the middle frame of the electronic device 1000 .
  • the other end of the ground stub 114 is electrically connected to the reference ground GND through a conductive member such as a ground spring, solder, and conductive adhesive.
  • the antenna assembly 100 does not include the reference ground GND, and the radiator 103 of the antenna assembly 100 is electrically connected to the reference ground GND of the electronic device 1000 or is electrically connected to the electronic device 1000 through a direct electrical connection or through an intermediate conductive connector.
  • the reference ground of the electronic devices within GND does not include the reference ground GND, and the radiator 103 of the antenna assembly 100 is electrically connected to the reference ground GND of the electronic device 1000 or is electrically connected to the electronic device 1000 through a direct electrical connection or through an intermediate conductive connector.
  • the grounding branch 114 , the first signal source 113 and the first radiation branch 115 form at least part of the first sub-antenna 104 .
  • the ground branch 114 , the first signal source 113 , the first radiation branch 115 and the reference ground GND form the first sub-antenna 104 .
  • the grounding branch 114 , the first signal source 113 and the second radiation branch 116 form at least part of the second sub-antenna 105 .
  • the ground branch 114 , the first signal source 113 , the second radiation branch 116 and the reference ground GND form the second sub-antenna 105 .
  • the first antenna unit 110 is used to form the first sub-antenna 104 and the second sub-antenna 105 which are independent of each other.
  • the radiators of the first sub-antenna 104 and the second sub-antenna 105 are different. Specifically, the radiator of the first sub-antenna 104 is the radiation branch formed by the first radiation branch 115 , and the radiator of the second sub-antenna 105 is the radiation branch formed by the second radiation branch 116 .
  • the first sub-antenna 104 and the second sub-antenna 105 share the first signal source 113 , the ground stub 114 and the reference ground GND.
  • the first signal source 113 is used to excite the first radiation branch 115 and the second radiation branch 116 to resonate in the first wavelength mode of the first frequency band, respectively.
  • This application does not specifically limit the range of the first frequency band.
  • the frequency of the first frequency band is less than or equal to 1 GHz.
  • the first wavelength mode includes, but is not limited to, 1/4 wavelength mode, 1/2 wavelength mode, 3/4 wavelength mode, 1 times wavelength mode, and the like.
  • the first sub-antenna 104 transmits and receives electromagnetic wave signals of the first target frequency band under the excitation of the first signal source 113
  • the second sub-antenna 105 transmits and receives under the excitation of the first signal source 113 .
  • the electromagnetic wave signal of the second target frequency band, the first target frequency band and the second target frequency band at least partially overlap. It can be understood that the transmission and reception of electromagnetic wave signals in a certain frequency band as described in this application means that the antenna has better efficiency in this frequency band.
  • the mode factor of the first antenna unit 110 in this frequency band is greater than or equal to x, for example, x is 0.9, 0.95, etc., indicating that the first antenna unit 110 has higher antenna efficiency in this frequency band.
  • x is 0.9, 0.95, etc.
  • the first target frequency band and the second target frequency band are frequency bands in the same range, for example, the first target frequency band and the second target frequency band are both 600MHz-1000MHz (the above values are for example, not limitation), so , both the first sub-antenna 104 and the second sub-antenna 105 can transmit and receive electromagnetic wave signals of the first target frequency band (or the second target frequency band).
  • both the first sub-antenna 104 and the second sub-antenna 105 can transmit and receive electromagnetic wave signals of the first target frequency band (or the second target frequency band).
  • the first antenna unit 110 since the first antenna unit 110 has two current paths Both can transmit and receive electromagnetic wave signals in the first target frequency band (or the second target frequency band), so the radiation efficiency of the first antenna unit 110 in the first target frequency band (or the second target frequency band) is enhanced.
  • the first target frequency band and the second target frequency band are frequency bands with the same partial range, for example, the first target frequency band is 500MHz-1000MHz (the above values are for example and not intended to be limiting), and the second target frequency band is both 600MHz-1100MHz (the above values are for example and not limited).
  • both the first sub-antenna 104 and the second sub-antenna 105 can transmit and receive 600MHz-1000MHz.
  • both the first antenna unit 110 since the first antenna unit 110 has two current paths, both can transmit and receive electromagnetic wave signals of 600MHz-1000MHz. Therefore, the radiation efficiency of the first antenna unit 110 at 600MHz-1000MHz is enhanced.
  • this embodiment defines a frequency band where the first target frequency band and the second target frequency band overlap as the first frequency band.
  • the first signal source 113 is used to excite the first radiation branch 115 and the second radiation branch 116 to resonate in the first wavelength mode of the first frequency band, respectively.
  • Both the first sub-antenna 104 and the second sub-antenna 105 are used for transmitting and receiving electromagnetic wave signals covering a first frequency band under the excitation of the first signal source 113 .
  • the first antenna unit 110 since the first antenna unit 110 has two current paths (ie, the first sub-antenna 104 and the second sub-antenna 105), both of which can transmit and receive electromagnetic wave signals of the first frequency band, the first antenna unit 110 The radiation efficiency in the first frequency band is enhanced.
  • the first frequency band is a low frequency band
  • the radiation efficiency of the first antenna unit 110 when resonating in the low frequency band is enhanced, so the first antenna unit 110 is a low frequency antenna and has higher radiation efficiency.
  • the present application improves the structure of the antenna assembly 100 by extending the first radiation branch 115 at the first feeding point 117 to form the second radiation branch 116, and setting the ground branch 114 at the first feeding point 117, Among them, the first radiation branch 115 and the ground branch 114 can form a current distribution between the reference ground GND under the excitation of the first signal source 113, so as to transmit and receive electromagnetic wave signals covering at least the first frequency band; the second radiation branch 116 and the return branch The ground branch 114 forms a current distribution between the ground branch 114 and the reference ground GND under the excitation of the first signal source 113, so as to transmit and receive electromagnetic wave signals covering at least the first frequency band.
  • the first antenna unit 110 can be used to form the first sub-antenna 104 and The second sub-antenna 105, the first sub-antenna 104 and the second sub-antenna 105 generate two mutually independent current distributions under the excitation of the first signal source 113, and each current distribution can excite electromagnetic waves covering at least the first frequency band
  • the electromagnetic wave signal of the first frequency band excited by the two current distributions enhances the efficiency of the first frequency band, so as to improve the radiation efficiency of the first antenna unit 110 resonating in the first frequency band.
  • the first frequency band may be at least one of a low frequency band, a mid-high frequency band, an ultra-high frequency band, and the like, according to the frequency band for transmission and reception.
  • the low frequency band (Lower Band, LB) refers to a frequency band with a frequency less than 1000 MHz.
  • the low frequency frequency band includes but is not limited to at least one of frequency bands such as GSM 900 (GSM900: 890MHz-915MHz; 935MHz-960MHz) and GSM 850 (GSM850: 824MHz-849MHz; 869MHz-894MHz).
  • the mid-high frequency band refers to the frequency band as the Middle High Band (MHB).
  • the middle and high frequency bands are 1000MHz-3000MHz.
  • Medium and high frequency bands include but are not limited to LTE B3 (1710MHz-1785MHz; 1805MHz-1880MHz), LTE B1 (1920MHz-1980MHz; 2110MHz-2170MHz), LTE B40 (2330MHz-2400MHz), LTE B41 (2496MHz-2690MHz) and other frequency bands at least one of.
  • the ultra-high frequency band is 3000MHz-6000MHz.
  • the above low, mid-high, and ultra-high frequency bands are an exemplary division method, but are not limited thereto.
  • the second antenna unit 120 includes a second radiator 121 , a second matching circuit 122 , a second signal source 123 and a first radiator 111 .
  • a coupling slot 127 exists between the second radiator 121 and the first radiator 111 .
  • the first radiator 111 and the second radiator 121 are coupled through the coupling slot 127 .
  • One end of the second matching circuit 122 is electrically connected to the second radiator 121 .
  • the second signal source 123 is electrically connected to the other end of the second matching circuit 122 .
  • the first radiator 111 and the second radiator 121 may be arranged in a straight line or approximately in a straight line (ie, there is a small tolerance in the design process).
  • the first radiator 111 and the second radiator 121 may also be staggered in the extending direction to provide avoidance space for other devices.
  • the end portion of the first radiator 111 and the end portion of the second radiator 121 are opposite to each other through coupling slits 127 and are disposed at intervals.
  • the coupling slit 127 is a slit between the first radiator 111 and the second radiator 121 .
  • the width of the coupling slit 127 is 0.5-2 mm, but not limited to this size.
  • the first radiator 111 and the second radiator 121 can be capacitively coupled through the coupling slot 127 . In one of the angles, the first radiator 111 and the second radiator 121 can be regarded as two parts formed by the radiator 103 being cut off by the coupling slot 127 .
  • the first radiator 111 and the second radiator 121 are capacitively coupled through the coupling slot 127 .
  • capacitively coupling means that an electric field is generated between the first radiator 111 and the second radiator 121, the signal of the first radiator 111 can be transmitted to the second radiator 121 through the electric field, and the signal of the second radiator 121 The signal can be transmitted to the first radiator 111 through the electric field, so that the first radiator 111 and the second radiator 121 can achieve electrical signal conduction even when the first radiator 111 and the second radiator 121 are disconnected.
  • the second radiator 121 can generate an electric field under the excitation of the second signal source 123 , and the electric field energy can be transferred to the first radiator 111 through the coupling slot 127 , thereby causing the first radiator 111 to generate an excitation current.
  • the first radiator 111 may also be referred to as a parasitic radiator of the second radiator 121 .
  • the second signal source 123 is used to excite the second radiator 121 to resonate in the first wavelength mode of the second frequency band, and to excite the first radiator 111 to resonate in the second frequency band through the coupling slot 127 the second wavelength mode.
  • This application does not specifically limit the range of the second frequency band.
  • the frequency of the second frequency band is greater than 1 GHz.
  • the first wavelength mode of the second frequency band includes, but is not limited to, a 1/4 wavelength mode, a 1/2 wavelength mode, a 3/4 wavelength mode, a 1 times wavelength mode, and the like.
  • the second wavelength mode of the second frequency band includes, but is not limited to, a 1/4 wavelength mode, a 1/2 wavelength mode, a 3/4 wavelength mode, a 1 times wavelength mode, and the like.
  • first wavelength mode of the second frequency band and the second wavelength mode of the second frequency band are different wavelength modes.
  • the ground stub 114 is provided at the first feeding point 117 of the first radiator 111 , so that the first antenna unit 110 and the reference ground GND form the first sub-antenna 104 and the second sub-antenna 105, the first sub-antenna 104 and the second sub-antenna 105 can both receive and transmit electromagnetic wave signals of the first frequency band under the excitation of the first signal source 113, the first radiation branch 115 and the second radiation branch 116 Under the excitation of the first signal source 113, the first wavelength modes of the first frequency band are respectively resonated, so that the efficiency of the first antenna unit 110 in the first frequency band is enhanced, and the radiation efficiency of the antenna assembly 100 is improved; the second radiator 121 Under the action of the second signal source 123, the first wavelength mode resonating in the second frequency band is excited.
  • the first radiator 111 of the first antenna unit 110 is also multiplexed as the second radiator 121 of the second antenna unit 120, and relatively speaking, the first radiator of the first antenna unit 110 is saved.
  • the stacking space of the radiator 111 and the second radiator 121 of the second antenna unit 120 reduces the overall volume of the antenna assembly 100 .
  • the antenna assembly 100 can cover more frequency bands or cover a wider frequency band width.
  • the antenna assembly 100 When the antenna assembly 100 is installed in the electronic device 1000 , since the electronic device 1000 is provided with the antenna assembly 100 , there is no need to provide additional devices for enhancing efficiency, and there is no need to reserve a large clearance space on the peripheral side of the first radiator 111 . It effectively reduces components and saves space while improving antenna efficiency.
  • the first radiation branch 115 further includes a tuning point 131 located between the first free end 118 and the first feeding point 117 ; or, the second radiation branch 116 also includes a tuning point 131 located between the second free end 119 and the first feed point 117 .
  • the first antenna unit 110 of the antenna assembly 100 further includes a switch circuit 132 .
  • One end of the switch circuit 132 is electrically connected to the tuning point 131 .
  • the other end of the switch circuit 132 is electrically connected to the reference ground GND.
  • the switch circuit 132 is electrically connected to the first radiation branch 115 or the second radiation branch 116 .
  • the number of the switch circuits 132 is multiple, and the multiple switch circuits 132 may all be electrically connected to the first radiation branch 115 , all may be electrically connected to the second radiation branch 116 , or a part of the switch circuits 132 may be electrically connected to the first radiation branch 115 , and the other may be electrically connected to the first radiation branch 115 . A portion is electrically connected to the second radiating branch 116 .
  • the types of devices included in the switch circuit 132 are not limited to antenna switches, resistors, capacitors, inductors, etc., wherein an antenna switch and at least one of the inductors, capacitors, and resistors can form a tuning branch, and the switch circuit 132 includes: A plurality of different tuning branches, thus, the switching circuit 132 can effectively switch the impedance of the switching circuit 132 by turning on different tuning branches, or selecting different tuning branches to be turned on, thereby adjusting the radiation to which the switching circuit 132 is electrically connected.
  • the impedance of the branch is used to adjust the shift of the resonant frequency of the resonant mode generated by the radiation branch.
  • the switching circuit 132 when the switching circuit 132 is capacitive in the operating frequency band, the resonant frequency of the resonant mode affected by the branch moves toward the low frequency direction. When the switching circuit 132 is inductive in the operating frequency band, the resonant frequency of the resonant mode affected by the switching circuit 132 moves toward the high frequency direction.
  • the switches in the switch circuit 132 are switched to make the equivalent inductance values of the first radiation branch 115 and the devices in the switch circuit 132 increase, so that the first radiation branch 115 can resonate in the GSM850 frequency band with high efficiency.
  • the switching circuit 132 realizes the switching of the first radiation branch 115 from covering the GSM 900 frequency band to covering the GSM 850 frequency band, so as to better cover the practical application frequency band.
  • the switch circuit 132 can also realize the switching of the GSM 900 frequency band to other frequency bands, which will not be repeated here.
  • the switch circuit 132 on the first radiation branch 115 and the second radiation branch 116 by selectively setting or not setting the switch circuit 132 on the first radiation branch 115 and the second radiation branch 116, or setting the switch circuit 132 on both but tuning to have different or the same impedance characteristics, so that the first radiation branch 115 and the The second radiating branch 116 has higher transceiving efficiency in the same frequency band (for example, all have higher transceiving efficiency in the GSM 900 frequency band, and are adjusted to have higher transceiving efficiency in the GSM 850 frequency band), or, make the first The radiation branch 115 and the second radiation branch 116 have higher transceiver efficiency in different frequency bands (for example, from the first radiation branch 115 and the second radiation branch 116 both have higher transceiver efficiency in the GSM 900 frequency band, adjust to the first The radiating branch 115 has higher transceiving efficiency in the GSM 900 frequency band, and the second radiating branch 116 has higher transceiving efficiency in the GSM 850 frequency band).
  • the first antenna unit 110 When the first radiating branch 115 and the second radiating branch 116 both resonate in the same frequency band, the first antenna unit 110 has efficiency enhancement characteristics in this frequency band; when the first radiating branch 115 and the second radiation branch 116 are in different frequency bands When resonance is generated, the first antenna unit 110 supports more frequency bands at the same time, and has wider application.
  • the antenna assembly 100 further includes a controller, the switch circuit 132 includes a plurality of switches, and the controller is electrically connected to the switches in the switch circuit 132 to control the switches in the switch circuit 132 to be turned on or off, thereby tuning the switch circuit 132 impedance to tune the resonance of the radiating branch to which the switching circuit 132 is electrically connected.
  • the present application does not specifically limit the position of the antenna assembly 100 relative to the reference ground GND.
  • the reference ground GND includes a first side 151 and a second side 152 which are arranged to intersect.
  • the connection point between the first side 151 and the second side 152 is the corner portion 153 .
  • the reference ground GND is roughly rectangular.
  • the first radiating branch 115 is opposite to and spaced apart from the first side 151
  • at least part of the second radiating branch 116 is opposite to and spaced from the second side 152 .
  • the first radiator 111 has an "L" shape.
  • the setting manner of the first feeding point 117 includes but is not limited to the following situations.
  • the first setting method of the first feeding point 117 is that the first feeding point 117 is opposite to the first side 151 .
  • the second setting method of the first feeding point 117 is that the first feeding point 117 is located at the corner 153 in the extending direction of the first side 151 away from the first feeding point 153 . side of edge 151.
  • a second arrangement of the first feeding point 117 is that the first feeding point 117 is opposite to the second side 152 .
  • a fourth arrangement of the first feeding point 117 is that the first feeding point 117 is located at the corner 153 away from the second side 152 in the extending direction of the second side 152 . side of edge 152.
  • all the first radiators 111 are arranged opposite to the first side 151 , and the first feeding point 117 is arranged opposite to the first side 151 .
  • all the first radiators 111 are arranged opposite to the second side 152 , and the first feeding point 117 is arranged opposite to the second side 152 .
  • the extension direction of the first side 151 of the reference ground GND is defined as the X-axis direction
  • the extension direction of the second side 152 of the reference ground GND is the Y-axis direction
  • the thickness direction of the reference ground GND is the Z-axis direction.
  • the arrow direction is the forward direction
  • the reverse direction of the arrow is the reverse direction.
  • the first feeding point 117 is disposed close to the corner portion 153 with the reference ground GND.
  • the first feeding point 117 is located close to the corner portion 153 of the reference ground GND, and the first radiating branch 115 and the second radiating branch 116 can excite more current along the Y-axis direction and less excited along the X-axis
  • the current in the direction can excite more longitudinal modes and less transverse modes, and better improve the radiation efficiency.
  • the first radiator 111 can excite more current along the Y-axis direction. Better antenna efficiency.
  • the first feeding point 117 is located within a range of ⁇ 10 mm centered on the opposite corner portion 153 . This value is only an example, but is not limited to this value.
  • the first feeding point 117 is located within a range of ⁇ 10 mm centered on the opposite corner portion 153. This value is only an example, but is not limited to this value.
  • FIG. 10 is an equivalent structural diagram of the first radiating branch 115 and the ground branch 114 .
  • FIG. 11 is an equivalent structural diagram of the second radiating branch 116 and the return branch 114 .
  • the ground branch 114 is equivalent to a small inductance in the first frequency band.
  • the ground branch 114 is equivalent to an inductance less than or equal to 5nH in the first frequency band.
  • the grounding stub 114 which is equivalent to a small inductance, is a path for the current signal of the first frequency band, so that the current signal corresponding to the first frequency band can be returned to the ground through the grounding stub 114 .
  • the current signal excited by the first signal source 113 on the first radiation branch 115 and the current signal excited by the first signal source 113 on the second radiation branch 116 can both be returned to the ground through the ground branch 114, thus forming the first Two current paths are formed on the radiator 111 , specifically, one is from the first radiation branch 115 and the ground return branch 114 to ground, and the other is from the second radiation branch 116 and the ground return branch 114 to ground.
  • the above-mentioned two current paths respectively excite the first radiation branch 115 and the second radiation branch 116 to transmit and receive electromagnetic wave signals covering the first frequency band, thereby enabling the first antenna unit 110 to have high transmission and reception efficiency in the first frequency band.
  • the first frequency band is less than 1000 MHz.
  • both the first sub-antenna 104 and the second sub-antenna 105 are used for transmitting and receiving electromagnetic wave signals covering low-frequency signals.
  • the first frequency band includes at least one of the GSM900 frequency band and the GSM850 frequency band.
  • the GSM900 frequency band and the GSM850 frequency band are divided into frequency bands used by different countries in the Global System for Mobile Communications.
  • the antenna assembly 100 When the first frequency band covers the GSM900 frequency band, the antenna assembly 100 has a higher frequency in the GSM900 frequency band.
  • the antenna assembly 100 When the first frequency band covers the GSM850 frequency band, the antenna assembly 100 has a higher frequency in the GSM850 frequency band.
  • the antenna assembly 100 has a higher frequency in both the GSM900 frequency band and the GSM850 frequency band, which will not be exemplified here.
  • FIG. 12 is a mode distribution diagram of the first sub-antenna 104 shown in FIG. 10 .
  • FIG. 13 is a pattern distribution diagram of the second sub-antenna 105 shown in FIG. 11 .
  • the first sub-antenna 104 generates four radiation modes.
  • the second sub-antenna 105 also generates four radiation patterns.
  • the first radiation pattern of the first sub-antenna 104 (corresponding to the curve numbered 1 in FIG.
  • the mode factor of the first sub-antenna 104 around 0.915 GHz is 0.98
  • the mode factor of the second sub-antenna 105 around 0.915 GHz is 0.99.
  • the main radiation patterns of the first sub-antenna 104 and the second sub-antenna 105 in the GSM900 frequency band are the first radiation pattern and the fifth radiation pattern, respectively.
  • the first sub-antenna 104 and the second sub-antenna 105 are both in the GSM900 frequency band. Has high radiation efficiency.
  • the first radiation mode is a first wavelength mode in which the first radiation branch 115 resonates in the first frequency band.
  • the fifth radiation mode is a first wavelength mode in which the second radiation branch 116 resonates in the first frequency band.
  • FIG. 14 is a current distribution diagram of the first sub-antenna 104 shown in FIG. 10 in the first radiation mode.
  • FIG. 15 is a far-field pattern of the first sub-antenna 104 shown in FIG. 10 in the first radiation mode.
  • the current is distributed between the reference ground GND, the ground return branch 114 , the first feeding point 117 to the first A free end 118.
  • the current of the first sub-antenna 104 flows from the reference ground GND, the ground-returning branch 114, and the first feeding point 117 to the first free end 118, and the current forms resonance on the first radiating branch 115, so as to generate the signal shown in FIG. 12 .
  • the first radiation pattern shown. It can be seen from the curved arrows in FIG. 14 that the first radiation mode is the half wavelength mode of the first radiation branch 115 in the first frequency band, and the mode factor at the first radiation mode is relatively high, so the first radiation mode is The first sub-antenna 104 resonates with the main radiation mode at the first frequency band. In other words, the first wavelength mode of the first radiation branch 115 in the first frequency band is a half wavelength mode.
  • the first sub-antenna 104 has high transceiving efficiency at the first frequency band. It can be seen from FIG. 15 that the first sub-antenna 104 has a higher gain at the first frequency band.
  • FIG. 16 is a current distribution diagram of the second sub-antenna 105 shown in FIG. 11 in the fifth radiation mode.
  • FIG. 17 is a far-field pattern of the second sub-antenna 105 shown in FIG. 11 in the fifth radiation mode.
  • the second sub-antenna 105 resonates in the fifth radiation mode (ie, resonates in the first frequency band)
  • the current is distributed over the second free end 119 , the first feeding point 117 , the ground branch 114 to the reference ground GND.
  • the current of the second sub-antenna 105 flows from the reference ground GND, the grounding branch 114 , and the first feeding point 117 to the second free end 119 , and the current forms a resonance on the second radiation branch 116 to generate the fifth radiation model.
  • the fifth radiation mode is the half wavelength mode of the second radiation branch 116 in the first frequency band, and the mode factor at the fifth radiation mode is relatively high, so the fifth radiation mode is
  • the second sub-antenna 105 resonates with the main radiation mode at the first frequency band.
  • the first wavelength mode of the second radiation branch 116 in the first frequency band is a half wavelength mode.
  • the second sub-antenna 105 has higher transceiving efficiency at the first frequency band.
  • the first sub-antenna 104 has a higher gain at the first frequency band.
  • both the first radiation branch 115 and the second radiation branch 116 have high efficiency at the first frequency band
  • both the first radiation branch 115 and the second radiation branch 116 are the first radiation branch 115 and the second radiation branch 116.
  • a part of the antenna unit 110 in other words, both parts of the first antenna unit 110 can have higher efficiency in the first frequency band, thereby enhancing the transceiving efficiency of the first antenna unit 110 in the first frequency band.
  • FIG. 18 is a radiation performance comparison curve of the antenna assembly provided by the embodiment of the present application.
  • the dotted line 1 in FIG. 18 is the system efficiency 1 curve of the antenna assembly 100 provided with the first radiation branch 115 , the second radiation branch 116 and the ground branch 114 .
  • the solid line 1 in FIG. 18 is the radiation efficiency 1 curve of the antenna assembly 100 provided with the first radiation branch 115 , the second radiation branch 116 and the ground branch 114 .
  • the dotted line 2 in FIG. 18 sets the system efficiency 2 curve of the antenna assembly 100 without the second radiating branch 116 and the ground branch 114 .
  • the solid line 2 in FIG. 18 is the radiation efficiency 2 curve of the antenna assembly 100 without the second radiation branch 116 and the ground branch 114 .
  • the antenna assembly 100 provided with the first radiating branch 115, the second radiating branch 116 and the ground branch 114 can significantly enhance the radiation performance of the antenna by using the antenna efficiency enhancement scheme, and the system efficiency is around 0.92 GHz compared to the previous one.
  • the system efficiency of the antenna assembly 100 provided with the second radiating branch 116 and the grounding branch 114 is improved by about 2.5 dB.
  • the antenna assembly 100 makes full use of the corner of the reference ground GND to excite more longitudinal currents.
  • the first radiating branch 115 and the second radiating branch 116 both form an inverted-F antenna. Both the first radiation branch 115 and the second radiation branch 116 resonate in a half wavelength mode of the first frequency band under the excitation of the first signal source 113 , which increases the radiation performance of the antenna assembly 100 during operation.
  • the above is the specific structure of the first antenna unit 110 , and by arranging the first radiation branch 115 , the second radiation branch 116 and the ground branch 114 on the first antenna unit 110 , the first radiation branch 115 and the second The radiating branches 116 all resonate in the same mode, increasing the radiation efficiency of the modes.
  • the second radiator 121 has a third free end 124 and a ground end 125 , and a second feeding point 126 disposed between the third free end 124 and the ground end 125 .
  • the coupling gap 127 exists between the third free end 124 and the end of the first radiator 111 .
  • the ground terminal 125 is used for electrical connection to the reference ground GND.
  • One end of the second matching circuit 122 is electrically connected to the second feeding point 126 .
  • the second signal source 123 is electrically connected to the other end of the second matching circuit 122 .
  • one end of the second antenna unit 120 is the third free end 124, the other end is the ground end 125, and the second feeding point 126 is located between the third free end 124 and the ground end 125, so the first The two antenna units 120 are inverted-F antennas.
  • the length of the second radiator 121 is about a quarter of the free space wavelength of the working frequency band of the second antenna unit 120, and the second antenna unit 120 resonates in a fundamental mode state, wherein the fundamental mode state is also 1/4 wavelength of the antenna mode, the conversion efficiency of the antenna's reception or transmission is higher at this time.
  • the first wavelength mode of the second frequency band is a 1/4 wavelength mode of the second frequency band.
  • the first radiator 111 serves as a parasitic branch of the second antenna unit 120 , and its length is approximately one wavelength of the free space wavelength of the operating frequency band of the second antenna unit 120 .
  • the second wavelength mode of the second frequency band is a double wavelength mode of the second frequency band.
  • a coupling gap 127 exists between the third free end 124 and the end of the first radiator 111 .
  • a coupling slot 127 exists between the third free end 124 and the first free end 118 of the first radiator 111, and the switch circuit 132 of the first antenna unit 110 is electrically connected to the first Radiation branch 115; or, a coupling slot 127 exists between the third free end 124 and the second free end 119 of the first radiator 111, and the switch circuit 132 of the first antenna unit 110 is electrically connected to the The second radiating branch 116 .
  • the second radiator 121 can be disposed on either side of the first radiator 111 , and the switch circuit 132 can be disposed on the side close to the second radiator 121 , so that the switch circuit 132 can tune the operation of the first antenna unit 110 The frequency band and the working frequency band of the second antenna unit 120 .
  • the second radiator 121 generates at least one first resonance mode a under the excitation of the second signal source 123 .
  • the first resonance mode a is a first wavelength mode in which the second radiator 121 resonates in the second frequency band.
  • the first radiator 111 generates at least one second resonance mode b under the excitation of the second signal source 123 .
  • the second resonance mode b is a second wavelength mode in which the second radiator 121 resonates in the second frequency band.
  • the resonant mode is characterized in that the electromagnetic wave transmission efficiency of the antenna assembly 100 is high at the resonant frequency of the resonant mode.
  • the second radiator 121 has high transceiving efficiency at a certain resonant frequency under the excitation of the second signal source 123, and can further support the transceiving of electromagnetic wave signals in a frequency band near the resonant frequency.
  • a resonance mode corresponds to a valley curve in FIG. 20
  • a resonance mode has a resonance frequency
  • the resonance frequency is the frequency corresponding to the valley.
  • a resonance mode has an effective frequency band (ie, a frequency band supported by the resonance mode), for example, a frequency band formed by a combination of frequencies corresponding to when the absolute value of the return loss is less than or equal to a certain value.
  • the frequency band supported by the first resonance mode a and the frequency band supported by the second resonance mode b are continuous or discontinuous.
  • the multiple frequency bands are continuous means that two adjacent frequency bands supported by the radiator at least partially overlap.
  • the discontinuity of multiple frequency bands means that there is no overlap between two adjacent frequency bands supported by the radiator.
  • the frequency band supported by the first resonant mode a and the frequency band supported by the second resonant mode b are continuous and form a wider bandwidth, so as to improve the data when the antenna assembly 100 is applied to the electronic device 1000 Throughput and data transmission rate, the communication quality of the electronic device 1000 is improved.
  • the bandwidth of the antenna assembly 100 is wide, there is no need for an adjustable device to switch between different frequency bands, thereby eliminating the need for an adjustable device, saving costs, and realizing a simple structure of the antenna assembly 100 .
  • the first radiator 111 and the second radiator 121 are designed to be capacitively coupled to generate multiple resonance modes, so that the antenna assembly 100 can support a wider bandwidth, thereby improving the When the antenna assembly 100 is applied to the electronic device 1000 , the throughput and data transmission rate can be improved and the communication quality of the electronic device 1000 can be improved.
  • the second radiator 121 when the first radiator 111 and the second radiator 121 are not set to be coupled, the second radiator 121 generates a resonance between 1.5-2.5 GHz under the excitation of the second signal source 123 .
  • the first radiator 111 and the second radiator 121 After the first radiator 111 and the second radiator 121 are set to be coupled, the first radiator 111 and the second radiator 121 generate two resonances between 1.5-2.5 GHz under the excitation of the second signal source 123,
  • the resonance frequency of the first resonance mode a is about 1.8 GHz
  • the resonance frequency of the second resonance mode b is about 2.3 GHz.
  • the second radiator 121 is generated under the excitation of the second signal source 123
  • the first resonant mode a also enables the first radiator 111 to generate a second resonant mode b under the excitation of the second signal source 123 to increase the number of resonant modes and further increase the bandwidth of the frequency band covered by the second antenna unit 120 , thereby increasing the bandwidth of the signal transmitted and received by the antenna assembly 100 .
  • the first radiator 111 of the first antenna unit 110 can also be used by the first antenna unit 110 to generate a resonance mode, thus widening the frequency band of the antenna assembly 100; for the uncoupled antenna assembly 100, to achieve the above bandwidth, A longer second radiator 121 needs to be provided, which will make the stack size of the entire antenna assembly 100 larger. In an electronic device 1000 with extremely limited space, a larger antenna assembly 100 is not conducive to miniaturization of the electronic device 1000 .
  • the first resonance mode a and the second resonance mode b are used to support the second frequency band.
  • the second frequency band is a mid-to-high frequency band, wherein the mid-to-high frequency band is 1GHz-3GHz. Further, the second frequency band covers 1.85GHz-2.35GHz.
  • the frequency band covered by the second frequency band includes but is not limited to at least one of the B3 frequency band, the B1 frequency band, the B40 frequency band, and the B41 frequency band.
  • the length of the second radiator 121 is about a quarter of the free space wavelength of the working frequency band of the second antenna unit 120 , and the second radiator 121 resonates under the excitation of the second signal source 123 . In the 1/4 wavelength mode of the second frequency band, the second radiator 121 has higher efficiency.
  • the first wavelength mode of the second frequency band is a 1/4 wavelength mode of the second frequency band.
  • the length of the first radiator 111 is approximately one wavelength of the free space wavelength of the operating frequency band of the second antenna unit 120
  • the first radiator 111 resonates in the second frequency band under the excitation of the second signal source 123 the one-wavelength mode.
  • the second wavelength mode of the second frequency band is a double wavelength mode of the second frequency band.
  • the antenna assembly 100 utilizes the common aperture technology, and in addition to the quarter-wavelength radiation mode of its own radiator, the second antenna unit 120 (eg, a mid-to-high frequency antenna) also utilizes the first antenna unit 110 (eg, a mid-to-high frequency antenna) Low-frequency antenna) radiator's integral wavelength radiation mode.
  • the dual radiation mode the performance of the medium and high frequency antenna is greatly improved compared with the single radiation mode.
  • the first antenna unit 110 integrates two inverted-F antennas, and makes the two inverted-F antennas resonate in the first radiation mode, so that the first antenna unit 110 has higher efficiency in the first radiation mode,
  • the switching circuit 132 provided on the first radiator 111 is used to tune the working frequency band of the first antenna unit 110, so that the antenna assembly 100 can operate in many frequency bands of the low frequency band.
  • the transmission and reception of the first frequency band can also be used for the transmission and reception of the second frequency band.
  • the second frequency band can cover medium and high frequency bands such as the B3 frequency band, the B1 frequency band, the B40 frequency band, and the B41 frequency band, so as to improve the utilization rate of the first radiator 111.
  • Some first radiators 111 can reduce the superimposed size of the radiators 103 of the antenna assembly 100 while increasing the bandwidth of the second frequency band, thereby reducing the overall size of the antenna assembly 100 .
  • the current distribution corresponding to the first resonance mode a includes but is not limited to the first current distribution R1: the current distribution of the second radiator 121 when the second radiator 121 resonates in the second frequency band is distributed from the ground terminal 125 to the
  • the third free end 124 specifically includes but is not limited to flowing from the ground end 125 to the third free end 124 .
  • the above current distribution generates the first resonance mode a, that is, the first current distribution on the second radiator 121 corresponds to the 1/4 wavelength mode of the second radiator 121 in the second frequency band.
  • the current distribution corresponding to the second resonance mode b includes but is not limited to the second current distribution R2: the current when the first radiator 111 resonates in the second frequency band includes the first sub-current R21 and the second sub-current sub-current R22.
  • the first radiator 111 also has a meeting point 133, which is located between the first free end 118 and the first feeding point 117, or between the second free end 119 and the second free end 119.
  • the first sub-current R21 is distributed between the second free end 119 and the junction 133, and the first sub-current R21
  • Two sub-currents R22 are distributed between the first free end 118 and the junction 133 , and the first sub-currents R21 and the second sub-currents R22 flow in opposite directions.
  • the first sub-current R21 flows from the second free end 119 to the junction point 133
  • the second sub-current R22 flows from the first free end 118 to the junction point 133
  • the intersection point 133 includes, but is not limited to, the middle position in the extended length direction of the first radiator 111 .
  • the above current distribution generates the second resonance mode b, that is, the second current distribution on the first radiator 111 corresponds to a mode of one wavelength of the first radiator 111 in the second frequency band.
  • FIG. 21 shows the current distribution of the second antenna unit 120 in the second frequency band, the arrows represent the current flow, and the arcs represent the current amplitude distribution. It can be seen that on the second radiator 121, the current is distributed according to a quarter wavelength, and on the first radiator 111, the current is distributed according to a double wavelength.
  • the second antenna unit 120 of the antenna assembly 100 resonating in the LTE B1 state As an example, the second antenna unit 120 with the second radiator 121 alone and the second radiator 121 including the second radiator 121 and the first radiator 111 are shown in FIG. 20 .
  • the reflection coefficient is less than -5dB in 1.85GHz-2.35GHz.
  • the absolute value of the return loss curve is greater than or equal to 5 dB as a reference value with high electromagnetic wave transceiving efficiency. Of course, in other embodiments, it may also be 6dB, 7dB, and so on.
  • the second frequency band covers 1.85GHz-2.35GHz.
  • the frequency band covered by the second frequency band includes but is not limited to at least one of the B3 frequency band, the B1 frequency band, the B40 frequency band, and the B41 frequency band.
  • FIG. 22 shows the comparison of the radiation performance of the second antenna unit 120 with the second radiator 121 alone and the second antenna unit 120 including the second radiator 121 and the first radiator 111. It can be found that in the second antenna unit When 120 resonates in the B1 frequency band, the second antenna unit 120 including the second radiator 121 and the first radiator 111 has a higher and wider radiation bandwidth, and the peak efficiency is higher than that of the second antenna with only the second radiator 121 The efficiency of the unit 120 is 1 dB. In the B1 frequency band, the average system efficiency of the second antenna unit 120 having the second radiator 121 and the first radiator 111 is -3dB, and the radiation characteristics are excellent.
  • the effective efficiency bandwidth of the antenna is not wide enough, for example, it is difficult to cover B3+B40 at the same time, which leads to the need to set additional switches, etc., resulting in poor signal coverage or insufficient miniaturization of the antenna in some frequency bands.
  • the above frequency bands are only examples, and cannot be used as limitations on the frequency bands that can be radiated by this application.
  • the first radiator 111 and the second radiator 121 are designed to be coupled to each other, so that the structure of the antenna assembly 100 is miniaturized and multiple resonance modes are generated, and the multiple resonance modes can simultaneously cover the first radiator 111 and the second radiator 121.
  • Two frequency bands for example, the second frequency band includes 1.85-2.35GHz, so that the antenna assembly 100 can support a wider bandwidth, thereby improving the throughput and data transmission rate when the antenna assembly 100 is applied to the electronic device 1000.
  • the antenna assembly 100 When the antenna assembly 100 is applied In the above-mentioned middle and high frequency bands (eg 1710MHz-2690MHz), it can support B3+B40 at the same time, so the antenna assembly 100 at least has simple structure, miniaturization, and high efficiency and data transmission rate in the application frequency band of B3+B40.
  • the frequency bands listed above may be mid-to-high frequency frequency bands applied by multiple operators.
  • the antenna assembly 100 provided by the present application can simultaneously support any one or a combination of the above frequency bands, so that the antenna assembly 100 provided by the present application can support multiple frequency bands.
  • the present application designs a first antenna unit 110 (eg a low frequency antenna) and a second antenna unit 120 (eg a medium and high frequency antenna) with excellent performance, and proposes a set of high-performance terminal antenna solutions .
  • This solution greatly improves the radiation performance of the first antenna unit 110 (eg, a low-frequency antenna) without adding extra space and clearance.
  • the second antenna unit 120 (for example, a mid-to-high frequency antenna) uses the high-order mode of the metal branch of the first antenna unit 110 (for example, a low-frequency antenna) in a common aperture on the basis of using its own radiation branches to form common radiation at medium and high frequencies, which greatly increases the Improve the radiation performance of medium and high frequency antennas.
  • the present application does not specifically limit the specific position where the radiator 103 of the antenna assembly 100 is arranged on the electronic device 1000 .
  • the antenna assembly 100 is provided in the casing 200 ; or, at least part of the antenna assembly 100 is integrated with the casing 200 . Specifically, the following embodiments are used for illustration.
  • the casing 200 includes a frame 210 and a back cover 220 .
  • a middle plate 230 is formed in the frame 210 by injection molding, and a plurality of installation grooves for installing various electronic devices are formed on the middle plate 230 .
  • the reference ground GND may be located on the midplane 230 .
  • the middle plate 230 and the frame 210 together become the middle frame 240 of the electronic device 1000 .
  • the middle frame 240 and the back cover 220 are closed, a receiving space is formed on both sides of the middle frame 240 .
  • the frame 210 includes a plurality of side frames connected end to end. among the multiple side frames of the frame 210 . Two adjacent side borders intersect. For example, two adjacent side borders are vertical.
  • the plurality of side frames include a top frame 211 and a bottom frame 212 disposed opposite to each other, and a first side frame 213 and a second side frame 214 connected between the top frame 211 and the bottom frame 212 .
  • the connection between two adjacent side frames is the corner 125 .
  • the top frame 211 and the bottom frame 212 are parallel and equal.
  • the first side frame 213 and the second side frame 214 are parallel and equal.
  • the length of the first side frame 213 is greater than the length of the top frame 211 .
  • the present application does not specifically limit the arrangement of the antenna assembly 100 .
  • the first radiator 111 of the antenna assembly 100 is provided at the bottom frame 212, the second side frame 214, and the corner 125 between the bottom frame 212 and the second side frame 214, the first radiator
  • the bottom frame 212 of the branch 115 is close to the second side frame 214
  • the second radiating branch 116 is disposed on the second side frame 214 near the bottom frame 212
  • the second radiator 121 is disposed on the bottom frame 212 or on the second side frame 214 .
  • first radiator 111 can also be disposed on the top frame 211, the second side frame 214, and the corner 125 between the top frame 211 and the second side frame 214, and the second can be disposed on the top frame 211 or the second side Border 214.
  • first radiator 111 may also be disposed at other corners 125 , which will not be exemplified here.
  • the first radiating branches 115 and the first radiating branches 115 on the first radiator 111 respectively form electric fields with the two sides of the reference ground GND, so that both the first radiating branch 115 and the second radiating branch 116 can form an inverted-F antenna with the same structure, so that the first radiating branch 115 and the second radiating
  • the branches 116 all generate the same radiation pattern in the first frequency band, so as to support the transmission and reception of signals in the first frequency band, thereby improving the transmission and reception efficiency of the antenna assembly 100 in the first frequency band.
  • the radiator 103 of the antenna assembly 100 is integrated with the frame 210 .
  • the material of the frame 210 is a metal material.
  • the first radiator 111 , the second radiator 121 and the frame 210 are all integrated into one body.
  • the above-mentioned radiator 103 may also be integrated with the back cover 220 .
  • the first radiator 111 and the second radiator 121 are integrated into a part of the housing 200 . specific.
  • the reference ground GND of the antenna assembly 100 , the first signal source 113 , the second signal source 123 , the matching circuit, the switch circuit 132 and the like are all disposed on the circuit board 400 .
  • the first radiator 111 and the second radiator 121 are formed on the surface of the frame 210 .
  • the basic forms of the first radiator 111 and the second radiator 121 include, but are not limited to, the patch radiator 103 , laser direct structuring (LDS), print direct structuring (PDS), etc.
  • the process is formed on the inner surface of the frame 210 .
  • the material of the frame 210 may be a non-conductive material.
  • the above-mentioned radiator 103 may also be provided on the rear cover 220 .
  • the first radiator 111 and the second radiator 121 are provided on the flexible circuit board 400 .
  • the flexible circuit board 400 is attached to the surface of the frame 210 .
  • the first radiator 111 and the second radiator 121 can be integrated on the flexible circuit board 400 , and the flexible circuit board 400 is attached to the inner surface of the middle frame 240 by adhesive or the like.
  • the material of the frame 210 may be a non-conductive material.
  • the above-mentioned radiator 103 can also be disposed on the inner surface of the back cover 220 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线组件及电子设备,第一天线单元包括第一辐射体、回地枝节及第一信号源;第一辐射体包括第一辐射枝节和第二辐射枝节,第一辐射枝节与第二辐射枝节的连接处为第一馈电点;回地枝节的一端电连接第一馈电点,回地枝节的另一端用于电连接至参考地,第一信号源电连接第一馈电点,用于激励第一辐射枝节和第二辐射枝节分别谐振于第一频段的第一波长模式;第二天线单元包括第二辐射体、第二信号源及第一辐射体,第二辐射体与第一辐射体之间存在耦合缝隙,第二信号源电连接第二辐射体,第二信号源用于激励第二辐射体谐振于第二频段的第一波长模式,并通过耦合缝隙激励第一辐射体谐振于第二频段的第二波长模式。本申请能提升天线效率。

Description

天线组件及电子设备
本申请要求于2021年03月30日提交中国专利局、申请号为2021103439701、申请名称为“天线组件及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种天线组件及电子设备。
背景技术
随着电子设备的功能越来越多,电子设备内部的电子器件的数量和种类也越来越多,而人们对于电子设备的便携性要求电子设备的整体尺寸轻薄化,故电子设备内部留给天线的空间越来越局限,如何对天线结构进行改进,产生更高的天线效率,成为需要解决的技术问题。
发明内容
本申请提供了一种提升天线效率的天线组件及电子设备。
本申请提供一种天线组件,包括第一天线单元,所述第一天线单元包括第一辐射体、回地枝节及第一信号源;所述第一辐射体包括互连为一体的第一辐射枝节和第二辐射枝节,所述第一辐射枝节与所述第二辐射枝节的连接处为第一馈电点;所述回地枝节的一端电连接所述第一馈电点,所述回地枝节的另一端用于电连接至参考地,所述第一信号源电连接所述第一馈电点,所述第一信号源用于激励所述第一辐射枝节和所述第二辐射枝节分别谐振于第一频段的第一波长模式;及
第二天线单元,所述第二天线单元包括第二辐射体、第二信号源及所述第一辐射体,所述第二辐射体与所述第一辐射体之间存在耦合缝隙,所述第二信号源电连接所述第二辐射体,所述第二信号源用于激励所述第二辐射体谐振于第二频段的第一波长模式,并通过所述耦合缝隙激励所述第一辐射体谐振于所述第二频段的第二波长模式。
本申请提供一种电子设备,包括壳体及所述的天线组件,所述天线组件的至少部分设于所述壳体内,或,所述天线组件的至少部分设于所述壳体外,或者,所述天线组件的至少部分与所述壳体集成为一体。
本申请提供的天线组件及电子设备,通过在第一辐射体的馈电点处设置回地枝节,以使所述第一辐射枝节和第二辐射枝节在第一信号源的激励下分别谐振于第一频段的第一波长模式,如此,第一天线单元在第一频段具有较高的效率,提高天线组件的辐射性能;而且,第二辐射体在第二信号源的作用下谐振于第二频段的第一波长模式,第一辐射体在第二信号源、第二辐射体及耦合缝隙激励谐振于所述第二频段的第二波长模式,如此,实现第一天线单元的辐射体还作为第二天线单元的辐射体的复用,相对而言,节省了第一天线单元的第一辐射体和第二天线单元的第二辐射体的堆叠空间,减小天线组件的整体体积,且天线组件能够覆盖的频段较多或可覆盖的频段宽度较宽;当天线组件设于电子设备时,电子设备由于设有该天线组件,无需额外设置增强效率的器件,可有效地在提升天线效率的同时减少器件及节省空间。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1提供的电子设备的结构拆分示意图;
图3是图2提供的电子设备的局部结构示意图;
图4是图3提供的一种天线组件的结构示意图;
图5是图4提供的第一天线单元的结构示意图;
图6是图5中第一子天线的结构示意图;
图7是图5中的第二子天线的结构示意图;
图8是图5中的第一天线单元设有开关电路的结构示意图;
图9a是图8所示的天线组件中第一馈电点的第一种设置位置的示意图;
图9b是图8所示的天线组件中第一馈电点的第二种设置位置的示意图;
图9c是图8所示的天线组件中第一馈电点的第三种设置位置的示意图;
图9d是图8所示的天线组件中第一馈电点的第四种设置位置的示意图;
图9e是图8所示的天线组件中第一馈电点的第五种设置位置的示意图;
图9f是图8所示的天线组件中第一馈电点的第六种设置位置的示意图;
图10是图9a所示的第一子天线与参考地的结构示意图;
图11是图9a所示的第二子天线与参考地的结构示意图;
图12是图10所示的第一子天线的模式分布图;
图13是图11所示的第二子天线的模式分布图;
图14是图10所示的第一子天线在第一辐射模式的电流分布图;
图15是图10所示的第一子天线在第一辐射模式的远场方向图;
图16是图11所示的第二子天线在第五辐射模式的电流分布图;
图17是图11所示的第二子天线在第五辐射模式的远场方向图;
图18是本申请实施例提供的天线组件的辐射性能比较曲线;
图19是图4所示的天线组件与参考地的结构示意图;
图20是图19所示的天线组件的S参数曲线图;
图21是图19所示的天线组件在第二信号源的激励下的电流分布图;
图22是图19所示的天线组件的效率曲线图;
图23是图21所示的天线组件与边框的第一种安装方式的结构示意图;
图24是图21所示的天线组件与边框的第二种安装方式的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。此外,在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
随着智能手机等电子设备的发展,电子设备不仅作为通信设备,此外还作为具有丰富功能(例如,通话、视频、摄像等等)的多媒体设备。随着电子设备内部的电子器件增多,及人们因对电子设备的便携性的追求,所以电子设备中预留给天线的空间越来越小。例如,目前在5G移动通信中,由于电子设备的全面屏设置,留给天线的净空空间更小,这对于天线的 接收电磁波和发射电磁波的效率影响很大,目前研究方向主要是减少天线周围器件(例如音腔,USB数据口,摄像头等)对于天线性能影响。但是,随着手机内部留给天线的空间越来越局限,只研究这一方向是远远不够的。因此,如何对天线结构进行改进,提升天线效率,成为需要解决的技术问题。
本申请实施例提供的一种天线组件,通过对天线结构改进,提升天线效率(天线效率指天线组件对于电磁波的接收转换效率和发射转换效率,后续不再赘述),可有效地应用于目前的功能多且全面屏的电子设备。本申请对于天线组件所应用的电子设备的产品类型不做具体的限定,电子设备包括不限于为电话、电视、平板电脑、智能手机、照相机、个人计算机、笔记本电脑、车载设备、耳机、手表、可穿戴设备、基站、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备。本申请中以电子设备为智能手机为例,其他的设备可参考本申请中的具体描述。
请参阅图1及图2,图1为本申请实施例提供的一种电子设备1000的结构示意图。图2是图1中的电子设备1000的结构拆分示意图。电子设备1000包括天线组件100,以及相互盖合连接的壳体200及显示屏300。显示屏300与壳体200之间形成收容空间。天线组件100设于收容空间内或外。电子设备1000还包括设于收容空间内的电路板400、电池500、摄像头、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组等等能够实现手机的基本功能的器件,在本实施例中不再赘述。
本申请对于电子设备1000的形态不做限定。具体的,电子设备1000可为不可形变、可伸缩、可弯曲、可弯折等状态。可选的,天线组件100设于电子设备1000的可伸缩组件上。换言之,天线组件100的至少部分还能够随着电子设备1000的可伸缩组件伸出电子设备1000之外,及随着可伸缩组件缩回至电子设备1000内,以在伸出电子设备1000时增加辐射体的净空空间,进一步地提升天线效率,及在缩回时增加电子设备1000的便携性;或者,天线组件100的整体长度随着电子设备1000的可伸缩组件的伸长而伸长,可选的,天线组件100的长度伸长包括但不限于辐射体为多段可拼接成较长长度;还可以是辐射体与射频芯片、其他电子器件之间的距离伸长,以增加天线组件100的净空空间,进一步地提升天线效率。
可选的,天线组件100设于电子设备1000的收容空间内、或天线组件100的部分与壳体200集成为一体、或天线组件100的部分设于壳体200外。可以理解地,前面介绍的电子设备1000仅为天线组件100所应用的电子设备1000的一种描述,电子设备1000的具体结构不应当理解为对本申请提供的天线组件100的限定。
请参阅图3,本申请所述的天线组件100至少包括射频收发芯片101、匹配模块102及辐射体103。其中,射频收发芯片101可设于电路板400上,并电连接电池500或电源管理芯片,以使电池500为射频收发芯片101供电。匹配模块102可与射频收发芯片101一起设于电路板400上,还可以与辐射体103一起设于另一电路板400上。辐射体103可设于收容空间内的支撑件上或设于壳体200的表面或与壳体200集成为一体,在后续进行具体的举例说明。
以下结合附图对于本申请提供的天线组件100的结构进行具体的说明,当然,本申请提供的天线组件100包括但不限于以下的实施方式。
请参阅图4,天线组件100至少包括第一天线单元110。本实施例中,天线组件100至少包括第一天线单元110及第二天线单元120。
请参阅图5,天线组件100可仅仅包括第一天线单元110。第一天线单元110至少包括第一辐射体111、第一信号源113及回地枝节114。
请参阅图5,第一辐射体111包括互连为一体的第一辐射枝节115和第二辐射枝节116。所述第一辐射枝节115与所述第二辐射枝节116的连接处为第一馈电点117。
请参阅图5,所述第一辐射枝节115具有远离所述第一馈电点117的第一自由端118。所述第二辐射枝节116具有远离所述第一馈电点117的第二自由端119。换言之,所述第一辐射体111具有相对设置的第一自由端118与第二自由端119,以及设于所述第一自由端118与第二自由端119之间的第一馈电点117。第一馈电点117与所述第一自由端118之间的辐射体103为第一辐射枝节115,所述第一馈电点117与所述第二自由端119之间的辐射体103之间为第二辐射枝节116。本申请对于第一馈电点117在第一辐射体111上的具体位置不做限定。换言之,第一辐射枝节115和第二辐射枝节116的长度可相等、也可以不等,本申请对此不做具体的限定。
可选的,第一辐射体111的形状呈条形,其延伸方向可呈直线、曲线、弯折线等。当第一辐射体111呈直线条形时,第一自由端118和第二自由端119为相对设置的两个末端。当第一辐射体111呈弯折条形时,第一自由端118和第二自由端119为沿其延伸方向的两个末端。在其他实施方式中,第一辐射体111还可以呈条形曲线状、片状、涂层状、杆状、薄膜等等。上述的第一辐射体111在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
请参阅图5,第一信号源113电连接第一馈电点117,用于经第一馈电点117为第一辐射体111提供射频信号(电磁能量)。
可选的,请参阅图5,天线组件100的第一天线单元110还包括第一匹配电路112,第一匹配电路112的一端电连接第一馈电点117。第一信号源113电连接第一匹配电路112的另一端。第一信号源113为用于发送射频信号(电磁能量)的射频收发芯片101或电连接用于发送射频信号(电磁能量)的射频收发芯片101的馈电部。所述第一信号源113用于将电磁能量通过第一匹配电路112馈到第一辐射枝节115和第二辐射枝节116上。可选的,第一匹配电路112包括开关-电容-电感-电阻等形成的多条选择支路、电容-电感-电阻等形成的调谐电路、可变电容中的至少一者。第一匹配电路112用于调谐馈路(第一信号源113至第一辐射体111)上的阻抗,提高射频信号的转换成电磁波信号的转化效率,及提高接收的电磁波信号转换成射频信号的转化效率。
可选的,回地枝节114的一端电连接所述第一馈电点117,回地枝节114的另一端用于电连接至参考地GND。可选的,天线组件100具有参考地GND。该参考地GND的具体形式包括但不限于金属板件、成型于柔性电路板400内部的金属层等。当天线组件100设于电子设备1000内时,参考地GND为电子设备1000的中框中的金属合金板。回地枝节114的另一端通过接地弹片、焊锡、导电粘胶等导电件电连接参考地GND。当然,在其他实施方式中,天线组件100不包括参考地GND,天线组件100的辐射体103通过直接电连接或通过中间的导电连接件电连接电子设备1000的参考地GND或电连接电子设备1000内的电子器件的参考地GND。
可选的,请参阅图6,所述回地枝节114、所述第一信号源113与所述第一辐射枝节115形成至少部分的第一子天线104。具体的,所述回地枝节114、第一信号源113、第一辐射枝节115及参考地GND形成第一子天线104。
可选的,请参阅图7,所述回地枝节114、所述第一信号源113与所述第二辐射枝节116形成至少部分的第二子天线105。具体的,所述回地枝节114、第一信号源113、第二辐射枝节116及参考地GND形成第二子天线105。
如此,第一天线单元110用于形成相互独立的第一子天线104和第二子天线105。其中,第一子天线104和第二子天线105的辐射体不同。具体为,第一子天线104的辐射体为第一辐射枝节115形成的辐射枝节,而第二子天线105的辐射体为第二辐射枝节116形成的辐射枝节。第一子天线104和第二子天线105共用第一信号源113、回地枝节114及参考地GND。
所述第一信号源113用于激励所述第一辐射枝节115和所述第二辐射枝节116分别谐振于第一频段的第一波长模式。本申请对于第一频段的范围不做具体的限定,可选的,第一频段的频率小于或等于1GHz。第一波长模式包括但不限于1/4波长模式、1/2波长模式、3/4波长模式、1倍波长模式等等。
具体而言,所述第一子天线104在所述第一信号源113的激励下收发第一目标频段的电磁波信号,所述第二子天线105在所述第一信号源113的激励下收发第二目标频段的电磁波信号,所述第一目标频段与所述第二目标频段至少部分重合。可以理解的,本申请所述的收发某一频段的电磁波信号,是指天线在该频段具有较好的效率。例如,基于特征模分析,第一天线单元110在该频段的模式因子大于或等于x,例如,x为0.9,0.95等等,说明第一天线单元110在该频段具有较高的天线效率。当然,以上的数值仅仅为举例,并不限于此。
可选的,第一目标频段与第二目标频段为相同范围的频段,例如,第一目标频段与第二目标频段皆为600MHz-1000MHz(以上数值进行为举例,并不做为限定),如此,第一子天线104和第二子天线105皆能够收发第一目标频段(或第二目标频段)的电磁波信号,对于第一天线单元110而言,由于第一天线单元110有两条电流路径皆能够收发第一目标频段(或第二目标频段)的电磁波信号,故第一天线单元110在第一目标频段(或第二目标频段)的辐射效率加强。
可选的,第一目标频段与第二目标频段为部分范围相同的频段,例如,第一目标频段为500MHz-1000MHz(以上数值进行为举例,并不做为限定),第二目标频段皆为600MHz-1100MHz(以上数值进行为举例,并不做为限定)。如此,第一子天线104和第二子天线105皆能够收发600MHz-1000MHz,对于第一天线单元110而言,由于第一天线单元110有两条电流路径皆能够收发600MHz-1000MHz的电磁波信号,故第一天线单元110在600MHz-1000MHz的辐射效率加强。
无论第一目标频段与第二目标频段为部分相同或全部相同,本实施例将第一目标频段与第二目标频段相重合的频段定义为第一频段。换言之,所述第一信号源113用于激励所述第一辐射枝节115和所述第二辐射枝节116分别谐振于第一频段的第一波长模式。所述第一子天线104与所述第二子天线105皆用于在所述第一信号源113的激励下收发覆盖第一频段的电磁波信号。对于第一天线单元110而言,由于第一天线单元110有两条电流路径(即第一子天线104和第二子天线105)皆能够收发第一频段的电磁波信号,故第一天线单元110在第一频段的辐射效率加强。当第一频段为低频段时,第一天线单元110谐振于低频段时的辐射效率加强,故第一天线单元110为低频天线,且具有较高的辐射效率。
本申请对于天线组件100的结构进行改进,通过在第一馈电点117处延长第一辐射枝节115,以形成第二辐射枝节116,并在第一馈电点117处设置回地枝节114,其中,第一辐射枝节115及回地枝节114能够在第一信号源113的激励下与参考地GND之间形成电流分布,以收发至少覆盖第一频段的电磁波信号;第二辐射枝节116及回地枝节114在第一信号源113的激励下与参考地GND之间形成电流分布,以收发至少覆盖第一频段的电磁波信号,如此,在第一天线单元110可用于形成第一子天线104和第二子天线105,第一子天线104和第二子天线105在第一信号源113的激励下产生两条相互独立的电流分布,每个电流分布都能够 激励起至少覆盖第一频段的电磁波信号,这两个电流分布中所激励起的第一频段的电磁波信号使得第一频段的效率增强,以提高第一天线单元110谐振于第一频段的辐射效率。
本申请对于第一频段的大小不做具体的限定。例如,按照收发频段划分,第一频段可以为低频段、中高频段、超高频段等中的至少一者。其中,低频频段(Lower Band,LB)是指频率小于1000MHz的频段。其中,低频频段包括但不限于GSM 900(GSM900:890MHz-915MHz;935MHz-960MHz)、GSM 850(GSM850:824MHz-849MHz;869MHz-894MHz)等频段中的至少一者。中高频段是指频段为中高频段(Middle High Band,MHB)。其中,中高频段为1000MHz-3000MHz。中高频段包括但不限于为LTE B3(1710MHz-1785MHz;1805MHz-1880MHz)、LTE B1(1920MHz-1980MHz;2110MHz-2170MHz)、LTE B40(2330MHz-2400MHz)、LTE B41(2496MHz-2690MHz)等频段中的至少一者。超高频段为3000MHz-6000MHz。以上的低、中高、超高频段是一种示例性的划分方法,但不限于此。
可选的,请参阅图4,所述第二天线单元120包括第二辐射体121、第二匹配电路122、第二信号源123以及第一辐射体111。第二辐射体121与第一辐射体111之间存在耦合缝隙127。所述第一辐射体111与所述第二辐射体121之间通过所述耦合缝隙127耦合。所述第二匹配电路122的一端电连接所述第二辐射体121。所述第二信号源123电连接所述第二匹配电路122的另一端。
请参阅图4,第一辐射体111与第二辐射体121可沿直线排列或大致沿直线排列(即在设计过程中具有较小的公差)。当然,在其他实施方式中,第一辐射体111与第二辐射体121还可在延伸方向上错开设置,以为其他器件提供避让空间等。
请参阅图4,所述第一辐射体111的端部与所述第二辐射体121的端部通过耦合缝隙127相对且间隔设置。可选的,耦合缝隙127为第一辐射体111与第二辐射体121之间的断缝,例如,耦合缝隙127的宽度为0.5-2mm,但不限于此尺寸。第一辐射体111与第二辐射体121能够通过耦合缝隙127产生容性耦合。在其中一个角度中,第一辐射体111和第二辐射体121可看作为辐射体103被耦合缝隙127隔断而形成的两个部分。
第一辐射体111与第二辐射体121通过耦合缝隙127进行容性耦合。其中,“容性耦合”是指,第一辐射体111与第二辐射体121之间产生电场,第一辐射体111的信号能够通过电场传递至第二辐射体121,第二辐射体121的信号能够通过电场传递至第一辐射体111,以使第一辐射体111与第二辐射体121即使在断开的状态下也能够实现电信号导通。本实施例中,第二辐射体121能够在第二信号源123的激励下产生电场,该电场能量能够通过耦合缝隙127传递至第一辐射体111,进而使得第一辐射体111产生激励电流。换言之,第一辐射体111也可以称为第二辐射体121的寄生辐射体。
所述第二信号源123用于激励所述第二辐射体121谐振于第二频段的第一波长模式,并通过所述耦合缝隙127激励所述第一辐射体111谐振于所述第二频段的第二波长模式。本申请对于第二频段的范围不做具体的限定,可选的,第二频段的频率大于1GHz。第二频段的第一波长模式包括但不限于1/4波长模式、1/2波长模式、3/4波长模式、1倍波长模式等等。第二频段的第二波长模式包括但不限于1/4波长模式、1/2波长模式、3/4波长模式、1倍波长模式等等。
本申请对于第一频段和第二频段的具体范围不做限定。可选的,第二频段的第一波长模式和第二频段的第二波长模式为不同的波长模式。
本申请提供的天线组件100及电子设备1000,通过在第一辐射体111的第一馈电点117处设置回地枝节114,以使第一天线单元110、参考地GND形成第一子天线104和第二子天线 105,第一子天线104和第二子天线105在第一信号源113的激励下皆能够收发第一频段的电磁波信号,所述第一辐射枝节115和第二辐射枝节116在第一信号源113的激励下分别谐振于第一频段的第一波长模式,如此,第一天线单元110在第一频段的效率增强,提高了天线组件100的辐射效率;第二辐射体121在第二信号源123的作用下谐振于第二频段的第一波长模式,第一辐射体111在第二信号源123、第二辐射体121及耦合缝隙127激励谐振于所述第二频段的第二波长模式,如此,实现第一天线单元110的第一辐射体111还作为第二天线单元120的第二辐射体121的复用,相对而言,节省了第一天线单元110的第一辐射体111和第二天线单元120的第二辐射体121的堆叠空间,减小天线组件100的整体体积。此外,天线组件100能够覆盖的频段较多或可覆盖的频段宽度较宽。
当天线组件100设于电子设备1000时,电子设备1000由于设有该天线组件100,无需额外设置增强效率的器件,无需在第一辐射体111的周侧预留较大的净空空间,即可有效地在提升天线效率的同时减少器件及节省空间。
可选的,请参阅图8,所述第一辐射枝节115还包括位于所述第一自由端118与所述第一馈电点117之间的调谐点131;或,所述第二辐射枝节116还包括位于所述第二自由端119与所述第一馈电点117之间的调谐点131。所述天线组件100的第一天线单元110还包括开关电路132。所述开关电路132的一端电连接所述调谐点131。所述开关电路132的另一端电连接至所述参考地GND。换言之,开关电路132电连接于第一辐射枝节115或第二辐射枝节116。在其他实施方式中,开关电路132的数量为多个,多个开关电路132可皆电连接第一辐射枝节115、皆电连接第二辐射枝节116、或者一部分电连接第一辐射枝节115,另一部分电连接第二辐射枝节116。
可选的,开关电路132所包括的器件种类不限于天线开关、电阻、电容、电感等,其中,一个天线开关与电感、电容、电阻中的至少一者可以形成一条调谐分支,开关电路132包括多个不同的调谐分支,如此,开关电路132通过导通不同的调谐分支,或者说是选择不同的调谐分支导通可以有效地切换开关电路132的阻抗,进而调节开关电路132所电连接的辐射枝节的阻抗,以调节辐射枝节所产生的谐振模式的谐振频率的偏移,例如,当开关电路132在所作用的频段呈容性时,其所影响的谐振模式的谐振频率朝向低频方向移动。当开关电路132在所作用的频段呈感性时,其所影响的谐振模式的谐振频率朝向高频方向移动。进一步举例而言,当第一辐射枝节115在GSM 900频段具有较高的效率时,通过切换开关电路132中的开关,以使第一辐射枝节115及开关电路132中的器件的等效感性值增加,进而使得第一辐射枝节115能够在GSM850频段产生谐振,且效率较高。故开关电路132实现了第一辐射枝节115从覆盖GSM 900频段切换至覆盖GSM 850频段,更好的覆盖实际应用频段。当然,开关电路132还可以实现GSM 900频段切换至其他频段,在此不再赘述。
可选的,通过在第一辐射枝节115、第二辐射枝节116上选择设置或不设置开关电路132,或者皆设置开关电路132但调谐呈不同或相同的阻抗特性,使得第一辐射枝节115和第二辐射枝节116在相同的频段具有较高的收发效率(例如,皆在GSM 900频段具有较高的收发效率,调节至皆在GSM 850频段具有较高的收发效率),或者,使得第一辐射枝节115、第二辐射枝节116在不同的频段具有较高的收发效率(例如,从第一辐射枝节115、第二辐射枝节116皆在GSM 900频段具有较高的收发效率,调节至第一辐射枝节115在GSM 900频段具有较高的收发效率,及第二辐射枝节116在GSM 850频段具有较高的收发效率)。当第一辐射枝节115和第二辐射枝节116在相同的频段皆产生谐振时,第一天线单元110在该频段具有效率增强特性;当第一辐射枝节115和第二辐射枝节116在不同的频段产生谐振时,使得第一 天线单元110同时支持的频段较多,应用更广。
可选的,天线组件100还包括控制器,开关电路132包括多个开关,控制器电连接开关电路132中的开关,以控制开关电路132中的开关导通或断开,进而调谐开关电路132的阻抗,以调谐开关电路132所电连接的辐射枝节的谐振。
本申请对于天线组件100相对于参考地GND的位置不做具体的限定。
请参阅图9a,所述参考地GND包括相交设置的第一边151和第二边152。第一边151与第二边152的连接点为拐角部153。例如,参考地GND大致呈矩形。
可选的,所述第一辐射枝节115的至少部分与所述第一边151相对且间隔设置,及所述第二辐射枝节116的至少部分与所述第二边152相对且间隔设置。换言之,第一辐射体111呈“L”型。在此实施方式中,所述第一馈电点117的设置方式包括不限于以下几种情况。
请参阅图9a,所述第一馈电点117的第一种设置方式为所述第一馈电点117与所述第一边151相对。
请参阅图9b,所述第一馈电点117的第二种设置方式为所述第一馈电点117在所述第一边151的延伸方向上位于所述拐角部153背离所述第一边151的一侧。
请参阅图9c,所述第一馈电点117的第二种设置方式为所述第一馈电点117与所述第二边152相对。
请参阅图9d,所述第一馈电点117的第四种设置方式为所述第一馈电点117在所述第二边152的延伸方向上位于所述拐角部153背离所述第二边152的一侧。
可选的,请参阅图9e,所述第一辐射体111全部与所述第一边151相对设置,所述第一馈电点117与所述第一边151相对设置。
可选的,请参阅图9f,所述第一辐射体111全部与所述第二边152相对设置,所述第一馈电点117与所述第二边152相对设置。
为了便于描述,定义参考地GND的第一边151的延伸方向为X轴方向,参考地GND的第二边152的延伸方向为Y轴方向,参考地GND的厚度方向为Z轴方向。其中,箭头方向为正向方向,箭头的反向为反向方向。
请参阅图9a,可选的,第一馈电点117靠近与参考地GND的拐角部153设置。第一馈电点117靠近于参考地GND的拐角部153设置,第一辐射枝节115与第二辐射枝节116能够激励起更多的沿Y轴方向上的电流,较少地激励起沿X轴方向上的电流,进而更多地激励纵向模式,激励较少的横向模式,更好提升辐射效率。可以理解的,当第一馈电点117越靠近参考地GND的拐角部153,第一辐射体111能够激励起沿Y轴方向上的电流更多,如此,谐振电流的纵向模式越多,能够更好地提升天线效率。
具体的,第一馈电点117在第一边151的延伸方向上,位于以正对拐角部153为中心的±10mm范围内,此数值仅仅为举例,但并不限定此数值。
具体的,第一馈电点117在第二边152的延伸方向上,位于以正对拐角部153为中心的±10mm范围内,此数值仅仅为举例,但并不限定此数值。
请参阅图10及图11,图10是第一辐射枝节115与回地枝节114的等效结构图。图11是第二辐射枝节116与回地枝节114的等效结构图。所述回地枝节114在所述第一频段等效为小电感。可选的,回地枝节114在第一频段等效为小于或等于5nH的电感。等效为小电感的回地枝节114对于第一频段的电流信号为通路,使第一频段所对应的电流信号能够经回地枝节114回地。第一信号源113在第一辐射枝节115上激励起的电流信号和第一信号源113在第二辐射枝节116上激励起的电流信号皆能够经回地枝节114回地,如此形成在第一辐射 体111上形成两个电流路径,具体为一条从第一辐射枝节115及回地枝节114回地,另一条为从第二辐射枝节116及回地枝节114回地。上述的两条电流路径分别激励第一辐射枝节115和第二辐射枝节116收发覆盖第一频段的电磁波信号,进而使得第一天线单元110在第一频段具有较高的收发效率。可选的,所述第一频段小于1000MHz。换言之,第一子天线104和第二子天线105皆用于收发覆盖低频信号的电磁波信号。
可选的,所述第一频段包括GSM900频段、GSM850频段中的至少一者。其中,GSM900频段、GSM850频段分为不同国家在全球移动通信系统所使用的频段。当第一频段覆盖GSM900频段时,天线组件100在GSM900频段具有较高的频率。当第一频段覆盖GSM850频段时,天线组件100在GSM850频段具有较高的频率。当第一频段同时覆盖GSM900频段和GSM850频段时,天线组件100在GSM900频段和GSM850频段同时具有较高的频率,在此不再一一举例。
请参阅图12及图13,图12是图10所示的第一子天线104的模式分布图。图13是图11所示的第二子天线105的模式分布图。经过对图10所示的第一子天线104和图11所示的第二子天线105进行特征模分析,由图12可知,第一子天线104产生四种辐射模式。由图13可知,第二子天线105也产生四种辐射模式。其中,第一子天线104的第一辐射模式(对应于图12中标号为1的曲线)和第二子天线105的第五辐射模式(对应于图13中标号为5的曲线)皆在0.8-1GHz之间具有较高的模式因子(大于或等于0.95)。例如,第一子天线104在0.915GHz左右的模式因子为0.98,第二子天线105在0.915GHz左右的模式因子为0.99。说明第一子天线104和第二子天线105在GSM900频段内的主要辐射模式分别为第一辐射模式和第五辐射模式,换言之,第一子天线104和第二子天线105皆在GSM900频段内具有较高的辐射效率。
可选的,第一辐射模式为第一辐射枝节115谐振于第一频段的第一波长模式。第五辐射模式为第二辐射枝节116谐振于第一频段的第一波长模式。
请参阅图14及图15,图14是图10所示的第一子天线104在第一辐射模式的电流分布图。图15是图10所示的第一子天线104在第一辐射模式的远场方向图。所述第一子天线104谐振于所述第一频段(第一辐射模式)时的电流分布于所述参考地GND、所述回地枝节114、所述第一馈电点117至所述第一自由端118。具体的,第一子天线104的电流从参考地GND、回地枝节114、第一馈电点117流向第一自由端118,该电流在第一辐射枝节115上形成谐振,以产生图12所示的第一辐射模式。由图14中的曲线箭头可知,第一辐射模式是第一辐射枝节115在第一频段的二分之一波长模式,且第一辐射模式处的模式因子相对较高,故第一辐射模式是第一子天线104谐振于第一频段处的主要辐射模式。换言之,第一辐射枝节115在所述第一频段的第一波长模式为二分之一波长模式。第一子天线104在第一频段处具有较高的收发效率。由图15可知,第一子天线104在第一频段处具有较高的增益。
请参阅图16及图17,图16是图11所示的第二子天线105在第五辐射模式的电流分布图。图17是图11所示的第二子天线105在第五辐射模式的远场方向图。所述第二子天线105谐振于第五辐射模式(即谐振于第一频段)时的电流分布于所述第二自由端119、所述第一馈电点117、所述回地枝节114至所述参考地GND。具体的,第二子天线105的电流从参考地GND、回地枝节114、第一馈电点117流向第二自由端119,该电流在第二辐射枝节116上形成谐振,以产生第五辐射模式。由图16中的曲线箭头可知,第五辐射模式是第二辐射枝节116在第一频段的二分之一波长模式,且第五辐射模式处的模式因子相对较高,故第五辐射模式是第二子天线105谐振于第一频段处的主要辐射模式。换言之,第二辐射枝节116在所述第一频段的第一波长模式为二分之一波长模式。第二子天线105在第一频段处具有较高的 收发效率。由图15可知,第一子天线104在第一频段处具有较高的增益。
以上通过对天线组件100进行结构设计,以使第一辐射枝节115和第二辐射枝节116皆在第一频段处具有较高的效率,而第一辐射枝节115和第二辐射枝节116皆为第一天线单元110的部分,换言之,第一天线单元110的两个部分皆能够在第一频段处具有较高的效率,进而使得第一天线单元110在第一频段的收发效率加强。
请参阅图18,图18是本申请实施例提供的天线组件的辐射性能比较曲线。图18中虚线1为设置第一辐射枝节115、第二辐射枝节116和回地枝节114的天线组件100的系统效率1曲线。图18中实线1是设置第一辐射枝节115、第二辐射枝节116和回地枝节114的天线组件100的辐射效率1曲线。图18中虚线2设置未设置第二辐射枝节116和回地枝节114的天线组件100的系统效率2曲线。图18中实线2是未设置第二辐射枝节116和回地枝节114的天线组件100的辐射效率2曲线。从图18可知,设置第一辐射枝节115、第二辐射枝节116和回地枝节114的天线组件100利用天线效率增强方案可以显著地增强天线的辐射性能,系统效率在0.92GHz附近相较于未设置第二辐射枝节116和回地枝节114的天线组件100的系统效率提升了约2.5dB。
本申请提供的天线组件100根据特征模理论,充分利用了参考地GND的拐角处,以激励起更多的纵向电流,第一辐射枝节115及第二辐射枝节116皆形成的倒F天线,第一辐射枝节115及第二辐射枝节116在第一信号源113的激励下皆谐振于第一频段的二分之一的波长模式,增加了天线组件100工作时的辐射性能。换言之,以上为第一天线单元110的具体结构,及通过在第一天线单元110上设置第一辐射枝节115、第二辐射枝节116及回地枝节114,以使第一辐射枝节115和第二辐射枝节116皆谐振于相同的模式,增加模式的辐射效率。
以下结合附图对于第二天线单元120的具体结构进行举例说明。
请参阅图19,所述第二辐射体121具有第三自由端124和接地端125,以及设于所述第三自由端124与所述接地端125之间的第二馈电点126。所述第三自由端124与所述第一辐射体111的端部之间存在所述耦合缝隙127。所述接地端125用于电连接至参考地GND。所述第二匹配电路122的一端电连接所述第二馈电点126。所述第二信号源123电连接所述第二匹配电路122的另一端。
具体的,请参阅图19,第二天线单元120的一端为第三自由端124,另一端为接地端125,第二馈电点126位于第三自由端124与接地端125之间,故第二天线单元120为倒F天线。第二辐射体121的长度约为第二天线单元120的工作频段的自由空间波长的四分之一,第二天线单元120谐振于基模状态,其中,基模状态也是天线的1/4波长模式,此时天线的接收或发射的转换效率较高。换言之,所述第二频段的第一波长模式为所述第二频段的1/4波长模式。另外,第一辐射体111作为第二天线单元120的寄生枝节,其长度约为第二天线单元120的工作频段的自由空间波长的一倍波长。换言之,所述第二频段的第二波长模式为所述第二频段的一倍波长模式。
所述第三自由端124与所述第一辐射体111的端部之间存在耦合缝隙127。可选的,所述第三自由端124与所述第一辐射体111的第一自由端118之间存在耦合缝隙127,且所述第一天线单元110的开关电路132电连接所述第一辐射枝节115;或者,所述第三自由端124与所述第一辐射体111的第二自由端119之间存在耦合缝隙127,且所述第一天线单元110的开关电路132电连接所述第二辐射枝节116。换言之,第二辐射体121可设于第一辐射体111的任意一侧,开关电路132设于靠近第二辐射体121的一侧,以便于开关电路132即可以调谐第一天线单元110的工作频段和第二天线单元120的工作频段。
请参阅图20,所述第二辐射体121在所述第二信号源123的激励下产生至少一个第一谐振模式a。可选的,第一谐振模式a为第二辐射体121谐振于所述第二频段的第一波长模式。所述第一辐射体111在所述第二信号源123的激励下产生至少一个第二谐振模式b。可选的,第二谐振模式b为第二辐射体121谐振于第二频段的第二波长模式。谐振模式表征为天线组件100在谐振模式的谐振频率处的电磁波传输效率较高。也就是说,第二辐射体121在第二信号源123的激励下在某一谐振频率处具有较高的收发效率,进而能够支持该谐振频率附近的一段频段的电磁波信号的收发。具体的,一个谐振模式在图20中对应一个波谷曲线,一个谐振模式具有一个谐振频率,该谐振频率为波谷对应的频率。一个谐振模式具有一段有效频段(即该谐振模式所支持的频段),例如为以回波损耗的绝对值小于或等于某一值时对应的频率组合形成频段。
可以理解的,第一谐振模式a所支持的频段和第二谐振模式b所支持的频段相连续或不连续。多种频段连续是指辐射体所支持的相邻的两个频段至少部分重合。多种频段不连续是指辐射体所支持的相邻的两个频段之间无重合。
请参阅20,本实施例中,第一谐振模式a所支持的频段和第二谐振模式b所支持的频段相连续并形成较宽的带宽,以提高天线组件100应用于电子设备1000时的数据吞吐量及数据传输速率,提高增加电子设备1000的通信质量。此外,当天线组件100的带宽较宽时,无需可调器件去切换不同的频段,从而省去可调器件,节约成本,及实现天线组件100的结构简单。
本申请提供的天线组件100及电子设备1000,通过设计第一辐射体111与第二辐射体121容性耦合,以产生多种谐振模式,以使天线组件100能够支持较宽的带宽,进而提高天线组件100应用于电子设备1000时的吞吐量及数据传输速率,提高增加电子设备1000的通信质量。
请参阅图20,在未设置第一辐射体111与第二辐射体121相耦合时,第二辐射体121在第二信号源123的激励下在1.5-2.5GHz之间产生的一个谐振。在设置第一辐射体111与第二辐射体121相耦合之后,第一辐射体111与第二辐射体121在第二信号源123的激励下在1.5-2.5GHz之间产生的两个谐振,其中,第一谐振模式a的谐振频率为1.8GHz左右,第二谐振模式b的谐振率为2.3GHz左右。
通过设计第一天线单元110的第一辐射体111与第二天线单元120的第二辐射体121通过耦合缝隙127容性耦合,以使第二辐射体121在第二信号源123的激励下产生第一谐振模式a,还使得第一辐射体111在第二信号源123的激励下产生第二谐振模式b,以增加谐振模式的数量,进一步地增加第二天线单元120所覆盖的频段的带宽,进而增加天线组件100的收发信号的带宽。
第一天线单元110的第一辐射体111还能够为第一天线单元110所用,以产生谐振模式,如此,扩宽天线组件100的频段;对于未耦合的天线组件100,要实现上述的带宽,需设置更长的第二辐射体121,如此会使得整个天线组件100的叠加尺寸更大,在空间极其有限的电子设备1000内,尺寸较大的天线组件100不利于电子设备1000的小型化。
所述第一谐振模式a和所述第二谐振模式b用于支持第二频段。第二频段为中高频段,其中,中高频段为1GHz-3GHz。进一步地,所述第二频段覆盖1.85GHz-2.35GHz。举例而言,所述第二频段所覆盖的频段包括但不限于B3频段、B1频段、B40频段、B41频段中的至少一种。可选的,第二辐射体121的长度约为第二天线单元120的工作频段的自由空间波长的四分之一,所述第二辐射体121在所述第二信号源123的激励下谐振于所述第二频段的1/4 波长模式,以使第二辐射体121具有较高的效率。所述第二频段的第一波长模式为所述第二频段的1/4波长模式。第一辐射体111的长度约为第二天线单元120的工作频段的自由空间波长的一倍波长所述第一辐射体111在所述第二信号源123的激励下谐振于所述第二频段的一倍波长模式。所述第二频段的第二波长模式为所述第二频段的一倍波长模式。
本申请提供的天线组件100利用共口径技术,在第二天线单元120(例如中高频天线)除了自身辐射体的四分之一波长辐射模态情况下,还利用了第一天线单元110(例如低频天线)辐射体的整倍波长辐射模态。通过双辐射模态,中高频天线性能较单一辐射模态,有极大地提升。
本申请中,第一天线单元110通过集成两个倒F天线,并使得两个倒F天线皆谐振于第一辐射模式,以使第一天线单元110在第一辐射模式具有较高的效率,提高天线组件100在低频段具有较高的收发效率,通过在第一辐射体111上设置的开关电路132,以调谐第一天线单元110的工作频段,以使天线组件100在低频段的很多频段皆能有效地覆盖,例如GSM950、GSM800等;通过设置第一天线单元110的第一辐射体111与第二天线单元120的第二辐射体121相耦合,以使第一辐射体111在用于第一频段的收发时还能够用于第二频段的收发,第二频段可覆盖B3频段、B1频段、B40频段、B41频段等中高频段,以提高第一辐射体111的利用率,利用原有的第一辐射体111,在增加第二频段的带宽的同时,还能够减小天线组件100的辐射体103的叠加尺寸,进而减小天线组件100的整体尺寸。
请参阅图21,第一谐振模式a对应的电流分布包括但不限于第一电流分布R1:所述第二辐射体121谐振于所述第二频段时的电流分布于所述接地端125至所述第三自由端124,具体包括但不限于从接地端125流向第三自由端124。以上的电流分布产生第一谐振模式a,即第二辐射体121上的第一电流分布对应于第二辐射体121在第二频段的1/4波长模式。
请参阅图21,第二谐振模式b对应的电流分布包括但不限于第二电流分布R2:所述第一辐射体111谐振于所述第二频段时的电流包括第一子电流R21和第二子电流R22。所述第一辐射体111还具有交汇点133,所述交汇点133位于所述第一自由端118与所述第一馈电点117之间、或设于所述第二自由端119与所述第一馈电点117之间、或设于所述第一馈电点117;所述第一子电流R21分布于所述第二自由端119与所述交汇点133之间,所述第二子电流R22分布于所述第一自由端118与所述交汇点133之间,且所述第一子电流R21与所述第二子电流R22的流向相反。具体包括但不限于,第一子电流R21从第二自由端119流向交汇点133,第二子电流R22从第一自由端118流向交汇点133。交汇点133包括但不限于为第一辐射体111的延伸长度方向的中间位置。以上的电流分布产生第二谐振模式b,即第一辐射体111上的第二电流分布对应于第一辐射体111在第二频段的一倍波长模式。
图21中给出了在第二频段下的第二天线单元120的电流分布,箭头代表电流的流向,弧线代表电流的幅度分布。可以看到在第二辐射体121上,电流是按照四分之一波长分布,在第一辐射体111上,电流是按照一倍波长分布。
以天线组件100的第二天线单元120谐振于LTE B1状态为例,图20中给出了单独存在第二辐射体121的第二天线单元120和包含第二辐射体121、第一辐射体111的第二天线单元120的反射系数对比,可以发现包含第二辐射体121和第一辐射体111的第二天线单元120阻抗匹配特性更优,在1.85GHz-2.35GHz内反射系数小于-5dB。本实施例中,取回波损耗曲线的绝对值大于或等于5dB为具有较高的电磁波收发效率的参考值。当然,在其他实施方式中,还可以为6dB、7dB等。换言之,所述第二频段覆盖1.85GHz-2.35GHz。举例而言,所述第二频段所覆盖的频段包括但不限于B3频段、B1频段、B40频段、B41频段中的至少一种。
图22给出了单独存在第二辐射体121的第二天线单元120和包含第二辐射体121、第一辐射体111的第二天线单元120的辐射性能的对比,可以发现在第二天线单元120谐振于B1频段时,包含第二辐射体121和第一辐射体111的第二天线单元120拥有更高和更宽的辐射带宽,峰值效率高于仅存在第二辐射体121的第二天线单元120的效率1dB。在B1频段内,拥有第二辐射体121和第一辐射体111的第二天线单元120系统效率均值为-3dB,辐射特性优异。
在一般技术中,天线的有效效率带宽不够宽,例如很难同时覆盖B3+B40,导致需要额外设置开关切换等,导致天线在某些频段的覆盖上信号不良或不够小型化。需要说明的是,以上的频段仅仅是举例,不能作为本申请所能够辐射的频段的限制。
本申请提供的天线组件100,通过设计第一辐射体111、第二辐射体121相耦合,以使天线组件100结构小型化的同时还产生了多种谐振模式,多种谐振模式能够同时覆盖第二频段(例如第二频段包括1.85-2.35GHz),以使天线组件100能够支持较宽的带宽,进而提高天线组件100应用于电子设备1000时的吞吐量及数据传输速率,当天线组件100应用于上述中高频段(例如1710MHz-2690MHz)时,能够同时支持B3+B40,故天线组件100至少具有结构简单、小型化及在B3+B40的应用频段上具有较高的效率及数据传输速率。
以上列举频段可能为多个运营商会应用到的中高频段,本申请提供的天线组件100可同时支持上述的任意一种或多种频段的组合,以使本申请提供的天线组件100能够支持多个不同的运营商所对应的电子设备1000机型,无需针对不同的运营商采用不同的天线结构,进一步地提高天线组件100的应用范围和兼容性。
本申请基于特征模和共口径技术,设计出了性能优异的第一天线单元110(例如低频天线)和第二天线单元120(例如中高频天线),提出了一套高性能的终端天线解决方案。该方案在不增加额外的空间和净空情况下,极大地提升了第一天线单元110(例如低频天线)的辐射性能。第二天线单元120(例如中高频天线)在利用自身辐射枝节的基础上,共口径地利用第一天线单元110(例如低频天线)的金属枝节高次模,在中高频形成共同辐射,极大地提升中高频天线的辐射性能。
本申请对于天线组件100的辐射体103设于电子设备1000的具体位置不做具体的限定。所述天线组件100设于所述壳体200内;或者,所述天线组件100的至少部分与所述壳体200集成为一体。具体通过以下实施方式进行举例说明。
请参阅图2,壳体200包括边框210及后盖220。边框210内通过注塑形成中板230,中板230上形成多个用于安装各种电子器件的安装槽。参考地GND可位于中板230上。中板230与边框210一起成为电子设备1000的中框240。显示屏300、中框240及后盖220盖合后在中框240的两侧皆形成收容空间。
请参阅图2及图23,边框210的一侧围接于后盖220的周沿。边框210的另一侧围接于显示屏300的周沿。边框210包括多个首尾相连的侧边框。边框210的多个侧边框中。相邻的两个侧边框相交。例如相邻的两个侧边框垂直。多个侧边框包括相对设置的顶边框211和底边框212,及连接于顶边框211与底边框212之间的第一侧边框213和第二侧边框214。相邻的两个侧边框之间的连接处为拐角处125。其中,顶边框211和底边框212平行且相等。第一侧边框213和第二侧边框214平行且相等。第一侧边框213的长度大于顶边框211的长度。
本申请对于天线组件100的排布方式不做具体的限定。
可选的,请参阅图23,天线组件100的第一辐射体111设于底边框212、第二侧边框214, 以及底边框212与第二侧边框214之间的拐角处125,第一辐射枝节115底边框212靠近第二侧边框214处,第二辐射枝节116设于第二侧边框214靠近底边框212处,第二辐射体121设于底边框212或设于第二侧边框214。
当然,第一辐射体111还可以设于顶边框211、第二侧边框214,以及顶边框211与第二侧边框214之间的拐角处125,第二可设于顶边框211或第二侧边框214。当然,第一辐射体111还可以设于其他拐角处125,在此不再一一举例。
通过将第一辐射体111分别设于边框210的拐角处125,而边框210的拐角处125与参考地GND的拐角部153相对应,故第一辐射体111上的第一辐射枝节115和第二辐射枝节116分别与参考地GND的两个边形成电场,以使第一辐射枝节115和第二辐射枝节116皆能够形成构造相同的倒F天线,从而使得第一辐射枝节115和第二辐射枝节116皆在第一频段产生相同的辐射模式,以支持第一频段的信号收发,进而提高天线组件100在第一频段产生加强的收发效率。
可选的,请参阅图23,天线组件100的辐射体103的至少部分与边框210集成为一体。例如,边框210的材质为金属材质。第一辐射体111、第二辐射体121与边框210皆集成为一体。当然,在其他实施方式中,上述的辐射体103还可与后盖220集成为一体。换言之,第一辐射体111、第二辐射体121集成为壳体200的一部分。具体的。天线组件100的参考地GND、第一信号源113、第二信号源123、匹配电路、开关电路132等皆设于电路板400上。
可选的,请参阅图24,第一辐射体111、第二辐射体121通过成型于边框210的表面。具体的,第一辐射体111、第二辐射体121的基本形式包括但不限于贴片辐射体103、通过激光直接成型(Laser Direct Structuring,LDS)、印刷直接成型(Print Direct Structuring,PDS)等工艺成型在边框210的内表面上。此实施方式中,边框210的材质可为非导电材质。当然,上述的辐射体103还可以设于后盖220上。
可选的,第一辐射体111、第二辐射体121设于柔性电路板400。柔性电路板400贴设于边框210的表面。第一辐射体111、第二辐射体121可集成于柔性电路板400上,并将柔性电路板400通过粘胶等贴设于中框240的内表面。此实施方式中,边框210的材质可为非导电材质。当然,上述的辐射体103还可设于后盖220的内表面。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线组件,其特征在于,包括:
    第一天线单元,所述第一天线单元包括第一辐射体、回地枝节及第一信号源;所述第一辐射体包括互连为一体的第一辐射枝节和第二辐射枝节,所述第一辐射枝节与所述第二辐射枝节的连接处为第一馈电点;所述回地枝节的一端电连接所述第一馈电点,所述回地枝节的另一端用于电连接至参考地,所述第一信号源电连接所述第一馈电点,所述第一信号源用于激励所述第一辐射枝节和所述第二辐射枝节分别谐振于第一频段的第一波长模式;及
    第二天线单元,所述第二天线单元包括第二辐射体、第二信号源及所述第一辐射体,所述第二辐射体与所述第一辐射体之间存在耦合缝隙,所述第二信号源电连接所述第二辐射体,所述第二信号源用于激励所述第二辐射体谐振于第二频段的第一波长模式,并通过所述耦合缝隙激励所述第一辐射体谐振于所述第二频段的第二波长模式。
  2. 如权利要求1所述的天线组件,其特征在于,所述回地枝节、所述第一信号源与所述第一辐射枝节形成第一子天线,所述回地枝节、所述第一信号源与所述第二辐射枝节形成第二子天线,所述第一子天线和所述第二子天线皆为倒F天线。
  3. 如权利要求1所述的天线组件,其特征在于,所述第一频段的第一波长模式为二分之一波长模式。
  4. 如权利要求1所述的天线组件,其特征在于,所述第二频段的第一波长模式为所述第二频段的1/4波长模式,所述第二频段的第二波长模式为所述第二频段的一倍波长模式。
  5. 如权利要求1所述的天线组件,其特征在于,所述第一频段的频率小于或等于1GHz,所述第二频段的频率大于1GHz。
  6. 如权利要求5所述的天线组件,其特征在于,所述第一频段覆盖GSM 900频段、GSM 850频段中的至少一种,所述第二频段覆盖B3频段、B1频段、B40频段、B41频段中的至少一种。
  7. 如权利要求1所述的天线组件,其特征在于,所述回地枝节在所述第一频段等效为小于或等于5nH的电感。
  8. 如权利要求7所述的天线组件,其特征在于,所述回地枝节包括电感、微带线中的至少一者。
  9. 如权利要求1所述的天线组件,其特征在于,所述第一辐射枝节具有所述第一馈电点的第一自由端,所述第二辐射枝节具有远离所述第一馈电点的第二自由端;所述天线组件还包括参考地,所述第一自由端与所述第二自由端皆与所述参考地间隔设置。
  10. 如权利要求9所述的天线组件,其特征在于,所述第一辐射枝节还包括位于所述第一自由端与所述第一馈电点之间的调谐点;或,所述第二辐射枝节还包括位于所述第二自由端与所述第一馈电点之间的调谐点;所述天线组件还包括开关电路,所述开关电路的一端电连接所述调谐点,所述开关电路的另一端电连接至所述参考地。
  11. 如权利要求9所述的天线组件,其特征在于,所述参考地包括相交设置的第一边和第二边,所述第一边与所述第二边的连接点为拐角部,所述第一辐射枝节的至少部分与所述第一边相对设置,所述第二辐射枝节的至少部分与所述第二边相对设置。
  12. 如权利要求11所述的天线组件,其特征在于,所述第一馈电点与所述第一边相对,或者,所述第一馈电点在所述第一边的延伸方向上位于所述拐角部背离所述第一边的一侧。
  13. 如权利要求11所述的天线组件,其特征在于,所述第一馈电点与所述第二边相对,或者,所述第一馈电点在所述第二边的延伸方向上位于所述拐角部背离所述第二边的一侧。
  14. 如权利要求11所述的天线组件,其特征在于,所述第一辐射体与所述第一边相对设 置,或者,所述第一辐射体与所述第二边相对设置。
  15. 如权利要求9所述的天线组件,其特征在于,所述第一辐射枝节谐振于所述第一频段的第一波长模式时的电流分布于所述参考地、所述回地枝节、所述第一馈电点至所述第一自由端;和/或,所述第二辐射枝节谐振于所述第一频段的第一波长模式时的电流分布于所述第二自由端、所述第一馈电点、所述回地枝节至所述参考地。
  16. 如权利要求1所述的天线组件,其特征在于,所述天线组件还包括第一匹配电路,所述第一匹配电路的一端电连接所述第一馈电点,所述第一匹配电路的另一端电连接所述第一信号源。
  17. 如权利要求1~16任意一项所述的天线组件,其特征在于,所述第二天线单元还包括第二匹配电路,所述第二辐射体具有第三自由端和接地端,以及设于所述第三自由端与所述接地端之间的第二馈电点,所述第三自由端与所述第一辐射体的端部之间存在所述耦合缝隙,所述接地端用于电连接至参考地;所述第二匹配电路的一端电连接所述第二馈电点,所述第二信号源电连接所述第二匹配电路的另一端。
  18. 如权利要求17所述的天线组件,其特征在于,所述第三自由端与所述第一辐射体的第一自由端之间存在所述耦合缝隙,所述第一天线单元的开关电路电连接所述第一辐射枝节;或者,所述第三自由端与所述第一辐射体的第二自由端之间存在所述耦合缝隙,所述第一天线单元的开关电路电连接所述第二辐射枝节,其中,所述第一辐射体的第一自由端与所述第一辐射体的第二自由端为相对的两端。
  19. 如权利要求18所述的天线组件,其特征在于,所述第二辐射体谐振于所述第二频段的第一波长模式时的电流分布于所述接地端至所述第三自由端之间;
    所述第一辐射体谐振于所述第二频段的第二波长模式时的电流包括第一子电流和第二子电流,所述第一辐射体还具有交汇点,所述交汇点位于所述第一自由端与所述第一馈电点之间、或设于所述第二自由端与所述第一馈电点之间、或设于所述第一馈电点;所述第一子电流分布于所述第二自由端与所述交汇点之间,所述第二子电流分布于所述第一自由端与所述交汇点之间,且所述第一子电流与所述第二子电流的流向相反。
  20. 一种电子设备,其特征在于,包括壳体及如权利要求1~19任意一项所述的天线组件,所述天线组件的至少部分设于所述壳体内,或,所述天线组件的至少部分设于所述壳体外,或者,所述天线组件的至少部分与所述壳体集成为一体。
PCT/CN2022/077946 2021-03-30 2022-02-25 天线组件及电子设备 WO2022206237A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22778422.0A EP4311024A1 (en) 2021-03-30 2022-02-25 Antenna assembly and electronic device
US18/476,118 US20240021998A1 (en) 2021-03-30 2023-09-27 Antenna assembly and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110343970.1A CN112928456B (zh) 2021-03-30 2021-03-30 天线组件及电子设备
CN202110343970.1 2021-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/476,118 Continuation US20240021998A1 (en) 2021-03-30 2023-09-27 Antenna assembly and electronic device

Publications (1)

Publication Number Publication Date
WO2022206237A1 true WO2022206237A1 (zh) 2022-10-06

Family

ID=76176649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077946 WO2022206237A1 (zh) 2021-03-30 2022-02-25 天线组件及电子设备

Country Status (4)

Country Link
US (1) US20240021998A1 (zh)
EP (1) EP4311024A1 (zh)
CN (1) CN112928456B (zh)
WO (1) WO2022206237A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928456B (zh) * 2021-03-30 2023-05-26 Oppo广东移动通信有限公司 天线组件及电子设备
CN114976631B (zh) * 2021-06-25 2023-11-14 荣耀终端有限公司 一种终端天线及电子设备
CN115548649A (zh) * 2021-06-30 2022-12-30 Oppo广东移动通信有限公司 天线模组及电子设备
CN113690585B (zh) * 2021-08-11 2023-09-22 Oppo广东移动通信有限公司 天线装置、壳体及电子设备
CN115882200A (zh) * 2021-09-26 2023-03-31 中兴通讯股份有限公司 天线和电子设备
CN114243259B (zh) * 2021-11-12 2023-03-24 荣耀终端有限公司 一种终端天线系统及电子设备
CN114221127B (zh) * 2021-11-30 2022-11-01 荣耀终端有限公司 自解耦宽带天线系统和终端设备
CN116266668A (zh) * 2021-12-17 2023-06-20 Oppo广东移动通信有限公司 天线组件、电子设备及其控制方法
CN116345122A (zh) * 2021-12-22 2023-06-27 荣耀终端有限公司 可折叠电子设备及其天线系统
CN116404422A (zh) * 2021-12-28 2023-07-07 中兴通讯股份有限公司 一种终端设备
CN114552181A (zh) * 2022-01-30 2022-05-27 Oppo广东移动通信有限公司 天线组件及电子设备
CN114464984A (zh) * 2022-03-04 2022-05-10 Oppo广东移动通信有限公司 一种天线装置及电子设备
CN114976600A (zh) * 2022-06-27 2022-08-30 Oppo广东移动通信有限公司 天线组件、中框组件以及电子设备
CN115377663B (zh) * 2022-08-17 2023-10-20 荣耀终端有限公司 无线耳机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140091981A1 (en) * 2012-09-28 2014-04-03 Nokia Corporation Antenna arrangement
US20180026346A1 (en) * 2016-07-19 2018-01-25 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN108346863A (zh) * 2018-01-29 2018-07-31 维沃移动通信有限公司 一种天线和移动终端
CN108631041A (zh) * 2018-04-25 2018-10-09 Oppo广东移动通信有限公司 天线组件及电子装置
CN109659693A (zh) * 2018-12-12 2019-04-19 维沃移动通信有限公司 一种天线结构及通信终端
CN111628298A (zh) * 2019-02-27 2020-09-04 华为技术有限公司 共体天线及电子设备
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112928456A (zh) * 2021-03-30 2021-06-08 Oppo广东移动通信有限公司 天线组件及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028035A1 (en) * 1999-10-12 2001-04-19 Arc Wireless Solutions, Inc. Compact dual narrow band microstrip antenna
TWI600210B (zh) * 2015-11-12 2017-09-21 和碩聯合科技股份有限公司 多頻段天線
JP6945645B2 (ja) * 2017-03-20 2021-10-06 華為技術有限公司Huawei Technologies Co.,Ltd. モバイル端末のアンテナおよびモバイル端末
CN110350295A (zh) * 2019-06-30 2019-10-18 RealMe重庆移动通信有限公司 穿戴式电子设备
CN211743388U (zh) * 2020-03-26 2020-10-23 Oppo广东移动通信有限公司 无线电子设备
CN112467387B (zh) * 2020-11-20 2023-02-28 Oppo广东移动通信有限公司 天线装置及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140091981A1 (en) * 2012-09-28 2014-04-03 Nokia Corporation Antenna arrangement
US20180026346A1 (en) * 2016-07-19 2018-01-25 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN108346863A (zh) * 2018-01-29 2018-07-31 维沃移动通信有限公司 一种天线和移动终端
CN108631041A (zh) * 2018-04-25 2018-10-09 Oppo广东移动通信有限公司 天线组件及电子装置
CN109659693A (zh) * 2018-12-12 2019-04-19 维沃移动通信有限公司 一种天线结构及通信终端
CN111628298A (zh) * 2019-02-27 2020-09-04 华为技术有限公司 共体天线及电子设备
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112928456A (zh) * 2021-03-30 2021-06-08 Oppo广东移动通信有限公司 天线组件及电子设备

Also Published As

Publication number Publication date
EP4311024A1 (en) 2024-01-24
CN112928456A (zh) 2021-06-08
CN112928456B (zh) 2023-05-26
US20240021998A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
WO2022206237A1 (zh) 天线组件及电子设备
US10056696B2 (en) Antenna structure
US11916282B2 (en) Coupling antenna apparatus and electronic device
US8203489B2 (en) Dual-band antenna
TWI425713B (zh) 諧振產生之三頻段天線
TWI492450B (zh) 手持式裝置
TWI599095B (zh) 天線結構及應用該天線結構的無線通訊裝置
JP6008352B2 (ja) マルチモードブロードバンドアンテナモジュールおよびワイヤレス端末
US20130113671A1 (en) Slot antenna
US20100079350A1 (en) Wwan printed circuit antenna with three monopole antennas disposed on a same plane
WO2017197975A1 (zh) 一种天线和终端设备
US10439269B2 (en) Mobile device and antenna structure
TWI542073B (zh) 多頻倒f型天線
JP2014533474A5 (zh)
US20150061953A1 (en) Antenna and Electronic Device
US6697023B1 (en) Built-in multi-band mobile phone antenna with meandering conductive portions
WO2023273607A1 (zh) 天线模组及电子设备
KR102168317B1 (ko) 이동 단말 및 이동 단말의 안테나 방사 방법
TWI505554B (zh) 寬頻天線及無線通訊裝置
US20230387594A1 (en) Antenna assembly and electronic device
US20240014556A1 (en) Antenna assembly and electronic device
WO2023273604A1 (zh) 天线模组及电子设备
TWI669851B (zh) 行動裝置
US20100103056A1 (en) antenna for receiving electric waves, a manufacturing method thereof, and an electronic device with the antenna
TWI756931B (zh) 天線結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778422

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022778422

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022778422

Country of ref document: EP

Effective date: 20231019