WO2022247502A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2022247502A1
WO2022247502A1 PCT/CN2022/086365 CN2022086365W WO2022247502A1 WO 2022247502 A1 WO2022247502 A1 WO 2022247502A1 CN 2022086365 W CN2022086365 W CN 2022086365W WO 2022247502 A1 WO2022247502 A1 WO 2022247502A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
branch
mode
sub
electrically connected
Prior art date
Application number
PCT/CN2022/086365
Other languages
English (en)
French (fr)
Inventor
吴小浦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP22810235.6A priority Critical patent/EP4322328A4/en
Publication of WO2022247502A1 publication Critical patent/WO2022247502A1/zh
Priority to US18/503,330 priority patent/US20240072418A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band

Definitions

  • the present application relates to the technical field of communications, and in particular to an antenna assembly and electronic equipment.
  • an antenna assembly provided by the present application includes a first radiator, a second radiator, a first matching module, a first feeding module, a second matching module and a second feeding module, the first The radiator has a first ground terminal and a first coupling terminal, and a first feeding point located between the first ground terminal and the first coupling terminal, and the second radiator has a second coupling terminal and a first coupling terminal.
  • the first matching module is electrically connected between the first feeding point and the first feeding module, and the first ground terminal is electrically connected to the first reference ground;
  • the second matching module is electrically connected to the Between the second feed point and the second feed module, the second ground terminal is electrically connected to the second reference ground;
  • the first radiator and the second radiator are connected between the first feed Under the excitation of the electric module and the second feed module, multiple resonance modes are supported, wherein at least one of the resonance modes is that the excitation current of the first feed module resonates on the second radiator (1 /8 ⁇ 1/4) wavelength mode.
  • the present application provides an electronic device, the electronic device includes a casing and at least one antenna assembly, the radiator of the antenna assembly is integrated in the casing, or is arranged on the casing surface, or in the space surrounded by the housing.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 2 is a schematic exploded view of the structure of the electronic device shown in FIG. 1;
  • Fig. 3 is a schematic structural diagram of the first antenna assembly in the electronic device shown in Fig. 2;
  • FIG. 4 is a schematic diagram of an S parameter curve of the antenna assembly shown in FIG. 3;
  • Fig. 5 is a schematic diagram of the first resonant current density distribution in the antenna assembly shown in Fig. 3;
  • Fig. 6 is a schematic diagram of the second resonant current density distribution in the antenna assembly shown in Fig. 3;
  • FIG. 7 is a schematic diagram of a third resonant current density distribution in the antenna assembly shown in FIG. 3;
  • Fig. 8 is a schematic diagram of a fourth resonant current density distribution in the antenna assembly shown in Fig. 3;
  • Fig. 9 is a schematic diagram of the fifth resonant current density distribution in the antenna assembly shown in Fig. 3;
  • Fig. 10 is a schematic structural diagram of the first matching module in Fig. 3;
  • Fig. 11 is a schematic structural diagram of the first type of first sub-branch provided by the embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of the second type of first sub-branch provided by the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a third type of first sub-branch provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a fourth type of first sub-branch provided by an embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of the fifth first sub-branch provided by the embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of the sixth type of first sub-branch provided by the embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of the seventh first sub-branch provided by the embodiment of the present application.
  • Fig. 18 is a schematic structural diagram of the eighth type of first sub-branch provided by the embodiment of the present application.
  • Fig. 19 is a schematic structural diagram of the first antenna assembly shown in Fig. 3 provided with adjustable branches;
  • Fig. 20 is a schematic diagram of the detailed structure of the first matching module in Fig. 3;
  • Fig. 21 is a comparison diagram of S parameter curves of the antenna assembly in Fig. 3 and Fig. 19;
  • Fig. 22 is a schematic structural diagram of the second matching module in Fig. 3;
  • FIG. 23 is a structural schematic diagram showing that the first antenna assembly shown in FIG. 3 is installed on an electronic device
  • Fig. 24 is a schematic structural diagram of the horizontal screen setting in Fig. 23;
  • Fig. 25 is an efficiency curve diagram of the first antenna assembly shown in Fig. 3;
  • FIG. 26 is a second schematic diagram of the structure of the first antenna assembly shown in FIG. 3 installed in electronic equipment;
  • FIG. 27 is a structural schematic diagram III of the first antenna assembly shown in FIG. 3 installed on electronic equipment;
  • Fig. 28 is a first schematic diagram of the structure of the second antenna assembly provided in the embodiment of the present application installed on an electronic device;
  • Fig. 29 is a schematic structural diagram of a second antenna assembly provided by an embodiment of the present application.
  • FIG. 30 is a second structural schematic diagram of the second antenna assembly shown in FIG. 29 installed on an electronic device;
  • Fig. 31 is a schematic diagram of an improved structure of the second antenna assembly shown in Fig. 29;
  • Fig. 32 is a schematic structural diagram of the second antenna assembly integrated proximity detection shown in Fig. 29;
  • Fig. 33 is a schematic structural diagram of a third antenna assembly provided by an embodiment of the present application.
  • Fig. 34 is a schematic diagram of the S parameter curve of the first antenna unit of the antenna assembly in Fig. 33;
  • Fig. 35 is a schematic diagram of the S parameter curve of the second antenna unit of the antenna assembly in Fig. 33;
  • Fig. 36 is a schematic diagram of the S parameter curve of the third antenna unit of the antenna assembly in Fig. 33;
  • Fig. 37 is a schematic diagram of the current density distribution of the sixth resonance in the antenna assembly shown in Fig. 33;
  • Fig. 38 is a schematic diagram of the current density distribution of the seventh resonance in the antenna assembly shown in Fig. 33;
  • Fig. 39 is a schematic diagram of the current density distribution of the eighth resonant resonance in the antenna assembly shown in Fig. 33;
  • Fig. 40 is a schematic diagram of the S parameter curve of the fourth antenna unit of the antenna assembly in Fig. 33;
  • Fig. 41 is a schematic diagram of the current density distribution of the tenth resonant resonance in the antenna assembly shown in Fig. 33;
  • Fig. 42 is a schematic diagram of the current density distribution of the eleventh resonant resonance in the antenna assembly shown in Fig. 33;
  • Fig. 43 is a schematic diagram of the current density distribution of the twelfth resonant resonance in the antenna assembly shown in Fig. 33;
  • FIG. 44 is a schematic structural view of the antenna assembly shown in FIG. 33 installed in electronic equipment;
  • Figure 45 is an S-parameter graph of the antenna assembly shown in Figure 33;
  • Fig. 46 is a graph showing the isolation between each antenna element of the antenna assembly shown in Fig. 33;
  • Fig. 47 is a schematic structural diagram of a common radiator of the third antenna assembly provided by the embodiment of the present application as a proximity sensing electrode;
  • Fig. 48 is a schematic structural diagram of the second radiator of the third antenna assembly provided by the embodiment of the present application as a proximity sensing electrode;
  • Fig. 49 is a schematic structural diagram of the fourth radiator of the third antenna assembly provided by the embodiment of the present application as a proximity sensing electrode;
  • Fig. 50 is a schematic structural diagram of the common body radiator and the fourth radiator of the third antenna assembly provided by the embodiment of the present application as proximity sensing electrodes;
  • Fig. 51 is a schematic structural diagram of adding a seventh matching module to the third antenna assembly provided by the embodiment of the present application.
  • Fig. 52 is a schematic structural diagram of adding the seventh matching module and the eighth matching module to the third antenna assembly provided by the embodiment of the present application.
  • the present application provides an antenna assembly, including a first radiator, a second radiator, a first matching module, a first feeding module, a second matching module, and a second feeding module, the first radiator
  • the body has a first ground terminal and a first coupling terminal, and a first feeding point between the first ground terminal and the first coupling terminal
  • the second radiator has a second coupling terminal and a second a ground terminal, and a second feeding point located between the second coupling terminal and the second ground terminal, a first coupling gap exists between the second coupling terminal and the first coupling terminal
  • the The first matching module is electrically connected between the first feeding point and the first feeding module, and the first ground terminal is electrically connected to the first reference ground
  • the second matching module is electrically connected to the Between the second feeding point and the second feeding module, the second ground terminal is electrically connected to the second reference ground
  • the first radiator and the second radiator are connected between the first feeding Under the excitation of the module and the second feed module, multiple resonance modes are supported, wherein at least one of
  • the antenna assembly is used to support a first resonant mode, a second resonant mode and a third resonant mode, wherein the first resonant mode is that the excitation current of the first feeding module resonates with the first radiation (1/8 ⁇ 1/4) wavelength mode on the body; the second resonant mode is the (1/8 ⁇ 1/4) wavelength mode in which the excitation current of the first feed module resonates on the second radiator ) wavelength mode; the third resonance mode is a (1/8-1/4) wavelength mode in which the excitation current of the first feed module resonates from the first feed point to the first coupling end.
  • the resonant frequency of the first resonant mode, the resonant frequency of the second resonant mode and the resonant frequency of the third resonant mode increase sequentially;
  • the frequency bands supported by the first resonant mode include GPS frequency band, LTE- At least one of the 4G MHB frequency band and the NR-5G MHB frequency band;
  • the frequency band supported by the second resonance mode includes at least one of the Wi-Fi 2.4G frequency band, the LTE-4G MHB frequency band, and the NR-5G MHB frequency band;
  • the frequency band supported by the third resonance mode includes at least one of the LTE-4G UHB frequency band and the NR-5G UHB frequency band.
  • the first matching module includes at least one second branch connected in series between the first feed point and the first feed module and/or at least one first branch connected in parallel to the ground, so Both the first branch and the second branch include at least one of capacitance and inductance; the first matching module is used to tune the resonance frequency of the first resonance mode and the resonance of the second resonance mode at least one of the frequency and the resonant frequency of the third resonant mode.
  • At least one of the first branches includes a first sub-branch, a second sub-branch, and a third sub-branch, and at least one of the second branches includes a fourth sub-branch and a fifth sub-branch;
  • One end of the first sub-branch is electrically connected to the first feed point, and the other end of the first sub-branch is electrically connected to the third reference ground, and the first sub-branch includes a capacitor, or a capacitor and an inductor ;
  • One end of the second sub-branch is electrically connected to the first feed point, the other end of the second sub-branch is electrically connected to the third reference ground, and the second sub-branch includes an inductor, or Inductance and capacitance;
  • the other end of the third sub-branch is electrically connected to the third reference ground, and the third sub-branch includes a capacitor, or a capacitor and an inductor;
  • One end of the fourth sub-branch is electrically connected to the first feeding point, the other end of the fourth sub-branch is electrically connected to one end of the third sub-branch, and the fourth sub-branch includes a capacitor, or capacitance and inductance;
  • One end of the fifth sub-branch is electrically connected to the other end of the fourth sub-branch, the other end of the fifth sub-branch is electrically connected to the first feed module, and the fifth sub-branch includes an inductor.
  • the first matching module further includes at least one adjustable branch electrically connected to the third reference ground, and the adjustable branch includes at least one of a switch circuit and an adjustable capacitor; the adjustable The branch is used to tune the resonant frequencies of the first resonant mode and the second resonant mode.
  • the length between the first feed point and the first ground terminal is (1/3 ⁇ 1) times the length of the first radiator.
  • the antenna assembly is used to support the fourth resonant mode and the fifth resonant mode, wherein the fourth resonant mode is that the excitation current of the second feeding module resonates from the second feeding point to the The (1/8-1/4) wavelength mode of the second coupling end; the fifth resonance mode is the (3/4) wavelength mode in which the excitation current of the second feeding module resonates with the first radiator.
  • the resonant frequency of the fourth resonant mode is lower than the resonant frequency of the fifth resonant mode; the frequency bands supported by the fourth resonant mode and the fifth resonant mode both include Wi-Fi 5G frequency band, Wi-Fi At least one of the 6E bands.
  • the second matching module includes at least one third branch connected in parallel to ground and/or at least one fourth branch connected in series between the first feed point and the first feed module, so Both the third branch and the fourth branch include at least one of a capacitor and an inductor; the second matching module is used to conduct the frequency band supported by the fourth resonance mode and the fifth resonance mode , and blocking frequency bands smaller than the frequency bands supported by the fourth resonance mode and the fifth resonance mode, and tuning the resonance frequency of the fourth resonance mode and/or the resonance frequency of the fifth resonance mode.
  • At least one of the third branches includes a sixth sub-branch and a seventh sub-branch, and at least one of the fourth branches includes an eighth sub-branch;
  • One end of the sixth sub-branch is electrically connected to the second feed point, the other end of the six sub-branch is electrically connected to one end of the seventh sub-branch, and the sixth sub-branch includes a parallel inductor and capacitance;
  • the other end of the seventh sub-branch is electrically connected to the second feed module, and the seventh sub-branch includes a capacitor, or an inductor, or a parallel inductor and capacitor;
  • One end of the eighth sub-branch is electrically connected to the second feed module, the other end of the eighth sub-branch is electrically connected to the fourth reference ground, and the eighth sub-branch includes a capacitor, an inductor at least one of .
  • the antenna assembly also includes a third radiator, a third feeding module and a third matching module
  • the third radiator includes a third ground terminal and a first free terminal, and is arranged on the third ground terminal and the third feed point between the first free end, the third ground end is spaced apart from the first ground end or connected through a conductor, and the third ground end is electrically connected to the fifth reference ground
  • the third feeding module is electrically connected to the third feeding point
  • the third matching module is electrically connected between the third feeding point and the third feeding module.
  • the antenna assembly further includes a fourth matching module, one end of the fourth matching module is electrically connected to the first ground terminal, and the other end of the fourth matching module is electrically connected to the first reference ground; And/or, the antenna assembly further includes a fifth matching module, one end of the fifth matching module is electrically connected to the third ground terminal, and the other end of the fifth matching module is electrically connected to the fifth reference land.
  • the antenna assembly also includes a fourth radiator, a fourth feed module and a sixth matching module
  • the fourth radiator includes a fourth ground terminal and a second free terminal, and is located at the fourth ground terminal and the fourth feed point between the second free end, the second coupling gap between the fourth ground end and the first free end, and the fourth ground end is electrically connected to the sixth reference ground
  • the fourth feeding module is electrically connected to the fourth feeding point
  • the sixth matching module is electrically connected between the fourth feeding point and the fourth feeding module.
  • the antenna component is also used to support the sixth resonant mode, the seventh resonant mode and the eighth resonant mode, wherein the sixth resonant mode is that the excitation current of the third feeding module resonates in the third (1/8 ⁇ 1/4) wavelength mode on the radiator; the seventh resonance mode is that the excitation current of the third feed module resonates from the third feed point to the first free end ( 1/8 ⁇ 1/4) wavelength mode; the eighth resonance mode is that the excitation current of the third feed module resonates in (1/8 ⁇ 1 /4) a wavelength mode, and a (1/8-1/4) wavelength mode that resonates from the second free end to the fourth ground end;
  • the antenna assembly is also used to support the ninth resonant mode, the tenth resonant mode, the eleventh resonant mode and the twelfth resonant mode, wherein the ninth resonant mode is the excitation current resonance of the fourth feeding module (1/8 ⁇ 1/4) wavelength mode from the third feed point to the first free end, and (1/8 ⁇ 1/4) resonant from the first free end to the fourth ground end 4) Wavelength mode; the tenth resonance mode is a (1/8-1/4) wavelength mode in which the excitation current of the fourth feed module resonates from the first free end to the fourth ground end; the The eleventh resonance mode is the (1/8 ⁇ 1/4) wavelength mode in which the excitation current of the fourth feed module resonates from the fourth feed point to the second free end; the twelfth The resonance mode is a (3/4) wavelength mode in which the excitation current of the fourth feed module resonates from the third ground terminal to the first free terminal.
  • the frequency band supported by the third radiator under the excitation of the third feed module includes GPS frequency band, Wi-Fi 2.4G frequency band, LTE-4G MHB frequency band, NR-5G MHB frequency band, LTE-4G UHB frequency band , NR-5G UHB frequency band; the frequency band supported by the fourth radiator under the excitation of the fourth feed module covers N77 frequency band, N78 frequency band, Wi-Fi 5G frequency band, and Wi-Fi 6E frequency band.
  • the first radiator is connected to the third radiator to form a common body radiator;
  • the antenna assembly further includes a DC blocking component, a filtering component and a detection component, and the DC blocking component is electrically connected to the first between the feed point and the first matching module, between the first ground terminal and the first reference ground, between the third ground terminal and the fifth reference ground, and between the third Between the feeding point and the third matching module; one end of the filter assembly is electrically connected to the side of the DC blocking assembly close to the common radiator or is electrically connected to the common radiator, and the blocking The straight component is used to isolate the DC current generated by the first matching module, the first reference ground, the fifth reference ground and the third matching module, and the filter component is used to block the common body
  • the detection component is electrically connected to the other end of the filter component, and the detection component is used to detect the magnitude of the induction signal.
  • the antenna assembly further includes at least one seventh matching module, one end of the seventh matching module is electrically connected to the connection section, so The other end of the seventh matching module is grounded.
  • the present application provides an electronic device, the electronic device includes a housing and an antenna assembly according to at least one of the first aspect or any one of the first aspect, the radiator of the antenna assembly is integrated in the The housing is either arranged on the surface of the housing or in the space surrounded by the housing.
  • the housing includes a top frame and a bottom frame oppositely arranged, and a first side frame and a second side frame connected between the top frame and the bottom frame, and the antenna assembly is arranged on the top frame. At least one of the frame, the first side frame, the second side frame and the bottom frame.
  • the first radiator and the second radiator of the antenna assembly are arranged on the first side frame, a part of the third radiator of the antenna assembly is arranged on the first side frame, and the antenna assembly The other part of the third radiator is arranged on the top frame, the fourth radiator of the antenna assembly is arranged on the top frame, and the first coupling gap between the first radiator and the second radiator Located on the first side frame, the second coupling gap is located on the top frame;
  • the electronic device further includes at least one button part, at least one button part is located between the second ground terminal and the second feeding point, and/or at least one button part is located between the first ground terminal and the second feeding point. between the third ground terminals of the three radiators.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • Electronic device 1000 includes antenna assembly 100 .
  • the antenna assembly 100 is used to send and receive electromagnetic wave signals, so as to realize the communication function of the electronic device 1000 .
  • the present application does not specifically limit the position of the antenna assembly 100 in the electronic device 1000 .
  • the electronic device 1000 also includes a display screen 300 and a casing 200 that are closed and connected to each other.
  • the antenna assembly 100 can be disposed inside the casing 200 of the electronic device 1000 , or partially integrated with the casing 200 , or partially disposed outside the casing 200 .
  • the radiator of the antenna assembly 100 in FIG. 1 is integrated with the casing 200 .
  • the antenna assembly 100 can also be arranged on the retractable assembly of the electronic device 1000.
  • at least part of the antenna assembly 100 can extend out of the electronic device 1000 along with the retractable assembly of the electronic device 1000, and with the retractable The assembly is retracted into the electronic device 1000; alternatively, the overall length of the antenna assembly 100 is extended as the retractable assembly of the electronic device 1000 is extended.
  • the electronic equipment 1000 includes but is not limited to telephones, televisions, tablet computers, mobile phones, cameras, personal computers, notebook computers, vehicle equipment, earphones, watches, wearable equipment, base stations, vehicle radar, customer premise equipment (Customer Premise Equipment, CPE ) and other devices capable of sending and receiving electromagnetic wave signals.
  • the electronic device 1000 is taken as an example of a mobile phone, and for other devices, reference may be made to the specific description in this application.
  • the X-axis direction, the Y-axis direction and the Z-axis direction are perpendicular to each other.
  • the direction indicated by the arrow is the forward direction.
  • the casing 200 includes a frame 210 and a rear cover 220 .
  • a middle plate 410 is formed in the frame 210 by injection molding, and a plurality of installation slots for installing various electronic devices are formed on the middle plate 410 .
  • the middle board 410 and the frame 210 together form the middle frame 420 of the electronic device 1000 .
  • the middle frame 420 and the rear cover 220 are closed, a receiving space is formed on both sides of the middle frame 420 .
  • One side (such as the rear side) of the frame 210 surrounds the periphery of the rear cover 220
  • the other side (such as the front side) of the frame 210 surrounds the periphery of the display screen 300 .
  • the electronic device 1000 also includes a battery, a camera, a microphone, a receiver, a loudspeaker, a face recognition module, a fingerprint recognition module, etc., which can realize the basic functions of the mobile phone, and will not be described in this embodiment. .
  • the antenna assembly 100 provided by the present application will be specifically described below with reference to the accompanying drawings.
  • the antenna assembly 100 provided by the present application includes but is not limited to the following embodiments.
  • the antenna assembly 100 at least includes a first radiator 11 , a second radiator 21 , a first matching module M1 , a first feeding module 13 , a second matching module M2 and a second feeding module 23 .
  • the first radiator 11, the second radiator 21, the first matching module M1, and the first feeding module 13 are defined as the first antenna unit 10.
  • the first radiator 11 , the second radiator 21 , the second matching module M2 and the second feeding module 23 are defined as the second antenna unit 20 .
  • the first radiator 11 has a first ground terminal 111 and a first coupling terminal 112 , and a first feeding point A located between the first ground terminal 111 and the first coupling terminal 112 .
  • the first grounding end 111 and the first coupling end 112 are opposite ends of the first radiator 11 in the shape of a straight line.
  • the first radiator 11 is bent, and the first ground terminal 111 and the first coupling terminal 112 may not face each other along a straight line, but the first ground terminal 111 and the first coupling terminal 112 are the first radiator 11 at both ends.
  • the second radiator 21 has a second coupling end 211 and a second grounding end 212 , and a second feeding point B located between the second coupling end 211 and the second grounding end 212 .
  • a first coupling gap 140 exists between the second coupling end 211 and the first coupling end 112 .
  • the first radiator 11 and the second radiator 21 can generate capacitive coupling through the first coupling slot 140 .
  • the second coupled end 211 and the second free end 122 are two ends of the second radiator 21 .
  • the first radiator 11 and the second radiator 21 may be arranged in a straight line or substantially in a straight line (that is, there is a small tolerance in the design process).
  • the first radiator 11 and the second radiator 21 may also be arranged in a staggered manner in the extending direction, so as to form an avoidance space and the like.
  • the first coupling end 112 is opposite to the second coupling end 211 and arranged at intervals.
  • the first coupling slot 140 is a gap between the first radiator 11 and the second radiator 21 , for example, the width of the first coupling slot 140 may be 0.5-2 mm, but not limited to this size.
  • the first radiator 11 and the second radiator 21 can be regarded as two parts formed by separating the radiator by the first coupling slot 140 .
  • the first radiator 11 and the second radiator 21 are capacitively coupled through the first coupling slot 140 .
  • capacitively coupling means that an electric field is generated between the first radiator 11 and the second radiator 21, the signal of the first radiator 11 can be transmitted to the second radiator 21 through the electric field, and the signal of the second radiator 21 Signals can be transmitted to the first radiator 11 through the electric field, so that the first radiator 11 and the second radiator 21 can realize electrical signal conduction even when they are not in direct contact or direct connection.
  • first radiator 11 and the second radiator 21 does not specifically limit the shape and structure of the first radiator 11 and the second radiator 21.
  • the shapes of the first radiator 11 and the second radiator 21 include but are not limited to strips, sheets shape, rod shape, coating, film, etc.
  • the application does not limit the extension tracks of the first radiator 11 and the second radiator 21, so the first radiator 11 and the second radiator 21 All can be extended in the form of straight lines, curves, multi-segment bends and other trajectories.
  • the above-mentioned radiator can be a line with uniform width on the extension track, or it can be a strip with unequal width such as gradually changing width and widening area.
  • the first matching module M1 is electrically connected between the first feeding point A and the first feeding module 13 .
  • the first power feeding module 13 is a radio frequency transceiver chip for sending radio frequency signals or a power feeding part electrically connected to the radio frequency transceiver chip for sending radio frequency signals.
  • the first matching module M1 may include at least one of a switching device, a capacitive device, an inductive device, a resistive device, and the like.
  • the first ground terminal 111 is electrically connected to the first reference ground GND1, and its electrical connection methods include but not limited to direct welding, or indirect electrical connection through coaxial lines, microstrip lines, conductive shrapnel, conductive glue, etc. .
  • the present application does not limit the specific position of the first feeding point A on the first radiator 11 .
  • the second antenna unit 20 includes a first radiator 11 , a second radiator 21 , a second matching module M2 and a second feeding module 23 .
  • the second matching module M2 is electrically connected between the second feeding point B and the second feeding module 23 .
  • the second power feeding module 23 is a radio frequency transceiver chip for sending radio frequency signals or a power feeding part electrically connected to the radio frequency transceiver chip for sending radio frequency signals.
  • the second matching module M2 includes at least one of a switching device, a capacitive device, an inductive device, a resistive device and the like.
  • the second ground terminal 212 is electrically connected to the second reference ground GND2, and its electrical connection methods include but not limited to direct welding, or indirect electrical connection through coaxial lines, microstrip lines, conductive shrapnel, conductive glue, etc. .
  • the present application does not limit the specific position of the first feeding point A on the first radiator 11 .
  • the first reference ground GND1 and the second reference ground GND2 include but are not limited to the following several implementations.
  • the antenna assembly 100 itself has a reference ground.
  • Specific forms of the reference ground include, but are not limited to, metal conductive plates, metal conductive layers molded inside flexible circuit boards, and rigid circuit boards.
  • the first reference ground GND1 and the second reference ground GND2 may be an integrated reference ground in the antenna assembly 100 , or may be two independent but connected reference grounds in the antenna assembly 100 .
  • the reference ground of the antenna assembly 100 is electrically connected to the reference ground of the electronic device 1000 .
  • the antenna assembly 100 itself does not have a reference ground, and the first ground terminal 111 and the second ground terminal 212 of the antenna assembly 100 are directly electrically connected or indirectly electrically connected to the reference ground of the electronic device 1000 or the electronic device through a conductive member.
  • the antenna assembly 100 is disposed in the electronic device 1000, and the metal alloy on the middle board 410 is used as the reference ground GND. That is, the first reference ground GND1 and the second reference ground GND2 are part of the mid-plane 410 or electrically connected to the mid-plane 410 , and the subsequent third reference ground GND3 to seventh reference ground GND7 are all part of the reference ground GND.
  • the first radiator 11 and the second radiator 21 support multiple resonance modes under the excitation of the first feeding module 13 and the second feeding module 23 .
  • the first radiator 11 and the second radiator 21 support multiple resonance modes (for example, the first resonance mode a, the second resonance mode b, and the third resonance mode in FIG. Resonant mode c).
  • the first radiator 11 and the second radiator 21 support multiple resonance modes (for example, the fourth resonance mode d and the fifth resonance mode e in FIG. 4 ) under the excitation of the second feeding module 23 .
  • the current generated by the first feed module 13 can resonate on the first radiator 11 and/or the second radiator 21, and the current generated by the second feed module 23
  • the current can also resonate in the first radiator 11 and/or the second radiator 21, and the first radiator 11 and the second radiator 21 can not only be used as the radiator of the first antenna unit 10, but also can be used as the second antenna unit 20
  • the antenna provided by the embodiment of the present application
  • the first antenna unit 10 and the second antenna unit 20 in the component 100 realize co-aperture radiation and can generate more resonance modes. From another point of view, the antenna assembly 100 provided by the embodiment of the present application fully multiplexes the radiator while supporting the required frequency band (or supporting the required number of resonant modes), further reducing the first The stack length of the radiator 11 and the second radiator 21 .
  • At least one resonance mode is a (1/8 ⁇ 1/4) wavelength mode in which the excitation current of the first feed module 13 resonates on the second radiator 21 .
  • the wavelength refers to the wavelength of the electromagnetic wave in the medium in the environment.
  • the current provided by the first feed module 13 resonates on the first radiator 11 to generate a resonance mode; in addition, due to the capacitive coupling between the first radiator 11 and the second radiator 21, the first feed module 13 provides The current is also transmitted to the second radiator 21 through the first coupling slot 140 to generate a resonant mode on the second radiator 21, increasing the number of resonant modes supported by the first antenna unit 10; further, by designing the second The length of the radiator 21 is about (1/8-1/4) times the wavelength of the current frequency provided by the first feed module 13 in the medium, so as to facilitate the generation of a resonance mode, so that the current resonates on the second radiator 21 (1/8 ⁇ 1/4) wavelength mode, wherein, the (1/8 ⁇ 1/4) wavelength mode is a resonance mode with relatively high efficiency, so the number of
  • the number of resonance modes supported by the antenna assembly 100 increases, and the frequency band width and number of frequency bands covered by the antenna assembly 100 increase.
  • the frequency bandwidth supported by the antenna component 100 is relatively wide, and can form an ultra-wideband, which is 1G, 1.5G or 2G, etc., to achieve ultra-broadband coverage, increase download bandwidth, increase throughput download speed, and improve user experience on the Internet;
  • the frequency bands supported by the various resonance modes of the antenna assembly 100 are discontinuous, the antenna assembly 100
  • the number of frequency bands supported by 100 is increased to achieve multi-band coverage.
  • the frequency bands supported by antenna assembly 100 can simultaneously cover 4G/5G medium and high frequencies (such as 1000MHz-3000MHz) and 4G/5G ultra-high frequencies (such as 3000MHz-10000MHz), At the same time, it supports medium and high frequency bands of two different frequency bands, supports both 4G/5G medium and high frequency bands and WiFi frequency bands (such as WiFi 5G, 5.925GHz ⁇ 7.125GHz, etc.), etc.
  • the frequency bands supported by multiple resonance modes are continuous, which means that two adjacent frequency bands supported by multiple resonance modes overlap at least in part.
  • the discontinuity of frequency bands supported by multiple resonance modes means that there is no overlap between two adjacent frequency bands supported by multiple resonance modes.
  • the first antenna unit 10 can support relatively many resonance modes, and the frequency band width covered is relatively large. wide and relatively large number of supported frequency bands, enabling the first antenna unit 10 to support one of the communication protocol signals that require more resonance mode support (such as mobile communication 4G/5G signals), and the second antenna unit 20 can either Support another communication protocol signal (such as WiFi signal).
  • the second antenna unit 20 can either Support another communication protocol signal (such as WiFi signal).
  • the antenna assembly 100 and the electronic device 1000 provided in this application are capacitively coupled by designing the first radiator 11 and the second radiator 21, and the first radiator 11 and the second radiator 21 are used as the first antenna unit 10 and the second antenna
  • the common-aperture radiator of the unit 20, and the length of the second radiator 21 is designed to correspond to the (1/8 ⁇ 1/4) wavelength of the resonance frequency of the excitation current provided by the first feed module 13, so that the first feed While the current transmitted by the module 13 resonates on the first radiator 11, it can also resonate on the (1/8 ⁇ 1/4) wavelength mode on the second radiator 21 through the first coupling slot 140, so the first antenna can be increased
  • the number of resonance modes supported by the unit 10 and the transceiving efficiency for the supported frequency bands thereby increasing the number or bandwidth of the frequency bands supported by the first antenna unit 10, improving the data transmission rate and communication quality, and facilitating the support of the second antenna unit 20
  • Signals of the same protocol standard avoid the radio frequency link loss caused by sending and receiving signals of different protocol standards through a radiator, improve the structural simplicity of the antenna unit 100
  • the first antenna unit 10 at least supports a first resonant mode a, a second resonant mode b and a third resonant mode c.
  • the first radiator 11 supports at least the first resonant mode a and the third resonant mode c under the excitation of the first feeding module 13 .
  • the second radiator 21 supports at least the second resonance mode b under the excitation of the first feed module 13 .
  • the resonant mode is characterized by the fact that the antenna assembly 100 has higher efficiency of transmitting and receiving electromagnetic waves at and near the resonant frequency.
  • the resonant frequency is the resonant frequency of the resonant mode, and the resonant frequency and its vicinity form a frequency band supported or covered by the resonant mode.
  • the absolute value of the return loss value is greater than or equal to 5dB (for example only, and cannot be used as the application for the limitation of the return loss value of higher efficiency) as having a higher
  • the reference value of the electromagnetic wave transceiving efficiency A set of frequencies whose absolute value of the return loss value in a resonance mode is greater than or equal to 5 dB is taken as the frequency band supported by the resonance mode.
  • the first resonant current density of the first resonant mode a is mainly distributed between the first ground terminal 111 and the first coupled terminal 112, and flows from the first ground terminal 111 to the first coupled terminal 112, or from the first coupled terminal 112.
  • the coupled end 112 flows to the first ground end 111 . It can be understood that the above is the main current density distribution of the first resonance mode a, and there is also a small amount of current density distribution on the second radiator 21 .
  • the first resonance mode a is (1/8 ⁇ 1 /4) Wavelength mode. Specifically, by designing the length of the first radiator 11 to be about (1/8-1/4) times the wavelength in the medium of the excitation current sent to the first radiator 11 by the first feeding module 13, in order to A radiator 11 excites a first resonant mode a, and has higher radiation efficiency in the frequency band supported by the first resonant mode a.
  • the length of the first radiator 11 is about (1/4) times the wavelength in the medium of the excitation current sent to the first radiator 11 by the first feeding module 13, at the first resonance frequency point f1 (the resonant frequency of the first resonant mode a) tends to excite higher radiation efficiency.
  • the capacitive loading can make the resonant frequency of the first resonant mode a towards
  • the low-frequency offset no longer follows the original requirement to generate higher-efficiency resonance at the length of the first radiator 11 at about 1/4 of the wavelength, but can correspond to 1/8 to 1/4 of the length of the first radiator 11
  • higher-efficiency resonance can be generated, so while forming resonance at the original first resonance frequency point f1, the length of the corresponding first radiator 11 can also be shortened, for example, reduced to the first 1/8 times the wavelength corresponding to the resonant frequency point f1, etc., further reduces the size of the first radiator 11 and reduces the stacking length of the antenna assembly 100 .
  • the second resonance current density of the second resonance mode b is mainly distributed between the first feeding point A and the second ground terminal 212, and flows from the first feeding point A to the first coupling terminal 112, after passing through the first coupling slot 140, it flows from the second coupling end 211 to the second grounding end 212, or from the second grounding end 212 to the second coupling end 211, after passing through the first coupling slot 140, it flows from the first coupling end 112 flows to the first feeding point A.
  • the above is the main current density distribution of the second resonance mode b, and there is also a small amount of current density distribution between the first ground terminal 111 and the first feeding point A.
  • the second resonance mode b is the excitation current (second resonance current) provided by the first feed module 13 that resonates on the second radiator 21 (1/8 ⁇ 1/4) wavelength model. Specifically, by designing the length of the second radiator 21 to be about (1/8-1/4) times the wavelength in the medium of the excitation current sent by the first feed module 13 to the second radiator 21, in order to The second resonance mode b is excited on the two radiators 21 .
  • the length of the second radiator 21 is about (1/4) times the wavelength of the excitation current sent by the first feed module 13 in the medium, at this time, at the second resonance frequency point f2 (second The resonant frequency of resonant mode b) is easy to excite higher radiation efficiency.
  • the capacitive loading can make the resonant frequency of the second resonant mode b toward
  • the low-frequency offset no longer follows the original requirement to generate higher-efficiency resonance at the length of the second radiator 21 at about 1/4 of the wavelength, but can correspond to 1/8 to 1/4 of the length of the second radiator 21
  • higher-efficiency resonance can be generated, so while forming resonance at the original second resonance frequency point f2, the length of the corresponding second radiator 21 can also be shortened, for example, reduced to the second 1/8 times the wavelength corresponding to the resonant frequency point f2, etc., further reduces the size of the second radiator 21 and reduces the stacking length of the antenna assembly 100 .
  • the third resonant current density of the third resonant mode c is mainly distributed between the first feeding point A and the first coupling end 112, and flows from the first feeding point A to the first coupling end 112, or flow from the first coupling end 112 to the first feeding point A. It can be understood that the above is the main current density distribution of the third resonance mode c, and there is also a small amount of current density distribution between the first ground terminal 111 and the first feeding point A and on the second radiator 21 .
  • the third resonant mode c is that the excitation current (third resonant current) provided by the first feed module 13 resonates at (1/ 8 ⁇ 1/4) wavelength mode. Specifically, by designing the length from the first feeding point A to the first coupling end 112 is about (1/8-1/ 4) times to excite the third resonant mode c from the first feeding point A to the first coupling end 112 .
  • the length from the first feeding point A to the first coupling end 112 is about (1/4) times the wavelength of the excitation current sent by the first feeding module 13 in the medium, at this time, at the third
  • the resonant frequency point f3 (the resonant frequency of the third resonant mode c) is likely to excite higher radiation efficiency.
  • capacitive loading can make the resonant frequency of the third resonant mode c towards The low-frequency offset no longer follows the original requirement to generate higher-efficiency resonance at the length from the first feeding point A to the first coupling end 112 at about 1/4 wavelength, but can be at the first feeding point A to
  • the length of the first coupling end 112 corresponds to the range of 1/8 to 1/4 wavelength, which can generate high-efficiency resonance, so the corresponding first coupling end 112 can be resonated at the original third resonance frequency point f3 and can also make the corresponding first
  • the length from the feed point A to the first coupling end 112 is shortened, for example, to 1/8 times the wavelength corresponding to the third resonance frequency point f3, etc., further reducing the length from the first feed point A to the first coupling end 112, reducing the stacking length of the antenna assembly 100.
  • the second resonance mode b is the (1/8 ⁇ 1/4) wavelength mode in which the excitation current provided by the first feed module 13 resonates from the first feed point A to the first coupling end 112 .
  • the third resonant mode c is the (1/8 ⁇ 1/4) wavelength mode in which the excitation current provided by the first feeding module 13 resonates from the first feeding point A to the first coupling end 112 .
  • the first feeding module 13 can Both the first radiator 11 and the second radiator 21 between the first feeding point A and the first coupling end 112 excite a resonant mode on the body 11, which improves the capability of the resonant mode supported by the first antenna unit 10.
  • the number effectively increases the number of frequency bands covered by the first antenna unit 10 , the frequency band width, etc., and increases the transmission data rate of the antenna assembly 100 .
  • the frequency bands supported by the first resonance mode a, or the second resonance mode b, or the third resonance mode c include GPS frequency band, or LTE 4G frequency band, or NR 5G frequency band, or Wi-Fi 2.4G frequency band, or Wi-Fi 5G frequency band, or Wi-Fi 6E frequency band, or the combined frequency band formed by LTE 4G frequency band and NR 5G frequency band, etc.
  • the frequency band supported by a resonance mode can be a separate LTE 4G frequency band, or a separate NR 5G frequency band, or a separate Wi-Fi frequency band, or a combined frequency band formed by the LTE 4G frequency band and the NR 5G frequency band, etc.
  • the magnitude of the resonance frequency of the first resonance mode a, the magnitude of the resonance frequency of the second resonance mode b, and the magnitude of the resonance frequency of the third resonance mode c are not specifically limited.
  • the resonant frequency of the first resonant mode a, the resonant frequency of the second resonant mode b, and the resonant frequency of the third resonant mode c increase sequentially.
  • the second resonant mode b and the third resonant mode c are all 1/4 wavelength modes, since the resonant frequency of the first resonant mode a, the resonant frequency of the second resonant mode b and the third resonant mode
  • the resonant frequency of c increases sequentially, and the 1/4 wavelength corresponding to the resonant frequency of the first resonant mode a, the 1/4 wavelength corresponding to the resonant frequency of the second resonant mode b, and the 1 corresponding to the resonant frequency of the third resonant mode c can be obtained.
  • the /4 wavelength decreases sequentially, and the radiation part of the 1/4 wavelength corresponding to the resonance frequency of the second resonance mode b is set on the first radiator 11, compared with the 1/4 wavelength corresponding to the resonance frequency of the third resonance mode c /4 wavelength
  • the total length of the common-aperture radiator arranged on the first radiator 11 is shorter, which realizes the shorter stacking length of the first radiator 11 and the second radiator 21 of the antenna assembly 100, and further reduces the antenna The space occupied by the assembly 100 in an extremely limited space.
  • the frequency band supported by the first resonance mode a includes at least one of the GPS frequency band, LTE-4G MHB frequency band, and NR-5G MHB frequency band, for example, GPS-L1 frequency band, B3 frequency band, B1 frequency band, N3 frequency band , at least one of the N1 frequency bands.
  • the resonant frequency of the first resonant mode a is 1.7698 GHz.
  • the frequency band supported by the second resonance mode b includes at least one of Wi-Fi 2.4G frequency band, LTE-4GMHB frequency band, NR-5G MHB frequency band, etc., for example, Wi-Fi 2.4G frequency band, B7 frequency band, B41 frequency band, B38 frequency band, N7 frequency band, N41 frequency band, etc.
  • the resonant frequency of the second resonant mode b is 2.6185 GHz.
  • the frequency band supported by the third resonance mode c includes at least one of LTE-4GUHB frequency band, NR-5G UHB frequency band, etc., for example, at least one of N78 frequency band, B42 frequency band, B43 frequency band, etc.
  • the resonant frequency of the third resonant mode c is 3.5983 GHz.
  • MHB refers to the middle and high frequency band (1000MHz-3000MHz).
  • UHB refers to ultra-high frequency band (3000MHz ⁇ 10000MHz).
  • the second radiator 21 supports at least the fourth resonant mode d and the fifth resonant mode e.
  • the second radiator 21 between the second coupling end 211 and the second feeding point B supports at least the fourth resonance mode d under the excitation of the second feeding module 23 .
  • the first radiator 1121 supports at least the fifth resonance mode e under the excitation of the second feeding module 23 .
  • the fourth resonant current density of the fourth resonant mode d is mainly distributed between the second feeding point B and the second coupling end 211, and flows from the second feeding point B to the second coupling end 211.
  • the second coupling end 211 or flows from the second coupling end 211 to the second feeding point B. It can be understood that the above is the main current density distribution of the fourth resonance mode d, and there is also a small amount of current density distribution on the first radiator 11 between the second ground terminal 212 and the second feeding point B.
  • the fourth resonance mode d is the (1/8 ⁇ 1/4) wavelength mode in which the excitation current (fourth resonance current) of the second feed module 23 resonates from the second feed point B to the second coupling end 211 .
  • the length from the second feeding point B to the second coupling end 211 to be about (1/8-1/ 4) times to excite the fourth resonant mode d from the second feeding point B to the second coupling end 211.
  • the length from the second feeding point B to the second coupling end 211 is about (1/4) times the wavelength of the excitation current sent by the second feeding module 23 in the medium, at this time, at the fourth
  • the resonant frequency point f4 (the resonant frequency of the fourth resonant mode d) is likely to excite higher radiation efficiency.
  • the capacitive loading can make the resonant frequency of the fourth resonant mode d towards The low-frequency offset no longer follows the original requirement to generate a higher-efficiency resonance at the length of about 1/4 wavelength from the second feeding point B to the second coupling end 211, but can be at the second feeding point B to the second coupling end 211.
  • the length of the second coupling end 211 corresponds to the range of 1/8 to 1/4 wavelength, which can generate high-efficiency resonance.
  • the length from the feeding point B to the second coupling end 211 is shortened, for example, to 1/8 times the wavelength corresponding to the fourth resonance frequency point f4, etc., further reducing the length from the second feeding point B to the second coupling end 211, reducing the stacking length of the antenna assembly 100.
  • the fifth resonance current density of the fifth resonance mode e is mainly distributed between the first ground terminal 111 and the first coupling terminal 112, and flows from the first ground terminal 111 to the first coupling terminal 112, Or flow from the first coupled end 112 to the first ground end 111 . It can be understood that the above is the main current density distribution of the fifth resonance mode e, and there is also a small amount of current density distribution between the second coupling end 211 and the second grounding end 212 .
  • the fifth resonance mode e is the (3/4) wavelength mode in which the excitation current of the second feed module 23 resonates with the first radiator 11 . Specifically, by designing the length of the first radiator 11 to be about (3/4) times the wavelength of the excitation current in the medium sent by the second feed module 23 to the first radiator 11, the first radiator 11 The fifth resonance mode e is excited.
  • the above explanation from the perspective of wavelength modes to explain the first resonant mode a to the fifth resonant mode e is a relatively understandable explanation, which illustrates the main characteristic appearance of each mode and is easy to distinguish.
  • the first antenna unit 10 and the second antenna unit 20 are not independent, but are coupled to each other, and the current will flow to each other through the coupling.
  • the first radiator 11 is similar to the parasitic radiator of the second radiator 21 .
  • the fifth resonance mode e is a resonance mode generated by the second feeding module 23 exciting the parasitic radiator (second radiator 21 ).
  • the second feeding module 23 can be connected between the first radiator 11 and the second feeding point. All the resonant modes are excited on the second radiator 21 between B and the second coupling end 211, increasing the number of resonant modes that the second antenna unit 20 can support, effectively increasing the number of frequency bands covered by the second antenna unit 20 , frequency band width, etc., to increase the transmission data rate of the antenna assembly 100 .
  • the frequency bands supported by the fourth resonance mode d and the fifth resonance mode e include GPS frequency band, or LTE 4G frequency band, or NR5G frequency band, or Wi-Fi 2.4G frequency band, or Wi-Fi 5G frequency band, or Wi-Fi Fi 6E frequency band, or the combined frequency band formed by LTE 4G frequency band and NR 5G frequency band, etc.
  • the frequency band supported by a resonance mode can be a separate LTE 4G frequency band, or a separate NR 5G frequency band, or a separate Wi-Fi frequency band, or a combined frequency band formed by the LTE 4G frequency band and the NR 5G frequency band, etc.
  • the magnitude of the resonance frequency of the fourth resonance mode d and the magnitude of the resonance frequency of the fifth resonance mode e are not limited.
  • the resonant frequency of the fourth resonant mode d is lower than the resonant frequency of the fifth resonant mode e.
  • the resonant frequency of the fourth resonant mode d is higher than the resonant frequency of the third resonant mode c. Therefore, the 1/4 wavelength of the resonant frequency of the fourth resonant mode d is smaller than the 1/4 wavelength of the resonant frequency of the third resonant mode c.
  • the length between the second feeding point B and the second coupled end 211 is equal to 1/1 of the resonant frequency of the fourth resonant mode d 4 wavelengths correspond to each other, and then a resonant mode is excited between the second feeding point B of the second radiator 21 and the second coupling end 211 .
  • the second feed module 23 can excite the 3/4 wavelength mode on the first radiator 11, so that while increasing the number of resonance modes The first radiator 11 is multiplexed.
  • the frequency bands supported by the fourth resonance mode d and the fifth resonance mode e both include at least one of the Wi-Fi 5G frequency band and the Wi-Fi 6E frequency band.
  • the resonant frequency of the fourth resonant mode d is 5.4751 GHz
  • the resonant frequency of the fifth resonant mode e is 6.0064 GHz.
  • the frequency band supported by the first antenna unit 10 covers GPS-L1 frequency band, Wi-Fi 2.4G frequency band, LTE-4G MHB frequency band (B3 frequency band, B1 frequency band, B7 frequency band, B41 frequency band, B38 frequency band), NR- 5G MHB frequency band (N3 frequency band, N1 frequency band, N7 frequency band, N41 frequency band), LTE-4G UHB frequency band (B42 frequency band, B43 frequency band), NR-5G UHB frequency band (N78 frequency band); the frequency band supported by the second antenna unit 20 covers Wi -Fi 5G frequency band, Wi-Fi 6E frequency band, etc., so that the second antenna unit 20 only needs to support communication signals of one communication protocol, thereby avoiding setting a combiner in the radio frequency link in the second antenna unit 20, etc.
  • the device combines the communication signals of two different communication protocols, reducing the number of devices in the radio frequency link, thereby reducing the loss of the radio frequency link of the antenna assembly 100 .
  • the first matching module M1 is set between the first feeding point A and the first feeding module 13, and is used to select the frequency of the signal fed by the first feeding module 13, for example, the first matching The module M1 selects a frequency band of 1 GHz to 7 GHz from the radio frequency signal transmitted by the first feeding module 13 to transmit the first feeding point A, or the first matching module M1 selects from the radio frequency signal transmitted by the first feeding module 13 The frequency band of 1GHz-4.5GHz transmits the first feeding point A.
  • the first matching module M1 can also tune the resonance mode supported by the first antenna unit 10, so that the antenna assembly 100 can resonate at the frequency band required to be supported, and isolate the resonance signal of the second antenna unit 20, increasing The degree of isolation between the first antenna unit 10 and the second antenna unit 20 .
  • the first matching module M1 will be specifically described below in conjunction with the accompanying drawings.
  • the first matching module M1 includes at least one first branch 14 connected in parallel to ground and/or at least one second branch 15 connected in series between the first feeding point A and the first feeding module 13 .
  • both the first branch 14 and the second branch 15 include at least one of a capacitor and an inductor.
  • the first branch 14 includes but not limited to at least one of a single capacitor branch, a single inductor branch, and frequency-selective filter circuits listed in the following embodiments.
  • the first branch circuit 14 includes a band-pass circuit formed by an inductor L0 connected in series with a capacitor C0 .
  • the first branch circuit 14 includes a band stop circuit formed by parallel connection of an inductor L0 and a capacitor C0 .
  • the first branch circuit 14 includes a band-pass or band-stop circuit formed by an inductor L0 , a first capacitor C1 , and a second capacitor C2 .
  • the inductor L0 is connected in parallel with the first capacitor C1, and the second capacitor C2 is electrically connected to a node where the inductor L0 is electrically connected to the first capacitor C1.
  • the first branch 14 includes a band-pass or band-stop circuit formed by a capacitor C0 , a first inductor L1 , and a second inductor L2 .
  • the capacitor C0 is connected in parallel with the first inductor L1, and the second inductor L2 is electrically connected to a node where the capacitor C0 is electrically connected to the first inductor L1.
  • the first branch 14 includes a band-pass or band-stop circuit formed by an inductor L0 , a first capacitor C1 , and a second capacitor C2 .
  • the inductor L0 is connected in series with the first capacitor C1, and one end of the second capacitor C2 is electrically connected to the first end of the inductor L0 that is not connected to the first capacitor C1, and the other end of the second capacitor C2 is electrically connected to one end of the first capacitor C1 that is not connected to the inductor L0 .
  • the first branch circuit 14 includes a band-pass or band-stop circuit formed by a capacitor C0 , a first inductor L1 , and a second inductor L2 .
  • the capacitor C0 is connected in series with the first inductor L1, one end of the second inductor L2 is electrically connected to the end of the capacitor C0 not connected to the first inductor L1, and the other end of the second inductor L2 is electrically connected to the end of the first inductor L1 not connected to the capacitor C0.
  • the first branch circuit 14 includes a first capacitor C1 , a second capacitor C2 , a first inductor L1 , and a second inductor L2 .
  • the first capacitor C1 is connected in parallel with the first inductance L1
  • the second capacitor C2 is connected in parallel with the second inductance L2
  • one end of the whole formed by the parallel connection of the second capacitor C2 and the second inductance L2 is electrically connected to the first capacitor C1 and the first inductance L1 in parallel form one end of the whole.
  • the first branch circuit 14 includes a first capacitor C1, a second capacitor C2, a first inductor L1, and a second inductor L2, the first capacitor C1 and the first inductor L1 are connected in series to form a first unit 101, and the second The capacitor C2 is connected in series with the second inductor L2 to form the second unit 102 , and the first unit 101 and the second unit 102 are connected in parallel.
  • the second branch 15 includes, but is not limited to, at least one of a single-capacitance grounding branch, a single-inductance grounding branch, and any of the grounding branches listed in any one of the implementations in FIG. 11 to FIG. 18 .
  • the first matching module M1 is used for tuning at least one of the resonant frequency of the first resonant mode a, the resonant frequency of the second resonant mode b, and the resonant frequency of the third resonant mode c.
  • the antenna assembly 100 is applied to support LTE/NR-MHB+WiFi-2.4GHz+N78 frequency band
  • the first resonance mode a the second The second resonance mode b can support LTE/NR-MHB
  • the second resonance mode b can support the WiFi-2.4GHz frequency band
  • the third resonance mode c can support the N78 frequency band.
  • At least one first branch 14 includes a first sub-branch 141 , a second sub-branch 142 , and a third sub-branch 143 .
  • One end of the first sub-branch 141 is electrically connected to the first feeding point A.
  • the other end of the first sub-branch 141 is electrically connected to the third reference ground GND3, and the first sub-branch 141 includes a single capacitor branch or a series branch of a capacitor and an inductor.
  • the first sub-branch 141 is a single capacitive branch, denoted as C11.
  • one end of the second sub-branch 142 is electrically connected to the first feeding point A. As shown in FIG. The other end of the second sub-branch 142 is electrically connected to the third reference ground GND3, and the second sub-branch 142 includes an inductor, or an inductor and a capacitor.
  • the second sub-branch 142 is a single inductance branch, denoted as L11. In other embodiments, the second sub-branch 142 may also be a series branch of an inductor and a capacitor.
  • the third sub-branch 143 includes a capacitor, or a capacitor and an inductor.
  • the third sub-branch 143 is a single capacitor branch, denoted as C13.
  • the third sub-branch 143 may also be a series branch of an inductor and a capacitor.
  • At least one second branch 15 includes a fourth sub-branch 151 and a fifth sub-branch 152 .
  • one end of the fourth sub-branch 151 is electrically connected to the first feeding point A.
  • the other end of the fourth sub-branch 151 is electrically connected to an end of the third sub-branch 143 away from the third reference ground GND3, and the fourth sub-branch 151 includes a capacitor, or a capacitor and an inductor.
  • the fourth sub-branch 151 is a capacitor, denoted as C12.
  • the fourth sub-branch 151 further includes a series branch of a capacitor and an inductor.
  • one end of the fifth sub-branch 152 is electrically connected to the other end of the fourth sub-branch 151 , and the other end of the fifth sub-branch 152 is electrically connected to the first power feeding module 13 .
  • the fifth sub-branch 152 includes an inductor.
  • the fifth sub-branch 152 is an inductor, denoted as L12.
  • a branch can also be added between the first sub-branch 141 and the first feeding point A, or the fourth sub-branch A branch is added between 151 and the first feeding point A.
  • the first sub-branch 141 , the third sub-branch 143 and the fifth sub-branch 152 are used to tune the second resonant mode b and the third resonant mode c.
  • the second sub-branch 142 and the fourth sub-branch 151 are used to tune the first resonance mode a.
  • the first sub-branch 141 (C11) is used to tune the resonance points of the second resonance mode b and the third resonance mode c, so that the third resonance mode c covers the N78 frequency band, and the second resonance mode b covers N41 frequency band, in addition, the first sub-branch 141 (C11) can also isolate the WIFI-5G and WIFI-6E frequency bands in the second antenna unit 20, so as to prevent the WIFI-5G and WIFI-6E frequency bands from interfering with the first antenna unit 10, The isolation between the first antenna unit 10 and the second antenna unit 20 is improved.
  • Both the third sub-branch 143 ( C13 ) and the fifth sub-branch 152 ( L12 ) are capable of tuning the second resonant mode b and the third resonant mode c.
  • C12 1pF
  • C13 0.5pF
  • the second resonance mode b Efficiently supports WIFI 2.4G, N41 frequency band
  • the third resonance mode c efficiently supports N78 frequency band.
  • the first matching module M1 further includes at least one adjustable branch T electrically connected to the third reference ground GND3 .
  • the adjustable branch T can be the first sub-branch 141, or the second sub-branch 142, or the third sub-branch 143, or newly added Between the first feeding point A and the first sub-branch 141, or between the first sub-branch 141 and the second sub-branch 142, or between the third sub-branch 143 and the fourth sub-branch Between sub-branches 144 and so on.
  • the adjustable branch T is used to tune the resonant frequencies of the first resonant mode a and the third resonant mode c.
  • the adjustable branch T is used to adjust the position of the resonant frequency point of the first resonant mode a and the position of the resonant frequency point of the third resonant mode c, so that the extended first resonant mode a and the third resonant mode c support
  • the required frequency band range for example, the first matching module M1 with adjustable branch T moves the resonance frequency of the first resonance mode a from 1.77GHz to 1.92GHz, and the resonance frequency of the third resonance mode c from 3.6GHz Moving to 3.7GHz, in this way, the range of frequency bands that the antenna assembly 100 can support is realized.
  • the adjustable branch T includes at least one of a switch circuit and an adjustable capacitor.
  • the switch circuit includes but not limited to multiple branches of switches+capacitors, multiple branches of switches+resistors, multiple branches of switches+inductors, multiple branches of switches+inductors+capacitors, etc.
  • the adjustable branch T is a part of the second branch 15 . More specifically, the adjustable branch T includes a switch and a plurality of inductance devices with different inductance values arranged in parallel.
  • the inductance value of L111 is 4.3nH
  • the inductance value of L112 is 3nH.
  • Such switches include, but are not limited to, "single pole, multiple throw” or “multiple pole, multiple throw” switches. In Fig.
  • S21 is the S parameter graph of the first antenna unit 10 when the switch is turned on L111 to the first matching module M1;
  • S21L e is the S parameter of the first antenna unit 10 when the switch is turned on L112 to the first matching module M1 Curve;
  • S22 is the S parameter curve of the second antenna unit 20 when the switch is turned on L111 to the first matching module M1;
  • S22 ⁇ is the S parameter curve of the second antenna unit 20 when the switch is turned on L112 to the first matching module M1 Figure;
  • S23 is the isolation curve between the first antenna unit 10 and the second antenna unit 20 when the switch is turned on L111 to the first matching module M1;
  • S23' is the first when the switch is turned on L112 to the first matching module M1 A graph showing the isolation between the antenna unit 10 and the second antenna unit 20 .
  • the resonance frequency of the first resonance mode a is 1.77GHz
  • the resonance frequency of the second resonance mode b is 3.6GHz
  • the switch turns on L112 to the first matching module M1 the resonant frequency of the first resonant mode a is 1.92 GHz
  • the resonant frequency of the second resonant mode b is 3.7 GHz.
  • the position of the first feeding point A is designed, etc., so that the adjustable branch T can control the first resonance mode a, While the third resonant mode c is being tuned, it does not affect or less affects the second resonant mode b, the fourth resonant mode d and the fifth resonant mode e, thereby ensuring that the first matching module M1 is tuning the second resonant mode
  • the first resonant mode a, the third resonant mode c in order to increase the range of LTE 4G/NR 5G frequency bands that the antenna assembly 100 can support, improve the performance of each frequency band, and at the same time ensure that the antenna assembly 100 can still support WiFi 2.4G, WiFi 5G , WiFi 6E signal.
  • the The tuning has relatively little influence on the resonance of the second resonance mode b and the fourth resonance mode d, and has a relatively large influence on the resonance of the fifth resonance mode e.
  • the current density distribution of the first radiator 11 increases first, then decreases and then increases from the first coupled end 112 to the first ground end 111 (for example, at the dotted line in FIG. 19 ), wherein, The current intensity point of the first radiator 11 is located at about 1/3 of the length from the first coupled end 112 to the first ground end 111 .
  • the length between the first feed point A and the first ground terminal 111 is (1/3 ⁇ 1) times the length of the first radiator 11 .
  • the first feeding point A is located at or near the current strong point of the first radiator 11 .
  • the length between the first feed point A and the first ground terminal 111 is (1/3 ⁇ 1) times the length of the first radiator 11 . Further, the length between the first feeding point A and the first coupling end 112 is approximately 1/3 times the length of the first radiator 11 , so that the first feeding point A is located at a position where the current is stronger.
  • an adjustable branch T is set in the first matching module M1, and the adjustable branch T has relatively little influence on the fifth resonance mode e.
  • the second matching module M2 is set between the second feeding point B and the second feeding module 23, and is used to select the frequency of the signal fed by the second feeding module 23, for example, the second matching The module M2 selects a frequency band of 4.5 GHz to 7 GHz from the radio frequency signal transmitted by the second feeding module 23 to transmit the second feeding point B, or the second matching module M2 selects from the radio frequency signal transmitted by the second feeding module 23 A frequency band of 4.5 GHz to 7 GHz is selected to transmit the second feeding point B.
  • the second matching module M2 can also tune the resonance mode supported by the second antenna unit 20, so that the antenna assembly 100 can resonate at the frequency band required to be supported; and isolate the resonance signal of the first antenna unit 10, increasing The degree of isolation between the first antenna unit 10 and the second antenna.
  • the second matching module M2 will be specifically described below in conjunction with the accompanying drawings.
  • the second matching module M2 includes at least one third branch 16 connected in parallel to ground and/or at least one connected in series between the second feeding point B and the second feeding module 23 17 of the fourth branch. Both the third branch 16 and the fourth branch 17 include at least one of a capacitor and an inductor.
  • the second matching module M2 is used to conduct the frequency band supported by the fourth resonance mode d and the fifth resonance mode e (for example, WiFi 5G frequency band), and block less than the fourth resonance mode d and the fifth resonance mode e.
  • the frequency band (such as the frequency band supported by the first antenna unit 10) of the frequency band supported by the fifth resonance mode e increases the isolation between the first antenna unit 10 and the second antenna unit 20, and tunes the fourth resonance mode d and/or the resonant frequency of the fifth resonant mode e, so that the fourth resonant mode d and the fifth resonant mode e support WiFi 5G and WiFi 6E frequency bands.
  • the third branch 16 includes but not limited to at least one of a single capacitor branch, a single inductor branch, and the frequency-selective filter circuits listed in FIGS. 11 to 18 .
  • the fourth branch 17 includes but is not limited to at least one of a single capacitor branch, a single inductor branch, and frequency-selective filter circuits listed in FIGS. 11 to 18 .
  • At least one of the third branches 16 includes a sixth sub-branch 161 and a seventh sub-branch 162 .
  • One end of the sixth sub-branch 161 is electrically connected to the second feeding point B, and the other end of the sixth sub-branch 161 is electrically connected to one end of the seventh sub-branch 162.
  • the branch circuit 161 includes an inductor and a capacitor connected in parallel, denoted as C21 and L21.
  • the other end of the seventh sub-branch 162 is electrically connected to the second power feeding module 23 , and the seventh sub-branch 162 includes a capacitor, or an inductor, or an inductor and a capacitor connected in parallel.
  • the seventh sub-branch 162 is an inductor, denoted as L22.
  • At least one of the fourth branches 17 includes an eighth sub-branch.
  • One end of the eighth sub-branch is electrically connected to the second feed module 23, the other end of the eighth sub-branch is electrically connected to the fourth reference ground GND4, and the eighth sub-branch includes a capacitor, at least one of the inductors.
  • the eighth sub-branch is an inductor, denoted as L23.
  • a branch may also be added between the sixth sub-branch 161 and the second feeding point B.
  • the sixth sub-branch 161 (L21, C21) and the seventh sub-branch 162 (L22) are used to block the frequency band of WiFi 2.4G, the frequency band of the second resonance mode b, the frequency band of the third resonance mode c, and conduction The frequency bands of WiFi 5G and WiFi 6E.
  • the above-mentioned sixth sub-branch 161 and seventh sub-branch 162 are low impedance or band-pass for the WIFI 5G frequency band, so as to turn on the WIFI 5G frequency band , it can also effectively filter out the frequency bands smaller than the WIFI 5G frequency band, thereby reducing the influence of the frequency band signals supported by the first antenna unit 10 on the second antenna unit 20 .
  • the value of the isolation degree shown in the figure is also below -15, indicating that there is a relatively high isolation degree between the first antenna unit 10 and the second antenna unit 20 .
  • the first antenna unit 10 and the second antenna unit 20 have higher isolation, which is beneficial to improve the respective isolation of the first antenna unit 10 and the second antenna unit 20.
  • the efficiency of sending and receiving antenna signals It can be seen from FIG. 4 that after the adjustable branch T is set in the first matching module M1 , there is still a high degree of isolation between the first antenna unit 10 and the second antenna unit 20 .
  • the antenna assembly 100 includes a coupled first antenna unit 10 and a second antenna unit 20, which realizes the LTE 4G/NR 5G/WiFi signal common aperture design; the antenna assembly
  • the antenna assembly 100 supports multiple resonance modes at the same time, and realizes ultra-bandwidth design through carrier aggregation technology.
  • the antenna assembly 100 can support the dual connection technology of LTE 4G/NR 5G;
  • the position of the feeding point A and the length of the second radiator 21 are reasonably designed so that the first antenna unit 10 can support LTE 4G/NR 5G mid-high frequency and ultra-high frequency, WiFi 2.4G frequency band, and the second antenna unit 20 Support WiFi 5G, WiFi 6E frequency bands.
  • the second antenna unit 20 alone supports the WiFi frequency band, and there is no need to install devices such as a combiner, so as to reduce the loss of the second antenna unit 20 and improve the radiation efficiency of the antenna assembly 100 .
  • the aforementioned antenna assembly 100 is disposed in the electronic device 1000 , and the electronic device 1000 is taken as an example of a mobile phone.
  • the present application does not limit the specific position where the radiator of the antenna assembly 100 is installed in the electronic device 1000 .
  • the radiator of the antenna assembly 100 is integrated in the housing 200 , or is disposed on the surface of the housing 200 , or is disposed in a space surrounded by the housing 200 .
  • the electronic device 1000 includes a reference ground GND, a circuit board 500 (refer to FIG. 2 ) and the like disposed in the casing 200 .
  • the reference ground GND includes, but is not limited to, the alloy in the middle plate 410 .
  • the reference ground GND includes the first reference ground GND1 to the seventh reference ground GND7 mentioned above.
  • the first feeding module 13 , the second feeding module 23 , the first matching module M1 and the second matching module M2 are all disposed on the circuit board 500 .
  • the first radiator 11 and the second radiator 21 can be integrated in the housing 200 , or disposed on the surface of the housing 200 , or disposed in the space surrounded by the housing 200 .
  • the first radiator 11 and the second radiator 21 are integrated with the frame 210 of the casing 200 .
  • the frame 210 is made of metal.
  • the first radiator 11 , the second radiator 21 and the frame 210 are all integrated into one body.
  • the first coupling gap 140 between the first radiator 11 and the second radiator 21 is filled with an insulating material.
  • the first radiator 11 and the second radiator 21 can also be integrated with the rear cover 220 . In other words, the first radiator 11 and the second radiator 21 are integrated into a part of the casing 200 .
  • the first radiator 11 and the second radiator 21 are formed on the surface of the frame 210 (eg, the inner surface or the outer surface of the frame 210 ).
  • the basic forms of the first radiator 11 and the second radiator 21 include but are not limited to chip radiators, laser direct structuring (Laser Direct Structuring, LDS), printing direct structuring (Print Direct Structuring, PDS) and other processes It is formed on the inner surface of the frame 210.
  • the material of the frame 210 can be a non-conductive material (non-shielding material for electromagnetic wave signals, or a wave-transparent structure).
  • the first radiator 11 and the second radiator 21 may also be disposed on the surface of the rear cover 220 .
  • the first radiator 11 and the second radiator 21 are disposed on a flexible circuit board, a rigid circuit board or other carrier boards.
  • the first radiator 11 and the second radiator 21 can be integrated on a flexible circuit board, and the flexible circuit board is pasted on the inner surface of the middle frame 420 through glue or the like.
  • the material of the frame 210 can be non- Conductive material.
  • the first radiator 11 and the second radiator 21 can also be disposed on the inner surface of the rear cover 220 .
  • antenna assembly 100 for proximity detection of a subject to be tested and antenna signal transmission, and the installation positions of various components in the antenna assembly 100 in the electronic device 1000 .
  • the number of antenna assemblies 100 is one or more.
  • the present application does not limit the specific location of the antenna assembly 100 in the electronic device 1000 .
  • the reference ground GND is in the shape of a rectangular plate.
  • the reference ground GND includes a plurality of sides connected in sequence. The junction between two adjacent sides is a corner.
  • the first radiator 11 and the second radiator 21 of at least one antenna assembly 100 are arranged opposite to the two intersecting sides and corners; and/or, the first radiator 11 and the second radiator of at least one antenna assembly 100 21 are all disposed opposite one side. Specifically, the following embodiments are used for illustration.
  • the reference ground GND includes a first side 61 and a second side 62 oppositely arranged, and a third side 63 and a fourth side connected between the first side 61 and the second side 62 Side 64.
  • the junction between two adjacent sides is a corner 65 .
  • the first side 61 is the top side of the reference ground GND (referring to the state where the user holds and uses the electronic device 1000 in portrait orientation)
  • the second side 62 is the bottom side of the reference ground GND.
  • the frame 210 includes a plurality of side frames connected end to end.
  • the plurality of side frames include a top frame 2101 and a bottom frame 2102 opposite to each other, and a first side frame 2103 and a second side frame 2104 connected between the top frame 2101 and the bottom frame 2102 .
  • the top frame 2101 is the side away from the ground when the operator holds the electronic device 1000 facing the front of the electronic device 1000 and uses it
  • the bottom frame 2102 is the side facing the ground.
  • the junction between two adjacent side frames is a corner portion 2106 .
  • the top frame 2101 and the bottom frame 2102 are parallel and equal.
  • the first side frame 2103 and the second side frame 2104 are parallel and equal.
  • the length of the first side frame 2103 is greater than the length of the top frame 2101 .
  • the top frame 2101 is set opposite to the first side 61
  • the bottom frame 2102 is set opposite to the second side 62
  • the first side frame 2103 is set opposite to the third side 63
  • the second side frame 2104 is set opposite to the fourth side 64 relative settings.
  • the antenna assembly 100 is disposed on at least one of the top frame 210 , the first side frame 2103 , the second side frame 2104 and the bottom frame 210 .
  • the number of antenna components 100 is one.
  • the first radiator 11 and the second radiator 21 of the antenna assembly 100 are integrated with the first side frame 2103 .
  • the first coupling gap 140 is close to or located in the middle of the first side frame 2103 .
  • the dotted boxes on both sides in FIG. 24 are gripping areas for fingers.
  • the user's hands are held relatively far away from the middle position of the first frame 210213, so that the first coupling gap 140 is far away from the user's handheld position.
  • the user's finger is closer to the strong electric field point of the antenna assembly 100 (at the first coupling slot 140 ), the interference effect on the antenna assembly 100 is greater. Therefore, by disposing the antenna assembly 100 on the first side frame 2103 and making the first coupling slit 140 far away from the handheld position where the user holds the electronic device 1000 in a landscape orientation, the user can play games while holding the electronic equipment 1000 in a landscape orientation.
  • the first coupling slit 140 avoids the user's finger so that it is not blocked.
  • the distance between the position of the first coupling slot 140 and the top frame or bottom frame 210 is more than 40mm, so that the first antenna unit 10 and the second antenna unit 20 still have relatively high radiation efficiency, thereby improving user For the use experience of the electronic device 1000.
  • FIG. 25 is an efficiency curve when the antenna assembly 100 is disposed on the side of the electronic device 1000 .
  • the S11 curve in FIG. 25 is the system radiation efficiency curve of the first antenna unit 10 .
  • the S12 curve in FIG. 25 is the system radiation efficiency curve of the second antenna unit 10 .
  • the S13 curve in FIG. 25 is the overall system efficiency curve of the first antenna unit 10 .
  • the S14 curve in FIG. 25 is the overall system efficiency curve of the first antenna unit 10 . Due to the small side clearance, the radiation environment of the antenna assembly 100 is relatively harsh, but it can be seen from the marks 1 to 6 in Fig. 25 that in the frequency bands supported by the first resonance mode a to the fifth resonance mode e, all have relatively Higher efficiency (for example, above -6dB in FIG. 24 is a reference line with relatively higher efficiency), so as to satisfy the application of the antenna assembly 100 in the electronic device 1000 .
  • the two antenna assemblies 100 are respectively located on the first side frame 2103 and the second side frame 2104 .
  • the structures and supported frequency bands of the two antenna assemblies 100 may be the same or different.
  • the coupling slots of the two antenna assemblies 100 are respectively set at or close to the middle positions of the first side frame 2103 and the second side frame 2104, so as to reduce the user's holding of the horizontal screen
  • the shielding of the antenna assembly 100 is performed, the influence on the efficiency of the antenna assembly 100 is reduced.
  • the two antenna assemblies 100 can be switched to each other, so that the electronic device 1000 can communicate in more frequency bands or with a wider bandwidth, and improve the communication quality of the electronic device 1000 .
  • the first radiator 11 and the second radiator 21 of the antenna assembly 100 can also be integrated near the corner of the top frame 210 or any other position on the electronic device 1000 .
  • the present application realizes that the electronic device 1000 has a higher radiation performance in the landscape mode, and can realize the coexistence of LTE 4G/NR 5G/WiFi.
  • the antenna assembly 100 provided in the second implementation manner provided by the present application will be described below with reference to the accompanying drawings.
  • the antenna assembly 100 provided in this embodiment includes the antenna assembly 100 provided in the first embodiment.
  • the main difference is that, please refer to FIG. 28 and FIG.
  • the third radiator 31 , the third feeding module 33 and the third matching module M3 are defined as the third antenna unit 30 .
  • the third radiator 31 includes a third ground terminal 311 and a first free terminal 312 , and a third feeding point C disposed between the third ground terminal 311 and the first free terminal 312 .
  • the third ground terminal 311 is spaced apart from the first ground terminal 111 or connected via a conductor.
  • the third ground terminal 311 is electrically connected to the fifth reference ground GND5.
  • the third feeding module 33 is electrically connected to the third feeding point C.
  • the third matching module M3 is electrically connected between the third feeding point C and the third feeding module 33 .
  • the positions of the first antenna unit 10 and the second antenna unit 20 can be exchanged.
  • the first radiator 11 and the second radiator 12 are arranged on the first side frame 2103, so that when the electronic device 1000 is used in a horizontal screen, the first coupling slot 140 is far away from the user's hands, thereby increasing the radiation efficiency when the electronic device 1000 is used in a landscape orientation.
  • the third radiator 31 is disposed at the corner 2106 between the first side frame 2103 and the top frame 2101. Since the corner 2106 has a relatively good clearance area, and the corner 2106 is more likely to stimulate a higher reference ground current, In order to improve the radiation efficiency of the third antenna unit 30 .
  • This application does not limit the frequency band covered by the third antenna unit 30 .
  • the third antenna unit 30 can cover (GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB).
  • the structure and size of the third antenna unit 30 can refer to the structure and size of the first antenna unit 10 .
  • a conductor is added between the first ground terminal 111 and the third ground terminal 311 to connect the first radiator 11 and the third radiator 31 .
  • the first radiator 11 , the second radiator 21 and the third radiator 31 are all integrated on the frame 210 , there is no need to cut off the first radiator 11 and the third radiator 31 , that is, the frame 210 A part serves as the first radiator 11 , and another part of the frame 210 serves as the third radiator 31 .
  • the first radiator 11 and the third radiator 31 form a common radiator 32 .
  • the antenna assembly 100 further includes a fourth matching module M4.
  • One end of the fourth matching module M4 is electrically connected to the first ground terminal 111
  • the other end of the fourth matching module M4 is electrically connected to the first reference ground GND1 .
  • the fourth matching module M4 is in a low-impedance state for the frequency band supported by the resonance mode (such as the first resonance mode a) that needs to be grounded at the first ground terminal 111 in the first antenna unit 10 and the second antenna unit 20, for example,
  • the fourth matching module M4 is an inductor, so that the resonant current in the resonant mode that needs to be grounded at the first ground terminal 111 is grounded.
  • the antenna assembly 100 further includes a fifth matching module M5.
  • One terminal of the fifth matching module M5 is electrically connected to the third ground terminal 311
  • the other terminal of the fifth matching module M5 is electrically connected to the fifth reference ground GND5 .
  • the fifth matching module M5 is in a low impedance state to the frequency band supported by the resonance mode (for example, the fifth resonance mode e) that needs to return to the ground in the third antenna unit 30.
  • the fifth matching module M5 is an inductor, so that the third antenna unit In 30, the resonant current in the resonant mode that needs to be returned to the ground at the first ground terminal 111 is returned to the ground.
  • the antenna assembly 100 includes the fourth matching module M4 and the fifth matching module M5. In other embodiments, the antenna assembly 100 may only include the fourth matching module M4 or only the fifth matching module M5.
  • the first radiator 11 and the third radiator 31 are electrically connected to a common radiator 32 .
  • the fourth matching module M4 includes a capacitive device directly electrically connected to the first ground terminal 111 or in A capacitive device is provided between the fourth matching module M4 and the first ground terminal 111;
  • the fifth matching module M5 includes a capacitive device directly electrically connected to the third ground terminal 311 or between the fifth matching module M5 and the third ground terminal 311 A capacitive device is set between them;
  • the first matching module M1 includes a capacitive device directly electrically connected to the first feeding point A or a capacitive device is set between the first feeding point A and the first matching module M1;
  • the third matching module M3 includes a capacitive device directly electrically connected to the third feeding point C or a capacitive device is provided between the third feeding point C
  • the fourth matching module M4 and the fifth matching module M5 include a switch selection circuit, for example, an inductance branch and a capacitance branch arranged in parallel.
  • the control switch conducts the capacitance and the first ground terminal 111; when the common body radiator 32 does not need to detect the approach of the human body, then controls the switch conduction inductance and the first ground terminal 111 .
  • the fourth matching module M4 and the fifth matching module M5 further include branches of capacitors and inductors.
  • the capacitor is electrically connected between the first ground terminal 111 and the inductance, and the capacitor makes the common body radiator 32 in a "suspension state" relative to the DC current, and the branch of the capacitor and the inductance needs to be connected from the first ground terminal 111, the second The frequency band corresponding to the resonant mode in which the three ground terminals 311 return to the ground is in a low-impedance state.
  • the fourth matching module M4 and the fifth matching module M5 are used for DC blocking matching, so that the common radiator 32 can be used as a SAR (specific absorption rate) detection part.
  • the first matching module M1, the second matching module M2, the fourth matching module M4, and the fifth matching module M5 respectively add DC blocking capacitors C31/C32/C33/C34 (capacitance value is, for example, 22pF, for the antenna The signal basically has no effect), if the first matching module M1, the second matching module M2, the fourth matching module M4, and the fifth matching module M5 have DC blocking capacitors, there is no need to add additional C31/C32/C33/C34 .
  • the common body radiator 32 is suspended for the sensing signal, and the proximity sensor needs a suspended metal body to sense the capacitance change caused by the approach of the human body, so as to achieve the purpose of detection.
  • a detection circuit is added before C33, and an inductance L is added to the detection circuit to isolate higher frequencies (for example, the inductance is 82nH), so that the antenna is basically unaffected.
  • the detection circuit can also be placed in front of C31/C32/C34, or anywhere on the antenna radiator. Through the detection of the human body on the antenna radiator, the approaching state of the human body can be judged, so as to achieve the purpose of intelligent SAR reduction.
  • the common body radiator 32 is used as the sensing electrode.
  • the second radiator 21 can also be used as the sensing electrode.
  • the antenna assembly 100 provided in the third embodiment will be described later in detail.
  • the antenna assembly 100 further includes a fourth radiator 41 , a fourth feeding module 43 and a sixth matching module M6 .
  • the fourth radiator 41 , the fourth feeding module 43 and the sixth matching module M6 are defined as the fourth antenna unit 40 .
  • the fourth radiator 41 includes a fourth ground terminal 411 and a second free terminal 412 , and a fourth feeding point D disposed between the fourth ground terminal 411 and the second free terminal 412 . Between the fourth ground end 411 and the first free end 312 is the second coupling gap 150 .
  • the third radiator 31 and the fourth radiator 41 are coupled through the second coupling slot 150 .
  • the fourth ground terminal 411 is electrically connected to the sixth reference ground GND6.
  • the fourth feeding module 43 is electrically connected to the fourth feeding point D.
  • the sixth matching module M6 is electrically connected between the fourth feeding point D and the fourth feeding module 43 .
  • the third radiator 31 and the fourth radiator 41 are coupled to each other, so that the excitation current sent by the fourth feed module 43 can not only form a resonance on the fourth radiator 41, but also can resonate on the third radiator. 31, and the excitation current sent by the third feed module 33 can not only form a resonance on the third radiator 31, but also can form a resonance on the fourth radiator 41, so as to increase the third antenna unit 30 and the fourth
  • the resonance mode generated by the antenna unit 40 further increases the bandwidth and the number of frequency bands supported by the third antenna unit 30 and the fourth antenna unit 40 .
  • the third radiator 31 and the fourth radiator 41 can be jointly used as the radiator of the third antenna unit 30, and the third radiator 31 and the fourth radiator 41 can also be jointly used as the radiator of the fourth antenna unit 40 , so that the third antenna unit 30 and the fourth antenna unit 40 form a common-aperture antenna, to realize the multiplexing of the radiator, reduce the radiation of the third antenna unit 30 and the fourth antenna unit 40 while increasing the number of resonance modes The stack size of the body.
  • the first radiator 11 and the third radiator 31 are electrically connected.
  • the first antenna unit 10 , the second antenna unit 20 , the third antenna unit 30 and the fourth antenna unit 40 form a co-aperture antenna.
  • the resonant modes and resonant currents on the first antenna unit 10 and the second antenna unit 20 refer to the antenna assembly 100 provided in the first embodiment, and will not be repeated here.
  • FIG. 34 is an S-parameter curve diagram of the first antenna unit 10 .
  • the resonant frequency of the first resonant mode a is 1.88 GHz
  • the resonant frequency of the second resonant mode b is 2.6323 GHz
  • the resonant frequency of the third resonant mode c is 3.5707 GHz.
  • FIG. 35 is an S-parameter graph of the second antenna unit 20 .
  • the resonant frequency of the fourth resonant mode d is 5.4751 GHz
  • the resonant frequency of the fifth resonant mode e is 5.9643 GHz.
  • the third antenna unit 30 is used to support the sixth resonant mode f, the seventh resonant mode g and the eighth resonant mode h.
  • the sixth resonant current density of the sixth resonant mode f is mainly distributed between the third ground terminal 311 and the first free terminal 312, and flows from the third ground terminal 311 to the first free terminal 312, or from the first The free end 312 flows to the third ground end 311 . It can be understood that the above is the main current density distribution of the sixth resonance mode f, and there is also a small amount of current density distribution on the fourth radiator 41 .
  • the sixth resonance mode f is a (1/8 ⁇ 1/4) wavelength mode in which the excitation current of the third feeding module 33 resonates on the third radiator 31 .
  • the length of the third radiator 31 to be about (1/8-1/4) times the wavelength in the medium of the excitation current sent by the third feeding module 33 to the third radiator 31, in order to The sixth resonant mode f is excited on the three radiators 31 , and the frequency band supported by the sixth resonant mode f has higher radiation efficiency.
  • the length of the third radiator 31 is about (1/4) times the wavelength of the excitation current in the medium sent by the third feeding module 33 to the third radiator 31, at the sixth resonance frequency ( The resonant frequency of the sixth resonant mode f) tends to excite higher radiation efficiency.
  • capacitive loading can make the resonant frequency of the sixth resonant mode f towards
  • the low-frequency offset no longer follows the original requirement to generate higher-efficiency resonance at the length of the third radiator 31 at about 1/4 of the wavelength, but can correspond to 1/8 to 1/4 of the length of the third radiator 31
  • higher-efficiency resonance can be generated, so while forming resonance at the original sixth resonance frequency point, the length of the corresponding third radiator 31 can also be shortened, for example, reduced to the sixth resonance 1/8 of the wavelength corresponding to the frequency point, etc., further reduces the size of the third radiator 31 and reduces the stacking length of the antenna assembly 100 .
  • the seventh resonant current density of the seventh resonant mode g is mainly distributed between the third feeding point C and the first free end 312, and flows from the third feeding point C to the first free end 312, or, It flows from the first free end 312 to the second feeding point B. It can be understood that the above is the main current density distribution of the seventh resonant mode g, and there is also a small amount of current density distribution on the third ground terminal 311 to the third feeding point C and the fourth radiator 41 .
  • the seventh resonant mode g is the (1/8 ⁇ 1/4) wavelength mode in which the excitation current of the third feeding module 33 resonates from the third feeding point C to the first free end 312 .
  • the length from the third feed point C to the first free end 312 to be about the wavelength of the excitation current in the medium sent by the third feed module 33 to the third feed point C to the first free end 312 (1/8 ⁇ 1/4) times, to excite the seventh resonant mode g from the third feeding point C to the first free end 312, and have higher radiation efficiency in the frequency band supported by the seventh resonant mode g .
  • the length from the third feed point C to the first free end 312 is designed to be about the wavelength in the medium of the excitation current sent by the third feed module 33 to the third feed point C to the first free end 312 (1/4) times, a higher radiation efficiency is easily excited at the seventh resonance frequency point (the resonance frequency of the seventh resonance mode g).
  • capacitive loading can make the seventh
  • the resonant frequency of the resonant mode g shifts toward the low frequency, and no longer follows the original requirement to generate a higher efficiency resonance at a length of about 1/4 wavelength from the third feeding point C to the first free end 312, but can be at
  • the length from the third feed point C to the first free end 312 corresponds to 1/8-1/4 of the wavelength range, which can generate higher-efficiency resonance, so it can also form resonance at the original seventh resonance frequency point.
  • the eighth resonance current density of the eighth resonance mode h is mainly distributed between the third feeding point C and the fourth ground terminal 411, wherein, between the third feeding point C and the first free end 312
  • the direction of the current flowing from the second free terminal 412 to the fourth ground terminal 411 is the same.
  • Flow from the third feeding point C to the first free end 312 pass through the second coupling slot 150 and then flow to the fourth ground end 411 through the second free end 412, or flow from the fourth ground end 411 to the second free end 412, through The second coupling slot 150 then flows to the third feeding point C.
  • the above is the main current density distribution of the eighth resonance mode h, and there is also a small amount of current density distribution from the third ground terminal 311 to the third feeding point C.
  • the eighth resonance mode h is that the excitation current of the third feed module 33 resonates in the (1/8 ⁇ 1/4) wavelength mode from the third feed point C to the first free end 312, and resonates in the second free end 412 (1/8 ⁇ 1/4) wavelength mode to the fourth ground terminal 411 .
  • the length from the third feed point C to the first free end 312 is designed to be about the wavelength in the medium of the excitation current sent by the third feed module 33 to the third feed point C to the first free end 312 (1/4) times, and by designing the length from the second free end 412 to the fourth ground end 411 is about the third power feed module 33 to send the excitation current from the second free end 412 to the fourth ground end 411 in the medium (1/4) times of the wavelength, it is easy to excite higher radiation efficiency at the eighth resonance frequency point (the resonance frequency of the eighth resonance mode h).
  • the matching circuit, capacitive loading can make the resonant frequency of the eighth resonant mode h shift towards the low frequency, which no longer follows the original requirement.
  • the length from the third feeding point C to the first free end 312 is about 1/4 wavelength
  • the length from the second free end 412 to the fourth ground end 411 is about 1/4 of the wavelength to generate a higher-efficiency resonance
  • the length from the third feeding point C to the first free end 312 corresponds to 1/ In the range of 8 to 1/4 wavelength
  • the length from the second free end 412 to the fourth grounding end 411 corresponds to 1/8 to 1/4 wavelength
  • resonance with higher efficiency can be generated, so in the original first Eight resonant frequency points form resonance while shortening the length from the corresponding third feeding point C to the first free end 312 and shortening the length of the fourth radiator 41, for example, to the eighth resonant frequency point 1/8 of the corresponding wavelength, etc., to further reduce the size of the third radiator 31 and the fourth radiator 41 , and reduce the stacking length of the antenna assembly 100 .
  • the fourth antenna unit 40 is used to support the ninth resonant mode i, the tenth resonant mode j, the eleventh resonant mode k and the twelfth resonant mode p.
  • the ninth resonant mode i is the (1/8 ⁇ 1/4) wavelength mode from the third feeding point C to the first free end 312 where the excitation current of the third feeding module 33 resonates, and resonates at (1/8 ⁇ 1/4) wavelength mode from the second free end 412 to the fourth ground end 411 .
  • the ninth resonant current density distribution of the ninth resonant mode i reference may be made to the eighth resonant mode h and the eighth resonant current density distribution, which will not be repeated here.
  • the tenth resonant current density of the tenth resonant mode j is mainly distributed between the third feeding point C and the fourth ground terminal 411, wherein, between the third feeding point C and the first free end 312 The direction of the current flowing from the second free terminal 412 to the fourth ground terminal 411 is opposite.
  • a part of the tenth resonant current flows from the third feed point C to the first free end 312, another part of the tenth resonant current flows from the fourth ground end 411 to the second free end 412, or, a part of the tenth resonant current flows from the first free end 412
  • One free end 312 flows to the third feed point C, and another part of the tenth resonant current flows from the second free end 412 to the fourth ground end 411 .
  • the tenth resonance mode j is the (1/8-1/4) wavelength mode from the third feed point C to the first free end 312 where the excitation current of the third feed module 33 resonates, and resonates at the second free end 412 (1/8 ⁇ 1/4) wavelength mode to the fourth ground terminal 411 .
  • the length from the third feed point C to the first free end 312 is designed to be about the wavelength in the medium of the excitation current sent by the third feed module 33 to the third feed point C to the first free end 312 (1/4) times, and by designing the length from the second free end 412 to the fourth ground end 411 is about the third power feed module 33 to send the excitation current from the second free end 412 to the fourth ground end 411 in the medium (1/4) times of the wavelength, it is easy to excite higher radiation efficiency at the tenth resonant frequency point (the resonant frequency of the tenth resonant mode j).
  • the matching circuit, capacitive loading can make the resonant frequency of the tenth resonant mode j shift toward the low frequency, and no longer follow the original requirement.
  • the length from the third feeding point C to the first free end 312 is about 1/4 wavelength
  • the length from the second free end 412 to the fourth ground end 411 is about 1/4 of the wavelength to generate a higher-efficiency resonance
  • the length from the third feeding point C to the first free end 312 corresponds to 1/ In the range of 8 to 1/4 wavelength
  • the length from the second free end 412 to the fourth grounding end 411 corresponds to 1/8 to 1/4 wavelength
  • resonance with higher efficiency can be generated, so in the original first
  • the length from the corresponding third feeding point C to the first free end 312 can be shortened and the length of the fourth radiator 41 can be shortened, for example, reduced to the tenth resonance frequency point 1/8 of the corresponding wavelength, etc., to further reduce the size of the third radiator 31 and the fourth radiator 41 , and reduce the stacking length of the antenna assembly 100 .
  • the eleventh resonance current density of the eleventh resonance mode k is mainly distributed between the fourth feeding point D and the second free end 411, and flows from the fourth feeding point D to the second free end 411, Or flow from the second free end 411 to the fourth feeding point D. It can be understood that the above is the main current density distribution of the eleventh resonance mode k, and there is also a small amount of current density distribution on the first radiator 11 between the fourth ground terminal 412 and the fourth feeding point D.
  • the eleventh resonance mode k is (1/8 ⁇ 1/4) of the excitation current (eleventh resonance current) of the fourth feed module 43 resonating from the fourth feed point D to the second free end 411 wavelength mode.
  • the length from the fourth feeding point D to the second free end 411 is about (1/8-1/ 4) times to excite the eleventh resonant mode k from the fourth feeding point D to the second free end 411 .
  • the length from the fourth feeding point D to the second free end 411 is about (1/4) times the wavelength of the excitation current sent by the fourth feeding module 43 in the medium, at this time, at the tenth A resonant frequency point f4 (the resonant frequency of the eleventh resonant mode k) is likely to excite higher radiation efficiency.
  • both capacitive loading can make the resonance of the eleventh resonant mode k
  • the frequency is shifted toward the low frequency, and no longer follow the original requirement to generate a higher-efficiency resonance at a length of about 1/4 wavelength from the fourth feed point D to the second free end 411, but can be at the fourth feed point
  • the length from D to the second free end 411 corresponds to the range of 1/8 to 1/4 wavelength, which can generate higher-efficiency resonance, so the original eleventh resonance frequency point f4 can form resonance while the corresponding
  • the length from the fourth feeding point D to the second free end 411 is shortened, for example, to 1/8 times the wavelength corresponding to the eleventh resonance frequency point f4, etc., further reducing the fourth feeding point D to The size of the second free end 411 reduces the stacking length of the antenna assembly 100 .
  • the twelfth resonant current density of the twelfth resonant mode p is mainly distributed between the third ground terminal 311 and the first free terminal 312, and flows from the third ground terminal 311 to the first free terminal 312, or from The first free end 312 flows to the third ground end 311 .
  • the above is the main current density distribution of the twelfth resonance mode p, and there is also a small amount of current density distribution between the second free end 411 and the fourth ground end 412 .
  • the twelfth resonance mode p is a (3/4) wavelength mode in which the excitation current of the fourth feed module 43 resonates with the third radiator 31 .
  • the length of the third radiator 31 to be about (3/4) times the wavelength of the excitation current in the medium sent by the fourth feed module 43 to the third radiator 31, the third radiator 31
  • the twelfth resonant mode p is excited.
  • the above description of the sixth resonant mode f to the twelfth resonant mode p from the perspective of the wavelength mode is a relatively understandable explanation, which illustrates the main characteristic appearance of each mode and is easy to distinguish.
  • the third antenna unit 30 and the fourth antenna unit 40 are not independent, but are coupled with each other, and the current will flow to each other through the coupling.
  • the frequency bands supported by the third radiator 31 under the excitation of the third feed module 33 include GPS frequency band, Wi-Fi 2.4G frequency band, LTE-4G MHB frequency band, NR-5G MHB frequency band, LTE-4G UHB frequency band, NR-5G UHB frequency band.
  • the resonance frequencies of the sixth resonance mode f, the seventh resonance mode g, and the eighth resonance mode h are 1.5766 GHz, 2.4667 GHz, and 2.9773 GHz, respectively.
  • the third antenna unit 30 covers (GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB). In other embodiments, the third antenna unit 30 covers (GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78.
  • the frequency band supported by the fourth radiator 31 under the excitation of the fourth feed module 43 covers the N77 frequency band, N78 frequency band, Wi-Fi 5G frequency band, and Wi-Fi 6E frequency band.
  • the resonant frequencies of the ninth resonant mode i, the tenth resonant mode j, the eleventh resonant mode k, and the twelfth resonant mode p are 2.998 GHz, 3.6742 GHz, 5.5096 GHz, and 6.5722 GHz, respectively.
  • the fourth antenna unit 40 covers N77/N78+Wi-Fi 5G frequency band and Wi-Fi 6E frequency band. Certainly, in other implementation manners, the fourth antenna unit 40 covers the Wi-Fi 5G frequency band and the Wi-Fi 6E frequency band.
  • the distribution of the antenna assembly 100 in the electronic device 1000 provided in this embodiment includes but is not limited to the following embodiments, the first radiator 11 and the second radiator 12 are both arranged on the first side frame 2103, and the first coupling slot 140 is located at The first side frame 2103 is near the middle position. A part of the third radiator 31 is disposed on the first side frame 2103 , another part is disposed on the top frame 2101 , the fourth radiator 41 is disposed on the top frame 2101 , and the second coupling slot 150 is disposed on the top frame 2101 .
  • the first coupling gap 140 avoids the position held by the hand, so that the radiation efficiency of the first antenna unit 10 and the second antenna unit 20 is higher, and then the transceiver (GPS- L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+Wi-Fi 5G/Wi-Fi 6E frequency band to improve the horizontal screen experience.
  • the second coupling slot 150 avoids the position held by the hand, so that the radiation efficiency of the third antenna unit 30 and the fourth antenna unit 40 is higher, and then the transceiver (GPS- L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+Wi-Fi 5G/Wi-Fi 6E frequency bands to improve the vertical screen experience.
  • the antenna assembly 100 satisfies the ability to efficiently cover (GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78 in both horizontal and vertical screens +Wi-Fi 5G/Wi-Fi 6E frequency band.
  • the electronic device 1000 further includes at least one button part (not shown), at least one button part is located between the second ground terminal 212 and the second feeding point B, and/or at least one of the button parts
  • the button portion is located between the first ground terminal 111 and the third ground terminal 311 .
  • the reference ground GND is the alloy part of the middle plate 410.
  • the button circuit board 430 may be provided in the interval between the second reference ground GND2 and the second feed module 23, and the button part may be provided in the second radiator 21.
  • the button part includes but not limited to a power button, a volume button, a mute button and the like.
  • a button circuit board 430 may also be provided between the fourth matching module M4 and the fifth matching module M5 , and a button portion may be arranged on the middle frame between the first ground terminal 111 and the third ground terminal 311 .
  • first matching module M1 to fifth matching module M5 can be provided with devices in any one of the implementation manners in FIG. 11 to FIG. 18 , and can also include adjustable devices such as switch circuits and variable capacitors.
  • FIG. 45 is a graph of S parameters of the first antenna unit 10 to the fourth antenna unit 40 . From the S parameter curve of the total power antenna assembly 100 in Figure 45, it can be seen that the antenna assembly 100 can cover (GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+ very well Wi-Fi 5G/Wi-Fi 6E frequency band, and has a good impedance bandwidth.
  • FIG. 46 is an isolation curve between antenna elements of the antenna assembly 100 .
  • the S2,1 curve represents the isolation curve between the first antenna unit 10 and the second antenna unit 20 .
  • the S3,1 curve represents the isolation curve between the third antenna unit 30 and the first antenna unit 10 .
  • the S3,2 curve represents the isolation curve between the third antenna unit 30 and the second antenna unit 20 .
  • the S4,1 curve represents the isolation curve between the fourth antenna unit 40 and the first antenna unit 10 .
  • the S4,2 curve represents the isolation curve between the fourth antenna unit 40 and the second antenna unit 20 .
  • the curve S4,3 represents the isolation curve between the fourth antenna unit 40 and the third antenna unit 30 . Taking the S parameter of -13dB as a reference, it can be seen from FIG. 46 that the isolation curves between antenna elements are mostly set below -13dB, indicating that each antenna element in the antenna assembly 100 has good isolation.
  • the antenna assembly 100 can also perform proximity detection of a subject to be measured while implementing antenna signal transmission and reception.
  • the subject to be tested includes, but is not limited to, a human head, a human hand, and the like.
  • the radiator is made of a conductive material, and the radiator can also serve as a sensing electrode for proximity signals while serving as an antenna signal receiving and receiving port.
  • the antenna assembly 100 provided in this application integrates the dual functions of transmitting and receiving electromagnetic wave signals and proximity sensing and is small in size. When the antenna assembly 100 is applied to the electronic device 1000 , while ensuring that the electronic device 1000 has a communication function and a proximity detection function, the overall volume of the electronic device 1000 can be reduced.
  • the antenna assembly 100 further includes a DC blocking assembly 70 , a filtering assembly 50 , a detection assembly 80 and a controller (not shown).
  • connection manner of the direct blocking component 70 and the filter component 50 will be described below with reference to the antenna component 100 provided in the third embodiment.
  • the common body radiator 32 is used as a sensing electrode for sensing the approach of the subject to be measured.
  • the DC blocking component 70 is electrically connected between the first feeding point A and the first matching module M1, between the first ground terminal 111 and the first reference ground GND1 (when the first When the fourth matching module M4 is provided between the ground terminal 111 and the first reference ground GND1, the DC blocking component 70 is provided between the first ground terminal 111 and the fourth matching module M4), the third ground terminal 311 and the Between the fifth reference ground GND5 (when the fifth matching module M5 is provided between the third ground terminal 311 and the fifth reference ground GND5, the DC blocking component 70 is arranged between the third ground terminal 311 and the fifth matching module M5 between), and between the third feeding point C and the third matching module M3.
  • the DC blocking component 70 is used to block the DC current generated by the first matching module M1, the first reference ground GND1, the fifth reference ground GND5, and the third matching module M3, so as to support the human body detection function and improve the safety of the human body when it is close to the antenna assembly 100. Detection accuracy.
  • One end of the filter assembly 50 is electrically connected to a side of the DC blocking assembly 70 close to the common radiator 32 or to any position of the common radiator 32 .
  • the filter assembly 50 is used to block the radio frequency signal transmitted and received by the common body radiator 32 and the induction signal generated by the common body radiator 32 when the subject to be measured approaches, so that the radio frequency signal transmitted and received by the first radiator 11 The detection accuracy of the sensing signal detected by the detection component 80 will not be affected.
  • the DC blocking assembly 70 includes a first sub-isolator 71 , a second sub-isolator 72 , a third sub-isolator 73 and a fourth sub-isolator 74 .
  • the first sub-isolator 71 is electrically connected between the first ground terminal 111 and the first reference ground GND1 (specifically, the first ground terminal 111 and the fourth matching module M4 ).
  • the second sub-isolator 72 is electrically connected between the first feeding point A and the first matching module M1.
  • the third sub-isolator 73 is electrically connected between the third ground terminal 311 and the fifth reference ground GND5 (specifically, the third ground terminal 311 and the fifth matching module M5 ).
  • the fourth sub-isolator 74 is electrically connected between the third feeding point C and the third matching module M3.
  • the direct blocking component 70 By setting the direct blocking component 70 , the induction signal generated when the subject under test is close to the common radiator 32 will not affect the transmission and reception of the antenna signal by the antenna component 100 .
  • the first sub-isolator 71 , the second sub-isolator 72 , the third sub-isolator 73 and the fourth sub-isolator 74 are all capacitive devices.
  • the first sub-isolator 71, the second sub-isolator 72, the third sub-isolator 73 and the fourth sub-isolator 74 are all capacitors, the first sub-isolator 71, the second sub-isolator 72, the The third sub-isolator 73 and the fourth sub-isolator 74 have a small impedance to the ground to the radio frequency signal supported by the antenna assembly 100, for example, the first sub-isolator 71, the second sub-isolator 72, the third sub-isolator 73 and The value of the fourth sub-isolator 74 includes but is not limited to 47pF or 22pF.
  • the first sub-isolator 71 has an isolation effect on the DC current of the fourth matching circuit M4, the second sub-isolator 72 has an isolation effect on the DC current of the first matching circuit M1, and the third sub-isolator 73 has an isolation effect on the fifth matching module M5. It has an isolation function, and the fourth sub-isolator 74 has an isolation function for the third matching module M3 to support the human body detection function and improve the detection accuracy when the human body is close to the antenna assembly 100 .
  • the DC blocking component 70 makes the common body radiator 32 in a "floating" state relative to the DC current.
  • the filter assembly 50 is electrically connected between the first sub-isolator 71 and the first ground terminal 111; or, is electrically connected between the second sub-isolator 72 and the first feeding point A; or, is electrically connected to Between the third sub-isolator 73 and the third ground terminal 311 ; or, electrically connected between the fourth sub-isolator 74 and the third feeding point C; or, electrically connected to any position of the common radiator 32 .
  • the filtering component 50 includes or is an inductive device.
  • filter component 50 is an inductor.
  • the filter component 50 presents a large impedance to the radio frequency signal supported by the antenna component 100 , and the inductance value is, for example, 82nH.
  • the DC blocking component 70 and the filtering component 50 realize that the induction signal and the radio frequency signal can act simultaneously without interfering with each other.
  • the detection component 80 is electrically connected to the other end of the filter component 50, and the detection component 80 is used to detect the magnitude of the induction signal generated by the radiator.
  • the detection component 80 is a device for detecting a current signal, a voltage signal or an inductance signal, such as a miniature galvanometer, a miniature current transformer, a current comparator, a voltage comparator, and the like.
  • the human body skin surface and the common body radiator 32 can be equivalent to two electrode plates of a capacitor respectively.
  • the common body radiator 32 can sense the change of the electric charge brought by the head of the human body.
  • the filter assembly 50 is electrically connected to the common radiator 32 . The above-mentioned change in the amount of charge forms an induction signal, which is transmitted to the detection assembly 80 through the filter assembly 50 .
  • C ⁇ S/4 ⁇ kd, wherein, d is the distance between the human body (head or hand) and the radiator, so when the capacitance increases, that is, when the intensity of the induction signal detected by the detection component 80 increases, It indicates that the human body is approaching; when the capacitance decreases, that is, the intensity of the induction signal detected by the detection component 80 decreases, it indicates that the human body is moving away.
  • the detection component 80 detects the change of the above-mentioned induction signal to determine whether the head of the human body is close to the common body radiator 32 of the antenna component 100 , so as to intelligently reduce the specific absorption rate of the electromagnetic wave by the head of the human body.
  • the DC blocking component 70 can also be used as a part of the matching module, for example, the second sub-isolator 72 is a capacitor, and the second sub-isolator 72 is used to block the induction signal and conduct the radio frequency signal while also It can be used as a part of the first matching module M1 to tune the impedance matching between the signal source 21 and the first feeding point A, so as to reduce the loss of the radio frequency signal fed into the common body radiator 32 and improve the common body radiator 32 transmit and receive signal conversion efficiency; it is also used to adjust the frequency offset of the resonant mode generated on the common body radiator 32, etc., realizing the multi-purpose of the device, reducing the number of devices and the occupied space, and improving the integration of the device.
  • the second sub-isolator 72 is a capacitor, and the second sub-isolator 72 is used to block the induction signal and conduct the radio frequency signal while also It can be used as a part of the first matching module M1 to tune the impedance matching between the signal source 21 and the first feeding point
  • the second sub-isolator 72 does not need to be provided.
  • the first sub-isolator 71 does not need to be provided.
  • the part of the fifth matching module M5 electrically connected to the third ground terminal 311 is a capacitor, the third sub-isolator 73 does not need to be provided.
  • the part of the third matching module M3 electrically connected to the second feeding point B is a capacitor, the fourth sub-isolator 74 does not need to be provided.
  • the antenna assembly 100 and the electronic device 1000 provided in this application use the common body radiator 32 on the antenna assembly 100 as an induction electrode for detecting the proximity of the human body to be tested, and through the direct blocking assembly 70 and the filter assembly 50, the induction signal and The separation of radio frequency signals realizes the dual functions of the communication performance of the antenna assembly 100 and sensing the subject to be tested, increases the function of the antenna assembly 100, further improves device utilization, and reduces the overall volume of the electronic device 1000.
  • This embodiment can increase the proximity sensing area on the one hand, on the other hand, since the common body radiator 32 is arranged on the first side frame 2103, the top frame 2101 and the corners 2106 on the first side frame 2103 and the top frame 2101, the The common body radiator 32 is used as a sensing electrode, which can detect the proximity of the subject to be measured on the front and rear of the electronic device 1000 , on the facing side of the first side frame 2103 , and on the facing side of the top frame 2101 , increasing the SAR detection range.
  • the second radiator 21 is used as a sensing electrode for detecting the approach of the subject to be detected.
  • the DC blocking component 70 is electrically connected between the second ground terminal 212 of the second radiator 21 and the second reference ground GND2, and between the second matching module M2 and the second feeding point B. Referring to FIG.
  • One end of the filter component 50 is electrically connected to a side of the DC blocking component 70 close to the second radiator 21 (for example, between the DC blocking component 70 and the second ground terminal 212 ) or to any position of the second radiator 21 .
  • the DC blocking component 70 is used to block the second reference ground GND2 and the DC current generated by the second matching module M2, and the filter component 50 is used to block the radio frequency signal transmitted and received by the second radiator 21 and the Describe the induction signal generated by the second radiator 21 when the subject to be measured approaches; in this embodiment, the second radiator 21 is an induction electrode, and the second radiator 21 is in a suspended state relative to the direct current.
  • the fourth radiator 41 is used as a sensing electrode for detecting the approach of the subject to be detected.
  • the DC blocking component 70 is electrically connected between the fourth ground terminal 411 and the sixth reference ground GND6, between the sixth matching module M6 and the fourth feeding point D, and the filtering component 50 One end of the DC blocking component 70 is electrically connected to the side close to the third radiator 31 or electrically connected to the third radiator 31; the DC blocking component 70 is used to block the sixth reference ground GND6, the sixth matching module For the DC current generated by M6, the filtering component 50 is used to block the radio frequency signal sent and received by the third radiator 31 and the induction signal generated when the subject to be measured approaches through the fourth radiator 41 .
  • one of the first approach detection implementation, the second approach detection implementation, and the third approach detection implementation can be selected for implementation, and two of them can also be selected for implementation. Three of them are implemented.
  • the DC blocking assembly 70 further includes a fifth sub-DC blocker 75 and a sixth sub-DC blocker 76 .
  • the fifth sub-DC blocker 75 is electrically connected between the fourth feeding point D and the sixth matching module M6, and the sixth sub-DC blocker 76 is electrically connected between the fourth ground terminal 411 and the sixth reference ground GND6 , so that both the common body radiator 32 and the fourth radiator 41 can serve as sensing electrodes for sensing the approach of the subject to be measured.
  • the filter assembly 50 includes a first sub-filter 51 and a second sub-filter 52 .
  • the first sub-filter 51 is electrically connected between the first sub-isolator 71 and the first feeding point A, or between the second sub-isolator 72 and the first ground terminal 111, the third sub-isolator 73 and Between the third ground terminals 311 , or between the fourth sub-isolator 74 and the third feeding point C, or anywhere on the common body radiator 32 .
  • the second sub-filter 52 is electrically connected between the fifth sub-DC blocker 75 and the fourth feeding point D, between the sixth sub-DC blocker 76 and the fourth ground terminal 411, or any position of the fourth radiator 41 .
  • the first sub-isolator 71 , the second sub-isolator 72 and the third sub-isolator 73 are all isolation capacitors, and the first sub-filter 51 and the second sub-filter 52 are all isolation inductors.
  • the detection component 80 is electrically connected to the first sub-filter 51 and the second sub-filter 52 .
  • the two channels of the detection component 80 are electrically connected to the first sub-filter 51 and the second sub-filter 52 respectively.
  • both the common body radiator 32 and the fourth radiator 41 can serve as detection electrodes for sensing the approach of the subject to be measured.
  • the detection component 80 includes a first sub-detector and a second sub-detector.
  • the first sub-detector is electrically connected to the other end of the first sub-filter 51
  • the second sub-detector is electrically connected to the other end of the second sub-filter 52 .
  • the sensing signals detected by the common body radiator 32 and the fourth radiator 41 are respectively detected by two mutually independent sub-detectors.
  • This embodiment can be used for the common body radiator 32 and the fourth radiator 41 respectively
  • the radiator of the antenna assembly 100 can detect the approach of the human body from different sides of the electronic device 1000 , thereby improving the detection range while occupying a small space.
  • the detection component 80 can directly sense the induction signal through the first sub-filter 51; when the human body is close to the fourth radiator 41, the fourth radiation The charge on the body 41 changes, and the detection component 80 can directly sense the induction signal through the second sub-filter 52 .
  • the detection component 80 detects the proximity of the human body by detecting the sensing signal. In this case, all radiators can be used as sensing electrodes, so that the sensing area is larger, and the utilization rate of the radiator can be improved. Only one detection component 80 is needed, which can save antennas. Component count and space savings of assembly 100.
  • the controller is electrically connected to the detection component 80 .
  • the detection component 80 receives the sensing signal and converts it into an electrical signal and transmits it to the controller.
  • the controller is used to detect the distance between the subject to be measured and the radiator according to the size of the induction signal, and then judge whether the human body is close to the radiator, and adjust the second when the distance between the subject to be measured and the radiator is less than or equal to the preset distance value.
  • a power feeding module 13 (or adjusting the power of the third feeding module 33 , or adjusting the fourth feeding module 43 ).
  • the controller can adjust the power of the antenna assembly 100 according to different scenarios, so as to intelligently reduce the specific absorption rate of the human body for electromagnetic wave signals.
  • the controller may reduce the power of the antenna assembly 100 to reduce the specific absorption rate of electromagnetic waves radiated by the antenna assembly 100 .
  • the controller can turn off the The covered antenna assembly 100, and the unblocked antenna assembly 100 in other positions are opened, so that when the human hand covers the antenna assembly 100, the communication quality of the electronic device 1000 can be ensured by intelligently switching the antenna assembly 100; in the electronic device 1000
  • the controller can control the power of the antenna assembly 100 to increase to compensate for the problem of reduced efficiency caused by hands covering the radiator.
  • the controller also controls other application programs on the electronic device 1000 according to the detection result of the detection component 80.
  • the screen brightness of the electronic device 1000 is turned off, so as to save the electric energy of the electronic device 1000 during a call; the controller also detects that the human body is far away and the electronic device 1000 is in a call state according to the detection result of the detection component 80, and controls the screen brightness of the display screen 300 to light up.
  • the first implementation manner of proximity detection, the second implementation manner of proximity detection, and the third implementation manner of proximity detection may be implemented together.
  • a layer of insulating film can be provided on the surface of the radiator. Since the surface of the human skin has charges, the gap between the surface of the human skin and the radiator A capacitive structure is formed, and then the signal change caused by the approach of the human skin surface is sensed through the radiator.
  • multiple antenna assemblies 100 may be provided in the electronic device 1000, and these antenna assemblies 100 are the antenna assemblies 100 listed in any one of the above-mentioned embodiments, and multiple antenna assemblies 100 can be implemented in different occlusion scenarios Intelligent switching work, so as to achieve high antenna transmission and reception efficiency under any situation such as hand-held occlusion, and after the radiators of multiple antenna assemblies 100 are integrated with the detection function, different user scenarios (such as one-handed holding , two-handed holding, carry-on status, call status, etc.), and can also realize the detection of 6 surfaces in the specific absorption rate (SAR) standard.
  • SAR specific absorption rate
  • connection section between the first ground terminal 111 and the third ground terminal 311 .
  • At least one connection point (such as the first connection point 511 in FIG. 51 and the second connection point 512 in FIG. 52 ) is provided on the connection section.
  • the antenna assembly 100 further includes at least one seventh matching module M7, one end of the seventh matching module M7 is electrically connected to the connection point (the first connection point 511), and the other end of the seventh matching module M7 is electrically connected to the seventh reference ground GND7 .
  • the seventh matching module M7 can effectively filter out the radio frequency signals of the first antenna unit 10 and the second antenna unit 20 to prevent the radio frequency signals from interfering with the third antenna unit 30 and the fourth antenna unit 40 .
  • the seventh matching module M7 includes a ground circuit in a band-pass state or a small impedance state for the frequency bands supported by the first antenna unit 10 and the second antenna unit 20, so that the first antenna unit 10 and the second antenna unit The isolation between 20 and the third antenna unit 30 and the fourth antenna unit 40 is better.
  • the seventh matching module M7 can also effectively filter out the radio frequency signals of the third antenna unit 30 and the fourth antenna unit 40 to prevent the radio frequency signals from interfering with the first antenna unit 10 and the second antenna unit 20 .
  • the seventh matching module M7 includes a ground circuit in a band-pass state or a small impedance state for the frequency bands supported by the third antenna unit 30 and the fourth antenna unit 40, so that the first antenna unit 10 and the second antenna unit The isolation between 20 and the third antenna unit 30 and the fourth antenna unit 40 is better.
  • the seventh matching module M7 can also filter out some low-efficiency operating modes in the antenna assembly 100, for example, the current flows from the first reference ground GND1 to the first ground terminal 111, the third ground terminal 311, and returns to the fifth reference ground GND1.
  • the working mode of the ground GND5 is used to reduce the influence of these low-efficiency working modes on the resonant mode of the antenna assembly 100 .
  • connection point (the first connection point 511 ) can be located close to the first ground terminal 111 or the third ground terminal 311 , so that a button can be arranged between the first ground terminal 111 and the third ground terminal 311 .
  • the seventh matching module M7 is opposite to the connection point.
  • the connection point can also be set at any position between the first ground terminal 111 and the third ground terminal 311, including but not limited to the first The middle position between the ground terminal 111 and the third ground terminal 311 .
  • connection points there are multiple connection points, for example, two connection points (a first connection point 511 and a second connection 512 ) are close to the first ground terminal 111 and the third ground terminal 311 respectively.
  • Both the seventh matching module M7 and the eighth matching module M8 can increase the isolation between the first antenna unit 10, the second antenna unit 20, the third antenna unit 30, and the fourth antenna unit 40, and filter out the Some low-efficiency working modes improve the transceiving efficiency of each resonant mode of the antenna assembly 100 .
  • the antenna assembly 100 provided by this application can realize a four-antenna common-aperture design. While increasing the bandwidth and number of frequency bands of the transmitting and receiving frequency bands, it can also reduce the stacking space of the antenna assembly 100.
  • the radiator of the antenna assembly 100 is integrated into the human body.
  • the detection function can intelligently detect the approach of the human body, thereby reducing the specific absorption rate, or detecting the state of being held and the application state of the electronic device 1000.
  • the electronic device 1000 has higher signal transceiving efficiency even when the electronic device 1000 is used in a landscape orientation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请提供了一种天线组件及电子设备,包括第一辐射体、第二辐射体、第一匹配模块、第一馈电模块、第二匹配模块及第二馈电模块,第一辐射体具有第一接地端、第一耦合端及第一馈电点,第二辐射体具有第二耦合端、第二接地端及第二馈电点,第二耦合端与第一耦合端之间存在第一耦合缝隙,第一匹配模块电连接于第一馈电点与第一馈电模块之间;第二匹配模块电连接于第二馈电点与第二馈电模块之间;第一辐射体和第二辐射体在第一馈电模块和第二馈电模块的激励下支持多个谐振模式,其中,至少一个谐振模式为第一馈电模块的激励电流谐振于第二辐射体上的(1/8~1/4)波长模式。本申请提供了一种提高数据传输速率,提高通信质量的天线组件及电子设备。

Description

天线组件及电子设备 技术领域
本申请涉及通信技术领域,尤其涉及一种天线组件及电子设备。
背景技术
随着通信技术的发展,具有通信功能电子设备的普及度越来越高,且对于上网速度的要求越来越高。因此,如何提高电子设备的数据传输速率,提高电子设备的通信质量,成为需要解决的技术问题。
发明内容
第一方面,本申请提供的一种天线组件,包括第一辐射体、第二辐射体、第一匹配模块、第一馈电模块、第二匹配模块及第二馈电模块,所述第一辐射体具有第一接地端和第一耦合端,以及位于所述第一接地端和所述第一耦合端之间的第一馈电点,所述第二辐射体具有第二耦合端和第二接地端,以及位于所述第二耦合端和所述第二接地端之间的第二馈电点,所述第二耦合端与所述第一耦合端之间存在第一耦合缝隙,所述第一匹配模块电连接于所述第一馈电点与所述第一馈电模块之间,所述第一接地端电连接至第一参考地;所述第二匹配模块电连接于所述第二馈电点与所述第二馈电模块之间,所述第二接地端电连接至第二参考地;所述第一辐射体和所述第二辐射体在所述第一馈电模块和所述第二馈电模块的激励下支持多个谐振模式,其中,至少一个所述谐振模式为所述第一馈电模块的激励电流谐振于所述第二辐射体上的(1/8~1/4)波长模式。
第二方面,本申请提供的一种电子设备,所述电子设备包括壳体及至少一个所述的天线组件,所述天线组件的辐射体集成于所述壳体、或设于所述壳体表面、或设于所述壳体所包围的空间内。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1所示的电子设备的结构分解示意图;
图3是图2所示的电子设备中的第一种天线组件的结构示意图;
图4是图3所示的天线组件的S参数曲线示意图;
图5是图3所示的天线组件中第一谐振电流密度分布示意图;
图6是图3所示的天线组件中第二谐振电流密度分布示意图;
图7是图3所示的天线组件中第三谐振电流密度分布示意图;
图8是图3所示的天线组件中第四谐振电流密度分布示意图;
图9是图3所示的天线组件中第五谐振电流密度分布示意图;
图10是图3中第一匹配模块的结构示意图;
图11是本申请实施例提供的第一种第一子支路的结构示意图;
图12是本申请实施例提供的第二种第一子支路的结构示意图;
图13是本申请实施例提供的第三种第一子支路的结构示意图;
图14是本申请实施例提供的第四种第一子支路的结构示意图;
图15是本申请实施例提供的第五种第一子支路的结构示意图;
图16是本申请实施例提供的第六种第一子支路的结构示意图;
图17是本申请实施例提供的第七种第一子支路的结构示意图;
图18是本申请实施例提供的第八种第一子支路的结构示意图;
图19是图3所示的第一种天线组件设有可调支路的结构示意图;
图20是图3中第一匹配模块的细节结构示意图;
图21是图3和图19中的天线组件的S参数曲线对比图;
图22是图3中第二匹配模块的结构示意图;
图23是图3所示的第一种天线组件安装于电子设备的结构示意图一;
图24是图23的横屏设置的结构示意图;
图25是图3所示的第一种天线组件的效率曲线图;
图26是图3所示的第一种天线组件安装于电子设备的结构示意图二;
图27是图3所示的第一种天线组件安装于电子设备的结构示意图三;
图28是本申请实施例提供的第二种天线组件安装于电子设备的结构示意图一;
图29是本申请实施例提供的第二种天线组件的结构示意图;
图30是图29所示的第二种天线组件安装于电子设备的结构示意图二;
图31是图29所示的第二种天线组件的改进结构示意图;
图32是图29所示的第二种天线组件集成接近检测的结构示意图;
图33是本申请实施例提供的第三种天线组件的结构示意图;
图34是图33中的天线组件的第一天线单元的S参数曲线示意图;
图35是图33中的天线组件的第二天线单元的S参数曲线示意图;
图36是图33中的天线组件的第三天线单元的S参数曲线示意图;
图37是图33所示的天线组件中第六谐振谐振的电流密度分布示意图;
图38是图33所示的天线组件中第七谐振谐振的电流密度分布示意图;
图39是图33所示的天线组件中第八谐振谐振的电流密度分布示意图;
图40是图33中的天线组件的第四天线单元的S参数曲线示意图;
图41是图33所示的天线组件中第十谐振谐振的电流密度分布示意图;
图42是图33所示的天线组件中第十一谐振谐振的电流密度分布示意图;
图43是图33所示的天线组件中第十二谐振谐振的电流密度分布示意图;
图44是图33所示的天线组件中安装于电子设备的结构示意图;
图45是图33所示的天线组件的S参数曲线图;
图46是图33所示的天线组件各个天线单元之间的隔离度曲线图;
图47是本申请实施例提供的第三种天线组件的共体辐射体作为接近感应电极的结构示意图;
图48是本申请实施例提供的第三种天线组件的第二辐射体作为接近感应电极的结构示意图;
图49是本申请实施例提供的第三种天线组件的第四辐射体作为接近感应电极的结构示意图;
图50是本申请实施例提供的第三种天线组件的共体辐射体和第四辐射体作为接近感应电极的结构示意图;
图51是本申请实施例提供的第三种天线组件中加入第七匹配模块的结构示意图;
图52是本申请实施例提供的第三种天线组件中加入第七匹配模块和第八匹配模块的结构示意图。
具体实施方式
第一方面,本申请提供一种天线组件,包括第一辐射体、第二辐射体、第一匹配模块、第一馈电模块、第二匹配模块及第二馈电模块,所述第一辐射体具有第一接地端和第一耦合端,以及位于所述第一接地端和所述第一耦合端之间的第一馈电点,所述第二辐射体具有第二耦合端和第二接地端,以及位于所述第二耦合端和所述第二接地端之间的第二馈电点,所述第二耦合端与所述第一耦合端之间存在第一耦合缝隙,所述第一匹配模块电连接于所述第一馈电点与所述第一馈电模块之间,所述第一接地端电连接至第一参考地;所述第二匹配模块电连接于所述第二馈电点与所述第二馈电模块之间,所述第二接地端电连接至第二参考地;所述第一辐射体和所述第二辐射体在所述第一馈电模块和所述第二馈电模块的激励下支持多个谐振模式,其中,至少一个所述谐振模式为所述第一馈电模块的激励电流谐振于所述 第二辐射体上的(1/8~1/4)波长模式。
其中,所述天线组件用于支持第一谐振模式、第二谐振模式和第三谐振模式,其中,所述第一谐振模式为所述第一馈电模块的激励电流谐振于所述第一辐射体上的(1/8~1/4)波长模式;所述第二谐振模式为所述第一馈电模块的激励电流谐振于所述第二辐射体上的(1/8~1/4)波长模式;所述第三谐振模式为所述第一馈电模块的激励电流谐振于所述第一馈电点至所述第一耦合端的(1/8~1/4)波长模式。
其中,所述第一谐振模式的谐振频率、所述第二谐振模式的谐振频率及所述第三谐振模式的谐振频率依次增加;所述第一谐振模式所支持的频段包括GPS频段、LTE-4G MHB频段、NR-5G MHB频段中的至少一者;所述第二谐振模式所支持的频段包括Wi-Fi 2.4G频段、LTE-4G MHB频段、NR-5G MHB频段中的至少一者;所述第三谐振模式所支持的频段包括LTE-4G UHB频段、NR-5G UHB频段中的至少一者。
其中,所述第一匹配模块包括至少一个串联于所述第一馈电点与所述第一馈电模块之间和/或至少一个并联至地的第一支路的第二支路,所述第一支路、所述第二支路皆包括电容、电感中的至少一者;所述第一匹配模块用于调谐所述第一谐振模式的谐振频率、所述第二谐振模式的谐振频率、所述第三谐振模式的谐振频率中的至少一者。
其中,至少一个所述第一支路包括第一子支路、第二子支路、第三子支路,至少一个所述第二支路包括第四子支路及第五子支路;
所述第一子支路的一端电连接所述第一馈电点,所述第一子支路另一端电连接至第三参考地,所述第一子支路包括电容、或电容及电感;
所述第二子支路的一端电连接所述第一馈电点,所述第二子支路的另一端电连接至所述第三参考地,所述第二子支路包括电感、或电感及电容;
所述第三子支路的另一端电连接至所述第三参考地,所述第三子支路包括电容、或电容及电感;
所述第四子支路的一端电连接于所述第一馈电点,所述第四子支路的另一端电连接第三子支路一端,所述第四子支路包括电容、或电容及电感;
所述第五子支路的一端电连接第四子支路的另一端,所述第五子支路的另一端电连接第一馈电模块,所述第五子支路包括电感。
其中,所述第一匹配模块还包括至少一个电连接至所述第三参考地的可调支路,所述可调支路包括开关电路、可调电容中的至少一者;所述可调支路用于调谐所述第一谐振模式和所述第二谐振模式的谐振频率。
其中,所述第一馈电点与所述第一接地端之间的长度为所述第一辐射体长度的(1/3~1)倍。
其中,所述天线组件用于支持第四谐振模式及第五谐振模式,其中,所述第四谐振模式为所述第二馈电模块的激励电流谐振于所述第二馈电点至所述第二耦合端的(1/8~1/4)波长模式;所述第五谐振模式为所述第二馈电模块的激励电流谐振于所述第一辐射体的(3/4)波长模式。
其中,所述第四谐振模式的谐振频率小于所述第五谐振模式的谐振频率;所述第四谐振模式和所述第五谐振模式所支持的频段皆包括Wi-Fi 5G频段、Wi-Fi 6E频段中的至少一者。
其中,所述第二匹配模块包括至少一个并联至地的第三支路和/或至少一个串联于所述第一馈电点与所述第一馈电模块之间的第四支路,所述第三支路、所述第四支路皆包括电容、电感中的至少一者;所述第二匹配模块用于导通所述第四谐振模式和所述第五谐振模式所支持的频段,及阻隔小于所述第四谐振模式和所述第五谐振模式所支持频段的频段,及调谐所述第四谐振模式的谐振频率和/或所述第五谐振模式的谐振频率。
其中,至少一个所述第三支路包括第六子支路及第七子支路,至少一个所述第四支路包括第八子支路;
所述第六子支路的一端电连接所述第二馈电点,所述六子支路的另一端电连接所述第七子支路的一端,所述第六子支路包括并联的电感和电容;
所述第七子支路的另一端电连接所述第二馈电模块,所述第七子支路包括电容、或电感、或并联 的电感及电容;
所述第八子支路的一端电连接于所述第二馈电模块,所述第八子支路的另一端电连接至第四参考地,所述第八子支路包括电容、电感中的至少一者。
其中,所述天线组件还包括第三辐射体、第三馈电模块及第三匹配模块,所述第三辐射体包括第三接地端和第一自由端,以及设于所述第三接地端与所述第一自由端之间的第三馈电点,所述第三接地端与所述第一接地端相间隔设置或通过导电体连接,所述第三接地端电连接至第五参考地;所述第三馈电模块电连接所述第三馈电点,所述第三匹配模块电连接于所述第三馈电点与所述第三馈电模块之间。
其中,所述天线组件还包括第四匹配模块,所述第四匹配模块的一端电连接于所述第一接地端,所述第四匹配模块的另一端电连接至所述第一参考地;和/或,所述天线组件还包括第五匹配模块,所述第五匹配模块的一端电连接于所述第三接地端,所述第五匹配模块的另一端电连接至所述第五参考地。
其中,所述天线组件还包括第四辐射体、第四馈电模块及第六匹配模块,所述第四辐射体包括第四接地端和第二自由端,以及设于所述第四接地端与所述第二自由端之间的第四馈电点,所述第四接地端与所述第一自由端之间为第二耦合缝隙,所述第四接地端电连接至第六参考地;所述第四馈电模块电连接所述第四馈电点,所述第六匹配模块电连接于所述第四馈电点与所述第四馈电模块之间。
其中,所述天线组件还用于支持第六谐振模式、第七谐振模式及第八谐振模式,其中,所述第六谐振模式为所述第三馈电模块的激励电流谐振于所述第三辐射体上的(1/8~1/4)波长模式;所述第七谐振模式为所述第三馈电模块的激励电流谐振于所述第三馈电点至所述第一自由端的(1/8~1/4)波长模式;所述第八谐振模式为所述第三馈电模块的激励电流谐振于所述第三馈电点至所述第一自由端的(1/8~1/4)波长模式,及谐振于所述第二自由端至所述第四接地端的(1/8~1/4)波长模式;
所述天线组件还用于支持第九谐振模式、第十谐振模式、第十一谐振模式及第十二谐振模式,其中,所述第九谐振模式为所述第四馈电模块的激励电流谐振于所述第三馈电点至所述第一自由端的(1/8~1/4)波长模式,及谐振于所述第一自由端至所述第四接地端的(1/8~1/4)波长模式;所述第十谐振模式为所述第四馈电模块的激励电流谐振于所述第一自由端至所述第四接地端的(1/8~1/4)波长模式;所述第十一谐振模式为所述第四馈电模块的激励电流谐振于所述第四馈电点至所述第二自由端的(1/8~1/4)波长模式;所述第十二谐振模式为所述第四馈电模块的激励电流谐振于所述第三接地端至所述第一自由端的(3/4)波长模式。
其中,所述第三辐射体在所述第三馈电模块的激励下支持的频段包括GPS频段、Wi-Fi 2.4G频段、LTE-4G MHB频段、NR-5G MHB频段、LTE-4G UHB频段、NR-5G UHB频段;所述第四辐射体在所述第四馈电模块的激励下支持的频段覆盖N77频段、N78频段、Wi-Fi 5G频段、Wi-Fi 6E频段。
其中,所述第一辐射体连接所述第三辐射体,形成共体辐射体;所述天线组件还包括隔直组件、过滤组件及检测组件,所述隔直组件电连接于所述第一馈电点与所述第一匹配模块之间、所述第一接地端与所述第一参考地之间、所述第三接地端与所述第五参考地之间、及所述第三馈电点与所述第三匹配模块之间;所述过滤组件的一端电连接所述隔直组件靠近于所述共体辐射体的一侧或电连接所述共体辐射体,所述隔直组件用于隔离所述第一匹配模块、所述第一参考地、所述第五参考地及所述第三匹配模块所产生的的直流电流,所述过滤组件用于阻隔所述共体辐射体收发的射频信号及通过所述共体辐射体在待测主体靠近时产生的感应信号;和/或,所述隔直组件电连接于所述第二接地端与所述第二参考地之间、所述第二匹配模块与所述第二馈电点之间,所述过滤组件的一端电连接所述隔直组件靠近所述第二辐射体的一侧或电连接所述第二辐射体;所述隔直组件用于隔离所述第二参考地、所述第二匹配模块所产生的的直流电流,所述过滤组件用于阻隔所述第二辐射体收发的射频信号及通过所述第二辐射体在待测主体靠近时产生的感应信号;和/或,所述隔直组件电连接于所述第四接地端与所述第六参考地之间、所述第六匹配模块与所述第四馈电点之间,所述过滤组件的一端电连接所述隔直组件靠近所述第三辐射体的一侧或电连接所述第三辐射体;所述隔直组件用于隔离所述第六参考地、所述第六匹配模块所产生的的直流电流,所述过滤组件用于阻隔所述第三辐射体收发的射频信号及通过所述所述第三辐射体在待测主体靠近时产生的感应信号;
所述检测组件电连接于所述过滤组件的另一端,所述检测组件用于检测所述感应信号的大小。
其中,所述第一接地端与所述第三接地端之间为连接段,所述天线组件还包括至少一个第七匹配模块,所述第七匹配模块的一端电连接所述连接段,所述第七匹配模块的另一端接地。
第二方面,本申请提供一种电子设备,所述电子设备包括壳体及如第一方面或第一方面任意一项至少一个所述的天线组件,所述天线组件的辐射体集成于所述壳体、或设于所述壳体表面、或设于所述壳体所包围的空间内。
其中,所述壳体包括相对设置的顶边框及底边框,以及连接在所述顶边框和所述底边框之间的第一侧边框、第二侧边框,所述天线组件设于所述顶边框、所述第一侧边框、所述第二侧边框及所述底边框中的至少一者。
其中,所述天线组件的第一辐射体、第二辐射体设于所述第一侧边框,所述天线组件的第三辐射体的一部分设于所述第一侧边框,所述天线组件的第三辐射体的另一部分设于所述顶边框,所述天线组件的第四辐射体设于所述顶边框,所述第一辐射体与所述第二辐射体之间的第一耦合缝隙位于所述第一侧边框,所述第二耦合缝隙位于所述顶边框;
所述电子设备还包括至少一个按键部,至少一个所述按键部位于第二接地端与第二馈电点之间,和/或,至少一个所述按键部位于第一接地端与所述第三辐射体的第三接地端之间。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。此外,在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参照图1,图1为本申请实施例提供的一种电子设备的结构示意图。电子设备1000包括天线组件100。天线组件100用于收发电磁波信号,以实现电子设备1000的通信功能。本申请对于天线组件100在电子设备1000内的位置不做具体的限定。电子设备1000还包括相互盖合连接的显示屏300及壳体200。天线组件100可设于电子设备1000的壳体200内部、或部分与壳体200集成为一体、或部分设于壳体200外。图1中天线组件100的辐射体与壳体200集成为一体。当然,天线组件100还可以设于电子设备1000的可伸缩组件上,换言之,天线组件100的至少部分还能够随着电子设备1000的可伸缩组件伸出电子设备1000之外,及随着可伸缩组件缩回至电子设备1000内;或者,天线组件100的整体长度随着电子设备1000的可伸缩组件的伸长而伸长。
电子设备1000包括不限于为电话、电视、平板电脑、手机、照相机、个人计算机、笔记本电脑、车载设备、耳机、手表、可穿戴设备、基站、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备。本申请中以电子设备1000为手机为例,其他的设备可参考本申请中的具体描述。
为了便于描述,以电子设备1000处于图1中的视角为参照,电子设备1000的宽度方向定义为X轴方向,电子设备1000的长度方向定义为Y轴方向,电子设备1000的厚度方向定义为Z轴方向。X轴方向、Y轴方向及Z轴方向两两垂直。其中,箭头所指示的方向为正向。
请参阅图2,壳体200包括边框210及后盖220。边框210内通过注塑形成中板410,中板410上形成多个用于安装各种电子器件的安装槽。中板410与边框210一起成为电子设备1000的中框420。显示屏300、中框420及后盖220盖合后在中框420的两侧皆形成收容空间。边框210的一侧(例如后侧)围接于后盖220的周沿,边框210的另一侧(例如前侧)围接于显示屏300的周沿。电子设备1000还包括设于收容空间内的电池、摄像头、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组等等能够实现手机的基本功能的器件,在本实施例中不再赘述。
以下结合附图对于本申请提供的天线组件100进行具体的说明,当然,本申请提供的天线组件100包括但不限于以下的实施方式。
请参阅图3,天线组件100至少包括第一辐射体11、第二辐射体21、第一匹配模块M1、第一馈电 模块13、第二匹配模块M2及第二馈电模块23。其中,为了便于从功能上划分天线组件100的不同部分以便于后续的描述,定义第一辐射体11、第二辐射体21、第一匹配模块M1、第一馈电模块13为第一天线单元10,定义第一辐射体11、第二辐射体21、第二匹配模块M2及第二馈电模块23为第二天线单元20。
请参阅图3,第一辐射体11具有第一接地端111和第一耦合端112,以及位于第一接地端111和第一耦合端112之间的第一馈电点A。本实施例中,第一接地端111与第一耦合端112为呈直线条形的第一辐射体11的相对两端。在其他实施方式中,第一辐射体11呈弯折状,第一接地端111和第一耦合端112可不沿直线方向相对,但第一接地端111和第一耦合端112为第一辐射体11的两个末端。
请参阅图3,第二辐射体21具有第二耦合端211和第二接地端212,以及位于第二耦合端211和第二接地端212之间的第二馈电点B。第二耦合端211与第一耦合端112之间存在第一耦合缝隙140。第一辐射体11与第二辐射体21能够通过第一耦合缝隙140产生容性耦合。本实施例中,第二耦合端211及第二自由端122为第二辐射体21的两个末端。可选的,第一辐射体11与第二辐射体21可沿直线排列或大致沿直线排列(即在设计过程中具有较小的公差)。当然,在其他实施方式中,第一辐射体11与第二辐射体21还可在延伸方向上错开设置,以形成避让空间等。
请参阅图3,第一耦合端112与第二耦合端211相对且间隔设置。第一耦合缝隙140为第一辐射体11与第二辐射体21之间的断缝,例如,第一耦合缝隙140的宽度可以为0.5~2mm,但不限于此尺寸。第一辐射体11和第二辐射体21可看作为辐射体被第一耦合缝隙140隔断而形成的两个部分。
第一辐射体11与第二辐射体21通过第一耦合缝隙140进行容性耦合。其中,“容性耦合”是指,第一辐射体11与第二辐射体21之间产生电场,第一辐射体11的信号能够通过电场传递至第二辐射体21,第二辐射体21的信号能够通过电场传递至第一辐射体11,以使第一辐射体11与第二辐射体21即使在不直接接触或不直接连接的状态下也能够实现电信号导通。
可以理解的,本申请对于第一辐射体11、第二辐射体21的形状、构造不做具体的限定,第一辐射体11、第二辐射体21的形状皆包括但不限于条状、片状、杆状、涂层、薄膜等。当第一辐射体11、第二辐射体21呈条状时,本申请对于第一辐射体11、第二辐射体21的延伸轨迹不做限定,故第一辐射体11、第二辐射体21皆可呈直线、曲线、多段弯折等轨迹延伸。上述的辐射体在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
请参阅图3,第一匹配模块M1电连接于第一馈电点A与第一馈电模块13之间。第一馈电模块13为用于发送射频信号的射频收发芯片或电连接用于发送射频信号的射频收发芯片的馈电部。第一匹配模块M1可包含开关器件、电容器件、电感器件、电阻器件等中的至少一者。
请参阅图3,第一接地端111电连接至第一参考地GND1,其电连接方式包括但不限于直接焊接、或通过同轴线、微带线、导电弹片、导电胶等方式间接电连接。本申请对于第一馈电点A在第一辐射体11上的具体位置不做限定。
请参阅图3,第二天线单元20包括第一辐射体11、第二辐射体21、第二匹配模块M2及第二馈电模块23。
请参阅图3,第二匹配模块M2电连接于第二馈电点B与第二馈电模块23之间。第二馈电模块23为用于发送射频信号的射频收发芯片或电连接用于发送射频信号的射频收发芯片的馈电部。第二匹配模块M2包含开关器件、电容器件、电感器件、电阻器件等中的至少一者。
请参阅图3,第二接地端212电连接至第二参考地GND2,其电连接方式包括但不限于直接焊接、或通过同轴线、微带线、导电弹片、导电胶等方式间接电连接。本申请对于第一馈电点A在第一辐射体11上的具体位置不做限定。
第一参考地GND1和第二参考地GND2包括但不限于以下几种实施方式。可选的,天线组件100自身具有参考地。该参考地的具体形式包括但不限于金属导电板件、成型于柔性电路板内部、硬质电路板中的金属导电层等。其中,第一参考地GND1和第二参考地GND2可为天线组件100中的一体成型的一个参考地,也可以为天线组件100中的两个相互独立但相互连接的参考地。当天线组件100设于电子设备1000内时,天线组件100的参考地电连接至电子设备1000的参考地。再可选的,天线组件100 本身不具有参考地,天线组件100的第一接地端111和第二接地端212通过直接电连接或通过导电件间接电连接至电子设备1000的参考地或电子设备1000内的电子器件的参考地。本申请中,天线组件100设于电子设备1000,以中板410上的金属合金作为参考地GND。即第一参考地GND1和第二参考地GND2为中板410的一部分或电连接至中板410,后续的第三参考地GND3至第七参考地GND7皆为参考地GND的一部分。
本实施例中,第一辐射体11和第二辐射体21在第一馈电模块13和第二馈电模块23的激励下支持多个谐振模式。具体的,第一辐射体11和第二辐射体21在第一馈电模块13的激励下支持多个谐振模式(例如,图4中的第一谐振模式a、第二谐振模式b和第三谐振模式c)。具体的,第一辐射体11和第二辐射体21在第二馈电模块23的激励下支持多个谐振模式(例如,图4中的第四谐振模式d及第五谐振模式e)。
由于第一辐射体11与第二辐射体21容性耦合,第一馈电模块13产生电流能够谐振于第一辐射体11和/或第二辐射体21上,第二馈电模块23产生的电流也能够谐振于第一辐射体11和/或第二辐射体21,第一辐射体11和第二辐射体21既能够作为第一天线单元10的辐射体,还能够作为第二天线单元20的辐射体,相较于第一馈电模块13产生的电流单独谐振于第一辐射体11上,以及第二馈电模块23单独谐振于第二辐射体21上,本申请实施例提供的天线组件100中的第一天线单元10和第二天线单元20实现了共口径辐射,能够产生更多的谐振模式。从另一角度上说,本申请实施例提供的天线组件100,在支持到所需频段(或者在支持到所需谐振模式数量)的同时,充分复用了辐射体,进一步减小的第一辐射体11和第二辐射体21的堆叠长度。
其中,至少一个谐振模式为第一馈电模块13的激励电流谐振于第二辐射体21上的(1/8~1/4)波长模式。其中,波长是指电磁波在所处环境中的介质中的波长。具体的,第一馈电模块13提供的电流谐振于第一辐射体11上,产生谐振模式;此外,由于第一辐射体11与第二辐射体21容性耦合,第一馈电模块13提供的电流还经第一耦合缝隙140传送至第二辐射体21上,以在第二辐射体21上产生谐振模式,增加第一天线单元10所支持的谐振模式数量;进一步地,通过设计第二辐射体21的长度约为第一馈电模块13提供的电流频率在介质中的波长的(1/8~1/4)倍,以利于产生谐振模式,使电流谐振于第二辐射体21上的(1/8~1/4)波长模式,其中,(1/8~1/4)波长模式为效率相对较高的谐振模式,故能够增加第一天线单元10所支持的谐振模式的数量及对于所支持的频段的收发效率,实现第一天线单元10在第一辐射体11和第二辐射体21上皆产生谐振模式。相较于第一天线单元10的电流仅仅谐振于第一辐射体11上,增加了第一天线单元10所支持的谐振模式的数量并产生较高的信号转换效率,进而增加天线组件100所支持的谐振模式的数量。
天线组件100所支持的谐振模式的数量增加,天线组件100所覆盖的频段宽度、频段数量增加。具体的,第一方面,当天线组件100的多种谐振模式所支持的频段皆连续时,此天线组件100所支持的频带宽度较宽,能够形成超宽带,该超宽带为1G、1.5G或2G等等,以实现超宽带覆盖,提升下载带宽,提升吞吐量下载速度,提升用户的上网体验;第二方面,当天线组件100的多种谐振模式所支持的频段不连续时,此天线组件100所支持的频段数量增加,实现多频段的覆盖,例如天线组件100所支持的频段可同时覆盖4G/5G中高频(例如1000MHz~3000MHz)和4G/5G超高频(例如3000MHz~10000MHz)、同时支持两个不同频段的中高频、同时支持4G/5G中高频和WiFi频段(例如WiFi 5G、5.925GHz~7.125GHz等)等等。其中,多种谐振模式所支持的频段连续是指多种谐振模式所支持的相邻的两个频段至少部分重合。多种谐振模式所支持的频段不连续是指多种谐振模式所支持的相邻的两个频段之间无重合。
当天线组件100用于覆盖两种不同通信协议的信号(例如移动通信4G/5G信号和WiFi信号)时,第一天线单元10所能够支持的谐振模式相对较多,所覆盖的频段宽度相对较宽及所支持的频段数量相对较多,能够使第一天线单元10支持其中一种需要更多谐振模式支持的通信协议信号(例如移动通信4G/5G信号),而第二天线单元20既可以支持另一种通信协议信号(例如WiFi信号)。如此,避免一个天线单元支持两种不同的通信协议信号时需要设置合路器等器件而导致射频链路上的损耗增加。
本申请提供的天线组件100及电子设备1000,通过设计第一辐射体11与第二辐射体21容性耦合, 第一辐射体11和第二辐射体21作为第一天线单元10、第二天线单元20的共口径辐射体,并设计第二辐射体21的长度与第一馈电模块13提供的激励电流的谐振频率的(1/8~1/4)波长相对应,使第一馈电模块13传送的电流谐振于第一辐射体11的同时,还能够通过第一耦合缝隙140谐振于第二辐射体21上的(1/8~1/4)波长模式,故能够增加第一天线单元10所支持的谐振模式的数量及对于所支持的频段的收发效率,进而增加第一天线单元10所支持的频段数量或带宽,提高数据传输速率和通信质量,还便于第二天线单元20支持同一协议标准的信号,避免将不同协议标准的信号通过一个辐射体收发而产生的射频链路损耗,提高天线单元100的结构简洁性及减小射频链路损耗。
请参阅图4,第一天线单元10至少支持第一谐振模式a、第二谐振模式b及第三谐振模式c。
可选的,第一辐射体11在第一馈电模块13的激励下至少支持第一谐振模式a及第三谐振模式c。第二辐射体21在第一馈电模块13的激励下至少支持第二谐振模式b。
其中,谐振模式表征为天线组件100在谐振频率处及谐振频率附近具有较高的电磁波收发效率。该谐振频率为谐振模式的谐振频率,该谐振频率及其附近形成该谐振模式所支持或所覆盖的频段。可选的,在回波损耗曲线中,取回波损耗值的绝对值大于或等于5dB(仅仅为举例,并不能作为本申请对于较高的效率的回波损耗值的限制)为具有较高的电磁波收发效率的参考值。取一个谐振模式中回波损耗值的绝对值大于或等于5dB的频率的集合为该谐振模式所支持的频段。
请参阅图5,第一谐振模式a的第一谐振电流密度主要分布于第一接地端111与第一耦合端112之间,从第一接地端111流向第一耦合端112,或者从第一耦合端112流向第一接地端111。可以理解的,上述为第一谐振模式a的主要的电流密度分布,在第二辐射体21上也具有少量的电流密度分布。
具体的,请结合参阅图4及图5,第一谐振模式a为第一馈电模块13提供的激励电流(即第一谐振电流)谐振于第一辐射体11上的(1/8~1/4)波长模式。具体的,通过设计第一辐射体11的长度约为第一馈电模块13发送至第一辐射体11的激励电流在介质中的波长的(1/8~1/4)倍,以在第一辐射体11上激励起第一谐振模式a,在第一谐振模式a所支持的频段具有较高的辐射效率。
一般地,通过设计第一辐射体11的长度约为第一馈电模块13发送至第一辐射体11的激励电流在介质中的波长的(1/4)倍,在第一谐振频点f1(第一谐振模式a的谐振频率)易激励起较高的辐射效率。进一步地,通过在第一谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第一辐射体11上,容性加载皆可使得第一谐振模式a的谐振频率朝向低频偏移,不再遵循原本的需要在第一辐射体11的长度约为1/4波长处产生较高效率的谐振,而是可以在第一辐射体11的长度对应1/8~1/4波长的范围内,能够产生较高效率的谐振,故在原来的第一谐振频点f1形成谐振的同时还能够使所对应的第一辐射体11的长度缩短,例如,减小至第一谐振频点f1对应的波长的1/8倍等,进一步地减小第一辐射体11的尺寸,减小天线组件100的堆叠长度。
可选的,请参阅图6,第二谐振模式b的第二谐振电流密度主要分布于第一馈电点A与第二接地端212之间,从第一馈电点A流向第一耦合端112,经第一耦合缝隙140后再从第二耦合端211流向第二接地端212,或者从第二接地端212流向第二耦合端211,经第一耦合缝隙140后再从第一耦合端112流向第一馈电点A。可以理解的,上述为第二谐振模式b的主要的电流密度分布,在第一接地端111与第一馈电点A之间也具有少量的电流密度分布。
请结合参阅图4及图6,第二谐振模式b为第一馈电模块13提供的激励电流(第二谐振电流)谐振于第二辐射体21上的(1/8~1/4)波长模式。具体的,通过设计第二辐射体21的长度约为第一馈电模块13发送至第二辐射体21的激励电流在介质中的波长的(1/8~1/4)倍,以在第二辐射体21上激励起第二谐振模式b。
一般地,通过设计第二辐射体21的长度约为第一馈电模块13发送的激励电流在介质中的波长的(1/4)倍,此时,在第二谐振频点f2(第二谐振模式b的谐振频率处)易激励起较高的辐射效率。进一步地,通过在第二谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第二辐射体21上,容性加载皆可使得第二谐振模式b的谐振频率朝向低频偏移,不再遵循原本的需要在第二辐射体21的长度约为1/4波长处产生较高效率的谐振,而是可以在第二辐射体21的长度对应1/8~1/4波长的范围内,能够产生较高效率的谐振,故在原来的第二谐振频点f2形成谐振的同时还能够使所对应的 第二辐射体21的长度缩短,例如,减小至第二谐振频点f2对应的波长的1/8倍等,进一步地减小第二辐射体21的尺寸,减小天线组件100的堆叠长度。
可选的,请参阅图7,第三谐振模式c的第三谐振电流密度主要分布于第一馈电点A与第一耦合端112之间,从第一馈电点A流向第一耦合端112,或者从第一耦合端112流向第一馈电点A。可以理解的,上述为第三谐振模式c的主要的电流密度分布,在第一接地端111与第一馈电点A之间、第二辐射体21上也具有少量的电流密度分布。
请一并参阅图4及图7,第三谐振模式c为第一馈电模块13提供的激励电流(第三谐振电流)谐振于第一馈电点A至第一耦合端112的(1/8~1/4)波长模式。具体的,通过设计第一馈电点A至第一耦合端112的长度约为第一馈电模块13发送至第一辐射体11的激励电流在介质中的波长的(1/8~1/4)倍,以在第一馈电点A至第一耦合端112上激励起第三谐振模式c。
一般地,通过设计第一馈电点A至第一耦合端112的长度约为第一馈电模块13发送的激励电流在介质中的波长的(1/4)倍,此时,在第三谐振频点f3处(第三谐振模式c的谐振频率)易激励起较高的辐射效率。进一步地,通过在第三谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第一辐射体11上,容性加载皆可使得第三谐振模式c的谐振频率朝向低频偏移,不再遵循原本的需要在第一馈电点A至第一耦合端112的长度约为1/4波长处产生较高效率的谐振,而是可以在第一馈电点A至第一耦合端112的长度对应1/8~1/4波长的范围内,能够产生较高效率的谐振,故在原来的第三谐振频点f3形成谐振的同时还能够使所对应的第一馈电点A至第一耦合端112的长度缩短,例如,减小至第三谐振频点f3对应的波长的1/8倍等,进一步地减小第一馈电点A至第一耦合端112的尺寸,减小天线组件100的堆叠长度。
当然,在其他实施方式中,第二谐振模式b为第一馈电模块13提供的激励电流谐振于第一馈电点A至第一耦合端112的(1/8~1/4)波长模式。第三谐振模式c为第一馈电模块13提供的激励电流谐振于第一馈电点A至第一耦合端112的(1/8~1/4)波长模式。
通过对于第一辐射体11的长度、第一馈电点A与第一耦合端112之间的长度以及第二辐射体21的长度进行设计,以使第一馈电模块13能在第一辐射体11、第一馈电点A与第一耦合端112之间的第一辐射体11上及第二辐射体21上皆激励起谐振模式,提高第一天线单元10所能够支持的谐振模式的数量,有效地提高第一天线单元10所覆盖的频段数量、频段宽度等,提高天线组件100传输数据速率。
可选的,第一谐振模式a、或第二谐振模式b、或第三谐振模式c所支持的频段包括GPS频段、或LTE 4G频段、或NR 5G频段、或Wi-Fi 2.4G频段、或Wi-Fi 5G频段、或Wi-Fi 6E频段、或LTE 4G频段与NR 5G频段形成的组合频段等。一个谐振模式所支持的频段可以是单独的LTE 4G频段、或单独的NR 5G频段、或单独的Wi-Fi频段、或LTE 4G频段与NR 5G频段形成的组合频段等。
本申请中,第一谐振模式a的谐振频率的大小、第二谐振模式b的谐振频率的大小及第三谐振模式c的谐振频率的大小不做具体的限定。本实施例中,第一谐振模式a的谐振频率、第二谐振模式b的谐振频率及第三谐振模式c的谐振频率依次增加。当第一谐振模式a、第二谐振模式b及第三谐振模式c皆为1/4波长模式时,由于第一谐振模式a的谐振频率、第二谐振模式b的谐振频率及第三谐振模式c的谐振频率依次增加,可得到第一谐振模式a的谐振频率对应的1/4波长、第二谐振模式b的谐振频率对应的1/4波长及第三谐振模式c的谐振频率对应的1/4波长依次减小,而将第二谐振模式b的谐振频率对应的1/4波长的辐射部分设于第一辐射体11上,相较于将第三谐振模式c的谐振频率对应的1/4波长设于第一辐射体11上的共口径辐射体的总长度更短,实现了天线组件100的第一辐射体11和第二辐射体21的堆叠长度更短,进一步地减小天线组件100在空间极其有限的空间内所占据的空间。
本实施例中,第一谐振模式a所支持的频段包括GPS频段、LTE-4G MHB频段、NR-5G MHB频段中的至少一者,例如,GPS-L1频段、B3频段、B1频段、N3频段、N1频段中的至少一者。举例而言,第一谐振模式a的谐振频率为1.7698GHz。第二谐振模式b所支持的频段包括Wi-Fi 2.4G频段、LTE-4GMHB频段、NR-5G MHB频段等中的至少一者,例如,Wi-Fi 2.4G频段、B7频段、B41频段、B38频段、N7频段、N41频段等。举例而言,第二谐振模式b的谐振频率为2.6185GHz。第三谐振模式c所支持的频段包括LTE-4GUHB频段、NR-5G UHB频段等中的至少一者,例如,N78频段、B42 频段、B43频段等中的至少一者。举例而言,第三谐振模式c的谐振频率为3.5983GHz。其中,MHB是指中高频段(1000MHz~3000MHz)。UHB是指超高频段(3000MHz~10000MHz)。
可选的,请参阅图4,第二辐射体21至少支持第四谐振模式d及第五谐振模式e。
可选的,第二耦合端211至第二馈电点B之间的第二辐射体21在第二馈电模块23的激励下至少支持第四谐振模式d。第一辐射体1121在第二馈电模块23的激励下至少支持第五谐振模式e。
可选的,请参阅图4及图8,第四谐振模式d的第四谐振电流密度主要分布于第二馈电点B至第二耦合端211之间,从第二馈电点B流向第二耦合端211,或者从第二耦合端211流向第二馈电点B。可以理解的,上述为第四谐振模式d的主要的电流密度分布,在第二接地端212与第二馈电点B之间、第一辐射体11上也具有少量的电流密度分布。
具体的,第四谐振模式d为第二馈电模块23的激励电流(第四谐振电流)谐振于第二馈电点B至第二耦合端211的(1/8~1/4)波长模式。具体的,通过设计第二馈电点B至第二耦合端211的长度约为第二馈电模块23发送至第二辐射体21的激励电流在介质中的波长的(1/8~1/4)倍,以在第二馈电点B至第二耦合端211上激励起第四谐振模式d。
一般地,通过设计第二馈电点B至第二耦合端211的长度约为第二馈电模块23发送的激励电流在介质中的波长的(1/4)倍,此时,在第四谐振频点f4处(第四谐振模式d的谐振频率)易激励起较高的辐射效率。进一步地,通过在第四谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第二辐射体21上,容性加载皆可使得第四谐振模式d的谐振频率朝向低频偏移,不再遵循原本的需要在第二馈电点B至第二耦合端211的长度约为1/4波长处产生较高效率的谐振,而是可以在第二馈电点B至第二耦合端211的长度对应1/8~1/4波长的范围内,能够产生较高效率的谐振,故在原来的第四谐振频点f4形成谐振的同时还能够使所对应的第二馈电点B至第二耦合端211的长度缩短,例如,减小至第四谐振频点f4对应的波长的1/8倍等,进一步地减小第二馈电点B至第二耦合端211的尺寸,减小天线组件100的堆叠长度。
可选的,请参阅图9,第五谐振模式e的第五谐振电流密度主要分布于第一接地端111至第一耦合端112之间,从第一接地端111流向第一耦合端112,或者从第一耦合端112流向第一接地端111。可以理解的,上述为第五谐振模式e的主要的电流密度分布,在第二耦合端211与第二接地端212之间也具有少量的电流密度分布。
第五谐振模式e为第二馈电模块23的激励电流谐振于第一辐射体11的(3/4)波长模式。具体的,通过设计第一辐射体11的长度约为第二馈电模块23发送至第一辐射体11的激励电流在介质中的波长的(3/4)倍,以在第一辐射体11上激励起第五谐振模式e。
需要说明的是,以上从波长模式的角度说明第一谐振模式a至第五谐振模式e是一种比较好理解的解释,说明了各模式主要特征表象,易于区分。但各模式工作时,第一天线单元10、第二天线单元20并不是独立的,而是存在相互耦合,电流也会通过耦合流向对方。
可以理解的,在第二天线单元20中,第一辐射体11类似于第二辐射体21的寄生辐射体。第五谐振模式e为第二馈电模块23激励寄生辐射体(第二辐射体21)而产生的谐振模式。
通过对于第一辐射体11的长度、第二馈电点B至第二耦合端211之间的长度进行设计,以使第二馈电模块23能在第一辐射体11、第二馈电点B至第二耦合端211之间的第二辐射体21上皆激励起谐振模式,提高第二天线单元20所能够支持的谐振模式的数量,有效地提高第二天线单元20所覆盖的频段数量、频段宽度等,提高天线组件100传输数据速率。
可选的,第四谐振模式d及第五谐振模式e所支持的频段包括GPS频段、或LTE 4G频段、或NR5G频段、或Wi-Fi 2.4G频段、或Wi-Fi 5G频段、或Wi-Fi 6E频段、或LTE 4G频段与NR 5G频段形成的组合频段等。一个谐振模式所支持的频段可以是单独的LTE 4G频段、或单独的NR 5G频段、或单独的Wi-Fi频段、或LTE 4G频段与NR 5G频段形成的组合频段等。
本申请中,第四谐振模式d的谐振频率的大小、第五谐振模式e的谐振频率的大小不做限定。本实施例中,第四谐振模式d的谐振频率小于第五谐振模式e的谐振频率。
进一步地,第四谐振模式d的谐振频率大于第三谐振模式c的谐振频率。故第四谐振模式d的谐振 频率的1/4波长小于第三谐振模式c的谐振频率的1/4波长。在第二辐射体21中,通过合理设计第二馈电点B的位置,以使第二馈电点B与第二耦合端211之间的长度与第四谐振模式d的谐振频率的1/4波长相对应,进而在第二辐射体21的第二馈电点B与第二耦合端211之间激励起谐振模式。
当第五谐振模式e的谐振频率为第一谐振模式a的谐振频率的3~6倍(例如第一谐振模式a支持GPS-L1频段、B3频段、B1频段、N3频段、N1频段,第五谐振模式e支持Wi-Fi 5G频段、Wi-Fi 6E频段)时,第二馈电模块23可在第一辐射体11上激励起3/4波长模式,如此,在增加谐振模式数量的同时还复用了第一辐射体11。
以上,皆为在第一辐射体11和第二辐射体21上进行了合理的尺寸设计和馈电点的位置规划,以在第一辐射体11和第二辐射体21的有限长度上尽可能多的产生较高效率的谐振模式和支持所需的频段。
本实施例中,第四谐振模式d和第五谐振模式e所支持的频段皆包括Wi-Fi 5G频段、Wi-Fi 6E频段中的至少一者。举例而言,第四谐振模式d的谐振频率为5.4751GHz,第五谐振模式e的谐振频率为6.0064GHz。
本实施例中,第一天线单元10支持的频段覆盖GPS-L1频段、Wi-Fi 2.4G频段、LTE-4G MHB频段(B3频段、B1频段、B7频段、B41频段、B38频段)、NR-5G MHB频段(N3频段、N1频段、N7频段、N41频段)、LTE-4G UHB频段(B42频段、B43频段)、NR-5G UHB频段(N78频段);第二天线单元20支持的频段覆盖Wi-Fi 5G频段、Wi-Fi 6E频段等,如此,使得第二天线单元20只需支持一种通信协议的通信信号,进而避免在第二天线单元20中的射频链路中设置合路器等器件将两种不同通信协议的通信信号合路,减少了射频链路中的器件,进而减少了天线组件100射频链路的损耗。
本实施方式中,第一匹配模块M1设于第一馈电点A与第一馈电模块13之间,用于对第一馈电模块13馈入的信号进行选频,例如,第一匹配模块M1从第一馈电模块13所发射的射频信号中选择1GHz~7GHz的频段传送第一馈电点A,或者,第一匹配模块M1从第一馈电模块13所发射的射频信号中选择1GHz~4.5GHz的频段传送第一馈电点A。此外,第一匹配模块M1还能够对于第一天线单元10所支持的谐振模式进行调谐,以使天线组件100在所需支持的频段处进行谐振,及隔离第二天线单元20的谐振信号,增加第一天线单元10与第二天线单元20之间的隔离度。
以下结合附图对于第一匹配模块M1进行具体的说明。
请参阅图10,第一匹配模块M1包括至少一个并联至地的第一支路14和/或至少一个串联于第一馈电点A与第一馈电模块13之间的第二支路15。其中,第一支路14、第二支路15皆包括电容、电感中的至少一者。
第一支路14包括但不限于单电容支路、单电感支路以及以下实施方式所列举的选频滤波电路中的至少一者。
请参阅图11,第一支路14包括电感L0与电容C0串联形成的带通电路。
请参阅图12,第一支路14包括电感L0与电容C0并联形成的带阻电路。
请参阅图13,第一支路14包括电感L0、第一电容C1、及第二电容C2形成的带通或带阻电路。电感L0与第一电容C1并联,且第二电容C2电连接电感L0与第一电容C1电连接的节点。
请参阅图14,第一支路14包括电容C0、第一电感L1、及第二电感L2形成的带通或带阻电路。电容C0与第一电感L1并联,且第二电感L2电连接电容C0与第一电感L1电连接的节点。
请参阅图15,第一支路14包括电感L0、第一电容C1、及第二电容C2形成的带通或带阻电路。电感L0与第一电容C1串联,且第二电容C2的一端电连接电感L0未连接第一电容C1的第一端,第二电容C2的另一端电连接第一电容C1未连接电感L0的一端。
请参阅图16,第一支路14包括电容C0、第一电感L1、及第二电感L2形成的带通或带阻电路。电容C0与第一电感L1串联,第二电感L2的一端电连接电容C0未连接第一电感L1的一端,第二电感L2的另一端电连接第一电感L1未连接电容C0的一端。
请参阅图17,第一支路14包括第一电容C1、第二电容C2、第一电感L1、及第二电感L2。第一电容C1与第一电感L1并联,第二电容C2与第二电感L2并联,且第二电容C2与第二电感L2并联形成的整体的一端电连接第一电容C1与第一电感L1并联形成的整体的一端。
请参阅图18,第一支路14包括第一电容C1、第二电容C2、第一电感L1、及第二电感L2,第一电容C1与第一电感L1串联形成第一单元101,第二电容C2与第二电感L2串联形成第二单元102,且第一单元101与第二单元102并联。
第二支路15包括但不限于单电容接地支路、单电感接地支路、图11至图18任意一种实施方式所列举的接地支路中的至少一者。
第一匹配模块M1用于调谐第一谐振模式a的谐振频率、第二谐振模式b的谐振频率、第三谐振模式c的谐振频率中的至少一者。举例而言,天线组件100应用于支持LTE/NR-MHB+WiFi-2.4GHz+N78频段时,通过设置第一匹配模块M1的结构及设计各个器件的值,以使第一谐振模式a、第二谐振模式b可支持LTE/NR-MHB,第二谐振模式b可支持WiFi-2.4GHz频段,第三谐振模式c可支持N78频段。
举例而言,请参阅图10,至少一个第一支路14包括第一子支路141、第二子支路142、第三子支路143。第一子支路141的一端电连接第一馈电点A。第一子支路141另一端电连接至第三参考地GND3,第一子支路141包括单独的电容支路、或电容及电感的串联支路。本实施方式中,第一子支路141为单独的电容支路,记为C11。
本实施方式中,请参阅图10,第二子支路142的一端电连接第一馈电点A。第二子支路142的另一端电连接至第三参考地GND3,第二子支路142包括电感、或电感及电容。本实施方式中,第二子支路142为单独的电感支路,记为L11,在其他实施方式中,第二子支路142还可以为电感及电容的串联支路。
请参阅图10,第三子支路143的另一端电连接至所述第三参考地GND3。所述第三子支路143包括电容、或电容及电感。本实施方式中,第三子支路143为单独的电容支路,记为C13。在其他实施方式中,第三子支路143还可以为电感与电容的串联支路。
请参阅图10,至少一个第二支路15包括第四子支路151及第五子支路152。
请参阅图10,第四子支路151的一端电连接于第一馈电点A。第四子支路151的另一端电连接第三子支路143远离第三参考地GND3的一端,第四子支路151包括电容、或电容及电感。本实施方式中,第四子支路151为电容,记为C12。在其他实施方式中,第四子支路151还包括为电容与电感的串联支路。
请参阅图10,第五子支路152的一端电连接第四子支路151的另一端,第五子支路152的另一端电连接第一馈电模块13。第五子支路152包括电感。本实施方式中,第五子支路152为电感,记为L12。
以上仅仅为第一匹配模块M1的一种实施方式举例,在其他实施方式中,还可以在第一子支路141与第一馈电点A之间增加支路,或者在第四子支路151与第一馈电点A之间增加支路。
其中,结合参考图3、图4及图10,第一子支路141、第三子支路143及第五子支路152用于调谐第二谐振模式b和第三谐振模式c。第二子支路142和第四子支路151用于调谐第一谐振模式a。具体的,第一子支路141(C11)用于调谐第二谐振模式b、第三谐振模式c的谐振点,以使第三谐振模式c覆盖N 78频段,及使第二谐振模式b覆盖N41频段,此外,第一子支路141(C11)还能隔离第二天线单元20中的WIFI-5G、WIFI-6E频段,以防止WIFI-5G、WIFI-6E频段干扰第一天线单元10,提高第一天线单元10和第二天线单元20的隔离度。第三子支路143(C13)及第五子支路152(L12)皆能够调谐第二谐振模式b和第三谐振模式c。举例而言,C11=1p F,L11=4.3nH,C12=1pF,C13=0.5pF,L12=3.3nH,以使第一谐振模式a能够高效地支持LTE/NR-MHB,第二谐振模式b高效地支持WIFI 2.4G、N41频段,第三谐振模式c高效地支持N78频段。
请结合参阅图19,第一匹配模块M1还包括至少一个电连接至第三参考地GND3的可调支路T。本申请对于可调支路T的位置不做具体的限定,该可调支路T可为第一子支路141、或第二子支路142、或第三子支路143、或新增在第一馈电点A与第一子支路141之间、或新增在第一子支路141与第二子支路142之间、或新增在第三子支路143与第四子支路144之间等。可调支路T用于调谐第一谐振模式a和第三谐振模式c的谐振频率。具体的,可调支路T用于调节第一谐振模式a的谐振频点的位置和第三谐振模式c的谐振频点的位置,以使扩展第一谐振模式a和第三谐振模式c支持所需的频段范围,例如,设有可调支路T的第一匹配模块M1将第一谐振模式a的谐振频率从1.77GHz移动至1.92GHz, 将第三谐振模式c的谐振频率从3.6GHz移动至3.7GHz,如此,实现了天线组件100所能够支持的频段范围。
本申请对于可调支路T的具体结构不做限定。可选的,可调支路T包括开关电路、可调电容中的至少一者。其中,开关电路包括但不限于为多个开关+电容的支路、开关+电阻的多个支路、开关+电感的多个支路、开关+电感+电容的多个支路等。
举例而言,请结合参阅图20,可调支路T为第二支路15的一部分。进一步具体的,可调支路T包括开关及多个并联设置的不同电感值的电感器件。
请结合参阅图21,L111的电感值为4.3nH,L112的电感值为3nH。该开关包括但不限于“单刀多掷”或“多刀多掷”开关。图21中,S21为开关导通L111至第一匹配模块M1时第一天线单元10的S参数曲线图;S21L e为开关导通L112至第一匹配模块M1时第一天线单元10的S参数曲线图;S22为开关导通L111至第一匹配模块M1时第二天线单元20的S参数曲线图;S22`为开关导通L112至第一匹配模块M1时第二天线单元20的S参数曲线图;S23为开关导通L111至第一匹配模块M1时第一天线单元10与第二天线单元20之间的隔离度曲线图;S23`为开关导通L112至第一匹配模块M1时第一天线单元10与第二天线单元20的隔离度曲线图。
当开关导通L111至第一匹配模块M1中时,第一谐振模式a的谐振频率为1.77GHz,第二谐振模式b的谐振频率为3.6GHz;当开关导通L112至第一匹配模块M1中时,第一谐振模式a的谐振频率为1.92GHz,第二谐振模式b的谐振频率为3.7GHz。
在第一匹配模块M1设有可调支路T的情况下,本实施方式还通过对第一馈电点A的位置进行设计等方式,使可调支路T在对第一谐振模式a、第三谐振模式c进行调谐的同时,但是不会影响到或较少的影响到第二谐振模式b、第四谐振模式d和第五谐振模式e,从而在确保第一匹配模块M1在调谐第一谐振模式a、第三谐振模式c,以增加天线组件100可支持的LTE 4G/NR 5G频段范围、提升各个频段的性能的同时,还可以确保天线组件100保持能够支持WiFi 2.4G、WiFi 5G、WiFi 6E信号。
根据上述对于第二谐振模式b、第四谐振模式d、第五谐振模式e在第一辐射体11和第二辐射体21上的谐振的波长模式分析,可知,第一馈电点A处的调谐对于第二谐振模式b、第四谐振模式d的谐振影响相对较小,对于第五谐振模式e的谐振影响相对较大。
对于第五谐振模式e而言,第一辐射体11的电流密度分布从第一耦合端112至第一接地端111为先增加后减小再增加(例如图19中的虚线处),其中,第一辐射体11的电流强点位于从第一耦合端112至第一接地端111的长度的1/3左右。第一馈电点A与第一接地端111之间的长度为第一辐射体11长度的(1/3~1)倍。可选的,第一馈电点A位于第一辐射体11的电流强点的位置或电流强点附近。
通过设置第一馈电点A位于第一辐射体11的电流强点的位置或电流强点附近。第一馈电点A与第一接地端111之间的长度为第一辐射体11长度的(1/3~1)倍。进一步地,第一馈电点A与第一耦合端112之间的长度为第一辐射体11长度的1/3倍附近,以使第一馈电点A位于电流较强的位置。当第一馈电点A位于电流较强的位置时,第一匹配模块M1中设置可调支路T,该可调支路T对于第五谐振模式e的影响相对较小。当第一馈电点A位于第一辐射体11的电流强点的位置或电流强点附近,并将可调支路T中的L111切换至L112,从图中可以看出第四谐振模式d和第五谐振模式e的谐振点的位置不变,如此,实现了增加天线组件100可支持的LTE 4G/NR 5G频段范围的同时,还可以确保天线组件100保持能够支持WiFi信号,以使天线组件100始终能够支持LTE 4G/NR 5G及WiFi信号。
本实施方式中,第二匹配模块M2设于第二馈电点B与第二馈电模块23之间,用于对第二馈电模块23馈入的信号进行选频,例如,第二匹配模块M2从第二馈电模块23所发射的射频信号中选择4.5GHz~7GHz的频段传送第二馈电点B,或者,第二匹配模块M2从第二馈电模块23所发射的射频信号中选择4.5GHz~7GHz的频段传送第二馈电点B。此外,第二匹配模块M2还能够对于第二天线单元20所支持的谐振模式进行调谐,以使天线组件100在所需支持的频段处进行谐振;及隔离第一天线单元10的谐振信号,增加第一天线单元10与第二天线之间的隔离度。
以下结合附图对于第二匹配模块M2进行具体的说明。
请参阅图22,所述第二匹配模块M2包括至少一个并联至地的第三支路16和/或至少一个串联于所 述第二馈电点B与所述第二馈电模块23之间的第四支路17。所述第三支路16、所述第四支路17皆包括电容、电感中的至少一者。所述第二匹配模块M2用于导通所述第四谐振模式d和所述第五谐振模式e所支持的频段(例如WiFi 5G频段),及阻隔小于所述第四谐振模式d和所述第五谐振模式e所支持频段的频段(例如第一天线单元10所支持的频段),增加第一天线单元10和第二天线单元20之间的隔离度,及调谐所述第四谐振模式d的谐振频率和/或所述第五谐振模式e的谐振频率,以使第四谐振模式d和第五谐振模式e支持WiFi 5G、WiFi 6E频段。
第三支路16包括但不限于单电容支路、单电感支路以及图11至图18所列举的选频滤波电路中的至少一者。
第四支路17包括但不限于单电容支路、单电感支路以及图11至图18所列举的选频滤波电路中的至少一者。
举例而言,请参阅图22,至少一个所述第三支路16包括第六子支路161及第七子支路162。所述第六子支路161的一端电连接所述第二馈电点B,所述第六子支路161的另一端电连接所述第七子支路162的一端,所述第六子支路161包括并联的电感和电容,记为C21和L21。
所述第七子支路162的另一端电连接所述第二馈电模块23,所述第七子支路162包括电容、或电感、或并联的电感及电容。本实施方式中,第七子支路162为电感,记为L22。
请参阅图22,至少一个所述第四支路17包括第八子支路。所述第八子支路的一端电连接于所述第二馈电模块23,所述第八子支路的另一端电连接至第四参考地GND4,所述第八子支路包括电容、电感中的至少一者。本实施方式中,第八子支路为电感,记为L23。
以上仅仅为第二匹配模块M2的一种实施方式举例,在其他实施方式中,还可以在第六子支路161与第二馈电点B之间增加支路。
其中,第六子支路161(L21、C21)和第七子支路162(L22)用于阻隔WiFi 2.4G频段、第二谐振模式b的频段、第三谐振模式c的频段,及导通WiFi 5G、WiFi 6E的频段。举例而言,L21=13nH,C21=0.3pF,L22=2.7nH,上述的第六子支路161和第七子支路162对于WIFI 5G频段呈低阻抗或带通,以导通WIFI 5G频段,还能够有效地过滤掉小于WIFI 5G频段的频段,进而减小第一天线单元10所支持的频段信号对于第二天线单元20的影响。第八子支路L23对WiFi 5G起到调谐作用,并对第一谐振模式a所支持的频段起到隔离作用,以减少第一天线单元10所支持的信号对于第二天线单元20的影响。举例而言,L23=1.5nH。
从图4所示的第一天线单元10和第二天线单元20之间的隔离曲线S2,1,可以看出,1~3GHz、6~7GHz所对应的隔离度的值位于-25以下,而显示在图示中的隔离度的值也位于-15以下,说明第一天线单元10和第二天线单元20之间具有较高的隔离度。通过上述第一匹配模块M1和第二匹配模块M2的设计,以使第一天线单元10和第二天线单元20具有较高的隔离度,利于提高第一天线单元10、第二天线单元20各自收发天线信号的效率。从图4可以看出,在第一匹配模块M1中设置可调支路T之后,第一天线单元10和第二天线单元20之间仍具有较高的隔离度。
以上为第一种实施方式提供的天线组件100,该天线组件100中包括相耦合的第一天线单元10和第二天线单元20,实现了LTE 4G/NR 5G/WiFi信号共口径设计;天线组件100同时支持多种谐振模式,通过载波聚合技术实现了超带宽设计,同时,天线组件100可支持LTE 4G/NR 5G的双连接技术;其中,本申请通过对第一辐射体11长度、第一馈电点A的位置以及第二辐射体21的长度进行合理的设计,以使第一天线单元10能够支持LTE 4G/NR 5G中高频及超高频、WiFi 2.4G频段,第二天线单元20支持WiFi 5G、WiFi 6E频段。第二天线单元20单独支持WiFi频段,无需设置合路器等器件,以减少第二天线单元20的损耗,提高天线组件100的辐射效率。
在上述的天线组件100设于电子设备1000中,以电子设备1000为手机为例。本申请对于天线组件100的辐射体安装于电子设备1000内的具体位置不做限定。所述天线组件100的辐射体集成于所述壳体200、或设于所述壳体200表面、或设于所述壳体200所包围的空间内。
请参阅图23,电子设备1000包括设于壳体200内的参考地GND、电路板500(请参阅图2)等。参考地GND包括但不限于为中板410中的合金。参考地GND包括上述的第一参考地GND1至第七参 考地GND7。
第一馈电模块13、第二馈电模块23、第一匹配模块M1、第二匹配模块M2皆设于电路板500上。
第一辐射体11、第二辐射体21可集成于壳体200、或设于壳体200表面、或设于壳体200所包围的空间内。
可选的,第一辐射体11、第二辐射体21的至少部分与壳体200的边框210集成为一体。例如,边框210的材质为金属材质。第一辐射体11、第二辐射体21与边框210皆集成为一体。第一辐射体11、第二辐射体21之间的第一耦合缝隙140填充绝缘材质。当然,在其他实施方式中,第一辐射体11、第二辐射体21还可与后盖220集成为一体。换言之,第一辐射体11、第二辐射体21集成为壳体200的一部分。
可选的,第一辐射体11、第二辐射体21成型于边框210的表面(例如边框210的内表面或外表面)。具体的,第一辐射体11、第二辐射体21的基本形式包括但不限于贴片辐射体、通过激光直接成型(Laser Direct Structuring,LDS)、印刷直接成型(Print Direct Structuring,PDS)等工艺成型在边框210的内表面上,此实施方式中,边框210的材质可为非导电材质(对于电磁波信号为非屏蔽材质、或设置透波结构)。当然,第一辐射体11、第二辐射体21还可以设于后盖220的表面。
可选的,第一辐射体11、第二辐射体21设于柔性电路板、硬质电路板或其他的承载板。第一辐射体11、第二辐射体21可集成于柔性电路板上,并将柔性电路板通过粘胶等贴设于中框420的内表面,此实施方式中,边框210的材质可为非导电材质。当然,第一辐射体11、第二辐射体21还可设于后盖220的内表面。
以上为一个天线组件100用于待测主体接近检测和天线信号传输的具体结构、以及天线组件100中的各个器件在电子设备1000的安装位置。当然,本申请中,天线组件100的数量为一个或多个。
本申请对于天线组件100在电子设备1000内的具体所在侧不进行限定。参考地GND呈矩形板状。参考地GND包括依次连接的多个侧边。相邻的两个侧边之间的连接处为拐角处。
至少一个天线组件100的第一辐射体11、第二辐射体21与两个相交的侧边及拐角处相对设置;和/或,至少一个天线组件100的第一辐射体11、第二辐射体21全部与一个侧边相对设置。具体通过以下实施方式进行举例说明。
请参阅图23,参考地GND包括相对设置的第一侧边61和第二侧边62,以及连接于第一侧边61和第二侧边62之间的第三侧边63和第四侧边64。相邻的两个侧边之间的连接处为拐角处65。其中,第一侧边61为参考地GND的顶边(以用户竖屏手持并使用电子设备1000的状态为参考),第二侧边62为参考地GND的底边。
请参阅图23,边框210包括多个首尾相连的侧边框。边框210的多个侧边框中,相邻的两个侧边框相交,例如相邻的两个侧边框通过圆弧倒角过渡连接。多个侧边框包括相对设置的顶边框2101和底边框2102,及连接于顶边框2101与底边框2102之间的第一侧边框2103和第二侧边框2104。其中,顶边框2101为操作者手持电子设备1000朝向电子设备1000的正面使用时远离地面的边,底边框2102为朝向地面的边。相邻的两个侧边框之间的连接处为拐角部2106。其中,顶边框2101和底边框2102平行且相等。第一侧边框2103和第二侧边框2104平行且相等。第一侧边框2103的长度大于顶边框2101的长度。其中,顶边框2101与第一侧边61相对设置,底边框2102与第二侧边62相对设置,第一侧边框2103与第三侧边63相对设置,第二侧边框2104与第四侧边64相对设置。
所述天线组件100设于所述顶边框210、所述第一侧边框2103、所述第二侧边框2104及所述底边框210中的至少一者。
在一实施方式中,请参阅图23,天线组件100的数量为一个。天线组件100的第一辐射体11、第二辐射体21与第一侧边框2103集成为一体。其中,第一耦合缝隙140靠近于或位于第一侧边框2103的中间位置。
请参阅图24,图24中两侧的虚线框为手指的握持区。当用户横屏握持电子设备1000(例如横屏玩游戏、看视频等)时,用户的双手的握持位置相对远离第一边框210213的中间位置,如此,使得第一耦合缝隙140远离用户的手持位置。当用户的手指越靠近天线组件100的电场强点(第一耦合缝隙140 处),对于天线组件100的干扰影响越大。因此,通过将天线组件100设于第一侧边框2103,并使得第一耦合缝隙140远离用户横屏握持电子设备1000的手持位置,以使用户在横屏握持电子设备1000玩游戏等场景时,第一耦合缝隙140避开用户的手指,使其不被遮挡。可选的,第一耦合缝隙140的位置与顶框框或底边框210之间的距离为40mm以上,以使第一天线单元10和第二天线单元20仍具有较高的辐射效率,进而提高用户对于电子设备1000的使用体验。
图25是天线组件100设于电子设备1000的侧边时的效率曲线。图25中S11曲线为第一天线单元10的系统辐射效率曲线。图25中S12曲线为第二天线单元10的系统辐射效率曲线。图25中S13曲线为第一天线单元10的系统总效率曲线。图25中S14曲线为第一天线单元10的系统总效率曲线。由于侧边净空小,天线组件100的辐射环境较为恶劣,但从图25中的标记1~6可以看出,在第一谐振模式a至第五谐振模式e所支持的频段内,皆具有相对较高的效率(例如,以图24中-6dB以上为具有相对较高效率的参考线),以满足天线组件100在电子设备1000中的应用。
当然,在其他实施方式中,请参阅图26,天线组件100的数量为多个,例如,两个天线组件100分别位于第一侧边框2103和第二侧边框2104。这两个天线组件100的结构、所支持的频段可以相同或不同。当这两个天线组件100皆具有耦合缝隙时,将这两个天线组件100的耦合缝隙分别设于或靠近第一侧边框2103、第二侧边框2104的中间位置,以减少用户横屏握持时对于天线组件100的遮挡,减少对于天线组件100的效率的影响。同时,两个天线组件100可以相互切换,实现电子设备1000能够在更多频段进行通讯或更宽的带宽下进行通讯,提高电子设备1000的通讯质量。
当然,在其他实施方式中,请参阅图27,天线组件100的第一辐射体11、第二辐射体21还可以集成于顶边框210靠近拐角处,或者电子设备1000上的其他任意位置。
由上述的实施方式可知,本申请实现了电子设备1000在横屏模式下具有较高的辐射性能,且能够实现LTE 4G/NR 5G/WiFi同时存在。
以下结合附图对于本申请提供的第二种实施方式提供的天线组件100进行说明。本实施方式提供的天线组件100包括第一种实施方式提供的天线组件100,主要不同在于,请参阅图28及图29,本实施方式提供的天线组件100还包括第三辐射体31、第三馈电模块33及第三匹配模块M3。为了便于对天线组件100的不同部分进行功能划分以便于后续的描述,定义第三辐射体31、第三馈电模块33及第三匹配模块M3为第三天线单元30。第三辐射体31包括第三接地端311和第一自由端312,以及设于第三接地端311与第一自由端312之间的第三馈电点C。第三接地端311与第一接地端111相间隔设置或通过导电体连接。第三接地端311电连接至第五参考地GND5。第三馈电模块33电连接第三馈电点C。第三匹配模块M3电连接于第三馈电点C与第三馈电模块33之间。当然,在其他实施方式中,第一天线单元10和第二天线单元20的位置可以相互交换。
可选的,请参阅图28及图30,第一辐射体11和第二辐射体12设于第一侧边框2103,以在电子设备1000被横屏使用时,第一耦合缝隙140远离用户的手部,从而增加在横屏使用电子设备1000时的辐射效率。第三辐射体31设于第一侧边框2103和顶边框2101之间的拐角部2106,由于拐角部2106具有相对较好的净空区域,且拐角部2106更容易激励起较高的参考地电流,以提高第三天线单元30的辐射效率。本申请对于第三天线单元30所覆盖的频段不做限定。可选的,第三天线单元30可覆盖(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)。第三天线单元30的结构和尺寸可参考第一天线单元10的结构和尺寸。
可选的,请参阅图30,在第一接地端111与第三接地端311之间增加导电体将第一辐射体11与第三辐射体31连接起来。进一步地,当第一辐射体11、第二辐射体21及第三辐射体31皆集成于边框210上时,第一辐射体11与第三辐射体31之间可不做切断,即将边框210的一部分作为第一辐射体11,将边框210的另一部分作为第三辐射体31。换言之,第一辐射体11与第三辐射体31形成共体辐射体32。
可选的,请参阅图31,天线组件100还包括第四匹配模块M4。第四匹配模块M4的一端电连接于第一接地端111,第四匹配模块M4的另一端电连接至第一参考地GND1。其中,第四匹配模块M4对第一天线单元10、第二天线单元20中需要在第一接地端111回地的谐振模式(例如第一谐振模式a) 所支持频段呈低阻抗状态,例如,第四匹配模块M4为电感,以使需要在第一接地端111回地的谐振模式的谐振电流回地。
可选的,请参阅图31,天线组件100还包括第五匹配模块M5。第五匹配模块M5的一端电连接于第三接地端311,第五匹配模块M5的另一端电连接至第五参考地GND5。第五匹配模块M5对第三天线单元30中需要回地的谐振模式(例如第五谐振模式e)所支持频段呈低阻抗状态,例如,第五匹配模块M5为电感,以使第三天线单元30中需要在第一接地端111回地的谐振模式的谐振电流回地。
本实施方式中,天线组件100包括第四匹配模块M4和第五匹配模块M5,在其他实施方式中,天线组件100可仅包括第四匹配模块M4或仅包括第五匹配模块M5。
请参阅图32,定义第一辐射体11和第三辐射体31电连接之后为共体辐射体32。当共体辐射体32还作为检测待测主体(例如,人体的头部、手部等)接近的感应电极时,第四匹配模块M4包括直接电连接第一接地端111的容性器件或在第四匹配模块M4与第一接地端111之间设置容性器件;第五匹配模块M5包括直接电连接第三接地端311的容性器件或在第五匹配模块M5与第三接地端311之间设置容性器件;第一匹配模块M1包括直接电连接第一馈电点A的容性器件或在第一馈电点A与第一匹配模块M1之间设置容性器件;第三匹配模块M3包括直接电连接第三馈电点C的容性器件或在第三馈电点C与第三匹配模块M3之间设置容性器件;其中,容性器件例如电容、或包括电容的电路等,容性器件使得共体辐射体32相对于直流电流呈“悬浮状态”,以隔离待测主体靠近时产生的感应信号影响到天线信号。
可选的,第四匹配模块M4、第五匹配模块M5包括开关选择电路,例如,并联设置的电感支路和电容支路。当共体辐射体32需要检测人体靠近时,则控制开关导通电容与第一接地端111;当共体辐射体32不需要检测人体靠近时,则控制开关导通电感与第一接地端111。
可选的,第四匹配模块M4、第五匹配模块M5还包括电容和电感的支路。其中,电容电连接于第一接地端111与电感之间,电容使得共体辐射体32相对于直流电流呈“悬浮状态”,而电容和电感的支路对于需要从第一接地端111、第三接地端311回地的谐振模式所对应的频段呈低阻态。
请参阅图32,第四匹配模块M4、第五匹配模块M5用于隔直匹配,从而共体辐射体32可以作为SAR(比吸收率)检测部分。可选的,在第一匹配模块M1、第二匹配模块M2、第四匹配模块M4、第五匹配模块M5前分别加入隔直电容C31/C32/C33/C34(电容值例如为22pF,对天线信号基本无影响),如果第一匹配模块M1、第二匹配模块M2、第四匹配模块M4、第五匹配模块M5中本身就有隔直电容,则不需要额外加C31/C32/C33/C34。此时,共体辐射体32对于感应信号来说是悬浮的,接近传感器需要有悬浮的金属体,来感应人体靠近带来的电容变化,从而达到检测的目的。在C33前加入检测电路,检测电路中加入电感L隔离较高频率(例如电感为82nH),使天线基本不受影响。检测电路也可以放在C31/C32/C34前,或天线辐射体的任意位置。通过在天线辐射体上的人体检测,判断人体靠近状态,从而达到智能降SAR的目的。
以上为共体辐射体32作为感应电极的实施方式,在其他实施方式中,第二辐射体21也能够作为感应电极,在后续以第三实施方式提供的天线组件100为例进行具体说明。
以下结合附图对于本申请提供的第三实施方式提供的天线组件100的具体结构进行举例说明。
可选的,请参阅图33,天线组件100还包括第四辐射体41、第四馈电模块43及第六匹配模块M6。为了便于对天线组件100的不同部分进行功能划分以便于后续的描述,定义第四辐射体41、第四馈电模块43及第六匹配模块M6为第四天线单元40。第四辐射体41包括第四接地端411和第二自由端412,以及设于第四接地端411与第二自由端412之间的第四馈电点D。第四接地端411与第一自由端312之间为第二耦合缝隙150。第三辐射体31与第四辐射体41通过第二耦合缝隙150耦合。第四接地端411电连接至第六参考地GND6。第四馈电模块43电连接第四馈电点D。第六匹配模块M6电连接于第四馈电点D与第四馈电模块43之间。
本实施方式中,第三辐射体31与第四辐射体41相互耦合,以使第四馈电模块43发送的激励电流不仅能够在第四辐射体41上形成谐振,还能够在第三辐射体31上形成谐振,及第三馈电模块33发送的激励电流不仅能够在第三辐射体31上形成谐振,还能够在第四辐射体41上形成谐振,以增加第三天 线单元30和第四天线单元40所产生的谐振模式,进而增加第三天线单元30和第四天线单元40所支持的带宽、频段数量。
可选的,第三辐射体31和第四辐射体41可共同作为第三天线单元30的辐射体,第三辐射体31和第四辐射体41还可共同作为第四天线单元40的辐射体,以使第三天线单元30和第四天线单元40形成共口径天线,以实现辐射体的复用,在增加谐振模式的数量的同时减小第三天线单元30和第四天线单元40的辐射体的堆叠尺寸。
可选的,第一辐射体11与第三辐射体31之间电连接。第一天线单元10、第二天线单元20、第三天线单元30及第四天线单元40形成共口径天线。
本实施方式提供的天线组件100中,第一天线单元10和第二天线单元20上的谐振模式、谐振电流参考第一种实施方式提供的天线组件100,在此不再赘述。
请参阅图34,图34是第一天线单元10的S参数曲线图。其中,第一谐振模式a的谐振频率为1.88GHz,第二谐振模式b的谐振频率为2.6323GHz,第三谐振模式c的谐振频率为3.5707GHz。
请参阅图35,图35是第二天线单元20的S参数曲线图。其中,第四谐振模式d的谐振频率为5.4751GHz,第五谐振模式e的谐振频率为5.9643GHz。
以下结合附图说明第三天线单元30、第四天线单元40的谐振模式和谐振电流。
请参阅图36,第三天线单元30用于支持第六谐振模式f、第七谐振模式g及第八谐振模式h。
请参阅图37,第六谐振模式f的第六谐振电流密度主要分布于第三接地端311与第一自由端312之间,从第三接地端311流向第一自由端312,或者从第一自由端312流向第三接地端311。可以理解的,上述为第六谐振模式f的主要的电流密度分布,在第四辐射体41上也具有少量的电流密度分布。
其中,第六谐振模式f为第三馈电模块33的激励电流谐振于第三辐射体31上的(1/8~1/4)波长模式。具体的,通过设计第三辐射体31的长度约为第三馈电模块33发送至第三辐射体31的激励电流在介质中的波长的(1/8~1/4)倍,以在第三辐射体31上激励起第六谐振模式f,在第六谐振模式f所支持的频段具有较高的辐射效率。
一般地,通过设计第三辐射体31的长度约为第三馈电模块33发送至第三辐射体31的激励电流在介质中的波长的(1/4)倍,在第六谐振频点(第六谐振模式f的谐振频率)易激励起较高的辐射效率。进一步地,通过在第六谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第三辐射体31上,容性加载皆可使得第六谐振模式f的谐振频率朝向低频偏移,不再遵循原本的需要在第三辐射体31的长度约为1/4波长处产生较高效率的谐振,而是可以在第三辐射体31的长度对应1/8~1/4波长的范围内,能够产生较高效率的谐振,故在原来的第六谐振频点形成谐振的同时还能够使所对应的第三辐射体31的长度缩短,例如,减小至第六谐振频点对应的波长的1/8倍等,进一步地减小第三辐射体31的尺寸,减小天线组件100的堆叠长度。
请参阅图38,第七谐振模式g的第七谐振电流密度主要分布于第三馈电点C至第一自由端312之间,从第三馈电点C流向第一自由端312,或者,从第一自由端312流向第二馈电点B。可以理解的,上述为第七谐振模式g的主要的电流密度分布,在第三接地端311至第三馈电点C、第四辐射体41上也具有少量的电流密度分布。
第七谐振模式g为第三馈电模块33的激励电流谐振于第三馈电点C至第一自由端312的(1/8~1/4)波长模式。具体的,通过设计第三馈电点C至第一自由端312的长度约为第三馈电模块33发送至第三馈电点C至第一自由端312的激励电流在介质中的波长的(1/8~1/4)倍,以在第三馈电点C至第一自由端312上激励起第七谐振模式g,在第七谐振模式g所支持的频段具有较高的辐射效率。
一般地,通过设计第三馈电点C至第一自由端312的长度约为第三馈电模块33发送至第三馈电点C至第一自由端312的激励电流在介质中的波长的(1/4)倍,在第七谐振频点(第七谐振模式g的谐振频率)易激励起较高的辐射效率。进一步地,通过在第七谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第三馈电点C至第一自由端312上,容性加载皆可使得第七谐振模式g的谐振频率朝向低频偏移,不再遵循原本的需要在第三馈电点C至第一自由端312的长度约为1/4波长处产生较高效率的谐振,而是可以在第三馈电点C至第一自由端312的长度对应1/8~1/4波长的范围内,能 够产生较高效率的谐振,故在原来的第七谐振频点形成谐振的同时还能够使所对应的第三馈电点C至第一自由端312的长度缩短,例如,减小至第七谐振频点对应的波长的1/8倍等,进一步地减小第三辐射体31的尺寸,减小天线组件100的堆叠长度。
请参阅图39,第八谐振模式h的第八谐振电流密度主要分布于第三馈电点C至第四接地端411之间,其中,第三馈电点C至第一自由端312之间的电流,及第二自由端412流向第四接地端411之间的电流方向相同。从第三馈电点C流向第一自由端312,经第二耦合缝隙150后经第二自由端412流向第四接地端411,或者,从第四接地端411流向第二自由端412,经第二耦合缝隙150后流向第三馈电点C。可以理解的,上述为第八谐振模式h的主要的电流密度分布,在第三接地端311至第三馈电点C上也具有少量的电流密度分布。
第八谐振模式h为第三馈电模块33的激励电流谐振于第三馈电点C至第一自由端312的(1/8~1/4)波长模式,及谐振于第二自由端412至第四接地端411的(1/8~1/4)波长模式。
一般地,通过设计第三馈电点C至第一自由端312的长度约为第三馈电模块33发送至第三馈电点C至第一自由端312的激励电流在介质中的波长的(1/4)倍,及通过设计第二自由端412至第四接地端411的长度约为第三馈电模块33发送至第二自由端412至第四接地端411的激励电流在介质中的波长的(1/4)倍,在第八谐振频点(第八谐振模式h的谐振频率)易激励起较高的辐射效率。进一步地,通过在第三馈电点C至第一自由端312的路径上设置接地的容性的匹配电路,及在第二自由端412至第四接地端411的路径上设置接地的容性的匹配电路,容性加载皆可使得第八谐振模式h的谐振频率朝向低频偏移,不再遵循原本的需要在第三馈电点C至第一自由端312的长度约为1/4波长处、第二自由端412至第四接地端411的长度约为1/4波长处产生较高效率的谐振,而是可以在第三馈电点C至第一自由端312的长度对应1/8~1/4波长的范围内,及第二自由端412至第四接地端411的长度对应1/8~1/4波长的范围内,能够产生较高效率的谐振,故在原来的第八谐振频点形成谐振的同时还能够使所对应的第三馈电点C至第一自由端312的长度缩短及使得第四辐射体41的长度缩短,例如,减小至第八谐振频点对应的波长的1/8倍等,进一步地减小第三辐射体31、第四辐射体41的尺寸,减小天线组件100的堆叠长度。
请参阅图40,第四天线单元40用于支持第九谐振模式i、第十谐振模式j、第十一谐振模式k及第十二谐振模式p。
请参阅图39,第九谐振模式i为第三馈电模块33的激励电流谐振于第三馈电点C至第一自由端312的(1/8~1/4)波长模式,及谐振于第二自由端412至第四接地端411的(1/8~1/4)波长模式。第九谐振模式i的第九谐振电流密度分布可参考第八谐振模式h和第八谐振电流密度分布,在此不再赘述。
请参阅图41,第十谐振模式j的第十谐振电流密度主要分布于第三馈电点C至第四接地端411之间,其中,第三馈电点C至第一自由端312之间的电流,及第二自由端412流向第四接地端411之间的电流方向相反。第十谐振电流的一部分从第三馈电点C流向第一自由端312,第十谐振电流的另一部分从第四接地端411流向第二自由端412,或者,第十谐振电流的一部分从第一自由端312流向第三馈电点C,第十谐振电流的另一部分从第二自由端412流向第四接地端411。可以理解的,上述为第十谐振模式j的主要的电流密度分布,在第三接地端311至第三馈电点C上也具有少量的电流密度分布。
第十谐振模式j为第三馈电模块33的激励电流谐振于第三馈电点C至第一自由端312的(1/8~1/4)波长模式,及谐振于第二自由端412至第四接地端411的(1/8~1/4)波长模式。
一般地,通过设计第三馈电点C至第一自由端312的长度约为第三馈电模块33发送至第三馈电点C至第一自由端312的激励电流在介质中的波长的(1/4)倍,及通过设计第二自由端412至第四接地端411的长度约为第三馈电模块33发送至第二自由端412至第四接地端411的激励电流在介质中的波长的(1/4)倍,在第十谐振频点(第十谐振模式j的谐振频率)易激励起较高的辐射效率。进一步地,通过在第三馈电点C至第一自由端312的路径上设置接地的容性的匹配电路,及在第二自由端412至第四接地端411的路径上设置接地的容性的匹配电路,容性加载皆可使得第十谐振模式j的谐振频率朝向低频偏移,不再遵循原本的需要在第三馈电点C至第一自由端312的长度约为1/4波长处、第二自由端412至第四接地端411的长度约为1/4波长处产生较高效率的谐振,而是可以在第三馈电点C至第一 自由端312的长度对应1/8~1/4波长的范围内,及第二自由端412至第四接地端411的长度对应1/8~1/4波长的范围内,能够产生较高效率的谐振,故在原来的第十谐振频点形成谐振的同时还能够使所对应的第三馈电点C至第一自由端312的长度缩短及使得第四辐射体41的长度缩短,例如,减小至第十谐振频点对应的波长的1/8倍等,进一步地减小第三辐射体31、第四辐射体41的尺寸,减小天线组件100的堆叠长度。
请参阅图42,第十一谐振模式k的第十一谐振电流密度主要分布于第四馈电点D至第二自由端411之间,从第四馈电点D流向第二自由端411,或者从第二自由端411流向第四馈电点D。可以理解的,上述为第十一谐振模式k的主要的电流密度分布,在第四接地端412与第四馈电点D之间、第一辐射体11上也具有少量的电流密度分布。
具体的,第十一谐振模式k为第四馈电模块43的激励电流(第十一谐振电流)谐振于第四馈电点D至第二自由端411的(1/8~1/4)波长模式。具体的,通过设计第四馈电点D至第二自由端411的长度约为第四馈电模块43发送至第四辐射体41的激励电流在介质中的波长的(1/8~1/4)倍,以在第四馈电点D至第二自由端411上激励起第十一谐振模式k。
一般地,通过设计第四馈电点D至第二自由端411的长度约为第四馈电模块43发送的激励电流在介质中的波长的(1/4)倍,此时,在第十一谐振频点f4处(第十一谐振模式k的谐振频率)易激励起较高的辐射效率。进一步地,通过在第十一谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第四辐射体41上,容性加载皆可使得第十一谐振模式k的谐振频率朝向低频偏移,不再遵循原本的需要在第四馈电点D至第二自由端411的长度约为1/4波长处产生较高效率的谐振,而是可以在第四馈电点D至第二自由端411的长度对应1/8~1/4波长的范围内,能够产生较高效率的谐振,故在原来的第十一谐振频点f4形成谐振的同时还能够使所对应的第四馈电点D至第二自由端411的长度缩短,例如,减小至第十一谐振频点f4对应的波长的1/8倍等,进一步地减小第四馈电点D至第二自由端411的尺寸,减小天线组件100的堆叠长度。
请参阅图43,第十二谐振模式p的第十二谐振电流密度主要分布于第三接地端311至第一自由端312之间,从第三接地端311流向第一自由端312,或者从第一自由端312流向第三接地端311。可以理解的,上述为第十二谐振模式p的主要的电流密度分布,在第二自由端411与第四接地端412之间也具有少量的电流密度分布。
第十二谐振模式p为第四馈电模块43的激励电流谐振于第三辐射体31的(3/4)波长模式。具体的,通过设计第三辐射体31的长度约为第四馈电模块43发送至第三辐射体31的激励电流在介质中的波长的(3/4)倍,以在第三辐射体31上激励起第十二谐振模式p。
需要说明的是,以上从波长模式的角度说明第六谐振模式f至第十二谐振模式p是一种比较好理解的解释,说明了各模式主要特征表象,易于区分。但各模式工作时,第三天线单元30、第四天线单元40并不是独立的,而是存在相互耦合,电流也会通过耦合流向对方。
第三辐射体31在所述第三馈电模块33的激励下(即所述第三天线单元30)支持的频段包括GPS频段、Wi-Fi 2.4G频段、LTE-4G MHB频段、NR-5G MHB频段、LTE-4G UHB频段、NR-5G UHB频段。举例而言,第六谐振模式f、第七谐振模式g、第八谐振模式h的谐振频率分别为1.5766GHz、2.4667GHz、2.9773GHz。第三天线单元30覆盖(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)。在其他实施方式中,第三天线单元30覆盖(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78。
第四辐射体31在所述第四馈电模块43的激励下(即所述第四天线单元40)支持的频段覆盖N77频段、N78频段、Wi-Fi 5G频段、Wi-Fi 6E频段。举例而言,第九谐振模式i、第十谐振模式j、第十一谐振模式k、第十二谐振模式p的谐振频率分别为2.998GHz、3.6742GHz、5.5096GHz、6.5722GHz。第四天线单元40覆盖N77/N78+Wi-Fi 5G频段、Wi-Fi 6E频。当然,在其他实施方式中,第四天线单元40覆盖Wi-Fi 5G频段、Wi-Fi 6E频。
本实施方式提供的天线组件100在电子设备1000中的分布包括但不限于以下的实施方式,第一辐射体11和第二辐射体12皆设于第一侧边框2103,第一耦合缝隙140位于第一侧边框2103靠中间位置。第三辐射体31的一部分设于第一侧边框2103,另一部分设于顶边框2101,第四辐射体41设于顶边框 2101,第二耦合缝隙150设于顶边框2101。
当用户横屏使用电子设备1000时,第一耦合缝隙140避开了手部所握持的位置,以使第一天线单元10和第二天线单元20的辐射效率较高,进而收发(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+Wi-Fi 5G/Wi-Fi 6E频段,提高横屏使用体验。当用户竖屏使用电子设备1000时,第二耦合缝隙150避开了手部所握持的位置,以使第三天线单元30和第四天线单元40的辐射效率较高,进而收发(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+Wi-Fi 5G/Wi-Fi 6E频段,提高竖屏使用体验。由上可知,本实施方式提供的天线组件100满足在横屏和竖屏下皆能够高效地覆盖(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+Wi-Fi 5G/Wi-Fi 6E频段。
可选的,所述电子设备1000还包括至少一个按键部(未图示),至少一个所述按键部位于第二接地端212与第二馈电点B之间,和/或,至少一个所述按键部位于第一接地端111与第三接地端311之间。
请参阅图44,参考地GND为中板410的合金件,在将天线组件100设于电子设备1000中时,天线组件100上的各个器件之间具有一定的间隔,可在该间隔内设置电子设备1000内的其他器件,例如,第二参考地GND2与第二馈电模块23之间的间隔可设置按键电路板430,第二辐射体21可设置按键部。按键部包括但不限于电源键、音量键、静音键等等。此外,在第四匹配模块M4与第五匹配模块M5之间的间隔也可设置按键电路板430,第一接地端111与第三接地端311之间的中框上可设置按键部。通过在天线组件100的器件之间的间隔内设置电子设备1000内的其他器件,以增加天线组件100设于电子设备1000内时的结构紧凑性,利于整机堆叠。
可以理解的,上述的第一匹配模块M1至第五匹配模块M5内皆可以设置图11至图18中任意一实施方式的器件,也可包括开关电路、可变电容等可调器件。
请参阅图45,图45是第一天线单元10至第四天线单元40的S参数曲线图。从图45总功率天线组件100的S参数曲线可看出,天线组件100能够很好的覆盖(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+Wi-Fi 5G/Wi-Fi 6E频段,且具有良好的阻抗带宽。
请参阅图46,图46是天线组件100的天线单元之间的隔离度曲线。其中,S2,1曲线表示第一天线单元10与第二天线单元20之间的隔离度曲线。S3,1曲线表示第三天线单元30与第一天线单元10之间的隔离度曲线。S3,2曲线表示第三天线单元30与第二天线单元20之间的隔离度曲线。S4,1曲线表示第四天线单元40与第一天线单元10之间的隔离度曲线。S4,2曲线表示第四天线单元40与第二天线单元20之间的隔离度曲线。S4,3曲线表示第四天线单元40与第三天线单元30之间的隔离度曲线。以S参数为-13dB为参考,从图46可以看出,各个天线单元之间隔离度曲线大多设于-13dB以下,说明天线组件100中的各个天线单元之间具有良好的隔离度。
以下结合附图对于以上任意一种实施方式提供的天线组件100的功能进行进一步地介绍,例如,天线组件100在实现天线信号收发的同时还能够进行待测主体的接近检测。待测主体包括但不限于人体头部、人体手部等。可以理解的,辐射体为导电材质,辐射体在作为天线信号收发端口的同时还能够作为接近信号的感应电极。本申请提供的天线组件100集成了收发电磁波信号及接近感应的双重功能且体积小。当天线组件100应用于电子设备1000时,确保电子设备1000具有通信功能及接近检测功能的同时还能够使得电子设备1000的整体体积小。
具体的,请参阅图47,天线组件100还包括隔直组件70、过滤组件50、检测组件80及控制器(未图示)。
以下结合第三种实施方式提供的天线组件100,对隔直组件70、过滤组件50的连接方式进行举例说明。
请参阅图47,第一种接近检测的实施方式中,共体辐射体32作为用于感应待测主体靠近时的感应电极。隔直组件70电连接于电连接于所述第一馈电点A与所述第一匹配模块M1之间、所述第一接地端111与所述第一参考地GND1之间(当第一接地端111与第一参考地GND1之间设有第四匹配模块M4时,隔直组件70设于第一接地端111与第四匹配模块M4之间)、所述第三接地端311与所述第五参考地GND5之间(当第三接地端311与第五参考地GND5之间设有第五匹配模块M5时,隔直组件 70设于第三接地端311与第五匹配模块M5之间)、及所述第三馈电点C与所述第三匹配模块M3之间。隔直组件70用于阻隔第一匹配模块M1、第一参考地GND1、第五参考地GND5、第三匹配模块M3所产生的直流电流,以支持人体检测功能,提高人体靠近天线组件100时的检测准确性。
所述过滤组件50的一端电连接所述隔直组件70靠近于所述共体辐射体32的一侧或电连接所述共体辐射体32的任意位置。所述过滤组件50用于阻隔所述共体辐射体32收发的射频信号及通过所述共体辐射体32在待测主体靠近时产生的感应信号,以使第一辐射体11收发的射频信号不会影响到检测组件80检测感应信号的检测准确性。
具体的,请参阅图47,隔直组件70包括第一子隔离器71、第二子隔离器72、第三子隔离器73及第四子隔离器74。第一子隔离器71电连接于第一接地端111与第一参考地GND1(具体为第一接地端111与第四匹配模块M4)之间。第二子隔离器72电连接于第一馈电点A与第一匹配模块M1之间。第三子隔离器73电连接于第三接地端311与第五参考地GND5(具体为第三接地端311与第五匹配模块M5)之间。第四子隔离器74电连接于第三馈电点C与第三匹配模块M3之间。
通过设置隔直组件70,以使待测主体靠近共体辐射体32时所产生的感应信号不会影响到天线组件100对于天线信号的收发。具体的,第一子隔离器71、第二子隔离器72、第三子隔离器73及第四子隔离器74皆为容性器件。举例而言,第一子隔离器71、第二子隔离器72、第三子隔离器73及第四子隔离器74皆为电容器,第一子隔离器71、第二子隔离器72、第三子隔离器73及第四子隔离器74对天线组件100所支持的射频信号呈小阻抗到地,例如,第一子隔离器71、第二子隔离器72、第三子隔离器73及第四子隔离器74的值包括但不限于为47pF或22PF等。第一子隔离器71对第四匹配电路M4的直流电流具有隔离作用,第二子隔离器72对第一匹配电路M1的直流电流具有隔离作用,第三子隔离器73对第五匹配模块M5具有隔离作用,第四子隔离器74对第三匹配模块M3具有隔离作用,以支持人体检测功能,提高人体靠近天线组件100时的检测准确性。换言之,隔直组件70使得共体辐射体32相对于直流电流呈“悬浮”状态。
具体的,过滤组件50电连接于第一子隔离器71与第一接地端111之间;或,电连接于第二子隔离器72与第一馈电点A之间;或,电连接于第三子隔离器73与第三接地端311之间;或,电连接于第四子隔离器74与第三馈电点C之间;或,电连接于共体辐射体32的任意位置。过滤组件50包括电感器件或为电感器件。例如,过滤组件50为电感。过滤组件50对于天线组件100所支持的射频信号呈大阻抗,电感值例如82nH。
以上隔直组件70和过滤组件50实现了感应信号及射频信号可同时作用且互不干扰。
检测组件80电连接过滤组件50的另一端,检测组件80用于检测辐射体产生的感应信号的大小。可选的,检测组件80为用于检测电流信号、电压信号或电感信号的器件,例如微型检流计、微型电流互感器、电流比较器、电压比较器等等。
人体皮肤表面靠近共体辐射体32时,人体皮肤表面与共体辐射体32可分别等效为电容器的两个电极板。当人体的头部靠近时,共体辐射体32可感应人体的头部带来的电荷量的变化。过滤组件50电连接共体辐射体32。上述的电荷量变化形成感应信号,该感应信号经过滤组件50传输至检测组件80。根据电容计算公式,C=εS/4πkd,其中,d是人体(头部或者手部)与辐射体之间距离,所以当电容增加,即检测组件80所检测到的感应信号的强度增加时,说明人体在靠近;当电容减小,即检测组件80所检测到的感应信号的强度减小时,说明人体在远离。检测组件80通过检测上述的感应信号的变化,以判断人体的头部是否靠近于天线组件100的共体辐射体32,从而智能降低人体头部对电磁波的比吸收率。
可选的,隔直组件70的至少部分还能够作为匹配模块的一部分,例如第二子隔离器72为电容器,第二子隔离器72用于阻隔感应信号,及导通射频信号的同时,还能够作为第一匹配模块M1的一部分,用以调谐信号源21与第一馈电点A之间的阻抗匹配,以减小馈入共体辐射体32的射频信号的损耗,提高共体辐射体32收发的信号转换效率;还用于调节共体辐射体32上产生的谐振模式的频偏等等,实现了器件的一物多用,减少器件数量和占据的空间,提高器件的集成度。
当第一匹配模块M1电连接第一馈电点A的部分为电容器,则无需再设置第二子隔离器72。同样地,当第四匹配模块M4电连接于第二接地端212的部分为电容器,则无需再设置第一子隔离器71。 当第五匹配模块M5电连接于第三接地端311的部分为电容器,则无需再设置第三子隔离器73。当第三匹配模块M3电连接于第二馈电点B的部分为电容器,则无需再设置第四子隔离器74。
本申请提供的天线组件100及电子设备1000,通过复用天线组件100上的共体辐射体32为检测人体等待测主体靠近的感应电极,并通过隔直组件70、过滤组件50对感应信号和射频信号进行分隔,实现了天线组件100的通信性能和感应待测主体的双重作用,增加天线组件100的功能,进一步地提高器件利用率,减小电子设备1000的整体体积。
本实施方式一方面可以增加接近感应面积,另一方面,由于共体辐射体32设于第一侧边框2103、顶边框2101上及第一侧边框2103及顶边框2101上的拐角部2106,将共体辐射体32作为感应电极,可检测到电子设备1000的前、后、第一侧边框2103的朝向侧、顶边框2101的朝向侧的待测主体的接近感应,增加SAR检测范围。
第二种接近检测的实施方式中,请参阅图48,第二辐射体21作为检测待测主体靠近的感应电极。
隔直组件70电连接于第二辐射体21的第二接地端212与第二参考地GND2之间、所述第二匹配模块M2与所述第二馈电点B之间。隔直组件70的具体结构和隔离感应信号、导通射频信号的原理可参考第一种隔直组件70、过滤组件50的连接方式,在此不再赘述。过滤组件50的一端电连接隔直组件70靠近第二辐射体21的一侧(例如隔直组件70与第二接地端212之间)或电连接第二辐射体21的任意位置。所述隔直组件70用于阻隔第二参考地GND2、所述第二匹配模块M2所产生的直流电流,所述过滤组件50用于阻隔所述第二辐射体21收发的射频信号及通过所述第二辐射体21在待测主体靠近时产生的感应信号;本实施方式中,第二辐射体21为感应电极,第二辐射体21相对于直流电流呈悬浮状态。
第三种接近检测的实施方式中,请参阅图49,第四辐射体41作为检测待测主体靠近的感应电极。隔直组件70电连接于所述第四接地端411与所述第六参考地GND6之间、所述第六匹配模块M6与所述第四馈电点D之间,所述过滤组件50的一端电连接所述隔直组件70靠近所述第三辐射体31的一侧或电连接所述第三辐射体31;所述隔直组件70用于阻隔第六参考地GND6、第六匹配模块M6所产生的直流电流,所述过滤组件50用于阻隔所述第三辐射体31收发的射频信号及通过所述第四辐射体41在待测主体靠近时产生的感应信号。
可以理解的,第一种接近检测的实施方式、第二种接近检测的实施方式、第三种接近检测的实施方式可以选择其中一者进行实施,还可以选择其中两者进行实施,还可以选择其中的三者进行实施。
以下对于第一种接近检测和第三种接近检测同时实施的实施方式进行具体的说明。
请参阅图50,在第一种接近检测的基础上,隔直组件70还包括第五子隔直器75及第六子隔直器76。其中,第五子隔直器75电连接于第四馈电点D与第六匹配模块M6之间,第六子隔直器76电连接于第四接地端411与第六参考地GND6之间,以使共体辐射体32、第四辐射体41皆能够作为感应待测主体接近的感应电极。
请参阅图50,过滤组件50包括第一子过滤器51及第二子过滤器52。其中,第一子过滤器51电连接于第一子隔离器71与第一馈电点A之间、或第二子隔离器72与第一接地端111之间、第三子隔离器73与第三接地端311之间、或第四子隔离器74与第三馈电点C之间、或共体辐射体32的任意位置。第二子过滤器52电连接第五子隔直器75与第四馈电点D之间、第六子隔直器76与第四接地端411之间、或第四辐射体41的任意位置。
具体的,第一子隔离器71、第二子隔离器72及第三子隔离器73皆为隔离电容,第一子过滤器51及第二子过滤器52皆为隔离电感。
请参阅图50,检测组件80电连接第一子过滤器51及第二子过滤器52。具体的,检测组件80的两个通道分别电连接第一子过滤器51及第二子过滤器52。本实施方式中,共体辐射体32、第四辐射体41皆能够作为感应待测主体靠近的检测电极。
在其他实施方式中,检测组件80包括第一子检测器及第二子检测器。第一子检测器电连接第一子过滤器51的另一端,第二子检测器电连接第二子过滤器52的另一端。换言之,通过两个相互独立的子检测器分别检测共体辐射体32、第四辐射体41所检测到的感应信号,此实施方式可使用于共体辐射体 32、第四辐射体41分别位于电子设备1000的不同侧时,通过一个天线组件100的辐射体即可检测电子设备1000来自不同侧的人体接近,进而实现在占据较小的空间的情况下提高检测范围。
当人体靠近共体辐射体32时,共体辐射体32上的电荷变化,检测组件80通过第一子过滤器51直接可以感应到感应信号;当人体靠近第四辐射体41时,第四辐射体41上的电荷变化,检测组件80通过第二子过滤器52直接可以感应到感应信号。检测组件80通过检测感应信号以检测人体接近,此情况下能够将所有辐射体皆作为感应电极,以使感应面积较大,可提高辐射体的利用率,只需一个检测组件80,可节省天线组件100的器件数量及节省空间。
控制器电连接检测组件80。检测组件80接收感应信号并转化成电信号并传输至控制器。控制器用于根据感应信号的大小检测待测主体与辐射体之间的距离,进而判断人体是否接近辐射体,并在待测主体与辐射体之间的距离小于或等于预设距离值时调节第一馈电模块13(或者调节第三馈电模块33、调节第四馈电模块43)的功率。具体的,控制器根据不同的场景可以对天线组件100的功率进行调节,以实现智能减小人体对于电磁波信号的比吸收率。
举例而言,当人体头部靠近天线组件100的辐射体时,控制器可降低天线组件100的功率,以降低天线组件100所辐射电磁波的比吸收率。当人体手部在辐射方向上遮挡天线组件100的辐射体时,在电子设备1000内还设有其他备用天线组件100(即能够覆盖相同频段的天线组件100)的情况下,控制器可关闭被遮挡的天线组件100,及开启其他位置未被遮挡的天线组件100,如此,在人体手部遮挡天线组件100时,通过智能切换天线组件100,可确保电子设备1000的通信质量;在电子设备1000内未设置其他备用的天线组件100的情况下,控制器可控制天线组件100的功率增加,以补偿手部遮挡辐射体后导致的效率降低的问题。
当然,控制器还根据检测组件80的检测结果控制电子设备1000上的其他应用程序,例如,控制器根据检测组件80的检测结果检测到人体靠近及电子设备1000处于通话状态,来控制显示屏300的屏幕亮度关闭,以节省电子设备1000在通话时的电能;控制器还根据检测组件80的检测结果检测到人体远离及电子设备1000处于通话状态,来控制显示屏300的屏幕亮度点亮。
当然,在其他实施方式中,第一种接近检测的实施方式、第二种接近检测的实施方式、第三种接近检测的实施方式可以一起实施。
可选的,当辐射体用于人体接近检测,且辐射体与边框210集成为一体时,可在辐射体表面设置一层绝缘膜,由于人体皮肤表面具有电荷,人体皮肤表面与辐射体之间形成电容结构,进而通过辐射体感应人体皮肤表面接近带来的信号变化。
可选的,电子设备1000中可设置多个天线组件100,这些天线组件100为上述所述的任意一项实施方式所列举的天线组件100,多个天线组件100能够在不同的遮挡场景下实现智能切换工作,以实现在任意手持遮挡等情况下皆能够具有较高的天线收发效率,并且,多个天线组件100的辐射体集成检测功能后,可以检测不同的用户场景(例如单手握持、双手握持、随身携带状态、通话状态等等),还可以实现比吸收率(SAR)标准中6个面的检测。
可选的,请参阅图51,所述第一接地端111与所述第三接地端311之间为连接段。连接段上设有至少一个连接点(例如图51中的第一连接点511和图52中的第二连接点512)。天线组件100还包括至少一个第七匹配模块M7,第七匹配模块M7的一端电连接所述连接点(第一连接点511),第七匹配模块M7的另一端电连接至第七参考地GND7。第七匹配模块M7能够有效地滤除第一天线单元10和第二天线单元20的射频信号,以避免该射频信号干扰至第三天线单元30和第四天线单元40。可选的,第七匹配模块M7包括对于第一天线单元10、第二天线单元20所支持的频段呈带通状态或小阻抗状态的接地电路,以使第一天线单元10、第二天线单元20与第三天线单元30、第四天线单元40之间的隔离度更好。此外,第七匹配模块M7还能够有效地滤除第三天线单元30和第四天线单元40的射频信号,以避免该射频信号干扰至第一天线单元10和第二天线单元20。可选的,第七匹配模块M7包括对于第三天线单元30、第四天线单元40所支持的频段呈带通状态或小阻抗状态的接地电路,以使第一天线单元10、第二天线单元20与第三天线单元30、第四天线单元40之间的隔离度更好。
此外,第七匹配模块M7还可以滤除天线组件100中一些效率较低的工作模式,例如,电流从第一 参考地GND1流向第一接地端111、第三接地端311、回流至第五参考地GND5的工作模式,以减小这些低效率的工作模式对于天线组件100的谐振模式的影响。
可选的,连接点(第一连接点511)的位置可靠近于第一接地端111或第三接地端311,以使第一接地端111和第三接地端311之间还能够设置按键。第七匹配模块M7与连接点相对。当然,在第一接地端111与第三接地端311之间无需设置按键时,连接点还可以设于第一接地端111与第三接地端311之间的任意位置,包括但不限于第一接地端111与第三接地端311的中间位置。
可选的,请参阅图52,连接点的数量为多个,例如两个连接点(第一连接点511和第二连接512)分别靠近第一接地端111和第三接地端311。电连接所述连接点(第一连接点511和第二连接512)的匹配模块的数量为两个,分别记为第七匹配模块M7和第八匹配模块M8。第七匹配模块M7和第八匹配模块M8皆能够增加第一天线单元10、第二天线单元20与第三天线单元30、第四天线单元40之间的隔离度,并滤除天线组件100中一些效率较低的工作模式,提高天线组件100各个谐振模式的收发效率。
本申请提供的天线组件100可实现四天线共口径设计,在增加收发频段的带宽和频段数量的同时,还能够减小天线组件100的堆叠空间,此外,在天线组件100的辐射体集成人体接近检测功能,能够智能检测人体靠近,进而减小比吸收率,或检测出电子设备1000的被握持状态、所处应用状态等,此外,通过对天线组件100在电子设备1000上的合理布局,以使电子设备1000在横屏使用状态下皆具有较高的信号收发效率。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (21)

  1. 一种天线组件,其中,包括第一辐射体、第二辐射体、第一匹配模块、第一馈电模块、第二匹配模块及第二馈电模块,所述第一辐射体具有第一接地端和第一耦合端,以及位于所述第一接地端和所述第一耦合端之间的第一馈电点,所述第二辐射体具有第二耦合端和第二接地端,以及位于所述第二耦合端和所述第二接地端之间的第二馈电点,所述第二耦合端与所述第一耦合端之间存在第一耦合缝隙,所述第一匹配模块电连接于所述第一馈电点与所述第一馈电模块之间,所述第一接地端电连接至第一参考地;所述第二匹配模块电连接于所述第二馈电点与所述第二馈电模块之间,所述第二接地端电连接至第二参考地;所述第一辐射体和所述第二辐射体在所述第一馈电模块和所述第二馈电模块的激励下支持多个谐振模式,其中,至少一个所述谐振模式为所述第一馈电模块的激励电流谐振于所述第二辐射体上的(1/8~1/4)波长模式。
  2. 如权利要求1所述的天线组件,其中,所述天线组件用于支持第一谐振模式、第二谐振模式和第三谐振模式,其中,所述第一谐振模式为所述第一馈电模块的激励电流谐振于所述第一辐射体上的(1/8~1/4)波长模式;所述第二谐振模式为所述第一馈电模块的激励电流谐振于所述第二辐射体上的(1/8~1/4)波长模式;所述第三谐振模式为所述第一馈电模块的激励电流谐振于所述第一馈电点至所述第一耦合端的(1/8~1/4)波长模式。
  3. 如权利要求2所述的天线组件,其中,所述第一谐振模式的谐振频率、所述第二谐振模式的谐振频率及所述第三谐振模式的谐振频率依次增加;所述第一谐振模式所支持的频段包括GPS频段、LTE-4G MHB频段、NR-5G MHB频段中的至少一者;所述第二谐振模式所支持的频段包括Wi-Fi 2.4G频段、LTE-4G MHB频段、NR-5G MHB频段中的至少一者;所述第三谐振模式所支持的频段包括LTE-4G UHB频段、NR-5G UHB频段中的至少一者。
  4. 如权利要求2所述的天线组件,其中,所述第一匹配模块包括至少一个串联于所述第一馈电点与所述第一馈电模块之间和/或至少一个并联至地的第一支路的第二支路,所述第一支路、所述第二支路皆包括电容、电感中的至少一者;所述第一匹配模块用于调谐所述第一谐振模式的谐振频率、所述第二谐振模式的谐振频率、所述第三谐振模式的谐振频率中的至少一者。
  5. 如权利要求4所述的天线组件,其中,至少一个所述第一支路包括第一子支路、第二子支路、第三子支路,至少一个所述第二支路包括第四子支路及第五子支路;
    所述第一子支路的一端电连接所述第一馈电点,所述第一子支路另一端电连接至第三参考地,所述第一子支路包括电容、或电容及电感;
    所述第二子支路的一端电连接所述第一馈电点,所述第二子支路的另一端电连接至所述第三参考地,所述第二子支路包括电感、或电感及电容;
    所述第三子支路的另一端电连接至所述第三参考地,所述第三子支路包括电容、或电容及电感;
    所述第四子支路的一端电连接于所述第一馈电点,所述第四子支路的另一端电连接第三子支路一端,所述第四子支路包括电容、或电容及电感;
    所述第五子支路的一端电连接第四子支路的另一端,所述第五子支路的另一端电连接第一馈电模块,所述第五子支路包括电感。
  6. 如权利要求5所述的天线组件,其中,所述第一匹配模块还包括至少一个电连接至所述第三参考地的可调支路,所述可调支路包括开关电路、可调电容中的至少一者;所述可调支路用于调谐所述第一谐振模式和所述第二谐振模式的谐振频率。
  7. 如权利要求1所述的天线组件,其中,所述第一馈电点与所述第一接地端之间的长度为所述第一辐射体长度的(1/3~1)倍。
  8. 如权利要求2~7任意一项所述的天线组件,其中,所述天线组件用于支持第四谐振模式及第五谐振模式,其中,所述第四谐振模式为所述第二馈电模块的激励电流谐振于所述第二馈电点至所述第二耦合端的(1/8~1/4)波长模式;所述第五谐振模式为所述第二馈电模块的激励电流谐振于所述第一辐射体的(3/4)波长模式。
  9. 如权利要求8所述的天线组件,其中,所述第四谐振模式的谐振频率小于所述第五谐振模式的谐振频率;所述第四谐振模式和所述第五谐振模式所支持的频段皆包括Wi-Fi 5G频段、Wi-Fi 6E频段中的至少一者。
  10. 如权利要求8所述的天线组件,其中,所述第二匹配模块包括至少一个并联至地的第三支路和/或至少一个串联于所述第一馈电点与所述第一馈电模块之间的第四支路,所述第三支路、所述第四支路皆包括电容、电感中的至少一者;所述第二匹配模块用于导通所述第四谐振模式和所述第五谐振模式所支持的频段,及阻隔小于所述第四谐振模式和所述第五谐振模式所支持频段的频段,及调谐所述第四谐振模式的谐振频率和/或所述第五谐振模式的谐振频率。
  11. 如权利要求10所述的天线组件,其中,至少一个所述第三支路包括第六子支路及第七子支路,至少一个所述第四支路包括第八子支路;
    所述第六子支路的一端电连接所述第二馈电点,所述六子支路的另一端电连接所述第七子支路的一端,所述第六子支路包括并联的电感和电容;
    所述第七子支路的另一端电连接所述第二馈电模块,所述第七子支路包括电容、或电感、或并联的电感及电容;
    所述第八子支路的一端电连接于所述第二馈电模块,所述第八子支路的另一端电连接至第四参考地,所述第八子支路包括电容、电感中的至少一者。
  12. 如权利要求1所述的天线组件,其中,所述天线组件还包括第三辐射体、第三馈电模块及第三匹配模块,所述第三辐射体包括第三接地端和第一自由端,以及设于所述第三接地端与所述第一自由端之间的第三馈电点,所述第三接地端与所述第一接地端相间隔设置或通过导电体连接,所述第三接地端电连接至第五参考地;所述第三馈电模块电连接所述第三馈电点,所述第三匹配模块电连接于所述第三馈电点与所述第三馈电模块之间。
  13. 如权利要求12所述的天线组件,其中,所述天线组件还包括第四匹配模块,所述第四匹配模块的一端电连接于所述第一接地端,所述第四匹配模块的另一端电连接至所述第一参考地;和/或,所述天线组件还包括第五匹配模块,所述第五匹配模块的一端电连接于所述第三接地端,所述第五匹配模块的另一端电连接至所述第五参考地。
  14. 如权利要求12或13所述的天线组件,其中,所述天线组件还包括第四辐射体、第四馈电模块及第六匹配模块,所述第四辐射体包括第四接地端和第二自由端,以及设于所述第四接地端与所述第二自由端之间的第四馈电点,所述第四接地端与所述第一自由端之间为第二耦合缝隙,所述第四接地端电连接至第六参考地;所述第四馈电模块电连接所述第四馈电点,所述第六匹配模块电连接于所述第四馈电点与所述第四馈电模块之间。
  15. 如权利要求14所述的天线组件,其中,所述天线组件还用于支持第六谐振模式、第七谐振模式及第八谐振模式,其中,所述第六谐振模式为所述第三馈电模块的激励电流谐振于所述第三辐射体上的(1/8~1/4)波长模式;所述第七谐振模式为所述第三馈电模块的激励电流谐振于所述第三馈电点至所述第一自由端的(1/8~1/4)波长模式;所述第八谐振模式为所述第三馈电模块的激励电流谐振于所述第三馈电点至所述第一自由端的(1/8~1/4)波长模式,及谐振于所述第二自由端至所述第四接地端的(1/8~1/4)波长模式;
    所述天线组件还用于支持第九谐振模式、第十谐振模式、第十一谐振模式及第十二谐振模式,其中,所述第九谐振模式为所述第四馈电模块的激励电流谐振于所述第三馈电点至所述第一自由端的(1/8~1/4)波长模式,及谐振于所述第一自由端至所述第四接地端的(1/8~1/4)波长模式;所述第十谐振模式为所述第四馈电模块的激励电流谐振于所述第一自由端至所述第四接地端的(1/8~1/4)波长模式;所述第十一谐振模式为所述第四馈电模块的激励电流谐振于所述第四馈电点至所述第二自由端的(1/8~1/4)波长模式;所述第十二谐振模式为所述第四馈电模块的激励电流谐振于所述第三接地端至所述第一自由端的(3/4)波长模式。
  16. 如权利要求14所述的天线组件,其中,所述第三辐射体在所述第三馈电模块的激励下支持的频段包括GPS频段、Wi-Fi 2.4G频段、LTE-4G MHB频段、NR-5G MHB频段、LTE-4G UHB频段、NR-5G  UHB频段;所述第四辐射体在所述第四馈电模块的激励下支持的频段覆盖N77频段、N78频段、Wi-Fi5G频段、Wi-Fi 6E频段。
  17. 如权利要求14所述的天线组件,其中,所述第一辐射体连接所述第三辐射体,形成共体辐射体;所述天线组件还包括隔直组件、过滤组件及检测组件,所述隔直组件电连接于所述第一馈电点与所述第一匹配模块之间、所述第一接地端与所述第一参考地之间、所述第三接地端与所述第五参考地之间、及所述第三馈电点与所述第三匹配模块之间;所述过滤组件的一端电连接所述隔直组件靠近于所述共体辐射体的一侧或电连接所述共体辐射体,所述隔直组件用于隔离所述第一匹配模块、所述第一参考地、所述第五参考地及所述第三匹配模块所产生的的直流电流,所述过滤组件用于阻隔所述共体辐射体收发的射频信号及通过所述共体辐射体在待测主体靠近时产生的感应信号;和/或,所述隔直组件电连接于所述第二接地端与所述第二参考地之间、所述第二匹配模块与所述第二馈电点之间,所述过滤组件的一端电连接所述隔直组件靠近所述第二辐射体的一侧或电连接所述第二辐射体;所述隔直组件用于隔离所述第二参考地、所述第二匹配模块所产生的的直流电流,所述过滤组件用于阻隔所述第二辐射体收发的射频信号及通过所述第二辐射体在待测主体靠近时产生的感应信号;和/或,所述隔直组件电连接于所述第四接地端与所述第六参考地之间、所述第六匹配模块与所述第四馈电点之间,所述过滤组件的一端电连接所述隔直组件靠近所述第三辐射体的一侧或电连接所述第三辐射体;所述隔直组件用于隔离所述第六参考地、所述第六匹配模块所产生的的直流电流,所述过滤组件用于阻隔所述第三辐射体收发的射频信号及通过所述所述第三辐射体在待测主体靠近时产生的感应信号;
    所述检测组件电连接于所述过滤组件的另一端,所述检测组件用于检测所述感应信号的大小。
  18. 如权利要求14所述的天线组件,其中,所述第一接地端与所述第三接地端之间为连接段,所述天线组件还包括至少一个第七匹配模块,所述第七匹配模块的一端电连接所述连接段,所述第七匹配模块的另一端接地。
  19. 一种电子设备,其中,所述电子设备包括壳体及如权利要求1~18任意一项至少一个所述的天线组件,所述天线组件的辐射体集成于所述壳体、或设于所述壳体表面、或设于所述壳体所包围的空间内。
  20. 如权利要求19所述的电子设备,其中,所述壳体包括相对设置的顶边框及底边框,以及连接在所述顶边框和所述底边框之间的第一侧边框、第二侧边框,所述天线组件设于所述顶边框、所述第一侧边框、所述第二侧边框及所述底边框中的至少一者。
  21. 如权利要求20所述的电子设备,其中,所述天线组件的第一辐射体、第二辐射体设于所述第一侧边框,所述天线组件的第三辐射体的一部分设于所述第一侧边框,所述天线组件的第三辐射体的另一部分设于所述顶边框,所述天线组件的第四辐射体设于所述顶边框,所述第一辐射体与所述第二辐射体之间的第一耦合缝隙位于所述第一侧边框,所述第二耦合缝隙位于所述顶边框;
    所述电子设备还包括至少一个按键部,至少一个所述按键部位于第二接地端与第二馈电点之间,和/或,至少一个所述按键部位于第一接地端与所述第三辐射体的第三接地端之间。
PCT/CN2022/086365 2021-05-26 2022-04-12 天线组件及电子设备 WO2022247502A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22810235.6A EP4322328A4 (en) 2021-05-26 2022-04-12 ANTENNA ARRANGEMENT AND ELECTRONIC DEVICE
US18/503,330 US20240072418A1 (en) 2021-05-26 2023-11-07 Antenna assembly and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110582433.2A CN115411501A (zh) 2021-05-26 2021-05-26 天线组件及电子设备
CN202110582433.2 2021-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/503,330 Continuation US20240072418A1 (en) 2021-05-26 2023-11-07 Antenna assembly and electronic device

Publications (1)

Publication Number Publication Date
WO2022247502A1 true WO2022247502A1 (zh) 2022-12-01

Family

ID=84155681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086365 WO2022247502A1 (zh) 2021-05-26 2022-04-12 天线组件及电子设备

Country Status (4)

Country Link
US (1) US20240072418A1 (zh)
EP (1) EP4322328A4 (zh)
CN (1) CN115411501A (zh)
WO (1) WO2022247502A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247160B (zh) * 2019-04-30 2021-10-29 荣耀终端有限公司 一种天线组件及移动终端
CN114976631B (zh) * 2021-06-25 2023-11-14 荣耀终端有限公司 一种终端天线及电子设备
CN115706314A (zh) * 2021-08-10 2023-02-17 南京矽力微电子(香港)有限公司 共辐射体多馈天线
CN114552181A (zh) * 2022-01-30 2022-05-27 Oppo广东移动通信有限公司 天线组件及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001837A1 (en) * 2006-07-03 2008-01-03 Accton Technology Corporation Portable communication device with slot-coupled antenna module
CN106299598A (zh) * 2015-05-27 2017-01-04 富泰华工业(深圳)有限公司 电子装置及其多馈入天线
CN111883917A (zh) * 2020-07-16 2020-11-03 南通大学 一种基于双缝馈电结构的带宽可重构介质贴片滤波天线
CN112448162A (zh) * 2020-11-02 2021-03-05 Oppo广东移动通信有限公司 天线组件及电子设备
CN112751213A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件及电子设备
CN112838370A (zh) * 2020-09-30 2021-05-25 Oppo广东移动通信有限公司 天线组件和电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112689033B (zh) * 2019-10-18 2022-07-22 荣耀终端有限公司 终端设备
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112751204B (zh) * 2020-12-29 2023-04-28 Oppo广东移动通信有限公司 天线组件及电子设备
CN116073130A (zh) * 2020-12-29 2023-05-05 Oppo广东移动通信有限公司 天线组件及电子设备
CN112751212B (zh) * 2020-12-29 2023-08-04 Oppo广东移动通信有限公司 天线系统及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001837A1 (en) * 2006-07-03 2008-01-03 Accton Technology Corporation Portable communication device with slot-coupled antenna module
CN106299598A (zh) * 2015-05-27 2017-01-04 富泰华工业(深圳)有限公司 电子装置及其多馈入天线
CN111883917A (zh) * 2020-07-16 2020-11-03 南通大学 一种基于双缝馈电结构的带宽可重构介质贴片滤波天线
CN112838370A (zh) * 2020-09-30 2021-05-25 Oppo广东移动通信有限公司 天线组件和电子设备
CN112448162A (zh) * 2020-11-02 2021-03-05 Oppo广东移动通信有限公司 天线组件及电子设备
CN112751213A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4322328A4 *

Also Published As

Publication number Publication date
US20240072418A1 (en) 2024-02-29
EP4322328A4 (en) 2024-10-09
EP4322328A1 (en) 2024-02-14
CN115411501A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2023142785A1 (zh) 天线组件及电子设备
CN112821031B (zh) 电子设备
WO2022142824A1 (zh) 天线系统及电子设备
WO2022160920A1 (zh) 天线组件及电子设备
WO2022247502A1 (zh) 天线组件及电子设备
CN104701618B (zh) 具有混合倒f缝隙天线的电子设备
CN113013594B (zh) 天线组件和电子设备
CN104064865B (zh) 具有基于隙缝的寄生部件的可调谐天线
CN102684722B (zh) 具有接收器分集的可调谐天线系统
CN112768959B (zh) 天线组件和电子设备
WO2022142822A1 (zh) 天线组件和电子设备
CN112751213B (zh) 天线组件及电子设备
WO2022237346A1 (zh) 天线组件及电子设备
WO2023273604A1 (zh) 天线模组及电子设备
WO2023273607A1 (zh) 天线模组及电子设备
US20240014556A1 (en) Antenna assembly and electronic device
WO2023045630A1 (zh) 天线组件及电子设备
CN115036676B (zh) 天线组件及电子设备
CN117673753A (zh) 天线组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810235

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022810235

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022810235

Country of ref document: EP

Effective date: 20231108

NENP Non-entry into the national phase

Ref country code: DE