WO2022237346A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2022237346A1
WO2022237346A1 PCT/CN2022/082929 CN2022082929W WO2022237346A1 WO 2022237346 A1 WO2022237346 A1 WO 2022237346A1 CN 2022082929 W CN2022082929 W CN 2022082929W WO 2022237346 A1 WO2022237346 A1 WO 2022237346A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
sub
frequency band
antenna
antenna assembly
Prior art date
Application number
PCT/CN2022/082929
Other languages
English (en)
French (fr)
Inventor
吴小浦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022237346A1 publication Critical patent/WO2022237346A1/zh
Priority to US18/505,723 priority Critical patent/US20240072440A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines

Definitions

  • the present application relates to the technical field of communications, and in particular to an antenna assembly and electronic equipment.
  • the present application provides an antenna component and electronic equipment that improve data transmission rate and communication quality.
  • an antenna assembly provided in an embodiment of the present application includes:
  • the radiator includes a first sub-radiator and a second sub-radiator, and there is a coupling gap between the first sub-radiator and the second sub-radiator;
  • the end of the first sub-radiator includes a first A coupled end and a first free end, the first sub-radiator also has a feed point and a first ground point, the feed point is located between the first free end and the first coupled end, the first The distance between the ground point and the first coupling end is greater than the distance between the feeding point and the first coupling end;
  • the second sub-radiator includes a second coupling end, a second free end, and a The second grounding point between the second free end and the second coupling end is the coupling gap between the second coupling end and the first coupling end, and the first grounding point and the second grounding point are both for electrical connection to reference ground; and
  • a signal source electrically connected to the feeding point.
  • the embodiment of the present application provides an electronic device, the electronic device includes a housing, a reference ground and at least one antenna assembly, the reference ground is set in the housing, and the antenna assembly
  • the radiator is integrated in the casing, or is arranged on the surface of the casing, or is arranged in the space surrounded by the casing; both the first ground point and the second ground point are electrically connected to the reference ground.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 2 is a schematic exploded view of the structure of the electronic device shown in FIG. 1;
  • Fig. 3 is a schematic structural diagram of the first antenna assembly in the electronic device shown in Fig. 2;
  • FIG. 4 is a schematic structural diagram of a second antenna assembly in the electronic device shown in FIG. 2;
  • Fig. 5 is a schematic diagram of an S parameter curve of the antenna assembly shown in Fig. 3;
  • FIG. 6 is a schematic diagram of an S parameter curve of the antenna assembly shown in FIG. 4;
  • FIG. 7 is a schematic structural diagram of a first matching circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a second type of first matching circuit provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a third first matching circuit provided in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a fourth first matching circuit provided in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a fifth first matching circuit provided in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a sixth first matching circuit provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a seventh first matching circuit provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an eighth first matching circuit provided by an embodiment of the present application.
  • Fig. 15 is a schematic diagram of the first resonant current density distribution in the antenna assembly shown in Fig. 3;
  • Fig. 16 is a schematic diagram of the second resonant current density distribution in the antenna assembly shown in Fig. 3;
  • Fig. 17 is a schematic diagram of a third resonant current density distribution in the antenna assembly shown in Fig. 3;
  • Fig. 18 is a radiation efficiency graph of the antenna assembly provided in Fig. 4;
  • FIG. 19 is a schematic diagram of a fourth resonant current density distribution in the antenna assembly shown in FIG. 4;
  • Fig. 20 is a schematic diagram of the fifth resonant current density distribution in the antenna assembly shown in Fig. 4;
  • Fig. 21 is a schematic diagram of sixth resonant current density distribution in the antenna assembly shown in Fig. 4;
  • Fig. 22 is a schematic diagram of the seventh resonant current density distribution in the antenna assembly shown in Fig. 4;
  • Fig. 23 is a schematic structural diagram of a first sub-circuit provided in the first matching circuit in the antenna assembly shown in Fig. 4;
  • Fig. 24 is a schematic structural diagram of a second matching circuit provided in the antenna assembly shown in Fig. 4;
  • Fig. 25 is a schematic structural diagram of a third matching circuit provided in the antenna assembly shown in Fig. 4;
  • Fig. 26 is a schematic structural diagram of a fourth matching circuit provided in the antenna assembly shown in Fig. 4;
  • Fig. 27 is a schematic structural diagram of a third antenna assembly in the electronic device shown in Fig. 2;
  • Fig. 28 is a structural schematic diagram of the first connection mode in which the antenna assembly shown in Fig. 4 is provided with a direct blocking assembly, a filter assembly, and a detection assembly;
  • Fig. 29 is a schematic structural diagram of the antenna assembly shown in Fig. 4 provided with a second connection mode of a direct blocking assembly, a filter assembly, and a detection assembly;
  • Fig. 30 is a schematic structural diagram of a third connection mode in which a direct blocking component, a filter component, and a detection component are provided in the antenna component shown in Fig. 4;
  • Fig. 31 is a schematic diagram of the first configuration of the antenna assembly, the middle frame, and the reference ground shown in Fig. 4;
  • Fig. 32 is a schematic diagram of the second configuration of the antenna assembly, the middle frame, and the reference ground shown in Fig. 4;
  • Fig. 33 is a schematic diagram of a third configuration of the antenna assembly, the middle frame, and the reference ground shown in Fig. 4;
  • Figure 34 is a schematic structural diagram of the first antenna assembly, the second antenna assembly, the middle frame, and the reference ground provided by the embodiment of the present application;
  • FIG. 35 is a schematic structural diagram of the four antenna assemblies, the middle frame, and the reference ground shown in FIG. 4 .
  • an antenna assembly including:
  • the radiator includes a first sub-radiator and a second sub-radiator, a coupling gap exists between the first sub-radiator and the second sub-radiator;
  • the first sub-radiator includes a first coupling end and The first free end, the first sub-radiator also has a feed point and a first ground point, the feed point is located between the first free end and the first coupling end, the first ground point The distance between the location and the first coupling end is greater than the distance between the feeding point and the first coupling end;
  • the second sub-radiator includes a second coupling end, a second free end, and a The second grounding point between the second coupling end and the second free end, the coupling gap between the second coupling end and the first coupling end, the first grounding point and the The second ground points are both used for electrical connection to the reference ground; and
  • a signal source electrically connected to the feeding point.
  • the radiator supports at least three resonance modes under the excitation of the signal source.
  • the first grounding point is located at the first free end.
  • the radiator supports the first resonant mode, the second resonant mode and the third resonant mode under the excitation of the signal source.
  • the first resonant current density of the first resonant mode is at least distributed between the first ground point and the first coupling end and between the second coupling end and the second ground point, wherein , the flow direction of the first resonance current between the first ground point and the first coupling end is the same as the flow direction between the second coupling end and the second ground point;
  • the second resonant current density of the second resonant mode is distributed between the first ground point and the first coupling end, and between the second coupling end and the second free end, wherein the The flow direction of the second resonant current between the first ground point and the first coupled end is opposite to the flow direction between the second coupled end and the second ground point, and the second resonant current is at the flow direction between the second ground point and the second free end is opposite to the flow direction between the second coupled end and the second ground point;
  • the third resonant current density of the third resonant mode is distributed between the first ground point and the first coupling end, and between the second coupling end and the second free end, wherein the The flow direction of the third resonant current between the first ground point and the first coupled end is opposite to the flow direction between the second coupled end and the second ground point, and the third resonant current is at The flow direction between the second ground point and the second free end is the same as the flow direction between the second coupled end and the second ground point.
  • the first resonant mode supports the first sub-radiator to work in the (1/8-1/4) wavelength mode; the second resonant mode supports the second coupling end to the second ground point The second sub-radiator in between works in a (1/8-1/4) wavelength mode; the third resonance mode supports the second sub-radiator to work in a 1/2 wavelength mode.
  • the frequency band supported by the first resonance mode is the first frequency band; the frequency band supported by the second resonance mode is the second frequency band, and the frequency band supported by the third resonance mode is the third frequency band, wherein the The three of the first frequency band, the second frequency band and the third frequency band are sequentially continuous or both are continuous or none are continuous.
  • the first grounding point is located between the first free end and the feeding point.
  • the radiator supports the fourth resonant mode, the fifth resonant mode, the sixth resonant mode and the seventh resonant mode under the excitation of the signal source.
  • the fourth resonant current density of the fourth resonant mode is at least distributed between the first free end and the first coupling end, wherein the fourth resonant current is between the first free end and the first coupled end.
  • the flow direction between the first ground point is opposite to the flow direction between the first ground point and the first coupled end;
  • the fifth resonant current density of the fifth resonant mode is at least distributed between the first free end and the first coupled end and between the second coupled end and the second ground point, wherein the The flow direction of the fifth resonant current between the first free end and the first ground point, the flow direction between the first ground point and the first coupled end, and the second coupled end and the flow directions between the second grounding point are the same;
  • the sixth resonant current density of the sixth resonant mode is at least distributed between the first ground point and the first coupled end, and between the second coupled end and the second free end, wherein the The flow direction of the sixth resonant current between the first ground point and the first coupled end is opposite to the flow direction between the second coupled end and the second ground point, and the sixth resonant current the flow direction between the second ground point and the second free end is opposite to the flow direction between the second coupled end and the second ground point;
  • the seventh resonant current density of the seventh resonant mode is at least distributed between the first ground point and the first coupled end, and between the second coupled end and the second free end, wherein the The flow direction of the seventh resonant current between the first ground point and the first coupled end is opposite to the flow direction between the second coupled end and the second ground point, and the sixth resonant current The flow direction between the second ground point and the second free end is the same as the flow direction between the second coupled end and the second ground point.
  • the fourth resonant mode supports the first sub-radiator between the first ground point and the first coupling end to work in a (1/8-1/4) wavelength mode;
  • the fifth The resonance mode supports the operation of the first sub-radiator in the 1/2 wavelength mode;
  • the sixth resonance mode supports the operation of the second sub-radiator between the second coupling end and the second ground point in (1 /8 ⁇ 1/4) wavelength mode;
  • the seventh resonance mode supports the second sub-radiator to work in the 1/2 wavelength mode.
  • the frequency band supported by the fourth resonance mode is the fourth frequency band
  • the frequency band supported by the fifth resonance mode is the fifth frequency band
  • the frequency band supported by the sixth resonance mode is the sixth frequency band
  • the frequency band supported by the fifth resonance mode is the sixth frequency band.
  • the frequency band supported by the seven-resonance mode is the seventh frequency band, wherein four of the fourth frequency band, the fifth frequency band, the sixth frequency band, and the seventh frequency band are sequentially continuous or three are continuous or both are continuous or both Discontinuous.
  • the length of the radiator between the first ground point and the first free end is (1/4) ⁇ (3/4) times the length of the first sub-radiator.
  • the antenna assembly further includes a first matching circuit, and the first matching circuit is electrically connected between the feeding point and the signal source;
  • the first matching circuit includes a first sub-circuit, and the first matching circuit One end of a sub-circuit is electrically connected to the feed point, and the other end of the first sub-circuit is electrically connected to the reference ground, and the first sub-circuit operates in the frequency band supported by the fourth resonance mode.
  • the frequency band supported by the fifth resonance mode, the frequency band supported by the sixth resonance mode, and the frequency band supported by the seventh resonance mode are capacitive;
  • the antenna assembly further includes a second matching circuit
  • the first sub-radiator also has a first frequency modulation point located between the first free end and the first ground point, the second One end of the matching circuit is connected to the first frequency modulation point, the other end of the second matching circuit is electrically connected to the reference ground, and the second matching circuit works in the frequency band supported by the fourth resonance mode and the It is capacitive in the frequency band supported by the fifth resonant mode;
  • the antenna assembly further includes a third matching circuit
  • the second sub-radiator also has a second frequency modulation point located between the second coupling end and the second ground point, the third One end of the matching circuit is connected to the second frequency modulation point, the other end of the third matching circuit is electrically connected to the reference ground, and the third matching circuit works in the frequency band supported by the fifth resonance mode, the The frequency band supported by the sixth resonance mode and the frequency band supported by the seventh resonance mode are capacitive;
  • the antenna assembly further includes a fourth matching circuit
  • the second sub-radiator also has a third frequency modulation point located between the second ground point and the second free end, the fourth One end of the matching circuit is connected to the third frequency modulation point, the other end of the fourth matching circuit is electrically connected to the reference ground, and the fourth matching circuit works in the frequency band supported by the sixth resonance mode and the It is capacitive in the frequency band supported by the seventh resonant mode described above.
  • the length of the radiator between the second ground point and the second free end is (1/4) ⁇ (3/4) times the length of the second sub-radiator.
  • the antenna assembly further includes a DC blocking component, a filtering component, and a detection component, and the DC blocking component is electrically connected between the first sub-radiator and the signal source, and between the first sub-radiator and the signal source.
  • the DC blocking component is electrically connected between the first sub-radiator and the signal source, and between the first sub-radiator and the signal source.
  • the DC blocking component is electrically connected between the second sub-radiator and the reference ground, and one end of the filter component is electrically connected to the side of the DC blocking component close to the second sub-radiator or is electrically connected to the second sub radiator;
  • the DC blocking component is used to isolate the reference ground and the DC current generated by the signal source, and the filter component is used to block the radio frequency signal sent and received by the radiator and pass through the radiator
  • the present application provides an electronic device, the electronic device includes a casing, a reference ground and the antenna assembly according to at least one of any one of claims 1-16, the reference ground is set in the casing , the radiator of the antenna assembly is integrated in the casing, or is arranged on the surface of the casing, or is arranged in the space surrounded by the casing; the first ground point and the second ground point are electrically connected to the reference ground.
  • the reference ground includes a plurality of sides connected in sequence, the connection between two adjacent sides is a corner, and the radiator of at least one antenna component is connected to two intersecting sides.
  • the side and the corner are arranged opposite to each other; and/or, all the radiators of at least one antenna component are arranged opposite to one of the sides.
  • At least one of the antenna components includes a first antenna component and a second antenna component, the first antenna component and the second antenna component are diagonally arranged, the first antenna component and the second antenna component
  • the induction signals generated when the subject to be tested approaches are all detected by the detection component;
  • the electronic device also includes a controller, the controller is electrically connected to the first antenna component, the second antenna component and the detection component, and the controller is used to The magnitude of the induction signal generated by the components adjusts the power of the first antenna component and the second antenna component.
  • At least one of the antenna components further includes a third antenna component and a fourth antenna component, at least part of the first antenna component, at least part of the second antenna component, at least part of the third antenna component and At least part of the fourth antenna assembly is respectively arranged on different sides of the reference ground; the induction signal generated by the third antenna assembly and the fourth antenna assembly when the subject under test approaches passes through the detection assembly detection;
  • the controller is also electrically connected to the third antenna component and the fourth antenna component, and the controller is used to The magnitude of the induction signal of at least one of the fourth antenna components determines the target mode of the electronic device, and adjusts the first antenna component, the second antenna component, and the third antenna according to the target mode
  • the power of at least one of the component and the fourth antenna component, and the target mode includes at least one of a one-handed holding mode, a two-handed holding mode, a carrying mode, and a head approaching mode.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • Electronic device 1000 includes antenna assembly 100 .
  • the antenna assembly 100 is used to send and receive electromagnetic wave signals, so as to realize the communication function of the electronic device 1000 .
  • the present application does not specifically limit the position of the antenna assembly 100 in the electronic device 1000 .
  • the electronic device 1000 also includes a display screen 300 and a casing 200 that are closed and connected to each other.
  • the antenna assembly 100 can be disposed inside the casing 200 of the electronic device 1000 , or partially integrated with the casing 200 , or partially disposed outside the casing 200 .
  • the radiator of the antenna assembly 100 in FIG. 1 is integrated with the casing 200 .
  • the antenna assembly 100 can also be arranged on the retractable assembly of the electronic device 1000.
  • at least part of the antenna assembly 100 can extend out of the electronic device 1000 along with the retractable assembly of the electronic device 1000, and with the retractable The assembly is retracted into the electronic device 1000; alternatively, the overall length of the antenna assembly 100 is extended as the retractable assembly of the electronic device 1000 is extended.
  • the electronic equipment 1000 includes but is not limited to telephones, televisions, tablet computers, mobile phones, cameras, personal computers, notebook computers, vehicle equipment, earphones, watches, wearable equipment, base stations, vehicle radar, customer premise equipment (Customer Premise Equipment, CPE ) and other devices capable of sending and receiving electromagnetic wave signals.
  • the electronic device 1000 is taken as an example of a mobile phone, and for other devices, reference may be made to the specific description in this application.
  • the X-axis direction, the Y-axis direction and the Z-axis direction are perpendicular to each other.
  • the direction indicated by the arrow is the forward direction.
  • the casing 200 includes a frame 210 and a rear cover 220 .
  • a middle plate 410 is formed in the frame 210 by injection molding, and a plurality of installation slots for installing various electronic devices are formed on the middle plate 410 .
  • the middle board 410 and the frame 210 together form the middle frame 420 of the electronic device 100 .
  • the middle frame 420 and the rear cover 220 are closed, a receiving space is formed on both sides of the middle frame 420 .
  • One side (such as the rear side) of the frame 210 surrounds the periphery of the rear cover 220
  • the other side (such as the front side) of the frame 210 surrounds the periphery of the display screen 300 .
  • the electronic device 1000 also includes a battery, a camera, a microphone, a receiver, a loudspeaker, a face recognition module, a fingerprint recognition module, etc., which can realize the basic functions of the mobile phone, and will not be described in this embodiment. .
  • the antenna assembly 100 provided by the present application will be specifically described below with reference to the accompanying drawings.
  • the antenna assembly 100 provided by the present application includes but is not limited to the following embodiments.
  • the antenna assembly 100 at least includes a radiator 10 , a first matching circuit M1 and a signal source 20 .
  • the radiator 10 includes a first sub-radiator 11 and a second sub-radiator 12 .
  • a coupling gap 13 exists between the first sub-radiator 11 and the second sub-radiator 12 .
  • the first sub-radiator 11 and the second sub-radiator 12 are coupled through the coupling slot 13 .
  • the shapes of the first sub-radiator 11 and the second sub-radiator 12 are both linear and strip-shaped as an example for illustration.
  • the shapes of the first sub-radiator 11 and the second sub-radiator 12 may also be bent strips, curved strips, patch shapes and other shapes.
  • the end portion of the first sub-radiator 11 includes at least a first free end 111 and a first coupled end 112 .
  • the first free end 111 and the first coupled end 112 are opposite ends of the first sub-radiator 11 in the shape of a straight line.
  • the first sub-radiator 11 is bent, and the first free end 111 and the first coupled end 112 may not face each other along a straight line, but the first free end 111 and the first coupled end 112 are the first sub-radiators.
  • the first sub-radiator 11 also has a first grounding point A and a feeding point B. As shown in FIG.
  • the feeding point B is located between the first free end 111 and the first coupling end 112 .
  • the distance between the first ground point A and the first coupling end 112 is greater than the distance between the feeding point B and the first coupling end 112 .
  • the first grounding point A is located between the feeding point B and the first free end 111 , or, referring to FIG. 3 , the first grounding point A is located at the first free end 111 .
  • the first ground point A is used to electrically connect to the first reference ground GND1, and the electrical connection methods include but not limited to direct welding, or indirect electrical connection through coaxial lines, microstrip lines, conductive springs, conductive glue, and the like.
  • the present application does not limit the specific positions of the first grounding point A and the feeding point B on the first sub-radiator 11 .
  • the second sub-radiator 12 at least includes a second coupled end 121 , a second free end 122 and a second ground point D located between the second coupled end 121 and the second free end 122 .
  • the second coupled end 121 and the second free end 122 are two ends of the second sub-radiator 12 .
  • the first sub-radiator 11 and the second sub-radiator 12 may be arranged in a straight line or substantially in a straight line (ie, there is a small tolerance in the design process).
  • the first sub-radiator 11 and the second sub-radiator 12 may also be arranged staggered in the extending direction, so as to form an avoidance space and the like.
  • the first coupling end 112 is opposite to the second coupling end 121 and arranged at intervals.
  • a coupling gap 13 is formed between the first coupling end 112 and the second coupling end 121 .
  • the coupling slot 13 is a gap between the first coupling end 112 of the first sub-radiator 11 and the second coupling end 121 of the second sub-radiating body 12.
  • the width of the coupling slot 13 can be 0.5-2 mm, but not Limited to this size.
  • the first sub-radiator 11 and the second sub-radiator 12 can generate capacitive coupling through the coupling gap 13 .
  • the first sub-radiator 11 and the second sub-radiator 12 can be regarded as two parts formed by the radiator 10 separated by the coupling slit 13 .
  • the first sub-radiator 11 and the second sub-radiator 12 are capacitively coupled through the coupling slot 13 .
  • capacitively coupling means that an electric field is generated between the first sub-radiator 11 and the second sub-radiator 12, and the signal of the first sub-radiator 11 can be transmitted to the second sub-radiator 12 through the electric field, and the second The signal of the sub-radiator 12 can be transmitted to the first sub-radiator 11 through an electric field, so that the first sub-radiator 11 and the second sub-radiator 12 can realize electrical signal conduction even in the state of no contact or connection .
  • the first sub-radiator 11 can generate an electric field under the excitation of the signal source 20, and the energy of the electric field can be transmitted to the second sub-radiator 12 through the coupling gap 13, so that the second sub-radiator 12 generates an excitation current .
  • the second ground point D of the second sub-radiator 12 is used to be electrically connected to the second reference ground GND2.
  • the signal source 20 is electrically connected to the feeding point B.
  • one end of the first matching circuit M1 is electrically connected to the feeding point B.
  • the signal source 20 is electrically connected to the other end of the first matching circuit M1.
  • the signal source 20 is a radio frequency transceiver chip for sending radio frequency signals or a feeder electrically connected to the radio frequency transceiver chip for sending radio frequency signals.
  • the first matching circuit M1 may include a plurality of selection branches formed by switching devices-capacitive devices-inductive devices-resistive devices, etc., variable capacitors and other adjustable devices.
  • the signal source 20 directly feeds the radio frequency signal into the first sub-radiator 11, and since the first sub-radiator 11 and the second sub-radiator 12 are capacitively coupled, the current on the first sub-radiator 11 excites the second sub-radiator 12 An excitation current is generated, so that both the first sub-radiator 11 and the second sub-radiator 12 have an excitation current, and the excitation current can generate multiple resonance modes in the first sub-radiator 11 and the second sub-radiator 12 .
  • the radiator 10 supports at least three resonance modes (such as a, b, c in FIG. 5 , such as d, e, f, g in FIG. 6 ) under the excitation of the signal source 20 .
  • the resonant mode is characterized by the fact that the antenna assembly 100 has higher efficiency of transmitting and receiving electromagnetic waves at and near the resonant frequency.
  • the resonant frequency is the center frequency of the resonant mode, and the resonant frequency and its vicinity form the frequency band supported or covered by the resonant mode.
  • the absolute value of the return loss value is greater than or equal to 5dB (for example only, and cannot be used as the application for the limitation of the return loss value of higher efficiency) as having a higher
  • the reference value of the electromagnetic wave transceiving efficiency A set of frequencies whose absolute value of the return loss value in a resonance mode is greater than or equal to 5 dB is taken as the frequency band supported by the resonance mode.
  • the frequency bands supported by the resonance mode include LTE 4G frequency bands, or NR 5G frequency bands, or Wi-Fi 6E frequency bands, or combined frequency bands formed by LTE 4G frequency bands and NR 5G frequency bands.
  • the frequency band supported by a resonance mode can be a single LTE 4G frequency band (such as B3), or a separate NR 5G frequency band (such as N3), or a single Wi-Fi 6E frequency band, or a combination of LTE 4G frequency band and NR 5G frequency band frequency band (eg B3/N3), etc.
  • the increase in the number of resonance modes supported by the antenna assembly 100 is at least reflected in the following two aspects.
  • the first aspect is that when the frequency bands supported by the multiple resonance modes of the antenna component 100 are continuous, the frequency bandwidth supported by the antenna component 100 is relatively wide, and can form an ultra-wideband, which is 1G, 1.5G or 2G, etc. , to achieve ultra-broadband coverage, increase download bandwidth, increase throughput download speed, and improve user experience on the Internet;
  • the second aspect is that when the frequency bands supported by the multiple resonance modes of the antenna assembly 100 are discontinuous, the antenna assembly 100 supports The number of frequency bands increases to achieve multi-band coverage.
  • the antenna assembly 100 can simultaneously support 4G/5G mid-high frequency (such as 1000MHz ⁇ 3000MHz) and 4G/5G ultra-high frequency (such as 3000MHz ⁇ 10000MHz), and simultaneously support two different segments.
  • Medium and high frequency support both 4G/5G medium and high frequency and WiFi-6E frequency bands (such as 5.925GHz ⁇ 7.125GHz).
  • the frequency bands supported by multiple resonance modes are continuous, which means that two adjacent frequency bands supported by multiple resonance modes overlap at least in part.
  • the discontinuity of frequency bands supported by multiple resonance modes means that there is no overlap between two adjacent frequency bands supported by multiple resonance modes.
  • the second sub-radiator 12 is capacitively coupled to the first sub-radiator 11, and the second ground point D of the second sub-radiator 12 is designed to be located at the second Between the two ends of the sub-radiator 12, and reasonably design the first grounding point A of the first sub-radiator 11 to be located between the two ends of the first sub-radiator 11 or away from the end of the second sub-radiator 12, so that The resonant current density on the first sub-radiator 11 and the second sub-radiator 12 has multiple distribution modes, and then supports multiple resonance modes, so that the antenna assembly 100 can support a wider bandwidth or support more frequency bands, and then When the antenna assembly 100 is applied to the electronic device 1000, the download bandwidth, the throughput and the data transmission speed are improved, and the communication quality of the electronic device 1000 is improved. In addition, when the bandwidth of the antenna assembly 100 is relatively wide, there is no need for adjustable components to switch to different frequency bands, thereby saving adjustable components, saving costs, and realizing
  • the shapes of the first sub-radiator 11 and the second sub-radiator 12 include but are not limited to strip, sheet shape, rod shape, coating, film, etc.
  • the application does not limit the extension tracks of the first sub-radiator 11 and the second sub-radiator 12, so the first sub-radiator 11,
  • the second sub-radiators 12 can all extend in a trajectory such as a straight line, a curve, or multiple bends.
  • the above-mentioned radiator 10 may be a line with uniform width on the extension track, or may be a strip with unequal width such as gradually changing width or having widened areas.
  • the electrical connection of the first ground point A and the second ground point D of the antenna assembly 100 to the reference ground includes but not limited to the following implementations.
  • the antenna assembly 100 itself has a reference ground.
  • Specific forms of the reference ground include, but are not limited to, metal plates, metal layers molded inside flexible circuit boards, and rigid circuit boards.
  • the first ground point A and the second ground point D are electrically connected to the reference ground through conductive elements such as ground shrapnel, solder, and conductive adhesive.
  • the first reference ground GND1 and the second reference ground GND2 may be an integrated reference ground in the antenna assembly 100 , or two independent but connected reference grounds in the antenna assembly 100 .
  • the reference ground of the antenna assembly 100 is electrically connected to the reference ground of the electronic device 1000 .
  • the antenna assembly 100 itself does not have a reference ground, and the first ground point A and the second ground point D of the antenna assembly 100 are directly electrically connected or indirectly electrically connected to the reference ground of the electronic device 1000 or the electronic device Reference ground for electronic devices within 1000.
  • the antenna assembly 100 is disposed in the electronic device 1000 , and the metal alloy on the middle board 410 is used as a reference ground. That is, the first reference ground GND1 and the second reference ground GND2 are part of the mid-plane 410 or electrically connected to the mid-plane 410 .
  • the effective efficiency bandwidth of the antenna is not wide enough, for example, in the coverage of medium and high frequency bands (1000MHz ⁇ 3000MHz), such as 1710MHz ⁇ 2690MHz (B3/N3+B1/N1+B7/N7), in the actual use process , due to the limited space for setting the antenna, an antenna capable of generating two resonant modes is generally used to support the above-mentioned frequency bands, and since the frequency band width supported by each resonant mode is relatively small, to cover 1710MHz to 2690MHz, two resonant The distance between the center frequencies of the modes is large, so that the frequency band between the two resonance modes is far away from the center frequencies of the two resonance modes, resulting in low efficiency, that is, the middle frequency band in the above frequency bands, such as the 1.9GHz ⁇ 2.1GHz frequency band ( The efficiency corresponding to the B1/N1 frequency band) is relatively weak.
  • medium and high frequency bands 1000MHz ⁇ 3000MHz
  • 1710MHz ⁇ 2690MHz B3/N3+B1/N1+B7/N
  • the offset of the resonance mode is tuned by the tuning circuit to adjust the center frequency of the resonance mode to the vicinity of the 1.9GHz-2.1GHz frequency band (corresponding to the B1/N1 frequency band), so that 1.9GHz
  • the ⁇ 2.1GHz frequency band (corresponding to the B1/N1 frequency band) has higher efficiency, but at the same time, it will cause the efficiency of other frequency bands to decrease.
  • the antenna assembly 100 provided by this application is designed by designing the structure of the first sub-radiator 11 and the second sub-radiator 12, and the position of the second grounding point D, so that the first sub-radiator 11 and the second sub-radiator
  • the resonant current density of 12 has a variety of distribution methods, thereby realizing that the antenna assembly 100 has a simple structure and a small overall size, and can also support multiple resonant modes, such as three or more resonant modes.
  • the antenna assembly 100 provided by the present application can support three or more resonance modes, so it can have higher efficiency in the frequency band from 1710MHz to 2690MHz.
  • B3/N3+B1/N1 simultaneous coverage with higher efficiency
  • B1/N1+B7/N7 simultaneous coverage with higher efficiency
  • B3/N3+B1/N1+B7 /N7 simultaneous coverage with higher efficiency
  • the antenna assembly 100 can also be made to operate at 1000MHz-2000MHz. , 3000MHz ⁇ 4000MHz, 4000MHz ⁇ 5000MHz, 5000MHz ⁇ 6000MHz or frequency bands above 6000MHz have relatively high coverage efficiency.
  • the present application does not limit the specific location of the second ground point D.
  • the excitation current provided by the signal source 20 is in the T-shaped
  • the current density distribution of the monopole characteristic and the dipole characteristic is formed on the second sub-radiator 12 , and then a variety of resonance modes are excited.
  • the second grounding point D may be located close to the geometric center of the second sub-radiator 12 .
  • the length between the second ground point D and the second free end 122 is (1/4) ⁇ (3/4) times the length of the second sub-radiator 12 .
  • the position of the second grounding point D may be within a range of (1/4) ⁇ (3/4) times from the second free end 122 on the second sub-radiator 12 .
  • the second sub-radiator 12 can form various resonances of monopole characteristics, dipole characteristics, etc. Current density distribution to support multiple resonance modes, resulting in wider bandwidth, improved throughput and data transfer rate.
  • the second grounding point D can be set in a wider range of positions, and the optional position of the ground connection part is larger. When the antenna assembly 100 is installed on the electronic device 1000, the optional position range of the ground connection part is larger.
  • the length between the second grounding point D and the second free end 122 can also be slightly shorter than the second 1/4 of the length of the sub-radiator 12 , or slightly larger than 3/4 of the length of the second sub-radiator 12 .
  • the length between the second ground point D and the second free end 122 is (3/8) ⁇ (5/8) times the length of the second sub-radiator 12 .
  • the position of the second grounding point D may be within a range of (3/8) ⁇ (5/8) times from the second free end 122 on the second sub-radiator 12 .
  • the position of the second grounding point D is closer to the middle part of the second sub-radiator 12 (not in the middle), which is more conducive to the formation of the current density distribution of the monopole mode and the dipole mode, The bandwidth and efficiency of the antenna assembly 100 are increased.
  • the present application does not specifically limit the structure of the first matching circuit M1.
  • the first matching circuit M1 may include a frequency selection filter circuit.
  • the frequency selection filter circuit selects the frequency of the radio frequency signal sent by the signal source 20 to obtain the required A radio frequency signal of a frequency band (for example, a radio frequency signal of 1 GHz-4 GHz is selected).
  • FIG. 7 to FIG. 14 are schematic diagrams of the first matching circuit M1 provided in various embodiments.
  • the present application does not limit the specific structure of the first matching circuit M1.
  • the first matching circuit M1 includes one or more of the following frequency selection filter circuits.
  • the first matching circuit M1 includes a band-pass circuit formed by an inductor L0 connected in series with a capacitor C0 .
  • the first matching circuit M1 includes a band stop circuit formed by an inductor L0 connected in parallel with a capacitor C0 .
  • the first matching circuit M1 includes a bandpass or bandstop circuit formed by an inductor L0 , a first capacitor C1 , and a second capacitor C2 .
  • the inductor L0 is connected in parallel with the first capacitor C1, and the second capacitor C2 is electrically connected to a node where the inductor L0 is electrically connected to the first capacitor C1.
  • the first matching circuit M1 includes a bandpass or bandstop circuit formed by a capacitor C0 , a first inductor L1 , and a second inductor L2 .
  • the capacitor C0 is connected in parallel with the first inductor L1, and the second inductor L2 is electrically connected to a node where the capacitor C0 is electrically connected to the first inductor L1.
  • the first matching circuit M1 includes a bandpass or bandstop circuit formed by an inductor L0 , a first capacitor C1 , and a second capacitor C2 .
  • the inductor L0 is connected in series with the first capacitor C1, and one end of the second capacitor C2 is electrically connected to the first end of the inductor L0 that is not connected to the first capacitor C1, and the other end of the second capacitor C2 is electrically connected to one end of the first capacitor C1 that is not connected to the inductor L0 .
  • the first matching circuit M1 includes a bandpass or bandstop circuit formed by a capacitor C0 , a first inductor L1 , and a second inductor L2 .
  • the capacitor C0 is connected in series with the first inductor L1, one end of the second inductor L2 is electrically connected to the end of the capacitor C0 not connected to the first inductor L1, and the other end of the second inductor L2 is electrically connected to the end of the first inductor L1 not connected to the capacitor C0.
  • the first matching circuit M1 includes a first capacitor C1 , a second capacitor C2 , a first inductor L1 , and a second inductor L2 .
  • the first capacitor C1 is connected in parallel with the first inductance L1
  • the second capacitor C2 is connected in parallel with the second inductance L2
  • one end of the whole formed by the parallel connection of the second capacitor C2 and the second inductance L2 is electrically connected to the first capacitor C1 and the first inductance L1 in parallel form one end of the whole.
  • the first matching circuit M1 includes a first capacitor C1, a second capacitor C2, a first inductor L1, and a second inductor L2, the first capacitor C1 and the first inductor L1 are connected in series to form a first unit 101, and the second The capacitor C2 is connected in series with the second inductor L2 to form the second unit 102 , and the first unit 101 and the second unit 102 are connected in parallel.
  • the first matching circuit M1 selects the radio frequency signal of the required frequency band through the above one or more frequency selection filter circuits, for example, selects the radio frequency signal of 1GHz ⁇ 3GHz or selects the radio frequency signal of 1GHz ⁇ 4GHz, and sends the selected radio frequency signal to the first sub-radiator 11 and the second sub-radiator 12, so that the first sub-radiator 11 and the second sub-radiator 12 can send and receive required electromagnetic wave signals.
  • the specific structure of the antenna assembly 100 provided in this application includes but not limited to the following implementation manners.
  • the first ground point A of the first sub-radiator 11 is located at the first free end 111 .
  • the first sub-radiator 11 and its ground path form a substantially L-shaped branch.
  • the second ground point D of the second sub-radiator 12 is located between the second coupling end 121 and the second free end 122 .
  • the second sub-radiator 12 and its ground path form a substantially T-shaped branch.
  • the resonant mode generated by the antenna assembly 100 will be specifically described below in conjunction with the return loss curve of the antenna assembly 100 provided in the first embodiment.
  • the radiator 10 can simultaneously support three resonance modes under the excitation of the signal source 20 .
  • the three resonant modes are respectively the first resonant mode a, the second resonant mode b and the third resonant mode c.
  • the center frequency of the first resonance mode a, the center frequency of the second resonance mode b, and the center frequency of the third resonance mode c are respectively the first frequency f1, the second frequency f2 and the third frequency f3.
  • the first frequency f1 , the second frequency f2 and the third frequency f3 maintain proper intervals between each pair.
  • the first frequency f1, the second frequency f2 and the third frequency f3 increase sequentially.
  • the absolute value of the return loss value greater than or equal to 5dB is taken as a reference value with high electromagnetic wave transceiving efficiency.
  • the frequency bands supported by the first resonant mode a, the second resonant mode b and the third resonant mode c are respectively the first frequency band T1, the second frequency band T2, and the third frequency band T3.
  • the first frequency band T1, the second frequency band T2, and the third frequency band T3 are two consecutive frequencies.
  • the first resonant mode a, the second resonant mode b, and the third resonant mode c support
  • the bandwidth formed by the frequency bands is the bandwidth formed by the first frequency band T1 + the second frequency band T2 + the third frequency band T3, so as to form a bandwidth greater than 1 GHz, such as 1.3 GHz.
  • this embodiment applies the antenna assembly 100 to the frequency bands of 1.6 GHz to 2.9 GHz to simultaneously support multiple different frequency bands planned by multiple operators, for example, B1, B3, B7, N1, N3, N7, etc., are conducive to meeting the frequency band division requirements of different operators.
  • the center frequency of the first resonance mode a is about 1.724 GHz, and the first frequency band T1 is about 1.62 GHz ⁇ 1.98 GHz.
  • the first resonance mode a can support B3/N3.
  • the center frequency of the second resonance mode b is about 2.264 GHz, and the second frequency band T2 is about 1.98 GHz ⁇ 2.46 GHz.
  • the second resonance mode b can support B1/N1.
  • the center frequency of the third resonance mode c is about 2.676 GHz, and the third frequency band T3 is about 2.46 GHz ⁇ 2.88 GHz.
  • the third resonance mode c can support B7/N7. It can be seen from FIG.
  • the target application frequency band can cover the frequency band of 1.6-2.9GHz, and then support the bandwidth of 1.3G. It should be noted that by adjusting the effective electrical length and feeding position of the radiator 10, the target application frequency bands can also be adjusted, including but not limited to 1.6GHz-3GHz, 2GHz-3.4GHz, 2.6GHz-4GHz, 3.6GHz-5GHz, etc. , the bandwidth of the target application frequency band includes but not limited to 1.8G, 2G, 2.5G, 3G and so on.
  • the frequency bands supported by the antenna assembly 100 for the LTE 4G frequency band include but not limited to B1, B2, B3, B4, B7, B32, B38, B39, B40, B41, B48, B66
  • the frequency bands supported by the antenna assembly 100 for the NR 5G frequency band include but are not limited to at least one of N1, N2, N3, N4, N7, N32, N38, N39, N40, N41, N48, and N66.
  • the antenna assembly 100 provided in this application can cover any combination of the above-mentioned NR 5G frequency band and LTE 4G frequency band.
  • the antenna assembly 100 can only load 4G LTE signals (B1+B3+B7), or only load 5G NR signals (N1+N3+N7), or can also load both 4G LTE signals and 5G NR signals (B1+N3+ B7), that is, to realize the dual connection between 4G wireless access network and 5G-NR (LTE NR Double Connect, EN-DC).
  • the antenna assembly 100 is separately loaded with 4G LTE signals or 5G NR signals
  • the frequency band transmitted and received by the antenna assembly 100 includes multiple carriers (carriers are radio waves of specific frequencies) aggregated, that is, carrier aggregation (Carrier Agregation, CA), To increase transmission bandwidth, increase throughput, and increase signal transmission rate.
  • the frequency bands listed above may be medium and high frequency bands that multiple operators will apply to.
  • the antenna assembly 100 provided by this application can simultaneously support any one or a combination of multiple frequency bands above, so that the antenna assembly 100 provided by this application can support multiple
  • the electronic device 1000 models corresponding to different operators do not need to use different antenna structures for different operators, so as to further improve the application range and compatibility of the antenna assembly 100 .
  • the antenna assembly 100 can also be applied to a frequency band of 5.925GHz ⁇ 7.125GHz to support the WiFi-6E frequency band and so on.
  • one of the first frequency band T1, the second frequency band T2, and the third frequency band T3 may be discontinuous with the other two or neither of them is continuous, for example, in the coverage (B3/N3+ In B1/N1+B7/N7), since the frequency band of B3/N3 is [1.71 ⁇ 1.785GHz], the frequency band of B1/N1 is [1.92 ⁇ 1.98GHz], and the frequency band of B7/N7 is [2.5 ⁇ 2.57GHz]. Therefore, there is no need for relatively high efficiency within [2.0-2.5GHz), which can make the second frequency band T2 and the third frequency band T3 discontinuous in the [2.0-2.5GHz) frequency band.
  • the first frequency band T1 and the second frequency band T2 and the third frequency band T3 are both continuous solutions, which can cover the third resonant mode c at a higher frequency; in addition, because there is no need for relatively high efficiency in [1.8 ⁇ 1.9GHz], the first frequency band T1 can be tuned , the second frequency band T2, and the third frequency band T3 cover [1.71 ⁇ 1.785GHz], [1.92 ⁇ 1.98GHz] and [2.5 ⁇ 2.57GHz] respectively, so that the first frequency band T1 and the second frequency band T2 are in [1.8 ⁇ 1.9GHz] ] may be discontinuous, and the second frequency band T2 and the third frequency band T3 may be discontinuous in [2.0-2.5GHz).
  • the first frequency band T1 and the second frequency band T2 can also be tuned to support medium and high frequency bands such as B3/N3+B1/N1, while the third frequency band T3 supports ultra-high frequency bands, such as N78 (3.3-3.8GHz), etc. .
  • medium and high frequency bands such as B3/N3+B1/N1
  • the third frequency band T3 supports ultra-high frequency bands, such as N78 (3.3-3.8GHz), etc.
  • a specific implementation manner of tuning the positions of the first frequency band T1, the second frequency band T2, and the third frequency band T3 will be described later.
  • the first resonant mode a to the third resonant mode c are analyzed below from the perspective of current density distribution.
  • the current density of the first resonance current R1 in the first resonance mode a is mainly distributed between the first ground point A and the first coupling end 112 and between the second coupling end 121 and the second ground point D, wherein, the flow direction of the first resonance current R1 between the first ground point A and the first coupled end 112 is the same as the flow direction between the second coupled end 121 and the second ground point D.
  • FIG. 15 please refer to FIG.
  • the first resonant current R1 flows from the first reference ground GND1 to the first ground point A, and then flows from the first ground point A along the first sub-radiator 11 to the first coupling end 112, the first resonance The current R1 flows to the second coupling end 121 through the coupling slot 13 , then flows from the second coupling end 121 to the second ground point D, and flows through the second ground point D to the second reference ground GND2 .
  • the first resonant current R1 flows from the second reference ground GND2 to the second ground point D, then flows from the second ground point D to the second coupling end 121, flows through the coupling gap 13 to the first coupling end 112, and then flows from the first coupling end
  • the terminal 112 flows to the first ground point A, and flows through the first ground point A to the first reference ground GND1.
  • the first resonant current R1 is mainly distributed on the first sub-radiator 11 and the section of the second ground point D on the second sub-radiator 12 close to the first sub-radiator 11, and the second sub-radiator 12 on the second sub-radiator 12.
  • a section of the second ground point D away from the first sub-radiator 11 also has the first resonant current R1 but the current density is relatively weak.
  • the above distribution of the first resonance current R1 forms the first resonance mode.
  • the current density of the second resonance current R2 in the second resonance mode b is distributed between the first ground point A and the first coupling end 112 , and between the second coupling end 121 and the second free end 122 .
  • the flow direction of the second resonance current R2 between the first ground point A and the first coupled end 112 is opposite to the flow direction between the second coupled end 121 and the second ground point D.
  • the flow direction of the second resonance current R2 between the second ground point D and the second free end 122 is opposite to the flow direction between the second coupled end 121 and the second ground point D.
  • the first part of the second resonant current R2 flows from the first coupled end 112 to the first ground point A and returns to the ground through the first ground point A; the second part of the second resonant current R2 flows from the second coupled end 121 to the first ground point A.
  • the first part of the second resonant current R2 flows from the first reference ground GND1 to the first ground point A, and flows to the first coupling terminal 112 through the first ground point A; the second part of the second resonant current R2 flows from the second reference The ground GND2 flows to the second ground point D, and flows to the second coupling end 121 through the second ground point D, and the third part of the second resonance current R2 flows from the second ground point D to the second free end 122 .
  • the above distribution of the second resonance current R2 forms the second resonance mode b.
  • the second sub-radiator 12 is a T-shaped antenna, and the currents on both sides of the second ground point D of the second sub-radiator 12 flow in the opposite direction, and the T-shaped antenna exhibits a monopole characteristic, and the monopole characteristic makes the second sub-radiator 12
  • the two sub-radiators 12 can excite more ground (ie reference ground) current, thereby improving radiation efficiency, so as to generate the second resonance mode b at the second frequency f2.
  • the current density of the third resonance current R3 in the third resonance mode c is distributed between the first ground point A and the first coupling end 112 , and between the second coupling end 121 and the second free end 122 .
  • the flow direction of the third resonant current R3 between the first ground point A and the first coupled end 112 is opposite to the flow direction between the second coupled end 121 and the second ground point D, and the third resonant current R3 is at the second
  • the flow direction between the ground point D and the second free end 122 is the same as the flow direction between the second coupled end 121 and the second ground point D.
  • the first part of the third resonant current R3 flows from the first coupled end 112 to the first ground point A and returns to the ground through the first ground point A; the second part of the third resonant current R3 flows from the second coupled end 121 to the first ground point A. Two ground points D, and return to ground through the second ground point D; the third part of the third resonant current R3 flows from the second ground point D to the second free end 122 .
  • the first part of the third resonant current R3 flows from the first reference ground GND1 to the first ground point A, and flows to the first coupling terminal 112 through the first ground point A; the second part of the third resonant current R3 flows from the second reference The ground GND2 flows to the second ground point D, and flows to the second coupling end 121 through the second ground point D, and the third part of the third resonant current R3 flows from the second free end 122 to the second coupling end 121 .
  • the above third resonant current R3 distribution forms the third resonant mode c.
  • the second sub-radiator 12 is a T-shaped antenna, and the currents on both sides of the second grounding point D of the second sub-radiator 12 flow in the same direction, showing dipole characteristics on the T-shaped antenna, and the dipole characteristics can form
  • the higher radiation efficiency further generates the third resonant mode c at the third frequency f3.
  • the resonance corresponding to the first resonant mode a, the second resonant mode b and the third resonant mode c The current has a part of the same flow direction, for example, the flow direction from the second coupled end 121 to the second ground point D. In this way, the three resonance modes can reinforce each other to increase the frequency band width supported by the antenna assembly 100 .
  • the first resonant mode a, the second resonant mode b and the third resonant mode c are generated from the analysis of the wavelength modes corresponding to the first resonant frequency f1, the second resonant frequency f2 and the third resonant frequency f3.
  • the wavelength corresponding to the center frequency of the first resonance mode a is the first wavelength.
  • the first resonance mode a supports the first sub-radiator 11 to work in a (1/8 ⁇ 1/4) wavelength mode.
  • the length of the first sub-radiator 11 is about (1/8 ⁇ 1/4) times the second wavelength.
  • the length of the first sub-radiator 11 is about (1/8 ⁇ 1/4) times the wavelength corresponding to the first frequency f1.
  • the length of the first sub-radiator 11 is about (1/4) times the wavelength corresponding to the first frequency f1, so that the first The sub-radiator 11 generates higher transceiving efficiency at the first frequency f1, and then generates resonance at the first frequency f1 to form a first resonance mode a.
  • a ground matching circuit that is capacitive to the first frequency band T1 is provided on the flow path of the first resonant current R1, the capacitive loading can make the resonant frequency shift toward the low frequency, so the resonance corresponding to the first frequency f1 is formed.
  • the length of the first sub-radiator 11 can be shortened, for example, to 1/8 of the wavelength corresponding to the first frequency f1 , etc., to further reduce the size of the first sub-radiator 11 .
  • a grounded capacitive circuit may also be provided in the first matching circuit M1, and capacitive loading is performed in the area where the first resonant current R1 flows, so that the resonant frequency shifts toward a low frequency, so a
  • the length of the first sub-radiator 11 corresponding to the resonance is shortened, for example, to 1/8 of the wavelength corresponding to the first frequency f1 .
  • the wavelength corresponding to the center frequency of the second resonance mode b is the second wavelength.
  • the second resonance mode b supports the second sub-radiator 12 between the second coupling end 121 and the second ground point D to work in the (1/8 ⁇ 1/4) wavelength mode.
  • the length between the second coupled end 121 and the second ground point D is about (1/8 ⁇ 1/4) times the second wavelength.
  • the length between the second coupling end 121 and the second ground point D is about (1/8 ⁇ 1/4) times the wavelength corresponding to the second frequency f2.
  • the length between the second coupling end 121 and the second ground point D is about (1/4) of the wavelength corresponding to the second frequency f2 ) times, so that the second sub-radiator 12 between the second coupling end 121 and the second grounding point D generates higher transceiving efficiency at the second frequency f2, and then generates resonance at the second frequency f2 to form Second resonance mode b.
  • a ground matching circuit that is capacitive to the second frequency band T2 is provided on the flow path of the second resonance current R2, the capacitive loading can make the resonance frequency shift toward the low frequency, so the resonance corresponding to the second frequency f2 is formed.
  • the length between the second coupling end 121 and the second ground point D is shortened, for example, to 1/8 times the wavelength corresponding to the second frequency f2, etc., to further reduce the size of the second sub-radiator 12 .
  • a grounded capacitive circuit may also be provided in the first matching circuit M1, and capacitive loading is performed in the area where the second resonant current R2 flows, so that the resonant frequency shifts toward the low frequency, so a
  • the length between the second coupled end 121 corresponding to the resonance and the second ground point D is shortened to less than 1/8 of the wavelength corresponding to the second frequency f2.
  • the wavelength corresponding to the center frequency of the third resonance mode c is the third wavelength.
  • the third resonance mode c supports the second sub-radiator 12 to work in the (1/2) wavelength mode.
  • the length of the second sub-radiator 12 is about (1/2) times the third wavelength.
  • the length of the second sub-radiator 12 is about 1/2 times the third wavelength, so that the subsequent antenna assembly 100 can operate at the second frequency f2 and the third frequency f3. Create conditions for generating higher signal transceiver efficiency.
  • the length of the second sub-radiator 12 can be further shortened.
  • the first frequency f1, the second frequency f2, The position of the third frequency f3, so that the first frequency f1, the second frequency f2, and the third frequency f3 are close to each other, so that the first frequency band T1, the second frequency band T2 and the third frequency band T3 are continuous, and a wider bandwidth can be supported , covering the required frequency band, thereby increasing the throughput of the antenna assembly 100 and increasing the Internet access rate of the electronic device 1000 .
  • the first ground point A of the first sub-radiator 11 is located between the first free end 111 and the first coupling end 112 .
  • the first sub-radiator 11 and its ground path form a substantially T-shaped branch.
  • This application does not limit the specific position of the first ground point A between the first free end 111 and the first coupling end 112.
  • the length between the first ground point A and the first free end 111 is the second (1/4) ⁇ (3/4) times the length of a sub-radiator 11.
  • the length between the first ground point A and the first free end 111 is (3/8) ⁇ (5/8) times the length of the first sub-radiator 11 .
  • the first grounding point A can be located close to the geometric center of the first sub-radiator 11 , which is beneficial to form the resonant current density distribution of the monopole mode and the dipole mode, and increase the bandwidth and efficiency of the antenna assembly 100 .
  • the second ground point D of the second sub-radiator 12 is located between the second coupling end 121 and the second free end 122 .
  • the second sub-radiator 12 and its ground path form a substantially T-shaped branch.
  • the resonant mode generated by the antenna assembly 100 will be specifically described below in conjunction with the return loss curve of the antenna assembly 100 provided in the second embodiment.
  • the radiator 10 can simultaneously support four resonance modes under the excitation of the signal source 20 .
  • the four resonant modes are respectively the fourth resonant mode d, the fifth resonant mode e, the sixth resonant mode f and the seventh resonant mode g.
  • the center frequency of the fourth resonance mode d, the center frequency of the fifth resonance mode e, the center frequency of the sixth resonance mode f and the seventh resonance mode g are respectively the fourth frequency f4, the fifth frequency f5, and the sixth frequency f6 and the seventh frequency f7.
  • the fourth frequency f4 , the fifth frequency f5 , the sixth frequency f6 and the seventh frequency f7 maintain appropriate intervals among them in sequence.
  • the fourth frequency f4, the fifth frequency f5, the sixth frequency f6 and the seventh frequency f7 increase sequentially.
  • the absolute value of the return loss value greater than or equal to 5dB is taken as a reference value with high electromagnetic wave transceiving efficiency.
  • the frequency bands supported by the fourth resonant mode d, the fifth resonant mode e, the sixth resonant mode f and the seventh resonant mode g are respectively the fourth frequency band T4, the fifth frequency band T5, the sixth frequency band T6 and the seventh frequency band T7.
  • this embodiment improves the position of the first ground point A so that more Multiple resonant current density distribution modes support four resonant modes, and the increase in the number of resonant modes can further increase the bandwidth and the efficiency of the antenna assembly 100 within the bandwidth.
  • the center frequency of the fourth resonance mode d is about 1.449 GHz, and the fourth frequency band T4 is about (1.41 ⁇ 1.56 GHz).
  • the fourth resonance mode d can support frequency bands such as B32 (1.452-1.496 GHz), B21 (1.447-1.51 GHz), and N75 (1.43-1.517 GHz).
  • the center frequency of the fifth resonance mode e is about 1.764 GHz, and the fifth frequency band T5 is about (1.56-1.98 GHz).
  • the fifth resonance mode e can support frequency bands such as B3/N3.
  • the center frequency of the sixth resonance mode f is about 2.191 GHz, and the sixth frequency band T6 is about (1.98-2.36 GHz).
  • the sixth resonant mode f can support frequency bands such as B1/N1; the center frequency of the seventh resonant mode g is about 2.572 GHz, and the seventh frequency band T7 is about (2.36-2.74 GHz).
  • the seventh resonance mode g can support frequency bands such as B7/N7 and N41. It should be noted that the center frequencies of the above resonant modes and the frequency bands supported by the resonant modes are obtained according to the curves in FIG. 6 , and the data in the above curves are just an example.
  • the length of the second sub-radiator 12 can adjust the center frequency of the above resonance mode, Frequency bands supported by resonance mode.
  • the fourth frequency band T4, the fifth frequency band T5, the sixth frequency band T6, and the seventh frequency band T7 are sequentially consecutive to form a target application frequency band with a wider bandwidth, for example, the bandwidth is 1.3G , the target application frequency band covered is 1.42GHz ⁇ 2.76GHz.
  • the target application frequency band can also be adjusted to include But not limited to 1.6GHz-3GHz, 2GHz-3.4GHz, 2.6GHz-4GHz, 3.6GHz-5GHz, etc., the bandwidth of the target application frequency band includes but not limited to 1.8G, 2G, 2.5G, 3G and so on.
  • this embodiment applies the antenna assembly 100 to the frequency band of 1.42-2.76 GHz to simultaneously support the NR 5G frequency band and LTE 4G that fall into the frequency band of 1.42-2.76 GHz planned by multiple operators.
  • Frequency bands for example, B32(1.452 ⁇ 1.496GHz), B21(1.447 ⁇ 1.51GHz), B1, B3, B7, N1, N3, N7, N41(2.496 ⁇ 2.69GHz), N75(1.43 ⁇ 1.517GHz), etc. It is beneficial to meet the frequency band division requirements of different operators.
  • this embodiment increases the coverage of 1.4GHz to 1.5GHz with higher efficiency, and can realize the (B32+B3+B1+B7), (B75+B3+B1+B7 ), (B21+B3+B1+B7), (B3+N41), (B3+B1+N7), (B3+N1) and other frequency band coverage, so as to achieve good ENDC/CA performance.
  • the antenna assembly 100 can also be applied to a frequency band of 5.925GHz ⁇ 7.125GHz to support the WiFi-6E frequency band and so on.
  • three of the fourth frequency band T4, the fifth frequency band T5, the sixth frequency band T6, and the seventh frequency band T7 are continuous, and the other is spaced from the consecutive three.
  • the continuous frequency band can satisfy a certain bandwidth, and the other discontinuous one can satisfy the coverage of a frequency band with a certain frequency span supported by one antenna component 100.
  • one antenna component 100 supports medium and high frequencies and ultra high frequencies at the same time; or, the fourth frequency band T4, Two of the fifth frequency band T5, the sixth frequency band T6 and the seventh frequency band T7 are continuous, and the other two are continuous or discontinuous; or, the fourth frequency band T4, the fifth frequency band T5, the sixth frequency band T6 and the seventh frequency band All four of T7 are discontinuous, so that the frequency band supported by the antenna assembly 100 can have a certain frequency span.
  • the frequency band of B32 is (1.452 ⁇ 1.496GHz)
  • the frequency band of B3/N3 is [1.71 ⁇ 1.785]GHz
  • the frequency band of B1/N1 It is [1.92 ⁇ 1.98] GHz
  • the frequency band of B7/N7 is [2.5 ⁇ 2.57] GHz, so there is no need for relatively high efficiency in [1.5 ⁇ 1.7) GHz, which can make the fourth frequency band T4 and the fifth frequency band T5 in [1.5 ⁇ 1.7)GHz frequency band is discontinuous.
  • the fourth frequency band T4 and the fifth frequency band T5 can also be tuned to support medium and high frequency bands such as B3/N3+B1/N1, while the sixth frequency band T6 and the seventh frequency band T7 support ultra-high frequency bands, such as N78 (3.3 ⁇ 3.8GHz), etc.
  • FIG. 18 shows the efficiency of the antenna assembly 100 provided by the present application in an extreme full-screen environment.
  • the dotted line in FIG. 18 is the system radiation efficiency curve of the antenna assembly 100 provided in FIG. 4 .
  • the solid line in FIG. 18 is the total system efficiency curve of the antenna assembly 100 provided in FIG. 4 .
  • the display screen 200 and the metal alloy in the middle frame 420 are used as the reference ground GND, and the distance between the radiator 10 of the antenna assembly 100 and the reference ground GND is less than or equal to 0.5 mm.
  • the clearance area of the antenna assembly 100 is 0.5 mm, which fully meets the environmental requirements of electronic devices 1000 such as mobile phones. It can be seen from FIG.
  • the antenna assembly 100 maintains high efficiency between 1.43-2.69 GHz even in a very small clearance area.
  • the efficiency of the antenna assembly 100 between 1.43-2.69 GHz is greater than or equal to -5 dB. -5dB efficiency relative to the bandwidth of more than 60%, to achieve ultra-wideband coverage. Since the fourth resonant mode d to the seventh resonant mode g reinforce each other, the same efficiency can be achieved, and the headroom can be made smaller, thus, the miniaturization of the electronic device 1000 can be promoted.
  • the antenna assembly 100 provided by the present application still has high radiation efficiency in a very small headroom area, and the antenna assembly 100 has a small headroom area when applied to the electronic device 1000, which requires a larger An antenna with high efficiency can be provided only if the clearance area is large, and the overall volume of the electronic device 1000 can be reduced.
  • the fourth to seventh resonant modes d to f are analyzed from the perspective of current density distribution below.
  • the current density of the fourth resonant current R4 in the fourth resonant mode d is at least or mainly distributed between the first free end 111 and the first coupled end 112 .
  • the flow direction of the fourth resonant current R4 between the first free end 111 and the first ground point A is opposite to the flow direction between the first ground point A and the first coupled end 112 .
  • part of the fourth resonant current R4 flows from the first free end 111 to the first ground point A, and goes to the ground through the first ground point A; the other part of the fourth resonant current R4 flows from the first coupled end 112 to the first ground point A. Point A, and get off the ground through the first touchdown point A.
  • a part of the fourth resonant current R4 flows from the first ground point A to the first coupling end 112 , and another part of the fourth resonant current R4 flows from the first ground point A to the first free end 111 . It should be noted that there is also a small amount of fourth resonant current R4 on the second sub-radiator 12 but the current density is relatively weak.
  • the first sub-radiator 11 is a T-shaped antenna, and the currents on both sides of the first ground point A of the first sub-radiator 11 flow in opposite directions, and the T-shaped antenna exhibits a monopole characteristic, and the monopole characteristic makes the first sub-radiator 11 A sub-radiator 11 can excite more ground (ie reference ground) current, thereby improving the radiation efficiency, so as to generate the fourth resonance mode d at the fourth frequency f4.
  • the current density of the fifth resonance current R5 in the fifth resonance mode e is at least distributed or mainly distributed between the first free end 111 and the first coupling end 112 and between the second coupling end 121 and the second Between the ground point D, wherein, the fifth resonant current R5 flows between the first free end 111 and the first ground point A, flows between the first ground point A and the first coupled end 112, and flows between the second The flow directions between the coupling end 121 and the second ground point D are the same.
  • the first part of the fifth resonance current R5 flows from the second reference ground GND2 to the second ground point D, then flows from the second ground point D to the second coupling end 121, flows through the coupling slot 13 to the first coupling end 112, and then Flows from the first coupling end 112 to the first ground point A, flows through the first ground point A to the first reference ground GND1, and the fifth resonant current R5 flows from the first ground point A to the first free end 111.
  • the first part of the fifth resonance current R5 flows from the first reference ground GND1 to the first ground point A, then flows from the first ground point A along the first sub-radiator 11 to the first coupling end 112, and then flows to the first coupling end 112 through the coupling slot 13.
  • the second coupling end 121 flows from the second coupling end 121 to the second ground point D, and flows to the second reference ground GND2 through the second ground point D, and another part of the fifth resonance current R5 flows from the first ground point A to the first free End 111.
  • the fifth resonant current R5 is mainly distributed on the first sub-radiator 11 and the section of the second ground point D on the second sub-radiator 12 close to the first sub-radiator 11, and the second sub-radiator 12 on the second sub-radiator 12.
  • a section of the second ground point D away from the first sub-radiator 11 also has a fifth resonant current R5 but the current density is relatively weak.
  • the first sub-radiator 11 is a T-shaped antenna, the currents on both sides of the first ground point A of the first sub-radiator 11 flow in the same direction, and the T-shaped antenna exhibits a dipole characteristic, and the dipole characteristic makes the second A sub-radiator 11 can excite higher radiation efficiency to generate a fifth resonance mode e at a fifth frequency f5.
  • the current density of the sixth resonance current R6 in the sixth resonance mode f is mainly distributed between the first ground point A and the first coupling end 112 , and between the second coupling end 121 and the second free end 122 between.
  • the flow direction of the sixth resonant current R6 between the first ground point A and the first coupled end 112 is opposite to the flow direction between the second coupled end 121 and the second ground point D.
  • the flow direction of the sixth resonance current R6 between the second ground point D and the second free end 122 is opposite to the flow direction between the second coupling end 121 and the second ground point D.
  • the first part of the sixth resonant current R6 flows from the first coupled end 112 to the first ground point A and returns to the ground through the first ground point A; the second part of the sixth resonant current R6 flows from the second coupled end 121 to the first ground point A.
  • the third part of the sixth resonant current R6 flows from the second free end 122 to the second ground point D, and returns to the ground through the second ground point D.
  • the first part of the sixth resonant current R6 flows from the first reference ground GND1 to the first ground point A, and flows to the first coupling terminal 112 through the first ground point A; the second part of the sixth resonant current R6 flows from the second reference The ground GND2 flows to the second ground point D, and flows to the second coupling end 121 through the second ground point D, and the third part of the sixth resonant current R6 flows from the second ground point D to the second free end 122 .
  • the second sub-radiator 12 is a T-shaped antenna, and the currents on both sides of the second ground point D of the second sub-radiator 12 flow in the opposite direction, and the T-shaped antenna exhibits a monopole characteristic, and the monopole characteristic makes the second sub-radiator 12
  • the second sub-radiator 12 can excite more ground (ie reference ground) current, thereby improving radiation efficiency, so as to generate a sixth resonant mode f at the sixth frequency f6.
  • the current density of the seventh resonant current R7 in the seventh resonant mode g is mainly distributed between the first ground point A and the first coupling end 112 , and between the second coupling end 121 and the second free end 122 between.
  • the flow direction of the seventh resonant current R7 between the first ground point A and the first coupled end 112 is opposite to the flow direction between the second coupled end 121 and the second ground point D, and the seventh resonant current R7 is in the second
  • the flow direction between the ground point D and the second free end 122 is the same as the flow direction between the second coupled end 121 and the second ground point D.
  • the first part of the seventh resonant current R7 flows from the first coupled end 112 to the first ground point A and returns to the ground through the first ground point A; the second part of the seventh resonant current R7 flows from the second coupled end 121 to the first ground point A. Two ground points D, and return to ground through the second ground point D; the third part of the seventh resonant current R7 flows from the second ground point D to the second free end 122 .
  • the first part of the seventh resonant current R7 flows from the first reference ground GND1 to the first ground point A, and flows to the first coupling terminal 112 through the first ground point A; the second part of the seventh resonant current R7 flows from the second reference The ground GND2 flows to the second ground point D, and flows to the second coupling end 121 through the second ground point D, and the third part of the seventh resonant current R7 flows from the second free end 122 to the second ground point D.
  • the second sub-radiator 12 is a T-shaped antenna, and the currents on both sides of the second grounding point D of the second sub-radiator 12 flow in the same direction, showing dipole characteristics on the T-shaped antenna, and the dipole characteristics can form Higher radiation efficiency, thereby generating the seventh resonant mode g at the seventh frequency f7.
  • the fourth resonant mode d, the fifth resonant mode e, the sixth resonant mode f and the seventh resonant mode g the fourth resonant mode d, the fifth resonant mode e, the sixth resonant mode
  • the resonant currents corresponding to the resonant mode f and the seventh resonant mode g have part of the same flow direction, for example, the flow direction from the first coupled end 112 to the first ground point A, so that the four resonant modes can reinforce each other to improve the antenna assembly 100
  • the supported frequency band width The supported frequency band width.
  • the lengths of the first sub-radiator 11 and the second sub-radiator 12 under each resonant current density distribution can have the following embodiments, so that each resonant current excites a resonant mode.
  • the fourth resonant mode d to the seventh resonant mode f are generated from the perspective analysis of the fourth resonant frequency f4, fifth resonant frequency f5, sixth resonant frequency f6, seventh resonant frequency f7, and corresponding wavelength modes.
  • the wavelength corresponding to the central frequency of the fourth resonance mode d is the fourth wavelength.
  • the fourth resonance mode d supports the first sub-radiator 11 between the first ground point A and the first coupled end 112 to work in a (1/8 ⁇ 1/4) wavelength mode.
  • the length from the first ground point A to the first coupled end 112 is about (1/8 ⁇ 1/4) times the fourth wavelength.
  • the length from the first ground point A to the first coupled end 112 is about (1/8 ⁇ 1/4) times the wavelength corresponding to the fourth frequency f4.
  • the length from the first ground point A to the first coupling end 112 is about (1/4) times the wavelength corresponding to the fourth frequency f4 , so that the first sub-radiator 11 from the first ground point A to the first coupling end 112 generates higher transceiving efficiency at the fourth frequency f4, and then generates resonance at the fourth frequency f4 to form a fourth resonance mode d.
  • a ground matching circuit that is capacitive to the fourth frequency band T4 is provided on the flow path of the fourth resonant current R4, the capacitive loading can cause the resonant frequency to shift toward the low frequency, so the resonance corresponding to the fourth frequency f4 is formed.
  • the length between the first ground point A and the first coupling end 112 can be shortened, for example, to 1/8 times the wavelength corresponding to the fourth frequency f4, etc., to further reduce the size of the first sub-radiator 11 .
  • a grounded capacitive circuit may also be provided in the first matching circuit M1, and capacitive loading is performed in the area where the fourth resonant current R4 flows, so that the resonant frequency shifts toward the low frequency, so a
  • the length of the first sub-radiator 11 corresponding to the resonance is shortened, for example, reduced to 1/8 of the wavelength corresponding to the fourth frequency f4.
  • the wavelength corresponding to the central frequency of the fifth resonance mode f is the fifth wavelength.
  • the fifth resonance mode e supports the first sub-radiator 11 to work in a (1/2) wavelength mode.
  • the length of the first sub-radiator 11 is about (1/2) times the fifth wavelength.
  • the length of the first sub-radiator 11 is about (1/2) times the wavelength corresponding to the fifth frequency f5.
  • the length of the first sub-radiator 11 is about (1/2) times that of the wavelength corresponding to the fifth frequency f5, so that the first sub-radiator 11 produces higher transceiving efficiency at the fifth frequency f5, and then at the fifth frequency f5 Resonance occurs at frequency f5 to form a fifth resonance mode e. Further, by setting a grounded capacitive matching circuit on the fifth resonant current R5 density distribution path, the length of the first sub-radiator 11 can be further shortened.
  • the wavelength corresponding to the center frequency of the sixth resonance mode f is the sixth wavelength.
  • the sixth resonance mode f supports the second sub-radiator 12 between the second coupled end 121 and the second ground point D to work in the (1/8 ⁇ 1/4) wavelength mode.
  • the length between the second coupled end 121 and the second ground point D is about (1/8 ⁇ 1/4) times the sixth wavelength.
  • the length between the second coupling end 121 and the second ground point D is about (1/8 ⁇ 1/4) times the wavelength corresponding to the sixth frequency f6.
  • the length between the second coupling end 121 and the second ground point D is about (1/4) of the wavelength corresponding to the sixth frequency f6 ) times, so that the second sub-radiator 12 between the second coupling end 121 and the second ground point D generates a higher transceiving efficiency at the sixth frequency f6, and then generates resonance at the sixth frequency f6 to form The sixth resonance mode f.
  • the capacitive loading can make the resonant frequency shift toward the low frequency, so the resonance is formed at the sixth frequency f6
  • the length between the corresponding second coupled end 121 and the second ground point D is shortened, for example, reduced to 1/8 times the wavelength corresponding to the sixth frequency f6, etc., further reducing the size of the second sub-radiator 12 .
  • a grounded capacitive circuit may also be provided in the first matching circuit M1, and capacitive loading is carried out in the region where the sixth resonant current R6 flows, so that the resonant frequency shifts toward the low frequency, so a
  • the length between the second coupled end 121 corresponding to the resonance and the second ground point D is shortened to less than 1/8 of the wavelength corresponding to the sixth frequency f6.
  • the wavelength corresponding to the central frequency of the seventh resonant mode g is the seventh wavelength.
  • the seventh resonance mode g supports the second sub-radiator 12 to work in the (1/2) wavelength mode.
  • the length of the second sub-radiator 12 is about (1/2) times the seventh wavelength.
  • the length of the second sub-radiator 12 is about 1/2 times of the seventh wavelength, so as to create conditions for the subsequent antenna assembly 100 to generate higher signal transceiving efficiency at the seventh frequency f7.
  • the length of the second sub-radiator 12 can be further shortened.
  • the density distribution of the first resonant current R1 is partly the same as the density distribution of the fifth resonant current R5, and the second resonant current
  • the density distribution of R2 is the same as that of the sixth resonance current R6, and the density distribution of the third resonance current R3 is the same as that of the seventh resonance current R7.
  • the first embodiment and the second embodiment have the following current density distribution
  • the first current density is distributed from the first ground point A to the second ground point D
  • the first reference ground GND1 flows to the first ground point Point A
  • the first ground point A flows to the first coupling end 112
  • the second coupling end 121 flows to the second ground point D, and flows to the second reference ground GND2
  • the second reference ground GND2 flows to the second ground point D
  • the second ground point D flows to the second coupling end 121, passes through the coupling slot 13, and then flows to the first coupling end 112, and the first coupling end 112 flows to the first ground point A, and then flows to the second ground point A.
  • the second current density is distributed between the first ground point A and the first coupling end 112 , and between the second coupling end 121 and the second free end 122 .
  • the flow direction of the sixth resonant current R6 between the first ground point A and the first coupled end 112 is opposite to the flow direction between the second coupled end 121 and the second ground point D.
  • the second current sealing distribution supports both the antenna assembly 100 provided in the first embodiment and the antenna assembly 100 provided in the second embodiment to generate the first sub-resonant mode, wherein the connection between the second coupling end 121 and the second ground point D
  • the length between them corresponds to the 1/4 wavelength of the center frequency of the first sub-resonance mode.
  • the second coupling end 121 and the second connection end The length between sites D is shortened to correspond to 1/8 wavelength of the center frequency of the first sub-resonant mode.
  • the third current density is distributed between the first ground point A and the first coupling end 112 , and between the second coupling end 121 and the second free end 122 .
  • the flow direction of the seventh resonant current R7 between the first ground point A and the first coupled end 112 is opposite to the flow direction between the second coupled end 121 and the second ground point D, and the seventh resonant current R7 is in the second
  • the flow direction between the ground point D and the second free end 122 is the same as the flow direction between the second coupled end 121 and the second ground point D.
  • the third current sealing distribution supports both the antenna assembly 100 provided in the first embodiment and the antenna assembly 100 provided in the second embodiment to generate the second sub-resonance mode, wherein the length of the second sub-radiator 12 is the same as the length of the second sub-radiator 12
  • the center frequency of the resonant mode corresponds to 1/2 wavelength. Further, by setting a grounded capacitive matching circuit on the third current density distribution path, the length of the second sub-radiator 12 can be further shortened.
  • the fifth frequency band T5 , the sixth frequency band T6 and the seventh frequency band T7 are consecutive and can support a wider bandwidth and cover the required frequency bands, thereby improving the throughput of the antenna assembly 100 and increasing the Internet access rate of the electronic device 1000 .
  • the first matching circuit M1 includes a first sub-circuit M11.
  • the first sub-circuit M11 is electrically connected to the feeding point B, and the other end of the first sub-circuit M11 is electrically connected to the third reference ground GND3.
  • the first sub-circuit M11 can adjust the frequency deviation of the resonant mode in which the resonant current passes through the first sub-circuit M11.
  • the first sub-circuit M11 works in the frequency band supported by the fourth resonance mode d (the fourth frequency band T4), the frequency band supported by the fifth resonance mode e (the fifth frequency band T5), and the frequency band supported by the sixth resonance mode f (the fourth frequency band)
  • the sixth frequency band T6) and the frequency band supported by the seventh resonance mode g (the seventh frequency band T7) are capacitive.
  • the first sub-circuit M11 can move the center frequencies of the fourth resonant mode d, the fifth resonant mode e, the sixth resonant mode f, and the seventh resonant mode g toward the low frequency direction, and the first sub-circuit M11 is similar to that in the first radiator
  • the connection between the first ground point A of 11 and the first coupling end 112 is "connected to an effective electrical length". Therefore, in the case that the center frequency position of resonance needs to remain unchanged, the first connection can be shortened by setting the first sub-circuit M11.
  • the actual length of the first sub-radiator 11 between the point A and the first coupling end 112 In this way, the miniaturization of the first sub-radiator 11 can be achieved, and the length between the first ground point A and the first coupling end 112 can be shortened to 1/8 wavelength corresponding to the fourth frequency f4.
  • the first sub-circuit M11 includes but is not limited to a capacitor, a series or parallel circuit including a capacitor, an inductor, and a resistor, and the like.
  • the first sub-radiator 11 also has a first frequency modulation point P1 located between the first free end 111 and the first ground point A.
  • the antenna assembly 100 also includes a second matching circuit M2. One end of the second matching circuit M2 is electrically connected to the first frequency modulation point P1. The other end of the second matching circuit M2 is electrically connected to the fourth reference ground GND4.
  • the second matching circuit M2 is capacitive when working in the frequency band supported by the fourth resonant mode d (the fourth frequency band T4) and the frequency band supported by the fifth resonant mode e (the fifth frequency band T5), which can make the fourth resonant mode d .
  • the center frequency of the fifth resonant mode e moves toward the low frequency side, so the first free end 111 of the first sub-radiator 11 and the first grounding point A can be relatively reduced under the condition that the position of the center frequency of resonance needs to remain unchanged.
  • the actual length between the first ground point A of the first sub-radiator 11 and the first coupling end 112 can be shortened by setting the second matching circuit M2. In this way, the miniaturization of the first sub-radiator 11 can be realized, and the length between the first ground point A and the first coupling end 112 can be shortened to 1/8 wavelength corresponding to the fourth frequency f4.
  • the second matching circuit M2 includes a plurality of selection branches formed by switches-capacitors-inductors-resistors and other adjustable devices such as variable capacitors. These adjustable devices are used to adjust the position of the fourth resonant mode d and the fifth resonant mode e.
  • the change of the mode position can also improve the single-band performance, and can better meet the ENDC/CA combination of different frequency bands.
  • the second sub-radiator 12 also has a second matching point P2 located between the second coupling end 121 and the second ground point D.
  • the antenna assembly 100 also includes a third matching circuit M3. One end of the third matching circuit M3 is electrically connected to the second matching point P2. The other end of the third matching circuit M3 is electrically connected to the fifth reference ground GND5.
  • the third matching circuit M3 is capacitive when working in the frequency band supported by the fifth resonance mode e, the frequency band supported by the sixth resonance mode f, and the frequency band supported by the seventh resonance mode g, so that the fifth resonance mode e, the sixth resonance mode
  • the center frequencies of the sixth resonant mode f and the seventh resonant mode g move toward the low-frequency side, so when the required resonance center frequency position remains unchanged, the connection between the second coupling end 121 of the second sub-radiator 12 and the second coupling end 12 can be relatively reduced.
  • the actual length between the two ground points D is capacitive when working in the frequency band supported by the fifth resonance mode e, the frequency band supported by the sixth resonance mode f, and the frequency band supported by the seventh resonance mode g, so that the fifth resonance mode e, the sixth resonance mode
  • the center frequencies of the sixth resonant mode f and the seventh resonant mode g move toward the low-frequency side, so when the required resonance center frequency position remains unchanged, the connection between the second
  • the third matching circuit M3 is similar to "connecting an effective electrical length" to the second sub-radiator 12 between the second coupling end 121 and the second ground point D, so when the position of the center frequency of resonance needs to be unchanged Next, the actual length between the second coupling end 121 of the second sub-radiator 12 and the second ground point D can be shortened by setting the third matching circuit M3. In this way, the miniaturization of the second sub-radiator 12 can be achieved, and the length between the second coupling end 121 and the second ground point D can be shortened to 1/8 wavelength corresponding to the sixth frequency f6.
  • the third matching circuit M3 includes a plurality of selection branches formed by switches-capacitors-inductors-resistors and other adjustable devices such as variable capacitors. These adjustable devices are used to adjust the position of the three resonance modes. The change of the mode position can also improve the performance of a single frequency band, and can better meet the ENDC/CA combination of different frequency bands.
  • the second sub-radiator 12 also has a third matching point P3 located between the second ground point D and the second free end 122 .
  • the antenna assembly 100 also includes a fourth matching circuit M4. One end of the fourth matching circuit M4 is electrically connected to the third matching point P3. The other end of the fourth matching circuit M4 is electrically connected to the sixth reference ground GND6.
  • the fourth matching circuit M4 is capacitive when working in the frequency band supported by the sixth resonant mode f and the frequency band supported by the seventh resonant mode g, so that the center frequencies of the sixth resonant mode f and the seventh resonant mode g are directed towards the low frequency side Therefore, the actual length between the second coupling end 121 of the second sub-radiator 12 and the second grounding point D can be relatively reduced under the condition that the position of the resonant center frequency remains unchanged. In this way, the miniaturization of the second sub-radiator 12 can be achieved, and the length between the second coupling end 121 and the second ground point D can be shortened to 1/8 wavelength corresponding to the sixth frequency f6.
  • the fourth matching circuit M4 includes a plurality of selection branches formed by switches-capacitors-inductors-resistors and other adjustable components such as variable capacitors. These adjustable devices are used to adjust the position of the resonant mode. The change of the mode position can also improve the performance of a single frequency band, and can better meet the ENDC/CA combination of different frequency bands.
  • one or two of the first sub-circuit M11, the second matching circuit M2, the third matching circuit M3, and the fourth matching circuit M4 of the first matching circuit M1 can be arbitrarily selected. Or three are set at corresponding positions, and the first sub-circuit M11, the second matching circuit M2, the third matching circuit M3, and the fourth matching circuit M4 of the first matching circuit M1 can also be set at corresponding positions, In this way, the stack size of the radiator 10 can be further reduced.
  • the first sub-circuit M11 , the second matching circuit M2 , and the third matching circuit M3 in this embodiment can also be applied to the antenna assembly 100 provided in the first embodiment, and will not be repeated here.
  • the general structure of the antenna assembly 100 provided in the third embodiment is the same as that of the antenna assembly 100 provided in the second embodiment.
  • the main difference is that, please refer to FIG.
  • the antenna assembly 100 provided in this embodiment can also form a double "T"-shaped radiator, and the current density distribution of the monopole mode and the current density distribution of the dipole mode can be generated on each "T"-shaped radiator. , so it can also generate four resonance modes, thereby forming a wider bandwidth or supporting more frequency bands.
  • the current density distribution, the four resonance modes, the wavelength mode corresponding to each resonance mode, and the adjustment of the length of the radiator by adjusting the frequency offset through the matching circuit can all refer to the second embodiment. This will not be repeated here.
  • the antenna assembly 100 can also perform proximity detection of a subject to be measured while implementing antenna signal transmission and reception.
  • the subject to be tested includes, but is not limited to, a human head, a human hand, and the like.
  • the radiator 10 is made of a conductive material, and the radiator 10 can also serve as an induction electrode for proximity signals while serving as an antenna signal transceiving port.
  • the antenna assembly 100 provided in this application integrates the dual functions of transmitting and receiving electromagnetic wave signals and proximity sensing and is small in size. When the antenna assembly 100 is applied to the electronic device 1000, it is ensured that the electronic device 1000 has a communication function and a proximity detection function, and at the same time, the overall volume of the electronic device 1000 can be made small.
  • the antenna assembly 100 further includes a DC blocking assembly 30, a filtering assembly 50, a detection assembly 40 and a controller (not shown).
  • connection manner of the direct blocking component 30 and the filter component 50 will be described below with reference to the antenna component 100 provided in the second embodiment.
  • the DC blocking component 30 is electrically connected between the feeding point B of the first sub-radiator 11 and the signal source 20 (further, the blocking component 30
  • the direct component 30 is electrically connected between the feeding point B and the first matching circuit M1 ), and is also electrically connected between the first ground point A of the first sub-radiator 11 and the first reference ground GND1 .
  • the DC blocking component 30 is used to block the DC current generated by the first reference ground GND1, the signal source 20 and the first matching circuit M1 and the radio frequency signal transmitted and received by the radiator 10 (the radio frequency signal includes the connection between the radiator 10 and the ground electrode GND).
  • the radio frequency signal between the radiator 10 and the first matching circuit M1) to support the human body detection function and improve the detection accuracy when the human body approaches the antenna assembly 100.
  • the DC blocking assembly 30 includes a first sub-isolator 31 and a second sub-isolator 32 .
  • the first sub-isolator 31 is electrically connected between the first ground point A and the first reference ground GND1.
  • the second sub-isolator 32 is electrically connected between the feeding point B and the first matching circuit M1.
  • both the first sub-isolator 31 and the second sub-isolator 32 are capacitive devices.
  • both the first sub-isolator 31 and the second sub-isolator 32 include capacitors.
  • both the first sub-isolator 31 and the second sub-isolator 32 are capacitors, and the first sub-isolator 31 and the second sub-isolator 32 have a small impedance to the ground for the radio frequency signal supported by the antenna assembly 100, for example,
  • the values of the first sub-isolator 31 and the second sub-isolator 32 include but are not limited to 47pF or 22pF.
  • the first sub-isolator 31 has an isolation effect on the DC current of the first reference ground GND1
  • the second sub-isolator 32 has an isolation effect on the DC current of the first matching circuit M, so as to support the human body detection function and improve the human body close to the antenna assembly 100. time detection accuracy.
  • the DC blocking component 30 enables the first sub-radiator 11 to be in a "floating" state relative to the DC current, and can smoothly transmit the radio frequency signal from the first matching circuit M1 to the feeding point B, and transmit the radio frequency signal from the first The ground point A is transmitted to the first reference ground GND1.
  • one end of the filter assembly 50 is electrically connected to the side of the DC blocking assembly 30 close to the first sub-radiator 11 or to any position of the first sub-radiator 11 .
  • the filter component 50 is used to block the radio frequency signal transmitted and received by the first sub-radiator 11 and conduct the induction signal generated when the subject under test approaches the first radiator 11, so that the radio frequency signal transmitted and received by the first sub-radiator 11 The detection accuracy of the sensing signal detected by the detection component 40 will not be affected.
  • the filter assembly 50 is electrically connected between the first sub-isolator 31 and the first ground point A; or, is electrically connected between the second sub-isolator 32 and the feeding point B; or is electrically connected to the first sub-isolator 32; Any position of the radiator 11.
  • the filtering component 50 includes or is an inductive device.
  • filter component 50 is an inductor.
  • the filter component 50 presents a large impedance to the radio frequency signal supported by the antenna component 100 , and the inductance value is, for example, 82nH.
  • the DC blocking component 30 and the filtering component 50 realize that the induction signal and the radio frequency signal can act simultaneously without interfering with each other.
  • the detection component 40 is electrically connected to the other end of the filter component 50 , and the detection component 40 is used for detecting the magnitude of the induction signal generated by the radiator 10 .
  • the detection component 40 is a device for detecting a current signal, a voltage signal or an inductance signal, such as a miniature galvanometer, a miniature current transformer, a current comparator, a voltage comparator and the like.
  • the human skin surface and the first sub-radiator 11 can be equivalent to two electrode plates of a capacitor respectively.
  • the first sub-radiator 11 can sense the change of the electric charge brought by the head of the human body.
  • the filter assembly 50 is electrically connected to the first sub-radiator 11 .
  • the above-mentioned change in the amount of charge forms an induction signal, which is transmitted to the detection assembly 40 through the filter assembly 50 .
  • C ⁇ S/4 ⁇ kd, wherein, d is the distance between the human body (head or hand) and the radiator, so when the capacitance increases, that is, when the intensity of the induction signal detected by the detection component 40 increases, It indicates that the human body is approaching; when the capacitance decreases, that is, the intensity of the induction signal detected by the detection component 40 decreases, it indicates that the human body is moving away.
  • the detection component 40 detects the change of the above-mentioned induction signal to determine whether the head of the human body is close to the first sub-radiator 11 of the antenna assembly 100, thereby intelligently reducing the specific absorption rate of the human head for electromagnetic waves.
  • the DC blocking component 30 can also serve as a part of the first matching circuit M1, for example, the second sub-isolator 32 is a capacitor, and the second sub-isolator 32 is used to block the induction signal and conduct the radio frequency signal.
  • the second sub-isolator 32 can also be used as a part of the first matching circuit M1 to tune the impedance matching between the signal source 21 and the feeding point B, so as to reduce the loss of the radio frequency signal fed into the radiator 10 and improve the transmission and reception efficiency of the radiator 10.
  • Signal conversion efficiency it is also used to adjust the frequency deviation of the resonant mode generated on the first sub-radiator 11, etc., realizing the multi-purpose of the device, reducing the number of devices and occupied space, and improving the integration of the device.
  • the DC blocking component 30 is also arranged between the first frequency modulation point P1 and the second matching circuit M2, and the second frequency modulation point Between P2 and the third matching circuit M3, between the third frequency modulation point P3 and the fourth matching circuit M4, so that the first sub-radiator 11 is in a "suspension" state relative to the induction signal, thereby preventing the first sub-radiator from The influence of the induction signal generated by 11 on the radio frequency signal promotes the antenna assembly 10 to simultaneously transmit and receive the antenna signal and generate the induction signal.
  • the DC blocking component 30 for isolating the induction signal at the first frequency modulation point P1 can be used as a part of the second matching circuit M2 to adjust the impedance of the second matching circuit M2 and adjust the fourth resonance mode d and the fifth resonance mode e Supported frequency bands.
  • the DC blocking component 30 for isolating the induction signal at the second frequency modulation point P2 can be used as a part of the third matching circuit M3 to adjust the impedance of the third matching circuit M3 and adjust the fifth resonance mode e and the sixth resonance mode f , the frequency band supported by the seventh resonance mode g.
  • the DC blocking component 30 for isolating the induction signal at the third frequency modulation point P3 can be used as a part of the fourth matching circuit M4 to adjust the impedance of the fourth matching circuit M4 and adjust the sixth resonance mode f and the seventh resonance mode g Supported frequency bands.
  • the antenna assembly 100 and the electronic equipment 1000 provided by this application use the radiator 10 on the antenna assembly 100 as an induction electrode for detecting the proximity of the human body to be tested, and the induction signal and the radio frequency signal are processed by the DC blocking assembly 30 and the filtering assembly.
  • the separation realizes the dual function of the communication performance of the antenna assembly 100 and sensing the subject to be tested, increases the function of the antenna assembly 100, further improves device utilization, and reduces the overall volume of the electronic device 1000.
  • the DC blocking component 30 is electrically connected between the second ground point D of the second sub-radiator 12 and the second reference ground GND2 .
  • the first connection mode of the DC blocking component 30 and the filtering component 50 please refer to the first connection mode of the DC blocking component 30 and the filtering component 50 , which will not be repeated here.
  • One end of the filter assembly 50 is electrically connected to a side of the DC blocking assembly 30 close to the second sub-radiator 12 (for example, between the DC blocking assembly 30 and the second ground point D) or to any position of the second sub-radiating body 12 .
  • the second sub-radiator 12 serves as a sensing electrode or as a main sensing electrode.
  • the second sub-radiator 12 is an induction electrode, and the second sub-radiator 12 is in a suspended state relative to the direct current.
  • the DC blocking assembly 30 includes a first sub-isolator 31 , a second sub-isolator 32 and a third sub-filter 33 .
  • the first sub-isolator 31 is electrically connected between the feeding point B and the first matching circuit M1.
  • the second sub-isolator 32 is electrically connected between the first ground point A and the first reference ground GND1.
  • the third sub-filter 33 is electrically connected between the second ground point D and the second reference ground GND2.
  • the filter assembly 50 includes a first sub-filter 51 and a second sub-filter 52, wherein the first sub-filter 51 is electrically connected between the first sub-isolator 31 and the feeding point B, or the second sub-isolator 32 Between the first ground point A, or any position of the first sub-radiator 11; the second sub-filter 52 is electrically connected between the third sub-filter 33 and the second ground point D, or the second sub-radiator 12 any position.
  • the detection component 40 is electrically connected to the first sub-filter 51 and the second sub-filter 52 .
  • the two channels of the detection component 40 are electrically connected to the first sub-filter 51 and the second sub-filter 52 respectively.
  • both the first sub-radiator 11 and the second sub-radiator 12 can serve as detection electrodes for sensing the approach of the subject to be measured.
  • the detection component 40 can directly sense the induction signal through the first sub-filter 51; when the human body approaches the second sub-radiator 12, As the charge on the second sub-radiator 12 changes, the detection component 40 can directly sense the induction signal through the second sub-filter 52 .
  • the detection component 40 detects the proximity of the human body by detecting the sensing signal. In this case, all the radiators 10 can be used as sensing electrodes, so that the sensing area is larger, and the utilization rate of the radiator 10 can be improved. Only one detection component 40 is needed, which can The number of components and the space of the antenna assembly 100 are saved.
  • the detection component 40 includes a first sub-detector and a second sub-detector.
  • the first sub-detector is electrically connected to the other end of the first sub-filter 51
  • the second sub-detector is electrically connected to the other end of the second sub-filter 52 .
  • the induction signals detected by the first sub-radiator 11 and the second sub-radiator 12 are respectively detected by two independent sub-detectors. This embodiment can be used for the first sub-radiator 11 and the second sub-radiator.
  • the radiator 10 of one antenna assembly 100 can detect the approach of human bodies from different sides of the electronic device 1000 , thereby improving the detection range while occupying a small space.
  • the first sub-isolator 31 , the second sub-isolator 32 and the third sub-filter 33 are all isolation capacitors, and the first sub-filter 51 and the second sub-filter 52 are all isolation inductors.
  • the controller is electrically connected to the detection component 40 .
  • the detection component 40 receives the sensing signal and converts it into an electrical signal and transmits it to the controller.
  • the controller is used to detect the distance between the subject to be measured and the radiator 10 according to the size of the induction signal, and then judge whether the human body is close to the radiator 10 (the first sub-radiator 11, or the second sub-radiator 12, or the first sub-radiator 10). body 11 and the second sub-radiator 12), and adjust the power of the signal source 20 when the subject to be measured approaches or moves away from the radiator 10.
  • the controller can adjust the power of the signal source 20 (that is, the power of the antenna assembly 100 ) according to different scenarios.
  • the controller may reduce the power of the antenna assembly 100 to reduce the specific absorption rate of electromagnetic waves radiated by the antenna assembly 100 .
  • the controller can turn off The antenna assembly 100 that is covered, and the antenna assembly 100 that is not blocked in other positions are turned on.
  • the controller may control the power of the antenna assembly 100 to increase to compensate for the problem of reduced efficiency caused by hands covering the radiator 10 .
  • the controller also controls other application programs on the electronic device 1000 according to the detection result of the detection component 40.
  • the screen brightness of the electronic device 1000 is turned off to save the electric energy of the electronic device 1000 during a call; the controller also detects that the human body is far away and the electronic device 1000 is in a call state according to the detection result of the detection component 40, and controls the screen brightness of the display screen 300 to light up.
  • the antenna assembly 100 provided in the first embodiment and the antenna assembly 100 provided in the third embodiment can also use the above-mentioned same principle to set up the direct blocking assembly 30, the filtering assembly 50, and the detection assembly 40, which are not repeated here. Explain one by one.
  • the present application does not limit the specific position where the radiator 10 of the antenna assembly 100 is installed in the electronic device 1000 .
  • the electronic device 1000 includes a reference ground GND, a circuit board 500 and the like disposed in the casing 200 .
  • the reference ground GND includes, but is not limited to, the alloy in the middle plate 410 . Both the first ground point A and the second ground point D are electrically connected to the reference ground GND.
  • the signal source 20 , the first matching circuit M1 , the second matching circuit M2 , the third matching circuit M3 , and the fourth matching circuit M4 are all disposed on the circuit board 500 .
  • the radiator 10 of the antenna assembly 100 is integrated in the housing 200 , or is disposed on the surface of the housing 200 , or is disposed in a space surrounded by the housing 200 .
  • the radiator 10 is integrated with the frame 210 of the casing 200 .
  • the frame 210 is made of metal.
  • the first sub-radiator 11 , the second sub-radiator 12 and the frame 210 are all integrated into one body.
  • the coupling gap 13 between the first sub-radiator 11 and the second sub-radiator 12 is filled with an insulating material.
  • the aforementioned radiator 10 may also be integrated with the rear cover 220 .
  • the first sub-radiator 11 and the second sub-radiator 12 are integrated into a part of the casing 200 .
  • a layer of insulating film can be provided on the surface of the radiator 10. Since the surface of the human skin has charges, the surface of the human skin and the radiation A capacitive structure is formed between the bodies 10 , and the signal change caused by the approach of the human skin surface is sensed through the radiator 10 .
  • the first sub-radiator 11 and the second sub-radiator 12 are formed on the surface of the frame 210 (for example, the inner surface or the outer surface of the frame).
  • the basic forms of the first sub-radiator 11 and the second sub-radiator 12 include but are not limited to patch radiators, laser direct structuring (Laser Direct Structuring, LDS), printing direct structuring (Print Direct Structuring, PDS) and other processes are formed on the inner surface of the frame 210.
  • the material of the frame 210 can be a non-conductive material (non-shielding material for electromagnetic wave signals, or a wave-transparent structure).
  • the aforementioned radiator 10 may also be disposed on the surface of the rear cover 220 .
  • the first sub-radiator 11 and the second sub-radiator 12 are disposed on a flexible circuit board, a rigid circuit board or other carrying boards.
  • the first sub-radiator 11 and the second sub-radiator 12 can be integrated on a flexible circuit board, and the flexible circuit board is pasted on the inner surface of the middle frame 420 through glue or the like.
  • the material of the frame 210 can be It is a non-conductive material.
  • the aforementioned radiator 10 can also be disposed on the inner surface of the rear cover 220 .
  • antenna assembly 100 for proximity detection of a subject to be tested and antenna signal transmission, and the installation positions of various components in the antenna assembly 100 in the electronic device 1000 .
  • the number of antenna assemblies 100 is one or more.
  • the present application does not limit the specific location of the antenna assembly 100 in the electronic device 1000 .
  • the reference ground GND is in the shape of a rectangular plate.
  • the reference ground GND includes a plurality of sides connected in sequence. The junction between two adjacent sides is a corner.
  • the radiator 10 of at least one antenna assembly 100 is disposed opposite to two intersecting sides and corners; and/or, the radiator 10 of at least one antenna assembly 100 is disposed opposite to one side.
  • the following embodiments are used for illustration.
  • the reference ground GND includes a first side 61 and a second side 62 oppositely arranged, and a third side 63 and a fourth side connected between the first side 61 and the second side 62 Side 64.
  • the junction between two adjacent sides is a corner 65 .
  • the first side 61 is the top side of the reference ground GND (referring to the state where the user holds and uses the electronic device 1000 in portrait orientation)
  • the second side 62 is the bottom side of the reference ground GND.
  • the antenna assembly 100 as an example in the upper right corner, optionally, all of the first sub-radiator 11 is arranged opposite to the first side 61, and a part of the second sub-radiator 12 is arranged opposite to the first side 61.
  • the other part of the second radiator 12 is arranged opposite to the fourth side 64, the first ground point A is electrically connected to the first side 61, and the second ground point D is electrically connected between the first side 61 and the fourth side 64. on the corner of 65.
  • the frame 210 includes a plurality of side frames connected end to end.
  • the plurality of side frames include a top frame 211 and a bottom frame 212 oppositely disposed, and a first side frame 213 and a second side frame 214 connected between the top frame 211 and the bottom frame 212 .
  • the top frame 211 is the side away from the ground when the operator holds the electronic device 1000 facing the front of the electronic device 1000 and uses it
  • the bottom frame 212 is the side facing the ground.
  • the junction between two adjacent side frames is a corner portion 216 .
  • the top frame 211 and the bottom frame 212 are parallel and equal.
  • the first side frame 213 and the second side frame 214 are parallel and equal.
  • the length of the first side frame 213 is greater than the length of the top frame 211 .
  • the top frame 211 is set opposite to the first side 61
  • the bottom frame 212 is set opposite to the second side 62
  • the first side frame 213 is set opposite to the third side 63
  • the second side frame 214 is set opposite to the fourth side 64 relative settings.
  • the first sub-radiator 11 is integrated with the top frame 211
  • the second sub-radiator 12 is integrated with a part of the top frame 211, the corner 216 between the top frame 211 and the second side frame 214, and a part of the second side frame 214 All in one.
  • the positions of the first sub-radiator 11 and the second sub-radiator 12 can be exchanged.
  • the whole of the second sub-radiator 12 is arranged opposite to the first side 61, a part of the first sub-radiator 11 is arranged opposite to the first side 61, and the first sub-radiator 11 is arranged opposite to the first side 61.
  • the other part is opposite to the fourth side 64 , the second ground point D is electrically connected to the first side 61 , and the first ground point A is electrically connected to the corner between the first side 61 and the fourth side 64 .
  • the second sub-radiator 12 is integrated with the top frame 211, the first sub-radiator 11 and a part of the top frame 211, the corner 216 between the top frame 211 and the second side frame 214, a part of the second The side frame 214 is integrated into one body.
  • the antenna assembly 100 is also installed at the corner 216 of the electronic device 1000.
  • the clearance environment of the electronic device 1000 is relatively good, which is conducive to improving the radiation of the antenna assembly 100.
  • Efficiency on the other hand, the antenna assembly 100 is located at the corner of the electronic device 1000, which is more likely to excite the ground current, thereby improving the radiation efficiency.
  • the antenna assembly 100 can be all disposed on one side of the electronic device 1000 , for example, all the radiators 10 of the antenna assembly 100 are disposed opposite to the fourth side 64 . Further, the radiator 10 is fully integrated with the second side frame 214 .
  • the antenna assembly 100 can be located anywhere on the electronic device 1000 so that the grounding of the antenna assembly 100 can match the grounding position within the electronic device 1000 .
  • the above is mainly the layout of an antenna assembly 100 in the electronic device 1000 .
  • the layout of the multiple antenna assemblies 100 in the electronic device 1000 is described below with an example.
  • the antenna assembly 100 includes a first antenna assembly 110 and a second antenna assembly 120 .
  • the structures of the first antenna component 110 and the second antenna component 120 are the same or different.
  • the frequency bands covered by the first antenna component 110 and the second antenna component 120 are the same or different.
  • the frequency bands covered by the first antenna assembly 110 and the second antenna assembly 120 are at least partly the same.
  • both the first antenna component 110 and the second antenna component 120 can cover the frequency band of 1.4GHz ⁇ 2.7GHz with high efficiency.
  • the first antenna assembly 110 and the second antenna assembly 120 are respectively arranged on different sides of the electronic device 1000, so that the electronic device 1000 can switch between the first antenna assembly 110 and the second antenna assembly 120 when the electronic device 1000 supports the 1.4GHz-2.7GHz frequency band .
  • the first antenna assembly 110 and the second antenna assembly 120 are respectively disposed at or close to the two corners 216 arranged diagonally. It can be understood that the first antenna assembly 110 is disposed at the corner 216, which means that at least part of the radiator 10 of the first antenna assembly 110 is integrated in the corner 216, or printed or laser formed on the surface of the corner 216, or attached to the corner surface of portion 216.
  • the first antenna assembly 110 is close to the corner portion 216, which means that the radiator 10 of the first antenna assembly 110 is disposed in the casing 200 (including the frame 210 and the rear cover 220), or integrated on the casing 200 and between the corner portion 216. The distance between them is small (for example, the distance is less than or equal to 1 cm, but not limited to this size).
  • the second antenna assembly 120 disposed at or close to the corner portion 216 reference may be made to the above description, which will not be repeated here.
  • the first antenna assembly 110 is disposed on the top frame 211 and is close to the corner 216 between the top frame 211 and the second side frame 214 .
  • the second antenna assembly 120 is disposed on the bottom frame 212 and is close to a corner between the bottom frame 212 and the first side frame 213 .
  • the coupling slot 13 of the first antenna assembly 110 and the coupling slot 13 of the second antenna assembly 120 are respectively provided on the top frame 211 and the bottom frame 212 without affecting the first side frame 213 and the second side frame 214.
  • the electronic device 1000 is usually held by the user's left hand or
  • the first antenna assembly 110 and the second antenna assembly 120 are respectively arranged on the top frame 211 and the bottom frame 212, and in accordance with the common vertical screen posture of the electronic device 1000, it can be used when the electronic device is held by the left hand or the right hand.
  • the radiation efficiency of the antenna assembly 100 is high, and the communication quality of the electronic device 1000 is good when in use; in the third aspect, since the first antenna assembly 110 and the second antenna assembly 120 are respectively close to two diagonal The provided corner portion 216, the first antenna assembly 110 and the second antenna assembly 120 can sense signals from the top side (the side where the top frame 211 is located), the bottom side (the side where the bottom frame 212 is located), and the left side (the side where the first side is located) of the electronic device 1000.
  • the human body on the side where the frame 213 is located) and the right side (the side where the second side frame 214 is located) is approaching, and a relatively small number of antenna assemblies 100 is used to achieve proximity sensing within a larger range.
  • the first antenna assembly 110 and the second antenna assembly 120 are respectively disposed on the first side frame 213 and the second side frame 214 , and are respectively close to the corners 216 arranged diagonally.
  • both the first antenna assembly 110 and the second antenna assembly 120 are used to detect the approach of the subject to be tested.
  • Both the first antenna component 110 and the second antenna component 120 are provided with a DC blocking component 30 and a filter component 50 , wherein the connection method of the DC blocking component 30 and the filtering component 50 can refer to the above-mentioned embodiment.
  • the filter assembly 50 of the first antenna assembly 110 and the filter assembly 50 of the second antenna assembly 120 can be electrically connected to different signal channels of the same detection assembly 40, so that the first antenna assembly 110 and the second antenna assembly 110 can be received by the same detection assembly 40.
  • the component 120 generates an induction signal when the subject to be tested approaches.
  • the electronic device 1000 also includes a controller (not shown), the controller is electrically connected to the first antenna assembly 110, the second antenna assembly 120 and the detection assembly 40, and the controller is used to generate The magnitude of the inductive signal adjusts the power of the first antenna assembly 110 and the second antenna assembly 120 .
  • the controller is electrically connected to the first antenna assembly 110, the second antenna assembly 120 and the detection assembly 40, and the controller is used to generate The magnitude of the inductive signal adjusts the power of the first antenna assembly 110 and the second antenna assembly 120 .
  • the controller is electrically connected to the first antenna assembly 110, the second antenna assembly 120 and the detection assembly 40, and the controller is used to generate The magnitude of the inductive signal adjusts the power of the first antenna assembly 110 and the second antenna assembly 120 .
  • the power of the first antenna assembly 110 is increased or the second antenna assembly 120 is switched to work,
  • At least one antenna assembly 100 further includes a third antenna assembly 130 and a fourth antenna assembly 140 .
  • the structures of the first antenna component 110 , the second antenna component 120 , the third antenna component 130 and the fourth antenna component 140 are the same or different.
  • At least a part of the first antenna component 110 , at least a part of the second antenna component 120 , at least a part of the third antenna component 130 and at least a part of the fourth antenna component 140 are respectively disposed on different sides of the reference ground GND.
  • at least part of the first antenna component 110, at least part of the second antenna component 120, at least part of the third antenna component 130, and at least part of the fourth antenna component 140 are respectively disposed on different sides of the electronic device 1000, so that the second The first antenna component 110 , the second antenna component 120 , the third antenna component 130 and the fourth antenna component 140 can respectively detect induction signals through different detection components 40 to identify from which side the subject under test approaches the electronic device 1000 .
  • the first antenna component 110 is disposed on the top frame 211
  • at least part of the second antenna component 120 is disposed on the bottom frame 212
  • the third antenna component 130 and the fourth antenna component 140 are respectively disposed on or close to the first side frame 213 and the second side frame 214 .
  • the third antenna assembly 130 and the fourth antenna assembly 140 are also capable of detecting the approach of the subject to be measured. Both the third antenna component 130 and the fourth antenna component 140 are provided with a DC blocking component 30 and a filtering component 50 , wherein the DC blocking component 30 and the filtering component 50 can refer to the above-mentioned embodiment, and will not be described here again.
  • the first antenna component 110, the second antenna component 120, the third antenna component 130, and the fourth antenna component 140 all multiplex a detection component 40 to detect the induction signal, which can detect that the subject under test approaches the electronic device 1000, and at the same time It also saves the number of detection components 40 and reduces the space occupied in the electronic device 1000 .
  • the filter component 50 of the first antenna component 110 and the filter component 50 of the second antenna component 120, the filter component 50 of the third antenna component 130 and the filter component 50 of the fourth antenna component 140 are all electrically connected to the same detection component 40 different signal channels, so as to receive the induction signals generated by the first antenna component 110 , the second antenna component 120 , the third antenna component 130 and the fourth antenna component 140 when the subject under test approaches through the same detection component 40 .
  • the controller is also electrically connected to the third antenna component 130 and the fourth antenna component 140 .
  • the controller is used to determine the target mode of the electronic device 1000 according to the size of the induction signal generated by at least one of the first antenna component 110, the second antenna component 120, the third antenna component 130 and the fourth antenna component 140, and according to the target
  • the mode adjusts the power of at least one of the first antenna element 110 , the second antenna element 120 , the third antenna element 130 and the fourth antenna element 140 .
  • the target mode includes at least one of a one-hand holding mode, a two-hand holding mode, a carrying mode, and a head approaching mode. details as follows:
  • the controller detects that the sensing signal received by the detection component 40 electrically connected to the filter component 50 of the third antenna component 130 (hereinafter referred to as the sensing signal received by the third antenna component 130) is greater than or equal to the preset threshold, and the first antenna component 110.
  • the controller can determine that a human body is approaching the first side frame 213 of the electronic device 1000, and the top frame 211, bottom frame 212, There is no or almost no human body approaching the second side frame 214 , which means that the electronic device 1000 is held by one left hand at this time.
  • the controller detects that the induction signal received by the fourth antenna assembly 140 is greater than or equal to the preset threshold, and the induction signals received by the first antenna assembly 110, the second antenna assembly 120, and the third antenna assembly 130 are all less than the preset threshold,
  • the controller can judge that there is a human body approaching the second side frame 214 of the electronic device 1000, and there is no or almost no human body approaching the top frame 211, bottom frame 212, and first side frame 213, which means that the electronic device 1000 is held by the right hand at this time. status.
  • the controller may determine that the electronic device 1000 is in a state of holding the vertical screen with both hands at this time.
  • the controller may determine that the electronic device 1000 is in the state of holding the horizontal screen with both hands at this time. Furthermore, when the controller determines that the electronic device 1000 is in the state of holding the horizontal screen with both hands, it can be determined that the electronic device 1000 has an increased demand for Internet access speed at this time, for example, the electronic device 1000 is running games or video applications at this time.
  • the power of the above-mentioned antenna assembly 100 is used to increase the Internet access speed of the electronic device 1000, so that the user's Internet access experience is very good.
  • the controller determines that the electronic device The side frame on at least three sides of the 1000 is approached by a human body, and the controller can determine that the electronic device 1000 is in a carrying state at this time. Since the requirement for the speed of Internet access in the portable state is relatively small, the controller may appropriately reduce the power of the antenna assembly 100 at this time.
  • the electronic device 1000 further includes functional devices (not shown).
  • the functional device includes but not limited to at least one of a receiver and a display screen.
  • the controller is electrically connected to the functional devices.
  • the controller is used for judging the working state of the electronic device 1000 according to the magnitude of the induction signal received by the first antenna assembly 110 , the second antenna assembly 120 , the third antenna assembly 130 , and the fourth antenna assembly 140 and the working state of the functional devices.
  • the controller detects that the induction signals received by at least one of the first antenna assembly 110, the second antenna assembly 120, the third antenna assembly 130, and the fourth antenna assembly 140 are greater than or equal to a preset threshold, and the receiver When it is in the working state, it means that the electronic device 1000 is close to the head of the subject to be tested, that is, the head of the human body is close to the electronic device 1000 and making a phone call. At this time, the controller can control the power of the antenna assembly 100 to decrease to Reduce the specific absorption rate of the head of the human body for electromagnetic waves.
  • the controller detects that the induction signals received by at least three of the first antenna assembly 110, the second antenna assembly 120, the third antenna assembly 130, and the fourth antenna assembly 140 are all greater than or equal to a preset threshold, and displays
  • the screen 300 is in the non-display state, it indicates that the electronic device 1000 may be in a carrying state, wherein, the carrying state includes but is not limited to being stored in the pocket of the subject to be tested; stored in a school bag, waist bag, mobile phone bag, etc. that are close to the subject to be tested. In the bag; the electronic device 1000 may also be worn on the body of the subject to be tested through a rope, a wristband, or the like.
  • the controller may control the power of the antenna assembly 100 to decrease, so as to reduce the electromagnetic radiation of the electronic device 1000 to the human body and reduce the specific absorption rate of the human body for electromagnetic waves.
  • the controller can control the power of the antenna assembly 100 to decrease to reduce the impact of the electronic device 1000 on the human body.
  • Electromagnetic radiation reduces the specific absorption rate of the human head for electromagnetic waves.
  • the above is based on the induction signal received by at least one of the first antenna assembly 110, the second antenna assembly 120, the third antenna assembly 130, and the fourth antenna assembly 140, and the intelligent judgment of the electronic device 1000 based on the working status of the functional device.
  • the posture of the electronic device 1000 and the application program can be judged more accurately in combination with the running state of the application program, so as to intelligently determine the demand of the electronic device 1000 for Internet access speed.
  • the controller adjusts the first The power of the first antenna assembly 110, the second antenna assembly 120, the third antenna assembly 130, and the fourth antenna assembly 140 are used to intelligently match the requirements of the electronic device 1000 for Internet access speed, so that the electronic device 1000 has Better communication quality.
  • the controller determines that the electronic device 1000 is held by the left hand with one hand After that, the controller turns off the shaded third antenna component 130 , and turns on at least one of the unshielded first antenna component 110 , the second antenna component 120 , and the fourth antenna component 140 . After the controller judges that the electronic device 1000 is held by one right hand, the controller closes the covered fourth antenna assembly 140, and turns on the unblocked first antenna assembly 110, the second antenna assembly 120, and the third antenna assembly 130. at least one of .
  • the controller After the controller judges that the electronic device 1000 is being held with both hands vertically, the controller turns off the covered third antenna assembly 130 and the fourth antenna assembly 140, and turns on the unblocked first antenna assembly 110 and the second antenna assembly 120. at least one of . After the controller judges that the electronic device 1000 is being held with both hands horizontally, the controller turns off the first antenna assembly 110 and the second antenna assembly 120 that are covered, and turns on the third antenna assembly 130 and the fourth antenna assembly 140 that are not covered. at least one of .
  • the intelligent switching of the electronic device 1000 in a variety of different occlusion scenarios is realized, ensuring that the electronic device 1000 is in a variety of different occlusions In all scenarios, the required frequency band can be supported to ensure the communication quality of the electronic device 1000 .
  • the first antenna element 110 , the second antenna element 120 , the third antenna element 130 and the fourth antenna element 140 can all support a certain frequency band, for example, 1.4GHz ⁇ 2.7GHz, but not limited thereto. Further, the frequency bands supported by the first antenna component 110 , the second antenna component 120 , the third antenna component 130 and the fourth antenna component 140 are the same.
  • each antenna assembly 100 is in a duplex mode and can transmit or receive signals independently of each other, thus realizing the 4*4 MIMO working mode for medium-high-ultra-high frequency bands.
  • Each antenna assembly 100 can support LTE-4G signals and NR-5G signals, that is, realize dual connection of LTE-4G and NR-5G signals.
  • Each antenna assembly 100 can support multiple resonance modes, and frequency bands supported by similar resonance modes can synthesize ultra-bandwidth through carrier aggregation to improve throughput, improve user experience, reduce adjustable components, and save costs.
  • the four antenna assemblies 100 are distributed around the entire electronic device 1000 to realize the 4*4 MIMO multi-CA or ENDC combination of mid-high-ultra-high frequency bands.
  • the four antenna assemblies 100 are distributed on the four side frames of the electronic device 1000. At the same time, it can also detect the approach of the human body on the back (where the back cover is located) and the front (where the display screen is located) of the electronic device 1000. In this way, 360-degree No dead angle coverage and precise detection.
  • the four antenna assemblies 100 are all integrated with the human body approach detection function, and the four antenna assemblies 100 can be switched intelligently, so that the electronic device 1000 can intelligently adjust the communication quality in different holding scenarios.
  • the controller determines that the electronic device 1000 is held by one hand with the left hand Afterwards, the controller controls the power of the blocked third antenna assembly 130 to increase to compensate for the loss when the third antenna assembly 130 is blocked.
  • the controller controls the power of the shaded third antenna assembly 130 to be adjusted down to the initial state.
  • the controller can also increase the power of the covered antenna assembly 100 by controlling it.
  • the controller can also judge the state of the electronic device 1000 through sensors such as a gyro sensor in the electronic device 1000, and then adjust the power of each antenna assembly 100 according to the state of the electronic device 1000, for example, through the gyro sensor
  • the power of each antenna assembly 100 can be increased at this time; it can also be judged that the electronic device 1000 is in the state of being put down or placed by a sensor such as a gyro sensor, and at this time it can be reduced.
  • the power of each antenna assembly 100 is used to save energy and realize intelligent adjustment of the antenna assembly 100 .
  • the antenna assembly 100 provided in this application excites a variety of resonance modes by designing the structure of the radiator 10 and the position of the ground point A. These resonance modes can achieve ultra-wideband coverage, thereby achieving multi-band ENDC/CA performance and improving download speed. Bandwidth, so that the throughput and download speed can be improved, and the user experience can be improved; the various modes generated by the antenna assembly 100 of the present application can strengthen each other, so it can cover ultra-wide bandwidth with high efficiency, save costs, and help meet the needs of major Operator indicators, the radiator 10 in the antenna assembly 100 is also used as a sensing electrode for human body proximity detection, so that the antenna assembly 100 supports ultra-bandwidth and also has the function of detecting human body approach, and lowers the antenna assembly 100 when the human head approaches.
  • the antenna assembly 100 has a high degree of integration, has many functions and occupies a small space; by setting multiple antenna assemblies 100 in the electronic device 1000 And arrange the plurality of antenna assemblies 100 so that the plurality of antenna assemblies 100 detect the approach of the human body at different positions, and the controller judges the target mode of the electronic device 1000 according to the detection results of the plurality of antenna assemblies 100, for example, Left hand holding, right hand holding mode, both hands horizontal screen holding mode, both hands vertical screen holding mode, carrying mode, head approaching mode, etc., realize intelligent detection of the target mode of the electronic device 1000; the controller can also according to the electronic device The target mode of 1000 intelligently switches the power of the antenna assembly 100 to ensure that the electronic device 1000 can maintain a good antenna transmission rate and intelligently reduce the specific absorption rate of the electronic device 1000 for electromagnetic wave signals under different shading states.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请公开了一种天线组件及电子设备,包括辐射体及信号源,辐射体包括第一子辐射体及第二子辐射体,第一子辐射体与第二子辐射体之间存在耦合缝隙;第一子辐射体的端部包括第一耦合端与第一自由端,第一子辐射体还具有馈电点及第一接地点,馈电点位于第一自由端与第一耦合端之间,第一接地点与第一耦合端之间的距离大于馈电点与第一耦合端之间的距离;第二子辐射体包括第二耦合端、第二自由端以及位于第二耦合端与第二自由端之间的第二接地点,第二耦合端和第一耦合端之间为耦合缝隙,第一接地点及第二接地点皆用于电连接至参考地;信号源电连接馈电点。本申请提供了一种提高数据传输速率,提高通信质量的天线组件及电子设备。

Description

天线组件及电子设备 技术领域
本申请涉及通信技术领域,尤其涉及一种天线组件及电子设备。
背景技术
随着通信技术的发展,具有通信功能电子设备的普及度越来越高,且对于上网速度的要求越来越高。因此,如何提高电子设备的数据传输速率,提高电子设备的通信质量,成为需要解决的技术问题。
发明内容
本申请提供了一种提高数据传输速率,提高通信质量的天线组件及电子设备。
第一方面,本申请实施例提供的一种天线组件,包括:
辐射体,包括第一子辐射体及第二子辐射体,所述第一子辐射体与所述第二子辐射体之间存在耦合缝隙;所述第一子辐射体的端部包括第一耦合端与第一自由端,所述第一子辐射体还具有馈电点及第一接地点,所述馈电点位于所述第一自由端与所述第一耦合端之间,第一接地点与第一耦合端之间的距离大于馈电点与第一耦合端之间的距离;所述第二子辐射体包括第二耦合端、第二自由端以及位于所述第二耦合端与所述第二自由端之间的第二接地点,所述第二耦合端和所述第一耦合端之间为所述耦合缝隙,所述第一接地点及所述第二接地点皆用于电连接至参考地;及
信号源,所述信号源电连接所述馈电点。
第二方面,本申请实施例提供的一种电子设备,所述电子设备包括壳体、参考地及至少一个所述的天线组件,所述参考地设于所述壳体内,所述天线组件的辐射体集成于所述壳体、或设于所述壳体表面、或设于所述壳体所包围的空间内;所述第一接地点和所述第二接地点皆电连接至所述参考地。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1所示的电子设备的结构分解示意图;
图3是图2所示的电子设备中的第一种天线组件的结构示意图;
图4是图2所示的电子设备中的第二种天线组件的结构示意图;
图5是图3所示的天线组件的S参数曲线示意图;
图6是图4所示的天线组件的S参数曲线示意图;
图7是本申请实施例提供的第一种第一匹配电路的结构示意图;
图8是本申请实施例提供的第二种第一匹配电路的结构示意图;
图9是本申请实施例提供的第三种第一匹配电路的结构示意图;
图10是本申请实施例提供的第四种第一匹配电路的结构示意图;
图11是本申请实施例提供的第五种第一匹配电路的结构示意图;
图12是本申请实施例提供的第六种第一匹配电路的结构示意图;
图13是本申请实施例提供的第七种第一匹配电路的结构示意图;
图14是本申请实施例提供的第八种第一匹配电路的结构示意图;
图15是图3所示的天线组件中第一谐振电流密度分布示意图;
图16是图3所示的天线组件中第二谐振电流密度分布示意图;
图17是图3所示的天线组件中第三谐振电流密度分布示意图;
图18是图4提供的天线组件的辐射效率曲线图;
图19是图4所示的天线组件中第四谐振电流密度分布示意图;
图20是图4所示的天线组件中第五谐振电流密度分布示意图;
图21是图4所示的天线组件中第六谐振电流密度分布示意图;
图22是图4所示的天线组件中第七谐振电流密度分布示意图;
图23是图4所示的天线组件中的第一匹配电路中设有第一子电路的结构示意图;
图24是图4所示的天线组件中设有第二匹配电路的结构示意图;
图25是图4所示的天线组件中设有第三匹配电路的结构示意图;
图26是图4所示的天线组件中设有第四匹配电路的结构示意图;
图27是图2所示的电子设备中的第三种天线组件的结构示意图;
图28是图4所示的天线组件中设有隔直组件、过滤组件、检测组件的第一种连接方式的结构示意图;
图29是图4所示的天线组件中设有隔直组件、过滤组件、检测组件的第二种连接方式的结构示意图;
图30是图4所示的天线组件中设有隔直组件、过滤组件、检测组件的第三种连接方式的结构示意图;
图31是图4所示的天线组件与中框、参考地的第一种设置结构示意图;
图32是图4所示的天线组件与中框、参考地的第二种设置结构示意图;
图33是图4所示的天线组件与中框、参考地的第三种设置结构示意图;
图34是本申请实施例提供的第一天线组件、第二天线组件与中框、参考地的结构示意图;
图35是图4所示的四种天线组件与中框、参考地的结构示意图。
具体实施方式
第一方面,本申请提供一种天线组件,包括:
辐射体,包括第一子辐射体及第二子辐射体,所述第一子辐射体与所述第二子辐射体之间存在耦合缝隙;所述第一子辐射体包括第一耦合端与第一自由端,所述第一子辐射体还具有馈电点及第一接地点,所述馈电点位于所述第一自由端与所述第一耦合端之间,所述第一接地点与所述第一耦合端之间的距离大于所述馈电点与所述第一耦合端之间的距离;所述第二子辐射体包括第二耦合端、第二自由端以及位于所述第二耦合端与所述第二自由端之间的第二接地点,所述第二耦合端和所述第一耦合端之间为所述耦合缝隙,所述第一接地点及所述第二接地点皆用于电连接至参考地;及
信号源,所述信号源电连接所述馈电点。
其中,所述辐射体在所述信号源的激励下支持至少三个谐振模式。
其中,所述第一接地点位于所述第一自由端。
其中,所述辐射体在所述信号源的激励下支持第一谐振模式、第二谐振模式及第三谐振模式。
其中,所述第一谐振模式的第一谐振电流密度至少分布于所述第一接地点至所述第一耦合端之间及所述第二耦合端至所述第二接地点之间,其中,所述第一谐振电流在所述第一接地点和所述第一耦合端之间的流向与在第二耦合端和所述第二接地点之间的流向相同;
所述第二谐振模式的第二谐振电流密度分布于所述第一接地点至所述第一耦合端之间、所述第二耦合端至所述第二自由端之间,其中,所述第二谐振电流在所述第一接地点和所述第一耦合端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相反,所述第二谐振电流在所述第二接地点和所述第二自由端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相反;
所述第三谐振模式的第三谐振电流密度分布于所述第一接地点至所述第一耦合端之间、所述第二耦合端至所述第二自由端之间,其中,所述第三谐振电流在所述第一接地点和所述第一耦合端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相反,所述第三谐振电流在所述第二接地点和所述第二自由端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相同。
其中,所述第一谐振模式支持所述第一子辐射体工作在(1/8~1/4)波长模式;所述第二谐振模式支持所述第二耦合端至所述第二接地点之间的第二子辐射体工作在(1/8~1/4)波长模式;所述第三谐振 模式支持所述第二子辐射体工作在1/2波长模式。
其中,所述第一谐振模式所支持的频段为第一频段;所述第二谐振模式所支持的频段为第二频段,所述第三谐振模式所支持的频段为第三频段,其中,所述第一频段、所述第二频段及所述第三频段中三者依次连续或两者连续或皆不连续。
其中,所述第一接地点位于所述第一自由端与所述馈电点之间。
其中,所述辐射体在所述信号源的激励下支持第四谐振模式、第五谐振模式、第六谐振模式及第七谐振模式。
其中,所述第四谐振模式的第四谐振电流密度至少分布于所述第一自由端至所述第一耦合端之间,其中,所述第四谐振电流在所述第一自由端和所述第一接地点之间的流向与在所述第一接地点和所述第一耦合端之间的流向相反;
所述第五谐振模式的第五谐振电流密度至少分布于所述第一自由端至所述第一耦合端之间及所述第二耦合端至所述第二接地点之间,其中,所述第五谐振电流在所述第一自由端和所述第一接地点之间的流向、在所述第一接地点和所述第一耦合端之间的流向、在所述第二耦合端和所述第二接地点之间的流向皆相同;
所述第六谐振模式的第六谐振电流密度至少分布于所述第一接地点至所述第一耦合端之间、所述第二耦合端至所述第二自由端之间,其中,所述第六谐振电流在所述第一接地点和所述第一耦合端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相反,所述第六谐振电流在所述第二接地点和所述第二自由端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相反;
所述第七谐振模式的第七谐振电流密度至少分布于所述第一接地点至所述第一耦合端之间、所述第二耦合端至所述第二自由端之间,其中,所述第七谐振电流在所述第一接地点和所述第一耦合端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相反,所述第六谐振电流在所述第二接地点和所述第二自由端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相同。
其中,所述第四谐振模式支持所述第一接地点至所述第一耦合端之间的所述第一子辐射体工作在(1/8~1/4)波长模式;所述第五谐振模式支持所述第一子辐射体工作在1/2波长模式;所述第六谐振模式支持所述第二耦合端至所述第二接地点之间的第二子辐射体工作在(1/8~1/4)波长模式;所述第七谐振模式支持所述第二子辐射体工作在1/2波长模式。
其中,所述第四谐振模式所支持的频段为第四频段,所述第五谐振模式所支持的频段为第五频段,所述第六谐振模式所支持的频段为第六频段,所述第七谐振模式所支持的频段为第七频段,其中,所述第四频段、所述第五频段、所述第六频段及第七频段中四者依次连续或三者连续或两者连续或皆不连续。
其中,所述第一接地点与所述第一自由端之间的辐射体长度是所述第一子辐射体长度的(1/4)~(3/4)倍。
其中,所述天线组件还包括第一匹配电路,所述第一匹配电路电连接于所述馈电点与所述信号源之间;所述第一匹配电路包括第一子电路,所述第一子电路的一端电连接所述馈电点,所述第一子电路的另一端电连接至所述参考地,所述第一子电路工作在所述第四谐振模式所支持的频段、在所述第五谐振模式所支持的频段、所述第六谐振模式所支持的频段及所述第七谐振模式所支持的频段时呈容性;
和/或,所述天线组件还包括第二匹配电路,所述第一子辐射体还具有位于所述第一自由端与所述第一接地点之间的第一调频点,所述第二匹配电路的一端连接于所述第一调频点,所述第二匹配电路的另一端电连接至所述参考地,所述第二匹配电路工作在所述第四谐振模式所支持的频段及所述第五谐振模式所支持的频段时呈容性;
和/或,所述天线组件还包括第三匹配电路,所述第二子辐射体还具有位于所述第二耦合端与所述第二接地点之间的第二调频点,所述第三匹配电路的一端连接于所述第二调频点,所述第三匹配电路的另一端电连接至所述参考地,所述第三匹配电路工作在所述第五谐振模式所支持的频段、所述第六谐振模式所支持的频段及所述第七谐振模式所支持的频段时呈容性;
和/或,所述天线组件还包括第四匹配电路,所述第二子辐射体还具有位于所述第二接地点与所述第二自由端之间的第三调频点,所述第四匹配电路的一端连接于所述第三调频点,所述第四匹配电路的另一端电连接至所述参考地,所述第四匹配电路工作在所述第六谐振模式所支持的频段及所述第七谐振 模式所支持的频段时呈容性。
其中,所述第二接地点与所述第二自由端之间的辐射体长度是所述第二子辐射体长度的(1/4)~(3/4)倍。
其中,所述天线组件还包括隔直组件、过滤组件及检测组件,所述隔直组件电连接于所述第一子辐射体与所述信号源之间、所述第一子辐射体与所述参考地之间,所述过滤组件的一端电连接所述隔直组件靠近于所述第一子辐射体的一侧或电连接所述第一子辐射体;和/或,所述隔直组件电连接于所述第二子辐射体与所述参考地之间,所述过滤组件的一端电连接所述隔直组件靠近所述第二子辐射体的一侧或电连接所述第二子辐射体;所述隔直组件用于隔离所述参考地、所述信号源所产生的直流电流,所述过滤组件用于阻隔所述辐射体收发的射频信号及通过所述辐射体在待测主体靠近时产生的感应信号;所述检测组件电连接于所述过滤组件的另一端,所述检测组件用于检测所述感应信号的大小。
第二方面,本申请提供一种电子设备,所述电子设备包括壳体、参考地及如权利要求1~16任意一项至少一个所述的天线组件,所述参考地设于所述壳体内,所述天线组件的辐射体集成于所述壳体、或设于所述壳体表面、或设于所述壳体所包围的空间内;所述第一接地点和所述第二接地点皆电连接至所述参考地。
其中,所述参考地包括依次连接的多个侧边,相邻的两个所述侧边之间的连接处为拐角处,至少一个所述天线组件的所述辐射体与两个相交的所述侧边及所述拐角处相对设置;和/或,至少一个所述天线组件的所述辐射体全部与一个所述侧边相对设置。
其中,至少一个所述天线组件包括第一天线组件及第二天线组件,所述第一天线组件和所述第二天线组件呈对角设置,所述第一天线组件和所述第二天线组件在所述待测主体靠近时产生的感应信号皆通过检测组件检测;
所述电子设备还包括控制器,所述控制器电连接所述第一天线组件、所述第二天线组件及检测组件,所述控制器用于根据所述第一天线组件和所述第二天线组件所产生的感应信号大小调节所述第一天线组件和所述第二天线组件的功率。
其中,至少一个所述天线组件还包括第三天线组件及第四天线组件,至少部分的所述第一天线组件、至少部分的所述第二天线组件、至少部分的所述第三天线组件及至少部分的所述第四天线组件分别设于所述参考地的不同侧;所述第三天线组件和所述第四天线组件在所述待测主体靠近时产生的感应信号通过所述检测组件检测;
所述控制器还电连接所述第三天线组件及所述第四天线组件,所述控制器用于根据所述第一天线组件、所述第二天线组件、所述第三天线组件及所述第四天线组件中至少一者所的感应信号大小确定所述电子设备所处的目标模式,并根据所述目标模式调节所述第一天线组件、所述第二天线组件、所述第三天线组件及所述第四天线组件中至少一者的功率,所述目标模式包括单手握持模式、双手握持模式、携带模式、头部靠近模式中的至少一种。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。此外,在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参照图1,图1为本申请实施例提供的一种电子设备的结构示意图。电子设备1000包括天线组件100。天线组件100用于收发电磁波信号,以实现电子设备1000的通信功能。本申请对于天线组件100在电子设备1000内的位置不做具体的限定。电子设备1000还包括相互盖合连接的显示屏300及壳体200。天线组件100可设于电子设备1000的壳体200内部、或部分与壳体200集成为一体、或部分设于壳体200外。图1中天线组件100的辐射体与壳体200集成为一体。当然,天线组件100还可以设于电子设备1000的可伸缩组件上,换言之,天线组件100的至少部分还能够随着电子设备1000的可伸缩组件伸出电子设备1000之外,及随着可伸缩组件缩回至电子设备1000内;或者,天线组件100的整体长度随着电子设备1000的可伸缩组件的伸长而伸长。
电子设备1000包括不限于为电话、电视、平板电脑、手机、照相机、个人计算机、笔记本电脑、车载设备、耳机、手表、可穿戴设备、基站、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备。本申请中以电子设备1000为手机为例,其他的设备可参考本申请中的具体描述。
为了便于描述,以电子设备1000处于图1中的视角为参照,电子设备1000的宽度方向定义为X轴方向,电子设备1000的长度方向定义为Y轴方向,电子设备1000的厚度方向定义为Z轴方向。X轴方向、Y轴方向及Z轴方向两两垂直。其中,箭头所指示的方向为正向。
请参阅图2,壳体200包括边框210及后盖220。边框210内通过注塑形成中板410,中板410上形成多个用于安装各种电子器件的安装槽。中板410与边框210一起成为电子设备100的中框420。显示屏300、中框420及后盖220盖合后在中框420的两侧皆形成收容空间。边框210的一侧(例如后侧)围接于后盖220的周沿,边框210的另一侧(例如前侧)围接于显示屏300的周沿。电子设备1000还包括设于收容空间内的电池、摄像头、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组等等能够实现手机的基本功能的器件,在本实施例中不再赘述。
以下结合附图对于本申请提供的天线组件100进行具体的说明,当然,本申请提供的天线组件100包括但不限于以下的实施方式。
请参阅图3,天线组件100至少包括辐射体10、第一匹配电路M1及信号源20。
请参阅图3,辐射体10包括第一子辐射体11及第二子辐射体12。第一子辐射体11与第二子辐射体12之间存在耦合缝隙13。第一子辐射体11与第二子辐射体12通过耦合缝隙13耦合。本实施例中第一子辐射体11、第二子辐射体12的形状皆为直线条形为例进行说明。当然,在其他实施方式中,第一子辐射体11、第二子辐射体12的形状还可以为弯折条形、曲线条形、贴片状等其他形状。
请参阅图3及图4,第一子辐射体11的端部至少包括第一自由端111和第一耦合端112。本实施例中,第一自由端111与第一耦合端112为呈直线条形的第一子辐射体11的相对两端。在其他实施方式中,第一子辐射体11呈弯折状,第一自由端111和第一耦合端112可不沿直线方向相对,但第一自由端111和第一耦合端112为第一子辐射体11的两个末端。第一子辐射体11还具有第一接地点A及馈电点B。其中,馈电点B位于第一自由端111与第一耦合端112之间。第一接地点A与第一耦合端112之间的距离大于馈电点B与第一耦合端112之间的距离。具体的,请参阅图4,第一接地点A位于馈电点B与第一自由端111之间,或者,请参阅图3,第一接地点A位于第一自由端111。第一接地点A用于电连接至第一参考地GND1,其电连接方式包括但不限于直接焊接、或通过同轴线、微带线、导电弹片、导电胶等方式间接电连接。本申请对于第一接地点A、馈电点B在第一子辐射体11上的具体位置不做限定。
请参阅图3,第二子辐射体12至少包括第二耦合端121、第二自由端122以及位于第二耦合端121与第二自由端122之间的第二接地点D。本实施例中,第二耦合端121及第二自由端122为第二子辐射体12的两个末端。可选的,第一子辐射体11与第二子辐射体12可沿直线排列或大致沿直线排列(即在设计过程中具有较小的公差)。当然,在其他实施方式中,第一子辐射体11与第二子辐射体12还可在延伸方向上错开设置,以形成避让空间等。
请参阅图3,第一耦合端112与第二耦合端121相对且间隔设置。第一耦合端112与第二耦合端121之间为耦合缝隙13。耦合缝隙13为第一子辐射体11的第一耦合端112与第二子辐射体12的第二耦合端121之间的断缝,例如,耦合缝隙13的宽度可以为0.5~2mm,但不限于此尺寸。第一子辐射体11与第二子辐射体12能够通过耦合缝隙13产生容性耦合。在其中一个视角中,第一子辐射体11和第二子辐射体12可看作为辐射体10被耦合缝隙13隔断而形成的两个部分。
第一子辐射体11与第二子辐射体12通过耦合缝隙13进行容性耦合。其中,“容性耦合”是指,第一子辐射体11与第二子辐射体12之间产生电场,第一子辐射体11的信号能够通过电场传递至第二子辐射体12,第二子辐射体12的信号能够通过电场传递至第一子辐射体11,以使第一子辐射体11与第二子辐射体12即使在不接触或不连接的状态下也能够实现电信号导通。本实施例中,第一子辐射体11能够在信号源20的激励下产生电场,该电场能量能够通过耦合缝隙13传递至第二子辐射体12,进而使得第二子辐射体12产生激励电流。
请参阅图3,第二子辐射体12的第二接地点D用于电连接至第二参考地GND2。
请参阅图3,信号源20电连接馈电点B。具体的,第一匹配电路M1的一端电连接馈电点B。信号源20电连接第一匹配电路M1的另一端。信号源20为用于发送射频信号的射频收发芯片或电连接用于发送射频信号的射频收发芯片的馈电部。第一匹配电路M1可包含开关器件-电容器件-电感器件-电阻器件等形成的多条选择支路、可变电容等可调器件。
信号源20将射频信号直接馈入第一子辐射体11,由于第一子辐射体11与第二子辐射体12容性耦合,第一子辐射体11上的电流激励第二子辐射体12产生激励电流,如此,第一子辐射体11和第二子辐射体12上皆具有激励电流,该激励电流在第一子辐射体11和第二子辐射体12可产生多种谐振模式。
请参阅图5和图6,辐射体10在信号源20的激励下支持至少三个谐振模式(例如图5中的a、b、c,例如图6中的d、e、f、g)。其中,谐振模式表征为天线组件100在谐振频率处及谐振频率附近具有较高的电磁波收发效率。该谐振频率为谐振模式的中心频率,该谐振频率及其附近形成该谐振模式所支持或所覆盖的频段。可选的,在回波损耗曲线中,取回波损耗值的绝对值大于或等于5dB(仅仅为举例,并不能作为本申请对于较高的效率的回波损耗值的限制)为具有较高的电磁波收发效率的参考值。取一个谐振模式中回波损耗值的绝对值大于或等于5dB的频率的集合为该谐振模式所支持的频段。
谐振模式所支持的频段包括LTE 4G频段、或NR 5G频段、或Wi-Fi 6E频段、或LTE 4G频段与NR 5G频段形成的组合频段等。一个谐振模式所支持的频段可以是单独的LTE 4G频段(例如B3)、或单独的NR 5G频段(例如N3)、或单独的Wi-Fi 6E频段、或LTE 4G频段与NR 5G频段形成的组合频段(例如B3/N3)等。
可以理解的,天线组件100所支持的谐振模式的数量增加,其作用至少体现在以下两个方面。第一方面是当天线组件100的多种谐振模式所支持的频段皆连续时,此天线组件100所支持的频带宽度较宽,能够形成超宽带,该超宽带为1G、1.5G或2G等等,以实现超宽带覆盖,提升下载带宽,提升吞吐量下载速度,提升用户的上网体验;第二方面是当天线组件100的多种谐振模式所支持的频段不连续时,此天线组件100所支持的频段数量增加,实现多频段的覆盖,例如天线组件100可同时支持4G/5G中高频(例如1000MHz~3000MHz)和4G/5G超高频(例如3000MHz~10000MHz)、同时支持两个不同段的中高频、同时支持4G/5G中高频和WiFi-6E频段(例如5.925GHz~7.125GHz)。其中,多种谐振模式所支持的频段连续是指多种谐振模式所支持的相邻的两个频段至少部分重合。多种谐振模式所支持的频段不连续是指多种谐振模式所支持的相邻的两个频段之间无重合。
本申请实施例提供的天线组件100及电子设备1000,通过将第二子辐射体12与第一子辐射体11容性耦合,并设计第二子辐射体12的第二接地点D位于第二子辐射体12的两端之间,及合理设计第一子辐射体11的第一接地点A位于第一子辐射体11的两端之间或远离第二子辐射体12的端部,以使第一子辐射体11、第二子辐射体12上的谐振电流密度具有多种分布方式,进而支持多种谐振模式,以使天线组件100能够支持较宽的带宽或支持较多的频段,进而提高天线组件100应用于电子设备1000时的下载带宽、提升吞吐量及数据传输速度,提高增加电子设备1000的通信质量。此外,当天线组件100的带宽较宽时,无需可调器件去切换至不同位置的频段,从而省去可调器件,节约成本,及实现天线组件100的结构简单。
本申请对于第一子辐射体11、第二子辐射体12的形状、构造不做具体的限定,第一子辐射体11、第二子辐射体12的形状皆包括但不限于条状、片状、杆状、涂层、薄膜等。当第一子辐射体11、第二子辐射体12呈条状时,本申请对于第一子辐射体11、第二子辐射体12的延伸轨迹不做限定,故第一子辐射体11、第二子辐射体12皆可呈直线、曲线、多段弯折等轨迹延伸。上述的辐射体10在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
天线组件100的第一接地点A和第二接地点D电连接至参考地包括但不限于以下几种实施方式。可选的,天线组件100自身具有参考地。该参考地的具体形式包括但不限于金属板件、成型于柔性电路板内部、硬质电路板中的金属层等。可选的,第一接地点A和第二接地点D通过接地弹片、焊锡、导电粘胶等导电件电连接参考地。其中,第一参考地GND1和第二参考地GND2可为天线组件100中的一体成型的一个参考地,也可以为天线组件100中的两个相互独立但相互连接的参考地。当天线组件100设于电子设备1000内时,天线组件100的参考地电连接至电子设备1000的参考地。再可选的,天 线组件100本身不具有参考地,天线组件100的第一接地点A和第二接地点D通过直接电连接或通过导电件间接电连接至电子设备1000的参考地或电子设备1000内的电子器件的参考地。本申请中,天线组件100设于电子设备1000,以中板410上的金属合金作为参考地。即第一参考地GND1和第二参考地GND2为中板410的一部分或电连接至中板410。
在一般技术中,天线的有效效率带宽不够宽,例如在中高频段(1000MHz~3000MHz)的覆盖,比如1710MHz~2690MHz(B3/N3+B1/N1+B7/N7)情况,在实际使用过程中,由于设置天线的空间有限,一般采用能够产生两个谐振模式的天线支持上述的频段,而由于每个谐振模式所支持的频段宽度相对较小,若要覆盖到1710MHz~2690MHz,则两个谐振模式的中心频率之间间隔较大,如此,两个谐振模式之间的频段由于远离两个谐振模式的中心频率,导致效率较低,即上述频段中的中间频段例如1.9GHz~2.1GHz频段(对应B1/N1频段)的效率相对较弱,如果通过调谐电路调谐谐振模式的偏移以将谐振模式的中心频率调节至1.9GHz~2.1GHz频段(对应B1/N1频段)附近,以使1.9GHz~2.1GHz频段(对应B1/N1频段)的效率较高,但同时会导致其他频段的效率降低。换言之,一般技术中的天线难以以较高的效率同时覆盖(B3/N3+B1/N1)、也难以以较高的效率同时覆盖(B1/N1+B7/N7),更难以同时覆盖(B3/N3+B1/N1+B7/N7),导致天线在某些频段的信号收发不良或通过设置更多的辐射体,以支持更多的频段而导致天线不够小型化。需要说明的是,以上的频段仅仅是举例,不能作为本申请所能够辐射的频段的限制。
本申请提供的天线组件100,通过对第一子辐射体11、第二子辐射体12的构造、第二接地点D的位置进行设计,以使第一子辐射体11、第二子辐射体12的谐振电流密度具有多种分布方式,进而实现天线组件100结构简单、整体尺寸小的同时还能够支持多种谐振模式,例如三种或三种以上的谐振模式,相较于一般的支持1710MHz~2690MHz的天线而言,本申请提供的天线组件100由于能够支持三种或三种以上的谐振模式,故能够在1710MHz~2690MHz频段内皆具有较高的效率,如此,在实际应用中能够以较高的效率同时覆盖(B3/N3+B1/N1)、以较高的效率同时覆盖(B1/N1+B7/N7)及以较高的效率同时覆盖(B3/N3+B1/N1+B7/N7),而本申请提供的天线组件100的子辐射体的数量较少,在产生三种或三种以上的谐振模式的同时并未额外增加子辐射体的数量,换言之,本申请提供的天线组件100具有结构简单、整体尺寸小、非常利于设置在内部空间极其有限的电子设备1000中及1710MHz~2690MHz频段内皆具有较高的效率。其中,B3/N3包括B3、N3中选择任意一者或两者都存在的情况。B1/N1、B7/N7的定义与B3/N3类似,在此不再赘述。当然,以上的1710MHz~2690MHz频段仅仅是本申请的一种举例,在其他实施方式中,通过调节第一子辐射体11和第二子辐射体12的大小还能够使得天线组件100在1000MHz~2000MHz、3000MHz~4000MHz、4000MHz~5000MHz、5000MHz~6000MHz或6000MHz以上的频段等频段具有较高效率的覆盖等。
本申请对于第二接地点D的具体位置不做限定。通过将第二接地点D设于第二自由端122与第二耦合端121之间,以使第二子辐射体12及接地枝节形成T形天线,信号源20提供的激励电流在T形的第二子辐射体12上形成单极子特性和双极子特性的电流密度分布,进而激励起多种谐振模式。第二接地点D可位于靠近第二子辐射体12的几何中心的位置。例如,第二接地点D与第二自由端122之间的长度是第二子辐射体12长度的(1/4)~(3/4)倍。换言之,第二接地点D的位置可以为第二子辐射体12上从第二自由端122起的(1/4)~(3/4)倍的范围内。通过上述的设计或结合对于第二子辐射体12上的匹配电路的设计(后续有详细的说明),使第二子辐射体12能够形成单极子特性、偶极子特性等的多种谐振电流密度分布,以支持多种谐振模式,进而产生较宽的带宽,提升吞吐量及数量传输速率。此外,第二接地点D可设置位置范围较大,则设置的接地连接件的位置可选范围较大,当天线组件100设于电子设备1000上时,接地连接件的可选位置范围较大,使得天线组件100的可选位置范围较大,更加利于天线组件100在电子设备1000的安装。当然,上述的1/4倍和3/4倍仅仅为举例说明,并不限于此,在其他实施方式中,第二接地点D与第二自由端122之间的长度还可以稍小于第二子辐射体12长度的1/4,或稍大于第二子辐射体12长度的3/4。
可选的,在第二接地点D与第二自由端122之间的长度是第二子辐射体12长度的(3/8)~(5/8)倍。换言之,第二接地点D的位置可以为第二子辐射体12上从第二自由端122起的(3/8)~(5/8)倍的范围内。通过上述的设计,以使第二接地点D的位置更靠近第二子辐射体12的中间部分(并不处于 中间位置),更利于形成单极子模式和偶极子模式的电流密度分布,增加天线组件100的带宽及效率。
本申请对于第一匹配电路M1的结构不做具体的限定,第一匹配电路M1可以包括选频滤波电路,该选频滤波电路通过对信号源20发送的射频信号进行选频,以获取所需频段的射频信号(例如选取1GHz~4GHz的射频信号)。
请一并参阅图7至图14,图7~图14分别为各个实施方式提供的第一匹配电路M1的示意图。本申请对于第一匹配电路M1的具体结构不做限定。第一匹配电路M1包括以下一种或多种选频滤波电路。
请参阅图7,第一匹配电路M1包括电感L0与电容C0串联形成的带通电路。
请参阅图8,第一匹配电路M1包括电感L0与电容C0并联形成的带阻电路。
请参阅图9,第一匹配电路M1包括电感L0、第一电容C1、及第二电容C2形成的带通或带阻电路。电感L0与第一电容C1并联,且第二电容C2电连接电感L0与第一电容C1电连接的节点。
请参阅图10,第一匹配电路M1包括电容C0、第一电感L1、及第二电感L2形成的带通或带阻电路。电容C0与第一电感L1并联,且第二电感L2电连接电容C0与第一电感L1电连接的节点。
请参阅图11,第一匹配电路M1包括电感L0、第一电容C1、及第二电容C2形成的带通或带阻电路。电感L0与第一电容C1串联,且第二电容C2的一端电连接电感L0未连接第一电容C1的第一端,第二电容C2的另一端电连接第一电容C1未连接电感L0的一端。
请参阅图12,第一匹配电路M1包括电容C0、第一电感L1、及第二电感L2形成的带通或带阻电路。电容C0与第一电感L1串联,第二电感L2的一端电连接电容C0未连接第一电感L1的一端,第二电感L2的另一端电连接第一电感L1未连接电容C0的一端。
请参阅图13,第一匹配电路M1包括第一电容C1、第二电容C2、第一电感L1、及第二电感L2。第一电容C1与第一电感L1并联,第二电容C2与第二电感L2并联,且第二电容C2与第二电感L2并联形成的整体的一端电连接第一电容C1与第一电感L1并联形成的整体的一端。
请参阅图14,第一匹配电路M1包括第一电容C1、第二电容C2、第一电感L1、及第二电感L2,第一电容C1与第一电感L1串联形成第一单元101,第二电容C2与第二电感L2串联形成第二单元102,且第一单元101与第二单元102并联。
第一匹配电路M1通过以上的一种或多种选频滤波电路选取所需频段的射频信号,例如选取1GHz~3GHz的射频信号或选取1GHz~4GHz的射频信号,并将所选取的射频信号发送至第一子辐射体11和第二子辐射体12,以便于第一子辐射体11和第二子辐射体12能够收发所需的电磁波信号。
本申请提供的天线组件100的具体结构包括但不限于以下的实施方式。
第一种天线组件100的实施方式中,请参阅图3,第一子辐射体11的第一接地点A位于第一自由端111。第一子辐射体11及其接地路径形成大致呈L形的枝节。第二子辐射体12的第二接地点D位于第二耦合端121与第二自由端122之间。第二子辐射体12及其接地路径形成大致呈T形的枝节。
以下结合第一种实施方式提供的天线组件100的回波损耗曲线图对天线组件100所产生的谐振模式进行具体的说明。
请参阅图5,辐射体10在信号源20的激励下可同时支持三个谐振模式。其中,这三个谐振模式分别为第一谐振模式a、第二谐振模式b及第三谐振模式c。其中,第一谐振模式a的中心频率、第二谐振模式b的中心频率、第三谐振模式c的中心频率分别为第一频率f1、第二频率f2及第三频率f3。第一频率f1、第二频率f2及第三频率f3两两之间保持适当的间隔。可选的,第一频率f1、第二频率f2及第三频率f3依次增加。在回波损耗曲线中,取回波损耗值的绝对值大于或等于5dB为具有较高的电磁波收发效率的参考值。如此,得到第一谐振模式a、第二谐振模式b及第三谐振模式c所支持的频段分别为第一频段T1、第二频段T2、第三频段T3。
本实施方式中,第一频段T1、第二频段T2、第三频段T3三者为两两连续的频率,如此,第一谐振模式a、第二谐振模式b及第三谐振模式c所支持的频段所形成的带宽为第一频段T1+第二频段T2+第三频段T3所形成的带宽,以形成大于1GHz的带宽,例如1.3GHz等。
就常用的应用频段而言,本实施方式将天线组件100应用于1.6GHz~2.9GHz的频段,以同时支持支持多组运营商所规划的多个不同的频段,例如,B1、B3、B7、N1、N3、N7等,有利于满足不同运营商的频段划分要求。
请参阅图5,第一谐振模式a的中心频率约为1.724GHz,第一频段T1约为1.62GHz~1.98GHz。第一谐振模式a能够支持B3/N3。第二谐振模式b的中心频率约为2.264GHz,第二频段T2约为1.98GHz~2.46GHz。第二谐振模式b能够支持B1/N1。第三谐振模式c的中心频率约为2.676GHz,第三频段T3约为2.46GHz~2.88GHz。第三谐振模式c能够支持B7/N7。从图5中可以看出第一频段T1、第二频段T2及第三频段T3相连续并聚合形成目标应用频段。目标应用频段能够覆盖1.6~2.9GHz的频段,进而支持1.3G的带宽。需要说明的是,通过调节辐射体10的有效电长度及馈电位置,还可以调节目标应用频段包括但不限于为1.6GHz~3GHz,2GHz~3.4GHz,2.6GHz~4GHz,3.6GHz~5GHz等,目标应用频段的带宽包括但不限于为1.8G、2G、2.5G、3G等等。
当目标应用频段覆盖1.6GHz~3GHz时,天线组件100对于LTE 4G频段的支持频段包括但不限于B1、B2、B3、B4、B7、B32、B38、B39、B40、B41、B48、B66中的至少一者,天线组件100对于NR 5G频段的支持频段包括但不限于N1、N2、N3、N4、N7、N32、N38、N39、N40、N41、N48、N66中的至少一者。本申请提供的天线组件100能够覆盖上述NR 5G频段和LTE 4G频段的任意组合。当然,天线组件100可只加载4G LTE信号(B1+B3+B7),或只加载5G NR信号(N1+N3+N7),或还可以为同时加载4G LTE信号与5GNR信号(B1+N3+B7),即实现4G无线接入网与5G-NR的双连接(LTE NR Double Connect,EN-DC)。当天线组件100单独加载4G LTE信号或5G NR信号时,天线组件100所收发的频段包括多个载波(载波即特定频率的无线电波)聚合而成,即实现载波聚合(Carrier Agregation,CA),以增加传输带宽,提升吞吐量,提升信号传输速率。
以上列举频段可能为多个运营商会应用到的中高频段,本申请提供的天线组件100可同时支持上述的任意一种或多种频段的组合,以使本申请提供的天线组件100能够支持多个不同的运营商所对应的电子设备1000机型,无需针对不同的运营商采用不同的天线结构,进一步地提高天线组件100的应用范围和兼容性。
当然,在其他实施方式中,天线组件100还可以应用于5.925GHz~7.125GHz的频段,以支持WiFi-6E频段等等。
当然,在其他实施方式中,第一频段T1、第二频段T2、第三频段T3三者中可有一者与其他两者不连续或者两两皆不连续,例如,在覆盖(B3/N3+B1/N1+B7/N7)中,由于B3/N3的频段为[1.71~1.785GHz],B1/N1的频段为[1.92~1.98GHz],B7/N7的频段为[2.5~2.57GHz],故在[2.0~2.5GHz)内可无需相对较高的效率,可使得第二频段T2、第三频段T3在[2.0~2.5GHz)频段不连续,相较于第一频段T1、第二频段T2、第三频段T3皆连续的方案,可第三谐振模式c在更高频率的覆盖;此外,由于在[1.8~1.9GHz]内也无需相对较高的效率,故可调谐第一频段T1、第二频段T2、第三频段T3分别覆盖[1.71~1.785GHz]、[1.92~1.98GHz]及[2.5~2.57GHz],如此,第一频段T1、第二频段T2在[1.8~1.9GHz]可不连续,及第二频段T2、第三频段T3在[2.0~2.5GHz)可不连续。在其他实施方式中,还可以调谐第一频段T1、第二频段T2支持中高频段例如B3/N3+B1/N1,而第三频段T3支持超高频段,例如N78(3.3~3.8GHz)等。具体的调谐第一频段T1、第二频段T2、第三频段T3的位置的具体实施方式在后续进行说明。
以下从电流密度分布的角度分析第一谐振模式a至第三谐振模式c。
请参阅图15,第一谐振模式a的第一谐振电流R1的电流密度主要分布于第一接地点A至第一耦合端112之间及第二耦合端121至第二接地点D之间,其中,第一谐振电流R1在第一接地点A和第一耦合端112之间的流向与在第二耦合端121和第二接地点D之间的流向相同。具体的,请参阅图15,第一谐振电流R1从第一参考地GND1流向第一接地点A,再从第一接地点A沿第一子辐射体11流向第一耦合端112,第一谐振电流R1经耦合缝隙13流向第二耦合端121,再从第二耦合端121流向第二接地点D,经第二接地点D流向第二参考地GND2。或者,第一谐振电流R1从第二参考地GND2流向第二接地点D,再从第二接地点D流向第二耦合端121,经耦合缝隙13流向第一耦合端112,再从第一耦合端112流向第一接地点A,经第一接地点A流向第一参考地GND1。需要说明的是,第一谐振电流R1主要分布在第一子辐射体11、第二子辐射体12上第二接地点D靠近第一子辐射体11的一段,第二子辐射体12上第二接地点D远离第一子辐射体11的一段也存在第一谐振电流R1但电流密度相对较弱。以上的第一谐振电流R1分布形成第一谐振模式。
请参阅图16,第二谐振模式b的第二谐振电流R2的电流密度分布于第一接地点A至第一耦合端112之间、第二耦合端121至第二自由端122之间。其中,第二谐振电流R2在第一接地点A和第一耦合端112之间的流向与在第二耦合端121和第二接地点D之间的流向相反。第二谐振电流R2在第二接地点D和第二自由端122之间的流向与在第二耦合端121和第二接地点D之间的流向相反。具体的,第二谐振电流R2的第一部分从第一耦合端112流向第一接地点A并经第一接地点A回地;第二谐振电流R2的第二部分从第二耦合端121流向第二接地点D,并经第二接地点D回地;第二谐振电流R2的第三部分从第二自由端122流向第二接地点D,并经第二接地点D回地。或者,第二谐振电流R2的第一部分从第一参考地GND1流向第一接地点A,并经第一接地点A流向第一耦合端112;第二谐振电流R2的第二部分从第二参考地GND2流向第二接地点D,并经第二接地点D流向第二耦合端121,第二谐振电流R2的第三部分从第二接地点D流向第二自由端122。以上的第二谐振电流R2分布形成第二谐振模式b。其中,第二子辐射体12为T形天线,第二子辐射体12的第二接地点D两侧的电流流向相反,在T形天线上呈单极子特性,该单极子特性使第二子辐射体12能够激励起较多的地板(即参考地)电流,进而提高辐射效率,以在第二频率f2处产生第二谐振模式b。
请参阅图17,第三谐振模式c的第三谐振电流R3的电流密度分布于第一接地点A至第一耦合端112之间、第二耦合端121至第二自由端122之间。其中,第三谐振电流R3在第一接地点A和第一耦合端112之间的流向与在第二耦合端121和第二接地点D之间的流向相反,第三谐振电流R3在第二接地点D和第二自由端122之间的流向与在第二耦合端121和第二接地点D之间的流向相同。具体的,第三谐振电流R3的第一部分从第一耦合端112流向第一接地点A并经第一接地点A回地;第三谐振电流R3的第二部分从第二耦合端121流向第二接地点D,并经第二接地点D回地;第三谐振电流R3的第三部分从第二接地点D流向第二自由端122。或者,第三谐振电流R3的第一部分从第一参考地GND1流向第一接地点A,并经第一接地点A流向第一耦合端112;第三谐振电流R3的第二部分从第二参考地GND2流向第二接地点D,并经第二接地点D流向第二耦合端121,第三谐振电流R3的第三部分从第二自由端122流向第二耦合端121。以上的第三谐振电流R3分布形成第三谐振模式c。其中,第二子辐射体12为T形天线,第二子辐射体12的第二接地点D两侧的电流流向相同,在T形天线上呈偶极子特性,该偶极子特性能够形成较高的辐射效率,进而在第三频率f3处产生第三谐振模式c。
可以理解的,从第一谐振模式a、第二谐振模式b及第三谐振模式c的谐振电流密度分布来看,第一谐振模式a、第二谐振模式b及第三谐振模式c对应的谐振电流具有部分的相同流向,例如从第二耦合端121至第二接地点D的流向,如此,三个谐振模式可相互增强,以提升天线组件100所支持的频段宽度。
以下从第一谐振频率f1、第二谐振频率f2及第三谐振频率f3所对应的波长模式的角度分析产生第一谐振模式a、第二谐振模式b及第三谐振模式c。
请一并参考图5及图15,第一谐振模式a的中心频率所对应的波长为第一波长。可选的,第一谐振模式a支持第一子辐射体11工作在(1/8~1/4)波长模式。具体的,第一子辐射体11的长度约为第二波长的(1/8~1/4)倍。换言之,第一子辐射体11的长度约为第一频率f1对应的波长的(1/8~1/4)倍。当第一谐振电流R1的流通路径上未设置调节频率偏移的匹配电路时,第一子辐射体11的长度约为第一频率f1对应的波长的(1/4)倍,以使第一子辐射体11在第一频率f1下产生较高的收发效率,进而在第一频率f1处产生谐振,以形成第一谐振模式a。当在第一谐振电流R1的流通路径上设置对第一频段T1呈容性的接地匹配电路时,容性加载可使得谐振频率朝向低频偏移,故在第一频率f1处形成谐振所对应的第一子辐射体11的长度可以缩短,例如减小至第一频率f1对应的波长的1/8倍等,进一步地减小第一子辐射体11的尺寸。此外,第一匹配电路M1中也可以设有接地的容性电路,在第一谐振电流R1所流经的区域进行容性加载,使得谐振频率朝向低频偏移,故在第一频率f1处形成谐振所对应的第一子辐射体11的长度缩短,例如减小至第一频率f1对应的波长的1/8倍等。
可选的,请一并参考图5及图16,第二谐振模式b的中心频率所对应的波长为第二波长。第二谐振模式b支持第二耦合端121至第二接地点D之间的第二子辐射体12工作在(1/8~1/4)波长模式。具体的,第二耦合端121至第二接地点D之间的长度约为第二波长的(1/8~1/4)倍。换言之,第二耦合端121至第二接地点D之间的长度约为第二频率f2对应的波长的(1/8~1/4)倍。当第二谐振电流R2 的流通路径上未设置调节频率偏移的匹配电路时,第二耦合端121至第二接地点D之间的长度约为第二频率f2对应的波长的(1/4)倍,以使第二耦合端121至第二接地点D之间的第二子辐射体12在第二频率f2下产生较高的收发效率,进而在第二频率f2处产生谐振,以形成第二谐振模式b。当在第二谐振电流R2的流通路径上设置对第二频段T2呈容性的接地匹配电路时,容性加载皆可使得谐振频率朝向低频偏移,故在第二频率f2处形成谐振所对应的第二耦合端121至第二接地点D之间的长度缩短,例如,减小至第二频率f2对应的波长的1/8倍等,进一步地减小第二子辐射体12的尺寸。此外,第一匹配电路M1中也可以设有接地的容性电路,在第二谐振电流R2所流经的区域进行容性加载,使得谐振频率朝向低频偏移,故在第二频率f2处形成谐振所对应的第二耦合端121至第二接地点D之间的长度缩短至小于第二频率f2对应的波长的1/8倍。
可选的,请一并参考图5及图17,第三谐振模式c的中心频率所对应的波长为第三波长。第三谐振模式c支持第二子辐射体12工作在(1/2)波长模式。第二子辐射体12的长度约为第三波长的(1/2)倍。其中,在未设置用于调节频率的匹配电路情况下,第二子辐射体12的长度约为第三波长的1/2倍,以为后续的天线组件100在第二频率f2、第三频率f3处产生较高的信号收发效率创造条件。进一步,通过在第三谐振电流R3密度分布路径上设置接地的容性匹配电路,可进一步地缩短第二子辐射体12的长度。
进一步地,通过调节第一子辐射体11的长度、第二子辐射体12的长度、馈电点B的位置、第二接地点D的位置,可以调节第一频率f1、第二频率f2、第三频率f3的位置,以使第一频率f1、第二频率f2、第三频率f3相互靠近,使第一频段T1、第二频段T2及第三频段T3连续,能够支持较宽的频宽,覆盖所需要覆盖的频段,进而提高天线组件100的吞吐量及提高电子设备1000的上网速率。
第二种可能的天线组件100的实施方式中,请参照图4及图6,第一子辐射体11的第一接地点A位于第一自由端111与第一耦合端112之间。第一子辐射体11及其接地路径形成大致呈T形的枝节。本申请对于第一接地点A在第一自由端111与第一耦合端112之间的具体位置不做限定,可选的,第一接地点A与第一自由端111之间的长度是第一子辐射体11长度的(1/4)~(3/4)倍。可选的,在第一接地点A与第一自由端111之间的长度是第一子辐射体11长度的(3/8)~(5/8)倍。第一接地点A可位于靠近第一子辐射体11的几何中心的位置,利于形成单极子模式和偶极子模式的谐振电流密度分布,增加天线组件100的带宽及效率。
第二子辐射体12的第二接地点D位于第二耦合端121与第二自由端122之间。第二子辐射体12及其接地路径形成大致呈T形的枝节。
以下结合第二种实施方式提供的天线组件100的回波损耗曲线图对天线组件100所产生的谐振模式进行具体的说明。
请参照图4及图6,辐射体10在信号源20的激励下可同时支持四个谐振模式。其中,这四个谐振模式分别为第四谐振模式d、第五谐振模式e、第六谐振模式f及第七谐振模式g。其中,第四谐振模式d的中心频率、第五谐振模式e的中心频率、第六谐振模式f及第七谐振模式g的中心频率分别为第四频率f4、第五频率f5、第六频率f6及第七频率f7。第四频率f4、第五频率f5、第六频率f6及第七频率f7依次之间保持适当的间隔。可选的,第四频率f4、第五频率f5、第六频率f6及第七频率f7依次增加。在回波损耗曲线中,取回波损耗值的绝对值大于或等于5dB为具有较高的电磁波收发效率的参考值。如此,得到第四谐振模式d、第五谐振模式e、第六谐振模式f及第七谐振模式g所支持的频段分别为第四频段T4、第五频段T5、第六频段T6及第七频段T7。
相较于第一种实施方式提供的天线组件100而言,本实施方式通过对第一接地点A的位置进行改进,以使第一子辐射体11和第二子辐射体12上能够产生更多的谐振电流密度分布模式,进而支持四种谐振模式,谐振模式数量的增加,可进一步增加带宽及天线组件100在该带宽内的效率。
请参阅图6,第四谐振模式d的中心频率约为1.449GHz,第四频段T4约为(1.41~1.56GHz)。第四谐振模式d能够支持B32(1.452~1.496GHz)、B21(1.447~1.51GHz)、N75(1.43~1.517GHz)等频段。第五谐振模式e的中心频率约为1.764GHz,第五频段T5约为(1.56~1.98GHz)。第五谐振模式e能够支持B3/N3等频段。第六谐振模式f的中心频率约为2.191GHz,第六频段T6约为(1.98~2.36GHz)。第六谐振模式f能够支持B1/N1等频段;第七谐振模式g的中心频率约为2.572GHz,第七频段T7约为 (2.36~2.74GHz)。第七谐振模式g能够支持B7/N7、N41等频段。需要说明的是,以上各个谐振模式的中心频率、谐振模式所支持的频段为根据图6中的曲线得到,而上述的曲线中的数据只是一种举例,通过调节第一子辐射体11的长度、第二子辐射体12的长度、馈电点B的位置、第一接地点A的位置、第二接地点D的位置、设置接地的调频匹配电路等方式可调节上述谐振模式的中心频率、谐振模式所支持的频段。
请参阅图6,本实施方式中,第四频段T4、第五频段T5、第六频段T6及第七频段T7四者依次连续,以聚合形成带宽较宽的目标应用频段,例如带宽为1.3G,覆盖的目标应用频段为1.42GHz~2.76GHz。需要说明的是,通过调节第一子辐射体11和第二子辐射体12的有效电长度、馈电位置、第一接地点A、第二接地点D的位置,还可以调节目标应用频段包括但不限于为1.6GHz~3GHz,2GHz~3.4GHz,2.6GHz~4GHz,3.6GHz~5GHz等,目标应用频段的带宽包括但不限于为1.8G、2G、2.5G、3G等等。
就常用的应用频段而言,本实施方式将天线组件100应用于1.42~2.76GHz的频段,以同时支持支持多组运营商所规划的落入1.42~2.76GHz的频段的NR 5G频段和LTE 4G频段,例如,B32(1.452~1.496GHz)、B21(1.447~1.51GHz)、B1、B3、B7、N1、N3、N7、N41(2.496~2.69GHz)、N75(1.43~1.517GHz)等,有利于满足不同运营商的频段划分要求。本实施方式相较于第一种实施方式而言,增加了对于1.4GHz~1.5GHz以较高效率的覆盖,可实现对(B32+B3+B1+B7)、(B75+B3+B1+B7)、(B21+B3+B1+B7)、(B3+N41)、(B3+B1+N7)、(B3+N1)等频段的覆盖,从而实现很好的ENDC/CA性能。
当然,在其他实施方式中,天线组件100还可以应用于5.925GHz~7.125GHz的频段,以支持WiFi-6E频段等等。
当然,在其他实施方式中,第四频段T4、第五频段T5、第六频段T6及第七频段T7四者中的三者连续,及另一者与相连续的三者相间隔,三个频段连续可满足一定的带宽,另一者不连续可满足一个天线组件100支持一定频率跨度的频段的覆盖,例如,一个天线组件100同时支持中高频和超高频;或者,第四频段T4、第五频段T5、第六频段T6及第七频段T7四者中的两者连续,另两者连续或不连续;或者,第四频段T4、第五频段T5、第六频段T6及第七频段T7四者皆不连续,以使天线组件100所能够支持的频段可具有一定的频率跨度。
例如,在覆盖(B32+B3/N3+B1/N1+B7/N7)中,由于B32的频段为(1.452~1.496GHz)B3/N3的频段为[1.71~1.785]GHz,B1/N1的频段为[1.92~1.98]GHz,B7/N7的频段为[2.5~2.57]GHz,故在[1.5~1.7)GHz内可无需相对较高的效率,可使得第四频段T4、第五频段T5在[1.5~1.7)GHz频段不连续。在其他实施方式中,还可以调谐第四频段T4、第五频段T5支持中高频段例如B3/N3+B1/N1,而第六频段T6及第七频段T7支持超高频段,例如N78(3.3~3.8GHz)等。
请参阅图18,图18是本申请提供的天线组件100在极致全面屏环境下的效率。图18中虚线为图4提供的天线组件100的系统辐射效率曲线。图18中实线为图4提供的天线组件100的系统总效率曲线。本申请以显示屏200、中框420内的金属合金等作为参考地GND,天线组件100的辐射体10与参考地GND之间的距离小于或等于0.5mm。换言之,天线组件100的净空区域为0.5mm,完全满足现在手机等电子设备1000的环境需求。由图18可知,即使在极小的净空区域下,天线组件100在1.43~2.69GHz之间保持较高的效率。例如,天线组件100在1.43~2.69GHz之间的效率大于或等于-5dB。-5dB效率相对带宽达60%以上,实现超宽带覆盖。由于第四谐振模式d至第七谐振模式g相互增强,实现同样的效率,可以使得净空更小,如此,可促进电子设备1000的小型化。
由上可知,本申请提供的天线组件100在极小的净空区域下仍具有较高的辐射效率,则天线组件100应用于电子设备1000中具有较小的净空区域,相较于其他需要较大的净空区域才能具有较高的效率的天线,能够减小电子设备1000的整体体积。
以下从电流密度分布的角度分析产生第四谐振模式d至第七谐振模式f。
请参阅图6及图19,第四谐振模式d的第四谐振电流R4的电流密度至少分布或主要分布于第一自由端111至第一耦合端112之间。其中,第四谐振电流R4在第一自由端111和第一接地点A之间的流向与在第一接地点A和第一耦合端112之间的流向相反。具体的,第四谐振电流R4的一部分从第一自由端111流向第一接地点A,并经第一接地点A下地;第四谐振电流R4的另一部分从第一耦合端112 流向第一接地点A,并经第一接地点A下地。或者,第四谐振电流R4的一部分从第一接地点A流向第一耦合端112,第四谐振电流R4的另一部分从第一接地点A流向第一自由端111。需要说明的是,第二子辐射体12上也存在少量的第四谐振电流R4但电流密度相对较弱。其中,第一子辐射体11为T形天线,第一子辐射体11的第一接地点A两侧的电流流向相反,在T形天线上呈单极子特性,该单极子特性使第一子辐射体11能够激励起较多的地板(即参考地)电流,进而提高辐射效率,以在第四频率f4处产生第四谐振模式d。
请参阅图6及图20,第五谐振模式e的第五谐振电流R5的电流密度至少分布或主要分布于第一自由端111至第一耦合端112之间及第二耦合端121至第二接地点D之间,其中,第五谐振电流R5在第一自由端111和第一接地点A之间的流向、在第一接地点A和第一耦合端112之间的流向、在第二耦合端121和第二接地点D之间的流向皆相同。具体的,第五谐振电流R5的第一部分从第二参考地GND2流向第二接地点D,再从第二接地点D流向第二耦合端121,经耦合缝隙13流向第一耦合端112,再从第一耦合端112流向第一接地点A,经第一接地点A流向第一参考地GND1、第五谐振电流R5从第一接地点A流向第一自由端111。或者,第五谐振电流R5的第一部分从第一参考地GND1流向第一接地点A,再从第一接地点A沿第一子辐射体11流向第一耦合端112,经耦合缝隙13流向第二耦合端121,再从第二耦合端121流向第二接地点D,经第二接地点D流向第二参考地GND2,第五谐振电流R5的另一部分从第一接地点A流向第一自由端111。需要说明的是,第五谐振电流R5主要分布在第一子辐射体11、第二子辐射体12上第二接地点D靠近第一子辐射体11的一段,第二子辐射体12上第二接地点D远离第一子辐射体11的一段也存在第五谐振电流R5但电流密度相对较弱。其中,第一子辐射体11为T形天线,第一子辐射体11的第一接地点A两侧的电流流向相同,在T形天线上呈偶极子特性,该偶极子特性使第一子辐射体11能够激励较高的辐射效率,以在第五频率f5处产生第五谐振模式e。
请参阅图6及图21,第六谐振模式f的第六谐振电流R6的电流密度主要分布于第一接地点A至第一耦合端112之间、第二耦合端121至第二自由端122之间。其中,第六谐振电流R6在第一接地点A和第一耦合端112之间的流向与在第二耦合端121和第二接地点D之间的流向相反。第六谐振电流R6在第二接地点D和第二自由端122之间的流向与在第二耦合端121和第二接地点D之间的流向相反。具体的,第六谐振电流R6的第一部分从第一耦合端112流向第一接地点A并经第一接地点A回地;第六谐振电流R6的第二部分从第二耦合端121流向第二接地点D,并经第二接地点D回地;第六谐振电流R6的第三部分从第二自由端122流向第二接地点D,并经第二接地点D回地。或者,第六谐振电流R6的第一部分从第一参考地GND1流向第一接地点A,并经第一接地点A流向第一耦合端112;第六谐振电流R6的第二部分从第二参考地GND2流向第二接地点D,并经第二接地点D流向第二耦合端121,第六谐振电流R6的第三部分从第二接地点D流向第二自由端122。其中,第二子辐射体12为T形天线,第二子辐射体12的第二接地点D两侧的电流流向相反,在T形天线上呈单极子特性,该单极子特性使第二子辐射体12能够激励起较多的地板(即参考地)电流,进而提高辐射效率,以在第六频率f6处产生第六谐振模式f。
请参阅图6及图22,第七谐振模式g的第七谐振电流R7的电流密度主要分布于第一接地点A至第一耦合端112之间、第二耦合端121至第二自由端122之间。其中,第七谐振电流R7在第一接地点A和第一耦合端112之间的流向与在第二耦合端121和第二接地点D之间的流向相反,第七谐振电流R7在第二接地点D和第二自由端122之间的流向与在第二耦合端121和第二接地点D之间的流向相同。具体的,第七谐振电流R7的第一部分从第一耦合端112流向第一接地点A并经第一接地点A回地;第七谐振电流R7的第二部分从第二耦合端121流向第二接地点D,并经第二接地点D回地;第七谐振电流R7的第三部分从第二接地点D流向第二自由端122。或者,第七谐振电流R7的第一部分从第一参考地GND1流向第一接地点A,并经第一接地点A流向第一耦合端112;第七谐振电流R7的第二部分从第二参考地GND2流向第二接地点D,并经第二接地点D流向第二耦合端121,第七谐振电流R7的第三部分从第二自由端122流向第二接地点D。其中,第二子辐射体12为T形天线,第二子辐射体12的第二接地点D两侧的电流流向相同,在T形天线上呈偶极子特性,该偶极子特性能够形成较高的辐射效率,进而在第七频率f7处产生第七谐振模式g。
可以理解的,从第四谐振模式d、第五谐振模式e、第六谐振模式f及第七谐振模式g的谐振电流密度分布来看,第四谐振模式d、第五谐振模式e、第六谐振模式f及第七谐振模式g对应的谐振电流具有部分的相同流向,例如从第一耦合端112至第一接地点A的流向,如此,四个谐振模式可相互增强,以提升天线组件100所支持的频段宽度。
基于上述的谐振电流模式,在各个谐振电流密度分布下的第一子辐射体11、第二子辐射体12的长度可具有以下的实施方式,以使各谐振电流激励起谐振模式。
以下从第四谐振频率f4、第五谐振频率f5、第六谐振频率f6、第七谐振频率f7、对应的波长模式的角度分析产生第四谐振模式d至第七谐振模式f。
请参阅图6及图19,第四谐振模式d的中心频率所对应的波长为第四波长。可选的,第四谐振模式d支持第一接地点A至第一耦合端112之间的第一子辐射体11工作在(1/8~1/4)波长模式。具体的,第一接地点A至第一耦合端112的长度约为第四波长的(1/8~1/4)倍。换言之,第一接地点A至第一耦合端112的长度约为第四频率f4对应的波长的(1/8~1/4)倍。当第四谐振电流R4的流通路径上未设置调节频率偏移的匹配电路时,第一接地点A至第一耦合端112的长度约为第四频率f4对应的波长的(1/4)倍,以使第一接地点A至第一耦合端112的第一子辐射体11在第四频率f4下产生较高的收发效率,进而在第四频率f4处产生谐振,以形成第四谐振模式d。当在第四谐振电流R4的流通路径上设置对第四频段T4呈容性的接地匹配电路时,容性加载可使得谐振频率朝向低频偏移,故在第四频率f4处形成谐振所对应的第一接地点A至第一耦合端112之间的长度可以缩短,例如减小至第四频率f4对应的波长的1/8倍等,进一步地减小第一子辐射体11的尺寸。此外,第一匹配电路M1中也可以设有接地的容性电路,在第四谐振电流R4所流经的区域进行容性加载,使得谐振频率朝向低频偏移,故在第四频率f4处形成谐振所对应的第一子辐射体11的长度缩短,例如减小至第四频率f4对应的波长的1/8倍等。
请参阅图6及图20,第五谐振模式f的中心频率所对应的波长为第五波长。可选的,第五谐振模式e支持第一子辐射体11工作在(1/2)波长模式。具体的,第一子辐射体11的长度约为第五波长的(1/2)倍。换言之,第一子辐射体11的长度约为第五频率f5对应的波长的(1/2)倍。第一子辐射体11的长度约为第五频率f5对应的波长的(1/2)倍,以使第一子辐射体11在第五频率f5下产生较高的收发效率,进而在第五频率f5处产生谐振,以形成第五谐振模式e。进一步,通过在第五谐振电流R5密度分布路径上设置接地的容性匹配电路,可进一步地缩短第一子辐射体11的长度。
请参阅图6及图21,第六谐振模式f的中心频率所对应的波长为第六波长。第六谐振模式f支持第二耦合端121至第二接地点D之间的第二子辐射体12工作在(1/8~1/4)波长模式。具体的,第二耦合端121至第二接地点D之间的长度约为第六波长的(1/8~1/4)倍。换言之,第二耦合端121至第二接地点D之间的长度约为第六频率f6对应的波长的(1/8~1/4)倍。当第六谐振电流R6的流通路径上未设置调节频率偏移的匹配电路时,第二耦合端121至第二接地点D之间的长度约为第六频率f6对应的波长的(1/4)倍,以使第二耦合端121至第二接地点D之间的第二子辐射体12在第六频率f6下产生较高的收发效率,进而在第六频率f6处产生谐振,以形成第六谐振模式f。当在第六谐振电流R6的流通路径上设置对第六频段T6呈容性的接地的匹配电路时,容性加载皆可使得谐振频率朝向低频偏移,故在第六频率f6处形成谐振所对应的第二耦合端121至第二接地点D之间的长度缩短,例如,减小至第六频率f6对应的波长的1/8倍等,进一步地减小第二子辐射体12的尺寸。此外,第一匹配电路M1中也可以设有接地的容性电路,在第六谐振电流R6所流经的区域进行容性加载,使得谐振频率朝向低频偏移,故在第六频率f6处形成谐振所对应的第二耦合端121至第二接地点D之间的长度缩短至小于第六频率f6对应的波长的1/8倍。
请参阅图6及图22,第七谐振模式g的中心频率所对应的波长为第七波长。第七谐振模式g支持第二子辐射体12工作在(1/2)波长模式。第二子辐射体12的长度约为第七波长的(1/2)倍。其中,第二子辐射体12的长度约为第七波长的1/2倍,以为后续的天线组件100在第七频率f7处产生较高的信号收发效率创造条件。进一步,通过在第七谐振电流R7密度分布路径上设置接地的容性匹配电路,可进一步地缩短第二子辐射体12的长度。
由第一种实施方式提供的天线组件100和第二种实施方式提供的天线组件100可以看出,第一谐振 电流R1的密度分布与第五谐振电流R5的密度分布部分相同,第二谐振电流R2与第六谐振电流R6的密度分布相同,第三谐振电流R3与第七谐振电流R7的密度分布相同。换言之,第一种实施方式和第二种实施方式中具有以下的电流密度分布,第一电流密度分布于第一接地点A至第二接地点D,具体为第一参考地GND1流向第一接地点A,第一接地点A流向第一耦合端112、经耦合缝隙13后流向第二耦合端121,第二耦合端121流向第二接地点D,并流向第二参考地GND2;或者,第二参考地GND2流向第二接地点D,第二接地点D流向第二耦合端121、经耦合缝隙13后流向第一耦合端112,第一耦合端112流向第一接地点A,并流向第一参考地GND1。
第二电流密度分布于第一接地点A至第一耦合端112之间、第二耦合端121至第二自由端122之间。其中,第六谐振电流R6在第一接地点A和第一耦合端112之间的流向与在第二耦合端121和第二接地点D之间的流向相反。该第二电流密封分布支持第一种实施方式提供的天线组件100和第二种实施方式提供的天线组件100皆产生第一子谐振模式,其中,第二耦合端121和第二接地点D之间的长度与第一子谐振模式的中心频率的1/4波长相对应,进一步,通过在第二电流密度分布路径上设置接地的容性匹配电路,以使第二耦合端121和第二接地点D之间的长度缩短至与第一子谐振模式的中心频率的1/8波长相对应。
第三电流密度分布于第一接地点A至第一耦合端112之间、第二耦合端121至第二自由端122之间。其中,第七谐振电流R7在第一接地点A和第一耦合端112之间的流向与在第二耦合端121和第二接地点D之间的流向相反,第七谐振电流R7在第二接地点D和第二自由端122之间的流向与在第二耦合端121和第二接地点D之间的流向相同。该第三电流密封分布支持第一种实施方式提供的天线组件100和第二种实施方式提供的天线组件100皆产生第二子谐振模式,其中,第二子辐射体12的长度与第二子谐振模式的中心频率的1/2波长相对应,进一步,通过在第三电流密度分布路径上设置接地的容性匹配电路,可进一步地缩短第二子辐射体12的长度。
进一步地,通过调节第一子辐射体11的长度、第二子辐射体12的长度、第一接地点A的位置、馈电点B的位置、第二接地点D的位置,可以调节第四频率f4、第五频率f5、第六频率f6、第七频率f7的位置,以使第四频率f4、第五频率f5、第六频率f6、第七频率f7相互靠近,使第四频段T4、第五频段T5、第六频段T6及第七频段T7连续,能够支持较宽的频宽,覆盖所需要覆盖的频段,进而提高天线组件100的吞吐量及提高电子设备1000的上网速率。
以下对于通过在口径上设置接地的匹配电路调节各个谐振模式的频率偏移,缩短第一子辐射体11、第二子辐射体12的长度,以进一步地缩短整个天线组件100的堆叠尺寸。
请参阅图23,第一匹配电路M1包括第一子电路M11。第一子电路M11电连接馈电点B,第一子电路M11的另一端电连接至第三参考地GND3。第一子电路M11能够调节谐振电流经过第一子电路M11的谐振模式的频偏。第一子电路M11工作在第四谐振模式d所支持的频段(第四频段T4)、第五谐振模式e所支持的频段(第五频段T5)、第六谐振模式f所支持的频段(第六频段T6)及第七谐振模式g所支持的频段(第七频段T7)时呈容性。第一子电路M11能够使第四谐振模式d、第五谐振模式e、第六谐振模式f、第七谐振模式g的中心频率朝向低频方向移动,第一子电路M11类似于在第一辐射体11的第一接地点A与第一耦合端112之间“接上一段有效电长度”,所以在需要谐振的中心频率位置不变的情况下,通过设置第一子电路M11能够缩短第一接地点A与第一耦合端112之间的第一子辐射体11的实际长度。如此,实现第一子辐射体11的小型化,可以将第一接地点A至第一耦合端112之间的长度缩短至第四频率f4对应的1/8波长。
可选的,第一子电路M11包括但不限于电容,含有电容、电感、电阻的串联或并联电路等。
请参阅图24,第一子辐射体11还具有位于第一自由端111与第一接地点A之间的第一调频点P1。天线组件100还包括第二匹配电路M2。第二匹配电路M2的一端电连接第一调频点P1。第二匹配电路M2的另一端电连接第四参考地GND4。
第二匹配电路M2工作在第四谐振模式d所支持的频段(第四频段T4)及第五谐振模式e所支持的频段(第五频段T5)时呈容性,可使第四谐振模式d、第五谐振模式e的中心频率朝向低频侧移动,所以在需要谐振的中心频率位置不变的情况下,可以相对减小第一子辐射体11的第一自由端111与第一接地点A之间的实际长度。通过设置第二匹配电路M2能够缩短第一子辐射体11的第一接地点A与 第一耦合端112之间的实际长度。如此,实现第一子辐射体11的小型化,可以第一接地点A至第一耦合端112之间的长度缩短至第四频率f4对应的1/8波长。
第二匹配电路M2包括开关-电容-电感-电阻等形成的多条选择支路、可变电容等可调器件。这些可调器件用来调节第四谐振模式d和第五谐振模式e的位置,模式位置的改变也可以提升单频段的性能,还可以更好的满足不同频段的ENDC/CA组合。
请参阅图25,第二子辐射体12还具有位于第二耦合端121与第二接地点D之间的第二匹配点P2。天线组件100还包括第三匹配电路M3。第三匹配电路M3的一端电连接第二匹配点P2。第三匹配电路M3的另一端电连接第五参考地GND5。第三匹配电路M3工作在第五谐振模式e所支持的频段、第六谐振模式f所支持的频段及第七谐振模式g所支持的频段时呈容性,可使第五谐振模式e、第六谐振模式f、第七谐振模式g的中心频率朝向低频侧移动,所以在需要谐振的中心频率位置不变的情况下,可以相对减小第二子辐射体12的第二耦合端121与第二接地点D之间的实际长度。第三匹配电路M3类似于在第二耦合端121与第二接地点D之间的第二子辐射体12上“接上一段有效电长度”,所以在需要谐振的中心频率位置不变的情况下,通过设置第三匹配电路M3能够缩短第二子辐射体12的第二耦合端121与第二接地点D之间的实际长度。如此,实现第二子辐射体12的小型化,可以将第二耦合端121与第二接地点D之间的长度缩短至第六频率f6对应的1/8波长。
第三匹配电路M3包括开关-电容-电感-电阻等形成的多条选择支路、可变电容等可调器件。这些可调器件用来调节三个谐振模式位置,模式位置的改变也可以提升单频段的性能,还可以更好的满足不同频段的ENDC/CA组合。
请参阅图26,第二子辐射体12还具有位于第二接地点D与第二自由端122之间的第三匹配点P3。天线组件100还包括第四匹配电路M4。第四匹配电路M4的一端电连接第三匹配点P3。第四匹配电路M4的另一端电连接第六参考地GND6。第四匹配电路M4工作在第六谐振模式f所支持的频段及第七谐振模式g所支持的频段时呈容性,可使第六谐振模式f、第七谐振模式g的中心频率朝向低频侧移动,所以在需要谐振的中心频率位置不变的情况下,可以相对减小第二子辐射体12的第二耦合端121与第二接地点D之间的实际长度。如此,实现将第二子辐射体12的小型化,可以第二耦合端121与第二接地点D之间的长度缩短至第六频率f6对应的1/8波长。
第四匹配电路M4包括开关-电容-电感-电阻等形成的多条选择支路、可变电容等可调器件。这些可调器件用来调节谐振模式的位置,模式位置的改变也可以提升单频段的性能,还可以更好的满足不同频段的ENDC/CA组合。
可以理解的,在实际设计天线组件100时,可以在第一匹配电路M1的第一子电路M11、第二匹配电路M2、第三匹配电路M3、第四匹配电路M4中任意选择一个、两个或三个设于相对应的位置,也可以将第一匹配电路M1的第一子电路M11、第二匹配电路M2、第三匹配电路M3、第四匹配电路M4皆设于相对应的位置,如此,可以进一步地减小辐射体10的堆叠尺寸。
本实施方式的第一子电路M11、第二匹配电路M2、第三匹配电路M3还可以应用于第一种实施方式提供的天线组件100中,在此不再赘述。
第三种实施方式提供的天线组件100的大致结构与第二种实施方式中提供的天线组件100的结构相同,主要的不同之处在于,请参阅图27,馈电点B的位置位于第二耦合端121与第二接地点D之间。本实施方式提供的天线组件100也能够形成双“T”形的辐射体,在每个“T”形辐射体上皆可产生单极子模式的电流密度分布和双极子模式的电流密度分布,故也能够产生四个谐振模式,从而形成较宽的带宽或支持更多的频段。本实施方式中的电流密度分布、四种谐振模式、每个谐振模式所对应的波长模式以及通过匹配电路调节频率的偏移进行调节辐射体的长度等等皆可参考第二种实施方式,在此不再赘述。
以下结合附图对于以上任意一种实施方式提供的天线组件100的功能进行进一步地介绍,例如,天线组件100在实现天线信号收发的同时还能够进行待测主体的接近检测。待测主体包括但不限于人体头部、人体手部等。可以理解的,辐射体10为导电材质,辐射体10在作为天线信号收发端口的同时还能够作为接近信号的感应电极。本申请提供的天线组件100集成了收发电磁波信号及接近感应的双重功能且体积小。当天线组件100应用于电子设备1000时,确保电子设备1000具有通信功能及接近检测功能 的同时还能够使得电子设备1000的整体体积小。
具体的,天线组件100还包括隔直组件30、过滤组件50、检测组件40及控制器(未图示)。
以下结合第二种实施方式提供的天线组件100,对隔直组件30、过滤组件50的连接方式进行举例说明。
请参阅图28,隔直组件30及过滤组件50的第一种连接方式中,隔直组件30电连接于第一子辐射体11的馈电点B与信号源20之间(进一步地,隔直组件30电连接于馈电点B与第一匹配电路M1之间)、还电连接于第一子辐射体11的第一接地点A与第一参考地GND1之间。隔直组件30用于阻隔第一参考地GND1、信号源20及第一匹配电路M1所产生的直流电流及导通辐射体10收发的射频信号(该射频信号包括辐射体10与地极GND之间的射频信号、辐射体10与第一匹配电路M1之间的射频信号),以支持人体检测功能,提高人体靠近天线组件100时的检测准确性。
具体的,请参阅图28,隔直组件30包括第一子隔离器31和第二子隔离器32。第一子隔离器31电连接于第一接地点A与第一参考地GND1之间。第二子隔离器32电连接于馈电点B与第一匹配电路M1之间。通过设置隔直组件30,以使待测主体靠近辐射体10时所产生的感应信号不会影响到天线组件100对于天线信号的收发。具体的,第一子隔离器31和第二子隔离器32皆为容性器件。举例而言,第一子隔离器31、第二子隔离器32皆包括电容器。进一步地,第一子隔离器31和第二子隔离器32皆为电容器,第一子隔离器31和第二子隔离器32对天线组件100所支持的射频信号呈小阻抗到地,例如,第一子隔离器31和第二子隔离器32的值包括但不限于为47pF或22PF等。第一子隔离器31对第一参考地GND1的直流电流具有隔离作用,第二子隔离器32对第一匹配电路M的直流电流具有隔离作用,以支持人体检测功能,提高人体靠近天线组件100时的检测准确性。换言之,隔直组件30使得第一子辐射体11相对于直流电流呈“悬浮”状态,且能够顺利地将射频信号从第一匹配电路M1传输至馈电点B,及将射频信号从第一接地点A传输至第一参考地GND1。
请参阅图28,过滤组件50的一端电连接隔直组件30靠近于第一子辐射体11的一侧或电连接第一子辐射体11的任意位置。过滤组件50用于阻隔第一子辐射体11收发的射频信号及导通待测主体在靠近所述第一辐射体11时所产生的感应信号,以使第一子辐射体11收发的射频信号不会影响到检测组件40检测感应信号的检测准确性。
具体的,过滤组件50电连接于第一子隔离器31与第一接地点A之间;或,电连接于第二子隔离器32与馈电点B之间;或电连接于第一子辐射体11的任意位置。过滤组件50包括电感器件或为电感器件。例如,过滤组件50为电感。过滤组件50对于天线组件100所支持的射频信号呈大阻抗,电感值例如82nH。
以上隔直组件30和过滤组件50实现了感应信号及射频信号可同时作用且互不干扰。
检测组件40电连接过滤组件50的另一端,检测组件40用于检测辐射体10产生的感应信号的大小。可选的,检测组件40为用于检测电流信号、电压信号或电感信号的器件,例如微型检流计、微型电流互感器、电流比较器、电压比较器等等。
人体皮肤表面靠近第一子辐射体11时,人体皮肤表面与第一子辐射体11可分别等效为电容器的两个电极板。当人体的头部靠近时,第一子辐射体11可感应人体的头部带来的电荷量的变化。过滤组件50电连接第一子辐射体11。上述的电荷量变化形成感应信号,该感应信号经过滤组件50传输至检测组件40。根据电容计算公式,C=εS/4πkd,其中,d是人体(头部或者手部)与辐射体之间距离,所以当电容增加,即检测组件40所检测到的感应信号的强度增加时,说明人体在靠近;当电容减小,即检测组件40所检测到的感应信号的强度减小时,说明人体在远离。检测组件40通过检测上述的感应信号的变化,以判断人体的头部是否靠近于天线组件100的第一子辐射体11,从而智能降低人体头部对电磁波的比吸收率。
可选的,隔直组件30的至少部分还能够作为第一匹配电路M1的一部分,例如第二子隔离器32为电容器,第二子隔离器32用于阻隔感应信号,及导通射频信号的同时,还能够作为第一匹配电路M1的一部分,用以调谐信号源21与馈电点B之间的阻抗匹配,以减小馈入辐射体10的射频信号的损耗,提高辐射体10收发的信号转换效率;还用于调节第一子辐射体11上产生的谐振模式的频偏等等,实现了器件的一物多用,减少器件数量和占据的空间,提高器件的集成度。
当天线组件100设有第二匹配电路M2、第三匹配电路M3、第四匹配电路M4时,隔直组件30还设于第一调频点P1与第二匹配电路M2之间、第二调频点P2与第三匹配电路M3之间、第三调频点P3与第四匹配电路M4之间,以使第一子辐射体11呈相对于感应信号呈“悬浮”状态,进而防止第一子辐射体11产生的感应信号对于射频信号的影响,促进天线组件10同时收发天线信号和产生感应信号。用于隔离第一调频点P1处的感应信号的隔直组件30能够作为第二匹配电路M2的一部分,用于调节第二匹配电路M2的阻抗,调节第四谐振模式d和第五谐振模式e所支持的频段。用于隔离第二调频点P2处的感应信号的隔直组件30能够作为第三匹配电路M3的一部分,用于调节第三匹配电路M3的阻抗,调节第五谐振模式e、第六谐振模式f、第七谐振模式g所支持的频段。用于隔离第三调频点P3处的感应信号的隔直组件30能够作为第四匹配电路M4的一部分,用于调节第四匹配电路M4的阻抗,调节第六谐振模式f、第七谐振模式g所支持的频段。
本申请提供的天线组件100及电子设备1000,通过复用天线组件100上的辐射体10为检测人体等待测主体靠近的感应电极,并通过隔直组件30、过滤组件对感应信号和射频信号进行分隔,实现了天线组件100的通信性能和感应待测主体的双重作用,增加天线组件100的功能,进一步地提高器件利用率,减小电子设备1000的整体体积。
隔直组件30、过滤组件50的第二种连接方式中,请参阅图29,隔直组件30电连接于第二子辐射体12的第二接地点D与第二参考地GND2之间。隔直组件30的具体结构和隔离感应信号、导通射频信号的原理可参考第一种隔直组件30、过滤组件50的连接方式,在此不再赘述。过滤组件50的一端电连接隔直组件30靠近第二子辐射体12的一侧(例如隔直组件30与第二接地点D之间)或电连接第二子辐射体12的任意位置。第二子辐射体12作为感应电极或者作为主感应电极。本实施方式中,第二子辐射体12为感应电极,第二子辐射体12相对于直流电流呈悬浮状态。
隔直组件30、过滤组件50的第三种连接方式中,请参阅图30,隔直组件30电连接于第一子辐射体11的馈电点B与第一匹配电路M1之间、第一子辐射体11的第一接地点A与第一参考地GND1之间、第二子辐射体12的第二接地点D与第二参考地GND2之间,以使第一子辐射体11及第二子辐射体12皆作为感应电极。
具体的,隔直组件30包括第一子隔离器31、第二子隔离器32及第三子过滤器33。第一子隔离器31电连接于馈电点B与第一匹配电路M1之间。第二子隔离器32电连接于第一接地点A与第一参考地GND1之间。第三子过滤器33电连接于第二接地点D与第二参考地GND2之间。
过滤组件50包括第一子过滤器51及第二子过滤器52,其中,第一子过滤器51电连接于第一子隔离器31与馈电点B之间、或第二子隔离器32与第一接地点A之间、或第一子辐射体11的任意位置;第二子过滤器52电连接第三子过滤器33与第二接地点D之间、或第二子辐射体12的任意位置。
检测组件40电连接第一子过滤器51及第二子过滤器52。具体的,检测组件40的两个通道分别电连接第一子过滤器51及第二子过滤器52。本实施方式中,第一子辐射体11和第二子辐射体12皆能够作为感应待测主体靠近的检测电极。
当人体靠近第一子辐射体11时,第一子辐射体11上的电荷变化,检测组件40通过第一子过滤器51直接可以感应到感应信号;当人体靠近第二子辐射体12时,第二子辐射体12上的电荷变化,检测组件40通过第二子过滤器52直接可以感应到感应信号。检测组件40通过检测感应信号以检测人体接近,此情况下能够将所有辐射体10皆作为感应电极,以使感应面积较大,可提高辐射体10的利用率,只需一个检测组件40,可节省天线组件100的器件数量及节省空间。
在其他实施方式中,检测组件40包括第一子检测器及第二子检测器。第一子检测器电连接第一子过滤器51的另一端,第二子检测器电连接第二子过滤器52的另一端。换言之,通过两个相互独立的子检测器分别检测第一子辐射体11、第二子辐射体12所检测到的感应信号,此实施方式可使用于第一子辐射体11与第二子辐射体12分别位于电子设备1000的不同侧时,通过一个天线组件100的辐射体10即可检测电子设备1000来自不同侧的人体接近,进而实现在占据较小的空间的情况下提高检测范围。
具体的,第一子隔离器31、第二子隔离器32及第三子过滤器33皆为隔离电容,第一子过滤器51及第二子过滤器52皆为隔离电感。
控制器电连接检测组件40。检测组件40接收感应信号并转化成电信号并传输至控制器。控制器用 于根据感应信号的大小检测待测主体与辐射体10之间的距离,进而判断人体是否接近辐射体10(第一子辐射体11、或第二子辐射体12、或第一子辐射体11及第二子辐射体12),并在待测主体靠近或远离辐射体10时调节信号源20的功率。具体的,控制器根据不同的场景可以对信号源20的功率(即天线组件100的功率)进行调节。
举例而言,当人体头部靠近天线组件100的辐射体10时,控制器可降低天线组件100的功率,以降低天线组件100所辐射电磁波的比吸收率。当人体手部在辐射方向上遮挡天线组件100的辐射体10时,在电子设备1000内还设有其他备用天线组件100(即能够覆盖相同频段的天线组件100)的情况下,控制器可关闭被遮挡的天线组件100,及开启其他位置未被遮挡的天线组件100,如此,在人体手部遮挡天线组件100时,通过智能切换天线组件100,可确保电子设备1000的通信质量;在电子设备1000内未设置其他备用的天线组件100的情况下,控制器可控制天线组件100的功率增加,以补偿手部遮挡辐射体10后导致的效率降低的问题。
当然,控制器还根据检测组件40的检测结果控制电子设备1000上的其他应用程序,例如,控制器根据检测组件40的检测结果检测到人体靠近及电子设备1000处于通话状态,来控制显示屏300的屏幕亮度关闭,以节省电子设备1000在通话时的电能;控制器还根据检测组件40的检测结果检测到人体远离及电子设备1000处于通话状态,来控制显示屏300的屏幕亮度点亮。
可以理解的,第一种实施方式提供的天线组件100、第三种实施方式提供的天线组件100也能够采用上述相同的原理设置隔直组件30和过滤组件50、检测组件40,在此不再一一说明。
本申请对于天线组件100的辐射体10安装于电子设备1000内的具体位置不做限定。
电子设备1000包括设于壳体200内的参考地GND、电路板500等。参考地GND包括但不限于为中板410中的合金。第一接地点A和第二接地点D皆电连接至参考地GND。信号源20、第一匹配电路M1、第二匹配电路M2、第三匹配电路M3、第四匹配电路M4皆设于电路板500上。
天线组件100的辐射体10集成于壳体200、或设于壳体200表面、或设于壳体200所包围的空间内。
可选的,辐射体10的至少部分与壳体200的边框210集成为一体。例如,边框210的材质为金属材质。第一子辐射体11、第二子辐射体12与边框210皆集成为一体。第一子辐射体11、第二子辐射体12之间的耦合缝隙13填充绝缘材质。当然,在其他实施方式中,上述的辐射体10还可与后盖220集成为一体。换言之,第一子辐射体11、第二子辐射体12集成为壳体200的一部分。
可选的,当辐射体10用于人体接近检测,且辐射体10与边框210集成为一体时,可在辐射体10表面设置一层绝缘膜,由于人体皮肤表面具有电荷,人体皮肤表面与辐射体10之间形成电容结构,进而通过辐射体10感应人体皮肤表面接近带来的信号变化。
可选的,第一子辐射体11、第二子辐射体12成型于边框210的表面(例如边框的内表面或外表面)。具体的,第一子辐射体11、第二子辐射体12的基本形式包括但不限于贴片辐射体、通过激光直接成型(Laser Direct Structuring,LDS)、印刷直接成型(Print Direct Structuring,PDS)等工艺成型在边框210的内表面上,此实施方式中,边框210的材质可为非导电材质(对于电磁波信号为非屏蔽材质、或设置透波结构)。当然,上述的辐射体10还可以设于后盖220的表面。
可选的,第一子辐射体11、第二子辐射体12设于柔性电路板、硬质电路板或其他的承载板。第一子辐射体11、第二子辐射体12可集成于柔性电路板上,并将柔性电路板通过粘胶等贴设于中框420的内表面,此实施方式中,边框210的材质可为非导电材质。当然,上述的辐射体10还可设于后盖220的内表面。
以上为一个天线组件100用于待测主体接近检测和天线信号传输的具体结构、以及天线组件100中的各个器件在电子设备1000的安装位置。当然,本申请中,天线组件100的数量为一个或多个。
本申请对于天线组件100在电子设备1000内的具体所在侧不进行限定。参考地GND呈矩形板状。参考地GND包括依次连接的多个侧边。相邻的两个侧边之间的连接处为拐角处。至少一个天线组件100的辐射体10与两个相交的侧边及拐角处相对设置;和/或,至少一个天线组件100的辐射体10全部与一个侧边相对设置。具体通过以下实施方式进行举例说明。
请参阅图31,参考地GND包括相对设置的第一侧边61和第二侧边62,以及连接于第一侧边61 和第二侧边62之间的第三侧边63和第四侧边64。相邻的两个侧边之间的连接处为拐角处65。其中,第一侧边61为参考地GND的顶边(以用户竖屏手持并使用电子设备1000的状态为参考),第二侧边62为参考地GND的底边。以天线组件100设于右上角为例,可选的,第一子辐射体11的全部与第一侧边61相对设置,第二子辐射体12的一部分与第一侧边61相对设置,第二子辐射体12的另一部分与第四侧边64相对设置,第一接地点A电连接第一侧边61,第二接地点D电连接于第一侧边61与第四侧边64之间的拐角处65。
请参阅图31,边框210包括多个首尾相连的侧边框。边框210的多个侧边框中,相邻的两个侧边框相交,例如相邻的两个侧边框通过圆弧倒角过渡连接。多个侧边框包括相对设置的顶边框211和底边框212,及连接于顶边框211与底边框212之间的第一侧边框213和第二侧边框214。其中,顶边框211为操作者手持电子设备1000朝向电子设备1000的正面使用时远离地面的边,底边框212为朝向地面的边。相邻的两个侧边框之间的连接处为拐角部216。其中,顶边框211和底边框212平行且相等。第一侧边框213和第二侧边框214平行且相等。第一侧边框213的长度大于顶边框211的长度。其中,顶边框211与第一侧边61相对设置,底边框212与第二侧边62相对设置,第一侧边框213与第三侧边63相对设置,第二侧边框214与第四侧边64相对设置。
第一子辐射体11与顶边框211集成为一体,第二子辐射体12与一部分的顶边框211、顶边框211和第二侧边框214之间的拐角部216、一部分的第二侧边框214集成为一体。
第一子辐射体11与第二子辐射体12的位置可互换。
可选的,请参阅图32,第二子辐射体12的全部与第一侧边61相对设置,第一子辐射体11的一部分与第一侧边61相对设置,第一子辐射体11的另一部分与第四侧边64相对设置,第二接地点D电连接第一侧边61,第一接地点A电连接于第一侧边61与第四侧边64之间的拐角部。
进一步地,第二子辐射体12与顶边框211集成为一体,第一子辐射体11与一部分的顶边框211、顶边框211和第二侧边框214之间的拐角部216、一部分的第二侧边框214集成为一体。
以上通过将天线组件200设于参考地GND的拐角处25,那么天线组件100也设于电子设备1000的拐角部216,一方面电子设备1000的净空环境相对较好,利于提升天线组件100的辐射效率;另一方面天线组件100设于电子设备1000的拐角处,更易激励起地板电流,进而提高辐射效率。
请参阅图33,天线组件100可全部设于电子设备1000的一边,例如,天线组件100的全部辐射体10与第四侧边64相对设置。进一步地,辐射体10全部与第二侧边框214集成为一体。
换言之,天线组件100可以位于电子设备1000的任意位置,以使天线组件100的接地可以匹配电子设备1000内的接地位置。
以上主要是一个天线组件100在电子设备1000的布局。以下对于多个天线组件100在电子设备1000内的布局进行举例说明。
请参阅图34,天线组件100包括第一天线组件110及第二天线组件120。第一天线组件110及第二天线组件120的结构相同或不同。第一天线组件110及第二天线组件120所覆盖的频段相同或不同。本实施方式中,第一天线组件110和第二天线组件120所覆盖的频段至少部分相同。例如,第一天线组件110和第二天线组件120皆能够以较高的效率覆盖1.4GHz~2.7GHz频段。第一天线组件110和第二天线组件120分别设于电子设备1000的不同侧,以使电子设备1000在支持1.4GHz~2.7GHz频段时可在第一天线组件110、第二天线组件120中切换。
可选的,第一天线组件110及第二天线组件120分别设于或靠近于呈对角设置的两个拐角部216。可以理解的,第一天线组件110设于拐角部216是指第一天线组件110的至少部分辐射体10集成于拐角部216,或印刷、激光成型于拐角部216的表面,或贴合于拐角部216的表面。第一天线组件110靠近于拐角部216是指第一天线组件110的辐射体10设于壳体200(包括边框210和后盖220)内、或集成于壳体200上并与拐角部216之间的距离较小(例如距离小于或等于1cm,但不限于此尺寸)。第二天线组件120设于或靠近于拐角部216可参考上述的描述,在此不再赘述。
具体的,第一天线组件110设于顶边框211,且靠近顶边框211与第二侧边框214之间的拐角部216。第二天线组件120设于底边框212,且靠近底边框212与第一侧边框213之间的拐角。第一方面,使得第一天线组件110的耦合缝隙13和第二天线组件120的耦合缝隙13分别设于顶边框211和底边框212, 而不会影响到第一侧边框213和第二侧边框214,减少对于尺寸较大的侧边框上的断裂处理,提高边框210的结构强度,对于电子设备1000外观形貌的影响也较小;第二方面,电子设备1000常用姿态为用户左手握持或右手握持的竖屏姿态,将第一天线组件110和第二天线组件120分别设于顶边框211和底边框212,配合电子设备1000的常用竖屏姿态,在左手握持或右手握持的姿态时不会被手部遮挡,天线组件100的辐射效率高,电子设备1000在使用时的通信质量好;第三方面,由于第一天线组件110和第二天线组件120分别靠近两个对角设置的拐角部216,第一天线组件110和第二天线组件120可以感应到来自电子设备1000顶侧(顶边框211所在侧)、底侧(底边框212所在侧)、左侧(第一侧边框213所在侧)、右侧(第二侧边框214所在侧)的人体靠近,利用较少数量的天线组件100实现较大范围内的接近感应。
在其他实施方式中,第一天线组件110和第二天线组件120分别设于第一侧边框213、第二侧边框214,且分别靠近呈对角设置的拐角部216。
可选的,请参阅图34,第一天线组件110和第二天线组件120皆用于检测待测主体的靠近。第一天线组件110和第二天线组件120皆设有隔直组件30和过滤组件50,其中,隔直组件30和过滤组件50的连接方式可参考上述的实施方式。第一天线组件110的过滤组件50和第二天线组件120的过滤组件50可电连接同一个检测组件40的不同信号通道,以便于通过同一个检测组件40接收第一天线组件110和第二天线组件120在待测主体靠近时所产生的感应信号。
电子设备1000还包括控制器(未图示),控制器电连接第一天线组件110、第二天线组件120及检测组件40,控制器用于根据第一天线组件110和第二天线组件120所产生的感应信号大小调节第一天线组件110和第二天线组件120的功率。例如,在人体头部靠近第一天线组件110时,降低第一天线组件110的功率,或关闭第一天线组件110,切换至第二天线组件120工作,以减小电子设备1000所辐射的电磁波的比吸收率。或者,在人体手部遮挡第一天线组件110时,提高第一天线组件110的功率或切换至第二天线组件120工作,以确保电子设备1000在不同的遮挡握持场景下皆具有较好的收发效率。
进一步地,请参阅图35,至少一个天线组件100还包括第三天线组件130及第四天线组件140。第一天线组件110、第二天线组件120、第三天线组件130及第四天线组件140的结构相同或不同。
至少部分的第一天线组件110、至少部分的第二天线组件120、至少部分的第三天线组件130及至少部分的第四天线组件140分别设于参考地GND的不同侧。换言之,至少部分的第一天线组件110、至少部分的第二天线组件120、至少部分的第三天线组件130及至少部分的第四天线组件140分别设于电子设备1000的不同侧,以便于第一天线组件110、第二天线组件120、第三天线组件130及第四天线组件140可分别通过不同的检测组件40检测感应信号,以识别待测主体从哪一侧接近电子设备1000。
例如,第一天线组件110的至少部分设于顶边框211,第二天线组件120的至少部分设于底边框212。第三天线组件130及第四天线组件140分别设于或靠近于第一侧边框213和第二侧边框214。
第三天线组件130和第四天线组件140也能够检测待测主体的靠近。第三天线组件130、第四天线组件140中皆设有隔直组件30和过滤组件50,其中,隔直组件30和过滤组件50可参考上述的实施方式,在此不再说明。
可选的,第一天线组件110、第二天线组件120、第三天线组件130及第四天线组件140皆复用一个检测组件40检测感应信号,可检测到待测主体靠近电子设备1000,同时还节省检测组件40的数量,减少在电子设备1000内所占据的空间。
具体的,第一天线组件110的过滤组件50和第二天线组件120的过滤组件50、第三天线组件130的过滤组件50和第四天线组件140的过滤组件50皆电连接同一个检测组件40的不同信号通道,以便于通过同一个检测组件40接收第一天线组件110、第二天线组件120、第三天线组件130及第四天线组件140在待测主体靠近时所产生的感应信号。
控制器还电连接第三天线组件130及第四天线组件140。控制器用于根据第一天线组件110、第二天线组件120、第三天线组件130及第四天线组件140中至少一者所产生的感应信号大小确定电子设备1000所处的目标模式,并根据目标模式调节第一天线组件110、第二天线组件120、第三天线组件130及第四天线组件140中至少一者的功率。目标模式包括单手握持模式、双手握持模式、携带模式、头部 靠近模式中的至少一种。具体如下:
当控制器检测到电连接第三天线组件130的过滤组件50的检测组件40接收的感应信号(后续简称为第三天线组件130接收的感应信号)大于或等于预设阈值,及第一天线组件110、第二天线组件120、第四天线组件140接收的感应信号皆小于预设阈值时,控制器可判断电子设备1000的第一侧边框213有人体靠近,且顶边框211、底边框212、第二侧边框214皆没有或基本没有人体靠近,说明此时电子设备1000为左手单手握持状态。
当控制器检测到第四天线组件140接收的感应信号大于或等于预设阈值,及第一天线组件110、第二天线组件120、第三天线组件130接收的感应信号皆小于预设阈值时,控制器可判断电子设备1000的第二侧边框214有人体靠近,且顶边框211、底边框212、第一侧边框213皆没有或基本没有人体靠近,说明此时电子设备1000为右手单手握持状态。
当控制器检测到第三天线组件130、第四天线组件140接收的感应信号皆大于或等于预设阈值,及第一天线组件110、第二天线组件120接收的感应信号皆小于预设阈值时,控制器可判断此时电子设备1000为双手握持竖屏状态。
当控制器检测到第一天线组件110、第二天线组件120接收的感应信号皆大于或等于预设阈值,及第三天线组件130、第四天线组件140接收的感应信号皆小于预设阈值时,控制器可判断此时电子设备1000为双手握持横屏状态。进一步地,当控制器判断电子设备1000处于双手握持横屏状态时,可判断此时电子设备1000对上网速度的需求增加,例如此时电子设备1000正在运行游戏或视频应用,此时可增加上述的天线组件100的功率,以提高电子设备1000的上网速度,以使用户的上网体验很好。
当控制器检测到第一天线组件110、第二天线组件120、第三天线组件130、第四天线组件140中至少三者接收的感应信号皆大于或等于预设阈值时,控制器判断电子设备1000的至少三侧的侧边框具有人体靠近,控制器可判定此时电子设备1000处于携带状态。由于携带状态对于上网速度的需求相对较小,此时控制器可以适当较小天线组件100的功率。
本实施例中,电子设备1000还包括功能器件(未图示)。功能器件包括但不限于受话器、显示屏中的至少一者。控制器电连接功能器件。控制器用于根据第一天线组件110、第二天线组件120、第三天线组件130、第四天线组件140接收的感应信号的大小及功能器件的工作状态判断电子设备1000的工作状态。
可选的,控制器在检测到第一天线组件110、第二天线组件120、第三天线组件130、第四天线组件140中至少一者接收的感应信号皆大于或等于预设阈值,且受话器处于工作状态时,说明电子设备1000处于靠近待测主体的头部的状态,即人体的头部靠近电子设备1000在打电话,此时,控制器可控制天线组件100的功率皆减小,以减小人体的头部对于电磁波的比吸收率。
可选的,控制器在检测到第一天线组件110、第二天线组件120、第三天线组件130、第四天线组件140中至少三者接收的感应信号皆大于或等于预设阈值,且显示屏300处于未显示状态时,说明电子设备1000可能处于携带状态,其中,携带状态包括但不限于收容于待测主体的衣服口袋;收容于待测主体相贴近的书包、腰包、手机包等随身包中;还可以为电子设备1000通过绳子、腕带等佩戴在待测主体身上等。本实施方式中,可进一步地检测受话器是否处于工作状态,如果受话器处于未工作状态,可直接确定电子设备1000处于收容于待测主体的衣袋的状态。此时,控制器可控制天线组件100的功率减小,以减小电子设备1000对人体的电磁辐射,减小人体对于电磁波的比吸收率。
如果受话器位于工作状态,说明电子设备1000可能处于收容于待测主体的衣袋的状态或打电话状态,此时,控制器可控制天线组件100的功率减小,以减小电子设备1000对人体的电磁辐射,减小人体的头部对于电磁波的比吸收率。
以上为控制器根据第一天线组件110、第二天线组件120、第三天线组件130、第四天线组件140中至少一者接收的感应信号,以及结合功能器件的工作状态智能判断电子设备1000所处场景,当然,还可以结合应用程序的运行状态更加精确地判断电子设备1000此时的姿态和应用程序,以智能判断到电子设备1000对于上网网速的需求,进一步地,控制器通过调节第一天线组件110、第二天线组件120、第三天线组件130、第四天线组件140的功率,以智能匹配电子设备1000对于上网网速的需求,以使电子设备1000在多种场景下皆具有较好的通信质量。
可选的,第一天线组件110、第二天线组件120、第三天线组件130及第四天线组件140皆能够支持同一段频段的情况下,在控制器判断电子设备1000处于左手单手握持之后,控制器关闭被遮挡的第三天线组件130,开启未被遮挡的第一天线组件110、第二天线组件120、第四天线组件140中的至少一者。在控制器判断电子设备1000处于右单手握持之后,控制器关闭被遮挡的第四天线组件140,开启未被遮挡的第一天线组件110、第二天线组件120、第三天线组件130中的至少一者。在控制器判断电子设备1000处于双手竖屏握持之后,控制器关闭被遮挡的第三天线组件130、第四天线组件140,开启未被遮挡的第一天线组件110、第二天线组件120中的至少一者。在控制器判断电子设备1000处于双手横屏握持之后,控制器关闭被遮挡的第一天线组件110、第二天线组件120,开启未被遮挡的第三天线组件130、第四天线组件140中的至少一者。通过以上的智能检测电子设备1000的握持状态和根据电子设备1000的握持状态进行智能切换,实现对于电子设备1000在多种不同遮挡场景下的智能切换,确保电子设备1000在多种不同遮挡场景下皆能够支持所需频段,以确保电子设备1000的通信质量。
第一天线组件110、第二天线组件120、第三天线组件130及第四天线组件140皆能够支撑某一频段,例如,1.4GHz~2.7GHz,但不限于此。进一步地,第一天线组件110、第二天线组件120、第三天线组件130及第四天线组件140所支持的频段相同。四个天线组件100中,每个天线组件100皆为双工模式,且可以相互独立的发射或接收信号,故实现对于中高-超高频段的4*4MIMO工作模式。每个天线组件100皆能够支持LTE-4G信号、NR-5G信号,即实现LTE-4G与NR-5G信号的双连接。每个天线组件100皆能够支持多种谐振模式,相近的谐振模式所支持的频段之间能够通过载波聚合的方式合成超带宽,以提升吞吐量,提升用户体验,减少可调器件,节约成本。换言之,四个天线组件100分布在电子设备1000整机的四周,实现中高-超高频段的4*4MIMO的多CA或ENDC组合。四个天线组件100分布在电子设备1000整机的四个侧边框,同时还能够检测到电子设备1000背面(后盖所在面)和正面(显示屏所在面)的人体靠近,如此,实现360度无死角覆盖及精准检测。此外,四个天线组件100中都合入人体靠近检测功能,四个天线组件100间能够智能切换,以实现电子设备1000能够在不同的握持场景下智能调节通信质量。
可选的,在第二天线组件120、第三天线组件130及第四天线组件140无法支持第一天线组件110所支持的频段的情况下,在控制器判断电子设备1000处于左手单手握持之后,控制器控制被遮挡的第三天线组件130的功率增加,以补偿第三天线组件130被遮挡时的损耗,在控制器判断电子设备1000的第三天线组件130的遮挡物撤去时,控制器控制被遮挡的第三天线组件130的功率下调至初始状态。相类似的,在右手单手握持、双手竖屏握持、双手横屏握持时,控制器也可通过控制被遮挡的天线组件100的功率增加。通过以上的智能检测电子设备1000的握持状态和根据电子设备1000的握持状态进行动态调整天线组件100的功率,以确保电子设备1000的通信质量。
在其他实施方式中,控制器还可以通过电子设备1000内的陀螺仪传感器等传感器判断电子设备1000所处的状态,进而根据电子设备1000的状态调整各个天线组件100的功率,例如通过陀螺仪传感器等传感器判断电子设备1000处于被拿起的状态,此时可以增加各个天线组件100的功率;还可以通过陀螺仪传感器等传感器判断电子设备1000处于被放下或被放置的状态,此时可以减小各个天线组件100的功率,以节能及实现对于天线组件100的智能调节。
本申请提供的天线组件100,通过设计辐射体10的结构和接地点A的位置,激励起多种谐振模式,这些谐振模式能够实现超宽带覆盖,从而实现多频段的ENDC/CA性能,提升下载带宽,这样就可以提升吞吐量下载速度,用户体验得到提升;本申请天线组件100所产生的多种模式之间能够相互加强,所以可以高效率覆盖超宽带宽,节约成本,有利于满足各大运营商指标,在天线组件100中的辐射体10还作为人体接近检测的感应电极,以使天线组件100支持超带宽的同时还具有检测人体接近的功能,在人体头部靠近时降低天线组件100的功率,以降低人体头部对于天线组件100所辐射的电磁波信号的比吸收率,天线组件100的集成度高,功能多而占据的空间小;通过在电子设备1000中设置多个天线组件100及对多个天线组件100进行布局,以使多个天线组件100在不同的位置对人体接近进行检测,控制器根据多个天线组件100的检测结果判断电子设备1000所处的目标模式,例如,左手握持、右手握持模式、双手横屏握持模式、双手竖屏握持模式、携带模式、头部靠近模式等等,实现智能检测电子设备1000的目标模式;控制器还能够根据电子设备1000的目标模式智能切换天线组件100的功率,以确 保电子设备1000在不同的遮挡状态下都能够保持较好的天线传输速率及智能降低电子设备1000对于电磁波信号的比吸收率。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线组件,包括:
    辐射体,包括第一子辐射体及第二子辐射体,所述第一子辐射体与所述第二子辐射体之间存在耦合缝隙;所述第一子辐射体包括第一耦合端与第一自由端,所述第一子辐射体还具有馈电点及第一接地点,所述馈电点位于所述第一自由端与所述第一耦合端之间,所述第一接地点与所述第一耦合端之间的距离大于所述馈电点与所述第一耦合端之间的距离;所述第二子辐射体包括第二耦合端、第二自由端以及位于所述第二耦合端与所述第二自由端之间的第二接地点,所述第二耦合端和所述第一耦合端之间为所述耦合缝隙,所述第一接地点及所述第二接地点皆用于电连接至参考地;及
    信号源,所述信号源电连接所述馈电点。
  2. 如权利要求1所述的天线组件,所述辐射体在所述信号源的激励下支持至少三个谐振模式。
  3. 如权利要求1所述的天线组件,所述第一接地点位于所述第一自由端。
  4. 如权利要求3所述的天线组件,所述辐射体在所述信号源的激励下支持第一谐振模式、第二谐振模式及第三谐振模式。
  5. 如权利要求4所述的天线组件,所述第一谐振模式的第一谐振电流密度至少分布于所述第一接地点至所述第一耦合端之间及所述第二耦合端至所述第二接地点之间,其中,所述第一谐振电流在所述第一接地点和所述第一耦合端之间的流向与在第二耦合端和所述第二接地点之间的流向相同;
    所述第二谐振模式的第二谐振电流密度分布于所述第一接地点至所述第一耦合端之间、所述第二耦合端至所述第二自由端之间,其中,所述第二谐振电流在所述第一接地点和所述第一耦合端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相反,所述第二谐振电流在所述第二接地点和所述第二自由端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相反;
    所述第三谐振模式的第三谐振电流密度分布于所述第一接地点至所述第一耦合端之间、所述第二耦合端至所述第二自由端之间,其中,所述第三谐振电流在所述第一接地点和所述第一耦合端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相反,所述第三谐振电流在所述第二接地点和所述第二自由端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相同。
  6. 如权利要求4所述的天线组件,所述第一谐振模式支持所述第一子辐射体工作在(1/8~1/4)波长模式;所述第二谐振模式支持所述第二耦合端至所述第二接地点之间的第二子辐射体工作在(1/8~1/4)波长模式;所述第三谐振模式支持所述第二子辐射体工作在1/2波长模式。
  7. 如权利要求6所述的天线组件,所述第一谐振模式所支持的频段为第一频段;所述第二谐振模式所支持的频段为第二频段,所述第三谐振模式所支持的频段为第三频段,其中,所述第一频段、所述第二频段及所述第三频段中三者依次连续或两者连续或皆不连续。
  8. 如权利要求1所述的天线组件,所述第一接地点位于所述第一自由端与所述馈电点之间。
  9. 如权利要求8所述的天线组件,所述辐射体在所述信号源的激励下支持第四谐振模式、第五谐振模式、第六谐振模式及第七谐振模式。
  10. 如权利要求9所述的天线组件,所述第四谐振模式的第四谐振电流密度至少分布于所述第一自由端至所述第一耦合端之间,其中,所述第四谐振电流在所述第一自由端和所述第一接地点之间的流向与在所述第一接地点和所述第一耦合端之间的流向相反;
    所述第五谐振模式的第五谐振电流密度至少分布于所述第一自由端至所述第一耦合端之间及所述第二耦合端至所述第二接地点之间,其中,所述第五谐振电流在所述第一自由端和所述第一接地点之间的流向、在所述第一接地点和所述第一耦合端之间的流向、在所述第二耦合端和所述第二接地点之间的流向皆相同;
    所述第六谐振模式的第六谐振电流密度至少分布于所述第一接地点至所述第一耦合端之间、所述第二耦合端至所述第二自由端之间,其中,所述第六谐振电流在所述第一接地点和所述第一耦合端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相反,所述第六谐振电流在所述第二接地点和所述第二自由端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相反;
    所述第七谐振模式的第七谐振电流密度至少分布于所述第一接地点至所述第一耦合端之间、所述第二耦 合端至所述第二自由端之间,其中,所述第七谐振电流在所述第一接地点和所述第一耦合端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相反,所述第六谐振电流在所述第二接地点和所述第二自由端之间的流向与在所述第二耦合端和所述第二接地点之间的流向相同。
  11. 如权利要求9所述的天线组件,所述第四谐振模式支持所述第一接地点至所述第一耦合端之间的所述第一子辐射体工作在(1/8~1/4)波长模式;所述第五谐振模式支持所述第一子辐射体工作在1/2波长模式;所述第六谐振模式支持所述第二耦合端至所述第二接地点之间的第二子辐射体工作在(1/8~1/4)波长模式;所述第七谐振模式支持所述第二子辐射体工作在1/2波长模式。
  12. 如权利要求11所述的天线组件,所述第四谐振模式所支持的频段为第四频段,所述第五谐振模式所支持的频段为第五频段,所述第六谐振模式所支持的频段为第六频段,所述第七谐振模式所支持的频段为第七频段,其中,所述第四频段、所述第五频段、所述第六频段及第七频段中四者依次连续或三者连续或两者连续或皆不连续。
  13. 如权利要求8所述的天线组件,所述第一接地点与所述第一自由端之间的辐射体长度是所述第一子辐射体长度的(1/4)~(3/4)倍。
  14. 如权利要求9所述的天线组件,所述天线组件还包括第一匹配电路,所述第一匹配电路电连接于所述馈电点与所述信号源之间;所述第一匹配电路包括第一子电路,所述第一子电路的一端电连接所述馈电点,所述第一子电路的另一端电连接至所述参考地,所述第一子电路工作在所述第四谐振模式所支持的频段、在所述第五谐振模式所支持的频段、所述第六谐振模式所支持的频段及所述第七谐振模式所支持的频段时呈容性;
    和/或,所述天线组件还包括第二匹配电路,所述第一子辐射体还具有位于所述第一自由端与所述第一接地点之间的第一调频点,所述第二匹配电路的一端连接于所述第一调频点,所述第二匹配电路的另一端电连接至所述参考地,所述第二匹配电路工作在所述第四谐振模式所支持的频段及所述第五谐振模式所支持的频段时呈容性;
    和/或,所述天线组件还包括第三匹配电路,所述第二子辐射体还具有位于所述第二耦合端与所述第二接地点之间的第二调频点,所述第三匹配电路的一端连接于所述第二调频点,所述第三匹配电路的另一端电连接至所述参考地,所述第三匹配电路工作在所述第五谐振模式所支持的频段、所述第六谐振模式所支持的频段及所述第七谐振模式所支持的频段时呈容性;
    和/或,所述天线组件还包括第四匹配电路,所述第二子辐射体还具有位于所述第二接地点与所述第二自由端之间的第三调频点,所述第四匹配电路的一端连接于所述第三调频点,所述第四匹配电路的另一端电连接至所述参考地,所述第四匹配电路工作在所述第六谐振模式所支持的频段及所述第七谐振模式所支持的频段时呈容性。
  15. 如权利要求1~14任意一项所述的天线组件,所述第二接地点与所述第二自由端之间的辐射体长度是所述第二子辐射体长度的(1/4)~(3/4)倍。
  16. 如权利要求1~14任意一项所述的天线组件,所述天线组件还包括隔直组件、过滤组件及检测组件,所述隔直组件电连接于所述第一子辐射体与所述信号源之间、所述第一子辐射体与所述参考地之间,所述过滤组件的一端电连接所述隔直组件靠近于所述第一子辐射体的一侧或电连接所述第一子辐射体;和/或,所述隔直组件电连接于所述第二子辐射体与所述参考地之间,所述过滤组件的一端电连接所述隔直组件靠近所述第二子辐射体的一侧或电连接所述第二子辐射体;所述隔直组件用于隔离所述参考地、所述信号源所产生的直流电流,所述过滤组件用于阻隔所述辐射体收发的射频信号及通过所述辐射体在待测主体靠近时产生的感应信号;所述检测组件电连接于所述过滤组件的另一端,所述检测组件用于检测所述感应信号的大小。
  17. 一种电子设备,所述电子设备包括壳体、参考地及如权利要求1~16任意一项至少一个所述的天线组件,所述参考地设于所述壳体内,所述天线组件的辐射体集成于所述壳体、或设于所述壳体表面、或设于所述壳体所包围的空间内;所述第一接地点和所述第二接地点皆电连接至所述参考地。
  18. 如权利要求17所述的电子设备,所述参考地包括依次连接的多个侧边,相邻的两个所述侧边之间的连接处为拐角处,至少一个所述天线组件的所述辐射体与两个相交的所述侧边及所述拐角处相对设置;和/或,至少一个所述天线组件的所述辐射体全部与一个所述侧边相对设置。
  19. 如权利要求17所述的电子设备,至少一个所述天线组件包括第一天线组件及第二天线组件,所述第 一天线组件和所述第二天线组件呈对角设置,所述第一天线组件和所述第二天线组件在所述待测主体靠近时产生的感应信号皆通过检测组件检测;
    所述电子设备还包括控制器,所述控制器电连接所述第一天线组件、所述第二天线组件及检测组件,所述控制器用于根据所述第一天线组件和所述第二天线组件所产生的感应信号大小调节所述第一天线组件和所述第二天线组件的功率。
  20. 如权利要求19所述的电子设备,至少一个所述天线组件还包括第三天线组件及第四天线组件,至少部分的所述第一天线组件、至少部分的所述第二天线组件、至少部分的所述第三天线组件及至少部分的所述第四天线组件分别设于所述参考地的不同侧;所述第三天线组件和所述第四天线组件在所述待测主体靠近时产生的感应信号通过所述检测组件检测;
    所述控制器还电连接所述第三天线组件及所述第四天线组件,所述控制器用于根据所述第一天线组件、所述第二天线组件、所述第三天线组件及所述第四天线组件中至少一者所的感应信号大小确定所述电子设备所处的目标模式,并根据所述目标模式调节所述第一天线组件、所述第二天线组件、所述第三天线组件及所述第四天线组件中至少一者的功率,所述目标模式包括单手握持模式、双手握持模式、携带模式、头部靠近模式中的至少一种。
PCT/CN2022/082929 2021-05-12 2022-03-25 天线组件及电子设备 WO2022237346A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/505,723 US20240072440A1 (en) 2021-05-12 2023-11-09 Antenna assembly and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110515123.9 2021-05-12
CN202110515123.9A CN115347371A (zh) 2021-05-12 2021-05-12 天线组件及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/505,723 Continuation US20240072440A1 (en) 2021-05-12 2023-11-09 Antenna assembly and electronic device

Publications (1)

Publication Number Publication Date
WO2022237346A1 true WO2022237346A1 (zh) 2022-11-17

Family

ID=83946959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082929 WO2022237346A1 (zh) 2021-05-12 2022-03-25 天线组件及电子设备

Country Status (3)

Country Link
US (1) US20240072440A1 (zh)
CN (1) CN115347371A (zh)
WO (1) WO2022237346A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247160B (zh) * 2019-04-30 2021-10-29 荣耀终端有限公司 一种天线组件及移动终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190097319A1 (en) * 2017-09-27 2019-03-28 Chiun Mai Communication Systems, Inc. Multiband antenna structure and wireless communication device using same
CN110518342A (zh) * 2019-09-25 2019-11-29 南昌黑鲨科技有限公司 多频多模天线
CN210182568U (zh) * 2019-09-25 2020-03-24 南昌黑鲨科技有限公司 多频多模天线
CN211350950U (zh) * 2020-03-12 2020-08-25 Oppo广东移动通信有限公司 天线组件和电子设备
CN112751212A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线系统及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190097319A1 (en) * 2017-09-27 2019-03-28 Chiun Mai Communication Systems, Inc. Multiband antenna structure and wireless communication device using same
CN110518342A (zh) * 2019-09-25 2019-11-29 南昌黑鲨科技有限公司 多频多模天线
CN210182568U (zh) * 2019-09-25 2020-03-24 南昌黑鲨科技有限公司 多频多模天线
CN211350950U (zh) * 2020-03-12 2020-08-25 Oppo广东移动通信有限公司 天线组件和电子设备
CN112751212A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线系统及电子设备

Also Published As

Publication number Publication date
US20240072440A1 (en) 2024-02-29
CN115347371A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2022142824A1 (zh) 天线系统及电子设备
WO2022142828A1 (zh) 电子设备
WO2023142785A1 (zh) 天线组件及电子设备
EP4311024A1 (en) Antenna assembly and electronic device
WO2022160920A1 (zh) 天线组件及电子设备
CN112768959B (zh) 天线组件和电子设备
WO2022247502A1 (zh) 天线组件及电子设备
CN113013594A (zh) 天线组件和电子设备
CN112751174B (zh) 天线组件和电子设备
TW201409828A (zh) 行動裝置
WO2022142820A1 (zh) 天线组件及电子设备
US20200106177A1 (en) Antenna and Mobile Terminal
TW201907615A (zh) 行動裝置
US20240072440A1 (en) Antenna assembly and electronic device
US20240014556A1 (en) Antenna assembly and electronic device
CN115036676B (zh) 天线组件及电子设备
WO2023273604A1 (zh) 天线模组及电子设备
WO2023273607A1 (zh) 天线模组及电子设备
WO2022183892A1 (zh) 天线组件及电子设备
WO2023045630A1 (zh) 天线组件及电子设备
WO2024045853A1 (zh) 天线组件及电子设备
WO2024045965A1 (zh) 天线组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE