WO2024045965A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2024045965A1
WO2024045965A1 PCT/CN2023/109630 CN2023109630W WO2024045965A1 WO 2024045965 A1 WO2024045965 A1 WO 2024045965A1 CN 2023109630 W CN2023109630 W CN 2023109630W WO 2024045965 A1 WO2024045965 A1 WO 2024045965A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
frequency
point
antenna assembly
frequency band
Prior art date
Application number
PCT/CN2023/109630
Other languages
English (en)
French (fr)
Inventor
孔德振
呼延思雷
闫鑫
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024045965A1 publication Critical patent/WO2024045965A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present application relates to the field of communication technology, and specifically to an antenna assembly and electronic equipment.
  • Electronic devices with communication functions such as mobile phones are becoming more and more popular and their functions are becoming more and more powerful.
  • Electronic devices usually include antenna components to implement communication functions of the electronic device.
  • the communication performance of antenna components in electronic devices in the related art is not good enough, and there is still room for improvement.
  • the present application provides an antenna assembly, including: a first radiator having a first end, a second end and a first feed point, the first feed point being located between the first end and the second end.
  • the first feeding point is used to receive a first excitation signal, and the first excitation signal excites the first radiator to generate a first resonant mode, a second resonant mode and a third resonant mode, and the third resonant mode is A resonance mode, the second resonance mode and the third resonance mode are all used to support the low frequency LB frequency band, and the first resonance mode is used to support the first low frequency LB frequency band, and the second resonance mode is used to support the second LB frequency band, the third resonance mode is used to support the third LB frequency band, the frequency of the first LB frequency band is greater than the frequency of the third LB frequency band, the frequency of the third LB frequency band is greater than the frequency of the second LB frequency band Frequency of LB band.
  • the present application provides an antenna component, including: a first radiator having a first end, a second end and a first feed point, the first feed point being located between the first end and the second end.
  • the first feeding point is used to receive a first excitation signal, and the first excitation signal is used to excite the first radiator to generate a first resonant mode, a second resonant mode and a third resonant mode; and
  • a frequency selection circuit is provided at the second end to be electrically connected to the first radiator.
  • the first frequency selection circuit can be configured to control the first excitation signal to excite the first radiator, so as to Switching between the first resonance mode, the second resonance mode and the third resonance mode causes the first radiator to generate the first resonance mode and the second resonance mode at the same time, or causes the The first radiator generates only the third resonance mode, or causes the first radiator to generate a mixed mode of the first resonance mode and the third resonance mode.
  • the present application provides an electronic device.
  • the electronic device includes: a first radiator having a first end, a second end and a first feed point.
  • the first feed point is located between the first end and the first feed point. Between the second ends, the first feed point is used to receive the first excitation signal; and a first frequency selection circuit is provided at the second end to be electrically connected to the first radiator.
  • a frequency selection circuit may be configured to control the first excitation signal to excite the first radiator to produce one of a first resonant mode, a second resonant mode and a third resonant mode, and may be configured to control the first excitation The signal excites the first radiator to switch between two of the first resonance mode, the second resonance mode and the third resonance mode, the first resonance mode, the second resonance mode and the third resonance mode.
  • the resonant mode and the third resonant mode are both used to support the low-frequency LB band;
  • the second radiator has a first frequency selection point, a third end, a first ground point and a second feed point, and the first ground point grounded, and the first grounding point is located farther away from the second end than the third end, the second feed point is located between the third end and the first grounding point, the The first frequency selection point is located between the third end and the first ground point, the second feed point is used to receive the second excitation signal;
  • the first parasitic branch is disposed between the second end and the first ground point.
  • first circuit board for generating the first excitation signal
  • second circuit board for generating the second excitation signal
  • Figure 1 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • Figure 2 is an exploded schematic diagram of the electronic device in the embodiment shown in Figure 1 from one perspective;
  • FIG 3 is an exploded schematic diagram of the electronic device in the embodiment shown in Figure 1 from another perspective;
  • Figure 4 is a schematic structural diagram of the antenna assembly in the embodiment shown in Figure 3 in an embodiment
  • Figure 5 is a schematic diagram of the main current flow directions respectively corresponding to the first resonance mode and the second resonance mode of the first radiator in the embodiment shown in Figure 4;
  • Figure 6 is a schematic diagram of the main current flow corresponding to the third resonance mode of the first radiator in the embodiment shown in Figure 4;
  • Figure 7 is a schematic structural diagram of the cooperation between the first matching circuit and the first feed source in the embodiment shown in Figure 4;
  • Figure 8 is a schematic structural diagram of the first frequency selection circuit in the antenna assembly in the embodiment shown in Figure 4;
  • Figure 9 is a schematic structural diagram of the first frequency selection circuit in the antenna assembly in another embodiment of the embodiment shown in Figure 8;
  • Figure 10 is a schematic structural diagram of the antenna assembly shown in Figure 3 in another embodiment
  • Figure 11 is a schematic structural diagram of the cooperation between the second matching circuit and the second feed source in the embodiment shown in Figure 10;
  • Figure 12 is a schematic structural diagram of the second frequency selection circuit in the antenna assembly in the embodiment shown in Figure 10;
  • Figure 13 is a schematic structural diagram of the second frequency selection circuit in the antenna assembly in another embodiment of the embodiment shown in Figure 12;
  • Figure 14 is a schematic structural diagram of the antenna assembly shown in Figure 10 in another embodiment
  • Figure 15 is a schematic structural diagram of the third frequency selection circuit in the antenna assembly in the embodiment shown in Figure 14;
  • Figure 16 is a schematic structural diagram of the third frequency selection circuit in the antenna assembly in another embodiment of the embodiment shown in Figure 15;
  • Figure 17 is a schematic structural diagram of the antenna assembly shown in Figure 10 in another embodiment
  • Figure 18 is a schematic structural diagram of the first frequency selection circuit shown in Figure 17 in another embodiment of the antenna assembly;
  • Figure 19 is a performance comparison chart of the second radiator in the antenna assembly shown in Figure 10 in an embodiment
  • Figure 20 is a schematic diagram of the cooperation between the inductor and the SAR sensor in an embodiment of the present application.
  • Figure 21 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • Figure 22 is a schematic structural diagram of an antenna assembly provided by another embodiment of the present application.
  • Figure 23 is a schematic diagram of the main current flow corresponding to the eighth resonance mode in the antenna assembly shown in Figure 22;
  • Figure 24 is a schematic diagram of the main current flow corresponding to the ninth resonance mode in the antenna assembly shown in Figure 22;
  • Figure 25 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • Figure 26 is a schematic equivalent circuit diagram of an antenna assembly provided by an embodiment of the present application.
  • Figure 27 is a schematic equivalent circuit diagram of an antenna assembly provided by another embodiment of the present application.
  • Figure 28 is a schematic diagram of the circuit structure of the antenna assembly in Figure 27 used in electronic equipment;
  • Figure 29 is a schematic diagram of the spacing between the first radiator and the second radiator in the antenna assembly in the embodiment shown in Figure 10;
  • Figure 30 is a schematic structural diagram of the electronic device shown in Figure 1 of the present application in another embodiment
  • Figure 31 is a schematic diagram of the cooperation between the middle frame and the circuit board shown in Figure 30;
  • Figure 32 is a schematic diagram of an electronic device provided by another embodiment of the present application.
  • Figure 33 is a schematic diagram of the middle frame and the first circuit board in Figure 31;
  • Figure 34 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • This application describes an antenna assembly, including: a first radiator having a first end, a second end and a first feed point, the first feed point being located between the first end and the second end.
  • the first feeding point is used to receive a first excitation signal, and the first excitation signal excites the first radiator to generate a first resonant mode, a second resonant mode and a third resonant mode, and the third resonant mode is A resonance mode, the second resonance mode and the third resonance mode are all used to support the low frequency LB frequency band, and the first resonance mode is used to support the first low frequency LB frequency band, and the second resonance mode is used to support the second LB frequency band, the third resonance mode is used to support the third LB frequency band, the frequency of the first LB frequency band is greater than the frequency of the third LB frequency band, the frequency of the third LB frequency band is greater than the frequency of the second LB frequency band Frequency of LB band.
  • the first resonance mode is an inverted F antenna IFA mode, and the current in the first resonance mode includes a current flowing from the first feed point to the first end.
  • the first resonant mode includes a 1/4 wavelength mode from the first feed point to the first end.
  • the first excitation signal when configured to excite the first radiator to generate the first resonance mode, it also excites the first radiator to generate a fourth resonance mode, and the fourth resonance mode In the loop antenna LOOP mode, the current in the fourth resonance mode includes current distributed between the first feeding point and the second end.
  • the fourth resonance mode includes a 1/2 wavelength mode from the first feed point to the second end.
  • the frequency band supported by the fourth resonance mode includes a new radio interface NR high frequency band.
  • the second resonant mode is a monopole antenna Monopole mode, and the current in the second resonant mode includes a current flowing from the first feeding point to the first end and a current flowing from the first feeding point to the first end. The current flowing from the feed point to the second terminal.
  • the second resonant mode includes 1/4 wavelength from the first feed point to the first end, and 1/4 wavelength from the first feed point to the second end. convection mode.
  • the third resonance mode is a mixed mode of IFA and Monopole, and the current in the third resonance mode includes the current flowing from the first feeding point to the first end and the current flowing from the first feeding point to the first terminal.
  • a feed point flows current to the second terminal.
  • the frequency band supported by the first resonance mode includes the Long Term Evolution LTE B8 frequency band or N8 frequency band
  • the frequency band supported by the second resonance mode includes the LTE B28 frequency band or N28 frequency band.
  • the first radiator includes a first part and a second part connected by bending, the first part has the first end, and the second part has the second end, so The first feeding point is located at the first part or the second part and is located adjacent to the corner where the first part and the second part are bent and connected.
  • the antenna assembly further includes: a first feed source, used to generate the first excitation signal; and a first matching circuit, one end of which is electrically connected to the first feed source, and the other end of which is electrically connected to the first excitation signal. The first feed point is electrically connected.
  • the antenna assembly further includes: a first frequency selection circuit disposed at the second end to be electrically connected to the first radiator, the first frequency selection circuit may be configured to control all The first excitation signal excites the first radiator to generate one of a first resonance mode, a second resonance mode and a third resonance mode, and may be configured to control the first excitation signal to excite the first radiator, to switch between two of the first resonance mode, the second resonance mode and the third resonance mode.
  • a first frequency selection circuit disposed at the second end to be electrically connected to the first radiator, the first frequency selection circuit may be configured to control all The first excitation signal excites the first radiator to generate one of a first resonance mode, a second resonance mode and a third resonance mode, and may be configured to control the first excitation signal to excite the first radiator, to switch between two of the first resonance mode, the second resonance mode and the third resonance mode.
  • the first frequency selection circuit can be configured in a low impedance state to control the first excitation signal to excite the first radiator to generate the first resonance mode, and can be configured in a high impedance state, To control the first excitation signal to excite the first radiator to generate the second resonance mode, it can be configured in a state between a low impedance state and a high impedance state to control the first excitation signal to excite the second resonance mode.
  • the first radiator generates the third resonance mode.
  • the first frequency selection circuit includes: a first switch having a grounded first common terminal, a plurality of first connection terminals and a first switching part, the first switching part and the third A common terminal is electrically connected and configured to be electrically connected to a first connection terminal among the plurality of first connection terminals under the control of a control signal; and at least one first frequency selection sub-circuit, the at least one first connection terminal One end of the frequency selection sub-circuit is electrically connected to the second end, the other end is electrically connected to the first connection end of the plurality of first connection ends, and the remaining one of the plurality of first connection ends is The first connection end is electrically connected to the second end.
  • the antenna assembly further includes: a second radiator having a first frequency selection point, a third end, a first ground point and a second feed point, the first ground point is grounded, and the The first grounding point is arranged farther away from the second end than the third end, the second feed point is located between the third end and the first grounding point, and the first frequency selection The second feed point is located between the third end and the first ground point, and the second feed point is used to receive the second excitation signal; a first parasitic branch is provided at the second end and the third end.
  • the double resonance in the MHB frequency band includes: One resonance mode is used to support the mid-frequency MB band, and the other resonance mode is used to support the high-frequency HB band; or, one resonance mode is used to support the MB frequency band, and the other resonance mode is also used to support the MB frequency band; or, one resonance mode is used to support the MB frequency band.
  • the first radiator, the first parasitic branch and the second radiator as a whole have a center line, the center line intersects the first parasitic branch, and the third parasitic branch A slit and the second slit are respectively located on both sides of the center line.
  • the first frequency selection point is located between the second feed point and the first ground point, or coincides with the second feed point.
  • the dual resonance of the MHB frequency band includes a fifth resonance mode, the fifth resonance mode is a composite left- and right-hand antenna CRLH mode, and the current in the fifth resonance mode includes flowing from the third end to the current at the first ground point.
  • the fifth resonance mode is used to support the Long Term Evolution LTE MHB frequency band and/or the New Radio NR MHB frequency band.
  • the antenna assembly further includes: a second feed source, used to generate the second excitation signal; and a second matching circuit, one end of which is electrically connected to the second feed source, and the other end of which is electrically connected to the second excitation signal.
  • the second feed point is electrically connected.
  • the second frequency selection circuit includes: a second switch having a grounded second common terminal, a plurality of second connection terminals and a second switching part, and the second switching part is connected to the third switching part.
  • Two common terminals are electrically connected and configured to be electrically connected to one of the plurality of second connection terminals under the control of a control signal; and at least one second frequency selection sub-circuit, the at least one second One end of the frequency selection sub-circuit is electrically connected to the first frequency selection point, and the other end of a second frequency selection sub-circuit is grounded, and the other end of the remaining second frequency selection sub-circuit is connected to the plurality of second connection ends.
  • the first connection terminals are electrically connected in one-to-one correspondence.
  • the first parasitic branch has a second frequency selection point; the first frequency selection circuit is electrically connected to the second frequency selection point; or the antenna assembly further includes a third frequency selection circuit , and the third frequency selection circuit is electrically connected to the second frequency selection point.
  • the dual resonance of the MHB frequency band includes a sixth resonance mode, and the frequency selection circuit of the first frequency selection circuit and the third frequency selection circuit is electrically connected to the second frequency selection point and The second frequency selection circuit is used to cooperatively control the second excitation signal to excite the first parasitic branch to generate the sixth resonance mode.
  • the current in the sixth resonance mode includes flowing from the second frequency selection point to Current at one end of the first parasitic branch close to the third end.
  • the sixth resonance mode is from the second frequency selection point to the first parasitic branch. 1/2 wavelength mode at one end close to the third end.
  • the third frequency selection circuit includes: a third switch having a grounded third common terminal, a plurality of third connection terminals and a third switching part, and the third switching part is connected to the third switching part.
  • Three common terminals are electrically connected and configured to be electrically connected to a third connection terminal among the plurality of third connection terminals under the control of a control signal; and at least one third frequency selection sub-circuit, the at least one third One end of the frequency selection sub-circuit is electrically connected to the second frequency selection point, and the other end of a third frequency selection sub-circuit is grounded, and the other end of the remaining third frequency selection sub-circuit is connected to the plurality of third connection terminals.
  • the third connection terminals are electrically connected in one-to-one correspondence.
  • the frequency selection circuit electrically connected to the second frequency selection point among the first frequency selection circuit and the third frequency selection circuit includes a capacitor that flows the current of the sixth resonance mode;
  • the antenna component also includes: a third inductor, one end of which is electrically connected to the second frequency selection point of the first parasitic branch; and an electromagnetic wave absorption ratio SAR sensor, where the SAR sensor is electrically connected to the other end of the third inductor, and The SAR sensor is configured to output the change in capacitance value detected by the first parasitic branch.
  • the second radiator further has a third feed point, a fourth end and a second ground point, and the third feed point is spaced apart from the second feed point.
  • Two grounding points are located between the second feeding point and the third feeding point, and between the first grounding point and the third feeding point, and the fourth end is located at the third feeding point.
  • the three feed points are on one side away from the second ground point, and the antenna assembly further includes: a second parasitic branch with a grounded third ground point and a third gap between it and the fourth end; and
  • the third feed source is electrically connected to the third feed point to support the LB frequency band and/or the wireless fidelity WiFi2.4G frequency band.
  • the third feed source when the third feed source supports the LB frequency band, the third feed source is used to excite the second radiator to generate a seventh resonance mode, and the seventh resonance mode is the second resonance mode. Ground point to the fourth end of the 1/4 wavelength mode.
  • the third feed source when the third feed source supports WiFi2.4G, the third feed source is used to excite the second radiator to generate an eighth resonance mode, and to excite the second parasitic stub to generate an eighth resonance mode.
  • the eighth resonance mode and the ninth resonance mode are used to support the WiFi 2.4G frequency band and the Bluetooth frequency band.
  • the eighth resonance mode is the 3/4 wavelength mode from the second ground point to the fourth end, and the ninth resonance mode is the third gap to the third ground point. 1/4 wavelength mode.
  • the antenna assembly further includes: a third radiator having a fourth feed point; and a fourth feed source electrically connected to the fourth feed point, so that the third radiator supports WiFi2.4G band and Bluetooth band.
  • the third radiator and the second radiator are arranged diagonally, the second radiator and the third radiator are both used to support the Bluetooth frequency band, and the third radiator transmits and receives
  • the pattern of the electromagnetic wave signal in the Bluetooth frequency band is complementary to the pattern of the second radiator when transmitting and receiving the electromagnetic wave signal in the Bluetooth frequency band.
  • the second radiator includes a third part and a fourth part that are bent and connected, and one end of the third part away from the fourth part is disposed adjacent to the first radiator.
  • the three radiators include a fifth part and a sixth part that are bent and connected, and the fifth part is arranged adjacent to the first radiator compared to the sixth part.
  • the fourth feed point is located at the fifth part or the sixth part, and the fourth feed point is provided adjacent to a corner where the fifth part and the sixth part are connected.
  • there is a fourth gap between the third radiator and the first radiator the third radiator has a fourth ground point and a fifth ground point, the fourth ground point and the fifth ground point.
  • the grounding points are all grounded.
  • the fourth grounding point is located closer to the first radiator than the fifth grounding point.
  • the fifth grounding point is located between the fourth feeding point and the fourth grounding point. between.
  • the third feed source is used to support the Bluetooth frequency band
  • the fourth feed source is used to support the Bluetooth frequency band
  • the third feed source is electrically connected to the radio frequency path of the second radiator, It is different from the radio frequency path that the fourth feed source is electrically connected to the third radiator.
  • the third feed source is used to support the Bluetooth frequency band
  • the fourth feed source is used to support the Bluetooth frequency band
  • the third feed source is electrically connected to the radio frequency path of the second radiator, Same as the radio frequency path through which the fourth feed source is electrically connected to the third radiator, the antenna assembly further includes a switching unit, the switching unit is used to enable the third feed source to be electrically connected through the radio frequency path.
  • the antenna assembly further includes: a fourth radiator spaced apart from the sixth part to form a fifth gap, the fifth gap being adjacent to the fifth part and the sixth part A bent and connected corner portion is provided; and a fifth feed source is electrically connected to the fourth radiator to support the WiFi 5G frequency band or the N78 frequency band.
  • the distance d1 between the second end and the third end satisfies: 10mm ⁇ d1 ⁇ 120mm.
  • This application describes an antenna assembly, including: a first radiator having a first end, a second end and a first feed point, the first feed point being located between the first end and the second end.
  • the first feeding point is used to receive a first excitation signal, and the first excitation signal is used to excite the first radiator to generate a first resonant mode, a second resonant mode and a third resonant mode; and
  • a first frequency selection circuit is provided at the second end to be electrically connected to the first radiator.
  • the first frequency selection circuit can be configured to control the first excitation signal to excite the first radiator, to switch between the first resonance mode, the second resonance mode and the third resonance mode, so that the first radiator generates the first resonance mode and the second resonance mode simultaneously, or The first radiator is caused to generate only the third resonance mode, or the first radiator is caused to generate a mixed mode of the first resonance mode and the third resonance mode.
  • the antenna assembly further includes: a second radiator having a third end, a first ground point and a second feed point, the first ground point is grounded, and the first ground point is in phase with the ground.
  • the second feed point is located between the third end and the first ground point, and the second feed point is used to receive the second Excitation signal; a first parasitic branch is disposed between the second end and the third end, and one end of the first parasitic branch forms a first gap with the first radiator, and the other end is connected with the first radiator.
  • the second radiator forms a second gap and is capacitively coupled.
  • the second excitation signal is used to excite the second radiator and the first parasitic branch to generate double resonance in the mid-to-high frequency MHB band.
  • the double resonance in the MHB band Resonance includes: one resonance mode is used to support the mid-frequency MB band, and another resonance mode is used to support the high-frequency HB band; or, one resonance mode is used to support the MB frequency band, and the other resonance mode is also used to support the MB frequency band; or, a resonance mode is used to support the MB frequency band.
  • the resonance mode is used to support the HB frequency band, and the other resonance mode is used to support the HB frequency band.
  • the first frequency selection circuit may be configured to tune the resonance mode supported by the first parasitic branch in the MHB frequency band.
  • the first resonance mode and the third resonance mode are used to support a low-frequency LB frequency band, and the frequency of the frequency band supported by the first resonance mode is greater than the frequency of the frequency band supported by the third resonance mode.
  • the first resonant mode includes a 1/4 wavelength mode from the first feed point to the first end or a 3 wavelength mode from the first feed point to the first end. /4 wavelength mode.
  • This application describes an electronic device, including: a first radiator having a first end, a second end and a first feed point.
  • the first feed point is located between the first end and the second end. between, the first feed point is used to receive the first excitation signal; and a first frequency selection circuit is provided at the second end to be electrically connected to the first radiator, the first frequency selection circuit
  • the circuit may be configured to control the first excitation signal to excite the first radiator to generate one of a first resonant mode, a second resonant mode and a third resonant mode, and may be configured to control the first excitation signal to excite the first resonant mode.
  • the first radiator is configured to switch between two of the first resonance mode, the second resonance mode and the third resonance mode, the first resonance mode, the second resonance mode and The third resonance modes are all used to support the low-frequency LB band;
  • the second radiator has a first frequency selection point, a third end, a first ground point and a second feed point, the first ground point is grounded, and The first grounding point is located farther away from the second end than the third end, the second feed point is located between the third end and the first grounding point, and the first option
  • the frequency point is located between the third end and the first ground point, the second feed point is used to receive the second excitation signal;
  • the first parasitic branch is disposed between the second end and the third between the ends, and one end of the first parasitic branch forms a first gap with the first radiator, and the other end forms a second gap with the second radiator and is capacitively coupled; a first circuit board, for generating the first excitation signal; and a second circuit board for generating the second excitation signal.
  • the electronic device further includes a middle frame, and the first radiator, the second radiator and the first parasitic branch are formed on the middle frame.
  • the electronic device further includes a first side and a second side that are bent and connected, and the first radiator is partially disposed corresponding to the first side and partially disposed corresponding to the second side.
  • the first side is the long side of the electronic device
  • the second side is the short side of the electronic device
  • the electronic device has a central axis
  • the central axis is parallel to the first side
  • the first radiator is located on one side of the central axis
  • the second radiator is located on the other side of the central axis
  • the first parasitic branch is connected to the central axis.
  • the central axes intersect.
  • the electronic device further includes: a first functional device; and a second functional device spaced apart from the first functional device to form a gap; the first end corresponds to the first functional device The gap is set between the second functional device and the second functional device.
  • the electronic device further includes: a third functional device spaced apart from the second functional device to form a gap; the third end corresponds to the second functional device and the third functional device. Gap settings between devices.
  • the first parasitic branch is provided with a second frequency selection point, the first frequency selection circuit is electrically connected to the second frequency selection point, and the first frequency selection circuit is connected to the second frequency selection point.
  • the frequency selection circuit electrically connected to the frequency selection point includes a capacitor that transmits current on the first parasitic branch; the electronic device also includes: an inductor, one end of which is electrically connected to the second frequency selection point; and the electromagnetic wave absorption ratio SAR A sensor, the SAR sensor is electrically connected to the other end of the inductor, and the SAR sensor is used to output the change in capacitance value detected by the first parasitic branch; a processor is electrically connected to the SAR sensor to Receive the change in the capacitance value transmitted by the SAR sensor, and adjust the transmission power of the first radiator, the first parasitic branch, and the second radiator according to the change in the capacitance value.
  • the electronic device may include, but is not limited to, mobile phones, telephones, televisions, tablets (Pads), cameras, personal computers, laptops (Personal Computer, PC), vehicle-mounted equipment, headphones, watches, wearable devices, base stations, vehicle-mounted radar, Customer Premise Equipment (CPE) and other equipment that can send and receive electromagnetic wave signals.
  • the electronic device may include, but is not limited to, mobile phones, telephones, televisions, tablets (Pads), cameras, personal computers, laptops (Personal Computer, PC), vehicle-mounted equipment, headphones, watches, wearable devices, base stations, vehicle-mounted radar, Customer Premise Equipment (CPE) and other equipment that can send and receive electromagnetic wave signals.
  • CPE Customer Premise Equipment
  • “electronic equipment” includes, but is not limited to, devices configured to be connected via wired lines (such as via the Public Switched Telephone Network (PSTN)). ), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (e.g., for cellular networks, wireless local area networks (WLAN), digital such as DVB-H networks
  • PSTN Public Switched Telephone Network
  • DSL digital subscriber line
  • WLAN wireless local area networks
  • DVB-H digital such as DVB-H networks
  • a communication terminal configured to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radiotelephones with data processing, fax, and data communications capabilities; may include radiotelephones, pagers, Internet/Intranet access , Web browsers, planners, calendars, and/or PDAs with Global Positioning System (GPS) receivers; as well as conventional laptop and/or handheld receivers or other electronic devices including radiotelephone transceivers.
  • a mobile phone is an electronic device equipped with a cellular communication module. In this application, the electronic device is a mobile phone as an example. For other devices, please refer to the specific descriptions in this application. Furthermore, the electronic device may be, but is not limited to, a device with or without a display screen.
  • Figure 1 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • Figure 2 is an exploded schematic diagram of the electronic device in the embodiment shown in Figure 1 from one perspective.
  • Figure 3 is a diagram. An exploded view of the electronic device in the embodiment shown in 1 from another perspective.
  • the electronic device 100 may include a device body 10 and an antenna assembly 40 installed on the device body 10 .
  • the device body 10 is used to carry the antenna assembly 40 .
  • the antenna assembly 40 is used to send and receive electromagnetic wave signals to implement the communication function of the electronic device 100 . It can be understood that the position of the antenna assembly 40 on the electronic device 100 may not be specifically limited.
  • the width direction of the electronic device 100 is defined as the X-axis direction, that is, the width direction of the electronic device 100 is The side in the direction is the short side, and the short side extends in the X-axis direction.
  • the length direction of the electronic device 100 is defined as the Y-axis direction, that is, the side of the electronic device 100 in the length direction is the long side, and the long side extends in the Y-axis direction.
  • the thickness direction of the electronic device 100 is defined as the Z-axis direction.
  • the X-axis direction, the Y-axis direction and the Z-axis direction are perpendicular to each other, and the direction indicated by the arrow is the positive direction.
  • the device body 10 may include, but is not limited to, a display screen 11 and a casing 12 that are covered and connected to each other.
  • a receiving space 101 is provided in the housing 12 , and the antenna assembly 40 can be installed in the receiving space 101 .
  • the cooperative relationship between the housing 12 and the antenna assembly 40 can also be that the antenna assembly 40 is partially integrated with the housing 12 or is partially located outside the housing 12 .
  • the housing 12 may include a middle frame 121 for carrying the display screen 11 and the antenna assembly 40 , and a rear case 122 that is opposite to the display screen 11 and connected to the middle frame 121 .
  • the rear shell 122 is located on the side of the middle frame 121 away from the display screen 11 .
  • the middle frame 121 may be made of plastic, glass, ceramics, fiber composite materials, metal and other materials.
  • the middle frame 121 may include a body part 1211 between the display screen 11 and the rear case 122 and a frame part 1212 disposed around the body part 1211.
  • the frame part 1212 can be connected to the display screen 11 and the back shell 122 .
  • the frame part 1212 may be an integral structure with the back shell 122 .
  • the body part 1211 and the frame part 1212 are an integral structure.
  • the frame part 1212 may include a first side 1213, a second side 1214, a third side 1215 and a fourth side 1216.
  • the first side 1213, the second side 1214, the third side 1215 and the fourth side 1216 are connected end to end.
  • the first side 1213 and the third side 1215 are arranged opposite to each other.
  • the second side 1214 and the fourth side 1216 are arranged opposite to each other.
  • the first side 1213 and the third side 1215 are long sides
  • the second side 1214 and the fourth side 1216 are short sides. Understandably, the length of the longer side is longer than the length of the shorter side.
  • the electronic device 100 may also include a circuit board 13, a battery, and functional devices located in the receiving space 101 (the functional devices may include a camera module 14, a microphone, a receiver, a speaker, a face recognition module, and a fingerprint recognition module. One or more of the group) and other devices that can realize the basic functions of the mobile phone will not be described again.
  • the above description of the electronic device 100 is only an explanation of the environment in which the antenna assembly 40 is applied, and should not be understood as a limitation of the antenna assembly 40 .
  • the antenna component 40 can be a Flexible Printed Circuit (FPC) antenna, a Laser Direct Structuring (LDS) antenna, a Print Direct Structuring (PDS) antenna, or a metal frame antenna (also called a metal branch). antenna) or a mixture of one or more of them.
  • FPC Flexible Printed Circuit
  • LDS Laser Direct Structuring
  • PDS Print Direct Structuring
  • metal frame antenna also called a metal branch. antenna
  • antenna component 40 can also be other types of antennas, which will not be described again.
  • the antenna assembly 40 itself has a reference ground, also called a ground pole or ground.
  • a reference ground also called a ground pole or ground.
  • Specific forms of the reference ground include but are not limited to metal conductive plates, metal conductive layers formed inside flexible circuit boards, rigid circuit boards, etc.
  • the reference ground of the antenna assembly 40 is electrically connected to the reference ground of the electronic device 100.
  • the antenna assembly 40 itself may not have a reference ground, and the antenna assembly 40 is electrically connected to the reference ground of the electronic device 100 or the reference ground of the electronic devices within the electronic device 100 through a direct electrical connection or indirectly through a conductive member.
  • FIG. 4 is a schematic structural diagram of the antenna assembly 40 in the embodiment shown in FIG. 3 in an embodiment.
  • the antenna assembly 40 may include a first radiator 50 and a first feed source S1 electrically connected to the first radiator 50 .
  • the first feed source S1 can generate a first excitation signal and transmit it to the first radiator 50 .
  • the antenna assembly 40 can excite the first radiator 50 through the first excitation signal to generate multiple resonance modes supporting the low frequency (Low Frequency Band, LB) frequency band, the middle frequency (Middle Frequency Band and High Frequency Band, MHB) frequency band.
  • LB Low Frequency Band
  • MHB Middle Frequency Band
  • the frequency range of the LB band can be 703MHz-960MHz.
  • the frequency range of the MHB band can be 1710MHz-2690MHz.
  • the MHB frequency band usually includes the Middle Frequency band (MB) frequency band and the High Frequency Band (HB) frequency band.
  • the frequency range of MB band can be 1710MHz-2170MHz.
  • the frequency range of HB band can be 2300MHz-2690MHz.
  • the frequency band range listed here is not fixed, and the range can be expanded based on the established frequency band range.
  • the first radiator 50 may be, but is not limited to, an LDS radiator, an FPC radiator, a PDS radiator, or a metal branch radiator. exist In some embodiments, the first radiator 50 may be a mechanical design antenna (MDA) radiator designed using the embedded metal of the electronic device 100 itself. For example, the first radiator 50 can be an antenna radiator designed using the middle frame 121 made of plastic and metal of the electronic device 100 . In addition, the first radiator 50 may also be a metal branch antenna radiator designed with the metal middle frame 121 .
  • MDA mechanical design antenna
  • the shape, structure and material of the first radiator 50 are not specifically limited.
  • the shapes of the first radiator 50 include but are not limited to bent shapes, strip shapes, sheets, rod shapes, coatings, films, etc.
  • the extension trajectory of the first radiator 50 is not limited, so the first radiator 50 can extend in a straight line, a curve, a multi-stage bend, etc.
  • the first radiator 50 may be a line with uniform width on the extension track, or may be a strip with varying widths such as a gradient width or a widened area.
  • the first radiator 50 has a first end 51, a second end 52 that can be used for grounding, and a first feeding point P1.
  • the method of electrically connecting the second end 52 to the ground includes but is not limited to direct electrical connection (such as welding), or through coaxial lines, microstrip lines, radio frequency lines, conductive elastic sheets, conductive glue, embedded metal, or electronic devices 100
  • the middle frame is connected electrically indirectly through materials or other methods.
  • the first feed point P1 is located between the first end 51 and the second end 52 , and the specific position of the first feed point P1 on the first radiator 50 is not limited.
  • the first feed point P1 can receive the first excitation signal. That is, the first feed point P1 may be directly or indirectly electrically connected to the first feed source S1.
  • two ends of the first radiator 50 may have gaps between them and other components.
  • the first end 51 and the second end 52 of the first radiator 50 may have gaps (i.e., respectively) between them and other components in the electronic device 100. Two gaps) are not easily held or blocked at the same time. Even when one of the two gaps is blocked, the first radiator 50 can still transmit and receive electromagnetic wave signals. Therefore, the antenna assembly 40 has better communication performance.
  • the first radiator 50 may be formed on the middle frame 121 such as the frame portion 1212 .
  • the first radiator 50 may have a middle frame 121 such as a body part 1211 and a frame part 1212 such as a ground electrode.
  • the ground electrode is connected to the body part 1211 through the connecting material between the body part 1211 and the frame part 1212 for grounding.
  • the first radiator 50 may be bent.
  • the first end 51 and the second end 52 may not be opposite to each other in a linear direction.
  • the first end 51 and the second end 52 may be two ends of the first radiator 50 .
  • the first end 51 and the second end 52 may be opposite ends of the linear first radiator 50 .
  • the first radiator 50 may include a first portion 53 and a second portion 54 that are bent and connected.
  • the first part 53 may have a first end 51 and the second part 54 may have a second end 52.
  • the first feeding point P1 is located at the first part 53 or the second part 54 and is adjacent to the first part 53 and the second part 54. Bend connected corners settings.
  • the first radiator 50 is adapted to the form of the electronic device 100 using the first radiator 50 .
  • the first portion 53 and the second portion 54 may respectively correspond to two sides (for example, a long side and a short side that are bent and connected) of the electronic device 100 .
  • a part of the first radiator 50 (for example, one of the first part 53 and the second part 54 ) may correspond to the bottom of the electronic device 100 .
  • the side (that is, the short side extending in the One) may be provided corresponding to the side of the electronic device 100 (ie, the long side extending in the Y direction, such as the portion where the frame portion 1212 extends in the Y direction, ie, the first side 1213). Therefore, when the antenna assembly 40 is applied to the electronic device 100, in scenarios where the electronic device 100 is used to play games and needs to be held for a long time, the first end 51 and the second end 52 of the first radiator 50 can be connected to other components respectively. The gaps between them cannot be easily held or blocked by the user's hands at the same time. Therefore, when the antenna assembly 40 is used in the electronic device 100, it has anti-hand-holding and excellent hand-holding performance for two-handed games.
  • the first feeding point P1 may be located in the middle of the first radiator 50 .
  • the equivalent electrical length of the radiation portion between the first feed point P1 and the first end 51 is equal to or approximately equal to the equivalent electrical length of the radiation portion between the first feed point P1 and the second end 52 (such as , the difference is less than or equal to 10mm).
  • the first excitation signal generated by the first feed source S1 can excite the first radiator 50 to generate a plurality of resonant modes, such as a first resonant mode, a second resonant mode and a third resonant mode.
  • the first resonance mode may be used to support the LB band or the HB band.
  • the first resonance mode supports the LB frequency band, which means that the first resonance mode supports part of the frequency bands (sub-bands) in the LB frequency band, for example, supports part of the frequency bands between 703MHz and 960MHz, such as LTE (Long Term Evolution, Long Term Evolution).
  • Term Evolution) B8 frequency band such as NR (New Radio) N8 frequency band.
  • the first resonance mode supports the HB frequency band, which means that the first resonance mode supports part of the frequency band in the HB frequency band, for example, supports part of the frequency band (sub-band) in 2300MHz-2690MHz, such as the NR (New Radio) N41 frequency band. Therefore, when other resonance modes support a certain frequency band, they only support part of the frequency band (sub-band) in this frequency band.
  • the first resonance mode may be used to support LTE LB band or NR HB band or NR LB band.
  • the first resonance mode may be used to support the LTE B8 band in the LTE LB band.
  • the first resonance mode may be used to support the N8 band in the NR LB band.
  • the first resonance mode may be used to support the N41 band in the NR HB band.
  • FIG. 5 is a schematic diagram of main current flow directions respectively corresponding to the first resonance mode and the second resonance mode of the first radiator 50 in the embodiment shown in FIG. 4 .
  • the first resonance mode may be an inverted-F antenna (IFA, Inverted-F Antenna) mode.
  • the current of the first resonance mode may include current I1 distributed between the first feed point P1 and the first terminal 51 .
  • the current I1 may flow from the first feed point P1 to the first terminal 51 .
  • the first resonance mode may include a 1/4 wavelength mode from the first feed point P1 to the first end 51, so that the first resonance mode supports the LB frequency band, such as the LTE LB frequency band and the NR LB frequency band.
  • the 1/4 wavelength mode is a resonance mode with relatively high efficiency, so it can enhance the transceiver efficiency in the frequency band supported by the first resonance mode.
  • the first resonance mode may include a 3/4 wavelength mode from the first feed point P1 to the first end 51 , so that the first resonance mode supports the HB frequency band, such as the NR high frequency band.
  • the second resonance mode may be used to support the HB band to broaden the bandwidth of antenna assembly 40.
  • the second resonance mode may be used to support NR high frequency bands. In some embodiments, the second resonance mode may be used to support the N41 band in the NR high frequency band.
  • the second resonance mode may be a loop antenna (LOOP) mode.
  • the current in the second resonance mode may include current I2 distributed between the first feed point P1 and the second terminal 52 .
  • the second resonance mode may include a 1/2 wavelength mode from the first feed point P1 to the second end 52, so that the second resonance mode supports the NR HB frequency band.
  • a third resonance mode may be used to support the LB band. In some embodiments, the third resonance mode may be used to support LTE LB band. In some embodiments, the third resonance mode may be used to support the NR LB band.
  • the third resonance mode may be used to support the LTE B28 band in the LTE LB band. In some embodiments, the third resonance mode may be used to support the N28 band in the NR LB band.
  • FIG. 6 is a schematic diagram of the main current flow corresponding to the third resonance mode of the first radiator 50 in the embodiment shown in FIG. 4 .
  • the third resonance mode may be a monopole antenna (Monopole) mode.
  • the current in the third resonance mode may include a current I31 distributed between the first feed point P1 and the first terminal 51 and a current I32 distributed between the first feed point P1 and the second terminal 52 .
  • the current I31 flows from the first feeding point P1 to the first terminal 51
  • the current I32 flows from the first feeding point P1 to the second terminal 52 .
  • the third resonance mode is a convection mode of 1/4 wavelength from the first feed point P1 to the first end 51 and 1/4 wavelength from the first feed point P1 to the second end 52 .
  • the 1/4 wavelength mode is a resonance mode with relatively high efficiency, so it can enhance the transceiver efficiency in the frequency band supported by the third resonance mode.
  • the third resonance mode supports a smaller frequency band than the first resonance mode.
  • the frequency band supported by the first resonance mode is the higher frequency band of the LB frequency band
  • the frequency band supported by the second resonance mode is the lower frequency band of the LB frequency band. Therefore, when both the first resonance mode and the third resonance mode are used to support the LB frequency band, there can be more resonance modes in the antenna assembly 40 to support the LB frequency band, and the relatively higher frequency band in the LB frequency band can be fully utilized, and the LB frequency band can be fully utilized.
  • the bandwidth of the LB frequency band supported by the antenna assembly 40 is relatively large.
  • the antenna assembly 40 uses the LB frequency band for communication, even if the antenna assembly 40 has a frequency offset in the LB frequency band, because the bandwidth of the LB frequency band supported by the antenna assembly 40 is relatively large, The frequency after frequency offset also falls within the LB frequency band range supported by the antenna assembly 40. Therefore, the antenna assembly 40 has better communication performance.
  • the frequency bands supported by the first resonance mode include LTE B8 frequency band and N8 frequency band
  • the frequency bands supported by the second resonance mode include LTE B28 frequency band and N28 frequency band.
  • the antenna component 40 when the antenna component 40 communicates with other devices, it can make full use of the LTE B8 frequency band or N8 frequency band or N28 frequency band or the LTE B28 frequency band to communicate with other devices.
  • each resonance mode illustrates the current corresponding to each resonance mode separately.
  • each resonance mode is not completely independent when working. However, this does not affect the explanation of the main characteristics of each resonance mode here.
  • the flow direction of each current is only illustrative, and does not represent the actual current strength, nor does it represent the position of the zero point of the current where two currents flowing in opposite directions interact.
  • the first feed source S1 when the first feed source S1 is directly or indirectly electrically connected to the first radiator 50 such as the first feed point P1 , it is usually electrically connected to the first feed point P1 through a radio frequency signal line.
  • the equivalent resistance of RF signal lines is usually small (about 50 ohms).
  • the first feed point P1 is located at the first part 53 or the second part 54 and is located adjacent to the corner where the first part 53 and the second part 54 are bent and connected, so that the first feed point P1 is located at the first radiator.
  • 50 has the strongest or stronger current, so that the equivalent impedance of the first radiator 50 is lower, and thus the equivalent impedance of the first radiator 50 is different from the first feed source S1 to the first radiator 50, such as the first
  • the impedances between feed points P1 are relatively matched. Therefore, the radiation performance of the first radiator 50 is better. It can be understood that when the first feeding point P1 is located in the middle of the first radiator 50 , the equivalent impedance of the first radiator 50 is low.
  • the equivalent impedance of the first radiator 50 is relatively matched with the impedance of the radio frequency signal line connecting the first feed source S1 to the first radiator 50 . Therefore, the antenna unit composed of the first feed source S1 and the first radiator 50 in the antenna assembly 40 has better radiation performance.
  • the first feed source S1 is electrically connected to the first feed point P1 by, but is not limited to, direct electrical connection (such as welding); or through coaxial lines, microstrip lines, radio frequency lines, conductive elastic sheets, conductive glue, matching Indirect electrical connection through circuits and other means.
  • the first feed source S1 is electrically connected to the first feed point P1 through a matching circuit.
  • the antenna assembly 40 may further include a first matching circuit 55 having one end electrically connected to the first feed source S1 and the other end electrically connected to the first feed point P1 .
  • the first excitation signal can be transmitted to the first feed point P1 through the first matching circuit 55 .
  • the first matching circuit 55 may be composed of a switch control circuit and/or a load circuit, or an adjustable capacitor (which can also be replaced by a fixed-value capacitor) and/or an adjustable inductor (which can also be replaced by a fixed-value capacitor). )composition.
  • the first matching circuit 55 can perform impedance matching to improve the antenna performance of the antenna assembly 40 .
  • the first matching circuit 55 may include a first inductor L1 with one end electrically connected to the first feed source S1 and the other end electrically connected to the first feed point P1, a third inductor L1 with one end electrically connected to the first feed point P1 and the other end grounded. Two inductors L2 and a first capacitor C1 with one end electrically connected to the first feed source S1 and the other end grounded.
  • the first inductor L1, the second inductor L2 and the first capacitor C1 cooperate to perform impedance matching to improve the antenna performance of the antenna assembly 40.
  • the antenna assembly 40 may further include a first frequency selection circuit 56 with one end electrically connected to the second end 52 and the other end grounded. That is, the second terminal 52 can be connected to the ground through the first frequency selection circuit 56 instead of directly connected to the ground. Of course, in some embodiments, the second terminal 52 may be directly connected to ground.
  • the first frequency selection circuit 56 can tune and decouple the LB frequency band and HB frequency band supported by the resonant modes generated by the first radiator 50 such as the first resonant mode, the second resonant mode and the third resonant mode to improve the antenna. performance.
  • the first frequency selection circuit 56 may be composed of a switch control circuit and/or a load circuit, or an adjustable capacitor (which can also be replaced by a fixed-value capacitor) and/or an adjustable inductor (which can also be replaced by a fixed-value capacitor).
  • the switch control circuit may be a switch chip with a switching function, or may be a single-pole multi-throw switch or a single-pole single-throw switch.
  • the first frequency selection circuit 56 can control the effective electrical length of the first radiator 50 to adjust the frequency band and resonance frequency of the electromagnetic wave signal supported by the first radiator 50 to further control the first excitation signal to excite the first radiator 50 Works in LB band and/or HB band.
  • the first frequency selection circuit 56 may include at least one first frequency selection sub-circuit 561 and a first switch 562 .
  • the first switch 562 has a grounded first common terminal 5621, a plurality of first connection terminals 5622, and a first switching part 5623.
  • the first switching part 5623 may be electrically connected to the first common terminal 5621.
  • the first switching part 5623 may be electrically connected to a first connection terminal 5622 under the control of a control signal (which may come from the electronic device 100 such as a processor or other electronic devices).
  • each first frequency selection sub-circuit 561 is electrically connected to the second end 52, and the other end is electrically connected to a first connection end 5622 in a one-to-one correspondence.
  • the other first connection end 5622 can be directly electrically connected to the second end 52 .
  • connection sequence of the first frequency selection sub-circuit 561 and the first switch 562 in the first frequency selection circuit 56 can be adjusted.
  • the grounding point of the first frequency selection circuit 56 in Figure 8 can be directly connected to the second The terminal 52 is electrically connected, and correspondingly, the point electrically connected to the second terminal 52 can be directly grounded.
  • the first switching part 5623 can be selectively electrically connected to different first connection terminals 5622, so that one end of the different first frequency selection sub-circuit 561 is electrically connected to the second terminal 52, and the other end is grounded, or the third The two ends 52 are directly connected to the ground, so that the first radiator 50 has different effective electrical lengths in different states.
  • the first switching part 5623 can be electrically connected to the first connection terminal 5622, so that the second terminal 52 is directly connected to the ground, so that the resistance between the second terminal 52 and the ground is, for example, 0 ohms, so that the first excitation
  • the signal excites the first radiator 50 to generate a first resonant mode and a second resonant mode.
  • the first switching part 5623 can be electrically connected to the first connection terminal 5622, so that the first frequency selection sub-circuit 561 is connected between the second terminal 52 and the ground, and the first frequency selection sub-circuit 561 is connected between the second terminal 52 and the ground.
  • the resistance is between 0 ohms and a high impedance state, such as an open circuit state, so that the first excitation signal excites the first radiator 50 to generate a mixed mode of the first resonant mode and the third resonant mode (ie, a mixed mode of IFA and Monopole) .
  • the first switching part 5623 can be electrically connected to the first connection terminal 5622, so that the first frequency selection sub-circuit 561 is connected between the second terminal 52 and ground, or the first switching part 5623 can be connected to the first The terminal 5622 is in a disconnected state, so that the resistance between the second terminal 52 and the ground is in a high impedance state, such as an open circuit state, so that the first excitation signal excites the first radiator 50 to generate the third resonance mode.
  • the first frequency selection circuit 56 tunes the LB frequency band and the HB frequency band supported by the resonance modes generated by the first radiator 50, such as the first resonance mode, the second resonance mode, and the third resonance mode. Decoupling and decoupling are only some embodiments, and others are possible. As long as the first frequency selection circuit 56 can control the first excitation signal to excite the first radiator 50 to switch between the first resonant mode, the second resonant mode and the third resonant mode, so that the first radiator 50 simultaneously generates the first resonant mode.
  • the resonant mode and the second resonant mode may be such that the first radiator 50 only generates the third resonant mode, or the first radiator 50 may generate a mixed mode of the first resonant mode and the third resonant mode.
  • the above second resonance mode may be called the "fourth resonance mode”, and accordingly, the third resonance mode may be called the “second resonance mode”, and the first resonance mode and the third resonance mode may be called the “second resonance mode”.
  • the mixed mode of the three resonant modes may be called the "third resonant mode”.
  • the first excitation signal excites the first radiator 50 to generate a first resonance mode, a second resonance mode and a third resonance mode.
  • the first resonance mode, the second resonance mode and the third resonance mode are all used to support the LB frequency band.
  • the first resonance mode is used to support the first low-frequency LB frequency band
  • the second resonance mode is used to support the second LB frequency band
  • the third resonance mode is used to support the third LB frequency band
  • the frequency of the first LB frequency band is greater than that of the third LB frequency band.
  • the frequency of the third LB band is greater than the frequency of the second LB band.
  • the second resonance mode is the monopole antenna Monopole mode.
  • the current in the third resonance mode includes the current flowing from the first feed point P1 to the first end 51 and the current flowing from the first feed point P1 to the second end 52 .
  • the first frequency selection circuit 56 can control the first excitation signal to excite the first radiator 50 to produce one of the first resonance mode, the second resonance mode and the third resonance mode, and can control the first excitation signal to excite
  • the first radiator 50 is configured to switch between the first resonance mode, the second resonance mode and the third resonance mode.
  • the first frequency selection circuit 56 can be in a low impedance state to control the first excitation signal to excite the first radiator 50 to generate the first resonance mode, or it can be in a high impedance state to control the first excitation signal to excite the first resonant mode.
  • the radiator 50 generates the second resonance mode, which may be a state between a low impedance state and a high impedance state, so as to control the first excitation signal to excite the first radiator 50 to generate the third resonance mode.
  • the first frequency selection circuit 56 can be in a short-circuit state to control the first excitation signal to excite the first radiator 50 to generate the first resonance mode, or it can be in an open-circuit state to control the first excitation signal to excite the first radiator.
  • 50 generates a second resonance mode, which may be a state between a short-circuit state and an open-circuit state, so as to control the first excitation signal to excite the first radiator 50 to generate a third resonance mode.
  • the first LB frequency band supported by the first resonance mode and the second LB frequency band supported by the second resonance mode are the same standard, or they may be different standards.
  • the first resonance mode supports the LTE LB frequency band such as the B8 frequency band
  • the second resonance mode supports the LTE LB frequency band such as the B28 frequency band
  • the first resonance mode supports the NR LB frequency band such as the N8 frequency band
  • the second resonance mode supports the NR LB frequency band such as the N28 frequency band.
  • the first resonance mode supports the NR LB frequency band such as the N8 frequency band
  • the second resonance mode supports the LTE LB frequency band such as the B28 frequency band
  • the first resonance mode supports LTE LB frequency band such as B8 frequency band
  • the second resonance mode supports NR LB frequency band such as N28 frequency band.
  • the first radiator 50 works in the first resonance mode, it can fully excite the current in the long side extension direction of the middle frame 121 to improve the free space OTA (over the air, over the air download technology) performance. In some cases In the embodiment, the improvement can be about 1dB.
  • both ends of the first radiator 50 are not grounded, further reducing the impact of being held by the hand. , improve OTA performance in hand model and head-hand model scenarios. In some embodiments, it can be improved by 2-3dB in a head-hand simulation scenario.
  • the first frequency selection circuit 56 is configured so that the first radiator 50 is in the first resonance mode. Furthermore, the first resonance mode can support the highest frequency band in the LTE LB band such as LTE B8. frequency band or the highest frequency band in the NR LB frequency band such as the N8 frequency band, the second resonance mode can support the N41 frequency band in the NR HB frequency band. Furthermore, the first radiator 50 can support dual connectivity ENDC (a combination of 4G wireless access network and 5G-NR dual connectivity (E-UTRAN New Radio-Dual Connectivity, ENDC) of the LTE LB band and NR HB band). For example, LTE LB band and N41 band ENDC.
  • dual connectivity ENDC a combination of 4G wireless access network and 5G-NR dual connectivity (E-UTRAN New Radio-Dual Connectivity, ENDC) of the LTE LB band and NR HB band.
  • ENDC dual connectivity
  • the first frequency selection circuit 56 is configured so that the first radiator 50 is in the third resonance mode. Furthermore, the third resonance mode can support the lowest frequency band in the LTE LB band such as LTE B28. The lowest frequency band or NR LB band such as N28 band.
  • the first frequency selection circuit 56 is configured such that the first radiator 50 is in a mixed mode of the first resonant mode and the third resonant mode.
  • the first resonant mode can support the lowest frequency band in the LTE LB band. and the highest frequency band.
  • the first resonance mode can support frequency bands between the LTE B28 frequency band (or N28 frequency band) and the LTE B8 (or N8 frequency band) frequency band, such as the LTE B20 frequency band, LTE B5 frequency band, etc.
  • the number of the first frequency selection sub-circuit 561 in the figure should not be understood as a limitation on the number of the first frequency selection sub-circuit 561 provided in the embodiment of the present application.
  • the first frequency selection sub-circuit 561 may include a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • each first frequency selection sub-circuit 561 may be different, so that when different first frequency selection sub-circuits 561 are electrically connected to the first radiator 50 , the degree of adjustment of the electrical length of the first radiator 50 is different.
  • each first frequency selection sub-circuit 561 referred to here is different, which may mean that the components included in each first frequency selection sub-circuit 561 are different; or, the components included are the same, but the differences between the components
  • the connection relationship is different; or the included devices are the same and the connection relationship is the same, but the parameters of the devices (such as capacitance value or inductance) are different.
  • the number of the first frequency selection sub-circuit 561 is usually greater than or equal to two.
  • each first frequency selection sub-circuit 561 is electrically connected to one first switching switch 562 in a one-to-one correspondence.
  • FIG. 9 is a schematic structural diagram of the first frequency selection circuit 56 in the embodiment shown in FIG. 8 in another embodiment of the antenna assembly 40 .
  • Each first frequency selection sub-circuit 561 is electrically connected to a first switch 562 in a one-to-one correspondence.
  • FIG. 10 is a schematic structural diagram of the antenna assembly 40 shown in FIG. 3 in another embodiment.
  • the antenna assembly 40 further includes a second radiator 60 , a second feed S2 electrically connected to the second radiator 60 , and a first parasitic branch 70 capacitively coupled to the second radiator 60 .
  • the second feed source S2 can generate a second excitation signal and transmit it to the second radiator 60 .
  • the antenna assembly 40 can use the second excitation signal to excite the second radiator 60 and the first parasitic branch 70 to generate dual resonance that supports the MHB frequency band.
  • One resonance mode in the dual resonance of the MHB frequency band is used to support part of the frequency band in the MHB frequency band, and the other resonance mode in the dual resonance is used to support another part of the frequency band in the MHB frequency band.
  • the dual resonance of the MHB frequency band includes: one resonance mode is used to support the mid-frequency MB frequency band, and the other resonance mode is used to support the high-frequency HB frequency band; or, one resonance mode is used to support the MB frequency band, and the other resonance mode is also used to support the MB frequency band.
  • the second radiator 60 may be, but is not limited to, an LDS radiator, an FPC radiator, a PDS radiator, or a metal branch radiator.
  • the second radiator 60 may be a structural antenna radiator designed using the embedded metal of the electronic device 100 itself.
  • the second radiator 60 can be an antenna radiator designed using the middle frame 121 made of plastic and metal of the electronic device 100 .
  • the second radiator 60 may also be a metal branch antenna radiator designed with the metal middle frame 121 .
  • the shape, structure and material of the second radiator 60 are not specifically limited.
  • the shapes of the second radiator 60 include but are not limited to bent shapes, strip shapes, sheets, rod shapes, coatings, films, etc.
  • the present application does not limit the extension trajectory of the second radiator 60 . Therefore, the second radiator 60 can extend in a straight line, a curve, or a multi-stage bending trajectory.
  • the above-mentioned second radiator 60 may be a line with uniform width on the extension track, or may be a strip with varying widths such as a gradient width or a widened area.
  • the second radiator 60 has a third end 61 , a first ground point 62 , a second feed point P2 and a first frequency selection point 63 .
  • the first ground point 62 is arranged farther away from the second end 52 than the third end 61 .
  • the first ground point 62 is grounded.
  • the method of electrically connecting the first ground point 62 to the ground includes but is not limited to direct electrical connection (such as welding), or through coaxial lines, microstrip lines, radio frequency lines, conductive elastic sheets, conductive glue, embedded metal, or electronic equipment 100
  • the middle frame is connected electrically indirectly through materials or other methods.
  • the second feeding point P2 is located between the third end 61 and the first ground point 62 , and the specific position of the second feeding point P2 on the second radiator 60 is not limited.
  • the second feed point P2 can receive the second excitation signal. That is, the second feed point P2 may be directly or indirectly electrically connected to the second feed source S2.
  • the first frequency selection point 63 can be grounded.
  • the method of electrically connecting the first frequency selection point 63 to the ground includes but is not limited to direct electrical connection (such as welding), or through coaxial lines, microstrip lines, radio frequency lines, conductive spring sheets, conductive
  • the electronic device 100 is electrically connected indirectly through glue, embedded metal, or the middle frame connection material of the electronic device 100 .
  • the first frequency selection point 63 may coincide with the second feed point P2, or may be located between the second feed point P2 and the first ground point 62.
  • the antenna assembly 40 may be used in the electronic device 100.
  • the gaps between the two ends of the second radiator 60 and other components are not easy to be held or blocked at the same time. Even when one of the two gaps is blocked, the second radiator 60 can still transmit and receive electromagnetic wave signals. Therefore, the antenna assembly 40 has better communication performance.
  • the second radiator 60 may be formed on the middle frame 121 such as the frame portion 1212 .
  • the second radiator 60 may use the middle frame 121 such as the body part 1211 and the frame part 1212 as the ground electrode.
  • the ground electrode is connected to the body part 1211 through the connecting material between the body part 1211 and the frame part 1212 for grounding.
  • the second excitation signal generated by the second feed source S2 can excite the second radiator 60 to generate a fifth resonance mode that supports the MHB frequency band.
  • the fifth resonance mode may support LTE MHB frequency band and/or NR MHB frequency band.
  • the fifth resonance mode may support LTE B32 band.
  • the fifth resonance mode may support the N41 frequency band in the NR mid-to-high frequency band.
  • the fifth resonant mode may be a composite left-handed and left-handed antenna (CRLH) mode (a mode of a composite left-handed and left-handed transmission line structure).
  • the current in the fifth resonance mode may be distributed among the current I5 between the third terminal 61 and the first ground point 62 .
  • the current I5 may flow from the third terminal 61 to the first ground point 62 .
  • the method of electrically connecting the second feed source S2 to the second feed point P2 may be but is not limited to direct electrical connection (such as welding); or through coaxial lines, microstrip lines, radio frequency lines, and conductive elastic pieces. , conductive glue, matching circuit and other methods for indirect electrical connection.
  • the second feed source S2 is electrically connected to the second feed point P2 through a matching circuit.
  • the second feed source S2 is electrically connected to the second feed point P2 of the second radiator 60 .
  • the second feed source S2 is separated from the first feed point P1 when the first feed source S1 is electrically connected to the first feed point P1 of the first radiator 50 .
  • the feed of LB band and NR HB band and the feed of MHB band are fed separately. Therefore, the carrier aggregation (Carrier Aggregation, CA) of LB band, NR HB band and MHB band can be better supported. .
  • the antenna assembly 40 may further include a second matching circuit 64 having one end electrically connected to the second feed source S2 and the other end electrically connected to the second feed point P2.
  • the second excitation signal may be transmitted to the second feed point P2 through the second matching circuit 64 .
  • the second matching circuit 64 may be composed of a switch control circuit and/or a load circuit, or an adjustable capacitor (a fixed value capacitor may also be used instead) and/or an adjustable inductor (a fixed value capacitor may also be used instead). )composition.
  • the second matching circuit 64 can perform impedance matching to improve the antenna performance of the antenna assembly 40 .
  • FIG. 11 is a schematic structural diagram of the cooperation between the second matching circuit 64 and the second feed source S2 in the embodiment shown in FIG. 10 .
  • the second matching circuit 64 may include a second capacitor C2 with one end electrically connected to the second feed source S2 and the other end electrically connected to the second feed point P2.
  • the second capacitor C2 can perform impedance matching to improve the antenna performance of the antenna assembly 40 .
  • the antenna assembly 40 may further include a second frequency selection circuit 65 with one end electrically connected to the first frequency selection point 63 and the other end grounded. That is, the first frequency selection point 63 can be grounded through the second frequency selection circuit 65 instead of directly grounded. Of course, in some embodiments, the first frequency selection point 63 may be directly connected to ground.
  • the second frequency selection circuit 65 can tune and decouple the MHB frequency band supported by the resonant mode generated by the second radiator 60 , such as the fifth resonant mode, to improve the performance of the antenna.
  • the second frequency selection circuit 65 When the second frequency selection circuit 65 is electrically connected to the second feed point P2, that is, when the first frequency selection point 63 coincides with the second feed point P2, the second frequency selection circuit 65 and the second feed source S2 can share a circuit.
  • the connecting member (such as a conductive elastic piece) is electrically connected to the second radiator 60 without using two separate conductive members.
  • the second frequency selection circuit 65 When the second frequency selection circuit 65 is electrically connected to the first frequency selection point 63, that is, when the first frequency selection point 63 and the second feed point P2 do not overlap, the first frequency selection point 63 and the second feed point P2 overlap.
  • SAR SAR
  • the second frequency selection circuit 65 may be composed of a switch control circuit and/or a load circuit, or an adjustable capacitor (which can also be replaced by a fixed-value capacitor) and/or an adjustable inductor (which can also be replaced by a fixed-value capacitor).
  • the switch control circuit may be a switch chip with a switching function, or may be a single-pole multi-throw switch or a single-pole single-throw switch.
  • the second frequency selection circuit 65 can control the effective electrical length of the second radiator 60 to adjust the frequency band and resonance frequency of the electromagnetic wave signal supported by the second radiator 60 to further control the second radiator 60 to operate in the MHB frequency band.
  • FIG. 12 is a schematic structural diagram of the second frequency selection circuit 65 in the antenna assembly 40 in the embodiment shown in FIG. 10 .
  • the second frequency selection circuit 65 may include at least one second frequency selection sub-circuit 651 and a second switch 652 .
  • the second switch 652 has a grounded second common terminal 6521, a plurality of second connection terminals 6522 and a second switching part 6523.
  • the second switching part 6523 can be electrically connected to the second common terminal 6521.
  • the second switching part 6523 can be electrically connected to a second connection terminal 6522 under the control of the control signal.
  • One end of part of the second frequency selection sub-circuit 651 is electrically connected to the first frequency selection point 63, and the other end is electrically connected to a second connection end 6522 in a one-to-one correspondence.
  • the other end of one of the second frequency selection sub-circuits 651 in another part of the second frequency selection sub-circuit 651 is directly connected to the ground.
  • connection sequence of the second frequency selection sub-circuit 651 and the second switch 652 in the second frequency selection circuit 65 can be adjusted.
  • the grounding point of the second frequency selection circuit 65 in Figure 12 can be directly connected to the first
  • the frequency selection point 63 is electrically connected.
  • the point electrically connected to the first frequency selection point 63 can be directly grounded.
  • the second switching part 6523 can be selectively electrically connected to different second connection terminals 6522, so that one end of the different second frequency selection sub-circuit 651 is connected to The first frequency selection point 63 is electrically connected, and the other end is grounded, or the first frequency selection point 63 is directly grounded, so that the second radiator 60 has different effective electrical lengths in different states, and in different sub-bands of the MHB frequency band switch between.
  • the number of the second frequency selection sub-circuit 651 in the illustration should not be understood as a limitation on the number of the second frequency selection sub-circuit 651 provided in the embodiment of the present application.
  • the second frequency selection sub-circuit 651 may include a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • each second frequency selection sub-circuit 651 may be different, so that when different second frequency selection sub-circuits 651 are electrically connected to the second radiator 60 , the degree of adjustment of the electrical length of the second radiator 60 is different.
  • each second frequency selection sub-circuit 651 referred to here is different, which may mean that the devices included in each second frequency selection sub-circuit 651 are different; or, the included devices are the same, but the differences between the devices The connection relationship is different; or the included devices are the same and the connection relationship is the same, but the parameters of the devices (such as capacitance value or inductance) are different.
  • the number of the second frequency selection sub-circuit 651 is usually greater than or equal to two.
  • each second frequency selection sub-circuit 651 is electrically connected to one second switching switch 652 in a one-to-one correspondence.
  • FIG. 13 is a schematic structural diagram of the second frequency selection circuit 65 in the antenna assembly 40 in another embodiment of the embodiment shown in FIG. 12 .
  • the second frequency selection sub-circuit 651 is directly connected to the ground, and each of the remaining second frequency selection sub-circuits 651 is electrically connected to a second switch 652 in a one-to-one correspondence.
  • the first parasitic branch 70 may be, but is not limited to, an LDS radiator, an FPC radiator, a PDS radiator, or a metal branch radiator.
  • the first parasitic branch 70 may be a structural antenna radiator designed using the embedded metal of the electronic device 100 itself.
  • the first parasitic branch 70 can be an antenna radiator designed using the middle frame 121 made of plastic and metal of the electronic device 100 .
  • the first parasitic branch 70 may also be a metal branch antenna radiator designed from the metal middle frame 121 .
  • the shape, structure and material of the first parasitic branch 70 are not specifically limited.
  • the shapes of the first parasitic branch 70 include but are not limited to bent shapes, strip shapes, sheets, rod shapes, coatings, films, etc.
  • the application does not limit the extension trajectory of the first parasitic branch 70 , so the first parasitic branch 70 can extend in a straight line, a curve, a multi-stage bend, etc.
  • the above-mentioned first parasitic branches 70 can be lines with uniform width on the extension track, or can be strips with varying widths such as gradual width and widened areas.
  • the first parasitic branch 70 is disposed between the second end 52 and the third end 61 , and the first parasitic branch 70 and the third end 61 are capacitively coupled. Furthermore, the first parasitic branch 70 can generate a resonance mode that supports the MHB frequency band, such as a sixth resonance mode, under the excitation of the second excitation signal.
  • One end of the first parasitic branch 70 forms a first gap 401 with the first radiator 50
  • the other end of the first parasitic branch 70 forms a second gap 402 with the second radiator 60 and is capacitively coupled.
  • the first parasitic branch 70 and the portion where the second end 52 is located may be arranged along a straight line, or generally along a straight line.
  • the situation where the first parasitic branch 70 and the second end 52 are arranged substantially along a straight line includes but is not limited to the fact that the parts where the first parasitic branch 70 and the second end 52 are located have small tolerances during the design or manufacturing process. , or it is set deliberately.
  • the first parasitic branch 70 and the third end 61 can be capacitively coupled through the second gap 402 .
  • the portion where the first parasitic branch 70 and the third end 61 are located may be arranged along a straight line, or substantially along a straight line, as long as the first parasitic branch 70 can be capacitively coupled with the third end 61 .
  • the situation where the first parasitic branch 70 and the third end 61 are arranged approximately along a straight line includes but is not limited to the fact that there is a small tolerance in the design or manufacturing process of the part where the first parasitic branch 70 and the third end 61 are located. , or it is set deliberately.
  • the width of the second gap 402 may be 0.5-2 mm, but is not limited to this size.
  • the width of the second gap 402 is 0.5-2 mm, the first parasitic branch 70 and the third end 61 can have a better capacitive coupling effect.
  • the so-called “capacitive coupling” means that an electric field is generated between two radiators, and the signal of one radiator can be transmitted to the other radiator through the electric field.
  • the signal of the other radiator can pass through the electric field. Passed to a radiator, so that the two radiators can achieve electrical signal conduction even if they are not in direct contact or connected.
  • the capacitive coupling between the first parasitic branch 70 and the third end 61 of the second radiator 60 means that the first parasitic branch 70 and the third end 61 of the second radiator 60 generate an electric field, and the second radiator The signal at the third end 61 of 60 can be transmitted to the first parasitic branch 70 through the electric field.
  • the signal from the first parasitic branch 70 can be transmitted to the third end 61 of the second radiator 60 through the electric field, so that the second radiation
  • the body 60 and the first parasitic branch 70 can realize electrical signal conduction even if they are not in direct contact or connected.
  • the first parasitic branch 70 may generate a resonant mode that supports the MHB frequency band, such as a sixth resonant mode, under the excitation of the second excitation signal. Furthermore, the feed of LB band, NR HB band and MHB band are fed separately. Therefore, the carrier aggregation (Carrier Aggregation, CA) of LB band, NR HB band and MHB band can be better supported.
  • CA Carrier Aggregation
  • the second excitation signal may excite the first parasitic branch 70 to generate the sixth resonance mode.
  • the sixth resonance mode may support the MHB frequency band. In some embodiments, the sixth resonance mode may support the LTE MHB band.
  • the sixth resonance mode can support the 2.2GHz frequency band and the 2.8GHz frequency band in the LTE MHB frequency band, so that the total system efficiency is improved by approximately 0.5dB.
  • the first parasitic branch 70 may share the first frequency selection circuit 56 with the first radiator 50 . That is, the first frequency selection circuit 56 may be electrically connected to the first parasitic branch 70 . That is to say, the first parasitic branch 70 has a second frequency selection point B1 to be electrically connected to the first frequency selection circuit 56 . The first parasitic branch 70 is grounded through the first frequency selection circuit 56 .
  • the sixth resonance mode may include distributing the current I6 at the second frequency selection point B1 and one end of the first parasitic branch 70 close to the third end 61 .
  • the current I6 flows from the second frequency selection point B1 to an end of the first parasitic branch 70 close to the third end 61 .
  • the sixth resonance mode may be a 1/2 wavelength mode from the second frequency selection point B1 to one end of the first parasitic branch 70 close to the third end 61 .
  • the first frequency selection circuit 56 can tune the MHB frequency band supported by the resonance mode generated by the first parasitic branch 70 . It can be seen that the first frequency selection circuit 56 can facilitate tuning of the LB frequency band and the MHB frequency band, and can better balance the performance of the antenna supporting the LB frequency band and the antenna supporting the MHB frequency band. In addition, compared with providing a third frequency selection circuit electrically connected to the second frequency selection point B1 of the first parasitic branch 70, the first frequency selection circuit 56 and the third frequency selection circuit respectively select the LB frequency band and the MHB frequency band. For tuning, the antenna assembly 40 can use one first frequency selection circuit 56 to achieve corresponding functions, thus saving costs. Of course, in other embodiments, the first frequency selection circuit 56 and the third frequency selection circuit can also be used to tune the LB frequency band and the MHB frequency band respectively.
  • the first parasitic branch 70 may generate a resonant mode that supports the MHB frequency band, such as a sixth resonant mode, under the excitation of the second excitation signal. Furthermore, the second radiator 60 and the first parasitic branch 70 are in common with the first frequency selection circuit 56 (or the first frequency selection circuit 56 and the third frequency selection circuit) and the second frequency selection circuit 65. Under the same effect, the second excitation signal can easily excite double resonance in the MHB frequency band. Therefore, it can be beneficial to expand the bandwidth of the MHB frequency band supported by the antenna assembly 40, and is beneficial to scenarios such as carrier aggregation, dual SIM cards, and single band.
  • the second feed source S2 excites dual resonances in the MHB frequency band.
  • One resonance mode is used to support the MB frequency band, and the other resonance mode is used to support the HB frequency band.
  • Dual-SIM scenarios can include dual-SIM dual-active (DSDA) or dual-receive mode dual-SIM dual-standby (Dual-Receive Dual SIM Dual Standby, DR-DSDS).
  • DSDA means that two cards can work at the same time.
  • the frequency bands supported by the two cards are different. In other words, one of the two cards can support frequency band a, the other card can support frequency band b, frequency band a and frequency band b. do not belong to the same frequency band.
  • one card can transmit and receive signals; the other card can also transmit and receive signals.
  • DR-DSDS means that one of the two cards can transmit signals and receive signals; the other card can only receive signals but cannot transmit signals.
  • the second feed source S2 excites dual resonances in the MHB frequency band.
  • One of the resonance modes is used to support the MB frequency band, and the other resonance mode is also used to support the MB frequency band.
  • the second feed source S2 excites dual resonances in the MHB frequency band.
  • One of the resonance modes is used to support the HB frequency band, and the other resonance mode is also used to support the HB frequency band.
  • the antenna assembly 40 can support the MHB frequency band, and the antenna assembly 40 has better communication functions. It should be noted that when the second radiator 60 and the first parasitic branch 70 jointly support the MHB frequency band, the second radiator 60 is the main radiation branch, and the first parasitic branch 70 is the capacitive coupling branch, that is, the secondary radiation branch. .
  • the second radiator 60 and the first parasitic branch 70 jointly support the MHB frequency band. Therefore, when the antenna assembly 40 is used in the electronic device 100, it is difficult to hold the second radiator 60 and the first parasitic branch 70 at the same time or Therefore, when the electronic device 100 to which the antenna assembly 40 is applied is held or blocked by one or both hands, the antenna assembly 40 still has good radiation performance in the MHB frequency band when used in the electronic device 100 .
  • the second radiator 60 and the first parasitic branch 70 are located at the bottom of the electronic device 100 (that is, the short side such as the second side 1214 or the third side 1215 is close to The second side 1214 position).
  • the first parasitic branch 70 is generally disposed corresponding to the middle of the bottom side (ie, the short side, such as the second side 1214 ) of the electronic device 100 .
  • the first parasitic branch 70 is usually not easy to be held by one hand or blocked, so it has a better one-handed effect.
  • the second radiator 60 and the first parasitic branch 70 are located at the bottom of the electronic device 100, when the electronic device 100 is used (such as making a phone call, etc.), they are usually far away from the user's head and are not easy to affect the user's head. Causes greater radiation. Therefore, when the antenna assembly 40 is used in the electronic device 100, the second radiator 60 and the first parasitic branch 70 are located at the bottom of the electronic device 100.
  • the first parasitic branch 70 usually corresponds to the bottom edge of the electronic device 100.
  • the antenna assembly 40 is arranged in the middle, so that the antenna assembly 40 has better head-hand performance and head-to-head performance. To sum up, the antenna assembly 40 has good human hand performance, human head performance, and human head hand performance.
  • the antenna assembly 40 has two radiators (the second radiator 60 and the first parasitic branch 70 ) that support the MHB frequency band, and the MHB frequency band has dual resonance. Therefore, the MHB frequency band supported by the antenna assembly 40 has a wider bandwidth. Furthermore, even if the electronic device 100 to which the antenna assembly 40 is applied is held or blocked by the user and causes a frequency deviation, due to the wide bandwidth of the MHB frequency band supported by the antenna assembly 40, even if the resonant frequency point of the MHB frequency band is shifted, It can still fall within the bandwidth range, thus ensuring the communication performance when using the frequency offset caused by MHB band communication due to being held or blocked by one or both hands.
  • the first radiator 50 , the second radiator 60 and the first parasitic branch 70 as a whole have a center line M0 , the center line M0 passes through the first parasitic branch 70 , and the first gap 401 and the second parasitic branch 70
  • the gaps 402 are respectively located on both sides of the center line M0.
  • the overall central line M0 formed by the first radiator 50, the first parasitic branch 70 and the second radiator 60 is consistent with the central axis of the electronic device 100 (along the length direction (Y direction)).
  • M1 extends along the length direction and passes through the center of the short side (for example, the second side 1214) of the electronic device 100. Point O) coincides or roughly coincides.
  • the user's thumb When the user holds the electronic device 100 with his hand, the user's thumb usually holds the center line M0 or a position close to the center line M0 .
  • the first slit 401 and the second slit 402 are respectively located on both sides of the center line M0. Therefore, the first slit 401 and the second slit 402 are not easily blocked or held by the user's hands, or , the center line M0 and the second gap 402 are not easily blocked or held by the user's hand at the same time, then the radiation performance of the antenna assembly 40 is better.
  • the electronic device 100 to which the antenna assembly 40 is applied is used horizontally, the first slit 401 and the second slit 402 are not easily blocked or held by the user's hands, or the first slit 401 and the second slit 402 are not easily blocked by the user at the same time. If the antenna assembly 40 is blocked or held by the user's hand, the horizontal screen effect of the electronic device 100 to which the antenna assembly 40 is applied will be better.
  • FIG. 14 is a schematic structural diagram of the antenna assembly 40 shown in FIG. 10 in another embodiment.
  • the antenna assembly 40 may also include a third frequency selection circuit 71 with one end electrically connected to the second frequency selection point B1 and the other end grounded. That is, the second frequency selection point B1 can be grounded through the third frequency selection circuit 71 instead of directly grounded. Of course, in some embodiments, the second frequency selection point B1 can be directly connected to ground.
  • the third frequency selection circuit 71 can tune and decouple the MHB frequency band supported by the resonant mode generated by the first parasitic branch 70 , such as the fifth resonant mode, so as to improve the performance of the antenna.
  • the third frequency selection circuit 71 may be composed of a switch control circuit and/or a load circuit, or an adjustable capacitor (which can also be replaced by a fixed-value capacitor) and/or an adjustable inductor (which can also be replaced by a fixed-value capacitor).
  • the switch control circuit may be a switch chip with a switching function, or may be a single-pole multi-throw switch or a single-pole single-throw switch.
  • the third frequency selection circuit 71 can control the effective electrical length of the first parasitic branch 70, and then adjust the frequency band and resonance frequency of the electromagnetic wave signal supported by the first parasitic branch 70 to further control the first parasitic branch 70 to operate in the MHB frequency band.
  • FIG. 15 is a schematic structural diagram of the third frequency selection circuit 71 in the antenna assembly 40 in the embodiment shown in FIG. 14 .
  • the third frequency selection circuit 71 may include at least one third frequency selection sub-circuit 711 and a third switch 712 .
  • the third switch 712 has a grounded third common terminal 7121, a plurality of third connection terminals 7122, and a third switching part 7123.
  • the third switching part 7123 may be electrically connected to the third common terminal 7121.
  • the third switching part 7123 can be electrically connected to a third connection terminal 7122 under the control of the control signal.
  • One end of the third frequency selection sub-circuit 711 is electrically connected to the third frequency selection point B1, and the other end is electrically connected to a third connection end 7122 in a one-to-one correspondence.
  • the other end of one of the third frequency selection sub-circuits 711 is directly connected to ground.
  • the directly grounded third frequency selection sub-circuit 711 can still support the MHB frequency band supported by the first parasitic branch 70 and the second radiator 60 when the third switch 712 is all turned off. To tune.
  • the directly grounded third frequency selection sub-circuit 711 is directly electrically connected to the first parasitic branch 70 instead of being electrically connected to the first parasitic branch 70 through a switch, the directly grounded third frequency selection sub-circuit 711 is not directly connected to the second parasitic branch 70 .
  • the MHB frequency band supported by the radiator 60 and the first parasitic branch 70 has less loss during tuning.
  • the third switch 712 electrically connects the third frequency selection sub-circuit 711 to the first parasitic branch 70 , the third frequency selection sub-circuit 711 jointly controls the second radiator 60 and the first parasitic branch 70 . Supported MHB bands for tuning.
  • connection sequence of the third frequency selection sub-circuit 711 and the third switch 712 in the third frequency selection circuit 71 can be adjusted.
  • the grounding point of the third frequency selection circuit 71 in Figure 12 can be directly connected to the third frequency selection circuit 712.
  • the frequency selection point B1 is electrically connected.
  • the point electrically connected to the third frequency selection point B1 can be directly grounded.
  • the third switching part 7123 can be selectively electrically connected to different third connection terminals 7122, so that one end of the different third frequency selection sub-circuit 711 is electrically connected to the third frequency selection point B1, and the other end is grounded. Or the third frequency selection point B1 is directly grounded, so that the first parasitic branch 70 has different effective electrical lengths in different states, and switches between different sub-bands in the MHB frequency band.
  • the number of the third frequency selection sub-circuit 711 in the figure should not be understood as a limitation on the number of the third frequency selection sub-circuit 711 provided in the embodiment of the present application.
  • the third frequency selection sub-circuit 711 may include a capacitor, an inductor, or a combination of a capacitor and an inductor.
  • each third frequency selection sub-circuit 711 may be different, so that when different third frequency selection sub-circuits 711 are electrically connected to the first parasitic branch 70 When , the degree of adjustment of the electrical length of the first parasitic branch 70 is different.
  • each third frequency selection sub-circuit 711 referred to here is different, which may be because the devices included in each third frequency selection sub-circuit 711 are different; or, the included devices are the same, but the differences between the devices The connection relationship is different; or the included devices are the same and the connection relationship is the same, but the parameters of the devices (such as capacitance value or inductance) are different.
  • the number of the first parasitic stub 70 is usually greater than or equal to two.
  • FIG. 15 is a schematic structural diagram of the third frequency selection circuit 71 in the antenna assembly 40 in another embodiment of the embodiment shown in FIG. 15 .
  • the third frequency selection sub-circuit 711 is directly connected to the ground, and each of the remaining third frequency selection sub-circuits 711 is electrically connected to a third switch 712 in a one-to-one correspondence.
  • FIG. 17 is a schematic structural diagram of the antenna assembly 40 shown in FIG. 10 in another embodiment.
  • the first parasitic branch 70 may share the first frequency selection circuit 56 with the first radiator 50 .
  • the first frequency selection circuit 56 includes at least one first frequency selection sub-circuit 561, a first switch 562 and at least one third frequency selection sub-circuit 711.
  • FIG. 18 is a schematic structural diagram of the first frequency selection circuit 56 shown in FIG. 17 in another embodiment of the antenna assembly 40 .
  • the first parasitic branch 70 may share the first frequency selection circuit 56 with the first radiator 50 .
  • the first frequency selection circuit 56 includes at least one first frequency selection sub-circuit 561 , a first switch 562 , at least one third frequency selection sub-circuit 711 and a third switch 712 .
  • FIG. 19 is a performance comparison chart of the second radiator 60 in the antenna assembly 40 shown in FIG. 10 in an embodiment.
  • the horizontal axis is frequency (GHz)
  • the vertical axis is total system efficiency (dB).
  • Curve A is the overall system efficiency curve of the second radiator 60 with the assistance of the first parasitic branch 70 .
  • Curve B is the overall efficiency curve of the system when the second radiator 60 is not assisted by the first parasitic branch 70 .
  • the simulation test comparison of the total system efficiency of the second radiator 60 with the assistance of the first parasitic branch 70 and the total system efficiency of the second radiator 60 without the assistance of the first parasitic branch 70 is as shown in the following table:
  • the setting of the first parasitic branch 70 can improve the overall efficiency of the mid-to-high frequency system, and also highlights the performance of improving the overall efficiency of the mid-to-high frequency system in other frequency bands.
  • each third frequency selection sub-circuit 711 includes a capacitor
  • the frequency selection circuit in which the third frequency selection sub-circuit 711 is electrically connected to the second frequency selection point B1 includes a capacitor that flows the current of the sixth resonance mode
  • the antenna assembly 40 An inductor 72 and a SAR sensor (such as a SAR chip) 73 may also be included.
  • FIG. 20 is a schematic diagram of the cooperation between the inductor 72 and the SAR sensor 73 in an embodiment of the present application.
  • the inductor 72 is electrically connected to the third frequency selection point B1 of the first parasitic branch 70 .
  • the SAR sensor 73 is electrically connected to the inductor 72 .
  • the antenna assembly 40 When the antenna assembly 40 operates in the MHB frequency band, the SAR value is usually high, while when the antenna assembly 40 operates in the LB frequency band, the SAR value is usually not high. Therefore, the antenna assembly 40 is illustrated by taking the inductor 72 and the SAR sensor 73 being combined into the third frequency selection sub-circuit 711 as an example.
  • the first parasitic branch 70 is equivalent to floating, which can prevent the ground pole (or ground system) or the second feed source S2 from being The influence of direct current on the detection accuracy of the first parasitic branch 70. Therefore, the first parasitic branch 70 can detect the change in the capacitance value, and the SAR sensor 73 can be used to receive the change in the capacitance value detected by the first parasitic branch 70 and output it.
  • the inductor L is used to isolate the influence of the SAR sensor 73 on the first parasitic branch 70 .
  • the inductance value of the inductor 72 may be, but is not limited to, 68 nH, or 82 nH, etc.
  • the electronic device 100 may further include a processor 74.
  • the processor 74 is electrically connected to the SAR sensor 73 .
  • SAR The sensor 73 can transmit the capacitance value detected by the first parasitic branch 70 to the processor 74, so that the processor 74 determines whether the power of the second feed source S2 needs to be reduced based on the capacitance value detected by the first parasitic branch 70.
  • the power of the first feed source S1 can also be reduced. That is to say, the processor 74 can adjust the transmission power of the first radiator 50, the first parasitic stub 70, and the second radiator 60 according to changes in the capacitance value.
  • a capacitance is formed between the first parasitic branch 70 and the ground, and the capacitance value between the first parasitic branch 70 and the ground is the original capacitance value.
  • the target organism for example, the human body
  • a capacitance is formed between the first parasitic branch 70 and the target organism.
  • the capacitance value of the capacitor is determined by the distance between the first parasitic branch 70 and the target organism.
  • the capacitance value of the capacitance formed between the first parasitic branch 70 and the target organism is named as the detection capacitance value.
  • the detected capacitance value is greater than the original capacitance value. Therefore, the SAR sensor 73 can determine whether a target organism is close to the first parasitic branch 70 based on the capacitance value detected by the first parasitic branch 70 .
  • the processor 74 can determine the distance between the target organism and the first parasitic branch 70 based on the detection capacitance value.
  • the distance between the target organism and the first parasitic branch 70 is less than or equal to the preset distance, it indicates that the radiation of the MHB frequency band supported by the first parasitic branch 70 and the second radiator 60 to the target organism exceeds the standard.
  • the preset distance is the safety distance when the first parasitic branch 70 and the second radiator 60 radiate the electromagnetic wave signal radiation safety standard in the MHB frequency band; or, the preset distance is less than the safety distance.
  • the processor 74 determines whether the distance between the target organism and the first parasitic branch 70 is less than or equal to a preset distance according to the detection capacitance value. The processor 74 is also used to determine whether the distance between the target organism and the first parasitic branch 70 is equal to or less than a preset distance.
  • the power of the second feed source S2 also called conductive power
  • the power of the first feed source S1 can also be reduced.
  • the processor 74 determines whether the detection capacitance value is greater than or equal to the preset capacitance value.
  • the power of the second feed source S2 is reduced (also called conducted power), to reduce the radiation of the MHB frequency band supported by the first parasitic branch 70 and the second radiation pattern to the target organism.
  • the preset capacitance value is the safety capacitance value when the electromagnetic wave signal in the MHB frequency band radiated by the first parasitic branch 70 and the second radiator 60 meets safety standards; or, the preset capacitance value is smaller than the safety capacitance value. It should be noted that for the same country or region, the safety capacitance value and the safety distance are usually the only corresponding relationship. Of course, the power of the first feed source S1 can also be reduced.
  • the SAR sensor 73 can receive the change in capacitance value detected by the first parasitic branch 70 , and the SAR sensor 73 transmits the change in capacitance value detected by the first parasitic branch 70 to the processor 74 , so that the processor 74 can adjust the capacitance value of the first parasitic branch 70 according to the change of the capacitance value detected by the first parasitic branch 70 .
  • the capacitance value determines whether the power of the first feed source S1 and the second feed source S2 needs to be reduced. Furthermore, when the target organism is close to the first parasitic branch 70, the MHB frequency band supported by the first parasitic branch 70 and the second radiator 60 radiates a large amount of radiation to the target organism. Correspondingly, the radiation is reduced or even prevented. Radiation hazards to target organisms.
  • the schematic diagrams of the previous embodiments are schematics of the antenna assembly 40 provided in some embodiments, and should not be understood as limiting the antenna assembly 40 provided in the embodiments of the present application.
  • the antenna assembly 40 in some embodiments may also be in a mirror image relationship with the antenna assembly 40 provided in the previous embodiments.
  • the first radiator 50 is located on the left side of the first parasitic branch 70 and the second radiator 60 is located on the right side of the first parasitic branch 70 .
  • the first radiator 50 may also be located on the right side of the first parasitic branch 70
  • the second radiator 60 may also be located on the left side of the first parasitic branch 70 .
  • FIG. 21 is a schematic diagram of an antenna assembly 40 provided by another embodiment of the present application.
  • the antenna assembly 40 shown in FIG. 21 is a mirror image of the antenna assembly 40 shown in FIG. 10 .
  • FIG. 22 is a schematic structural diagram of an antenna assembly 40 provided by another embodiment of the present application.
  • the second radiator 60 also has a third feed point P3, a grounded second ground point 66, and a fourth end 67.
  • the third feed point P3 and the second feed point P2 are spaced apart.
  • the second ground point 66 is located between the second feed point P2 and the third feed point P3 and between the first ground point 62 and the third feed point. between points P3.
  • the fourth end 67 is located on the side of the third feed point P3 away from the second ground point 66 .
  • the third feeding point P3 is used to receive the third excitation signal.
  • the third excitation signal can excite the second radiator 60 to generate a resonance mode that supports the LB frequency band and/or the WiFi 2.4G frequency band.
  • the method of electrically connecting the second ground point 66 to the ground includes but is not limited to direct electrical connection (such as welding), or through coaxial lines, microstrip lines, radio frequency lines, conductive elastic sheets, conductive glue, embedded metal, or electronic equipment 100
  • the middle frame is connected electrically indirectly through materials or other methods.
  • the antenna assembly 40 further includes a third feed source S3 electrically connected to the second radiator 60 such as the third feed point P3, and a second parasitic branch 80 with a third gap 403 between the fourth end 67 and the third feed source S3.
  • the second parasitic branch 80 has a third ground point 81 that is grounded. There is a third gap 403 between the second parasitic branch 80 and the fourth end 67 for capacitive coupling.
  • the third feed source S3 is used to generate a third excitation signal.
  • the third feed source S3 is provided when the third feed point P3 is located between the second ground point 66 and the fourth end 67 , and the specific position of the first feed point P1 on the first radiator 50 is not limited.
  • the third feeding point P3 is used to receive the third excitation signal. That is, the third feed point P3 may be directly or indirectly electrically connected to the third feed source S3.
  • the third feed source S3 is electrically connected to the third feed point P3 to excite the second radiator 60 and the second parasitic branch 80 through the third excitation signal to generate a resonance mode that supports the LB band and/or the WiFi2.4G band, so that The antenna assembly 40 supports more frequency bands, so that the antenna assembly 40 has better communication performance.
  • the third excitation signal excites the second radiator 60 and the second parasitic branch 80 to generate a resonance mode that supports the LB frequency band but does not support and/or the WiFi 2.4G frequency band. In some embodiments, the third excitation signal excites the second radiator 60 and the second parasitic branch 80 to generate a resonance mode that does not support the LB frequency band but supports and/or the WiFi 2.4G frequency band. In some embodiments, the third excitation signal excites the second radiator 60 and the second parasitic branch 80 to generate a resonance mode that supports the LB frequency band and the WiFi 2.4G frequency band.
  • both the first resonant mode and the third resonant mode are used to support the LB frequency band, which is equivalent to having two LB frequency bands.
  • the antenna assembly 40 can support three LB frequency bands.
  • the third excitation signal excites the second radiator 60 and the second parasitic branch 80
  • a resonance mode supporting the LB frequency band is generated.
  • the first radiator 50 and the second radiator 60 are disposed on both sides of the first parasitic branch 70 and are not disposed adjacently. Therefore, the isolation between the first radiator 50 and the second radiator 60 is better.
  • the third excitation signal excites the second radiator 60 and the second parasitic node 80 to generate a signal that does not support the LB frequency band but supports the LB frequency band.
  • Resonance mode of WiFi2.4G band can also support the LB frequency band.
  • the third excitation signal excites the second radiator 60 and the second parasitic node 80 to generate a resonance mode that supports GPS L5.
  • the first resonance mode and the third resonance mode are both used to support the LB frequency band, which is equivalent to having two LB frequency bands.
  • the first resonance mode supports the LB frequency band (such as LTE B8 frequency band, N8 frequency band)
  • the third resonance mode supports the LB frequency band (such as LTE B28 frequency band, N28 frequency band).
  • the third excitation signal excites the second radiator 60 and the second parasitic branch 80 to generate Supports the resonance mode of LB band.
  • the third excitation signal excites the second radiator 60 and the second parasitic branch 80 to generate a resonance mode that supports the LB frequency band and the WiFi 2.4G frequency band.
  • the LTE B20 frequency band and the WiFi 2.4G frequency band among which the LTE B20 frequency band is a sub-frequency band in the LB frequency band.
  • the antenna assembly 40 can support the LTE B28 frequency band, LTE B20 frequency band and WiFi2.4G frequency band.
  • the antenna component 40 can support the N41 frequency band, LTE B28 frequency band, LTE B20 frequency band and WiFi2.4G frequency band.
  • the third feed S3 is disposed on the circuit board 13, it is usually called the A1 board for convenience of naming, for compatibility with A1 boards sold in China and abroad, or for unified design for cost considerations.
  • the domestic antenna assembly 40 in China can also support three LB frequency bands. That is, in the antenna assembly 40 used in the electronic equipment 100 in China, the third excitation signal excites the second radiator 60 and the second parasitic branch 80 to generate a resonance mode that supports the LB frequency band and the WiFi 2.4G frequency band.
  • the third excitation signal excites the second radiator 60 to generate a seventh resonance mode that supports the LB frequency band. Therefore, the antenna assembly 40 has better communication performance.
  • the current of the seventh resonance mode includes current I7 distributed between the second ground point 66 and the fourth terminal 67 .
  • the current I7 can flow from the second ground point 66 to the fourth terminal 67 .
  • the sixth resonance mode is a 1/4 wavelength mode from the second ground point 66 to the fourth end 67 .
  • the 1/4 wavelength mode is a resonance mode with relatively high efficiency, so it can enhance the transceiver efficiency in the frequency band supported by the sixth resonance mode.
  • the third excitation signal excites the second radiator 60 and the second parasitic branch 80 to generate the eighth resonance mode and the ninth resonance mode that support the WiFi 2.4G frequency band. Therefore, the antenna assembly 40 has better communication performance.
  • the eighth resonance mode and the ninth resonance mode are used to support WiFi2.4G frequency band and Bluetooth frequency band.
  • the WiFi frequency band and the Bluetooth frequency band are relatively close, therefore, WiFi bands and Bluetooth bands can share antennas.
  • the eighth resonance mode and the ninth resonance mode jointly support the Bluetooth frequency band and jointly support the WiFi 2.4G frequency band, so that the antenna assembly 40 has more communication frequency bands and has better communication effects.
  • the Bluetooth frequency band when the eighth resonance mode and the ninth resonance mode support the Bluetooth frequency band, the Bluetooth frequency band has a wider bandwidth. Furthermore, even if the electronic device 100 to which the antenna assembly 40 is applied is held or blocked by the user and causes frequency deviation, the third feed source S3, the second radiator 60 and the second parasitic branch 80 in the antenna assembly 40 cooperate to support The bandwidth of the Bluetooth band is relatively wide. Even if the resonant frequency point of the Bluetooth band deviates, it can still fall within the bandwidth range, thus ensuring the communication when using the Bluetooth band to achieve frequency deviation caused by being held or blocked by one or both hands. Communication performance. In other words, when the antenna assembly 40 works in the Bluetooth frequency band, it has a wider bandwidth and better human hand performance, human head performance, and human head hand performance.
  • the WiFi 2.4G frequency band has a wider bandwidth. Furthermore, even if the electronic device 100 to which the antenna assembly 40 is applied is held or blocked by the user and causes frequency deviation, the third feed source S3, the second radiator 60 and the second parasitic branch 80 in the antenna assembly 40 cooperate to support The bandwidth of the WiFi2.4G frequency band is wider. Even if the resonant frequency point of the WiFi2.4G frequency band is offset, it can still fall within the bandwidth range, thereby ensuring that communication using the WiFi2.4G frequency band is held or blocked by one or both hands. communication performance caused by frequency offset. In other words, when the antenna assembly 40 is applied to the electronic device 100 and works in the WiFi 2.4G frequency band, it has a wider bandwidth and better human hand performance, human head performance, and human head hand performance.
  • Figure 23 is a schematic diagram of the main current flow corresponding to the eighth resonance mode in the antenna assembly shown in Figure 22.
  • Figure 24 is a main current flow diagram corresponding to the ninth resonance mode in the antenna assembly shown in Figure 22. Schematic diagram of current flow.
  • the current of the eighth resonance mode includes current I8 distributed between the second ground point 66 and the fourth terminal 67 .
  • the current I8 may flow from the second ground point 66 to the fourth terminal 67 .
  • the eighth resonance mode is a 3/4 wavelength mode from the second ground point 66 to the fourth end 67 .
  • the antenna assembly 40 can make full use of the high-order mode of the second radiator 60 , which is beneficial to reducing the electrical length of the second radiator 60 , thereby saving the space of the antenna assembly 40 .
  • layout in the electronic device 100 is facilitated.
  • the current in the ninth resonance mode includes current I9 distributed between the third gap 403 and the third ground point 81 .
  • the current I9 can flow from the third gap 403 to the third ground point 81 .
  • the ninth resonance mode is a 1/4 wavelength mode from the third gap 403 to the third ground point 81 .
  • the 1/4 wavelength mode is a resonance mode with relatively high efficiency, so it can enhance the transceiver efficiency in the frequency band supported by the ninth resonance mode. Since the ninth resonance mode acts on the second parasitic branch 80 , the ninth resonance mode is a resonance mode parasitic on the second parasitic branch 80 .
  • the second parasitic branch 80 may be, but is not limited to, an LDS radiator, an FPC radiator, a PDS radiator, or a metal branch radiator.
  • the second parasitic branch 80 may be a structural antenna radiator designed using the embedded metal of the electronic device 100 itself.
  • the second parasitic branch 80 can be an antenna radiator designed using the middle frame 121 made of plastic and metal of the electronic device 100 .
  • the second parasitic branch 80 may also be a metal branch antenna radiator designed from the metal middle frame 121 .
  • the second parasitic branch 80 may be a structural antenna radiator designed using the metal middle frame 121 of the electronic device 100 . It can be understood that this application does not specifically limit the shape, structure and material of the second parasitic branch 80.
  • the shapes of the second parasitic branch 80 include but are not limited to bent, strip, sheet, rod, and coated. layers, films, etc.
  • the second parasitic branch 80 can extend in a straight line, a curve, a multi-stage bend, etc.
  • the above-mentioned second parasitic branches 80 can be lines with uniform width on the extension track, or can be strips with varying widths such as gradual width and widened areas.
  • the method of electrically connecting the third ground point 81 to the ground includes but is not limited to direct electrical connection (such as welding); or through coaxial lines, microstrip lines, radio frequency lines, conductive elastic sheets, conductive glue, embedded metal, or electronic equipment 100
  • the middle frame is connected electrically indirectly through materials or other methods.
  • the third ground point 81 is electrically connected to the ground in a manner that the third ground point 81 of the second parasitic branch 80 is electrically connected to the middle frame 121 through a middle frame connection material.
  • the second parasitic branch 80 is usually disposed corresponding to the long side (upper side in the Y direction) of the electronic device 100 , and the second parasitic branch 80 is distanced from the long side of the electronic device 100 There is a certain distance from the corner connected to the short side. Therefore, when the electronic device 100 is horizontally screened and the antenna assembly 40 works in the WiFi 2.4G frequency band, the second parasitic branch 80 is usually difficult to be held by the user's hand. Therefore, the antenna assembly 40 The applied electronic device 100 has good horizontal screen performance.
  • FIG. 25 is a schematic diagram of an antenna assembly 40 provided by yet another embodiment of the present application.
  • the antenna assembly 40 further includes a third radiator 90 and a fourth feed source S4 electrically connected to the third radiator 90 .
  • the fourth feed source S4 can generate a fourth excitation signal and transmit it to the third radiator 90 .
  • the antenna assembly 40 can excite the third radiator 90 through the fourth excitation signal to generate multiple resonance modes that support the WiFi 2.4G frequency band and the Bluetooth frequency band.
  • the third radiator 90 has a fourth feed point P4 to be electrically connected to the fourth feed source S4 and receive the fourth excitation signal.
  • the WiFi frequency band and the Bluetooth frequency band are relatively close. Therefore, the WiFi frequency band and the Bluetooth frequency band can share the third radiator 90 . Therefore, the antenna assembly 40 has more communication frequency bands and has better communication effect.
  • the fourth excitation signal excites the third radiator 90 to generate a resonance mode that supports the GPS L1 frequency band. Therefore, the third radiator 90 can support the GPS L1 frequency band and the WiFi 2.4G frequency band.
  • the third radiator 90 and the second radiator 60 are arranged diagonally.
  • the second radiator 60 and the third radiator 90 are both used to support the Bluetooth frequency band.
  • the pattern of the third radiator 90 when transmitting and receiving electromagnetic wave signals in the Bluetooth band is the same as the pattern of the second radiator 60 when transmitting and receiving electromagnetic wave signals in the Bluetooth band. complementary.
  • the third radiator 90 and the second radiator 60 are arranged diagonally. Therefore, the third radiator 90 and the second radiator 60 are not easily blocked at the same time. When one of the second radiator 60 and the third radiator 90 is blocked, the other one can still work. Therefore, the antenna assembly 40 can be improved to utilize the Bluetooth frequency band supported by the second radiator 60 and the third radiator 90 And the communication performance when communicating in the WiFi2.4G frequency band. For example, when both the second radiator 60 and the third radiator 90 support the Bluetooth frequency band (or WiFi 2.4G frequency band), the second radiator 60 is blocked (for example, placed in the pocket of the user's clothes, and the second radiator 60 facing downward), the Bluetooth frequency band signal supported by the second radiator 60 is attenuated greatly, seriously affecting the communication quality of the antenna assembly 40 using the Bluetooth frequency band to communicate.
  • the antenna assembly 40 uses the Bluetooth frequency band to communicate with the Bluetooth headset, if the second radiator 60 is blocked and continues to use the Bluetooth frequency band to communicate with the Bluetooth headset, the experience of the Bluetooth headset will be affected. Since the third radiator 90 and the second radiator 60 are arranged diagonally and have complementary patterns, when the second radiator 60 is blocked, the third radiator 90 is not easily blocked, and the third radiator 90 still has Better communication performance.
  • the second radiator 60 and the third radiator 90 support the Bluetooth frequency band
  • the second radiator 60 and the third feed source S3 can be regarded as a Bluetooth antenna (for convenience of description, named The first Bluetooth antenna)
  • the third radiator 90 and the fourth feed source S4 can be regarded as a Bluetooth antenna (for convenience of description, it is named the second Bluetooth antenna). That is, the antenna assembly 40 includes two Bluetooth antennas. It can be seen from the previous description that when one Bluetooth antenna is blocked, the other Bluetooth antenna can be used for communication. Generally speaking, when the antenna assembly 40 is used in the electronic device 100, the first Bluetooth antenna is usually arranged corresponding to the bottom of the electronic device 100, and the second Bluetooth antenna is usually arranged corresponding to the top of the electronic device 100.
  • the electronic device 100 such as a mobile phone
  • the antenna assembly 40 is applied is put into the user's pocket, whether the top of the electronic device 100 is facing down or the bottom of the electronic device 100 is facing down, there is a Bluetooth antenna that can communicate with the Bluetooth headset. Make a better connection.
  • the antenna assembly 40 provided by the embodiment of the present application can improve the experience of communicating with a Bluetooth headset in a scenario where the applied electronic device 100 is placed in a pocket. It can be understood that, conversely, when the Bluetooth headset is put into the user's pocket, the antenna assembly 40 can still communicate well with the Bluetooth headset. That is, the antenna assembly 40 can improve the communication experience when communicating with a Bluetooth headset placed in the user's pocket.
  • both the second radiator 60 and the third radiator 90 support the WiFi 2.4G frequency band. Therefore, the second radiator 60 and the third feed source S3 can be regarded as a WiFi antenna (for convenience of description, they are named the first WiFi antenna), and the third radiator 90 and the fourth feed source S4 can be regarded as a WiFi antenna. Only WiFi antenna (for convenience of description, named the second WiFi antenna). That is, the antenna assembly 40 includes two WiFi antennas.
  • the third radiator 90 and the second radiator 60 are arranged diagonally.
  • the second radiator 60 and the third radiator 90 are both used to support the WiFi frequency band.
  • the pattern of the third radiator 90 when transmitting and receiving electromagnetic wave signals in the WiFi frequency band is the same as the pattern of the second radiator 60 when transmitting and receiving electromagnetic wave signals in the WiFi frequency band. complementary.
  • the antenna assembly 40 in this embodiment includes two WiFi antennas, it also has better communication performance.
  • the electronic device 100 is in the horizontal screen mode and uses the WiFi 2.4G frequency band to play games, it has a better horizontal screen gaming experience.
  • the second radiator 60 includes a third portion 68 and a fourth portion 69 that are bent and connected. One end of the third part 68 away from the fourth part 69 is disposed adjacent to the first radiator 50 .
  • the third radiator 90 includes a fifth part 91 and a sixth part 92 that are bent and connected. The fifth part 91 is disposed closer to the first radiator 50 than the sixth part 92 .
  • the second radiator 60 and the third radiator 90 are arranged diagonally, and the above-mentioned structural design of the second radiator 60 and the third radiator 90 facilitates the appearance of the antenna assembly 40 and the electronic device 100 using the antenna assembly 40 adapt.
  • the third radiator 90 has a fourth ground point 901 and a fifth ground point 902.
  • the fourth ground point 901 and the fifth ground point 902 are both grounded.
  • the fourth ground point 901 is adjacent to the first radiator compared to the fifth ground point 902. 50
  • the fifth ground point 902 is located between the fourth feed point P4 and the fourth ground point 901.
  • the fourth ground point 901 is grounded to prevent the third radiator 90 from affecting the first radiator 50 .
  • the fifth ground point 902 is located between the fourth feed point P4 and the fourth ground point 901. The portion between the fifth ground point 902 and the free end of the third radiator 90 away from the fourth ground point 901 is the third radiator. 90 supports the radiation part of WiFi2.4G frequency band and Bluetooth frequency band.
  • the fourth feeding point P4 is located at the fifth part 91 or the sixth part 92 , and the fourth feeding point P4 is provided adjacent to the corner where the fifth part 91 and the sixth part 92 are connected.
  • the fourth feed source S4 When the fourth feed source S4 is electrically connected to the fourth feed point P4, it is usually electrically connected to the fourth feed point P4 through a radio frequency signal line.
  • the equivalent resistance of RF signal lines is usually small (50 ohms).
  • the fourth feed point P4 is located at the fifth part 91 or the sixth part 92, and the fourth feed point P4 is provided adjacent to the corner where the fifth part 91 and the sixth part 92 are connected, so that the fourth feed point P4 is located at the fifth part 91 or the sixth part 92.
  • the equivalent impedance of the third radiator 90 is relatively matched with the impedance of the radio frequency signal line connecting the fourth feed source S4 to the third radiator 90 . Therefore, the antenna unit composed of the fourth feed source S4 and the third radiator 90 in the antenna assembly 40 has better radiation performance.
  • the first radiator 50 has gaps at both ends.
  • the first gap 401 and the fourth gap 404 are not easily held or blocked at the same time.
  • the first radiator 50 can still transmit and receive electromagnetic wave signals in the LB band, and therefore has better communication performance.
  • FIG. 26 is a schematic equivalent circuit diagram of the antenna assembly 40 provided in an embodiment of the present application.
  • the third feed S3 is used to support the Bluetooth band
  • the fourth feed S4 is used to support the Bluetooth band.
  • the third feed source S3 is electrically connected to the second radiator 60 through the radio frequency path S31.
  • the fourth feed source S4 is electrically connected to the third radiator 90 through the radio frequency path S41.
  • the third feed source S3 is connected to the radio frequency of the second radiator 60.
  • the path S31 is different from the radio frequency path S41 connecting the fourth feed source S4 to the third radiator 90 .
  • the antenna assembly 40 provided in the embodiment of the present application has two Bluetooth radio frequency channels.
  • the antenna assembly 40 has two Bluetooth radio frequency channels. Therefore, when the antenna assembly 40 uses the Bluetooth frequency band to work, it can use any one or both of the two Bluetooth radio frequency channels to work. Therefore, the antenna assembly 40 has better communication. performance.
  • FIG. 27 is a schematic equivalent circuit diagram of the antenna assembly 40 provided by another embodiment of the present application.
  • the third feed S3 is used to support the Bluetooth band
  • the fourth feed S4 is used to support the Bluetooth band.
  • the radio frequency path S31 connecting the third feed source S3 to the second radiator 60 is the same as the radio frequency path S41 connecting the fourth feed source S4 to the third radiator 90 , that is, the radio frequency path S43 is used.
  • the antenna assembly 40 further includes a switching unit S34.
  • the switching unit S34 is used to electrically connect the third feed source S3 to the second radiator 60 through the radio frequency path S43, or to electrically connect the fourth feed source S4 to the second radiator 60 through the radio frequency path S43.
  • Triple radiator 90 is used to electrically connect the third feed source S3 to the second radiator 60 through the radio frequency path S43.
  • the switching unit S34 may electrically connect the third feed source S3 to the second radiator 60 through the radio frequency path S43, or allow the fourth feed source S4 to electrically connect to the third radiator 90 through the radio frequency path S43. Therefore, the antenna assembly 40 Only one Bluetooth antenna is working at the same time.
  • the second radiator 60 and the third radiator 90 support the Bluetooth frequency band
  • the second radiator 60 and the third feed source S3 can be regarded as a Bluetooth antenna (for convenience of description, they are named the first Bluetooth antenna).
  • the third radiator 90 and the fourth feed source S4 can be regarded as a Bluetooth antenna (for convenience of description, it is named the second Bluetooth antenna).
  • the switching unit S34 may receive a control signal, and under the control of the control signal, electrically connect the third feed source S3 to the second radiator 60 through the radio frequency path S43, or, alternatively, make the fourth feed source S4 is electrically connected to the third radiator 90 through the radio frequency path S31.
  • the antenna assembly 40 in this embodiment is a single-channel Bluetooth antenna.
  • FIG. 28 is a schematic diagram of the circuit structure of the antenna assembly 40 in FIG. 27 used in the electronic device 100 .
  • the electronic device 100 further includes a detector 741 and a processor 74.
  • the detector 741 is used to detect the posture or signal strength of the electronic device 100 to generate a detection signal.
  • the processor 74 is electrically connected to the detector 741, and the processor 74 is used to generate a control signal according to the detection signal.
  • the detector 741 may be, but is not limited to, a gravity sensor.
  • the gravity sensor can detect the posture of the electronic device 100 .
  • the detector 741 may be a radio frequency front-end circuit for detecting the signal strength of the first antenna and the second antenna. Next, a case where the detector 741 includes a gravity sensor will be described.
  • a first sub-detection signal is generated.
  • the processor 74 generates a first sub-control signal according to the first sub-detection signal.
  • the switching unit S34 is used to electrically connect the third feed source S3 to the second radiator 60 through the radio frequency path S43 under the control of the first sub-control signal.
  • the first Bluetooth antenna works.
  • the detection signal includes a first sub-detection signal
  • the control signal includes a first sub-control signal.
  • a second sub-detection signal is generated.
  • the processor 74 generates a second sub-control signal based on the second sub-detection signal.
  • the switching unit S34 is used to electrically connect the fourth feed source S4 to the third radiator 90 through the radio frequency path S43 under the control of the second sub-control signal.
  • the detection signal also includes a second sub-detection signal
  • the control signal includes a second sub-control signal.
  • the first posture is different from the second posture.
  • the signal strength of the second Bluetooth antenna for transmitting and receiving the electromagnetic wave signal of the Bluetooth band is greater than the signal strength of the first Bluetooth antenna for transmitting and receiving the electromagnetic wave signal of the Bluetooth band.
  • the antenna assembly 40 works in the Bluetooth frequency band, it has better signal strength. Therefore, the communication effect when the antenna assembly 40 communicates using the Bluetooth frequency band is better.
  • the fourth feed S4 is also used to support the GPS L1 band.
  • the fourth feed S4 is also used to support the GPS L1 frequency band. Therefore, the antenna assembly 40 can support more frequency bands and has better communication performance.
  • the fourth feed source S4 is used to support GPS L1
  • the fourth feed source S4 and the third radiator 90 can support the GPS L1 frequency band and the WiFi 2.4G frequency band.
  • the antenna assembly 40 further includes a fourth radiator 93 and a fifth feed source S5 .
  • the fourth radiator 93 is spaced apart from the sixth portion 92 to form a fifth gap 405 .
  • the fifth gap 405 is positioned adjacent to the corner portion where the fifth portion 91 and the sixth portion 92 are bent and connected.
  • the fifth feed source S5 is electrically connected to the fourth radiator 93 to support the WiFi 5G frequency band or N78 frequency band.
  • the fifth feed source S5 is electrically connected to the fourth radiator 93 to support the WiFi 5G frequency band or the N78 frequency band. Therefore, the communication effect of the antenna assembly 40 can be improved.
  • the fourth radiator 93 and the second parasitic branch 80 are bent and connected. In other embodiments, the fourth radiator 93 is spaced apart from the second parasitic branch 80 and disconnected.
  • FIG. 29 is a schematic diagram of the spacing between the first radiator 50 and the second radiator 60 in the antenna assembly 40 in the embodiment shown in FIG. 10 .
  • the closest parts between the first radiator 50 and the second radiator 60 are the second end 52 and the third end 61 .
  • the distance d1 between the second end 52 and the third end 61 satisfies: 10mm ⁇ d1 ⁇ 120mm.
  • the distance d1 between the second end 52 and the third end 61 may be, but is not limited to, 10mm, or 15mm, or 20mm, or 25mm, or 30mm, or 35mm, or 40mm, or 45mm, or 50mm, or 55mm, or 60mm, or 70mm, or 80mm, or 90mm, or 100mm, or 110mm, or 120mm.
  • d1 can also be other values greater than or equal to 10mm and less than or equal to 120mm, as long as 10mm ⁇ d1 ⁇ 120mm is satisfied.
  • the first radiator 50 and the second radiator 60 are far apart.
  • the first radiator 50 and the second radiator 60 both support the LB frequency band, the first radiator 50 and the second radiator 60 are Body 60 has better isolation effect.
  • the antenna assembly 40 has two LB antennas. Among them, a first LB antenna supporting the LB frequency band includes a first feed source S1 and a first radiator 50 , and a second LB antenna supporting the LB frequency band includes a third feed source S3 and a second radiator 60 . Therefore, the antenna assembly 40 can achieve dual low frequencies.
  • the antenna assembly 40 may also include a third LB antenna.
  • the third LB antenna may be disposed on an upper side of the electronic device 100 .
  • the third LB antenna may include a fourth radiator 93 and a fifth feed source S5. Therefore, when the antenna component 40 includes a first LB antenna, a second LB antenna, and a third LB antenna, the antenna component 40 can achieve three low frequencies. In the non-standalone (NSA) mode of dual low frequencies, the NSA combination of the LB frequency band is realized. In addition, in scenarios where dual SIM cards or three LB antennas are required, the antenna assembly 40 is also applicable.
  • NSA non-standalone
  • Figure 30 is a schematic structural diagram of the electronic device 100 shown in Figure 1 of the present application in another embodiment.
  • Figure 31 is a schematic diagram of the middle frame 121 and the circuit board shown in Figure 30.
  • Electronic device 100 also includes a first circuit board 55 .
  • the first feed source S1 in the antenna assembly 40 is provided on the first circuit board 55 .
  • the first circuit board 55 is disposed on one side of the middle frame 121 (for example, can be carried on the body portion 1211 of the middle frame 121).
  • Each radiator (the first radiator 50, the second radiator 60, the first parasitic branch 70, the second parasitic branch 80, the third radiator 90, the fourth radiator 93, etc.) in the antenna assembly 40 is formed on The middle frame 121 of the electronic device 100 is taken as an example for illustration.
  • Each gap (for example, the first radiator 50, the second radiator 60, the first parasitic branch 70, the second parasitic branch 80, the third radiator 90, the fourth radiator 93, etc.)
  • At least one of the first gap 401, the second gap 402, the third gap 403, the fourth gap 404, and the fifth gap 405) is filled with an insulating member 123 to enhance the structural strength of the middle frame 121 and prevent external moisture or dust. Enter the inside of the electronic device 100 through gaps or dust.
  • the electronic device 100 further includes a second circuit board 16 .
  • the second feed source S2 is provided on the second circuit board 16 .
  • the first circuit board 15 is also called the A2 board, and the second circuit board 16 is also called the A1 board.
  • the user's thumb when the user holds the electronic device 100 with his hand, the user's thumb usually holds the short side of the electronic device 100 such as the second side 1214 , and corresponding to the central axis M1 , the first radiator 50 is located One side of the central axis M1.
  • the first radiator 50 is not easily blocked or held by the user's hand, so the horizontal screen effect of the electronic device 100 to which the antenna assembly 40 is applied is better.
  • the overall central line M0 formed by the first radiator 50, the first parasitic branch 70 and the second radiator 60 is consistent with the central axis M1 of the electronic device 100 (see Figure 31 along the length The directions extend, and the midpoints O) passing through the short sides of the electronic device 100 coincide or substantially coincide.
  • the center line M0 and the central axis M1 are overlapped as an example. Please refer to the previous description for specific beneficial effects and will not be repeated here.
  • each radiator of the antenna assembly 40 (the first radiator 50, the second radiator 60, the first parasitic branch 70, the second parasitic branch 80, The third radiator 90, the fourth radiator 93, etc.) are all formed on the middle frame 121 of the electronic device 100, such as the frame. Department 1212. It can be understood that in other embodiments, each radiator in the antenna assembly 40 may not be formed on the middle frame 121 of the electronic device 100 .
  • the first radiator 50 is partially disposed corresponding to the first side 1213 , and the first radiator 50 is partially disposed corresponding to the second side 1214 .
  • the first radiator 50 can fully utilize the length of the two bent and connected sides of the electronic device 100 .
  • the corner formed by the bending of the first side 1213 and the second side 1214 has a relatively good clearance area to improve the radiation efficiency of the LB frequency band supported by the first radiator 50 in the antenna assembly 40 .
  • FIG. 32 is a schematic diagram of the electronic device 100 provided by another embodiment of the present application.
  • FIG. 33 is a schematic diagram of the middle frame 121 and the first circuit board 15 in FIG. 31 .
  • the electronic device 100 also has a first functional device 17 , a second functional device 18 , and a third functional device 19 .
  • the second functional device 18 is spaced apart from the first functional device 17 to form a gap 16a.
  • the second end 52 of the first radiator 50 of the antenna assembly 40 is disposed corresponding to the gap 16a.
  • the second functional device 18 may be a USB interface
  • the first functional device 17 may be a speaker
  • the first functional device 17 is a USB interface
  • the second functional device 18 is a speaker
  • the second functional device 18 is spaced apart from the first functional device 17 to form a gap 16a.
  • the second end 52 of the first antenna component 40 is disposed corresponding to the gap 16a. Therefore, the second end 52 can be easily prepared.
  • the second functional device 18 is disposed away from the corner of the first portion 53 and the second portion 54 of the first radiator 50 compared to the first functional device 17 . In other words, the second functional device 18 is arranged closer to the second radiator 60 than the first functional device 17 . The second functional device 18 is arranged corresponding to the first parasitic branch 70 .
  • the first gap 401 When the first gap 401 is formed between the second end 52 and the first parasitic branch 70, the first gap 401 can be disposed corresponding to the gap 16a. Therefore, the first gap 401 can avoid the first functional device 17 and the second functional device 18.
  • the first radiator 50 has better radiation performance due to the shielding.
  • the second functional device 18 and the third functional device 19 are spaced apart to form a gap 16b.
  • the third end 61 of the second radiator 60 of the antenna assembly 40 is disposed corresponding to the gap 16b.
  • the third functional device 19 may be a headphone interface.
  • the second functional device 18 and the third functional device 19 are spaced apart to form a gap 16b.
  • the third end 61 of the first antenna component 40 is disposed corresponding to the gap 16b. Therefore, the preparation of the third end 61 can be facilitated.
  • the second functional device 18 is disposed away from the corners of the third portion 68 and the fourth portion 69 of the second radiator 60 compared to the third functional device 19 .
  • the third functional device 19 is arranged closer to the second radiator 60 than the second functional device 18 .
  • the second gap 402 When the second gap 402 is formed between the third end 61 and the first parasitic branch 70, the second gap 402 can be disposed corresponding to the gap 16b. Therefore, the second gap 402 can avoid the second functional device 18 and the third functional device 19.
  • the second radiator 60 has better radiation performance due to the shielding.
  • the schematic diagrams of the antenna assembly 40 and the electronic device 100 provided by various embodiments of the present application only show components related to the present application. In the antenna assembly 40 and the electronic device 100 provided by various embodiments of the present application, except In addition to the components included in the previous embodiments, it is not excluded that other components are also included, such as the antenna assembly 40 or other antennas included in the electronic device 100 . Antenna radiators, gaps, grounding points, etc. in other antennas are not shown.
  • FIG. 34 is a schematic structural diagram of an electronic device 300 in an embodiment of the present application.
  • the electronic device 300 can be a mobile phone, a tablet computer, a notebook computer, a wearable device, etc.
  • a mobile phone is used as an example.
  • the structure of the electronic device 300 may include an RF circuit 310 (such as the antenna assembly 40 in the above embodiment), a memory 320, an input unit 330, a display unit 340 (such as the display screen 50 in the above embodiment), a sensor 350, and an audio circuit. 360, WiFi module 370, processor 380 and power supply 390 (such as the battery 80 in the above embodiment), etc.
  • the RF circuit 310, the memory 320, the input unit 330, the display unit 340, the sensor 350, the audio circuit 360 and the WiFi module 370 are respectively connected to the processor 380.
  • the power supply 390 is used to provide power to the entire electronic device 300 .
  • the RF circuit 310 is used to receive and receive signals.
  • the memory 320 is used to store data instruction information.
  • the input unit 330 is used to input information, and may specifically include a touch panel 3301 and other input devices 3302 such as operation keys.
  • the display unit 340 may include a display panel 3401 and the like.
  • Sensors 350 include infrared sensors, laser sensors, position sensors, etc., and are used to detect user proximity signals, distance signals, etc.
  • the speaker 3601 and the microphone (or microphone, or receiver component) 3602 are connected to the processor 380 through the audio circuit 360 for receiving and receiving sound signals.
  • the WiFi module 370 is used to receive and transmit WiFi signals.
  • the processor 380 is used to process data information of the electronic device.
  • the disclosed device can be implemented in other ways.
  • the device implementation described above is only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请公开了一种天线组件及电子设备,涉及通信技术领域。天线组件,包括:第一辐射体,具有第一端、第二端及第一馈电点,第一馈电点位于第一端与第二端之间,第一馈电点用于接收第一激励信号,第一激励信号激励第一辐射体产生第一谐振模式、第二谐振模式和第三谐振模式,第一谐振模式、第二谐振模式及第三谐振模式均用于支持低频LB频段,因此,在天线组件中能够有较多谐振模式支持LB频段,第一LB频段的频率大于第三LB频段的频率,第三LB频段的频率大于第二LB频段的频率。因此,天线组件的带宽较大,进而具有较好的通信性能。

Description

天线组件及电子设备 【技术领域】
本申请涉及通信技术领域,具体涉及一种天线组件以及电子设备。
【背景技术】
随着技术的发展,手机等具有通信功能电子设备的普及度越来越高,且功能越来越强大。电子设备中通常包括天线组件以实现电子设备的通信功能。然而,相关技术中的电子设备中的天线组件的通信性能不够好,还有待提升的空间。
【发明内容】
本申请提供了一种天线组件,包括:第一辐射体,具有第一端、第二端及第一馈电点,所述第一馈电点位于所述第一端与所述第二端之间,所述第一馈电点用于接收第一激励信号,所述第一激励信号激励所述第一辐射体产生第一谐振模式、第二谐振模式和第三谐振模式,所述第一谐振模式、所述第二谐振模式及所述第三谐振模式均用于支持低频LB频段,且所述第一谐振模式用于支持第一低频LB频段,所述第二谐振模式用于支持第二LB频段,所述第三谐振模式用于支持第三LB频段,所述第一LB频段的频率大于所述第三LB频段的频率,所述第三LB频段的频率大于所述第二LB频段的频率。
本申请提供一种天线组件,包括:第一辐射体,具有第一端、第二端及第一馈电点,所述第一馈电点位于所述第一端与所述第二端之间,所述第一馈电点用于接收第一激励信号,所述第一激励信号用于激励所述第一辐射体产生第一谐振模式、第二谐振模式及第三谐振模式;以及第一选频电路,设置于所述第二端,以与所述第一辐射体电连接,所述第一选频电路可配置为控制所述第一激励信号激励所述第一辐射体,以在所述第一谐振模式、所述第二谐振模式及所述第三谐振模式之间切换,使得所述第一辐射体同时产生所述第一谐振模式和所述第二谐振模式,或使得所述第一辐射体仅产生所述第三谐振模式,或使得所述第一辐射体产生所述第一谐振模式和所述第三谐振模式的混合模式。
本申请提供一种电子设备,所述电子设备包括:第一辐射体,具有第一端、第二端及第一馈电点,所述第一馈电点位于所述第一端与所述第二端之间,所述第一馈电点用于接收第一激励信号;以及第一选频电路,设置于所述第二端,以与所述第一辐射体电连接,所述第一选频电路可配置为控制所述第一激励信号激励所述第一辐射体产生第一谐振模式、第二谐振模式和第三谐振模式中的一种,可配置为控制所述第一激励信号激励所述第一辐射体,以在所述第一谐振模式、所述第二谐振模式和所述第三谐振模式中两种模式之间切换,所述第一谐振模式、所述第二谐振模式及所述第三谐振模式均用于支持低频LB频段;第二辐射体,具有第一选频点、第三端、第一接地点及第二馈电点,所述第一接地点接地,且所述第一接地点相较于所述第三端背离所述第二端设置,所述第二馈电点位于所述第三端与所述第一接地点之间,所述第一选频点位于所述第三端与所述第一接地点之间,所述第二馈电点用于接收第二激励信号;第一寄生枝节,设置于所述第二端及所述第三端之间,且所述第一寄生枝节的一端与所述第一辐射体形成第一缝隙,另一端与所述第二辐射体形成第二缝隙且容性耦合;第一电路板,用于产生所述第一激励信号;以及第二电路板,用于产生所述第二激励信号。
【附图说明】
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中电子设备的结构示意图;
图2为图1所示实施例中电子设备在一视角下的爆炸示意图;
图3为图1所示实施例中电子设备在另一视角下的爆炸示意图;
图4为图3所示实施例中天线组件在一实施例中的结构示意图;
图5为图4中所示实施例中第一辐射体的第一谐振模式与第二谐振模式分别对应的主要电流流向示意图;
图6为图4所示实施例中的第一辐射体的第三谐振模式对应的主要电流流向示意图;
图7为图4所示实施例中第一匹配电路与第一馈源配合的结构示意图;
图8为图4所示实施例中第一选频电路在天线组件中的结构示意图;
图9为图8所示实施例中第一选频电路在天线组件中另一实施例中的结构示意图;
图10为图3所示天线组件在另一实施例中的结构示意图;
图11为图10所示实施例中第二匹配电路与第二馈源配合的结构示意图;
图12为图10所示实施例中第二选频电路在天线组件中的结构示意图;
图13为图12所示实施例中第二选频电路在天线组件中另一实施例中的结构示意图;
图14为图10所示天线组件在另一实施例中的结构示意图;
图15为图14所示实施例中第三选频电路在天线组件中的结构示意图;
图16为图15所示实施例中第三选频电路在天线组件中另一实施例中的结构示意图;
图17为图10中所示天线组件在另一实施例中的结构示意图;
图18为图17中所示第一选频电路在天线组件中另一实施例中的结构示意图;
图19为图10所示天线组件中第二辐射体在一实施例中的性能对比图;
图20为本申请一实施例中电感及SAR传感器配合的示意图;
图21为本申请另一实施方式提供的天线组件的示意图;
图22为本申请又一实施方式提供的天线组件的结构示意图;
图23为图22中所示的天线组件中第八谐振模式对应的主要电流流向示意图;
图24为图22中所示的天线组件中第九谐振模式对应的主要电流流向示意图;
图25为本申请又一实施方式提供的天线组件的示意图;
图26为本申请一实施方式提供的天线组件的等效电路示意图;
图27为本申请另一实施方式提供的天线组件的等效电路示意图;
图28为图27中的天线组件应用于电子设备中的电路结构示意图;
图29为图10所示实施例中天线组件中第一辐射体与第二辐射体的间距示意图;
图30为本申请图1所示电子设备在另一实施例中的结构示意图;
图31为图30所示中框及电路板配合的示意图;
图32为本申请另一实施方式提供的电子设备的示意图;
图33为图31中中框及第一电路板的示意图;
图34为本申请一实施例中电子设备的结构组成示意图。
【具体实施方式】
下面结合附图和实施方式,对本申请做进一步的详细描述。特别指出的是,以下实施方式仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施方式仅为本申请的部分实施方式而非全部实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
在本文中提及“实施方式”意味着,结合实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施方式中。在说明书中的各个位置出现该短语并不一定均是指相同的实施方式,也不是与其他实施方式互斥的独立的或备选的实施方式。本领域技术人员显式地和隐式地理解的是,本文所描述的实施方式可以与其他实施方式相结合。
本申请阐述了一种天线组件,包括:第一辐射体,具有第一端、第二端及第一馈电点,所述第一馈电点位于所述第一端与所述第二端之间,所述第一馈电点用于接收第一激励信号,所述第一激励信号激励所述第一辐射体产生第一谐振模式、第二谐振模式和第三谐振模式,所述第一谐振模式、所述第二谐振模式及所述第三谐振模式均用于支持低频LB频段,且所述第一谐振模式用于支持第一低频LB频段,所述第二谐振模式用于支持第二LB频段,所述第三谐振模式用于支持第三LB频段,所述第一LB频段的频率大于所述第三LB频段的频率,所述第三LB频段的频率大于所述第二LB频段的频率。
在一些实施例中,所述第一谐振模式为倒F天线IFA模式,所述第一谐振模式的电流包括由所述第一馈电点流向所述第一端的电流。在一些实施例中,所述第一谐振模式包括由所述第一馈电点到所述第一端的1/4波长模式。在一些实施例中,所述第一激励信号配置为激励所述第一辐射体产生所述第一谐振模式时,还激励所述第一辐射体产生第四谐振模式,所述第四谐振模式为环形天线LOOP模式,所述第四谐振模式的电流包括分布于所述第一馈电点与所述第二端之间的电流。在一些实施例中,所述第四谐振模式包括由所述第一馈电点到所述第二端的1/2波长模式。在一些实施例中,所述第四谐振模式所支持的频段包括新空口NR高频频段。在一些实施例中,所述第二谐振模式为单极天线Monopole模式,所述第二谐振模式的电流包括由所述第一馈电点流向所述第一端的电流和由所述第一馈电点流向所述第二端的电流。在一些实施例中,所述第二谐振模式包括所述第一馈电点至所述第一端的1/4波长,及所述第一馈电点至所述第二端的1/4波长的对流模式。在一些实施例中,所述第三谐振模式为IFA和Monopole的混合模式,所述第三谐振模式的电流包括由所述第一馈电点流向所述第一端的电流和由所述第一馈电点流向所述第二端的电流。在一些实施例中,所述第一谐振模式所支持的频段包括长期演进LTE B8频段或N8频段,所述第二谐振模式所支持的频段包括LTE B28频段或N28频段。在一些实施例中,所述第一辐射体包括弯折相连的第一部及第二部,所述第一部具有所述第一端,所述第二部具有所述第二端,所述第一馈电点位于所述第一部或第二部,且邻近所述第一部与所述第二部弯折相连的拐角处设置。在一些实施例中,所述天线组件还包括:第一馈源,用于产生所述第一激励信号;以及第一匹配电路,一端与所述第一馈源电连接,另一端与所述第一馈电点电连接。在一些实施例中,所述天线组件还包括:第一选频电路,设置于所述第二端,以与所述第一辐射体电连接,所述第一选频电路可配置为控制所述第一激励信号激励所述第一辐射体产生第一谐振模式、第二谐振模式和第三谐振模式中的一种,可配置为控制所述第一激励信号激励所述第一辐射体,以在所述第一谐振模式、所述第二谐振模式和所述第三谐振模式中两种模式之间切换。在一些实施例中,所述第一选频电路可配置为低阻抗状态,以控制所述第一激励信号激励所述第一辐射体产生所述第一谐振模式,可配置为高阻抗状态,以控制所述第一激励信号激励所述第一辐射体产生所述第二谐振模式,可配置为介于低阻抗状态与高阻抗状态之间的状态,以控制所述第一激励信号激励所述第一辐射体产生所述第三谐振模式。在一些实施例中,所述第一选频电路包括:第一切换开关,具有接地的第一公共端、多个第一连接端及第一切换部,所述第一切换部与所述第一公共端电连接,并配置为在控制信号的控制下电连接至所述多个第一连接端中的一个第一连接端;以及至少一个第一选频子电路,所述至少一个第一选频子电路的一端均与所述第二端电连接,另一端与所述多个第一连接端中的第一连接端一一对应电连接,所述多个第一连接端余下的一个第一连接端与所述第二端电连接。在一些实施例中,所述天线组件还包括:第二辐射体,具有第一选频点、第三端、第一接地点及第二馈电点,所述第一接地点接地,且所述第一接地点相较于所述第三端背离所述第二端设置,所述第二馈电点位于所述第三端与所述第一接地点之间,所述第一选频点位于所述第三端与所述第一接地点之间,所述第二馈电点用于接收第二激励信号;第一寄生枝节,设置于所述第二端及所述第三端之间,且所述第一寄生枝节的一端与所述第一辐射体形成第一缝隙,另一端与所述第二辐射体形成第二缝隙且容性耦合;以及第二选频电路,与所述第一选频点电连接,所述第二激励信号用于激励所述第二辐射体及所述第一寄生枝节产生中高频MHB频段的双谐振,所述MHB频段的双谐振包括:一个谐振模式用于支持中频MB频段,另一谐振模式用于支持高频HB频段;或者,一个谐振模式用于支持MB频段,另一谐振模式也用于支持MB频段;或者,一个谐振模式用于支持HB频段,另一谐振模式用于支持HB频段。在一些实施例中,所述第一辐射体、所述第一寄生枝节及所述第二辐射体构成的整体具有中心线,所述中心线与所述第一寄生枝节相交,且所述第一缝隙及所述第二缝隙分别位于所述中心线的两侧。在一些实施例中,所述第一选频点位于所述第二馈电点与所述第一接地点之间,或与所述第二馈电点重合。在一些实施例中,所述MHB频段的双谐振包括第五谐振模式,所述第五谐振模式为复合左右手天线CRLH模式,所述第五谐振模式的电流包括由所述第三端流向所述第一接地点的电流。在一些实施例中,所述第五谐振模式用于支持长期演进LTE MHB频段和/或新空口NR MHB频段。在一些实施例中,所述天线组件还包括:第二馈源,用于产生所述第二激励信号;以及第二匹配电路,一端与所述第二馈源电连接,另一端与所述第二馈电点电连接。在一些实施例中,所述第二选频电路包括:第二切换开关,具有接地的第二公共端、多个第二连接端及第二切换部,所述第二切换部与所述第二公共端电连接,并配置为在控制信号的控制下电连接至所述多个第二连接端中的一个第二连接端;以及至少一个第二选频子电路,所述至少一个第二选频子电路的一端均与所述第一选频点电连接,且一个第二选频子电路的另一端接地,其余第二选频子电路的另一端与所述多个第二连接端中的第一连接端一一对应电连接。在一些实施例中,所述第一寄生枝节具有第二选频点;所述第一选频电路与所述第二选频点电连接;或,所述天线组件还包括第三选频电路,且所述第三选频电路与所述第二选频点电连接。在一些实施例中,所述MHB频段的双谐振包括第六谐振模式,所述第一选频电路和所述第三选频电路中与所述第二选频点电连接的选频电路与所述第二选频电路用于配合控制所述第二激励信号激励所述第一寄生枝节产生所述第六谐振模式,所述第六谐振模式的电流包括由所述第二选频点流向所述第一寄生枝节靠近所述第三端的一端的电流。在一些实施例中,所述第六谐振模式为所述第二选频点到所述第一寄生枝节 靠近所述第三端的一端的1/2波长模式。在一些实施例中,所述第三选频电路包括:第三切换开关,具有接地的第三公共端、多个第三连接端及第三切换部,所述第三切换部与所述第三公共端电连接,并配置为在控制信号的控制下电连接至所述多个第三连接端中的一个第三连接端;以及至少一个第三选频子电路,所述至少一个第三选频子电路的一端均与所述第二选频点电连接,且一个第三选频子电路的另一端接地,其余第三选频子电路的另一端与所述多个第三连接端中的第三连接端一一对应电连接。在一些实施例中,所述第一选频电路和所述第三选频电路中与所述第二选频点电连接的选频电路包括流通所述第六谐振模式的电流的电容;所述天线组件还包括:第三电感,一端电连接至所述第一寄生枝节的第二选频点;及电磁波吸收比SAR传感器,所述SAR传感器电连接所述第三电感的另一端,且所述SAR传感器用于将所述第一寄生枝节检测到的电容值的变化输出。在一些实施例中,所述第二辐射体还具有第三馈电点、第四端及第二接地点,所述第三馈电点与所述第二馈电点间隔设置,所述第二接地点位于所述第二馈电点与所述第三馈电点之间,且位于所述第一接地点与所述第三馈电点之间,所述第四端位于所述第三馈电点远离所述第二接地点的一侧,所述天线组件还包括:第二寄生枝节,具有接地的第三接地点,并与所述第四端之间具有第三缝隙;以及第三馈源,电连接至所述第三馈电点,以支持LB频段和/或无线保真WiFi2.4G频段。在一些实施例中,当所述第三馈源支持LB频段时,所述第三馈源用于激励所述第二辐射体产生第七谐振模式,所述第七谐振模式为所述第二接地点到所述第四端的1/4波长模式。在一些实施例中,当所述第三馈源支持WiFi2.4G时,所述第三馈源用于激励所述第二辐射体产生第八谐振模式,及激励所述第二寄生枝节产生第九谐振模式,所述第八谐振模式及所述第九谐振模式用于支持WiFi2.4G频段和蓝牙频段。在一些实施例中,所述第八谐振模式为所述第二接地点到所述第四端的3/4波长模式,所述第九谐振模式为所述第三缝隙至所述第三接地点的1/4波长模式。在一些实施例中,所述天线组件还包括:第三辐射体,具有第四馈电点;及第四馈源,电连接所述第四馈电点,以使得所述第三辐射体支持WiFi2.4G频段和蓝牙频段。在一些实施例中,所述第三辐射体与所述第二辐射体对角设置,所述第二辐射体及所述第三辐射体均用于支持蓝牙频段,所述第三辐射体收发蓝牙频段的电磁波信号时的方向图,与所述第二辐射体收发蓝牙频段的电磁波信号时的方向图互补。在一些实施例中,所述第二辐射体包括弯折相连的第三部及第四部,所述第三部背离所述第四部的一端邻近所述第一辐射体设置,所述第三辐射体包括弯折相连的第五部及第六部,所述第五部相较于所述第六部邻近所述第一辐射体设置。在一些实施例中,所述第四馈电点位于所述第五部或第六部,且所述第四馈电点邻近所述第五部与所述第六部相连的拐角处设置。在一些实施例中,所述第三辐射体与所述第一辐射体之间具有第四缝隙,所述第三辐射体具有第四接地点及第五接地点,第四接地点及第五接地点均接地,所述第四接地点相较于所述第五接地点邻近所述第一辐射体设置,所述第五接地点位于所述第四馈电点与所述第四接地点之间。在一些实施例中,所述第三馈源用于支持蓝牙频段,且所述第四馈源用于支持蓝牙频段,所述第三馈源电连接至所述第二辐射体的射频通路,与所述第四馈源电连接至所述第三辐射体的射频通路不同。在一些实施例中,所述第三馈源用于支持蓝牙频段,且所述第四馈源用于支持蓝牙频段,所述第三馈源电连接至所述第二辐射体的射频通路,与所述第四馈源电连接至所述第三辐射体的射频通路相同,所述天线组件还包括切换单元,所述切换单元用于使得所述第三馈源通过所述射频通路电连接至所述第二辐射体,或者,使得所述第四馈源电通过所述射频通路电连接至所述第三辐射体。在一些实施例中,所述第四馈源还用于支持GPS L1频段。在一些实施例中,所述天线组件还包括:第四辐射体,与所述第六部间隔设置,以形成第五缝隙,所述第五缝隙邻近所述第五部与所述第六部弯折相连的拐角部设置;及第五馈源,电连接至所述第四辐射体,以支持WiFi5G频段或N78频段。在一些实施例中,所述第二端与所述第三端之间的距离d1满足:10mm≤d1≤120mm。
本申请阐述了一种天线组件,包括:第一辐射体,具有第一端、第二端及第一馈电点,所述第一馈电点位于所述第一端与所述第二端之间,所述第一馈电点用于接收第一激励信号,所述第一激励信号用于激励所述第一辐射体产生第一谐振模式、第二谐振模式及第三谐振模式;以及第一选频电路,设置于所述第二端,以与所述第一辐射体电连接,所述第一选频电路可配置为控制所述第一激励信号激励所述第一辐射体,以在所述第一谐振模式、所述第二谐振模式及所述第三谐振模式之间切换,使得所述第一辐射体同时产生所述第一谐振模式和所述第二谐振模式,或使得所述第一辐射体仅产生所述第三谐振模式,或使得所述第一辐射体产生所述第一谐振模式和所述第三谐振模式的混合模式。在一些实施例中,所述天线组件还包括:第二辐射体,具有第三端、第一接地点及第二馈电点,所述第一接地点接地,且所述第一接地点相较于所述第三端背离所述第二端设置,所述第二馈电点位于所述第三端与所述第一接地点之间,所述第二馈电点用于接收第二激励信号;第一寄生枝节,设置于所述第二端及所述第三端之间,且所述第一寄生枝节的一端与所述第一辐射体形成第一缝隙,另一端与所述第二辐射体形成第二缝隙且容性耦合,所述第二激励信号用于激励所述第二辐射体及所述第一寄生枝节产生中高频MHB频段的双谐振,所述MHB频段的双谐振包括:一个谐振模式用于支持中频MB频段,另一谐振模式用于支持高频HB频段;或者,一个谐振模式用于支持MB频段,另一谐振模式也用于支持MB频段;或者,一个谐振模式用于支持HB频段,另一谐振模式用于支持HB频段,所述第一选频电路可配置为对所述MHB频段中被所述第一寄生枝节支持的谐振模式进行调谐。在一些实施例中,所述第一谐振模式及所述第三谐振模式用于支持低频LB频段,且所述第一谐振模式所支持频段的频率大于所述第三谐振模式所支持频段的频率。在一些实施例中,所述第一谐振模式包括由所述第一馈电点到所述第一端的1/4波长模式或由所述第一馈电点到所述第一端的3/4波长模式。
本申请阐述了一种电子设备,包括:第一辐射体,具有第一端、第二端及第一馈电点,所述第一馈电点位于所述第一端与所述第二端之间,所述第一馈电点用于接收第一激励信号;以及第一选频电路,设置于所述第二端,以与所述第一辐射体电连接,所述第一选频电路可配置为控制所述第一激励信号激励所述第一辐射体产生第一谐振模式、第二谐振模式和第三谐振模式中的一种,可配置为控制所述第一激励信号激励所述第一辐射体,以在所述第一谐振模式、所述第二谐振模式和所述第三谐振模式中两种模式之间切换,所述第一谐振模式、所述第二谐振模式及所述第三谐振模式均用于支持低频LB频段;第二辐射体,具有第一选频点、第三端、第一接地点及第二馈电点,所述第一接地点接地,且所述第一接地点相较于所述第三端背离所述第二端设置,所述第二馈电点位于所述第三端与所述第一接地点之间,所述第一选频点位于所述第三端与所述第一接地点之间,所述第二馈电点用于接收第二激励信号;第一寄生枝节,设置于所述第二端及所述第三端之间,且所述第一寄生枝节的一端与所述第一辐射体形成第一缝隙,另一端与所述第二辐射体形成第二缝隙且容性耦合;第一电路板,用于产生所述第一激励信号;以及第二电路板,用于产生所述第二激励信号。在一些实施例中,所述电子设备还包括中框,所述第一辐射体、所述第二辐射体及所述第一寄生枝节形成于所述中框上。在一些实施例中,所述电子设备还包括弯折相连的第一边及第二边,所述第一辐射体部分对应所述第一边设置,且部分对应所述第二边设置。在一些实施例中,所述第一边为电子设备的长边,所述第二边为电子设备的短边,所述电子设备具中轴线,所述中轴线平行于所述第一边,且与所述第二边相 交于所述第二边的中点,所述第一辐射体位于所述中轴线的一侧,所述第二辐射体位于所述中轴线的另一侧,所述第一寄生枝节与所述中轴线相交。在一些实施例中,所述电子设备还包括:第一功能器件;及第二功能器件,与所述第一功能器件间隔设置,以形成间隙;所述第一端对应所述第一功能器件与所述第二功能器件之间的间隙设置。在一些实施例中,所述电子设备还包括:第三功能器件,与所述第二功能器件间隔设置,以形成间隙;所述第三端对应所述第二功能器件与所述第三功能器件之间的间隙设置。在一些实施例中,所述第一寄生枝节设置有第二选频点,所述第一选频电路电连接至所述第二选频点,所述第一选频电路与所述第二选频点电连接的选频电路包括对所述第一寄生枝节上电流进行传输的电容;所述电子设备还包括:电感,一端电连接至所述第二选频点;及电磁波吸收比SAR传感器,所述SAR传感器电连接所述电感的另一端,且所述SAR传感器用于将所述第一寄生枝节检测到的电容值的变化输出;处理器,与所述SAR传感器电连接,以接收所述SAR传感器所传输来的所述电容值的变化,并根据所述电容值的变化调节所述第一辐射体和所述第一寄生枝节、所述第二辐射体的发射功率。
本申请提供了一种电子设备。该电子设备可包括不限于为手机、电话、电视、平板电脑(Pad)、照相机、个人计算机、笔记本电脑(Personal Computer,PC)、车载设备、耳机、手表、可穿戴设备、基站、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备。
作为在此使用的“电子设备”(也可被称为“终端”或“移动终端”或“电子装置”)包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(PSTN)、数字用户线路(DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”“无线终端”或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其他电子装置。手机即为配置有蜂窝通信模块的电子设备。本申请中以电子设备为手机为例,其他的设备可参考本申请中的具体描述。此外,电子设备可以为但不仅限于为具有或不具有显示屏的设备。
请参照图1、图2及图3,图1为本申请一实施例中电子设备的结构示意图,图2为图1所示实施例中电子设备在一视角下的爆炸示意图,图3为图1所示实施例中电子设备在另一视角下的爆炸示意图。电子设备100可包括设备本体10和安装在设备本体10上的天线组件40。设备本体10用于承载天线组件40。天线组件40用于收发电磁波信号,以实现电子设备100的通信功能。可以理解地,天线组件40在电子设备100上的位置可不做具体的限定。
请参阅图1、图2和图3,以电子设备100处于图1中的视角为参照,在笛卡尔坐标系中,电子设备100的宽度方向定义为X轴方向,即,电子设备100在宽度方向的边为短边,而短边在X轴方向上延伸设置。电子设备100的长度方向定义为Y轴方向,即,电子设备100在长度方向的边为长边,而长边在Y轴方向上延伸设置。电子设备100的厚度方向定义为Z轴方向。其中,X轴方向、Y轴方向及Z轴方向两两垂直,箭头所指示的方向为正向。
设备本体10可包括但不仅限于相互盖合连接的显示屏11及壳体12。壳体12内设置收容空间101,并可在收容空间101内安装天线组件40。当然,壳体12与天线组件40的配合关系还可以是:天线组件40部分与壳体12集成为一体、或部分设于壳体12外。
在一实施例中,壳体12可包括用于承载显示屏11、天线组件40的中框121以及与显示屏11相对设置且连接在中框121上的后壳122。后壳122位于中框121远离显示屏11的一侧。
中框121可以由塑料、玻璃、陶瓷、纤维复合材料、金属等材料形成。中框121可包括介于显示屏11与后壳122之间的本体部1211以及设置于本体部1211周缘的边框部1212。边框部1212可与显示屏11、后壳122盖合连接。在一些实施例中,边框部1212可与后壳122为一体结构。在一些实施例中,本体部1211与边框部1212为一体结构。
边框部1212可包括第一边1213、第二边1214、第三边1215及第四边1216。第一边1213、第二边1214、第三边1215及第四边1216首尾相连。第一边1213与第三边1215相对设置。第二边1214与第四边1216相对设置。在一些实施例中,第一边1213与第三边1215为长边,第二边1214及第四边1216为短边。可以理解地,长边的长度较短边的长度长。
可以理解地,电子设备100还可包括设于收容空间101内的电路板13、电池、功能器件(功能器件可以包括摄像头模组14、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组中的一者或多者)等能够实现手机的基本功能的器件,不再赘述。另外,上述对电子设备100的介绍仅是天线组件40所应用的环境的一种说明,不应当理解为对天线组件40的限定。
天线组件40可为柔性电路板(Flexible Printed Circuit,FPC)天线、激光直接成型(Laser Direct Structuring,LDS)天线、印刷直接成型(Print Direct Structuring,PDS)天线、金属边框天线(也可叫金属枝节天线)中的一种或多种的混合体。当然,天线组件40也可以为其他类型的天线,不作赘述。
天线组件40自身具有参考地,也称为地极或地。该参考地的具体形式包括但不限于金属导电板件、成型于柔性电路板内部、硬质电路板中的金属导电层等。当天线组件40设于电子设备100内时,天线组件40的参考地电连接至电子设备100的参考地。在一些实施例中,天线组件40本身可不具有参考地,天线组件40通过直接电连接或通过导电件间接电连接至电子设备100的参考地或电子设备100内的电子器件的参考地。
请参阅图4,图4为图3所示实施例中天线组件40在一实施例中的结构示意图。天线组件40可包括第一辐射体50以及与第一辐射体50电连接的第一馈源S1。第一馈源S1可产生第一激励信号,传输至第一辐射体50。进而,天线组件40可通过第一激励信号激励第一辐射体50产生支持低频(Low Frequency Band,LB)频段、中高频(Middle Frequency Band and High Frequency Band,MHB)频段的多个谐振模式。
可以理解的,LB频段的频段范围可为703MHz-960MHz。MHB频段的频段范围可为1710MHz-2690MHz。MHB频段通常包括中频(Middle Frequency band,MB)频段和高频(High Frequency Band,HB)频段。MB频段的频段范围可为1710MHz-2170MHz。HB频段的频段范围可为2300MHz-2690MHz。另外,在此列举的频段范围可不是固定不变的,可以在既定的频段范围的基础上进行范围调大。
本申请中的术语“第一”“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”“第二”“第三”等的特征可以明示或者隐含地包括至少一个该特征。
第一辐射体50可以为但不仅限于为LDS辐射体,或者,FPC辐射体,或者PDS辐射体,或者为金属枝节辐射体。在 一些实施例中,第一辐射体50可为利用电子设备100自身嵌件金属设计的结构件天线(Mechanical Design Antenna,MDA)辐射体。比如,第一辐射体50可利用电子设备100的塑胶及金属形成的中框121设计出来的天线辐射体。此外,第一辐射体50还可以为金属中框121设计出来的金属枝节天线辐射体。
第一辐射体50的形状、构造及材质不做具体的限定,第一辐射体50的形状皆包括但不限于弯折状、条状、片状、杆状、涂层、薄膜等。当第一辐射体50呈条状时,可不对第一辐射体50的延伸轨迹做限定,故第一辐射体50皆可呈直线、曲线、多段弯折等轨迹延伸。第一辐射体50在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
第一辐射体50具有第一端51、可用于接地的第二端52及第一馈电点P1。第二端52电连接至地的方式包括但不限于直接电连接(比如焊接),或通过同轴线、微带线、射频线、导电弹片、导电胶、嵌件金属、或电子设备100的中框连料等方式间接电连接。第一馈电点P1位于第一端51与第二端52之间,可不对第一馈电点P1在第一辐射体50上的具体位置做限定。第一馈电点P1可接收第一激励信号。即,第一馈电点P1可直接或间接地与第一馈源S1电连接。
在一些实施方式中,第一辐射体50的两端例如第一端51、第二端52可与其他部件之间各具有缝隙。在一些场景中,当天线组件40应用于电子设备100中时,第一辐射体50的第一端51、第二端52可分别与电子设备100中的其他部件之间各具有的缝隙(即两个缝隙)不容易同时被握住或被遮挡。即便两个缝隙中的一者被遮挡时,第一辐射体50还是可以收发电磁波信号,因此,天线组件40具有较好的通信性能。
在一些实施例中,第一辐射体50可形成于中框121例如边框部1212上。在一些实施例中,第一辐射体50可以以中框121例如本体部1211、边框部1212例如地极。进而地极通过本体部1211与边框部1212之间的连料连接至本体部1211,以接地。
请参阅图4,第一辐射体50可呈弯折状。第一端51和第二端52可不沿直线方向相对。但第一端51和第二端52可为第一辐射体50的两个末端。在其他实施方式中,第一端51与第二端52可为呈直线条形的第一辐射体50的相对两端。
第一辐射体50可包括弯折相连的第一部53及第二部54。第一部53可具有第一端51,第二部54可具有第二端52,第一馈电点P1位于第一部53或第二部54,且邻近第一部53与第二部54弯折相连的拐角处设置。
可以理解的,第一辐射体50与应用第一辐射体50的电子设备100的形态相适配。第一部53与第二部54可分别与电子设备100弯折相连的两个边(例如,弯折相连的长边与短边)相对应。另外,请参阅图3和图4,当天线组件40应用于电子设备100时,第一辐射体50的一部分(例如第一部53和第二部54中的一个)可对应电子设备100的底边(即在X方向上延伸设置的短边,例如边框部1212在X方向上延伸设置的部位,即第二边1214)设置,另一部分(例如第一部53和第二部54中的另一个)可对应电子设备100的侧边(即在Y方向上延伸设置的长边,例如边框部1212在Y方向上延伸设置的部位,即第一边1213)设置。因此,当天线组件40应用于电子设备100时,在利用电子设备100打游戏等需要长时间握持的场景,第一辐射体50中第一端51、第二端52可分别与其他部件之间各具有的缝隙不容易同时被用户的手握持或被用户的手遮挡。因此,当天线组件40应用于电子设备100中时,具有抗手持、优异的双手游戏手持性能。
在一些实施例中,若第一辐射体50为直条形状或类似直条形状辐射体,第一馈电点P1可位于第一辐射体50的中部。比如,第一馈电点P1至第一端51之间的辐射部分的等效电长度等于或近似等于第一馈电点P1到第二端52之间的辐射部分的等效电长度(比如,相差小于或等于10mm)。
第一馈源S1产生的第一激励信号可激励第一辐射体50产生多个谐振模式例如第一谐振模式、第二谐振模式及第三谐振模式。
在一些实施例中,第一谐振模式可用于支持LB频段或HB频段。
需要说明的是,第一谐振模式支持LB频段,是指第一谐振模式支持LB频段中的部分频段(子频段),比如,支持703MHz-960MHz中的部分频段,比如,LTE(长期演进,Long Term Evolution)B8频段,比如NR(新空口)N8频段。相应地,第一谐振模式支持HB频段,是指第一谐振模式支持HB频段中的部分频段,比如,支持2300MHz-2690MHz中的部分频段(子频段),比如,NR(新空口)N41频段。因此,当其他谐振模式支持某一频段时,也仅仅是支持这一频段中的部分频段(子频段)。
在一些实施例中,第一谐振模式可用于支持LTE LB频段或NR HB频段或NR LB频段。
在一些实施例中,第一谐振模式可用于支持LTE LB频段中的LTE B8频段。
在一些实施例中,第一谐振模式可用于支持NR LB频段中的N8频段。
在一些实施例中,第一谐振模式可用于支持NR HB频段中的N41频段。
请参阅图5,图5为图4中所示实施例中第一辐射体50的第一谐振模式与第二谐振模式分别对应的主要电流流向示意图。第一谐振模式可为倒F天线(IFA,Inverted-F Antenna)模式。在一些实施例中,第一谐振模式的电流可包括分布在第一馈电点P1与第一端51之间的电流I1。在一些实施例中,电流I1可由第一馈电点P1流向第一端51。
在一些实施例中,第一谐振模式可包括由第一馈电点P1到第一端51的1/4波长模式,以使得第一谐振模式支持LB频段例如LTE LB频段、NR LB频段。1/4波长模式为效率相对较高的谐振模式,故能够增强第一谐振模式支持的频段的收发效率。
在一些实施例中,第一谐振模式可包括由第一馈电点P1到第一端51的3/4波长模式,以使得第一谐振模式支持HB频段例如NR高频频段。
在一些实施例中,第二谐振模式可用于支持HB频段,以拓宽天线组件40的带宽。
在一些实施例中,第二谐振模式可用于支持NR高频频段。在一些实施例中,第二谐振模式可用于支持NR高频频段中的N41频段。
请参阅图5,第二谐振模式可为环形天线(LOOP)模式。第二谐振模式的电流可包括分布于第一馈电点P1与第二端52之间的电流I2。
在一些实施例中,第二谐振模式可包括由第一馈电点P1到第二端52的1/2波长模式,以使得第二谐振模式支持NR HB频段。
在一些实施例中,第三谐振模式可用于支持LB频段。在一些实施例中,第三谐振模式可用于支持LTE LB频段。在一些实施例中,第三谐振模式可用于支持NR LB频段。
在一些实施例中,第三谐振模式可用于支持LTE LB频段中的LTE B28频段。在一些实施例中,第三谐振模式可用于支持NR LB频段中的N28频段。
请参阅图6,图6为图4所示实施例中的第一辐射体50的第三谐振模式对应的主要电流流向示意图。第三谐振模式可为单极天线(Monopole)模式。在一些实施例中,第三谐振模式的电流可包括分布在第一馈电点P1与第一端51的电流I31和分布在第一馈电点P1与第二端52之间的电流I32。在一些实施例中,电流I31由第一馈电点P1流向第一端51,电流I32由第一馈电点P1流向第二端52。
在一些实施例中,第三谐振模式为第一馈电点P1至第一端51的1/4波长,及第一馈电点P1至第二端52的1/4波长的对流模式。1/4波长模式为效率相对较高的谐振模式,故能够增强第三谐振模式支持的频段的收发效率。
在一些实施例中,第三谐振模式支持的频段小于第一谐振模式支持的频段。换而言之,第一谐振模式所支持的频段为LB频段的较高频段,第二谐振模式所支持的频段为LB频段中的较低频段。因此,第一谐振模式及第三谐振模式均用于支持LB频段时,天线组件40中能够有较多谐振模式支持LB频段,并可充分利用LB频段中频段相对较高的频段,以及利用LB频段中频段相对较低的频段。进而,天线组件40所支持的LB频段的带宽较大,天线组件40在利用LB频段进行通信时,即便天线组件40在LB频段有频偏,由于天线组件40支持的LB频段的带宽较大,频偏后的频率也落在天线组件40所支持的LB频段的范围内,因此,天线组件40具有较好的通信性能。
在一些实施例中,第一谐振模式所支持的频段包括LTE B8频段和N8频段,第二谐振模式所支持的频段包括LTE B28频段和N28频段。进而,当天线组件40与其他设备进行通信时,可充分利用LTE B8频段或N8频段或N28频段或者LTE B28频段与其他设备进行通信。
可以理解地,为了方便说明各个谐振模式的主要特征表象,本申请将各个谐振模式对应的电流进行单独示意。虽然,各个谐振模式工作时,并不是完全独立的。但是,也并不影响这里对各个谐振模式主要特征表象的阐述。此外,各个电流的流向仅为示意,不代表实际的电流强弱,且不代表两个流向相对的电流共同作用的电流零点的位置。
请参阅图4,第一馈源S1直接或间接电连接至第一辐射体50例如第一馈电点P1时,通常通过射频信号线与第一馈电点P1电连接。射频信号线的等效电阻通常较小(约为50欧姆)。
第一馈电点P1位于第一部53或第二部54,且邻近第一部53与第二部54弯折相连的拐角处设置,进而可使得第一馈电点P1位于第一辐射体50上电流最强或者较强的部位,使得第一辐射体50的等效阻抗较低,进而使得第一辐射体50的等效阻抗与第一馈源S1至第一辐射体50例如第一馈电点P1之间的阻抗较为匹配。因此,第一辐射体50的辐射性能较好。可以理解的,当第一馈电点P1位于第一辐射体50的中部时,第一辐射体50的等效阻抗较低。进而使得第一辐射体50的等效阻抗与连接第一馈源S1至第一辐射体50的射频信号线之间的阻抗较为匹配。因此,天线组件40中所述第一馈源S1与第一辐射体50组成的天线单元的辐射性能较好。
第一馈源S1电连接至第一馈电点P1的方式可以为但不仅限于为直接电连接(比如焊接);或通过同轴线、微带线、射频线、导电弹片、导电胶、匹配电路等方式间接电连接。在本实施方式中,以第一馈源S1通过匹配电路的方式电连接至第一馈电点P1。
请参阅图4,天线组件40还可包括一端与第一馈源S1电连接且另一端与第一馈电点P1电连接的第一匹配电路55。第一激励信号可通过第一匹配电路55传输至第一馈电点P1。
在一些实施例中,第一匹配电路55可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器(也可用定值电容替代)组成。第一匹配电路55可进行阻抗匹配,提升天线组件40的天线性能。
请参阅图7,图7为图4所示实施例中第一匹配电路55与第一馈源S1配合的结构示意图。第一匹配电路55可包括一端与第一馈源S1电连接且另一端与第一馈电点P1电连接的第一电感L1、一端与第一馈电点P1电连接且另一端接地的第二电感L2以及一端与第一馈源S1电连接且另一端接地的第一电容C1。第一电感L1、第二电感L2与第一电容C1配合进行阻抗匹配,提升天线组件40的天线性能。
请参阅图4,天线组件40还可包括一端与第二端52电连接且另一端接地的第一选频电路56。即,第二端52可通过第一选频电路56接地,而不直接接地。当然,在一些实施例中,第二端52可直接接地。
第一选频电路56可对被第一辐射体50所产生谐振模式例如第一谐振模式、第二谐振模式、第三谐振模式所支持的LB频段、HB频段进行调谐和解耦,以提升天线性能。
第一选频电路56可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器(也可用定值电容替代)组成。在一实施例中,开关控制电路可以是具有开关功能的开关芯片,也可以是单刀多掷开关或单刀单掷开关。
第一选频电路56可控制第一辐射体50的有效电长度,进而调整第一辐射体50所支持的电磁波信号的频段及谐振频点,以进一步控制第一激励信号激励第一辐射体50工作在LB频段和/或HB频段。
请参阅图8,图8为图4所示实施例中第一选频电路56在天线组件40中的结构示意图。第一选频电路56可包括至少一个第一选频子电路561和第一切换开关562。其中,第一切换开关562具有接地的第一公共端5621、多个第一连接端5622及第一切换部5623。第一切换部5623可与第一公共端5621电连接。第一切换部5623可在控制信号(可来自电子设备100例如处理器,也可来自其他电子器件)的控制下电连接至一个第一连接端5622。每一个第一选频子电路561的一端与第二端52电连接,另一端与一个第一连接端5622一一对应电连接。另外一个第一连接端5622可直接与第二端52电连接。
可以理解地,第一选频电路56中第一选频子电路561和第一切换开关562的连接顺序可做调整,例如,图8中第一选频电路56接地的点可直接与第二端52电连接,相对应的,与第二端52电连接的点可直接接地。
请参阅图8,第一切换部5623可选择性地与不同的第一连接端5622电连接,使得不同的第一选频子电路561一端与第二端52电连接,另一端接地,或第二端52直接接地,进而使得第一辐射体50在不同状态下具有不同的有效电长度。
在一些实施例中,第一切换部5623可与第一连接端5622电连接,使得第二端52直接接地,使得第二端52与地之间的电阻为例如0欧姆,进而使得第一激励信号激励第一辐射体50产生第一谐振模式和第二谐振模式。
在一些实施例中,第一切换部5623可与第一连接端5622电连接,使得第二端52与地之间连接第一选频子电路561,并使得第二端52与地之间的电阻介于0欧姆与高阻抗状态例如开路状态之间,进而使得第一激励信号激励第一辐射体50产生第一谐振模式和第三谐振模式的混合模式(即,IFA和Monopole的混合模式)。
在一些实施例中,第一切换部5623可与第一连接端5622电连接,使得第二端52与地之间连接第一选频子电路561,或第一切换部5623可与第一连接端5622处于断开状态,使得第二端52与地之间的电阻处于高阻抗状态例如开路状态进而使得第一激励信号激励第一辐射体50产生第三谐振模式。
可以理解地,上述实施例中第一选频电路56对被第一辐射体50所产生谐振模式例如第一谐振模式、第二谐振模式、第三谐振模式所支持的LB频段、HB频段进行调谐和解耦,仅是部分实施例,还可以是其他。只要第一选频电路56可控制第一激励信号激励第一辐射体50,以在第一谐振模式、第二谐振模式及第三谐振模式之间切换,使得第一辐射体50同时产生第一谐振模式和第二谐振模式,或使得第一辐射体50仅产生第三谐振模式,或使得第一辐射体50产生第一谐振模式和第三谐振模式的混合模式即可。
当然,在一些实施例中,上文中的第二谐振模式可以被称为“第四谐振模式”,相应地,第三谐振模式可以被称为“第二谐振模式”,第一谐振模式和第三谐振模式的混合模式可以被称为“第三谐振模式”。那么在此实施例中有:第一激励信号激励第一辐射体50产生第一谐振模式、第二谐振模式和第三谐振模式。进一步的还有:第一谐振模式、第二谐振模式及第三谐振模式均用于支持LB频段。进一步的还有:第一谐振模式用于支持第一低频LB频段,第二谐振模式用于支持第二LB频段,第三谐振模式用于支持第三LB频段,第一LB频段的频率大于第三LB频段的频率,第三LB频段的频率大于第二LB频段的频率。进一步的还有:第二谐振模式为单极天线Monopole模式。进一步的还有:第三谐振模式的电流包括由第一馈电点P1流向第一端51的电流和由第一馈电点P1流向第二端52的电流。进一步的还有:第一选频电路56可控制第一激励信号激励第一辐射体50产生第一谐振模式、第二谐振模式和第三谐振模式中的一种,可控制第一激励信号激励第一辐射体50,以在第一谐振模式、第二谐振模式和第三谐振模式中两种模式之间切换。进一步的还有:第一选频电路56可为低阻抗状态,以控制第一激励信号激励第一辐射体50产生第一谐振模式,可为高阻抗状态,以控制第一激励信号激励第一辐射体50产生第二谐振模式,可为介于低阻抗状态与高阻抗状态之间的状态,以控制第一激励信号激励第一辐射体50产生第三谐振模式。进一步的还有:第一选频电路56可为短路状态,以控制第一激励信号激励第一辐射体50产生第一谐振模式,可为开路状态,以控制第一激励信号激励第一辐射体50产生第二谐振模式,可为介于短路状态与开路状态之间的状态,以控制第一激励信号激励第一辐射体50产生第三谐振模式。进一步的还有:第一谐振模式支持的第一LB频段及第二谐振模式支持第二LB频段为相同的制式,也可以为不同的制式。当第一谐振模式支持的第一LB频段及第二谐振模式支持的第二LB频段为相同的制式时:第一谐振模式支持LTE LB频段例如B8频段,第二谐振模式支持LTE LB频段例如B28频段;或者,第一谐振模式支持NR LB频段例如N8频段,第二谐振模式支持NR LB频段例如N28频段。当第一谐振模式支持的第一LB频段及第二谐振模式支持的第二LB频段为不同的制式时:第一谐振模式支持NR LB频段例如N8频段,第二谐振模式支持LTE LB频段例如B28频段;或者,第一谐振模式支持LTE LB频段例如B8频段,第二谐振模式支持NR LB频段例如N28频段。
请参阅图5,第一辐射体50工作在第一谐振模式时,可充分激励中框121在长边延伸方向的电流,以提升自由空间OTA(over the air,空中下载技术)性能,在一些实施例中大约可提升1dB左右。
请参阅图6,第一辐射体50工作在第三谐振模式时,第一辐射体50的两个端部例如第一端51、第二端52均不接地,进一步减小被手握的影响,提升手模、头手模场景下的OTA性能。在一些实施例中在头手模场景下可提升2-3dB。
在一些实施例中,请参阅图5,第一选频电路56的设置,使得第一辐射体50处于第一谐振模式,进而,第一谐振模式可支持LTE LB频段中的最高频段例如LTE B8频段或NR LB频段中的最高频段例如N8频段,第二谐振模式可支持NR HB频段中的N41频段。进而,第一辐射体50可支持LTE LB频段与NR HB频段的双连接ENDC(4G无线接入网与5G-NR的双连接(E-UTRAN New Radio-Dual Connectivity,简称ENDC)组合)。例如LTE LB频段与N41频段的ENDC。
在一些实施例中,请参阅图6,第一选频电路56的设置,使得第一辐射体50处于第三谐振模式,进而,第三谐振模式可支持LTE LB频段中的最低频段例如LTE B28频段或NR LB频段中的最低频段例如N28频段。
在一些实施例中,第一选频电路56的设置,使得第一辐射体50处于第一谐振模式和第三谐振模式的混合模式,进而,第一谐振模式可支持LTE LB频段中介于最低频段与最高频段之间的频段。例如,第一谐振模式可支持介于LTE B28频段(或N28频段)与LTE B8(或N8频段)频段之间的频段例如LTE B20频段、LTE B5频段等。
可以理解地,图示中第一选频子电路561的图示数目不应当理解为对本申请实施方式提供的第一选频子电路561数目的限定。
在一些实施例中,第一选频子电路561可包括电容,或电感,或电容和电感的组合。
在一实施方式中,当第一选频子电路561为多个时,每个第一选频子电路561可不同,以使得当不同第一选频子电路561电连接至第一辐射体50时,对第一辐射体50的电长度的调节程度不同。
需要说明的是,这里所指的每个第一选频子电路561不同,可以为每个第一选频子电路561所包括的器件不同;或者,所包括的器件相同,但器件之间的连接关系不同;或者,所包括的器件相同,且连接关系相同,但是,器件的参数(如电容值,或电感量)不同。
另外,由于第一辐射体50所支持LB频段中的子频段较多,因此,为了实现对LB频段较好调节,第一选频子电路561的数目通常大于或等于两个。
可以理解地,图8中的第一切换开关562也可以为多个,进而每个第一选频子电路561与一个第一切换开关562一一对应电连接。请参阅图9,图9为图8所示实施例中第一选频电路56在天线组件40中另一实施例中的结构示意图。每个第一选频子电路561与一个第一切换开关562一一对应电连接。
请参阅图10,图10为图3所示天线组件40在另一实施例中的结构示意图。天线组件40还包括第二辐射体60、与第二辐射体60电连接的第二馈源S2以及与第二辐射体60容性耦合的第一寄生枝节70。第二馈源S2可产生第二激励信号,传输至第二辐射体60。进而,天线组件40可通过第二激励信号激励第二辐射体60与第一寄生枝节70产生支持MHB频段的双谐振。MHB频段的双谐振中的一个谐振模式用于支持MHB频段中的部分频段,双谐振中的另一个谐振模式用于支持MHB频段中的另外部分频段。具体地,MHB频段的双谐振包括:一个谐振模式用于支持中频MB频段,另一谐振模式用于支持高频HB频段;或者,一个谐振模式用于支持MB频段,另一谐振模式也用于支持MB频段;或者,一个谐振模式用于支持HB频段,另一谐振模式用于支持HB频段。
第二辐射体60可以为但不仅限于为LDS辐射体,或者,FPC辐射体,或者PDS辐射体,或者为金属枝节辐射体。当 天线组件40应用于电子设备100时,第二辐射体60可为利用电子设备100自身嵌件金属设计的结构件天线辐射体。比如,第二辐射体60可利用电子设备100的塑胶及金属形成的中框121设计出来的天线辐射体。此外,第二辐射体60还可以为金属中框121设计出来的金属枝节天线辐射体。
第二辐射体60的形状、构造及材质不做具体的限定,第二辐射体60的形状皆包括但不限于弯折状、条状、片状、杆状、涂层、薄膜等。当第二辐射体60呈条状时,本申请对于第二辐射体60的延伸轨迹不做限定,故第二辐射体60皆可呈直线、曲线、多段弯折等轨迹延伸。上述的第二辐射体60在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
第二辐射体60具有第三端61、第一接地点62、第二馈电点P2及第一选频点63。
第一接地点62相较于第三端61背离第二端52设置。第一接地点62接地。第一接地点62电连接至地的方式包括但不限于直接电连接(比如焊接),或通过同轴线、微带线、射频线、导电弹片、导电胶、嵌件金属、或电子设备100的中框连料等方式间接电连接。
第二馈电点P2位于第三端61与第一接地点62之间,可不对第二馈电点P2在第二辐射体60上的具体位置做限定。第二馈电点P2可接收第二激励信号。即,第二馈电点P2可直接或间接地与第二馈源S2电连接。
第一选频点63可接地,第一选频点63电连接至地的方式包括但不限于直接电连接(比如焊接),或通过同轴线、微带线、射频线、导电弹片、导电胶、嵌件金属、或电子设备100的中框连料等方式间接电连接。第一选频点63可与第二馈电点P2重合,也可以位于第二馈电点P2与第一接地点62之间。
在一些实施方式中,第二辐射体60的两端可与其他部件之间各具有缝隙。在一些场景中,当天线组件40应用于电子设备100中时,第二辐射体60的两端与其他部件之间各具有的缝隙不容易同时被握住或被遮挡。即便两个缝隙中的一者被遮挡时,第二辐射体60还是可以收发电磁波信号,因此,天线组件40具有较好的通信性能。
在一些实施例中,第二辐射体60可形成于中框121例如边框部1212上。在一些实施例中,第二辐射体60可以以中框121例如本体部1211、边框部1212为地极。进而地极通过本体部1211与边框部1212之间的连料连接至本体部1211,以接地。
第二馈源S2产生的第二激励信号可激励第二辐射体60产生支持MHB频段的第五谐振模式。在一些实施例中,第五谐振模式可支持LTE MHB频段和/或NR MHB频段。在一些实施例中,第五谐振模式可支持LTE B32频段。在一些实施例中,第五谐振模式可支持NR中高频频段中的N41频段。
在一些实施例中,第五谐振模式可为复合左右手天线(CRLH)模式(复合左右手传输线结构的模式)。第五谐振模式的电流可分布在第三端61与第一接地点62之间的电流I5。在一些实施例中,电流I5可自第三端61流向第一接地点62。
请参阅图10,第二馈源S2电连接至第二馈电点P2的方式可以为但不仅限于为直接电连接(比如焊接);或通过同轴线、微带线、射频线、导电弹片、导电胶、匹配电路等方式间接电连接。在本实施方式中,以第二馈源S2通过匹配电路的方式电连接至第二馈电点P2。
第二馈源S2电连接至第二辐射体60的第二馈电点P2。第二馈源S2在第一馈源S1电连接至第一辐射体50的第一馈电点P1时,和第一馈电点P1分开。换而言之,LB频段和NR HB频段的馈电及MHB频段的馈电为分开馈电,因此,可更好地支持LB频段和NR HB频段分别与MHB频段的载波聚合(CarrierAggregation,CA)。
请参阅图10,天线组件40还可包括一端与第二馈源S2电连接且另一端与第二馈电点P2电连接的第二匹配电路64。第二激励信号可通过第二匹配电路64传输至第二馈电点P2。
在一些实施例中,第二匹配电路64可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器(也可用定值电容替代)组成。第二匹配电路64可进行阻抗匹配,提升天线组件40的天线性能。
请参阅图11,图11为图10所示实施例中第二匹配电路64与第二馈源S2配合的结构示意图。第二匹配电路64可包括一端与第二馈源S2电连接且另一端与第二馈电点P2电连接的第二电容C2。第二电容C2可进行阻抗匹配,提升天线组件40的天线性能。
请参阅图4,天线组件40还可包括一端与第一选频点63电连接且另一端接地的第二选频电路65。即,第一选频点63可通过第二选频电路65接地,而不直接接地。当然,在一些实施例中,第一选频点63可直接接地。
第二选频电路65可对被第二辐射体60所产生谐振模式例如第五谐振模式所支持的MHB频段进行调谐和解耦,以提升天线的性能。
当第二选频电路65电连接至第二馈电点P2,即第一选频点63与第二馈电点P2重合时,第二选频电路65和第二馈源S2可共用一个电连接件(比如,导电弹片)电连接至第二辐射体60,而不用使用两个单独的导电件。
当第二选频电路65电连接至第一选频点63,即第一选频点63与第二馈电点P2不重合时,较第一选频点63与第二馈电点P2重合时,第二选频电路65的切换效率更高,同时第一选频点63可以对第二馈电点P2实现一定程度的分流,降低电流密度,同时还可降低电磁波吸收比(Specific Absorption Rate,SAR)值。
第二选频电路65可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器(也可用定值电容替代)组成。在一实施例中,开关控制电路可以是具有开关功能的开关芯片,也可以是单刀多掷开关或单刀单掷开关。
第二选频电路65可控制第二辐射体60的有效电长度,进而调整第二辐射体60所支持的电磁波信号的频段及谐振频点,以进一步控制第二辐射体60工作在MHB频段。
请参阅图12,图12为图10所示实施例中第二选频电路65在天线组件40中的结构示意图。第二选频电路65可包括至少一个第二选频子电路651和第二切换开关652。其中,第二切换开关652具有接地的第二公共端6521、多个第二连接端6522及第二切换部6523,第二切换部6523可与第二公共端6521电连接。第二切换部6523可在控制信号的控制下电连接至一个第二连接端6522。部分第二选频子电路651的一端与第一选频点63电连接,另一端与一个第二连接端6522一一对应电连接。另一部分第二选频子电路651中的一个第二选频子电路651的另一端直接接地。
可以理解地,第二选频电路65中第二选频子电路651和第二切换开关652的连接顺序可做调整,例如,图12中第二选频电路65接地的点可直接与第一选频点63电连接,相对应的,与第一选频点63电连接的点可直接接地。
请参阅图12,第二切换部6523可选择性地与不同的第二连接端6522电连接,使得不同的第二选频子电路651一端与 第一选频点63电连接,另一端接地,或第一选频点63直接接地,进而使得第二辐射体60在不同状态下具有不同的有效电长度,而在MHB频段中的不同子频段之间进行切换。
可以理解地,图示中第二选频子电路651的图示数目不应当理解为对本申请实施方式提供的第二选频子电路651数目的限定。
在一些实施例中,第二选频子电路651可包括电容,或电感,或电容和电感的组合。
在一实施方式中,当第二选频子电路651为多个时,每个第二选频子电路651可不同,以使得当不同第二选频子电路651电连接至第二辐射体60时,对第二辐射体60的电长度的调节程度不同。
需要说明的是,这里所指的每个第二选频子电路651不同,可以为每个第二选频子电路651所包括的器件不同;或者,所包括的器件相同,但器件之间的连接关系不同;或者,所包括的器件相同,且连接关系相同,但是,器件的参数(如电容值,或电感量)不同。
另外,由于第二辐射体60所支持MHB频段中的子频段较多,因此,为了实现对MHB频段较好调节,第二选频子电路651的数目通常大于或等于两个。
可以理解地,图12中的第二切换开关652也可以为多个,进而每个第二选频子电路651与一个第二切换开关652一一对应电连接。请参阅图13,图13为图12所示实施例中第二选频电路65在天线组件40中另一实施例中的结构示意图。第二选频子电路651直接接地,其余的每个第二选频子电路651与一个第二切换开关652一一对应电连接。
请参阅图10,第一寄生枝节70可以为但不仅限于为LDS辐射体,或者,FPC辐射体,或者PDS辐射体,或者为金属枝节辐射体。当天线组件40应用于电子设备100时,第一寄生枝节70可为利用电子设备100自身嵌件金属设计的结构件天线辐射体。比如,第一寄生枝节70可利用电子设备100的塑胶及金属形成的中框121设计出来的天线辐射体。此外,第一寄生枝节70还可以为金属中框121设计出来的金属枝节天线辐射体。
第一寄生枝节70的形状、构造及材质不做具体的限定,第一寄生枝节70的形状皆包括但不限于弯折状、条状、片状、杆状、涂层、薄膜等。当第一寄生枝节70呈条状时,本申请对于第一寄生枝节70的延伸轨迹不做限定,故第一寄生枝节70皆可呈直线、曲线、多段弯折等轨迹延伸。上述的第一寄生枝节70在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
第一寄生枝节70设置于第二端52及第三端61之间,且第一寄生枝节70与第三端61容性耦合。进而,第一寄生枝节70可在第二激励信号的激励下产生支持MHB频段的谐振模式例如第六谐振模式。
第一寄生枝节70的一端与第一辐射体50形成第一缝隙401,第一寄生枝节70的另一端与第二辐射体60形成第二缝隙402且容性耦合。
在一些实施例中,第一寄生枝节70与第二端52所在的部分(即,第二部54)可沿直线排列,或大致沿直线排列。第一寄生枝节70与第二端52所在的部分大致沿着直线排列的情况包括但不仅限于第一寄生枝节70与第二端52所在的部分在设计或制造过程中有存在较小的公差导致的,或者是特意设置的。
在一些实施例中,第一寄生枝节70与第三端61能够通过第二缝隙402产生容性耦合。在一些实施例中,第一寄生枝节70与第三端61所在的部分可沿直线排列,或者大致沿直线排列,只要满足第一寄生枝节70能够与第三端61容性耦合即可。第一寄生枝节70与第三端61所在的部分大致沿着直线排列的情况包括但不仅限于第一寄生枝节70与第三端61所在的部分在设计或制造过程中有存在较小的公差导致的,或者是特意设置的。
在一实施方式中,第二缝隙402的宽度可以为0.5-2mm,但不限于此尺寸。当第二缝隙402的宽度为0.5-2mm时,可使得第一寄生枝节70与第三端61具有较好的容性耦合效果。
需要说明的是,所谓“容性耦合”是指,两个辐射体之间产生电场,一辐射体的信号能够通过电场传递至另一辐射体,相应地,另一辐射体的信号能够通过电场传递至一辐射体,以使得两个辐射体即使在不直接接触或不直接连接的情况下也能够实现电信号的导通。举例而言,第一寄生枝节70与第二辐射体60的第三端61容性耦合,是指,第一寄生枝节70与第二辐射体60的第三端61产生电场,第二辐射体60的第三端61的信号能够通过电场传递至第一寄生枝节70,相应地,第一寄生枝节70的信号能够通过电场传递至第二辐射体60的第三端61,以使得第二辐射体60和第一寄生枝节70即使在不直接接触或不直接连接的情况下也能够实现电信号的导通。
在一些实施例中,第一寄生枝节70可在第二激励信号的激励下产生支持MHB频段的谐振模式例如第六谐振模式。进而LB频段和NR HB频段的馈电及MHB频段的馈电为分开馈电,因此,可更好地支持LB频段和NR HB频段分别与MHB频段的载波聚合(Carrier Aggregation,CA)。
在一些实施例中,请参阅图10,第二激励信号可激励第一寄生枝节70产生第六谐振模式。
在一些实施例中,第六谐振模式可支持MHB频段。在一些实施例中,第六谐振模式可支持LTE MHB频段。
在一些实施例中,第六谐振模式可支持LTE MHB频段中的2.2GHz频段和2.8GHz频段,以使得系统总效率提升大约0.5dB。
在一些实施例中,第一寄生枝节70可与第一辐射体50共用第一选频电路56。即,第一选频电路56可与第一寄生枝节70电连接。也就是说,第一寄生枝节70上具有第二选频点B1,以与第一选频电路56电连接。第一寄生枝节70通过第一选频电路56接地。
在一些实施例中,第六谐振模式可包括分布第二选频点B1与第一寄生枝节70靠近第三端61的一端的电流I6。电流I6自第二选频点B1流向第一寄生枝节70靠近第三端61的一端。
在一些实施例中,第六谐振模式可为第二选频点B1到第一寄生枝节70靠近第三端61的一端的1/2波长模式。
因此,第一选频电路56可对第一寄生枝节70所产生谐振模式所支持的MHB频段进行调谐。由此可见,第一选频电路56可便于对LB频段及MHB频段调谐,可较好的兼顾支持LB频段的天线及支持MHB频段的天线的性能。此外,相较于另设一个与第一寄生枝节70的第二选频点B1电连接的第三选频电路,通过第一选频电路56、第三选频电路分别对于LB频段及MHB频段进行调谐而言,天线组件40可利用一个第一选频电路56就可实现相应功能,因此可节约成本。当然,在其他实施例中,也可利用第一选频电路56、第三选频电路分别对于LB频段及MHB频段进行调谐。
在一些实施例中,第一寄生枝节70可在第二激励信号的激励下产生支持MHB频段的谐振模式例如第六谐振模式。进而第二辐射体60及第一寄生枝节70在第一选频电路56(或,第一选频电路56和第三选频电路)及第二选频电路65的共 同作用下,第二激励信号容易激励起MHB频段的双谐振。因此,可有利于拓展天线组件40所支持的MHB频段的带宽,并有利于载波聚合、双卡及单波段等场景。
举例而言,在CA场景下,第二馈源S2激励起的MHB频段的双谐振,其中一个谐振模式用于支持MB频段,另一个谐振模式用于支持HB频段。
双卡场景,可以包括双卡双通(Dual SIM dualactive,DSDA),或者双接收模式双卡双待(Dual Receive Dual SIM Dual Standby,DR-DSDS)。其中,DSDA是指两个卡可同时工作,然,两个卡支持的频段不同换而言之,两个卡中的一个卡可支持频段a,另一个卡支持频段b,频段a和频段b不属于同一个频段。
此外,对于DSDA,其中一个卡即可发射信号,也可接收信号;另一个卡也即可发射信号,也可接收信号。
其中,DR-DSDS是指两个卡中的一个卡可发射信号,且可接收信号;另一个卡只可接收信号,不可发射信号。
在单波段场景下,第二馈源S2激励起的MHB频段的双谐振,其中一个谐振模式用于支持MB频段,且另外一个谐振模式也用于支持MB频段。或者,在单波段场景下,第二馈源S2激励起的MHB频段的双谐振,其中一个谐振模式用于支持HB频段,且另外一个谐振模式也用于支持HB频段。
在一些实施例中,第一选频电路56(或,第一选频电路56和第三选频电路)与第二选频电路65的共同作用下,第二激励信号在第二辐射体60及第一寄生枝节70比较容易形成MHB频段的双谐振。因此,天线组件40可支持MHB频段,天线组件40具有较好的通信功能。需要说明的是,当第二辐射体60及第一寄生枝节70共同支持MHB频段时,第二辐射体60为主辐射枝节,第一寄生枝节70为容性耦合枝节,即为次要辐射枝节。
此外,第二辐射体60与第一寄生枝节70共同支持MHB频段,因此,当天线组件40应用于电子设备100中时,较难将第二辐射体60及第一寄生枝节70同时握持或遮挡,因此,天线组件40所应用的电子设备100在被单手或双手握持或遮挡时,天线组件40应用在电子设备100中时仍然在MHB频段具有较好的辐射性能。
在一实施方式中,当时天线组件40应用于电子设备100中时,第二辐射体60及第一寄生枝节70位于电子设备100的底部(即短边例如第二边1214或第三边1215靠近第二边1214的部位)。第一寄生枝节70通常对应电子设备100的底边(即短边例如第二边1214)的中部设置。
因此,天线组件40所应用的电子设备100在被握持时,第一寄生枝节70通常不容易被单手握持或被遮挡住,因此,具有较好的单手人手效果。此外,第二辐射体60及第一寄生枝节70位于电子设备100的底部时,当电子设备100被使用(比如打电话等场景)时,通常远离用户的头部,不容易对用户的头部造成较大辐射,因此,当天线组件40应用于电子设备100中时,第二辐射体60及第一寄生枝节70位于电子设备100的底部,第一寄生枝节70通常对应电子设备100的底边的中部设置,从而使得天线组件40具有较好的头手性能及人头性能。综上,天线组件40具有较好的人手性能、人头性能、人头手性能。
在一些实施例中,天线组件40有两个辐射体(第二辐射体60及第一寄生枝节70)支持MHB频段,且MHB频段的双谐振。因此,天线组件40所支持的MHB频段具有较宽的带宽。进一步的,即便天线组件40所应用的电子设备100被用户握持或遮挡造成频偏时,由于天线组件40所支持的MHB频段的带宽较宽,MHB频段的谐振频点即便有所偏移,则仍然可落在带宽范围内,进而保证了利用MHB频段通信由于被单手或双手握持或遮挡造成的频偏时的通信性能。
在一些实施例中,第一辐射体50、第二辐射体60及第一寄生枝节70构成的整体具有中心线M0,中心线M0穿过第一寄生枝节70,且第一缝隙401及第二缝隙402分别位于中心线M0的两侧。
当天线组件40应用于电子设备100中时,第一辐射体50、第一寄生枝节70及第二辐射体60构成的整体的中心线M0与电子设备100的中轴线(沿长度方向(Y方向)延伸,且穿过电子设备100的短边(X方向上的边)的中心)M1(参见图31沿长度方向延伸,且穿过电子设备100的短边(例如第二边1214)的中点O)重合或大致重合。
当用户用手握持电子设备100时,用户的拇指通常会握持到中心线M0或近似中心线M0的位置。
本申请实施方式提供的天线组件40,第一缝隙401及第二缝隙402分别位于中心线M0的两侧,因此,第一缝隙401及第二缝隙402不易被用户的手遮挡或握住,或者,中心线M0及第二缝隙402不易同时被用户的手遮挡或握住,那么,天线组件40的辐射性能较好。当天线组件40所应用的电子设备100被横屏使用时,第一缝隙401及第二缝隙402不易被用户的手遮挡或握住,或者,第一缝隙401及第二缝隙402不易同时被用户的手遮挡或握住,那么,天线组件40所应用的电子设备100的横屏效果较好。
请参阅图14,图14为图10所示天线组件40在另一实施例中的结构示意图。天线组件40还可包括一端与第二选频点B1电连接且另一端接地的第三选频电路71。即,第二选频点B1可通过第三选频电路71接地,而不直接接地。当然,在一些实施例中,第二选频点B1可直接接地。
第三选频电路71可对被第一寄生枝节70所产生谐振模式例如第五谐振模式所支持的MHB频段进行调谐和解耦,以提升天线的性能。
第三选频电路71可以由开关控制电路和/或负载电路组成,或者由可调电容(也可用定值电容替代)和/或可调电感器(也可用定值电容替代)组成。在一实施例中,开关控制电路可以是具有开关功能的开关芯片,也可以是单刀多掷开关或单刀单掷开关。
第三选频电路71可控制第一寄生枝节70的有效电长度,进而调整第一寄生枝节70所支持的电磁波信号的频段及谐振频点,以进一步控制第一寄生枝节70工作在MHB频段。
请参阅图15,图15为图14所示实施例中第三选频电路71在天线组件40中的结构示意图。第三选频电路71可包括至少一个第三选频子电路711和第三切换开关712。其中,第三切换开关712具有接地的第三公共端7121、多个第三连接端7122及第三切换部7123。第三切换部7123可与第三公共端7121电连接。第三切换部7123可在控制信号的控制下电连接至一个第三连接端7122。部分第三选频子电路711的一端与第三选频点B1电连接,另一端与一个第三连接端7122一一对应电连接。其中一个第三选频子电路711的另一端直接接地。
直接接地的第三选频子电路711,在第三切换开关712全部断开时,直接接地的第三选频子电路711仍然可对第一寄生枝节70及第二辐射体60支持的MHB频段进行调谐。此外,由于直接接地的第三选频子电路711直接电连接至第一寄生枝节70而并非通过开关电连接至第一寄生枝节70,因此,直接接地的第三选频子电路711对第二辐射体60及第一寄生枝节70所支持的MHB频段进行调谐时的损耗较小。
需要说明的是,当第三切换开关712将第三选频子电路711电连接至第一寄生枝节70时,第三选频子电路711共同对第二辐射体60及第一寄生枝节70所支持的MHB频段进行调谐。
可以理解地,第三选频电路71中第三选频子电路711和第三切换开关712的连接顺序可做调整,例如,图12中第三选频电路71接地的点可直接与第三选频点B1电连接,相对应的,与第三选频点B1电连接的点可直接接地。
请参阅图15,第三切换部7123可选择性地与不同的第三连接端7122电连接,使得不同的第三选频子电路711一端与第三选频点B1电连接,另一端接地,或第三选频点B1直接接地,进而使得第一寄生枝节70在不同状态下具有不同的有效电长度,而在MHB频段中的不同子频段之间进行切换。
可以理解地,图示中第三选频子电路711的图示数目不应当理解为对本申请实施方式提供的第三选频子电路711数目的限定。
在一些实施例中,第三选频子电路711可包括电容,或电感,或电容和电感的组合。
在一实施方式中,当第三选频子电路711为多个时,每个第三选频子电路711可不同,以使得当不同第三选频子电路711电连接至第一寄生枝节70时,对第一寄生枝节70的电长度的调节程度不同。
需要说明的是,这里所指的每个第三选频子电路711不同,可以为每个第三选频子电路711所包括的器件不同;或者,所包括的器件相同,但器件之间的连接关系不同;或者,所包括的器件相同,且连接关系相同,但是,器件的参数(如电容值,或电感量)不同。
另外,由于第一寄生枝节70所支持MHB频段中的子频段较多,因此,为了实现对MHB频段较好调节,第一寄生枝节70的数目通常大于或等于两个。
可以理解地,图15中的第三切换开关712也可以为多个,进而每个第三选频子电路711与一个第三切换开关712一一对应电连接。请参阅图16,图16为图15所示实施例中第三选频电路71在天线组件40中另一实施例中的结构示意图。第三选频子电路711直接接地,其余的每个第三选频子电路711与一个第三切换开关712一一对应电连接。
请参阅图17,图17为图10中所示天线组件40在另一实施例中的结构示意图。第一寄生枝节70可与第一辐射体50共用第一选频电路56。第一选频电路56包括至少一个第一选频子电路561、第一切换开关562及至少一个第三选频子电路711。
具体至少一个第一选频子电路561与第一切换开关562的配合关系可参阅图8及对图8中至少一个第一选频子电路561与第一切换开关562的介绍,不作赘述。
具体至少一个第三选频子电路711与第一切换开关562的配合关系可参阅图15及对图15中至少一个第三选频子电路711与第三切换开关712的介绍,不作赘述。
请参阅图18,图18为图17中所示第一选频电路56在天线组件40中另一实施例中的结构示意图。第一寄生枝节70可与第一辐射体50共用第一选频电路56。第一选频电路56包括至少一个第一选频子电路561、第一切换开关562、至少一个第三选频子电路711及第三切换开关712。
具体至少一个第一选频子电路561与第一切换开关562的配合关系可参阅图9及对图9中至少一个第一选频子电路561与第一切换开关562的介绍,不作赘述。
具体至少一个第三选频子电路711与第三切换开关712的配合关系可参阅图16及对图16中至少一个第三选频子电路711与第三切换开关712的介绍,不作赘述。
请参阅图19,图19为图10所示天线组件40中第二辐射体60在一实施例中的性能对比图。其中,横轴为频率(GHz),纵轴为系统总效率(dB)。曲线A为第二辐射体60在第一寄生枝节70辅助下的系统总效率曲线。曲线B为第二辐射体60未在第一寄生枝节70辅助下的系统总效率曲线。曲线A上具有第一标识点(1.9934,-1.8304),曲线B上具有第二标志点(2.0375,-2.306)。在第一标识点(1.9934,-1.8304)附近的曲线与在第二标志点(2.0375,-2.306)附近的曲线对比可知,第二辐射体60在第一寄生枝节70的辅助下,使得系统总效率得以提升,使得天线组件40的天线性能变好。
在一些实施例中,第二辐射体60在第一寄生枝节70辅助下的系统总效率和第二辐射体60未在第一寄生枝节70辅助下的系统总效率仿真测试对比如下表所示:
可见,第一寄生枝节70的设置可提升中高频的系统总效率,并且在其他频段下也凸显出提升中高频的系统总效率的性能。
在每一个第三选频子电路711包括电容时,即,第三选频子电路711与第二选频点B1电连接的选频电路包括流通第六谐振模式的电流的电容,天线组件40还可包括电感72及SAR传感器(比如,SAR芯片)73。请参阅图20,图20为本申请一实施例中电感72及SAR传感器73配合的示意图。电感72电连接至第一寄生枝节70的第三选频点B1。SAR传感器73电连接电感72。
当天线组件40工作在MHB频段时的SAR值通常较高,而天线组件40工作在LB频段时的SAR通常不高。因此,天线组件40利用电感72及SAR传感器73结合到第三选频子电路711中为例进行示意。
由于第三选频子电路711中电容的存在,对于工作于直流的SAR传感器73来说,第一寄生枝节70相当于是悬浮的,可防止地极(或地系统)或第二馈源S2中的直流电对第一寄生枝节70的检测精度的影响。因此,第一寄生枝节70可检测到的电容值的变化,SAR传感器73可用于接收第一寄生枝节70检测到的电容值的变化,并输出。
在一些实施例中,电感L用于隔绝SAR传感器73对第一寄生枝节70的影响。电感72的电感值可以为但不仅限于为68nH,或者82nH等。
当天线组件40应用于电子设备100时,电子设备100还可包括处理器74。处理器74与SAR传感器73电连接。SAR 传感器73可将第一寄生枝节70检测到的电容值传输至处理器74,以使得处理器74根据第一寄生枝节70检测到的电容值判断是否需要将第二馈源S2的功率降低,当然也可以将第一馈源S1的功率降低。也就是说,处理器74可根据电容值的变化调节第一辐射体50和第一寄生枝节70、第二辐射体60的发射功率。
具体地,第一寄生枝节70和地之间形成电容,第一寄生枝节70和地之间的电容值为原始电容值。当目标生物体(比如,人体)靠近第一寄生枝节70时,则第一寄生枝节70与目标生物体之间形成电容,电容的电容值和第一寄生枝节70与目标生物体之间的距离相关。为了方便描述,将第一寄生枝节70与目标生物体之间形成的电容的电容值命名为检测电容值。检测电容值大于原始电容值。因此,SAR传感器73可根据第一寄生枝节70检测的电容值判断是否有目标生物体接近第一寄生枝节70。
又由于检测电容值和第一寄生枝节70与目标生物体之间的间距相关,因此,处理器74可根据检测电容值的大小判断出目标生物体与第一寄生枝节70之间的间距。当目标生物体与第一寄生枝节70之间的间距小于或等于预设距离时,则表明第一寄生枝节70及第二辐射体60所支持的MHB频段对目标生物体的辐射超标。需要说明的是,出于对辐射安全的考量一些国家或地区辐射制定出安规标准。部分国家或地区的安规标准不同。预设距离为第一寄生枝节70及第二辐射体60辐射MHB频段的电磁波信号辐射安规标准时的安规距离;或者,预设距离小于安规距离。
在一实施方式中,处理器74根据检测电容值判断目标生物体与第一寄生枝节70之间的间距是否小于或等于预设距离,处理器74还用于在判定出目标生物体与第一寄生枝节70之间的距离小于或等于预设距离时,降低第二馈源S2的功率(也称为传导功率)。以减小第一寄生枝节70及第二辐射图所支持的MHB频段对目标生物体的辐射。当然也可以将第一馈源S1的功率降低。
在另一实施方式中,处理器74判断检测电容值是否大于或等于预设电容值,当处理器74判定检测电容值大于或等于预设电容值时,则降低第二馈源S2的功率(也称为传导功率),以减小第一寄生枝节70及第二辐射图所支持的MHB频段对目标生物体的辐射。其中,预设电容值为第一寄生枝节70及第二辐射体60辐射MHB频段的电磁波信号符合安规标准时的安规电容值;或者,预设电容值小于安规电容值。需要说明是,对于同一国家或地区,安规电容值与安规距离通常为唯一对应关系。当然也可以将第一馈源S1的功率降低。
SAR传感器73可接收第一寄生枝节70检测的电容值变化,且SAR传感器73将第一寄生枝节70检测到的电容值变化传输至处理器74,以便于处理器74根据第一寄生枝节70的电容值判断是否需要将第一馈源S1、第二馈源S2的功率降低。进而可降低甚至防止当目标生物体靠近第一寄生枝节70时,第一寄生枝节70与第二辐射体60所支持的MHB频段对目标生物体的辐射较大,相应地,减小甚至防止了对目标生物体辐射危害。
需要说明的是,前面实施方式的示意图是对一些实施方式提供的天线组件40的示意,并不应当理解为对本申请实施方式提供的天线组件40的限定。在一些实施方式中的天线组件40也可与前面实施方式中提供的天线组件40的为镜像关系。举例而言,在前面实施方式的示意图的视角中,以第一辐射体50位于第一寄生枝节70的左边,第二辐射体60位于第一寄生枝节70的右边为例进行示意。在其他实施方式中的天线组件40中,第一辐射体50也可以位于第一寄生枝节70的右边,第二辐射体60也可位于第一寄生枝节70的左边。请参阅图21,图21为本申请另一实施方式提供的天线组件40的示意图。图21中所示的天线组件40为图10所示的天线组件40的镜像。
请参阅图22,图22为本申请又一实施方式提供的天线组件40的结构示意图。第二辐射体60还具有第三馈电点P3、接地的第二接地点66及第四端67。第三馈电点P3与第二馈电点P2间隔设置,第二接地点66位于第二馈电点P2与第三馈电点P3之间,且位于第一接地点62与第三馈电点P3之间。第四端67位于第三馈电点P3远离第二接地点66的一侧。第三馈电点P3用于接收第三激励信号。第三激励信号可激励第二辐射体60产生支持LB频段和/或WiFi2.4G频段的谐振模式。
第二接地点66电连接至地的方式包括但不限于直接电连接(比如焊接),或通过同轴线、微带线、射频线、导电弹片、导电胶、嵌件金属、或电子设备100的中框连料等方式间接电连接。
天线组件40还包括与第二辐射体60例如第三馈电点P3电连接的第三馈源S3以及与第四端67之间具有第三缝隙403的第二寄生枝节80。第二寄生枝节80具有接地的第三接地点81。第二寄生枝节80与第四端67之间具有第三缝隙403,而容性耦合。
第三馈源S3用于产生第三激励信号。第三馈源S3设置在第三馈电点P3位于第二接地点66与第四端67之间,可不对第一馈电点P1在第一辐射体50上的具体位置做限定。第三馈电点P3用于接收第三激励信号。即,第三馈电点P3可直接或间接地与第三馈源S3电连接。
第三馈源S3电连接至第三馈电点P3,以通过第三激励信号激励第二辐射体60与第二寄生枝节80产生支持LB频段和/或WiFi2.4G频段的谐振模式,可使得天线组件40支持较多的频段,使得天线组件40具有更好的通信性能。
在一些实施例中,第三激励信号激励第二辐射体60与第二寄生枝节80产生支持LB频段,而不支持和/或WiFi2.4G频段的谐振模式。在一些实施例中,第三激励信号激励第二辐射体60与第二寄生枝节80产生不支持LB频段,而支持和/或WiFi2.4G频段的谐振模式。在一些实施例中,第三激励信号激励第二辐射体60与第二寄生枝节80产生支持LB频段和WiFi2.4G频段的谐振模式。
在一些实施例中,第一谐振模式及第三谐振模式均用于支持LB频段,相当于有两个LB频段。当第三激励信号激励第二辐射体60与第二寄生枝节80产生支持LB频段的谐振模式,天线组件40可支持3个LB频段。
在一些实施例中,当第三激励信号激励第二辐射体60与第二寄生枝节80产生支持LB频段的谐振模式。第一辐射体50与第二辐射体60设置于第一寄生枝节70的两侧,并非相邻设置,因此,第一辐射体50与第二辐射体60的隔离度较好。
对于应用于中国国内的电子设备100的天线组件40而言,通常还不需要三个LB频段,因此,第三激励信号激励第二辐射体60与第二寄生枝节80产生不支持LB频段而支持WiFi2.4G频段的谐振模式。当然,对于中国国内的电子设备100而言,在需要三个LB频段时,第三馈源S3还可支持LB频段。
此外,在一实施方式中,第三激励信号激励第二辐射体60与第二寄生枝节80产生支持GPS L5的谐振模式。
由前面介绍可知,第一谐振模式及第三谐振模式均用于支持LB频段,相当于有两个LB频段。比如,第一谐振模式支持LB频段(比如LTE B8频段、N8频段),第三谐振模式支持LB频段(比如LTE B28频段、N28频段)。
对于应用于中国之外的其他国家(简称国外)的电子设备100的天线组件40而言,通常需要三个LB频段,因此,第三激励信号激励第二辐射体60与第二寄生枝节80产生支持LB频段的谐振模式。对于应用于国外的电子设备100的天线组 件40而言,第三激励信号激励第二辐射体60与第二寄生枝节80产生支持LB频段和WiFi2.4G频段的谐振模式。比如,LTE B20频段及WiFi2.4G频段,其中,LTE B20频段为LB频段中的子频段。当第三谐振模式支持LB频段(比如LTE B28频段)时,天线组件40可支持LTE B28频段、LTE B20频段及WiFi2.4G频段。此外,天线组件40中的第二谐振模式支持N41频段时,天线组件40可支持N41频段、LTE B28频段、LTE B20频段及WiFi2.4G频段。
由于第三馈源S3设置于电路板13上,为了方便命名,通常称为A1板,为了兼容销售到中国及国外的A1板兼容性或为了成本考量的统一设计。中国国内的天线组件40也可支持三个LB频段。即,应用于中国国内的电子设备100中的天线组件40中,第三激励信号激励第二辐射体60与第二寄生枝节80产生支持LB频段和WiFi2.4G频段的谐振模式。
在一些实施例中,第三激励信号激励第二辐射体60产生支持LB频段的第七谐振模式。因此,使得天线组件40具有更好的通信性能。
在一些实施例中,第七谐振模式的电流包括分布在第二接地点66与第四端67之间的电流I7。
在一些实施例中,电流I7可由第二接地点66流向第四端67。
在一些实施例中,第六谐振模式为第二接地点66到第四端67的1/4波长模式。1/4波长模式为效率相对较高的谐振模式,故能够增强第六谐振模式支持的频段的收发效率。
在一些实施例中,第三激励信号激励第二辐射体60、第二寄生枝节80产生支持WiFi2.4G频段的第八谐振模式及第九谐振模式。因此,使得天线组件40具有更好的通信性能。第八谐振模式及第九谐振模式用于支持WiFi2.4G频段和蓝牙频段。
在一些实施例中,第三激励信号激励第二辐射体60、第二寄生枝节80产生支持WiFi2.4G频段的第八谐振模式及第九谐振模式时,WiFi频段和蓝牙频段较为接近,因此,WiFi频段和蓝牙频段可以共用天线。
在一些实施例中,第八谐振模式及第九谐振模式共同支持蓝牙频段,共同支持WiFi2.4G频段,从而使得天线组件40具有较多的通信频段,具有较好的通信效果。
在一些实施例中,第八谐振模式及第九谐振模式支持蓝牙频段时,蓝牙频段具有较宽的带宽。进一步的,即便天线组件40所应用的电子设备100被用户握持或遮挡造成频偏时,由于天线组件40中的第三馈源S3及第二辐射体60、第二寄生枝节80配合支持的蓝牙频段的带宽较宽,蓝牙频段的谐振频点即便有所偏移,则仍然可落在带宽范围内,进而保证了利用蓝牙频段通信由于被单手或双手握持或遮挡造成的频偏时的通信性能。换而言之,天线组件40工作在蓝牙频段时具有较宽的带宽以及较好的人手性能、人头性能、人头手性能。
相应地,在一些实施例中,第八谐振模式及第九谐振模式用于支持WiFi2.4G频段时,WiFi2.4G频段具有较宽的带宽。进一步的,即便天线组件40所应用的电子设备100被用户握持或遮挡造成频偏时,由于天线组件40中的第三馈源S3及第二辐射体60、第二寄生枝节80配合支持的WiFi2.4G频段的带宽较宽,WiFi2.4G频段的谐振频点即便有所偏移,则仍然可落在带宽范围内,进而保证了利用WiFi2.4G频段通信由于被单手或双手握持或遮挡造成的频偏时的通信性能。换而言之,天线组件40应用于电子设备100并工作在WiFi2.4G频段时具有较宽的带宽以及较好的人手性能、人头性能、人头手性能。
请参阅图23及图24,图23为图22中所示的天线组件中第八谐振模式对应的主要电流流向示意图,图24为图22中所示的天线组件中第九谐振模式对应的主要电流流向示意图。在一些实施例中,第八谐振模式的电流包括分布在第二接地点66与第四端67之间的电流I8。在一些实施例中,电流I8可由第二接地点66流向第四端67。在一些实施例中,第八谐振模式为第二接地点66到第四端67的3/4波长模式。因此,天线组件40可充分利用第二辐射体60的高次模,有利于减小第二辐射体60的电长度,从而节约了天线组件40的空间。当天线组件40应用于电子设备100中时,便于在电子设备100中布局。
在一些实施例中,第九谐振模式的电流包括分布在第三缝隙403至第三接地点81之间的电流I9。在一些实施例中,电流I9可由第三缝隙403流向第三接地点81。在一些实施例中,第九谐振模式为第三缝隙403至第三接地点81的1/4波长模式。1/4波长模式为效率相对较高的谐振模式,故能够增强第九谐振模式支持的频段的收发效率。由于第九谐振模式的作用在第二寄生枝节80上,因此,第九谐振模式为第二寄生枝节80上寄生出来的谐振模式。
请参阅图24,第二寄生枝节80可以为但不仅限于为LDS辐射体,或者,FPC辐射体,或者PDS辐射体,或者为金属枝节辐射体。当天线组件40应用于电子设备100时,第二寄生枝节80可为利用电子设备100自身嵌件金属设计的结构件天线辐射体。比如,第二寄生枝节80可利用电子设备100的塑胶及金属形成的中框121设计出来的天线辐射体。此外,第二寄生枝节80还可以为金属中框121设计出来的金属枝节天线辐射体。
第二寄生枝节80可利用电子设备100的金属中框121设计出来的结构件天线辐射体。可以理解的,本申请对于第二寄生枝节80的形状、构造及材质不做具体的限定,第二寄生枝节80的形状皆包括但不限于弯折状、条状、片状、杆状、涂层、薄膜等。当第二寄生枝节80呈条状时,本申请对于第二寄生枝节80的延伸轨迹不做限定,故第二寄生枝节80皆可呈直线、曲线、多段弯折等轨迹延伸。上述的第二寄生枝节80在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
第三接地点81电连接至地的方式包括但不限于直接电连接(比如焊接);或通过同轴线、微带线、射频线、导电弹片、导电胶、嵌件金属、或电子设备100的中框连料等方式间接电连接。在本实施方式中,第三接地点81电连接至地的方式为第二寄生枝节80的第三接地点81通过中框连料的方式电连接至中框121。
请参阅图24,当天线组件40应用于电子设备100时,第二寄生枝节80通常对应电子设备100的长边(在Y方向上边)设置,且第二寄生枝节80距离电子设备100的长边和短边相连的拐角处有一定距离,因此,在电子设备100横屏时且天线组件40工作在WiFi2.4G频段时,第二寄生枝节80通常难被用户手掌握持,因此,天线组件40所应用的电子设备100具有不错的横屏性能。
请参阅图25,图25为本申请又一实施方式提供的天线组件40的示意图。天线组件40还包括第三辐射体90及与第三辐射体90电连接的第四馈源S4。第四馈源S4可产生第四激励信号,传输至第三辐射体90。进而,天线组件40可通过第四激励信号激励第三辐射体90产生支持WiFi2.4G频段和蓝牙频段的多个谐振模式。
第三辐射体90的形状、构造及材质可参阅上述实施例中关于第一辐射体50的介绍。
第三辐射体90具有第四馈电点P4,以与第四馈源S4电连接,接收第四激励信号。
WiFi频段和蓝牙频段较为接近,因此,WiFi频段和蓝牙频段可以共用第三辐射体90。从而使得天线组件40具有较多的通信频段,具有较好的通信效果。
在一些实施方式中,第四激励信号激励第三辐射体90产生支持GPS L1频段的谐振模式。因此,第三辐射体90可支持GPS L1频段及WiFi2.4G频段。
此外,第三辐射体90与第二辐射体60对角设置。第二辐射体60及第三辐射体90均用于支持蓝牙频段,第三辐射体90收发蓝牙频段的电磁波信号时的方向图,与第二辐射体60收发蓝牙频段的电磁波信号时的方向图互补。
第三辐射体90及第二辐射体60对角设置,因此,第三辐射体90及第二辐射体60不容易同时被遮挡。当第二辐射体60及第三辐射体90中的一者被遮挡时,另一者还可工作,因此,可提升天线组件40利用第二辐射体60及第三辐射体90支持的蓝牙频段及WiFi2.4G频段进行通信时的通信性能。比如,当第二辐射体60及第三辐射体90均支持蓝牙频段(或WiFi2.4G频段)时,第二辐射体60被遮挡(比如,放入用户衣服的口袋中,且第二辐射体60朝下设置),则,第二辐射体60所支持的蓝牙频段信号衰减较大,严重影响天线组件40利用蓝牙频段进行通信的通信质量。当天线组件40利用蓝牙频段与蓝牙耳机进行通信时,若第二辐射体60被遮挡的情况下,继续使用蓝牙频段与蓝牙耳机进行通信,则,会影响到蓝牙耳机的体验。由于第三辐射体90与第二辐射体60对角设置,且方向图互补,因此,在第二辐射体60被遮挡时,第三辐射体90不容易被遮挡,第三辐射体90仍然具有较好的通信性能。
需要说明的是,由于第二辐射体60及第三辐射体90均支持蓝牙频段,因此,第二辐射体60及第三馈源S3等可视为一只蓝牙天线(为了方便描述,命名为第一只蓝牙天线),第三辐射体90及第四馈源S4可视为一只蓝牙天线(为了方便描述,命名为第二只蓝牙天线)。即,天线组件40包括两只蓝牙天线。由前面描述可知当一只蓝牙天线被遮挡时,可利用另一只蓝牙天线进行通信。通常而言,当天线组件40应用于电子设备100中时,第一只蓝牙天线通常对应电子设备100的底部设置,第二只蓝牙天线通常对应的电子设备100的顶部设置。当天线组件40所应用的电子设备100(比如手机)放入用户的口袋中时,不管是电子设备100的顶部朝下,还是电子设备100的底部朝下,均有一只蓝牙天线可与蓝牙耳机进行较好的连接。
综上,本申请实施方式提供的天线组件40可提升所应用的电子设备100放入口袋场景下的与蓝牙耳机进行通信时的体验。可以理解地,反过来,当蓝牙耳机放入用户口袋场景下,天线组件40仍然可与蓝牙耳机进行较好地通信。即,天线组件40可提升与放入用户口袋场景下的蓝牙耳机进行通信时的通信体验。
由于WiFi频段和蓝牙频段较为接近,因此,WiFi频段和蓝牙频段可以共用天线。因此,在一些实施例中,第二辐射体60及第三辐射体90均支持WiFi2.4G频段。因此,第二辐射体60及第三馈源S3等可视为一只WiFi天线(为了方便描述,命名为第一只WiFi天线),第三辐射体90及第四馈源S4可视为一只WiFi天线(为了方便描述,命名为第二只WiFi天线)。即,天线组件40包括两只WiFi天线。
第三辐射体90与第二辐射体60对角设置。第二辐射体60及第三辐射体90均用于支持WiFi频段,第三辐射体90收发WiFi频段的电磁波信号时的方向图,与第二辐射体60收发WiFi频段的电磁波信号时的方向图互补。
请参照对两只蓝牙天线的分析,本实施方式中的天线组件40包括两只WiFi天线时,也具有较好的通信性能。当电子设备100处于横屏模式,且利用WiFi2.4G频段打游戏时,具有较好的横屏游戏体验。
第二辐射体60包括弯折相连的第三部68及第四部69。第三部68背离第四部69的一端邻近第一辐射体50设置。第三辐射体90包括弯折相连的第五部91及第六部92。第五部91相较于第六部92邻近第一辐射体50设置。
由上述可见,第二辐射体60与第三辐射体90呈对角设置,且第二辐射体60及第三辐射90的上述结构设计便于天线组件40及应用天线组件40的电子设备100的外形相适应。第三辐射体90与第一辐射体50之间具有第四缝隙404。第三辐射体90具有第四接地点901及第五接地点902,第四接地点901及第五接地点902均接地,第四接地点901相较于第五接地点902邻近第一辐射体50设置,第五接地点902位于第四馈电点P4与第四接地点901之间。
第四接地点901接地,可防止第三辐射体90对第一辐射体50的影响。第五接地点902位于第四馈电点P4与第四接地点901之间,第五接地点902至第三辐射体90背离第四接地点901的自由端之间的部分为第三辐射体90支持WiFi2.4G频段和蓝牙频段的辐射部分。
第四馈电点P4位于第五部91或第六部92,且第四馈电点P4邻近第五部91与第六部92相连的拐角处设置。
第四馈源S4电连接至第四馈电点P4时,通常通过射频信号线与第四馈电点P4电连接。射频信号线的等效电阻通常较小(50欧姆)。第四馈电点P4位于第五部91或第六部92,且第四馈电点P4邻近第五部91与第六部92相连的拐角处设置,可使得第四馈电点P4位于第三辐射体90上电流最强或者较强的部位。因此,第三辐射体90的等效阻抗较低。进而使得第三辐射体90的等效阻抗与连接第四馈源S4至第三辐射体90的射频信号线之间的阻抗较为匹配。因此,天线组件40中第四馈源S4与第三辐射体90组成的天线单元的辐射性能较好。
由此可见,第一辐射体50与第一寄生枝节70之间具有第一缝隙401,第一辐射体50与第三辐射体90之间具有第四缝隙404。换而言之,第一辐射体50的两端具有缝隙,当天线组件40应用于电子设备100中时,第一缝隙401及第四缝隙404不容易同时被握住或被遮挡。当第一缝隙130及第四缝隙404中的一者被遮挡时,第一辐射体50还是可以收发LB频段的电磁波信号,因此,具有较好的通信性能。
请参阅图26,图26为本申请一实施方式提供的天线组件40的等效电路示意图。第三馈源S3用于支持蓝牙频段,且第四馈源S4用于支持蓝牙频段。第三馈源S3通过射频通路S31与第二辐射体60电连接,第四馈源S4通过射频通路S41与第三辐射体90电连接,第三馈源S3连接至第二辐射体60的射频通路S31,与第四馈源S4连接至第三辐射体90的射频通路S41不同。由此可见,本申请实施方式提供的天线组件40中具有两个蓝牙射频通路。天线组件40具有两个蓝牙射频通路,因此,当天线组件40利用蓝牙频段进行工作时可利用两个蓝牙射频通路中的任意一个或两个射频通路工作,因此,天线组件40具有较好的通信性能。
请参阅图27,图27为本申请另一实施方式提供的天线组件40的等效电路示意图。第三馈源S3用于支持蓝牙频段,且第四馈源S4用于支持蓝牙频段。第三馈源S3连接至第二辐射体60的射频通路S31,与第四馈源S4连接至第三辐射体90的射频通路S41相同,即,都用射频通路S43。天线组件40还包括切换单元S34,切换单元S34用于使得第三馈源S3通过射频通路S43电连接至第二辐射体60,或者,使得第四馈源S4电通过射频通路S43电连接至第三辐射体90。
由此可见,第一只蓝牙天线与第二只蓝牙天线共用同一射频通路S43。切换单元S34可将第三馈源S3通过射频通路S43电连接至第二辐射体60,或者,使得第四馈源S4电通过射频通路S43电连接至第三辐射体90,因此,天线组件40在同一时刻只有一个蓝牙天线工作。
由于第二辐射体60及第三辐射体90均支持蓝牙频段,因此,第二辐射体60及第三馈源S3等可视为一只蓝牙天线(为了方便描述,命名为第一只蓝牙天线),第三辐射体90及第四馈源S4可视为一只蓝牙天线(为了方便描述,命名为第二只蓝牙天线)。具体地,在一实施方式中,切换单元S34可接收控制信号,并在控制信号的控制下将第三馈源S3通过射频通路S43电连接至第二辐射体60,或者,使得第四馈源S4电通过射频通路S31电连接至第三辐射体90。由此可见,本实施方式中天线组件40为单通道蓝牙天线。
请参阅图28,图28为图27中的天线组件40应用于电子设备100中的电路结构示意图。当天线组件40应用于电子设备100中时,电子设备100还包括检测器741及处理器74。检测器741用于检测电子设备100的姿态或信号强度,以生成检测信号。处理器74与检测器741电连接,处理器74用于根据检测信号生成控制信号。
在一实施方式中,检测器741可以为但不仅限于重力传感器。重力传感器可检测电子设备100的姿态。在另一实施方式中,检测器741可以为射频前端电路,用于检测第一只天线及第二只天线的信号强度。下面对检测器741包括重力传感器的情况进行描述。
当检测器741检测到电子设备100的姿态为第一姿态时,以生成第一子检测信号。处理器74根据第一子检测信号生成第一子控制信号。切换单元S34用于在第一子控制信号的控制下将第三馈源S3通过射频通路S43电连接至第二辐射体60。换而言之,当电子设备100处于第一姿态时,第一只蓝牙天线工作。其中,检测信号包括第一子检测信号,控制信号包括第一子控制信号。当电子设备100处于第一姿态时,第一只蓝牙天线收发蓝牙频段的电磁波信号的信号强度大于第二只蓝牙天线收发蓝牙频段的电磁波信号的信号强度。
当检测器741检测到电子设备100的姿态为第二姿态时,以生成第二子检测信号。处理器74根据第二子检测信号生成第二子控制信号。切换单元S34用于在第二子控制信号的控制下将第四馈源S4电通过射频通路S43电连接至第三辐射体90。其中,检测信号还包括第二子检测信号,控制信号包括第二子控制信号。第一姿态不同于第二姿态。当电子设备100处于第二姿态时,第二只蓝牙天线收发蓝牙频段的电磁波信号的信号强度大于第一只蓝牙天线收发蓝牙频段的电磁波信号的信号强度。
当天线组件40工作在蓝牙频段时,具有较好的信号强度。因此,天线组件40利用蓝牙频段通信时的通信效果较好。
在一些实施例中,第四馈源S4还用于支持GPS L1频段。第四馈源S4还用于支持GPS L1频段,因此,天线组件40可支持较多的频段,具有较好的通信性能。当第四馈源S4用于支持GPS L1时,第四馈源S4及第三辐射体90可支持GPS L1频段和WiFi2.4G频段。
请进一步参阅图25,天线组件40还包括第四辐射体93及第五馈源S5。第四辐射体93与所述第六部92间隔设置,以形成第五缝隙405,第五缝隙405邻近第五部91与第六部92弯折相连的拐角部设置。在本实施方式中,第五馈源S5电连接至第四辐射体93,以支持WiFi5G频段或N78频段。
第五馈源S5电连接至第四辐射体93,以支持WiFi5G频段或N78频段,因此,可提升天线组件40的通信效果。
在本实施方式中,第四辐射体93和第二寄生枝节80弯折相连。在其他实施方式中,第四辐射体93与第二寄生枝节80间隔设置,且断开。
请参阅图29,图29为图10所示实施例中天线组件40中第一辐射体50与第二辐射体60的间距示意图。第一辐射体50与第二辐射体60之间最近的部位为第二端52及第三端61。第二端52与第三端61之间的距离d1满足:10mm≤d1≤120mm。第二端52与第三端61之间的距离d1可以为但不仅限于为10mm,或15mm,或20mm,或25mm,或30mm,或35mm,或40mm,或45mm,或50mm,或55mm,或60mm,或70mm,或80mm,或90mm,或100mm,或110mm,或120mm。当然,d1也可以为大于或等于10mm且小于或等于120mm的其他数值,只要满足10mm≤d1≤120mm即可。
当10mm≤d1≤120mm时,第一辐射体50及第二辐射体60间隔较远,当第一辐射体50及第二辐射体60均支持LB频段时,第一辐射体50与第二辐射体60具有较好的隔离效果。
请参阅图25,天线组件40具有两只LB天线。其中,一个支持LB频段的第一LB天线包括第一馈源S1及第一辐射体50,支持LB频段的第二LB天线包括第三馈源S3及第二辐射体60。因此,天线组件40可实现双低频。
当天线组件40还可包括第三LB天线。举例而言,第三LB天线可设置于电子设备100的上部侧边。第三LB天线可包括第四辐射体93及第五馈源S5。因此,所述天线组件40包括第一LB天线、第二LB天线及第三LB天线时,所述天线组件40可实现三低频。在双低频的非独立组网(Non-Standalone,NSA)模式下,实现LB频段的NSA组合。此外,在双卡或者需要三只LB天线的场景,天线组件40也可适用。
请参阅图30和图31,图30为本申请图1所示电子设备100在另一实施例中的结构示意图,图31为图30所示中框121及电路板配合的示意图。电子设备100还包括第一电路板55。天线组件40中的第一馈源S1设置于第一电路板55。第一电路板55设置于中框121的一侧(比如,可承载于中框121的本体部1211)。
以天线组件40中的各个辐射体(第一辐射体50、第二辐射体60、第一寄生枝节70、第二寄生枝节80、第三辐射体90、第四辐射体93等)均形成于电子设备100的中框121上为例进行示意。各个辐射体(第一辐射体50、第二辐射体60、第一寄生枝节70、第二寄生枝节80、第三辐射体90、第四辐射体93等)之间的各个缝隙(比如,第一缝隙401、第二缝隙402、第三缝隙403、第四缝隙404、第五缝隙405)中的至少一者填充有绝缘件123,以提升中框121的结构强度,以及防止外界水汽或灰尘通过缝隙或灰尘进入到电子设备100的内部。
请继续参阅图30及图31,当电子设备100还包括第二电路板16。第二馈源S2设置于第二电路板16。
第一电路板15也称为A2板,第二电路板16也称为A1板。
请参阅图31,当用户用手握持电子设备100时,用户的拇指通常会握持到电子设备100的短边例如第二边1214处,且对应中轴线M1处,第一辐射体50位于中轴线M1的一侧。当天线组件40所应用的电子设备100被横屏使用时,第一辐射体50不易被用户的手遮挡或握住,那么,天线组件40所应用的电子设备100的横屏效果较好。
当天线组件40应用于电子设备100中时,第一辐射体50、第一寄生枝节70及第二辐射体60构成的整体的中心线M0与电子设备100的中轴线M1(参见图31沿长度方向延伸,且穿过电子设备100的短边的中点O)重合或大致重合。在本实施方式的示意图中,以中心线M0与中轴线M1重合为例进行示意。具体有益效果请参阅前面描述,在此不再赘述。
在本实施方式中,当天线组件40应用于电子设备100中时,天线组件40的各个辐射体(第一辐射体50、第二辐射体60、第一寄生枝节70、第二寄生枝节80、第三辐射体90、第四辐射体93等)均形成于电子设备100的中框121例如边框 部1212上。可以理解地,在其他实施方式中,天线组件40中的各个辐射体也可以不形成于电子设备100的中框121上。
第一辐射体50部分对应第一边1213设置,第一辐射体50部分对应第二边1214设置。第一辐射体50可充分利用电子设备100弯折相连的两个边的长度。此外,第一边1213和第二边1214弯折相连形成的拐角处具有相对较好的净空区域,以提高天线组件40中第一辐射体50所支持的LB频段的辐射效率。
请参阅图32及图33,图32为本申请另一实施方式提供的电子设备100的示意图,图33为图31中中框121及第一电路板15的示意图。电子设备100还具有第一功能器件17及第二功能器件18、第三功能器件19。
第二功能器件18与第一功能器件17间隔设置,以形成间隙16a。天线组件40的第一辐射体50的第二端52对应间隙16a设置。
在本实施方式中,第二功能器件18可以为USB接口,第一功能器件17可以为扬声器。
在其他实施方式中,第一功能器件17为USB接口,第二功能器件18为扬声器。
第二功能器件18与第一功能器件17间隔设置,以形成间隙16a。第一天线组件40的第二端52对应间隙16a设置,因此,可便于制备出第二端52。
在一些实施例中,第二功能器件18相较于第一功能器件17背离第一辐射体50中第一部53与第二部54的拐角处设置。换而言之,第二功能器件18相较于第一功能器件17邻近第二辐射体60设置。第二功能器件18对应第一寄生枝节70设置。
当第二端52与第一寄生枝节70之间形成第一缝隙401时,第一缝隙401可对应间隙16a设置,因此,第一缝隙401可避开第一功能器件17及第二功能器件18的遮挡,第一辐射体50具有较好的辐射性能。
第二功能器件18与第三功能器件19间隔设置,以形成间隙16b。天线组件40的第二辐射体60的第三端61对应间隙16b设置。
在本实施方式中,第三功能器件19可以为耳机接口。
第二功能器件18与第三功能器件19间隔设置,以形成间隙16b。第一天线组件40的第三端61对应间隙16b设置,因此,可便于制备第三端61。在一些实施例中,第二功能器件18相较于第三功能器件19背离第二辐射体60中第三部68与第四部69的拐角处设置。换而言之,第三功能器件19相较于第二功能器件18邻近第二辐射体60设置。
当第三端61与第一寄生枝节70之间形成第二缝隙402时,第二缝隙402可对应间隙16b设置,因此,第二缝隙402可避开第二功能器件18及第三功能器件19的遮挡,第二辐射体60具有较好的辐射性能。
需要说明的是,本申请各个实施方式提供的天线组件40及电子设备100的示意图中仅给出了和本申请相关的部件,本申请申请各个实施方式提供的天线组件40及电子设备100中除了包括前面各个实施方式中所包括的部件之外,不排除还包括其他部件,比如,天线组件40或者电子设备100中还包括其他天线。其他天线中的天线辐射体、缝隙、接地点等未进行示意。
接下来阐述一种电子设备,请参阅图34,图34为本申请一实施例中电子设备300的结构组成示意图。该电子设备300可以为手机、平板电脑、笔记本电脑以及可穿戴设备等。本实施例图示以手机为例。该电子设备300的结构可以包括RF电路310(如上述实施例中的天线组件40)、存储器320、输入单元330、显示单元340(如上述实施例中的显示屏50)、传感器350、音频电路360、WiFi模块370、处理器380以及电源390(如上述实施例中的电池80)等。其中,RF电路310、存储器320、输入单元330、显示单元340、传感器350、音频电路360以及WiFi模块370分别与处理器380连接。电源390用于为整个电子设备300提供电能。
具体而言,RF电路310用于接发信号。存储器320用于存储数据指令信息。输入单元330用于输入信息,具体可以包括触控面板3301以及操作按键等其他输入设备3302。显示单元340则可以包括显示面板3401等。传感器350包括红外传感器、激光传感器、位置传感器等,用于检测用户接近信号、距离信号等。扬声器3601以及传声器(或者麦克风,或者受话器组件)3602通过音频电路360与处理器380连接,用于接发声音信号。WiFi模块370则用于接收和发射WiFi信号。处理器380用于处理电子装置的数据信息。
在本申请所提供的几个实施方式中,应该理解到,所揭露的设备,可以通过其他的方式实现。例如,以上所描述的设备实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所做的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (52)

  1. 一种天线组件,其中,包括:
    第一辐射体,具有第一端、第二端及第一馈电点,所述第一馈电点位于所述第一端与所述第二端之间,所述第一馈电点用于接收第一激励信号,所述第一激励信号激励所述第一辐射体产生第一谐振模式、第二谐振模式和第三谐振模式,所述第一谐振模式、所述第二谐振模式及所述第三谐振模式均用于支持低频LB频段,且所述第一谐振模式用于支持第一低频LB频段,所述第二谐振模式用于支持第二LB频段,所述第三谐振模式用于支持第三LB频段,所述第一LB频段的频率大于所述第三LB频段的频率,所述第三LB频段的频率大于所述第二LB频段的频率。
  2. 根据权利要求1所述的天线组件,其中,所述第一谐振模式为倒F天线IFA模式,所述第一谐振模式的电流包括由所述第一馈电点流向所述第一端的电流。
  3. 根据权利要求1或2所述的天线组件,其中,所述第一谐振模式包括由所述第一馈电点到所述第一端的1/4波长模式。
  4. 根据权利要求1或2所述的天线组件,其中,所述第一激励信号配置为激励所述第一辐射体产生所述第一谐振模式时,还激励所述第一辐射体产生第四谐振模式,所述第四谐振模式为环形天线LOOP模式,所述第四谐振模式的电流包括分布于所述第一馈电点与所述第二端之间的电流。
  5. 根据权利要求4所述的天线组件,其中,所述第四谐振模式包括由所述第一馈电点到所述第二端的1/2波长模式。
  6. 根据权利要求4所述的天线组件,其中,所述第四谐振模式所支持的频段包括新空口NR高频频段。
  7. 根据权利要求1所述的天线组件,其中,所述第二谐振模式为单极天线Monopole模式,所述第二谐振模式的电流包括由所述第一馈电点流向所述第一端的电流和由所述第一馈电点流向所述第二端的电流。
  8. 根据权利要求1或2或7所述的天线组件,其中,所述第二谐振模式包括所述第一馈电点至所述第一端的1/4波长,及所述第一馈电点至所述第二端的1/4波长的对流模式。
  9. 根据权利要求1所述的天线组件,其中,所述第三谐振模式为IFA和Monopole的混合模式,所述第三谐振模式的电流包括由所述第一馈电点流向所述第一端的电流和由所述第一馈电点流向所述第二端的电流。
  10. 根据权利要求1或2或7或9所述的天线组件,其中,所述第一谐振模式所支持的频段包括长期演进LTE B8频段或N8频段,所述第二谐振模式所支持的频段包括LTE B28频段或N28频段。
  11. 根据权利要求1或2或7或9所述的天线组件,其中,所述第一辐射体包括弯折相连的第一部及第二部,所述第一部具有所述第一端,所述第二部具有所述第二端,所述第一馈电点位于所述第一部或第二部,且邻近所述第一部与所述第二部弯折相连的拐角处设置。
  12. 根据权利要求1或2或7或9所述的天线组件,其中,所述天线组件还包括:第一馈源,用于产生所述第一激励信号;以及第一匹配电路,一端与所述第一馈源电连接,另一端与所述第一馈电点电连接。
  13. 根据权利要求1所述的天线组件,其中,所述天线组件还包括:第一选频电路,设置于所述第二端,以与所述第一辐射体电连接,所述第一选频电路可配置为控制所述第一激励信号激励所述第一辐射体产生第一谐振模式、第二谐振模式和第三谐振模式中的一种,可配置为控制所述第一激励信号激励所述第一辐射体,以在所述第一谐振模式、所述第二谐振模式和所述第三谐振模式中两种模式之间切换。
  14. 根据权利要求13所述的天线组件,其中,所述第一选频电路可配置为低阻抗状态,以控制所述第一激励信号激励所述第一辐射体产生所述第一谐振模式,可配置为高阻抗状态,以控制所述第一激励信号激励所述第一辐射体产生所述第二谐振模式,可配置为介于低阻抗状态与高阻抗状态之间的状态,以控制所述第一激励信号激励所述第一辐射体产生所述第三谐振模式。
  15. 根据权利要求13或14所述的天线组件,其中,所述第一选频电路包括:
    第一切换开关,具有接地的第一公共端、多个第一连接端及第一切换部,所述第一切换部与所述第一公共端电连接,并配置为在控制信号的控制下电连接至所述多个第一连接端中的一个第一连接端;以及
    至少一个第一选频子电路,所述至少一个第一选频子电路的一端均与所述第二端电连接,另一端与所述多个第一连接端中的第一连接端一一对应电连接,所述多个第一连接端余下的一个第一连接端与所述第二端电连接。
  16. 根据权利要求13所述的天线组件,其中,所述天线组件还包括:
    第二辐射体,具有第一选频点、第三端、第一接地点及第二馈电点,所述第一接地点接地,且所述第一接地点相较于所述第三端背离所述第二端设置,所述第二馈电点位于所述第三端与所述第一接地点之间,所述第一选频点位于所述第三端与所述第一接地点之间,所述第二馈电点用于接收第二激励信号;
    第一寄生枝节,设置于所述第二端及所述第三端之间,且所述第一寄生枝节的一端与所述第一辐射体形成第一缝隙,另一端与所述第二辐射体形成第二缝隙且容性耦合;以及
    第二选频电路,与所述第一选频点电连接,所述第二激励信号用于激励所述第二辐射体及所述第一寄生枝节产生中高频MHB频段的双谐振,所述MHB频段的双谐振包括:一个谐振模式用于支持中频MB频段,另一谐振模式用于支持高频HB频段;或者,一个谐振模式用于支持MB频段,另一谐振模式也用于支持MB频段;或者,一个谐振模式用于支持HB频段,另一谐振模式用于支持HB频段。
  17. 根据权利要求16所述的天线组件,其中,所述第一辐射体、所述第一寄生枝节及所述第二辐射体构成的整体具有中心线,所述中心线与所述第一寄生枝节相交,且所述第一缝隙及所述第二缝隙分别位于所述中心线的两侧。
  18. 根据权利要求16所述的天线组件,其中,所述第一选频点位于所述第二馈电点与所述第一接地点之间,或与所述第二馈电点重合。
  19. 根据权利要求16-18任一项所述的天线组件,其中,所述MHB频段的双谐振包括第五谐振模式,所述第五谐振模式为复合左右手天线CRLH模式,所述第五谐振模式的电流包括由所述第三端流向所述第一接地点的电流。
  20. 根据权利要求19所述的天线组件,其中,所述第五谐振模式用于支持长期演进LTE MHB频段和/或新空口NR MHB频段。
  21. 根据权利要求16所述的天线组件,其中,所述天线组件还包括:第二馈源,用于产生所述第二激励信号;以及第二匹配电路,一端与所述第二馈源电连接,另一端与所述第二馈电点电连接。
  22. 根据权利要求16所述的天线组件,其中,所述第二选频电路包括:
    第二切换开关,具有接地的第二公共端、多个第二连接端及第二切换部,所述第二切换部与所述第二公共端电连接,并配置为在控制信号的控制下电连接至所述多个第二连接端中的一个第二连接端;以及
    至少一个第二选频子电路,所述至少一个第二选频子电路的一端均与所述第一选频点电连接,且一个第二选频子电路的另一端接地,其余第二选频子电路的另一端与所述多个第二连接端中的第一连接端一一对应电连接。
  23. 根据权利要求16所述的天线组件,其中,所述第一寄生枝节具有第二选频点;所述第一选频电路与所述第二选频点电连接;或,所述天线组件还包括第三选频电路,且所述第三选频电路与所述第二选频点电连接。
  24. 根据权利要求23所述的天线组件,其中,所述MHB频段的双谐振包括第六谐振模式,所述第一选频电路和所述第三选频电路中与所述第二选频点电连接的选频电路与所述第二选频电路用于配合控制所述第二激励信号激励所述第一寄生枝节产生所述第六谐振模式,所述第六谐振模式的电流包括由所述第二选频点流向所述第一寄生枝节靠近所述第三端的一端的电流。
  25. 根据权利要求24所述的天线组件,其中,所述第六谐振模式为所述第二选频点到所述第一寄生枝节靠近所述第三端的一端的1/2波长模式。
  26. 根据权利要求23-25任一项所述的天线组件,其中,所述第三选频电路包括:
    第三切换开关,具有接地的第三公共端、多个第三连接端及第三切换部,所述第三切换部与所述第三公共端电连接,并配置为在控制信号的控制下电连接至所述多个第三连接端中的一个第三连接端;以及
    至少一个第三选频子电路,所述至少一个第三选频子电路的一端均与所述第二选频点电连接,且一个第三选频子电路的另一端接地,其余第三选频子电路的另一端与所述多个第三连接端中的第三连接端一一对应电连接。
  27. 根据权利要求24-25任一项所述的天线组件,其中,所述第一选频电路和所述第三选频电路中与所述第二选频点电连接的选频电路包括流通所述第六谐振模式的电流的电容;
    所述天线组件还包括:
    第三电感,一端电连接至所述第一寄生枝节的第二选频点;及
    电磁波吸收比SAR传感器,所述SAR传感器电连接所述第三电感的另一端,且所述SAR传感器用于将所述第一寄生枝节检测到的电容值的变化输出。
  28. 根据权利要求16所述的天线组件,其中,所述第二辐射体还具有第三馈电点、第四端及第二接地点,所述第三馈电点与所述第二馈电点间隔设置,所述第二接地点位于所述第二馈电点与所述第三馈电点之间,且位于所述第一接地点与所述第三馈电点之间,所述第四端位于所述第三馈电点远离所述第二接地点的一侧,所述天线组件还包括:
    第二寄生枝节,具有接地的第三接地点,并与所述第四端之间具有第三缝隙;以及
    第三馈源,电连接至所述第三馈电点,以支持LB频段和/或无线保真WiFi2.4G频段。
  29. 根据权利要求28所述的天线组件,其中,当所述第三馈源支持LB频段时,所述第三馈源用于激励所述第二辐射体产生第七谐振模式,所述第七谐振模式为所述第二接地点到所述第四端的1/4波长模式。
  30. 根据权利要求28所述的天线组件,其中,当所述第三馈源支持WiFi2.4G时,所述第三馈源用于激励所述第二辐射体产生第八谐振模式,及激励所述第二寄生枝节产生第九谐振模式,所述第八谐振模式及所述第九谐振模式用于支持WiFi2.4G频段和蓝牙频段。
  31. 根据权利要求30所述的天线组件,其中,所述第八谐振模式为所述第二接地点到所述第四端的3/4波长模式,所述第九谐振模式为所述第三缝隙至所述第三接地点的1/4波长模式。
  32. 根据权利要求28所述的天线组件,其中,所述天线组件还包括:
    第三辐射体,具有第四馈电点;及
    第四馈源,电连接所述第四馈电点,以使得所述第三辐射体支持WiFi2.4G频段和蓝牙频段。
  33. 根据权利要求32所述的天线组件,其中,所述第三辐射体与所述第二辐射体对角设置,所述第二辐射体及所述第三辐射体均用于支持蓝牙频段,所述第三辐射体收发蓝牙频段的电磁波信号时的方向图,与所述第二辐射体收发蓝牙频段的电磁波信号时的方向图互补。
  34. 根据权利要求33所述的天线组件,其中,所述第二辐射体包括弯折相连的第三部及第四部,所述第三部背离所述第四部的一端邻近所述第一辐射体设置,所述第三辐射体包括弯折相连的第五部及第六部,所述第五部相较于所述第六部邻近所述第一辐射体设置。
  35. 根据权利要求34所述的天线组件,其中,所述第四馈电点位于所述第五部或第六部,且所述第四馈电点邻近所述第五部与所述第六部相连的拐角处设置。
  36. 根据权利要求32-35任一项所述的天线组件,其中,所述第三辐射体与所述第一辐射体之间具有第四缝隙,所述第三辐射体具有第四接地点及第五接地点,第四接地点及第五接地点均接地,所述第四接地点相较于所述第五接地点邻近所述第一辐射体设置,所述第五接地点位于所述第四馈电点与所述第四接地点之间。
  37. 根据权利要求32-35任一项所述的天线组件,其中,所述第三馈源用于支持蓝牙频段,且所述第四馈源用于支持蓝牙频段,所述第三馈源电连接至所述第二辐射体的射频通路,与所述第四馈源电连接至所述第三辐射体的射频通路不同。
  38. 根据权利要求32-33任一项所述的天线组件,其中,所述第三馈源用于支持蓝牙频段,且所述第四馈源用于支持蓝牙频段,所述第三馈源电连接至所述第二辐射体的射频通路,与所述第四馈源电连接至所述第三辐射体的射频通路相同,所述天线组件还包括切换单元,所述切换单元用于使得所述第三馈源通过所述射频通路电连接至所述第二辐射体,或者,使得所述第四馈源电通过所述射频通路电连接至所述第三辐射体。
  39. 根据权利要求32-35任一项所述的天线组件,其中,所述第四馈源还用于支持GPS L1频段。
  40. 根据权利要求34-35任一项所述的天线组件,其中,所述天线组件还包括:
    第四辐射体,与所述第六部间隔设置,以形成第五缝隙,所述第五缝隙邻近所述第五部与所述第六部弯折相连的拐角部设置;及
    第五馈源,电连接至所述第四辐射体,以支持WiFi5G频段或N78频段。
  41. 根据权利要求17所述的天线组件,其中,所述第二端与所述第三端之间的距离d1满足:10mm≤d1≤120mm。
  42. 一种天线组件,其中,包括:
    第一辐射体,具有第一端、第二端及第一馈电点,所述第一馈电点位于所述第一端与所述第二端之间,所述第一馈电点用于接收第一激励信号,所述第一激励信号用于激励所述第一辐射体产生第一谐振模式、第二谐振模式及第三谐振模式;以及
    第一选频电路,设置于所述第二端,以与所述第一辐射体电连接,所述第一选频电路可配置为控制所述第一激励信号激励所述第一辐射体,以在所述第一谐振模式、所述第二谐振模式及所述第三谐振模式之间切换,使得所述第一辐射体同时产生所述第一谐振模式和所述第二谐振模式,或使得所述第一辐射体仅产生所述第三谐振模式,或使得所述第一辐射体产生所述第一谐振模式和所述第三谐振模式的混合模式。
  43. 根据权利要求42所述的天线组件,其中,所述天线组件还包括:
    第二辐射体,具有第三端、第一接地点及第二馈电点,所述第一接地点接地,且所述第一接地点相较于所述第三端背离所述第二端设置,所述第二馈电点位于所述第三端与所述第一接地点之间,所述第二馈电点用于接收第二激励信号;
    第一寄生枝节,设置于所述第二端及所述第三端之间,且所述第一寄生枝节的一端与所述第一辐射体形成第一缝隙,另一端与所述第二辐射体形成第二缝隙且容性耦合,所述第二激励信号用于激励所述第二辐射体及所述第一寄生枝节产生中高频MHB频段的双谐振,所述MHB频段的双谐振包括:一个谐振模式用于支持中频MB频段,另一谐振模式用于支持高频HB频段;或者,一个谐振模式用于支持MB频段,另一谐振模式也用于支持MB频段;或者,一个谐振模式用于支持HB频段,另一谐振模式用于支持HB频段,所述第一选频电路可配置为对所述MHB频段中被所述第一寄生枝节支持的谐振模式进行调谐。
  44. 根据权利要求42所述的天线组件,其中,所述第一谐振模式及所述第三谐振模式用于支持低频LB频段,且所述第一谐振模式所支持频段的频率大于所述第三谐振模式所支持频段的频率。
  45. 根据权利要求42或44所述的天线组件,其中,所述第一谐振模式包括由所述第一馈电点到所述第一端的1/4波长模式或由所述第一馈电点到所述第一端的3/4波长模式。
  46. 一种电子设备,其中,包括:
    第一辐射体,具有第一端、第二端及第一馈电点,所述第一馈电点位于所述第一端与所述第二端之间,所述第一馈电点用于接收第一激励信号;以及
    第一选频电路,设置于所述第二端,以与所述第一辐射体电连接,所述第一选频电路可配置为控制所述第一激励信号激励所述第一辐射体产生第一谐振模式、第二谐振模式和第三谐振模式中的一种,可配置为控制所述第一激励信号激励所述第一辐射体,以在所述第一谐振模式、所述第二谐振模式和所述第三谐振模式中两种模式之间切换,所述第一谐振模式、所述第二谐振模式及所述第三谐振模式均用于支持低频LB频段;
    第二辐射体,具有第一选频点、第三端、第一接地点及第二馈电点,所述第一接地点接地,且所述第一接地点相较于所述第三端背离所述第二端设置,所述第二馈电点位于所述第三端与所述第一接地点之间,所述第一选频点位于所述第三端与所述第一接地点之间,所述第二馈电点用于接收第二激励信号;
    第一寄生枝节,设置于所述第二端及所述第三端之间,且所述第一寄生枝节的一端与所述第一辐射体形成第一缝隙,另一端与所述第二辐射体形成第二缝隙且容性耦合;
    第一电路板,用于产生所述第一激励信号;以及
    第二电路板,用于产生所述第二激励信号。
  47. 根据权利要求46所述的电子设备,其中,所述电子设备还包括中框,所述第一辐射体、所述第二辐射体及所述第一寄生枝节形成于所述中框上。
  48. 根据权利要求46所述的电子设备,其中,所述电子设备还包括弯折相连的第一边及第二边,所述第一辐射体部分对应所述第一边设置,且部分对应所述第二边设置。
  49. 如权利要求48所述的电子设备,其中,所述第一边为电子设备的长边,所述第二边为电子设备的短边,所述电子设备具中轴线,所述中轴线平行于所述第一边,且与所述第二边相交于所述第二边的中点,所述第一辐射体位于所述中轴线的一侧,所述第二辐射体位于所述中轴线的另一侧,所述第一寄生枝节与所述中轴线相交。
  50. 根据权利要求46所述的电子设备,其中,所述电子设备还包括:
    第一功能器件;及
    第二功能器件,与所述第一功能器件间隔设置,以形成间隙;
    所述第一端对应所述第一功能器件与所述第二功能器件之间的间隙设置。
  51. 根据权利要求50所述的电子设备,其中,所述电子设备还包括:
    第三功能器件,与所述第二功能器件间隔设置,以形成间隙;
    所述第三端对应所述第二功能器件与所述第三功能器件之间的间隙设置。
  52. 根据权利要求46所述的电子设备,其中,所述第一寄生枝节设置有第二选频点,所述第一选频电路电连接至所述第二选频点,所述第一选频电路与所述第二选频点电连接的选频电路包括对所述第一寄生枝节上电流进行传输的电容;
    所述电子设备还包括:
    电感,一端电连接至所述第二选频点;及
    电磁波吸收比SAR传感器,所述SAR传感器电连接所述电感的另一端,且所述SAR传感器用于将所述第一寄生枝节检测到的电容值的变化输出;
    处理器,与所述SAR传感器电连接,以接收所述SAR传感器所传输来的所述电容值的变化,并根据所述电容值的变化调节所述第一辐射体和所述第一寄生枝节、所述第二辐射体的发射功率。
PCT/CN2023/109630 2022-08-29 2023-07-27 天线组件及电子设备 WO2024045965A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211042589.2 2022-08-29
CN202211042589.2A CN117673754A (zh) 2022-08-29 2022-08-29 天线组件及电子设备

Publications (1)

Publication Number Publication Date
WO2024045965A1 true WO2024045965A1 (zh) 2024-03-07

Family

ID=90077493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109630 WO2024045965A1 (zh) 2022-08-29 2023-07-27 天线组件及电子设备

Country Status (2)

Country Link
CN (1) CN117673754A (zh)
WO (1) WO2024045965A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180138578A1 (en) * 2016-11-14 2018-05-17 Auden Techno Corp. Wireless communication device and antenna structure
CN110998973A (zh) * 2017-10-09 2020-04-10 华为技术有限公司 天线装置及移动终端
CN112838351A (zh) * 2020-12-22 2021-05-25 深圳酷派技术有限公司 一种射频装置和电子设备
CN113991288A (zh) * 2021-10-20 2022-01-28 Oppo广东移动通信有限公司 天线组件、中框组件以及电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180138578A1 (en) * 2016-11-14 2018-05-17 Auden Techno Corp. Wireless communication device and antenna structure
CN110998973A (zh) * 2017-10-09 2020-04-10 华为技术有限公司 天线装置及移动终端
CN112838351A (zh) * 2020-12-22 2021-05-25 深圳酷派技术有限公司 一种射频装置和电子设备
CN113991288A (zh) * 2021-10-20 2022-01-28 Oppo广东移动通信有限公司 天线组件、中框组件以及电子装置

Also Published As

Publication number Publication date
CN117673754A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN111555769B (zh) 无线通信装置
CN113013594B (zh) 天线组件和电子设备
KR101208772B1 (ko) 핸드헬드 전자장치용 안테나
WO2022142824A1 (zh) 天线系统及电子设备
US11038257B2 (en) Antenna structure and communications terminal
US8947318B2 (en) Antenna apparatus
US20150022402A1 (en) Capacitively coupled loop antenna and an electronic device including the same
CN114122712B (zh) 一种天线结构及电子设备
US20150022401A1 (en) Antenna system and an electronic device including the same
WO2018148973A1 (zh) 一种支持多进多出技术的通信设备
US10396438B1 (en) Antenna system and electronic device including one or more conductive elements for use with a differential and an alternative signal source
WO2005124924A1 (en) Compact multiband inverted-f antenna
WO2021036895A1 (zh) 天线、电子设备及天线控制方法
WO2023151392A1 (zh) 天线组件和电子设备
US20240072418A1 (en) Antenna assembly and electronic device
WO2011116707A1 (zh) 移动通信天线设备及移动通信终端设备
WO2023116353A1 (zh) 电子设备
WO2024001069A1 (zh) 天线组件、中框组件以及电子设备
WO2022121453A1 (zh) 天线装置及电子设备
US20240072440A1 (en) Antenna assembly and electronic device
WO2024078533A1 (zh) 可折叠电子设备
CN112864583B (zh) 天线装置及电子设备
WO2024045965A1 (zh) 天线组件及电子设备
WO2006013843A1 (ja) 携帯電話機
JP2003258522A (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859000

Country of ref document: EP

Kind code of ref document: A1