WO2024060819A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2024060819A1
WO2024060819A1 PCT/CN2023/108922 CN2023108922W WO2024060819A1 WO 2024060819 A1 WO2024060819 A1 WO 2024060819A1 CN 2023108922 W CN2023108922 W CN 2023108922W WO 2024060819 A1 WO2024060819 A1 WO 2024060819A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
frequency band
antenna assembly
resonant
radiating
Prior art date
Application number
PCT/CN2023/108922
Other languages
English (en)
French (fr)
Inventor
林栢暐
李晨光
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024060819A1 publication Critical patent/WO2024060819A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • the present application relates to the field of communication technology, and in particular to an antenna assembly and an electronic device.
  • Multi-band coverage technology can improve throughput by covering multiple frequency bands at the same time to increase the amount of transmitted data and increase the data transmission rate.
  • the tuning of certain frequency bands will cause large deviations in other frequency bands, which cannot meet the independent tuning of multi-frequency bands, and the support rate of multi-band combinations is low. Therefore, how to flexibly design an antenna covering multiple frequency bands in a limited space, satisfy the independent tuning of multiple frequency bands, and improve the support rate of multi-band combinations has become a technical problem that needs to be solved.
  • the present application provides an antenna component that can satisfy independent tuning of multiple frequency bands in a limited space and an electronic device having the antenna component.
  • this application provides an antenna assembly, including:
  • a first radiation branch wherein the first radiation branch comprises a first grounding end, a first feeding point and a first opening end which are arranged in sequence;
  • the second radiating branch includes a second open end and a second ground end, with a gap between the first open end and the second open end;
  • a first feed source electrically connected to the first feed point, is used to excite the first radiating branch to generate a first resonant mode
  • the length from the first feed point to the first open end is less than or equal to 20% of the length of the first radiating branch, and the first feed source excites at least one coupling on the second radiating branch. Resonant mode.
  • the first radiating branch and the second radiating branch are coupled through a coupling gap, and the length from the first feed point to the first open end on the first radiating branch is designed to be less than or equal to 20% of the length of the first radiating branch, so that the position of the first feed point is close to the second radiating branch, which is conducive to the first feed source exciting at least one coupled resonance mode on the second radiating branch. Due to the coupling The resonant mode and the first resonant mode are respectively generated from different radiation branches. Therefore, when the first resonant mode is tuned, the coupled resonant mode will not be affected by the first resonant mode and shift significantly. That is, the coupled resonance mode and the first resonance mode can be tuned independently of each other to meet the independent tuning of multiple frequency bands in a limited space, improve the support rate of multi-frequency band combinations, and thereby increase the transmission rate.
  • this application also provides an electronic device, including the above-mentioned antenna assembly.
  • Figure 1 is a schematic structural diagram of a first antenna assembly in an electronic device provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of a resonant mode generated by the antenna assembly provided in Figure 1;
  • Figure 3a is the current distribution diagram of the first resonance mode shown in Figure 2;
  • Figure 3b is a schematic structural diagram of the second antenna assembly provided by the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a third antenna assembly provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a resonant mode generated by the antenna assembly provided in Figure 4;
  • Figure 6 is a current distribution diagram of the second resonance mode shown in Figure 5;
  • Figure 7 is a schematic structural diagram of the third antenna component provided in Figure 4 having a first matching circuit, a first matching network, a second matching circuit and a second matching network;
  • FIG8 is a current distribution diagram of the third resonance mode shown in FIG5;
  • FIG9 is a current distribution diagram of the fourth resonance mode shown in FIG5;
  • Figure 10 is a current distribution diagram of the fifth resonance mode shown in Figure 5;
  • Figure 11 is a schematic structural diagram of the third antenna component provided in Figure 7 with a first tuning circuit and a second tuning circuit;
  • Figure 12 is a schematic structural diagram of the first tuning circuit provided by the embodiment of the present application.
  • Figure 13 is a schematic structural diagram of the second tuning circuit provided by the embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of a third tuning circuit provided in an embodiment of the present application.
  • Figure 15 is a state diagram of the first resonance mode, the third resonance mode, the fourth resonance mode, and the fifth resonance mode when the second resonance mode is tuned between B32, B3, and B1/B41;
  • Figure 16 is the current distribution diagram when the third resonant mode is excited by the second feed source
  • Figure 17 is a schematic structural diagram of the antenna assembly provided by this application applied to electronic equipment
  • Figure 18 is a schematic structural diagram of the antenna assembly provided by this application applied to a foldable electronic device.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are they mutually exclusive, independent, or alternative embodiments to other embodiments. Those skilled in the art will understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • Figure 1 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
  • Electronic device 100 includes, but is not limited to, mobile phones, tablets, laptops, computers, wearable devices, drones, robots, digital cameras and other devices with communication functions.
  • the embodiment of this application takes a mobile phone as an example for description, and other electronic devices may refer to this embodiment.
  • the mode in the 1.45GHz-2.5GHz frequency band when the mode in the 1.45GHz-2.5GHz frequency band is switched between B3 and B1, the mode in the low-frequency band may be moved to the higher frequency band of B20 such as B5. Failure to meet B20 will also limit the feed position, making the design inflexible in a limited space, or requiring more antenna switches to maintain the frequency ratio, which will increase costs.
  • the available bandwidth of the N78 frequency band is usually wider than that of low frequency and medium frequency, and the data transmission volume it can achieve dominates. How to support the N78 frequency band has always become a technical problem that needs to be solved. If the mode in the 1.45GHz-2.5GHz frequency band resonates with the mode of N78 in the same antenna, when B32 (1452-1495.9MHz), B3 (1710-1880MHz), B1 (1920-2170MHz) within 1.45GHz-2.5GHz ), and B40 (2300-2400MHz), the N78 mode will also shift significantly. For example, a shift of 200 ⁇ 400MHz will cause the intermediate frequency (1.7 ⁇ 2.4GHz) to shift when switching. The N78 frequency band cannot be satisfied at the same time, and the support for the combination of ENDC and CA is too low, which will result in the user's throughput not being improved.
  • the antenna assembly provided by this application can at least achieve independent tunability of low-frequency antennas and mid- and high-frequency bands to support more frequency band combinations and improve throughput.
  • the implementation of this application also provides that at least the mid-to-high frequency band and the N78 frequency band can be independently tunable. When the mid-to-high frequency band is tuned, the N78 remains always present, so as to meet the demand for the permanent presence of the N78 and to tune more ENDC and CA combinations. , improve user throughput.
  • the antenna assembly 100 includes a first radiating branch 10 , a second radiating branch 20 and a first feed source 30 .
  • the first radiation branch 10 includes a first ground terminal 11 , a first feed point A and a first open terminal 12 arranged in sequence.
  • the second radiating branch 20 includes a second open end 21 and a second ground end 22 .
  • the first open end 12 and the second open end 21 are opposite to each other and have a gap therebetween.
  • the gap is a coupling gap 40 , wherein the first radiating branch 10 and the second radiating branch 20 are coupled through the coupling gap 40 .
  • the first feed source 30 is electrically connected to the first feed point A.
  • the first feed source 30 is used to excite the first radiating branch 10 to generate the first resonant mode a.
  • the length from the first feeding point A to the first open end 12 is less than or equal to 20% of the length of the first radiating branch 10, so that the first feed source 30 excites at least one coupled resonant mode on the second radiating branch 20.
  • the length from the first feeding point A to the first open end 12 can be 20%, 19%, 18%, 10%, 5%, 1%, etc. of the length of the first radiating branch 10, so that the position of the first feeding point A is close to the second radiating branch 20, which is beneficial for the first feed source 30 to excite at least one coupled resonant mode on the second radiating branch 20.
  • modes c, d, and e are coupled resonant modes.
  • the coupled resonant mode can be one, such as mode c, mode d, or mode e. This application is not limited to this.
  • f1, f2, and f3 in Figure 2 represent different frequency bands. This application does not specifically limit the values of f1, f2, and f3.
  • the frequency bands supported by modes c, d, and e are higher than the frequency band supported by mode a. In other implementations, the frequency band supported by mode a may be higher than the frequency band supported by modes c, d, and e. frequency band.
  • the coupled resonant mode and the first resonant mode a are respectively generated in different radiation branches, the coupled resonant mode and the first resonant mode a can be tuned independently of each other.
  • the antenna assembly 100 provided in this application is designed to couple the first radiating branch 10 and the second radiating branch 20 through the coupling gap 40, and to design the first feeding point A on the first radiating branch 10 to the first opening.
  • the length of the end 12 is less than or equal to 20% of the length of the first radiating branch 10, so that the position of the first feed point A is close to the second radiating branch 20, which is beneficial to the first feed 30 in the second radiating branch.
  • At least one coupled resonant mode is excited on 20. Since the coupled resonant mode and the first resonant mode a are generated from different radiation branches, when the first resonant mode a is tuned, the coupled resonant mode will not be affected.
  • a large shift occurs due to the influence of the first resonant mode a, that is, the coupled resonant mode and the first resonant mode a can be tuned independently of each other.
  • the coupled resonance mode can always exist to meet the independent tuning of multiple frequency bands in a limited space, improve the support rate of multi-band combinations, and thereby increase the transmission rate.
  • the radiation branches described in the present application may also be referred to as radiators.
  • the material of the radiation branches is a conductive material.
  • the radiation branches are ports for the antenna assembly 100 to send and receive radio frequency signals, wherein the radio frequency signals are transmitted in the form of electromagnetic wave signals in the air medium.
  • the present application does not specifically limit the specific form of the radiation branches.
  • the radiation branches include, but are not limited to, the metal frame of the mobile phone and the metal bracket radiator located near the frame.
  • the bracket radiator is arranged in the electronic device 1000, including but not limited to a flexible printed circuit board antenna formed on a flexible printed circuit board (FPC), a laser direct structured antenna by laser direct structured (LDS), a printed direct structured antenna by printing direct structured (PDS), a conductive sheet antenna, etc.
  • FPC flexible printed circuit board
  • LDS laser direct structured
  • PDS printed direct structured antenna by printing direct structured
  • conductive sheet antenna etc.
  • the shapes of the radiating branches include but are not limited to strips, sheets, rods, coatings, films, etc.
  • the radiating branches shown in Figure 1 are only an example and do not limit the shape of the radiating branches provided in this application.
  • the radiating branches are all in strip shape, and the ground end and the open end are respectively the two ends of the radiating branches.
  • This application does not limit the extension trajectory of the radiating branches.
  • the radiating branches are linear.
  • the radiating branches may also extend in a bent shape, a curve, or other trajectories.
  • the above-mentioned radiating branches can be lines with uniform width on the extension track, or can be strips with varying widths such as gradual width and widened areas.
  • the first radiating branch 10 and the second radiating branch 20 are capacitively coupled through the coupling gap 40 .
  • capacitively coupling means that an electric field is generated between the first radiating branch 10 and the second radiating branch 20, and the electrical signal on the second radiating branch 20 can be transmitted to the first radiating branch through the electric field.
  • the first radiating branches 10 and the second radiating branches 20 may be arranged along a straight line or substantially along a straight line (that is, with a smaller tolerance in the design process).
  • the first radiating branches 10 and the second radiating branches 20 can also be staggered in the extension direction to form an avoidance space.
  • the first ground terminal 11 and the second ground terminal 22 are both grounded.
  • the "ground” mentioned in this application refers to the electrical connection to the reference ground or the electrical connection to the reference ground system GND.
  • the electrical connection methods include but are not limited to direct welding, or through coaxial lines, microstrip lines, conductive Indirect electrical connection through shrapnel, conductive glue, etc.
  • the reference ground system GND can be an independent overall structure, or it can be multiple structures that are independent but electrically connected to each other.
  • the first feed source 30 is electrically connected to the radio frequency transceiver chip.
  • the first feed source 30 feeds the radio frequency signal emitted by the radio frequency transceiver chip into the first radiating branch 10 through the first feeding point A.
  • the radio frequency signal can excite the first radiating branch 10 to generate a resonant current, forming a first resonance. Mode a, to support the frequency band corresponding to the resonant current.
  • the first feed source 30 can also excite the second radiating branch 20 to generate a resonant current to form a coupled resonant mode to support the resonant current corresponding to the resonant current. frequency band.
  • the frequency band supported by the first resonant mode a is related to the coupling
  • the frequency bands supported by the combined resonant modes are different.
  • the frequency band supported by the first resonance mode a includes but is not limited to electromagnetic wave signals that are at least one of the LB frequency band, the MHB frequency band, the UHB frequency band, the Wi-Fi frequency band, and the GNSS frequency band.
  • the LB frequency band refers to the frequency band below 1000MHz (excluding 1000MHz).
  • the MHB frequency band refers to the frequency band from 1000MHz to 3000MHz (including 1000MHz, excluding 3000MHz).
  • the UHB frequency band refers to the frequency band from 3000MHz to 10000MHz (including 3000MHz).
  • the Wi-Fi frequency band includes but is not limited to at least one of Wi-Fi 2.4G, Wi-Fi 5G, Wi-Fi 6E, etc.
  • the full name of GNSS is Global Navigation Satellite System, and its Chinese name is Global Navigation Satellite System.
  • GNSS includes global Global Positioning System (GPS), Beidou, Global Navigation Satellite System (GLONASS), and Galileo satellite navigation. System (Galileo satellite navigation system, Galileo) and regional navigation systems, etc.
  • the resonant current of the first resonant mode a passes from the first feed source 30 through the first feed point A and returns to the ground from the first ground terminal 11 .
  • the first resonant mode a is generated by a loop antenna composed of the first feed source 30 , the first radiating branch 10 and the first ground terminal 11 .
  • the resonant current of the first resonant mode a operates in a 1/4 wavelength mode of the supported frequency band.
  • the frequency band supported by the first resonance mode a includes at least part of the frequency band from 1.45 to 2.4 GHz.
  • the frequency band supported by the first resonance mode a covers at least one of B32 (1452-1495.9MHz), B3 (1710-1880MHz), B1 (1920-2170MHz), B40 (2300-2400MHz), etc.
  • the 1/4 wavelength mode of the mid-frequency band (1450-2400 MHz) can be resonant between the first ground terminal 11 of the first radiating branch 10 and the first feed point A.
  • First resonance mode a By designing the effective electrical length of the first radiating branch 10, the 1/4 wavelength mode of the mid-frequency band (1450-2400 MHz) can be resonant between the first ground terminal 11 of the first radiating branch 10 and the first feed point A.
  • the first radiation branch 10 is a part of the frame of the middle frame of the mobile phone, and the width of the first radiation branch 10 is relatively wide, for example, 7-8 mm.
  • the length of the first radiating branch 10 may be less than or equal to 18 mm.
  • the length of the first radiating branch 10 may be 17.2 mm.
  • the first resonant mode a of the 1/4 wavelength mode in the mid-frequency band (1450-2400MHz) can be resonated between the first ground terminal 11 of the first radiating branch 10 and the first feed point A, and the first radiating branch 10 Has a relatively short physical length.
  • the length of the first radiating branch 10 provided in this embodiment is shorter than the general radiating branch supporting the mid-frequency band, which is beneficial to the miniaturization of the antenna assembly 100 and can reduce the space occupied on the electronic device 1000 .
  • the length of the first radiating branch 10 may be 17.2 mm (only for example, not limited to this data), and the distance between the first feed point A and the first open end 12 is 3.5 mm (only for example, Not limited to this data).
  • the first feed point A is close to the coupling gap 40 , which facilitates the first coupling gap 40 to couple energy to the second radiation branch 20 through the coupling gap 40 , and can have different modes through the second ground terminal 22 and the matching design.
  • the possibility of states being excited such as exciting the subsequent third resonant mode or fifth resonant mode.
  • the first feed point A is close to the first open end 12, there is a relatively large space between the first feed point A and the first ground end 11, so that a key circuit board and other devices can be installed, improving the Space utilization and device arrangement compactness within the electronic device 1000.
  • the frequency band supported by the coupled resonance mode includes at least one of 2.5-2.69GHz (N41), 3.3-3.8GHz (N78), and 4.8-5GHz (N79).
  • the coupled resonance mode generated by the antenna assembly provided in Figure 3a may be mode d in Figure 2, and the current distribution diagram of mode d can be referred to Figure 9. For example, it supports the 3.3-3.8GHz (N78) frequency band.
  • a matching circuit M is provided on the second radiating branch 20 to return to ground, so that part of the current on the second radiating branch 20 returns to ground through the matching circuit M.
  • the position where the matching circuit M is electrically connected may be located between the second open end 21 and the middle point of the second radiating branch 20 .
  • the structure of the antenna assembly provided in Figure 3b can support three coupled resonant modes.
  • the three coupled resonant modes support different frequency bands, including the above-mentioned mode d, and also adds mode c (current distribution diagram reference Figure 8), mode e (refer to Figure 10 for the current distribution diagram).
  • these three modes respectively support three frequency bands of 2.5-2.69GHz (N41), 3.3-3.8GHz (N78), and 4.8-5GHz (N79), which are not limited in this application.
  • Providing a signal source in the corresponding frequency band and designing the effective electrical length of the first radiating branch 10 can enable the first radiating branch 10 to generate the first resonant mode a that supports the frequency band of 1.45-2.4GHz, and to the second radiating branch 10.
  • the second radiating branch 20 can generate the third resonance mode c that supports 2.5-2.69GHz and the fourth resonance mode d that supports 3.3-3.8GHz under the excitation of the first feed source 30 And supports the fifth resonance mode e of 4.8-5GHz.
  • the first resonance mode a and the third, fourth, and fifth resonance modes are generated by different radiation branches, when the first resonance mode a is tuned.
  • the first resonant mode a is tuned between B32 (1452-1495.9MHz), B3 (1710-1880MHz), B1 (1920-2170MHz), and B40 (2300-2400MHz)
  • the third resonant mode c , the fourth resonant mode d, and the fifth resonant mode e can remain constant, that is, the antenna assembly 100 provided by this application can support the CA combination of B32+B41+N78+N79, and can also support B3+B41+N78+N79.
  • the CA combination can also support the CA combination of B1+B41+N78+N79, the CA combination of B40+B41+N78+N79, and the CA combination of B1+B3+B41+N78+N79, etc.
  • the antenna assembly 100 provided by the present application supports many multi-band CA combinations, has wide frequency band coverage, and can effectively increase the data transmission rate.
  • the coupling frequency band may also include one frequency band, for example, the coupled resonance mode supports one of B41, N78, and N79; or the coupling frequency band may also include two frequency bands, for example, the coupled resonance mode Support B41 and N78 etc.
  • This application provides a multi-mode antenna design that not only covers multiple operating frequency bands, but also allows the first resonant mode a of the intermediate frequency and the third, fourth, and fifth resonant modes of the mid-to-high frequency band to be relatively independently controlled. Tuning, the feed position can be selected in the design to meet the limited design space, and the needs of various CA combinations and ENDC combinations can be met through frequency tuning selection.
  • the second radiating branch 20 further includes a second feed point B located between the second open end 21 and the second ground end 22 . It can be understood that the second feeding point B is the position where the matching circuit M is electrically connected to the second radiating branch 20 in FIG. 3b.
  • the antenna assembly 100 also includes a second feed source 50 .
  • the second feed source 50 is electrically connected to the second feed point B, and is used to excite the second radiating branch 20 to generate the second resonance mode b.
  • the frequency band supported by the second resonance mode b is less than 1 GHz.
  • the second radiating branch 20 and the second feed source 50 can serve as low-frequency antennas. This low-frequency antenna can be used to support B20 frequency band, B5 frequency band, B8 frequency band, B28 frequency band, etc. Since the first resonance mode a and the second resonance mode b are respectively generated from different radiation branches, the second resonance mode b and the first resonance mode a can be tuned independently of each other.
  • f0, f1, f2, and f3 in Figure 5 represent different frequency bands. This application does not specifically limit the values of f0, f1, f2, and f3.
  • the frequency bands supported by modes c, d, and e are higher than the frequency band supported by mode a, and the frequency band supported by mode a is higher than the frequency band supported by mode b.
  • the frequency band supported by mode b may be higher than the frequency band supported by one or more of modes a, c, d, and e.
  • the resonance current of the second resonance mode b flows to the second ground terminal 22 through the second open end 21 .
  • the second resonant mode b is generated by the inverted F antenna composed of the second feed source 50 and the second open end 21 to the second ground end 22 .
  • the resonant current of the second resonant mode b operates in the 1/4 wavelength mode of the supported frequency band.
  • the frequency band supported by the second resonance mode b is a frequency band less than 1 GHz.
  • the second 1/4 wavelength mode of low frequency (790-1000MHz) can be resonant between the second ground end 22 and the second open end 21 of the second radiating branch 20. Resonance mode b.
  • the first radiation branch 10 is a part of the frame of the middle frame of the mobile phone, and the width of the first radiation branch 10 is relatively wide, for example, 7-8 mm.
  • the length of the second radiating branch 20 may be less than or equal to 35 mm.
  • the length of the second radiating branch 20 may be 33.4 mm, so that the second ground end 22 and the second open end 21 of the second radiating branch 20 can be tunable.
  • the second resonance mode b is a 1/4 wavelength mode in a low frequency band (less than 1 GHz), and the second radiating branch 20 has a relatively short physical length.
  • the length of the second radiating branch 20 may be 33.4 mm (only for example, not limited to this data), and the distance between the second feed point B and the second open end 21 is 12.1 mm (only for example, Not limited to this data).
  • the second feed point B of the present application is approximately 12.1mm away from the second open end 21.
  • the mode excited by the second feed source 50 is at low frequency, which meets the low-frequency radiation performance and can excite the IFA antenna mode. , that is, coupled resonance mode, etc.
  • the length of the second radiating branch 20 provided in this embodiment is shorter than that of a general radiating branch supporting low frequency bands, which is beneficial to the overall miniaturization of the antenna assembly 100 and can reduce the space occupied on the electronic device 1000 .
  • the lengths of the first radiating branches 10 and the second radiating branches 20 provided in this embodiment are both short, and the overall size of the antenna component 100 is small.
  • the antenna component 100 cannot be designed across the rotating axis, so the design is relatively small.
  • the antenna assembly 100 is small, and the antenna assembly 100 provided in this embodiment is shorter and can be applied to the foldable electronic device 1000.
  • the antenna assembly 100 further includes a first feeding port 13 and a second feeding port 23 .
  • One end of the first feed port 13 is electrically connected to the first feed point A, and the other end of the first feed port 13 is electrically connected to the first feed source 30 .
  • One end of the second feed port 23 is electrically connected to the second feed point B, and the other end of the second feed port 23 is electrically connected to the second feed source 50 .
  • the antenna component 100 further includes a first matching circuit M1 and a second matching circuit M2.
  • One end of the first matching circuit M1 is electrically connected to the second feed point B, and the other end of the first matching circuit M1 is grounded. Specifically, one end of the first matching circuit M1 is electrically connected to the second feed port 23 , and the other end of the first matching circuit M1 is grounded.
  • the first matching circuit M1 is in a band-stop state for certain frequency bands and is in a band-pass state for certain frequency bands.
  • the first matching circuit M1 is in a band-stop state for the low-frequency signal generated by the second feed source 50, and is in a band-pass state for the mid- and high-frequency signals generated by the first feed source 30.
  • the The low-frequency signal will not go to ground through the first matching circuit M1, but will be transmitted to the second radiating branch 20 through the second feed port 23.
  • the medium and high frequency signals generated by the first feed source 30 are transmitted to the second radiation branch 20 through the first feed port 13, the first feed point A, and the coupling gap 40. Since the first matching circuit M1 has a band for the medium and high frequency signals, Therefore, part of the medium and high frequency signals on the second radiating branch 20 can be grounded through the first matching circuit M1 to prevent the medium and high frequency signals on the second radiating branch 20 from affecting the second feed source 50 .
  • the first matching circuit M1 may be a capacitor, an inductor, a series device of a capacitor and an inductor, a parallel device of a capacitor and an inductor, or any of the above.
  • the series device can be connected in parallel with a capacitor, or the above-mentioned series device can be connected in parallel with an inductor, or the two above-mentioned series devices can be connected in parallel, or the two above-mentioned parallel devices can be connected in series, etc.
  • the first matching circuit M1 is a capacitor.
  • One end of the second matching circuit M2 is electrically connected to the first feed point A, and the other end of the first matching circuit M1 is grounded. Specifically, one end of the second matching circuit M2 is electrically connected to the first feed port 13 , and the other end of the second matching circuit M2 is grounded.
  • the second matching circuit M2 is in a band-stop state for certain frequency bands and is in a band-pass state for certain frequency bands. For example, the second matching circuit M2 is in a band-stop state for the mid- and high-frequency signals generated by the first feed source 30 , and is in a band-pass state for the low-frequency signals generated by the second feed source 50 .
  • the The medium and high frequency signals will not go to the ground through the second matching circuit M2, but will be transmitted to the first radiating branch 10 through the first feed port 13. Since the second matching circuit M2 is in a bandpass state for low-frequency signals, part of the low-frequency signals on the first radiating branch 10 can go to ground through the second matching circuit M2 to prevent the low-frequency signals on the first radiating branch 10 from affecting the first feed. Source 30.
  • the second matching circuit M2 may be a capacitor or an inductor, a series device of a capacitor and an inductor, a parallel device of a capacitor and an inductor, or any of the above.
  • the series device can be connected in parallel with a capacitor, or the above-mentioned series device can be connected in parallel with an inductor, or the two above-mentioned series devices can be connected in parallel, or the two above-mentioned parallel devices can be connected in series, etc.
  • the antenna assembly 100 further includes a first matching network P1 and a second matching network P2.
  • the first matching network P1 is electrically connected between the first feed port 13 and the first feed source 30 , and the first matching network P1 is used to adjust the impedance of the first radiating branch 10 to The impedance of the first radiation branch 10 is better matched with the mid-to-high frequency band to generate a resonance mode in the required frequency band and have better radiation performance in the required frequency band.
  • the first matching network P1 may include a tuning circuit for tuning the first resonant mode a (mid-to-high frequency band), and for tuning the resonant frequency point of the first resonant mode a, so that the antenna assembly 100 supports different mid-to-high frequencies. segments to increase the frequency band combinations supported by the antenna assembly 100.
  • the first matching network P1 includes a circuit structure composed of multiple components such as capacitors, inductors, and resistors.
  • the second matching network P2 is electrically connected between the second feed port 23 and the second feed source 50 , and the second matching network P2 is used to adjust the impedance of the second radiating branch 20 to The impedance of the second radiation branch 20 is better matched with the low frequency band to generate a resonance mode in the required frequency band and have better radiation performance in the required frequency band.
  • the second matching network P2 may include a tuning circuit for tuning the second resonant mode b (low frequency band), and for tuning the resonant frequency point of the second resonant mode b, so that the antenna assembly 100 supports different low frequency bands, Increase the frequency band combinations supported by the antenna assembly 100.
  • the second matching network P2 includes a circuit structure composed of multiple components such as capacitors, inductors, and resistors.
  • the first matching circuit M1 may be part of the second matching network P2.
  • the second matching circuit M2 may be part of the first matching network P1.
  • the position of the second feed point B on the second radiating branch 20 is closer to the middle position of the second radiating branch 20 relative to the end.
  • the distance between the second feeding point B and the middle point of the second radiating branch 20 is smaller than the distance between the second feeding point B and the end of the second radiating branch 20 .
  • the second feeding point B is located between the middle point of the second radiating branch 20 and the second open end 21, that is, close to the first radiating branch 10, so as to facilitate the first feed source 30 to excite the antenna mode of the loop mode on the first radiating branch 10 and the second radiating branch 20.
  • the coupled resonant mode of the loop mode is excited to achieve independent tuning of the coupled resonant mode and the first resonant mode a.
  • the length from the second feed point B to the second open end 21 accounts for 30%-40% of the length of the second radiating branch 20 , which on the one hand is beneficial to the first feed source 30 in the The coupled resonance mode of the loop mode is excited on the first radiating branch 10 and the second radiating branch 20.
  • the input impedance of the second feed point B can be better matched, and the second radiating branch 20 has Relatively good radiation performance.
  • the radio frequency energy transmitted by the first feed source 30 is mostly transmitted to the second radiation branch 20 through the coupling gap 40; and by designing the length from the second feed point B to the second open end 21 accounts for the second 30%-40% of the length of the radiating branch 20, that is, the first matching circuit M1 is electrically connected to 30%-40% of the length of the second radiating branch 20, so that the mid- and high-frequency band signals transmitted to the second radiating branch 20 are
  • the second feeding point B of the second radiating branch 20 is transmitted to the first matching circuit M1 through the second feeding port 23 and grounded through the first matching circuit M1 to excite the coupled resonance mode of the loop antenna mode.
  • the coupled resonance mode includes a third resonance mode c.
  • the resonant current of the third resonant mode c flows from the first feed source 30 through the first feed point A and the coupling gap 40 to the ground from the first matching circuit M1.
  • the frequency band supported by the third resonance mode c by the first matching circuit M1 is in a low impedance state, that is, in a short-circuit state.
  • the third resonant mode c is generated by a loop antenna formed by the first feed source 30, the first feed point A, the second feed point B, and the first matching circuit M1. That is, the third resonance mode c is a loop antenna mode.
  • the resonant current of the third resonant mode c operates in the 1/4 wavelength mode of the supported frequency band.
  • the frequency band supported by the third resonance mode c is a frequency band of 2500-2690 MHz.
  • the effective electrical length of the first radiating branch 10 By designing the effective electrical length of the first radiating branch 10, the position of the first feed point A on the first radiating branch 10, the effective electrical length of the second radiating branch 20, the position of the second feeding point B on the second radiation
  • the position on the branch 20 causes the third resonance mode c to be generated between the first feeding point A of the first radiating branch 10 and the second feeding point B of the second radiating branch 20, where the third resonance mode c
  • the resonant frequency band is (2500-2690MHz), and the resonant current of the third resonant mode c works in the 1/4 wavelength mode of the supported frequency band.
  • the present application can be used in the following scenarios.
  • the space between the first open end 12 of the first radiating branch 10 and the first grounding end 11 is occupied by other devices (such as a power button).
  • the first feed source 30 cannot be arranged between the first open end 12 and the first grounding end 11, but is forced to be designed close to the first open end 12.
  • the first feeding point A is close to the coupling slot 40, which is beneficial for the first radiating branch 10 to couple energy to the second radiating branch 20 through the coupling slot 40, and different modes may be excited through the second feeding point B and the matching design (first matching circuit M1).
  • the first feed source 30 excites the current distribution from the first feeding point A to the second feeding point B and the first matching circuit M1 to the ground, thereby exciting the third resonant mode c.
  • the feed of the second feed source 50 is usually equipped with a bandpass circuit or a low pass circuit.
  • the circuit (the first matching circuit M1) is designed to make the modes falling in the relatively high frequency band disappear or have little impact, so when the third resonant mode c is provided by the first feed source 30 in the present application (responsible for the relatively high frequency
  • the third resonant mode c will go to ground from the first matching circuit M1.
  • the third resonance mode c can be retained due to the matching design characteristics of the first matching circuit M1.
  • the third resonant mode c utilizes the first matching circuit M1 of the second feed source 50 that was originally used to filter its relatively high frequency band. There is no need to set up an additional first matching circuit M1, which saves space, manufacturing processes and costs. .
  • the medium and high frequency signals generated by the first feed source 30 can also be grounded on the second radiation branch 20 through the second ground terminal 22 to form a coupled resonance mode.
  • this coupled resonance mode is called the third Four resonance modes d.
  • the fourth resonance mode d is a loop formed by the first feed source 30, the first feed point A, the first radiating branch 10, the coupling gap 40, the second radiating branch 20, and the second ground terminal 22. produced by the antenna. That is, the fourth resonance mode d is a loop antenna mode.
  • FIG. 9 the dotted arrow part of Figure 9.
  • a part of the resonant current of the fourth resonant mode d flows from the first feed source 30 to the first current zero point Q1 through the coupling gap 40 , and another part of the resonant current of the fourth resonant mode d flows from the first feed source 30 to the first current zero point Q1 .
  • the two ground terminals 22 flow to the first current zero point Q1, and the first current zero point Q1 is located between the second ground terminal 22 and the second feed point B.
  • the resonant current of the fourth resonant mode d operates in the 1/2 wavelength mode of the supported frequency band.
  • the first current zero point Q1 refers to a point where the current intensity is relatively small.
  • the minimum value of the frequency band supported by the fourth resonance mode d is greater than the maximum value of the frequency band supported by the third resonance mode c.
  • the frequency band supported by the third resonance mode c is the frequency band of 2500-2690 MHz.
  • the frequency band supported by the fourth resonance mode d is 3.3-3.8GHz.
  • the coupled resonance modes also include a fifth resonance mode e.
  • the minimum value of the frequency band supported by the fifth resonance mode e is greater than the maximum value of the frequency band supported by the fourth resonance mode d.
  • a part of the resonance current of the fifth resonance mode e flows from the first ground terminal 11 to the second current zero point Q2, and the other part of the resonance current of the fifth resonance mode e flows from the second feed point B to
  • the second current zero point Q2 is located between the first open end 12 and the first ground end 11 .
  • the second current zero point Q2 refers to a point where the current intensity is relatively small.
  • the resonant current of the fifth resonant mode e can be grounded through the first matching circuit M1.
  • This application can be used in the following scenario.
  • the antenna assembly 100 When the antenna assembly 100 is installed in a mobile phone, due to the limited design space inside the mobile phone, the space between the first open end 12 of the first radiation branch 10 and the first ground end 11 is occupied by other devices (such as a power supply). button), the first feed source 30 cannot be disposed between the first open end 12 and the first ground end 11, and is forced to be designed close to the first open end 12.
  • the first feed point A is close to the coupling gap 40, which is conducive to
  • the first radiating branch 10 couples energy to the second radiating branch 20 through the coupling gap 40, and has the possibility of being excited in different modes through the second feed point B and the matching design.
  • the first radiating branch 10 couples energy to the second radiating branch 20 through the coupling gap 40, and has the possibility of being excited in different modes through the second feed point B and the matching design.
  • the first radiating branch 10 by pairing the first radiating branch 10.
  • the effective electrical length from the second open end 21 to the second feed point B and the second feed point B through the first matching circuit M1 is designed so that the effective electrical length of the path is equal to 1/1 of the required frequency band.
  • the medium wavelength is close, so the first feed source 30 excites a current flowing from the reference ground to the second zero point Q2 through the first ground terminal 11, and flows from the reference ground to the second feeding point B through the first matching circuit M1.
  • the current distribution of the second current zero point Q2 then excites and generates the fifth resonance mode e that supports this frequency band.
  • the feed of the second feed source 50 is usually equipped with a bandpass circuit or a low pass circuit.
  • the circuit (first matching circuit M1) is designed to make the mode falling in the relatively high frequency band disappear or have little impact, so when the fifth resonant mode e is provided by the first feed source 30 in the present application (responsible for the relatively high frequency When the frequency band) is excited, since the first matching circuit M1 has low impedance to the relatively high frequency band, it will be grounded from the first matching circuit M1, and the fifth resonant mode e can be retained due to the matching design characteristics of the first matching circuit M1 .
  • the fifth resonant mode e utilizes the first matching circuit M1 of the second feed source 50 that was originally used to filter its relatively high frequency band. There is no need to set up an additional first matching circuit M1, which saves space, manufacturing processes and costs. .
  • the antenna assembly 100 further includes a first tuning circuit T1.
  • the first tuning circuit T1 is electrically connected to the first feed point A or to the first radiation branch 10 between the first feed point A and the first ground terminal 11 .
  • the first tuning circuit T1 may be electrically connected to the first feeding port 13 .
  • the first tuning circuit T1 is used to tune the frequency band of the first resonance mode a. For example, if the first resonant mode a supports the B1 frequency band during a period of time, the first resonant mode a can support the B3 frequency band through tuning of the first tuning circuit T1. In this way, by configuring the first tuning circuit T1, the first resonant mode a can support multiple frequency bands, increase the frequency band combinations supported by the antenna assembly 100, and improve the throughput and data transmission rate of the antenna assembly 100.
  • the first tuning circuit T1 includes an antenna switch and/or an adjustable capacitor.
  • the first tuning circuit T1 includes but is not limited to a capacitor, it can also be an inductor, it can be a series device of a capacitor and an inductor, it can also be a parallel device of a capacitor and an inductor, or it can be
  • the above-mentioned series device may be connected in parallel with a capacitor, or the above-mentioned series device may be connected in parallel with an inductor, or two of the above-mentioned series devices may be connected in parallel, or two of the above-mentioned parallel devices may be connected in series, etc.
  • the first tuning circuit T1 further includes a plurality of first tuning branches T11.
  • One end of the plurality of first tuning branches T11 is electrically connected to one end of the first switch circuit K1, and the other end of the first switch circuit K1 is electrically connected to the first feed port 13. That is, the first switch circuit K1 is a single-pole multi-throw switch.
  • the other ends of the plurality of first tuning branches T11 are all grounded.
  • the plurality of first tuning branches T11 are used for tuning The size of the frequency band supported by the first resonance mode a.
  • each first tuning branch T11 is different.
  • the plurality of first tuning branches T11 are a plurality of capacitive devices with different capacitance values.
  • the plurality of first tuning branches T11 are a plurality of inductance devices with different inductance values.
  • the plurality of first tuning branches T11 include a plurality of capacitive devices with different capacitance values, and a plurality of inductance devices with different inductance values.
  • the first tuning circuit T1 includes a first adjustable capacitor C1.
  • the size of the first adjustable capacitor C1 is adjustable for tuning.
  • the first adjustable capacitor C1 is a capacitor with an adjustable capacitance value. In this way, by adjusting the capacitance value of the capacitor, the impedance value of the first tuning circuit T1 can be adjusted, thereby adjusting the effectiveness of the first tuning circuit T1.
  • the electrical length further adjusts the effective electrical length of the first radiating branch 10, thereby adjusting the size of the frequency band supported by the first resonant mode a.
  • the first tuning circuit T1 may also be a combination of the first embodiment and the second embodiment described above.
  • the first tuning branch T11 includes the first adjustable capacitor C1 .
  • the first tuning circuit T1 Since the first tuning circuit T1 is connected to the first radiating branch 10, it can tune the effective electrical length on the first radiating branch 10, thereby tuning the first resonance mode a generated on the first radiating branch 10, and for the main The influence of the second, third, fourth and fifth resonance modes e generated on the second radiating branch 20 is relatively small. Therefore, when the first resonant mode a is tuned by the first tuning circuit T1, the frequency bands supported by the second, third, fourth, and fifth resonant modes e can remain constant, so as to realize the second, third, and third resonant modes e.
  • the support of the frequency bands supported by the fourth and fifth resonant modes e and the tuning of the frequency bands supported by the first resonant mode a increase the frequency band combinations supported by the antenna assembly 100 and improve the throughput and data transmission rate.
  • the first tuning circuit T1 may be a part of the second matching circuit M2 or the first matching network P1.
  • the second tuning circuit T2 may be part of the first matching circuit M1 or the second matching network P2.
  • the antenna assembly 100 further includes a second tuning circuit T2.
  • the second tuning circuit T2 is electrically connected to the second radiating branch 20 .
  • the second tuning circuit T2 may be electrically connected to the second feed port 23 , or directly electrically connected to the branches of the second radiating branches 20 .
  • the second tuning circuit T2 is used to tune the frequency band of the third resonance mode c and/or the second resonance mode b.
  • the second tuning circuit T2 can tune the third resonant mode c, so that the third resonant mode c can be designed with a frequency ratio to the second resonant mode b, supporting more CA combinations, or can be used as a matching design to improve a single frequency band. (such as the frequency band supported by the third resonance mode c).
  • the second tuning circuit T2 can also enable the second resonant mode b of the low-frequency antenna to be tuned freely, thus supporting more ENDC combinations and CA combinations.
  • the structure of the second tuning circuit T2 may refer to the structure of the first tuning circuit T1 and will not be described again here.
  • FIG. 15 is an S-parameter curve diagram of an antenna assembly 100 provided by an embodiment of the present application.
  • the antenna assembly 100 generates a first resonance mode a, a second resonance mode b, a third resonance mode c, a fourth resonance mode d, and a fifth resonance mode e.
  • curve S2, 2_B32, curve S2, 2_B3, curve S2, 2_B1_B41 in Figure 15. It can be seen that when the first resonant mode a is tuned, for example, the first resonant mode a is in the frequency band B32 (1452- 1495.9MHz), B3 (1710-1880MHz), B1 (1920-2170MHz), the second resonance mode b can remain constant. In addition, the third resonance mode c, the fourth resonance mode d, and the All five resonant modes e can remain constant.
  • a second resonant mode can support two frequency bands at the same time, for example, supporting B3 and B32 at the same time.
  • the second resonant mode b When the second resonant mode b is tuned, for example, the second resonant mode b is in the B20 frequency band, B5 frequency band, B8 frequency band, B28 When tuning between frequency bands, the first resonant mode a can remain constant.
  • the second, third, fourth and fifth resonance modes can all be kept constant, and the second resonance mode b can be tuned independently, so that the CA combination of B20+B32+B41+N78+N79 can be supported, and the CA combination of B20+B3+B41+N78+N79 can be supported, and the CA combination of B20+B1+B41+N78+N79 can be supported, and the CA combination of B20+B40+B41+N78+N79 can be supported, and the CA combination of B20+B1+B3+B41+N78+N79 can be supported, and the above-mentioned B20 can be replaced with low frequency bands such as B5 band, B8 band, and B28 band.
  • the antenna assembly 100 provided in the present application can support more frequency bands of CA combination and ENDC combination, improve throughput, and thus improve transmission rate.
  • the antenna component 100 since the generation of the coupled resonant mode utilizes the radiation branches of the original low-frequency antenna, the antenna component 100 generates the required coupled resonant mode without adding new branches.
  • the antenna component 100 can realize the independent tuning of the second resonant mode b supporting the low frequency and the first resonant mode a supporting the 1.45-2.4GHz internal frequency band, and the first resonant mode a supporting the 1.45-2.4GHz internal frequency band and the coupled resonant mode supporting the 2.5-2.69GHz, 3.3-3.8GHz, and 4.8-5GHz frequency bands can be independently tuned.
  • multiple low-frequency bands and multiple intermediate frequency bands can be tuned to form a multi-band antenna that combines multiple low-frequency bands and multiple intermediate frequency bands, and the N78 band is always maintained without occupying additional space.
  • An independently tunable multi-band antenna is formed in the electronic device 1000 with limited space.
  • the third resonance mode c can also be excited by the second feed source 50 .
  • the structure of the antenna assembly 100 in this embodiment is roughly the same as that of the antenna assembly 100 in the above embodiment.
  • the main difference is that the second matching network P2 pairs the second resonant mode b and the third resonant mode.
  • the frequency bands supported by c are in a low-impedance state, and other frequency bands are in a band-stop state.
  • the second matching circuit M2 is in a low impedance state for the frequency band supported by the third resonance mode c.
  • the second feed source 50 is also used to excite the second radiation branch 20 to generate a third resonance mode c. Please refer to the dotted joint part in Figure 16.
  • the resonant current of the third resonant mode c passes from the second feed source 50 through the second feed point B, the coupling gap 40, and from the second feed point B to the coupling gap 40.
  • Matching circuit M2 goes to ground.
  • Table 1 shows the efficiency diagram of each frequency band when the third resonant mode c is excited by the first feed source 30 and the second feed source 50 respectively.
  • the third resonant mode c is excited by the first feed source 30 and the second feed source 50 respectively, so that the impedance matching of the radiation branches to each frequency band is different.
  • the third resonant mode c is fed and excited by the first feed source 30
  • the absolute value of the efficiency of the intermediate frequency (1.9 ⁇ 2.4GHz) and N78 frequency band corresponding to the third resonant mode c is relatively small and has good performance.
  • the third resonant mode c is excited by the second feed source 50
  • the absolute value of the efficiency of the intermediate frequency (1.4-2.2 GHz) mode corresponding to the second resonant mode b is relatively small and has better performance.
  • level CA combination (at least 4CA group combined with the above).
  • the electronic device 1000 further includes a conductive frame 200.
  • the second radiation branch 20 and the first radiation branch 10 are both part of the conductive frame 200, that is, the conductive frame 200 serves as a radiation branch of the antenna assembly 100, which reduces the space occupied by the antenna assembly 100 in the electronic device 1000.
  • the conductive frame 200 is reused, which is conducive to the miniaturization of the entire device.
  • the conductive frame 200 is a frame connected between the display screen and the back cover, and its material is a conductive material.
  • the material of the conductive frame 200 can be a metal conductive material, which can meet the antenna design, improve the structural strength and increase the metal texture.
  • the electronic device 1000 may be a non-foldable device, a foldable electronic device, a stretchable electronic device, or the like.
  • Mobile phones generally need to be equipped with multiple antennas, such as 8 antennas, 12 antennas, etc., so multiple antennas need to be installed on the conductive frame 200 of the mobile phone.
  • the long side will be divided into upper and lower parts due to the setting of the rotating shaft. In both parts, the radiating branches of the antenna assembly 100 cannot cross the axis of rotation, resulting in a limitation in the length of the radiating branches on the long side.
  • the long side size of the mobile phone is between 140mm-170mm. When the long side of the mobile phone is foldable, the long side size after folding is relatively small, such as between 65mm-80mm.
  • the long side of the radiation branch of a general antenna assembly 100 that supports low frequency, medium and high frequency is relatively long.
  • the length of the radiation branch of the low frequency antenna is 57.8mm
  • the length of the radiation branch of the medium and high frequency antenna is 21.8mm. In this way, it cannot be set in The long side of a foldable phone. Therefore, how to design the antenna assembly 100 so that it can be installed on the long side of the foldable mobile phone has become a technical problem that needs to be solved urgently.
  • the antenna assembly 100 designed the first to fifth resonance modes a on the antenna assembly 100 by designing the positions of the first feed point A and the second feed point B. Mode e, and the low frequency and the intermediate frequency can be independently tuned, and the intermediate frequency and the medium and high frequency can be independently tuned.
  • the length of the first radiation branch 10 is less than or equal to 18mm
  • the length of the second radiation is less than or equal to 35mm, so that it can be better compatible with the foldable mobile phone without crossing the rotating axis, and can support more CA combinations and ENDC combinations.
  • the specific structure of the antenna assembly 100 applied to the electronic device 1000 includes: the conductive frame 200 includes a pair of long sides 210 , a pair of short sides 220 and a rotating shaft 230 .
  • the pair of long sides 210 refers to the two long sides 210 arranged along the Y-axis direction and opposite to each other, and the pair of short sides 220 refers to the two short sides 220 arranged along the X-axis direction and opposite to each other.
  • the size of the long side 210 is larger than the size of the short side 220 .
  • the pair of short sides 220 are parallel to the rotating shaft 230 . That is, the rotating shaft 230 is arranged along the X-axis direction. In this embodiment, the rotating shaft 230 divides the pair of long sides 210 into two parts of the same size. However, in other embodiments, the rotating shaft 230 may divide the pair of long sides 210 into two parts of different sizes.
  • the pair of long sides 210 are both folded as the rotating shaft 230 rotates.
  • the second radiating branch 20 and the first radiating branch 10 are located on one of the long sides 210 and on the same side of the rotating shaft 230 . That is, the rotating shaft 230 divides the pair of long sides 210 into four parts, and the second radiating branch 20 and the first radiating branch 10 can be located in any one of the four parts.
  • first radiating branches 10 and the second radiating branches 20 may be disposed on the short sides 220, at corners, etc.
  • the conductive frame 200 of the electronic device 1000 is also provided with buttons, such as volume keys, power buttons, etc. These buttons correspond to circuit boards provided with buttons to contact the buttons.
  • the first radiating branch 10 and the second radiating branch 20 of the antenna assembly 100 are disposed on the conductive frame 200, the first ground terminal 11 is electrically connected to the reference ground in the electronic device 1000, and the first feed point A passes through the first feed
  • the port 13 (such as a ground spring) is electrically connected to the second matching circuit M2, the first matching network P1, the first feed source 30, etc. on the circuit board.
  • the first feed point A is relatively close to the first open end 12 , so there is a certain space between the first feed point A and the first ground end 11 .
  • the second feed point B is close to the second open end 21 , so there is a certain space between the second feed point B and the second ground end 22 . It can be between the feed point and the ground terminal, or A key circuit board or the like is arranged between the open end and the ground end to improve space utilization in the electronic device 1000 and improve the compactness of the arrangement of each device.
  • the electronic device 1000 further includes a first key circuit board 300 and a second key circuit board 400 provided inside the conductive frame 200 .
  • the first key circuit board 300 is a flexible circuit board for the volume key
  • the second key circuit board 400 is a flexible circuit board for the power key.
  • the first button circuit board 300 is disposed adjacent to the second radiating branch 20
  • the orthographic projection of the first button circuit board 300 on the second radiating branch 20 is located between the second ground terminal 22 and the second radiating branch 20 . between the second open ends 21 .
  • the orthographic projection of the second key circuit board 400 on the first radiation branch 10 is located between the first ground terminal 11 and the first feed point A.
  • the flexible circuit board of the volume key can be disposed adjacent to the second radiating branch 20; the flexible circuit board of the power button can be disposed adjacent to the first radiating branch. 10 are arranged adjacently to form suitable matching pairs according to different sizes, improving the compactness and rationality of the arrangement of each device.

Landscapes

  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请提供了一种天线组件及具有该天线组件的电子设备,天线组件包括:第一辐射枝节、第二辐射枝节以及第一馈源。所述第一辐射枝节包括依次设置的第一接地端、第一馈电点及第一开口端。所述第二辐射枝节包括第二开口端及第二接地端,所述第一开口端与所述第二开口端之间具有缝隙。第一馈源电连接于所述第一馈电点,用于激励所述第一辐射枝节产生第一谐振模态。所述第一馈电点至所述第一开口端的长度小于或等于所述第一辐射枝节长度的20%,所述第一馈源在所述第二辐射枝节上激励出至少一个耦合谐振模态。本申请提供的天线组件能够在有限的空间内满足多频段的独立调谐。

Description

天线组件及电子设备
本申请要求于2022年9月21日提交中国专利局、申请号为2022111521153、申请名称为“天线组件及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种天线组件及电子设备。
背景技术
随着网络技术的发展,传输数据的高传输速率的需求越来越高。多频段覆盖技术通过同时覆盖多个频段可提高吞吐量,以提高传输数据量,提升数据传输速率。而对于电子设备上的天线设计而言,多频段覆盖中,某些频段的调谐会导致其他频段发生大幅度的偏移,无法满足多频段的独立调谐,多频段组合的支持率低。因此,在有限的空间内如何灵活设计出多个频段覆盖的天线,且满足多频段的独立调谐,提高多频段组合的支持率,成为需要解决的技术问题。
发明内容
本申请提供了一种能够在有限的空间内满足多频段的独立调谐的天线组件及具有该天线组件的电子设备。
一方面,本申请提供了一种天线组件,包括:
第一辐射枝节,所述第一辐射枝节包括依次设置的第一接地端、第一馈电点及第一开口端;
第二辐射枝节,所述第二辐射枝节包括第二开口端及第二接地端,所述第一开口端与所述第二开口端之间具有缝隙;以及
第一馈源,电连接于所述第一馈电点,用于激励所述第一辐射枝节产生第一谐振模态;
其中,所述第一馈电点至所述第一开口端的长度小于或等于所述第一辐射枝节长度的20%,所述第一馈源在所述第二辐射枝节上激励出至少一个耦合谐振模态。
本申请提供的天线组件,通过设计第一辐射枝节与第二辐射枝节通过耦合缝隙耦合,及在第一辐射枝节上设计所述第一馈电点至所述第一开口端的长度小于或等于所述第一辐射枝节长度的20%,使第一馈电点的位置靠近第二辐射枝节,利于所述第一馈源在所述第二辐射枝节上激励出至少一个耦合谐振模态,由于耦合谐振模态与第一谐振模态分别产生于不同的辐射枝节,故当第一谐振模态被调谐时,耦合谐振模态不会受到第一谐振模态的影响而发生大幅度的偏移,即所述耦合谐振模态与所述第一谐振模态可相互独立被调谐,以在有限的空间内满足多频段的独立调谐,提高多频段组合的支持率,进而提高传输速率。
另一方面,本申请还提供了一种电子设备,包括上述的天线组件。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的电子设备中第一种天线组件的结构示意图;
图2是图1提供的天线组件所产生的谐振模态的示意图;
图3a是图2所示的第一谐振模态的电流分布图;
图3b是本申请实施例提供的第二种天线组件的结构示意图;
图4是本申请实施例提供的第三种天线组件的结构示意图;
图5是图4提供的天线组件所产生的谐振模态的示意图;
图6是图5所示的第二谐振模态的电流分布图;
图7是图4所提供的第三种天线组件具有第一匹配电路、第一匹配网络、第二匹配电路及第二匹配网络的结构示意图;
图8是图5所示的第三谐振模态的电流分布图;
图9是图5所示的第四谐振模态的电流分布图;
图10是图5所示的第五谐振模态的电流分布图;
图11是图7所提供的第三种天线组件具有第一调谐电路、第二调谐电路的结构示意图;
图12是本申请实施例提供的第一种调谐电路的结构示意图;
图13是本申请实施例提供的第二种调谐电路的结构示意图;
图14是本申请实施例提供的第三种调谐电路的结构示意图;
图15是第二谐振模态在B32、B3、B1/B41之间被调谐时第一谐振模态、第三谐振模态、第四谐振模态、第五谐振模态的状态图;
图16是第三谐振模态被第二馈源激发时的电流分布图;
图17是本申请提供的天线组件应用于电子设备上的结构示意图;
图18是本申请提供的天线组件应用于可折叠电子设备上的结构示意图。
具体实施方式
下面将结合附图,对本申请的技术方案进行清楚、完整地描述。显然,本申请所描述的实施例仅仅是一部分实施例,而不是全部的实施例。基于本申请提供的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本申请的保护范围。
在本申请中提及“实施例”意味着,结合实施例所描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的、独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如:包含了一个或多个零部件的组件或设备没有限定于已列出的一个或多个零部件,而是可选地还包括没有列出的但所示例的产品固有的一个或多个零部件,或者基于所说明的功能其应具有的一个或多个零部件。
如图1所示,图1为本申请实施例提供的一种电子设备100的结构示意图。电子设备100包括但不限于为手机、平板电脑、笔记本电脑、计算机、可穿戴设备、无人机、机器人、数码相机等具有通讯功能的设备。本申请实施例以手机为例进行说明,其他的电子设备可参考本实施例。
对于例如手机等电子设备上的天线设计而言,电子设备的空间有限,往往同一天线上产生多个谐振模态,例如1.45GHz-2.5GHz频段的模态与低频频段(小于1GHz)的模态谐振于同一天线,当在1.45GHz-2.5GHz内的B32(1452-1495.9MHz),B3(1710-1880MHz),B1(1920-2170MHz),以及B40(2300-2400MHz)之间调谐时,低频频段的模态也会跟着向较高频率或较低频率作偏移。若为了满足特定的载波聚合(Carrier Aggregation,CA)组合或双重连接(eNB NR Dual Connection,ENDC)组合则需要设计特殊的频率比。例如为了滿足B20+B3+B1+B40组合,当1.45GHz-2.5GHz频段的模态被切換到B3与B1之间时,低频频段的模态可能会被移往B20的更高频段如B5,而无法满足B20,同时还将使得馈入位置受限,在有限的空间中显得设计缺乏弹性,或者需要更多的天线开关来维持频率比,则将使得成本上升。
此外,N78频段的可用带宽通常比低频及中频更加宽,其所能达到的数据传输量占有主导地位,如何实现对于N78频段支持与常在成为需要解决的技术问题。如果将1.45GHz-2.5GHz频段的模态与N78的模态谐振于同一天线,当在1.45GHz-2.5GHz内的B32(1452-1495.9MHz),B3(1710-1880MHz),B1(1920-2170MHz),以及B40(2300-2400MHz)之间调谐时,N78模态由也会跟着有大幅度的偏移,如200~400MHz的偏移,则将使得中频(1.7~2.4GHz)在切换时的N78频带无法同时被满足,这对于ENDC与CA组合的支持太低,将导致用户的吞吐量无法获得提升。
本申请所提供的天线组件至少可实现低频天线与中高频段的独立可调谐,以支持更多的频段组合,提升吞吐量。此外,本申请实施还提供了至少可实现中高频段与N78频段独立可调谐,在中高频段调谐时N78保持常在,以满足对于N78常在的需求以及调谐出更多的ENDC与CA组合,提升用户的吞吐量。
请参阅图1,天线组件100包括第一辐射枝节10、第二辐射枝节20及第一馈源30。具体的,请参阅图1,所述第一辐射枝节10包括依次设置的第一接地端11、第一馈电点A及第一开口端12。第二辐射枝节20包括第二开口端21及第二接地端22。所述第一开口端12与所述第二开口端21相对设置且之间具有缝隙,该缝隙为耦合缝隙40,其中,第一辐射枝节10与第二辐射枝节20之间通过耦合缝隙40耦合。
请参阅图1,第一馈源30电连接于所述第一馈电点A。
请参阅图2,第一馈源30用于激励所述第一辐射枝节10产生第一谐振模态a。其中,所述第一馈电点A至所述第一开口端12的长度小于或等于所述第一辐射枝节10长度的20%,使所述第一馈源30在所述第二辐射枝节20上激励出至少一个耦合谐振模态。可选的,第一馈电点A至第一开口端12的长度可为第一辐射枝节10长度的20%、19%、18%、10%、5%、1%等,使第一馈电点A的位置靠近第二辐射枝节20,利于所述第一馈源30在所述第二辐射枝节20上激励出至少一个耦合谐振模态。请参阅图2,图2中模态c、d、e为耦合谐振模态。在其他实施方式中,耦合谐振模态可以为一个,例如模态c、或模态d、或模态e。本申请对此不做限定。
图2中的f1、f2、f3表示不同的频段,本申请对于f1、f2、f3的值不做具体的限定。图2中模态c、d、e所支持的频段高于模态a所支持的频段,在其他实施方式中,模态a所支持的频段可高于模态c、d、e所支持的频段。
其中,由于耦合谐振模态与第一谐振模态a分别产生于不同的辐射枝节,所述耦合谐振模态与所述第一谐振模态a可相互独立被调谐。
本申请提供的天线组件100,通过设计第一辐射枝节10与第二辐射枝节20通过耦合缝隙40耦合,及在第一辐射枝节10上设计所述第一馈电点A至所述第一开口端12的长度小于或等于所述第一辐射枝节10长度的20%,使第一馈电点A的位置靠近第二辐射枝节20,利于所述第一馈源30在所述第二辐射枝节20上激励出至少一个耦合谐振模态,由于耦合谐振模态与第一谐振模态a分别产生于不同的辐射枝节,故当第一谐振模态a被调谐时,耦合谐振模态不会受到第一谐振模态a的影响而发生大幅度的偏移,即所述耦合谐振模态与所述第一谐振模态a可相互独立被调谐,此外,在第一谐振模态a被调谐时,耦合谐振模态可以常在,以在有限的空间内满足多频段的独立调谐,提高多频段组合的支持率,进而提高传输速率。
其中,本申请所述的辐射枝节(例如第一辐射枝节10、第二辐射枝节20),也可称为辐射体。可选的,所述辐射枝节的材质为导电材质。其中,所述辐射枝节为所述天线组件100收发射频信号的端口,其中,射频信号在空气介质中以电磁波信号形式传输。可选的,本申请对于所述辐射枝节的具体形态不做具体的限定。所述辐射枝节包括但不限于为手机的金属边框、位于所述边框附近的金属支架辐射体。其中,支架辐射体设于所述电子设备1000内,包括但不限于为成型于柔性电路板(Flexible Printed Circuit board,FPC)上的柔性电路板天线、通过激光直接成型(Laser Direct Structuring,LDS)的激光直接成型天线、通过印刷直接成型(Print Direct Structuring,PDS)的印刷直接成型天线、导电片天线等。
本申请对于所述辐射枝节的形状不做具体的限定。例如,所述辐射枝节的形状包括但不限于条状、片状、杆状、涂层状、薄膜状等。图1所示的所述辐射枝节仅仅为一种示例,并不能对本申请提供的所述辐射枝节的形状造成限定。本实施例中,所述辐射枝节皆呈条状,接地端及开口端分别为所述辐射枝节的两个末端。本申请对于所述辐射枝节的延伸轨迹不做限定。本实施例中,所述辐射枝节呈直线状。在其他实施方式中,所述辐射枝节也可以呈弯折状、曲线等轨迹延伸。上述的所述辐射枝节在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
本实施例中,第一辐射枝节10、第二辐射枝节20通过所述耦合缝隙40容性耦合。其中,“容性耦合”是指,所述第一辐射枝节10与所述第二辐射枝节20之间产生电场,所述第二辐射枝节20上的电信号能够通过电场传递至所述第一辐射枝节10,以使所述第一辐射枝节10与所述第二辐射枝节20即使在不直接接触或不直接连接的状态下也能够实现电信号导通。可选的,所述第一辐射枝节10与所述第二辐射枝节20可沿直线排列或大致沿直线排列(即在设计过程中具有较小的公差)。当然,在其他实施方式中,所述第一辐射枝节10与所述第二辐射枝节20还可在延伸方向上错开设置,以形成避让空间。
请参阅图1,所述第一接地端11、第二接地端22皆接地。可以理解的,本申请中所述的“接地”是指电连接参考地或者说电连接参考地系统GND,其电连接方式包括但不限于直接焊接、或通过同轴线、微带线、导电弹片、导电胶等方式间接电连接。参考地系统GND可以为一个独立的整体结构,也可以是多个相互独立但相互电连接的结构。
所述第一馈源30电连接射频收发芯片。所述第一馈源30将射频收发芯片发射的射频信号经所述第一馈电点A馈入第一辐射枝节10,射频信号能够激励起第一辐射枝节10产生谐振电流,形成第一谐振模态a,以支持该谐振电流对应的频段。此外,由于第一馈电点A的位置靠近于耦合缝隙40,故第一馈源30还能够在第二辐射枝节20上激励产生谐振电流,形成耦合谐振模态,以支持该谐振电流对应的频段。其中,第一谐振模态a所支持的频段与耦 合谐振模态所支持的频段不同。举例而言,第一谐振模态a所支持的频段包括但不限于为LB频段、MHB频段、UHB频段、Wi-Fi频段、GNSS频段中的至少一者的电磁波信号。其中,LB频段是指低于1000MHz的频段(不包括1000MHz)。MHB频段是指1000MHz-3000MHz(包括1000MHz,不包括3000MHz)的频段。UHB频段是指3000MHz-10000MHz的频段(包括3000MHz)。Wi-Fi频段包括但不限于为Wi-Fi 2.4G、Wi-Fi 5G、Wi-Fi 6E等中的至少一者。GNSS全称为Global Navigation Satellite System,中文名称为全球导航卫星系统,GNSS包括全球性的全球定位系统(Global Positioning System,GPS)、北斗、全球卫星导航系统(Global Navigation Satellite System,GLONASS)、伽利略卫星导航系统(Galileo satellite navigation system,Galileo)以及区域性导航系统等。
本实施例中,请参阅图3a,图3a中虚线箭头部分。所述第一谐振模态a的谐振电流从所述第一馈源30经所述第一馈电点A,从所述第一接地端11回地。第一谐振模态a由第一馈源30、第一辐射枝节10及第一接地端11所构成的回路(loop)天线所产生。可选的,第一谐振模态a的谐振电流工作在所支持频段的1/4波长模式。
可选的,所述第一谐振模态a所支持的频段包括1.45-2.4GHz中的至少部分频段。例如,第一谐振模态a所支持的频段覆盖B32(1452-1495.9MHz),B3(1710-1880MHz),B1(1920-2170MHz),B40(2300-2400MHz)等中的至少一者。通过设计第一辐射枝节10的有效电长度,以使第一辐射枝节10的第一接地端11与第一馈电点A之间可谐振中频段(1450-2400MHz)的1/4波长模式的第一谐振模态a。
可选的,第一辐射枝节10为手机中框的边框上的一部分,所述第一辐射枝节10的宽度相对较宽,例如,7-8mm。第一辐射枝节10的长度可小于或等于18mm。例如,第一辐射枝节10的长度可以为17.2mm。使第一辐射枝节10的第一接地端11与第一馈电点A之间可谐振中频段(1450-2400MHz)的1/4波长模式的第一谐振模态a,且第一辐射枝节10具有相对较短的物理长度。本实施例提供的第一辐射枝节10的长度较一般的支持中频段的辐射枝节短,利于天线组件100的小型化,可减少在电子设备1000上占据的空间。
举例而言,第一辐射枝节10的长度可以为17.2mm(仅仅为举例,不限于此数据),第一馈电点A与第一开口端12之间的距离为3.5mm(仅仅为举例,不限于此数据)。一方面,第一馈电点A靠近耦合缝隙40,利于第一耦合缝隙40透过耦合缝隙40耦合能量到第二辐射枝节20,并透过第二接地端22与匹配设计能有不同的模态被激发的可能,例如激励出后续的第三谐振模态、第五谐振模态。另一方面,通过设计第一馈电点A靠近第一开口端12,第一馈电点A与第一接地端11之间具有相对较大的空间,可以设置按键电路板及其他器件,提高电子设备1000内的空间利用率及器件排布的紧凑性。
可选的,耦合谐振模态所支持的频段包括2.5-2.69GHz(N41),3.3-3.8GHz(N78),4.8-5GHz(N79)中的至少一者。
图3a提供的天线组件所产生的耦合谐振模态可以为图2中的模态d,模态d的电流分布图可参考图9。例如支持3.3-3.8GHz(N78)频段。
请参阅图3b,图3b中在第二辐射枝节20上设置匹配电路M回地,使第二辐射枝节20上的部分电流经匹配电路M回地。其中,匹配电路M所电连接的位置可以位于第二开口端21与第二辐射枝节20的中间点之间的位置。图3b所提供的天线组件的结构可支持三个耦合谐振模态,这三个耦合谐振模态所支持的频段各不相同,包括上述的模态d,还增加模态c(电流分布图参考图8)、模态e(电流分布图参考图10)。例如,这三个模态分别支持2.5-2.69GHz(N41),3.3-3.8GHz(N78),4.8-5GHz(N79)这三个频段,本申请对此不做限定。通过提 供相应频段的信号源,以及对第一辐射枝节10的有效电长度进行设计,可使第一辐射枝节10产生支持1.45-2.4GHz内频段的第一谐振模态a,及对第二辐射枝节20的有效电长度进行设计,可使第二辐射枝节20在第一馈源30的激励下产生支持2.5-2.69GHz的第三谐振模态c,支持3.3-3.8GHz的第四谐振模态d及支持4.8-5GHz的第五谐振模态e,由于第一谐振模态a与第三、第四、第五谐振模态分别由不同的辐射枝节产生,故当第一谐振模态a被调谐时,例如第一谐振模态a在B32(1452-1495.9MHz),B3(1710-1880MHz),B1(1920-2170MHz),以及B40(2300-2400MHz)之间调谐时,第三谐振模态c、第四谐振模态d、第五谐振模态e可保持常在,即本申请提供的天线组件100可支持B32+B41+N78+N79的CA组合,还可以支持B3+B41+N78+N79的CA组合,还可以支持B1+B41+N78+N79的CA组合,还可以支持B40+B41+N78+N79的CA组合,还可以支持B1+B3+B41+N78+N79的CA组合等。如此,本申请提供的天线组件100所支持多频段的CA组合多,频段覆盖广,可有效提升数据传输速率。
当然,在其他实施方式中,耦合频段还可以包括一个频段,例如,耦合谐振模态支持B41、N78、N79中的一者;或者,耦合频段还可以包括两个频段,例如,耦合谐振模态支持B41和N78等。
本申请提供一种多模态的天线设计,不仅能涵盖多个操作频带,并且中频的第一谐振模态a及中高频段的第三、第四、第五谐振模态能够相对独立的被调谐,在设计上能选择馈入位置来满足有限的设计空间,并透过频率调谐的选择来满足各种CA组合及ENDC组合的需求。
可选的,请参阅图4,所述第二辐射枝节20还包括设于所述第二开口端21与所述第二接地端22之间的第二馈电点B。可以理解的,第二馈电点B为图3b中匹配电路M电连接于第二辐射枝节20上的位置。所述天线组件100还包括第二馈源50。
结合图4及图5,所述第二馈源50电连接于所述第二馈电点B,用于激励所述第二辐射枝节20产生第二谐振模态b。所述第二谐振模态b所支持的频段小于1GHz。换言之,所述第二辐射枝节20及第二馈源50可作为低频天线。该低频天线可用于支持B20频段、B5频段、B8频段、B28频段等。由于第一谐振模态a和第二谐振模态b分别产生于不同的辐射枝节,故第二谐振模态b与所述第一谐振模态a可相互独立被调谐。
图5中的f0、f1、f2、f3表示不同的频段,本申请对于f0、f1、f2、f3的值不做具体的限定。图5中模态c、d、e所支持的频段高于模态a所支持的频段,模态a所支持的频段高于模态b所支持的频段。在其他实施方式中,模态b所支持的频段可高于模态a、c、d、e中一者或多者所支持的频段。
具体的,请参阅图6,图6中虚线箭头部分。所述第二谐振模态b的谐振电流经所述第二开口端21流向所述第二接地端22。第二谐振模态b由第二馈源50、第二开口端21至第二接地端22所构成的倒F天线所产生。第二谐振模态b的谐振电流工作在所支持频段的1/4波长模式。
可选的,所述第二谐振模态b所支持的频段为小于1GHz的频段。通过设计第二辐射枝节20的有效电长度,以使第二辐射枝节20的第二接地端22与第二开口端21之间可谐振低频(790-1000MHz)的1/4波长模式的第二谐振模态b。
可选的,第一辐射枝节10为手机中框的边框上的一部分,所述第一辐射枝节10的宽度相对较宽,例如,7-8mm。第二辐射枝节20的长度可小于或等于35mm。例如,第二辐射枝节20的长度可以为33.4mm,使第二辐射枝节20的第二接地端22与第二开口端21之间可谐 振低频段(小于1GHz)的1/4波长模式的第二谐振模态b,且第二辐射枝节20具有相对较短的物理长度。
举例而言,第二辐射枝节20的长度可以为33.4mm(仅仅为举例,不限于此数据),第二馈电点B与第二开口端21之间的距离为12.1mm(仅仅为举例,不限于此数据)。
当馈电点在开口端与接地端之间的中间位置时,其输入阻抗能有较佳的匹配而具有较好的辐射性能,而越靠近开口端利于激发loop天线模态。本申请的第二馈电点B距离第二开口端21大概12.1mm的位置,此时第二馈源50所激发的模态在低频,满足低频的辐射性能,且能够激励出IFA天线模态,即耦合谐振模态等。
本实施例提供的第二辐射枝节20的长度较一般的支持低频段的辐射枝节短,利于天线组件100的整体小型化,可减少在电子设备1000上占据的空间。本实施例提供的第一辐射枝节10和第二辐射枝节20的长度皆较短,天线组件100的整体尺寸小,对于可折叠电子设备1000,天线组件100无法跨越转轴设计,如此需要设计相对较小的天线组件100,而本实施例提供的天线组件100较短,可适用于可折叠的电子设备1000。
可选的,请参阅图7,所述天线组件100还包括第一馈电端口13和第二馈电端口23。所述第一馈电端口13的一端电连接所述第一馈电点A,所述第一馈电端口13的另一端电连接第一馈源30。所述第二馈电端口23的一端电连接所述第二馈电点B,所述第二馈电端口23的另一端电连接第二馈源50。
可选的,请参阅图7,所述天线组件100还包括第一匹配电路M1及第二匹配电路M2。
所述第一匹配电路M1的一端电连接所述第二馈电点B,所述第一匹配电路M1的另一端接地。具体的,所述第一匹配电路M1的一端电连接于第二馈电端口23,所述第一匹配电路M1的另一端接地。通过设计第一匹配电路M1,使第一匹配电路M1对某些频段呈带阻状态,及对某些频段呈带通状态。例如,第一匹配电路M1对第二馈源50所产生的低频信号呈带阻状态,及对第一馈源30产生的中高频信号呈带通状态,如此,第二馈源50所产生的低频信号不会经第一匹配电路M1下地,而是经第二馈电端口23传输至第二辐射枝节20。第一馈源30所产生的中高频信号经第一馈电端口13、第一馈电点A、耦合缝隙40传输至第二辐射枝节20,而由于第一匹配电路M1对中高频信号呈带通状态,故第二辐射枝节20上的部分中高频信号可经第一匹配电路M1下地,以避免第二辐射枝节20上的中高频信号影响第二馈源50。
可选的,所述第一匹配电路M1可以为一个电容,也可以为一个电感,可以是一个电容与一个电感的串联器件,也可以是一个电容与一个电感的并联器件,还可以是上述的串联器件与一个电容并联,还可以是上述的串联器件与一个电感并联,还可以是两个上述的串联器件相并联,还可以是两个上述的并联器件相串联,等等。
本实施例中,第一匹配电路M1为电容。
所述第二匹配电路M2的一端电连接所述第一馈电点A,所述第一匹配电路M1的另一端接地。具体的,所述第二匹配电路M2的一端电连接于第一馈电端口13,所述第二匹配电路M2的另一端接地。通过设计第二匹配电路M2,使第二匹配电路M2对某些频段呈带阻状态,及对某些频段呈带通状态。例如,第二匹配电路M2对第一馈源30所产生的中高频信号呈带阻状态,及对第二馈源50产生的低频信号呈带通状态,如此,第一馈源30所产生的中高频信号不会经第二匹配电路M2下地,而是经第一馈电端口13传输至第一辐射枝节10。而由于第二匹配电路M2对低频信号呈带通状态,故第一辐射枝节10上的部分低频信号可经第二匹配电路M2下地,以避免第一辐射枝节10上的低频信号影响第一馈源30。
可选的,所述第二匹配电路M2可以为一个电容,也可以为一个电感,可以是一个电容与一个电感的串联器件,也可以是一个电容与一个电感的并联器件,还可以是上述的串联器件与一个电容并联,还可以是上述的串联器件与一个电感并联,还可以是两个上述的串联器件相并联,还可以是两个上述的并联器件相串联,等等。
可以理解的,请参阅图7,所述天线组件100还包括第一匹配网络P1及第二匹配网络P2。
所述第一匹配网络P1电连接于所述第一馈电端口13及所述第一馈源30之间,所述第一匹配网络P1用于调节所述第一辐射枝节10的阻抗,以使第一辐射枝节10的阻抗与中高频段具有较佳的匹配,以产生所需频段的谐振模式,且在所需频段具有较好的辐射性能。其中,第一匹配网络P1可包括用于调谐第一谐振模态a(中高频段)的调谐电路,用于调谐第一谐振模态a的谐振频点,使天线组件100支持不同的中高频段,增加天线组件100所支持的频段组合。可选的,所述第一匹配网络P1包括电容、电感及电阻等多个元件组成的电路结构。
所述第二匹配网络P2电连接于所述第二馈电端口23及所述第二馈源50之间,所述第二匹配网络P2用于调节所述第二辐射枝节20的阻抗,以使第二辐射枝节20的阻抗与低频段具有较佳的匹配,以产生所需频段的谐振模式,且在所需频段具有较好的辐射性能。其中,第二匹配网络P2可包括用于调谐第二谐振模态b(低频段)的调谐电路,用于调谐第二谐振模态b的谐振频点,使天线组件100支持不同的低频段,增加天线组件100所支持的频段组合。可选的,所述第二匹配网络P2包括电容、电感及电阻等多个元件组成的电路结构。
可选的,第一匹配电路M1可为第二匹配网络P2的一部分。第二匹配电路M2可为第一匹配网络P1的一部分。
可选的,第二馈电点B在第二辐射枝节20上的位置,相对于端部而言,更加靠近所述第二辐射枝节20的中间位置。换言之,第二馈电点B至第二辐射枝节20的中间点之间的距离小于第二馈电点B至第二辐射枝节20的端部之间的距离。因为当第二馈电点B的位置选择在靠近第二开口端21与第二接地端22之间的中间位置时,第二馈电点B的输入阻抗能有较佳的匹配而第二辐射枝节20具有较好的辐射性能,且通常在第二辐射枝节20的正中间有相对较佳的性能。
进一步地,第二馈电点B位于所述第二辐射枝节20的中间点与第二开口端21之间,即靠近于第一辐射枝节10,以利于所述第一馈源30在所述第一辐射枝节10和第二辐射枝节20上激励出回路(loop)模式的天线模式。例如,激励出回路(loop)模式的耦合谐振模态,以实现耦合谐振模态与第一谐振模态a独立调谐。
进一步地,所述第二馈电点B至所述第二开口端21的长度占所述第二辐射枝节20长度的30%-40%,一方面利于所述第一馈源30在所述第一辐射枝节10和第二辐射枝节20上激励出回路(loop)模式的耦合谐振模态,另一方面第二馈电点B的输入阻抗能有较佳的匹配而第二辐射枝节20具有相对较好的辐射性能。
由于所述第一馈电点A至所述第一开口端12的长度小于或等于所述第一辐射枝节10长度的20%,即第一馈电点A靠近第一开口端12,此时,第一馈源30所传输的射频能量较多地经耦合缝隙40传输至第二辐射枝节20;而且通过设计第二馈电点B至所述第二开口端21的长度占所述第二辐射枝节20长度的30%-40%,即第一匹配电路M1电连接于第二辐射枝节20长度的30%-40%位置,以使传输至第二辐射枝节20的中高频段信号,在第二辐射枝节20的第二馈电点B经第二馈电端口23传输至第一匹配电路M1,经第一匹配电路M1下地,以激励出环形(loop)天线模态的耦合谐振模态。
可选的,所述耦合谐振模态包括第三谐振模态c。
请参阅图8,图8的虚线箭头部分。第三谐振模态c的谐振电流从所述第一馈源30经所述第一馈电点A、所述耦合缝隙40,从所述第一匹配电路M1下地。换言之,第一匹配电路M1对第三谐振模态c所支持的频段为低阻抗状态,即呈短路状态。
所述第三谐振模态c由第一馈源30、第一馈电点A、第二馈电点B、第一匹配电路M1所形成的环形(loop)天线所产生。即第三谐振模态c为环形(loop)天线模态。第三谐振模态c的谐振电流工作在所支持频段的1/4波长模式。
可选的,所述第三谐振模态c所支持的频段为2500-2690MHz的频段。
通过设计第一辐射枝节10的有效电长度、第一馈电点A在所述第一辐射枝节10上的位置、第二辐射枝节20的有效电长度、第二馈电点B在第二辐射枝节20上的位置,使第一辐射枝节10的第一馈电点A至第二辐射枝节20的第二馈电点B之间产生第三谐振模态c,其中,第三谐振模态c的谐振频段为(2500-2690MHz),第三谐振模态c的谐振电流工作在所支持频段的1/4波长模式。
本申请可用于以下场景,当天线组件100设于手机时,由于手机内设计空间有限,第一辐射枝节10的第一开口端12与第一接地端11之间的空间被其他器件(例如电源按键)占据,第一馈源30无法设置在第一开口端12与第一接地端11之间,而被迫设计在靠近第一开口端12,第一馈电点A靠近耦合缝隙40,利于第一辐射枝节10透过耦合缝隙40耦合能量到第二辐射枝节20,并透过第二馈电点B与匹配设计(第一匹配电路M1)能有不同的模态被激发的可能,此外,通过对第一馈电点A至第二馈电点B有效电长度进行设计,以使该路径的有效电长度与所需频段的1/4介质波长接近,从而第一馈源30激励产生从第一馈电点A至第二馈电点B及第一匹配电路M1下地的电流分布,从而激励产生第三谐振模态c。
为了避免第二馈源50的较高频率的模态们对第一馈源30所负责的相对较高频的频段造成干扰,第二馈源50的馈入通常会搭配带通电路或者低通电路(第一匹配电路M1)等设计来让落在相对高频频段内的模态消失或影响小,因此当第三谐振模态c由本申请中的第一馈源30(负责相对高频的频段)激发时,由于第一匹配电路M1对相对高频频段呈低阻抗,故第三谐振模态c将从第一匹配电路M1下地。第三谐振模态c由于第一匹配电路M1的搭配设计特性而能被保留。换言之,第三谐振模态c利用了第二馈源50所搭配的原本用于过滤其相对高频段的第一匹配电路M1,无需额外设置第一匹配电路M1,节省了空间、制作工序及成本。
可选的,第一馈源30所产生的中高频信号在第二辐射枝节20上还可经过第二接地端22下地,形成耦合谐振模态,本实施例将该耦合谐振模态称为第四谐振模态d。
所述第四谐振模态d由第一馈源30、第一馈电点A、第一辐射枝节10、耦合缝隙40、第二辐射枝节20、第二接地端22所形成的环形(loop)天线所产生。即第四谐振模态d为环形(loop)天线模态。
请参阅图9,图9的虚线箭头部分。所述第四谐振模态d的一部分谐振电流从所述第一馈源30经所述耦合缝隙40流向第一电流零点Q1,所述第四谐振模态d的另一部分谐振电流从所述第二接地端22流向所述第一电流零点Q1,所述第一电流零点Q1位于所述第二接地端22与所述第二馈电点B之间。第四谐振模态d的谐振电流工作在所支持频段的1/2波长模式。其中,第一电流零点Q1是指电流强度相对较小的点。
所述第四谐振模态d支持的频段的最小值大于所述第三谐振模态c支持的频段的最大值。例如,第三谐振模态c所支持的频段为2500-2690MHz的频段。第四谐振模态d所支持的频段为3.3-3.8GHz。通过设计第一辐射枝节10的有效电长度、第一馈电点A在所述第一辐射 枝节10上的位置、第二辐射枝节20的有效电长度,使第一辐射枝节10的第一馈电点A至第二辐射枝节20的第二接地端22之间可谐振3.3-3.8GHz的1/2波长模式的第四谐振模态d。
请参阅图10,图10的虚线箭头部分。所述耦合谐振模态还包括第五谐振模态e。所述第五谐振模态e支持的频段的最小值大于所述第四谐振模态d支持的频段的最大值。所述第五谐振模态e的一部分谐振电流从所述第一接地端11流向第二电流零点Q2,所述第五谐振模态e的另一部分谐振电流从所述第二馈电点B流向所述第二电流零点Q2,所述第二电流零点Q2位于所述第一开口端12与所述第一接地端11之间。其中,第二电流零点Q2是指电流强度相对较小的点。请参阅图10,所述第五谐振模态e的谐振电流可经第一匹配电路M1下地。
本申请可用于以下场景,当天线组件100设于手机时,由于手机内设计空间有限,第一辐射枝节10的第一开口端12与第一接地端11之间的空间被其他器件(例如电源按键)占据,第一馈源30无法设置在第一开口端12与第一接地端11之间,而被迫使设计在靠近第一开口端12,第一馈电点A靠近耦合缝隙40,利于第一辐射枝节10透过耦合缝隙40耦合能量到第二辐射枝节20,并透过第二馈电点B与匹配设计能有不同的模态被激发的可能,此外,通过对第一辐射枝节10、第二开口端21至第二馈电点B、以及第二馈电点B经第一匹配电路M1的有效电长度进行设计,以使该路径的有效电长度与所需频段的1/2介质波长接近,从而第一馈源30激励产生从参考地经第一接地端11流向第二电流零点Q2,从参考地经第一匹配电路M1、所述第二馈电点B流向所述第二电流零点Q2的电流分布,进而激励产生支持该频段的第五谐振模态e。
为了避免第二馈源50的较高频率的模态们对第一馈源30所负责的相对较高频的频段造成干扰,第二馈源50的馈入通常会搭配带通电路或者低通电路(第一匹配电路M1)等设计来让落在相对高频频段内的模态消失或影响小,因此当第五谐振模态e由本申请中的第一馈源30(负责相对高频的频段)激发时,由于第一匹配电路M1对相对高频频段呈低阻抗,故将从第一匹配电路M1下地,第五谐振模态e由于第一匹配电路M1的搭配设计特性而能被保留。换言之,第五谐振模态e利用了第二馈源50所搭配的原本用于过滤其相对高频段的第一匹配电路M1,无需额外设置第一匹配电路M1,节省了空间、制作工序及成本。
请参阅图11,所述天线组件100还包括第一调谐电路T1。所述第一调谐电路T1电连接于所述第一馈电点A或电连接至所述第一馈电点A与所述第一接地端11之间的第一辐射枝节10。具体的,第一调谐电路T1可电连接于第一馈电端口13。所述第一调谐电路T1用于调谐所述第一谐振模态a的频段。例如,在一时间段第一谐振模态a支持B1频段,通过第一调谐电路T1的调谐可实现第一谐振模态a支持B3频段。如此,通过设置第一调谐电路T1,可实现第一谐振模态a支持多个频段,增加天线组件100所支持的频段组合,提升吞吐量及天线组件100的数据传输速率。
可选的,所述第一调谐电路T1包括天线开关和/或可调电容。
具体的,所述第一调谐电路T1包括但不限于为一个电容,也可以为一个电感,可以是一个电容与一个电感的串联器件,也可以是一个电容与一个电感的并联器件,还可以是上述的串联器件与一个电容并联,还可以是上述的串联器件与一个电感并联,还可以是两个上述的串联器件相并联,还可以是两个上述的并联器件相串联,等等。
在第一调谐电路T1的第一种实施方式中,请参阅图12,所述第一调谐电路T1还包括多个第一调谐分支T11。多个所述第一调谐分支T11的一端皆电连接第一开关电路K1的一端,第一开关电路K1的另一端电连接第一馈电端口13。即所述第一开关电路K1为单刀多掷开关。多个所述第一调谐分支T11的另一端皆接地。所述多个所述第一调谐分支T11用于调谐 所述第一谐振模态a所支持的频段的大小。
每个所述第一调谐分支T11的阻抗值不同。例如,多个所述第一调谐分支T11为电容值不同的多个电容器件。或者,多个所述第一调谐分支T11为电感值不同的多个电感器件。或者,多个第一调谐分支T11包括多个电容值不同的多个电容器件,及包括多个电感值不同的多个电感器件。通过调节所述第一开关电路K1电连接至不同的器件,以调节所述第一调谐分支T11的等效电长度,进一步调节所述第一辐射枝节10的有效电长度,进而调节第一谐振模态a所支持的频段的大小。
在第一调谐电路T1的第二种实施方式中,请参阅图13,所述第一调谐电路T1包括第一可调电容C1,所述第一可调电容C1的大小可调,用于调谐第一谐振模态a所支持的频段的大小。所述第一可调电容C1为可调电容值的电容器,如此,通过调节电容器的电容值,实现所述第一调谐电路T1的阻抗值可调,进而调节所述第一调谐电路T1的有效电长度,进一步调节第一辐射枝节10的有效电长度,进而调节所述第一谐振模态a所支持的频段的大小。
当然,第一调谐电路T1还可以为上述的第一种实施方式和第二种实施方式的结合,例如,请参阅图14,所述第一调谐分支T11中包括所述第一可调电容C1。
由于第一调谐电路T1接入第一辐射枝节10,其可调谐第一辐射枝节10上的有效电长度,进而调谐在第一辐射枝节10上产生的第一谐振模态a,而对于主要在第二辐射枝节20上产生的第二、第三、第四、第五谐振模态e的影响相对较小。故第一谐振模态a在被第一调谐电路T1调谐时,第二、第三、第四、第五谐振模态e所支持的频段可保持常在,以实现对于第二、第三、第四、第五谐振模态e所支持的频段的支持及对第一谐振模态a所支持频段的调谐,增加天线组件100所支持的频段组合,提高吞吐量,及数据传输速率。
可选的,第一调谐电路T1可以是第二匹配电路M2或第一匹配网络P1的一部分。第二调谐电路T2可以是第一匹配电路M1或第二匹配网络P2的一部分。
请参阅图11,所述天线组件100还包括第二调谐电路T2。所述第二调谐电路T2电连接于所述第二辐射枝节20。可选的,第二调谐电路T2可电连接于第二馈电端口23,或者,直接电连接至第二辐射枝节20的枝节上。所述第二调谐电路T2用于调谐所述第三谐振模态c和/或所述第二谐振模态b的频段。第二调谐电路T2可以调谐第三谐振模态c,使第三谐振模态c能够与第二谐振模态b作频率比设计,支持更多的CA组合,抑或可作为匹配设计来改善单频段(例如第三谐振模态c所支持的频段)内的天线效率。
此外,第二调谐电路T2也能使低频天线的第二谐振模态b获得调谐自由,进而支持更多的ENDC组合以及CA组合。
第二调谐电路T2的结构可参考第一调谐电路T1的结构,在此不再赘述。
请参阅图15,图15是本申请实施例提供的一种天线组件100的S参数曲线图。其中,天线组件100生成第一谐振模态a、第二谐振模态b、第三谐振模态c、第四谐振模态d、第五谐振模态e。
其中,请参阅图15中的曲线S2,2_B32、曲线S2,2_B3、曲线S2,2_B1_B41,可以看到,第一谐振模态a被调谐时,例如第一谐振模态a在频段B32(1452-1495.9MHz),B3(1710-1880MHz),B1(1920-2170MHz)之间调谐时,第二谐振模态b可保持常在,此外,第三谐振模态c、第四谐振模态d、第五谐振模态e皆可保持常在。
可以理解的,图15中的谐振模态所在的频段点位置仅仅为举例,在其他实施方式中,一个第二谐振模态可同时支撑两个频段,例如同时支持B3及B32等。
第二谐振模态b被调谐时,例如第二谐振模态b在B20频段、B5频段、B8频段、B28 频段之间调谐时,第一谐振模态a可保持常在。
结合上述的实施方式,当第一谐振模态a被调谐时,第二、三、四、五谐振模态皆可保持常在,且第二谐振模态b可独立被调谐,如此,可支持B20+B32+B41+N78+N79的CA组合,还可以支持B20+B3+B41+N78+N79的CA组合,还可以支持B20+B1+B41+N78+N79的CA组合,还可以支持B20+B40+B41+N78+N79的CA组合,还可以支持B20+B1+B3+B41+N78+N79的CA组合等,上述的B20可替换为B5频段、B8频段、B28频段等低频段。如此,本申请提供的天线组件100可支持更多的CA组合和ENDC组合的频带,提升吞吐量,以提高传输速率。
此外,由于耦合谐振模态的产生是利用了原本的低频天线的辐射枝节,故天线组件100在未新增枝节的情况下产生了所需的耦合谐振模态,所述的天线组件100既可以实现支持低频的第二谐振模态b与支持1.45-2.4GHz内频段的第一谐振模态a相互独立调谐,支持1.45-2.4GHz内频段的第一谐振模态a与支持2.5-2.69GHz、3.3-3.8GHz、4.8-5GHz频段的耦合谐振模态可独立调谐,在实际应用时可调谐出多个低频频段与多个中频频段相结合的多频带,且保持N78频段的常在,且无需占据额外的空间,在有限空间的电子设备1000内形成可独立调谐的多频段天线。
本申请提供的另一实施例中,请参阅图16,第三谐振模态c还可以由第二馈源50激励产生。具体的,本实施例中的天线组件100与上述实施例中的天线组件100的结构大致相同,主要的不同在于,所述第二匹配网络P2对第二谐振模态b和第三谐振模态c所支持的频段呈低阻抗状态,对其他频段呈带阻状态。且第二匹配电路M2对第三谐振模态c所支持的频段呈低阻抗状态。
所述第二馈源50还用于激励所述第二辐射枝节20产生第三谐振模态c。请参阅图16中的虚线接头部分,所述第三谐振模态c的谐振电流从所述第二馈源50经所述第二馈电点B、所述耦合缝隙40,从所述第二匹配电路M2下地。
请参阅表1,表1为第三谐振模态c分别由第一馈源30激发和第二馈源50激发时,各频段的效率图。第三谐振模态c分别由第一馈源30激发和第二馈源50激发,使辐射枝节对各频段的阻抗匹配不同。当第三谐振模态c由第一馈源30馈入激发时,第三谐振模态c所对应的中频(1.9~2.4GHz)及N78频段的效率绝对值相对较小,具有较好的性能。而当第三谐振模态c由第二馈源50激发时,第二谐振模态b所对应的中频(1.4~2.2GHz)模态的效率绝对值相对较小,具有较好的性能。
表1
本申请中,无论第一谐振模态a和第二谐振模态b如何通过调谐电路做切换,第三谐振模态c和第四谐振模态d可以随时常在,如此,可大大满足更高阶的CA组合(至少4CA组 合以上)。
请参阅图17,对于本申请所述的电子设备1000而言,所述电子设备1000还包括导电边框200。所述第二辐射枝节20、所述第一辐射枝节10皆为所述导电边框200的一部分,即导电边框200作为天线组件100的辐射枝节,减少天线组件100在电子设备1000内的占据空间,复用导电边框200,利于整机小型化。可选的,以电子设备1000为手机举例,导电边框200为连接于显示屏与后盖之间的框体,其材质为导电材质,进一步地,导电边框200的材质可以为金属导电材质,既满足天线设计、提高结构强度及增加金属质感。
可选的,电子设备1000可以为不可发生折叠的设备、或可折叠电子设备、或可拉伸电子设备等。
手机中一般需要设置多个天线例如8支、12支天线等,故手机的导电边框200上需要设置多个天线,而对于可折叠的手机而言,由于转轴的设置会使得长边被分成上下两个部分,天线组件100的辐射枝节无法跨越转轴,导致长边上的辐射枝节的长度受限。手机长边尺寸140mm-170mm之间,当该手机的长边可折叠时,长边在折叠后的尺寸相对较小,例如65mm-80mm之间。而一般的支持低频、中高频的天线组件100的辐射枝节的长边相对较长,例如,低频天线的辐射枝节为57.8mm,中高频天线的辐射枝节的长度为21.8mm,如此,无法设置在可折叠手机的长边。故如何设计天线组件100,使其可设置在可折叠手机的长边上成为需要亟待解决的技术问题。
本申请提供的天线组件100,通过对天线组件100的第一馈电点A、第二馈电点B的位置进行设计,以在天线组件100上设计出第一谐振模态a至第五谐振模态e,且低频与中频之间可独立调谐,中频与中高频之间可独立调谐,在满足以上的模态支持的情况下,第一辐射枝节10的长度小于或等于18mm,第二辐射枝节20的长度小于或等于35mm,如此,可较好地兼容至可折叠手机上,无需跨越转轴,且可支撑较多的CA组合和ENDC组合。
请参阅图18,天线组件100应用于电子设备1000上的具体结构包括,所述导电边框200包括一对长边210、一对短边220及转轴230。其中,一对长边210是指沿Y轴方向设置且相对设置的两个长边210,一对短边220是指沿X轴方向设置且相对设置的两个短边220。其中,长边210的尺寸大于短边220的尺寸。
所述一对短边220与所述转轴230平行。即转轴230沿X轴方向设置。本实施方式中,转轴230将一对长边210分割为相同尺寸的两个部分。但是在其他实施方式中,转轴230可以将一对长边210分割成不同尺寸的两个部分。
一对所述长边210皆随着所述转轴230的转动而折叠。所述第二辐射枝节20、所述第一辐射枝节10位于一所述长边210且位于所述转轴230的同一侧。即转轴230将一对长边210分割成四个部分,第二辐射枝节20和第一辐射枝节10可设于这四个部分中的任意一个。
当然,在其他实施方式中,第一辐射枝节10和第二辐射枝节20可设置在短边220上、拐角处等。
而对于电子设备1000而言,电子设备1000的导电边框200还设有按键,例如音量键、电源键等,这些按键对应设置有按键的电路板,以与这些按键抵接。当天线组件100的第一辐射枝节10和第二辐射枝节20设于导电边框200上时,第一接地端11电连接电子设备1000内的参考地,第一馈电点A通过第一馈电端口13(例如接地弹片)电连接至电路板上的第二匹配电路M2、第一匹配网络P1、第一馈源30等。第一馈电点A相对靠近第一开口端12,故第一馈电点A与第一接地端11之间具有一定的空间。同样的,第二馈电点B靠近于第二开口端21,故第二馈电点B与第二接地端22之间具有一定的空间。可在馈电点与接地端、或 者开口端与接地端之间设置按键电路板等,以提高电子设备1000内的空间利用率,以及提高各个器件的排布紧凑性。
可选的,请参阅图18,所述电子设备1000还包括设于所述导电边框200内侧的第一按键电路板300和第二按键电路板400。可选的,所述第一按键电路板300为音量键的柔性电路板,所述第二按键电路板400为电源键的柔性电路板。所述第一按键电路板300与所述第二辐射枝节20相邻设置,且所述第一按键电路板300在所述第二辐射枝节20上的正投影位于所述第二接地端22与所述第二开口端21之间。所述第二按键电路板400在所述第一辐射枝节10上的正投影位于所述第一接地端11与所述第一馈电点A之间。
由于第二辐射枝节20的长度相对较长,音量键的长度相对较长,故音量键的柔性电路板可与第二辐射枝节20相邻设置;电源键的柔性电路板可与第一辐射枝节10相邻设置,以根据不同的尺寸组成适合的匹配对,提高各个器件的排布紧凑性和合理性。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线组件,其中,包括:
    第一辐射枝节,所述第一辐射枝节包括依次设置的第一接地端、第一馈电点及第一开口端;
    第二辐射枝节,所述第二辐射枝节包括第二开口端及第二接地端,所述第一开口端与所述第二开口端之间具有缝隙;以及
    第一馈源,电连接于所述第一馈电点,用于激励所述第一辐射枝节产生第一谐振模态;
    其中,所述第一馈电点至所述第一开口端的长度小于或等于所述第一辐射枝节长度的20%,所述第一馈源在所述第二辐射枝节上激励出至少一个耦合谐振模态。
  2. 如权利要求1所述的天线组件,其中,所述第一谐振模态所支持的频段包括1.45-2.4GHz中的至少部分频段,所述耦合谐振模态所支持的频段包括2.5-2.7GHz、3.3-3.8GHz及4.8-5GHz中的至少部分频段。
  3. 如权利要求1所述的天线组件,其中,所述第一谐振模态的谐振电流从所述第一馈源经所述第一馈电点,从所述第一接地端回地。
  4. 如权利要求3所述的天线组件,其中,所述第一谐振模态的谐振电流工作在所支持频段的1/4波长模式。
  5. 如权利要求1所述的天线组件,其中,所述天线组件还包括第一调谐电路,所述第一调谐电路电连接于所述第一馈电点或电连接至所述第一馈电点与所述第一接地端之间的第一辐射枝节,所述第一调谐电路用于调谐所述第一谐振模态的频段。
  6. 如权利要求5所述的天线组件,其中,所述第一调谐电路包括天线开关和/或可调电容。
  7. 如权利要求1-6任意一项所述的天线组件,其中,所述第二辐射枝节还包括设于所述第二开口端与所述第二接地端之间的第二馈电点;所述天线组件还包括第二馈源,所述第二馈源电连接于所述第二馈电点,用于激励所述第二辐射枝节产生第二谐振模态。
  8. 如权利要求7所述的天线组件,其中,所述第二谐振模态所支持的频段小于1GHz;所述第二谐振模态的谐振电流经所述第二开口端流向所述第二接地端,所述第二谐振模态的谐振电流工作在所支持频段的1/4波长模式。
  9. 如权利要求7所述的天线组件,其中,所述第二馈电点至所述第二开口端的长度占所述第二辐射枝节长度的30%-40%;所述天线组件还包括第一匹配电路,所述第一匹配电路的一端电连接所述第二馈电点,所述第一匹配电路的另一端接地;所述耦合谐振模态包括第三谐振模态,所述第三谐振模态的谐振电流从所述第一馈源经所述第一馈电点、所述耦合缝隙,从所述第一匹配电路下地。
  10. 如权利要求7所述的天线组件,其中,所述天线组件还包括第二匹配电路,所述第二匹配电路的一端电连接所述第一馈电点,所述第二匹配电路的另一端接地;
    所述第二馈电点至所述第二开口端的长度占所述第二辐射枝节长度的30%-40%;所述第二馈源还用于激励所述第二辐射枝节产生第三谐振模态,所述第三谐振模态的谐振电流从所述第二馈源经所述第二馈电点、所述耦合缝隙,从所述第二匹配电路下地。
  11. 如权利要求9或10所述的天线组件,其中,所述第三谐振模式的谐振电流工作在所支持频段的1/4波长模式。
  12. 如权利要求9或10所述的天线组件,其中,所述耦合谐振模态还包括第四谐振模态, 所述第四谐振模态支持的频段的最小值大于所述第三谐振模态支持的频段的最大值,所述第四谐振模态的一部分谐振电流从所述第一馈源经所述耦合缝隙流向第一电流零点,所述第四谐振模态的另一部分谐振电流从所述第二接地端流向所述第一电流零点,所述第一电流零点位于所述第二接地端与所述第二馈电点之间,所述第四谐振模态的谐振电流工作在所支持频段的1/2波长模式。
  13. 如权利要求12所述的天线组件,其中,所述耦合谐振模态还包括第五谐振模态,所述第五谐振模态支持的频段的最小值大于所述第四谐振模态支持的频段的最大值,所述第五谐振模态的一部分谐振电流从所述第一接地端流向第二电流零点,所述第五谐振模态的另一部分谐振电流从所述第二馈电点流向所述第二电流零点,所述第二电流零点位于所述第一开口端与所述第一接地端之间。
  14. 如权利要求9所述的天线组件,其中,所述天线组件还包括第二调谐电路,所述第二调谐电路电连接于所述第二辐射枝节,所述第二调谐电路用于调谐所述第三谐振模态和/或所述第二谐振模态的频段。
  15. 如权利要求1-6、8-10、13、14任意一项所述的天线组件,其中,所述第一辐射枝节的长度小于或等于18mm,所述第二辐射枝节的长度小于或等于35mm。
  16. 一种电子设备,其中,包括如权利要求1-15任意一项所述的天线组件。
  17. 如权利要求16所述的电子设备,其中,所述电子设备还包括导电边框,所述第二辐射枝节、所述第一辐射枝节皆为所述导电边框的一部分。
  18. 如权利要求17所述的电子设备,其中,所述电子设备为可折叠设备,所述导电边框包括一对长边、一对短边及转轴,所述一对短边与所述转轴平行,每个所述长边皆随着所述转轴的转动而折叠,所述第二辐射枝节、所述第一辐射枝节位于同一所述长边且位于所述转轴的同一侧。
  19. 如权利要求18所述的电子设备,其中,所述电子设备还包括设于所述导电边框内侧的第一按键电路板和第二按键电路板,所述第一按键电路板与所述第二辐射枝节相邻设置,且所述第一按键电路板在所述第二辐射枝节上的正投影位于所述第二接地端与所述第二开口端之间,所述第二按键电路板在所述第一辐射枝节上的正投影位于所述第一接地端与所述第一馈电点之间。
  20. 如权利要求19所述的电子设备,其中,所述第一按键电路板为音量键的柔性电路板,所述第二按键电路板为电源键的柔性电路板。
PCT/CN2023/108922 2022-09-21 2023-07-24 天线组件及电子设备 WO2024060819A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211152115.3A CN117791093A (zh) 2022-09-21 2022-09-21 天线组件及电子设备
CN202211152115.3 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024060819A1 true WO2024060819A1 (zh) 2024-03-28

Family

ID=90380326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108922 WO2024060819A1 (zh) 2022-09-21 2023-07-24 天线组件及电子设备

Country Status (2)

Country Link
CN (1) CN117791093A (zh)
WO (1) WO2024060819A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120218151A1 (en) * 2011-02-25 2012-08-30 Kin-Lu Wong Mobile Communication Device and Antenna Structure Therein
US20160352025A1 (en) * 2015-06-01 2016-12-01 Wistron Neweb Corp. Antenna and radio frequency signal transceiving device
CN212136680U (zh) * 2020-03-12 2020-12-11 Oppo广东移动通信有限公司 天线组件和电子设备
CN113394550A (zh) * 2020-03-12 2021-09-14 Oppo广东移动通信有限公司 天线组件和电子设备
CN114284721A (zh) * 2021-12-14 2022-04-05 深圳市锐尔觅移动通信有限公司 一种天线装置及电子设备
CN115133269A (zh) * 2021-03-26 2022-09-30 Oppo广东移动通信有限公司 天线组件及电子设备
CN115224475A (zh) * 2022-08-03 2022-10-21 荣耀终端有限公司 天线结构及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120218151A1 (en) * 2011-02-25 2012-08-30 Kin-Lu Wong Mobile Communication Device and Antenna Structure Therein
US20160352025A1 (en) * 2015-06-01 2016-12-01 Wistron Neweb Corp. Antenna and radio frequency signal transceiving device
CN212136680U (zh) * 2020-03-12 2020-12-11 Oppo广东移动通信有限公司 天线组件和电子设备
CN113394550A (zh) * 2020-03-12 2021-09-14 Oppo广东移动通信有限公司 天线组件和电子设备
CN115133269A (zh) * 2021-03-26 2022-09-30 Oppo广东移动通信有限公司 天线组件及电子设备
CN114284721A (zh) * 2021-12-14 2022-04-05 深圳市锐尔觅移动通信有限公司 一种天线装置及电子设备
CN115224475A (zh) * 2022-08-03 2022-10-21 荣耀终端有限公司 天线结构及电子设备

Also Published As

Publication number Publication date
CN117791093A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US11128047B2 (en) Mobile terminal and antenna of mobile terminal
US6198442B1 (en) Multiple frequency band branch antennas for wireless communicators
US5557293A (en) Multi-loop antenna
TWI425713B (zh) 諧振產生之三頻段天線
US9190733B2 (en) Antenna with multiple coupled regions
EP1506594B1 (en) Antenna arrangement and module including the arrangement
JP5526131B2 (ja) アンテナ装置及び無線通信装置
EP1052722A2 (en) Antenna
WO2023142785A1 (zh) 天线组件及电子设备
EP3767742B1 (en) Antenna device and mobile terminal
WO2020173294A1 (zh) 共体天线及电子设备
KR20090086255A (ko) 컴팩트 안테나
WO1999038227A1 (fr) Antenne multifrequence
WO2021052127A1 (zh) 天线结构及终端
CN107919525B (zh) 天线系统
CN112751174A (zh) 天线组件和电子设备
WO2022247502A1 (zh) 天线组件及电子设备
WO2022247652A1 (zh) 一种终端天线及终端电子设备
CN114258612A (zh) 天线及电子设备
TW202306242A (zh) 天線結構
JP2005020266A (ja) 多周波アンテナ装置
US20240014556A1 (en) Antenna assembly and electronic device
WO2024060819A1 (zh) 天线组件及电子设备
WO2022183892A1 (zh) 天线组件及电子设备
JPH09232854A (ja) 移動無線機用小型平面アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867114

Country of ref document: EP

Kind code of ref document: A1