WO2022121453A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2022121453A1
WO2022121453A1 PCT/CN2021/120725 CN2021120725W WO2022121453A1 WO 2022121453 A1 WO2022121453 A1 WO 2022121453A1 CN 2021120725 W CN2021120725 W CN 2021120725W WO 2022121453 A1 WO2022121453 A1 WO 2022121453A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
branch
conductive branch
circuit
feeding
Prior art date
Application number
PCT/CN2021/120725
Other languages
English (en)
French (fr)
Inventor
颜创
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21902161.5A priority Critical patent/EP4254659A4/en
Publication of WO2022121453A1 publication Critical patent/WO2022121453A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • H01Q1/244Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas extendable from a housing along a given path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to an antenna device and an electronic device.
  • one or more slits are usually opened on the metal frame to divide the metal frame into multiple metal branches, which can form multiple metal frame antennas, but more metal branches are required to achieve signal radiation of multiple frequency bands.
  • the cost of the antenna device is high.
  • Embodiments of the present application provide an antenna device and an electronic device.
  • an embodiment of the present application provides an antenna device, including an antenna body, a feeding module, and a frequency band switching module.
  • the antenna body includes a first conductive branch and a second conductive branch, and a gap is provided between the first conductive branch and the second conductive branch.
  • the first conductive branch is provided with a first feeding point
  • the second conductive branch is provided with a second feeding point.
  • the feeding module includes a first feeding circuit and a second feeding circuit; the first feeding circuit is connected to the first feeding point and is configured to feed the first current signal to the first conductive branch via the first feeding point , so that the first radio frequency signal is radiated on the first conductive branch; the second feeding circuit is connected to the second feeding point, and is configured to feed the second current signal to the second conductive branch through the second feeding point, so as to A second radiator on the second conductive branch is caused to radiate a second radio frequency signal.
  • One end of the frequency band switching module is connected to the first conductive branch, and the other end is grounded.
  • the frequency band switching module includes a switch module and at least two frequency bands The selection branch, at least two frequency band selection branches are connected in parallel; the frequency band switching module is configured to selectively connect at least one of the at least two frequency band selection branches to the loop of the first conductive branch through the switch module, so that the The first conductive branch can switchably radiate first radio frequency signals of different frequency bands based on the first current signal.
  • an embodiment of the present application provides an electronic device, including a housing and the above-mentioned antenna device, where the antenna device is integrated into the housing.
  • an embodiment of the present application provides an electronic device, including a frame and the above-mentioned antenna device, the frame material includes metal, the frame is provided with a slot, the slot of the frame divides the frame into two parts, and the antenna device is integrated in the frame, The gap of the frame is the gap between the first conductive branch and the second conductive branch.
  • FIG. 1 is a schematic diagram of a structure of an antenna device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another structure of an antenna device provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of still another structure of an antenna device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the antenna efficiency of the antenna device shown in FIG. 3 .
  • FIG. 5 is a schematic diagram of a structure of an antenna device provided with a voltage divider circuit according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another structure of an antenna device configured with a voltage divider circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of still another structure of an antenna device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another structure of an antenna device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of still another structure of an antenna device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of still another structure of an antenna device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a matching circuit module of the antenna device shown in FIG. 8 .
  • FIG. 12 is a schematic diagram of still another structure of an antenna device provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the internal structure of the electronic device shown in FIG. 13 .
  • Electric equipment as used in the embodiments of this application includes, but is not limited to, is configured to connect via a wired line (eg, via a public switched telephone network (PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (eg, for cellular networks, wireless local area networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM broadcast transmitters, and/or A device for receiving/transmitting communication signals through a wireless interface of another communication terminal.
  • a communication terminal arranged to communicate over a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal”, “electronic device” and/or “electronic device”.
  • Examples of electronic devices include, but are not limited to, satellite or cellular telephones; Personal Communication System (PCS) terminals that may combine cellular radio telephones with data processing, fax, and data communication capabilities; may include radio telephones, pagers, Internet/Intranet access , Web browsers, notepads, calendars, and/or PDAs with global positioning system (GPS) receivers; and conventional laptop and/or palmtop receivers, game consoles, or other electronic devices including radiotelephone transceivers.
  • PCS Personal Communication System
  • one or more slits are usually opened on the metal frame to divide the metal frame into multiple metal branches, which can form multiple metal frame antennas, but more metal branches are required to achieve signal radiation of multiple frequency bands.
  • the cost of the antenna device is high.
  • the inventor of the present application found after extensive and repeated research that the antenna of the current electronic equipment is improved by adding a frequency band selection circuit with a filter between the feed source and the radiator, and by setting the filter
  • the parameter values of different elements can be configured in the filter with different capacitances or different inductances, so that the feed can feed different current signals to the radiator, so that the radiator can radiate radio frequency signals in different frequency bands to increase The operating frequency band of the antenna and avoid adding additional antenna metal branches.
  • the inventor further found that the current signal fed by the feed source to the radiator is adjusted by a filter. If the radiator is required to radiate radio frequency signals of multiple frequency bands, multiple corresponding filters need to be set.
  • this solution can reduce the number of metal branches of the antenna, but if more operating frequency bands are to be satisfied, the number of filters will also increase, which is also a big burden on the cost of the antenna.
  • the antenna device includes an antenna body, a feeding module and a frequency band switching module.
  • the antenna body includes a first conductive branch and a second conductive branch, and a gap is provided between the first conductive branch and the second conductive branch.
  • the first conductive branch is provided with a first feeding point
  • the second conductive branch is provided with a second feeding point.
  • the feeding module includes a first feeding circuit and a second feeding circuit.
  • the first feeding circuit is connected to the first feeding point, and is configured to feed the first current signal to the first conductive branch via the first feeding point, so that the first conductive branch radiates the first radio frequency signal;
  • the second The feeding circuit is connected to the second feeding point, and is configured to feed the second current signal to the second conductive branch via the second feeding point, so that the second radiator on the second conductive branch radiates the second radio frequency signal .
  • One end of the frequency band switching module is connected to the first conductive branch, and the other end is grounded.
  • the connection node between the frequency band switching module and the first conductive branch is located between the first feeding point and the gap;
  • the frequency band switching module includes a switch module and at least two frequency band selection branches, and the at least two frequency band selection branches are connected in parallel.
  • the frequency band switching module is configured to selectively connect at least one of the at least two frequency band selection branches to the loop of the first conductive branch through the switch module, so that the first conductive branch can switchably switch based on the first current signal
  • the first radio frequency signals in different frequency bands are radiated.
  • the above-mentioned antenna device is equipped with a frequency band switching module for the first conductive branch, and at least one of the at least two frequency band selection branches is connected to the loop of the first conductive branch through the switch module, so that the branch can be selected by means of different frequency bands.
  • the impedance matching performance of the first conductive branch is adjusted so that the first conductive branch can work in different frequency bands, thereby broadening the working frequency band of the first conductive branch, and avoiding the need to add new conductive branches to increase different frequency bands.
  • the antenna device is less expensive and occupies less space. Further, in the above-mentioned antenna device, one end of the frequency band switching module is grounded, and the other end is directly connected to the first conductive branch. In the access state, more working frequency bands are realized, and the stability of frequency modulation is high.
  • an embodiment of the present application provides an antenna device 100 , which includes an antenna body 10 , a feeding module 30 and a frequency band switching module 50 connected to the antenna body 10 .
  • the antenna body 10 is used for receiving and radiating radio frequency signals
  • the feeding module 30 is used for feeding a current signal to the antenna body 10 so that the antenna body 10 can resonate to radiate radio frequency signals.
  • the power supply module 30 is adapted to be connected to the main board of the electronic device and can be controlled by the main board of the electronic device.
  • One end of the frequency band switching module 50 is grounded, and the other end is connected to the antenna body 10.
  • the frequency band switching module 50 is configured to use different impedance elements to be connected to the loop of the antenna device 100, so that the antenna body 10 can switchably radiate radio frequency signals of different frequency bands .
  • the antenna body 10 includes a first conductive branch 14 and a second conductive branch 16 .
  • the first conductive branch 14 and the second conductive branch 16 are spaced apart, and a gap 12 is provided therebetween.
  • the slot 12 may be a void portion formed on the antenna body 10.
  • the slot is formed on the base material of the antenna body 10 by cutting, punching and other processes. 12, to divide the antenna body 10 into a first conductive branch 14 and a second conductive branch 16; in other embodiments, the slot 12 may be an assembly void portion of the antenna body 10, for example, the antenna body 10 is composed of the first conductive branch 14 and the second conductive branch 16 are assembled.
  • the distance between the first conductive branch 14 and the second conductive branch 16 is The space forms the slot 12 .
  • the embodiment of the present application does not limit the forming method of the slot 12 , but it is ensured that the slot 12 is a void part provided on the antenna body 10 , so that at least part of the structure of the first conductive branch 14 and the second conductive branch 16 is formed. Can be spaced apart.
  • the antenna body 10 is provided with at least one slot 12 (eg, one, two, or more than two slots 12 ), and the at least one slot 12 divides the antenna body 10 into at least a first conductive branch 14 and a second conductive Branch 16.
  • the slot 12 is used as a part of the antenna device, the slot 12 can be understood as a broken slot, and the antenna body 10 can be divided into at least two conductive branches.
  • one slot 12 is used to divide the antenna body 10 into a first conductive branch 14 and a second conductive branch 16 .
  • the antenna body 10 can be divided into N+1 conductive branches.
  • the gap 12 may be filled with air, plastic, and/or other dielectrics.
  • the shape of the slot 12 may be straight, or it may have one or more curved shapes. It should be noted that the slot 12 may be arranged at any position of the antenna body 10 . In the embodiments of the present application, the shape, size, and number of the slits 12 and the positions of the slits 12 disposed on the antenna body 10 are not further limited.
  • the first conductive branch 14 includes a first radiator 141 and a first feeding point 143 disposed on the first radiator 141.
  • the first feeding point 143 is used to connect the feeding module 30, so that the first radiator 141 can be
  • the feeding module 30 radiates the first radio frequency signal when feeding the current signal.
  • the first conductive branch 14 further includes a first ground point 145, and the first ground point 145 is connected to the first radiator 141 and is used for connecting to the reference ground terminal.
  • the second conductive branch 16 includes a second radiator 161 and a second feeding point 163 disposed on the second radiator 161.
  • the second feeding point 163 is used to connect the feeding module 30, so that the second radiator 161 can be
  • the feeding module 30 radiates a second radio frequency signal when feeding the current signal, wherein the frequency bands of the first radio frequency signal and the second radio frequency signal are different.
  • the second conductive branch 16 further includes a second ground point 165, and the second ground point 165 is disposed on the second radiator 141 and is used for connecting to the reference ground terminal.
  • the length of the second conductive branch 16 is smaller than the length of the first conductive branch 14, so that the second conductive branch 16 and the first conductive branch 14 are respectively used to radiate radio frequency signals of different frequency bands, for example , the second conductive branch 16 is configured to radiate high frequency radio frequency signals.
  • the first radiator 141 is configured so that its energy can be energy coupled with the second radiator 161 through the slot 12 under the tuning of the frequency band selection module 50, so as to realize the tuning of the high-frequency radio frequency signal .
  • the width of the slit 12 may be greater than or equal to 0.8 mm and less than or equal to 1.5 mm, for example, the width of the slit 12 may be 0.8 mm, 0.9 mm, 1.0 mm, 1.1 mm, 1.2 mm, 1.3 mm, 1.4 mm, 1.5 mm, etc. Wait.
  • the feeding module 30 includes a first feeding circuit 32 and a second feeding circuit 34 .
  • the first feeding circuit 32 feeds the first current signal to the first conductive branch 14 through the first feeding point 143 , so that the first radiator 141 on the first conductive branch 14 radiates the first radio frequency signal.
  • the second feeding circuit 34 feeds the second current signal to the second conductive branch 16 through the second feeding point 163, so that the second radiator 161 on the second conductive branch 16 radiates the second radio frequency signal.
  • the frequency band selection module 50 includes a switch module 52 and at least two frequency band selection branches 54 , the at least two frequency band selection branches 54 are connected in parallel, and the switch module 52 is connected to the at least two frequency band selection branches 54 .
  • the frequency band switching module 50 is configured to selectively connect at least one of the at least two frequency band selection branches 54 to the loop of the first conductive branch 143 through the switch module 52, so that the first radiator 143 can be based on the first
  • the current signal can switchably radiate the first radio frequency signal in different frequency bands.
  • the first radio frequency signal can be switched to be in different working frequency bands.
  • the first radio frequency signal may include a Long Term Evolution (Long Term Evolution, LTE) signal, and a working frequency band of the first radio frequency signal may include at least two frequency bands of LTE.
  • LTE signals can be divided into low frequency radio signals (Low band, LB for short), intermediate frequency radio signals (Middle band, MB for short), and high frequency radio signals (High band, HB for short).
  • the first radiator 141 of the first conductive branch 14 can correspond to radiate the low-frequency radio frequency signal in the LTE signal under the excitation of the first feeding circuit 32 .
  • the low frequency radio frequency signal includes a frequency range of 703MHz to 960MHz.
  • the second radiator 161 of the second conductive branch 16 can radiate the intermediate frequency and high frequency radio frequency signals in the LTE signal correspondingly, that is, the second radio frequency signal can include the high frequency frequency band of LTE (HB), the radio frequency signal in the intermediate frequency band (MB), the intermediate frequency radio frequency signal includes a frequency range of 1710MHz to 2170MHz, and the high frequency radio frequency signal includes a frequency range of 2300MHz-2690MHz.
  • the above-mentioned antenna device is equipped with a frequency band switching module for the first conductive branch, and at least one of the at least two frequency band selection branches is connected to the loop of the first conductive branch through the switch module, so that the branch can be selected by means of different frequency bands. Adjust the impedance matching of the first conductive stubs so that the first conductive stubs can work in different frequency bands, thereby broadening the working frequency band of the first conductive stubs, and avoiding the need to add new conductive stubs to increase different frequency bands. The cost of the device is lower and it takes up less space. Further, in the above-mentioned antenna device, one end of the frequency band switching module is grounded, and the other end is directly connected to the first conductive branch. In the access state, more working frequency bands are realized, and the stability of frequency modulation is high.
  • the at least two frequency band selection branches 54 include a first branch 541 and a second branch 543, one end of the first branch 541 is grounded, and the other end is connected to the first radiator 141,
  • the second branch 543 is connected in parallel with the first branch 541 .
  • the first branch 541 and the second branch 543 are provided with impedance elements with different impedance values, so as to change the impedance of the loop when the first conductive branch 14 is connected, so as to adjust the first conductive branch 14 to a suitable value Impedance matching to radiate the first radio frequency signal in the desired frequency band.
  • the first branch 541 includes a first capacitor C1
  • the second branch 543 includes a first inductor L1.
  • the first capacitor C1 and the first inductor L1 are connected in parallel, and both are controlled by the switch module 52 .
  • the switch module 52 selectively connects the first capacitor C1 or/and the first inductor L1 to the loop of the first conductive branch 14 .
  • the capacitance value of the first capacitor C1 and the inductance of the first inductor L1 may be set according to the specific operating frequency band of the first radio frequency signal, which is not limited in the embodiment of the present application.
  • the at least two frequency band selection branches 54 further include a third branch 545 and a fourth branch 547 , one end of the third branch 545 is grounded, and the other end is connected to the first radiator 141 , the fourth branch 547 is connected in parallel with the third branch 545 . Further, the fourth branch 547 , the third branch 545 , and the second branch 543 are connected in parallel with the first branch 541 and are all connected to the switch module 52 .
  • the fourth branch 547 and the third branch 545 are provided with impedance elements with different impedance values, so as to change the impedance of the loop when the circuit of the first conductive branch 14 is connected, so as to adjust the first conductive branch 14 to a suitable value.
  • the third branch 545 includes a second capacitor C2
  • the fourth branch 547 includes a second inductor L2.
  • the second capacitor C2 , the second inductor L2 , the first capacitor C1 , and the first inductor L1 are connected in parallel, and are controlled by the switch module 52 .
  • the capacitance value of the first capacitor C1 and the capacitance value of the second capacitor C2 are different.
  • the capacitance value of the first capacitor C1 may be greater than the capacitance value of the second capacitor C2; the inductance of the first inductor L1 Different from the inductance of the second inductance L2, further, the inductance of the first inductance L1 may be greater than the inductance of the second inductance L2.
  • the switch module 52 selectively connects at least one of the first capacitor C1, the first inductor L1, the second capacitor C2, and the second inductor L2 to the loop of the first conductive branch 14, so as to obtain the first radio frequency of the desired frequency band Signal.
  • the capacitance value of the second capacitor C2 and the inductance of the second inductor L2 may be set according to the specific operating frequency band of the first radio frequency signal, which is not limited in this embodiment of the present application.
  • the switch module 52 is connected to the frequency band selection branch 54 and is used to control the on-off of each frequency band selection branch 54 .
  • the switch module 52 may be connected between the frequency band selection branch 54 and the first radiator 141 , or may be connected between the frequency band selection branch 54 and the reference ground.
  • the switch module 52 includes at least two switches, and the at least two switches are arranged in a one-to-one correspondence with the at least two frequency band selection branches 54 , and each switch is connected to a corresponding frequency band selection branch 54 to The on-off of the corresponding frequency band selection branch 54 is controlled. Specifically in the embodiment shown in FIG.
  • the switch module 52 may include a first switch K1 , a second switch K2 , a third switch K3 and a fourth switch K4 , and the first switch K1 is connected to the first frequency band selection branch 541 and the first radiator 141, the second switch K2 is connected between the second frequency band selection branch 543 and the first radiator 141, and the third switch K3 is connected between the third frequency band selection branch 545 and the first radiator 141 In between, the fourth switch K4 is connected between the fourth frequency band selection branch 547 and the first radiator 141 .
  • each switch may be a single-pole single-throw switch or an electronic switch tube or the like.
  • the electronic switch tube may be a MOS tube, a transistor, or the like.
  • the specific components of the switch module 54 are not further limited, as long as they meet the on-off control conditions for the multiple frequency band selection branches 54 .
  • the inductance range of the first inductor L1 may be 25nH ⁇ 45nH
  • the inductance range of the second inductor L2 may be 10nH ⁇ 25nH
  • the capacitance value range of the first capacitor C1 may be 0.5pF ⁇ 1.5pF
  • the capacitance value of the second capacitor C2 may range from 0.2 to 0.7 pF.
  • the switch module 52 controls all the frequency band selection branches 54 to disconnect , or through the third switch K3 to control the second capacitor C2 to conduct the access loop, and under the excitation of the first current signal of the first feeding circuit 32, the first radio frequency signal of the PRX frequency band of the B5 frequency band can be obtained.
  • PRX primary receiver
  • the second switch K2 is used to control the first inductor L1 to conduct the access loop, and the first current in the first feeding circuit 32 Under the excitation of the signal, the first radio frequency signal in the DRX frequency band of the B5 frequency band can be obtained.
  • the fourth switch K4 is used to control the second inductor L2 to conduct the access loop, and the first feeder circuit 32 Under the excitation of the first current signal, the first radio frequency signal in the PRX frequency band of the B8 frequency band can be obtained.
  • the second switch K2 and the fourth switch K4 are used to control the first inductance L1 and the second inductance L2 to be connected in parallel to the loop to obtain a total inductance of 7.5nH ⁇ 16nH.
  • the first radio frequency signal of the DRX frequency band of the B8 frequency band can be obtained.
  • the second capacitor C2 is controlled to be connected to the loop through the third switch K3, and B28 can be obtained under the excitation of the first current signal of the first feeding circuit 32.
  • the first radio frequency radio signal of the DRX frequency band of the frequency band When the first conductive branch 14 needs to work in the PRX frequency band of the B28 frequency band, the first capacitor C1 and the second capacitor C2 are controlled to be connected in parallel to the loop through the first switch K1 and the third switch K3, and the total capacitance value obtained is about 0.7pF ⁇ 2.0pF, under the excitation of the first current signal of the first feeding circuit 32, the first radio frequency signal of the PRX frequency band of the B28 frequency band can be obtained.
  • different frequency band selection branches 54 can be used to obtain the first radio frequency signal of the LB frequency band, and each frequency band in the LB frequency band, such as B5, B8, B28 etc., are subdivided into PRX frequency bands and DRX frequency bands for tuning. Therefore, by connecting different frequency band selection branches 54 in parallel to the loop, the sideband performance of the antenna device 100 can be improved and the LB bandwidth can be prevented from being too narrow.
  • the frequency band switching module 50 can also be used to assist in exciting the coupling state between the first conductive branch 14 and the second conductive branch 16 , for example, the first radiator 141 is configured to be in the frequency band selection module 50 . Under the tuning of , its energy can be energy coupled with the second radiator 161 through the slot 12 to meet the resonance requirements of the middle and high frequency bands. Exemplarily, when the antenna device 100 is adjusted to be in the 1/2 ⁇ mode, its operating frequency band is further adjusted to the frequency band near the resonance point of the 1/4 ⁇ mode of the second conductive branch 16, or to 3/3 of the first conductive branch 14.
  • the frequency band near the resonance point of the 4 ⁇ mode is used to obtain a mixed mode, so that the bandwidth of the 1/4 ⁇ mode of the second conductive branch 16 and the 3/4 ⁇ mode of the first conductive branch 14 is wider, and the antenna efficiency is improved at the same time.
  • the first capacitor C1 and the second capacitor C2 can be controlled to be connected in parallel to the loop through the first switch K1 and the third switch K3, and the second conductive branch 16 is connected to 1/2 ⁇ .
  • the 4 ⁇ mode is mixed to obtain the second radio frequency signal of the B3 frequency band (upstream 1710-1785MHz, downstream 1805-1880MHz).
  • FIG. 4 shows the antenna efficiency when the B3 frequency band is obtained by the hybrid mode tuning proposed in this embodiment and the antenna efficiency when the B3 frequency band is obtained by the traditional single mode.
  • this embodiment uses the frequency band switching module 50.
  • the hybrid mode is implemented to obtain the B3 frequency band, the bandwidth is relatively wider and the efficiency is higher.
  • the state of the frequency band switching module 50 in which the first capacitor C1 and the second capacitor C2 are connected in parallel to the loop is the same as the state of the frequency band switching module 50 in the PRX frequency band of the B28 frequency band, that is, the frequency band switching module 50
  • the states can be reused. Through the state of the same frequency band switching module 50, two modes of resonance can be obtained, which further ensures that the antenna device 100 of this embodiment requires fewer components, so as to ensure that the cost of the antenna device 100 is relatively low. .
  • the first inductance L1 and the second inductance L2 can be controlled to be connected in parallel to the loop through the second switch K2 and the fourth switch K4, and the 3/4 ⁇ of the first conductive branch 16 Mode mixing to obtain a second radio frequency signal in the B41 frequency band (2496Hz-2690MHz), which has a relatively wider bandwidth and higher efficiency.
  • the state of the frequency band switching module 50 in which the first inductance L1 and the second inductance L2 are connected in parallel to the loop is the same as the state of the above-mentioned frequency band switching module 50 in the DRX frequency band of the B8 frequency band, and the frequency band switching module 50 is realized.
  • the switch states in the multiplexing can have more carrier aggregation (Carrier Aggregation, CA) states. This is because the CA state requires the antenna to support two or more frequency bands at the same time, and the line device 100 provided by the embodiment of the present application can enable the middle and high frequencies of some frequency bands to exist simultaneously (for example, B3 and B1 exist simultaneously, B3 and B41 exist simultaneously, etc.),
  • the switch state multiplexing can enable one frequency band each to exist in the LB frequency band and the MHB frequency band at the same time, and support more CA states without increasing the cost.
  • Other working frequency bands can be obtained by debugging different capacitors and inductors into the circuit, and this manual will not be exhaustive.
  • the above-mentioned antenna device is equipped with a frequency band switching module for the first conductive branch, and at least one of the at least two frequency band selection branches is connected to the loop of the first conductive branch through the switch module, so that the branch can be selected by means of different frequency bands.
  • the first conductive stubs can work in different frequency bands, thereby broadening the working frequency band of the first conductive stubs, and avoiding the need to add new conductive stubs to increase different frequency bands, thereby reducing the cost of the antenna device and occupying space to a certain extent. smaller.
  • the state of the frequency band switching module can be reused. Through the state of the same frequency band switching module, two modes of resonance can be obtained, which further ensures that the antenna device of this embodiment needs fewer components, so as to ensure that the cost of the antenna device is relatively low. Low.
  • the antenna device 100 may further include a voltage divider circuit 60 .
  • the voltage divider circuit 60 is connected to the frequency band switching module 50 and is used to divide the voltage of the circuit of the frequency band switching module 50 to improve the circuit
  • the withstand voltage of the switch module 52 is low, so as to avoid the adverse effect on the circuit caused by the low withstand voltage value of the switch module 52 .
  • the first end of the voltage divider circuit 60 is grounded, and the second end is connected to the circuit of the frequency band switching module 50.
  • the second end of the voltage divider circuit 60 can be connected to the switch module 52 and the first end.
  • the common contact and the first end of the radiator 141 can be directly grounded; in other embodiments, the second end of the voltage divider circuit 60 can be connected to the common contact of the switch module 52 and the first radiator 141 , and the first end can be Connected to the common contact of the plurality of frequency band selection branches 54 at the reference ground end, it can be considered that the voltage divider circuit 60 is connected in parallel with the frequency band switching module 50 (as shown in FIG. 6 ). It should be understood that, in the embodiments of the present application, the "common contact" should be understood as a common contact of the circuit, which is not limited to a physical node, but should be understood as a point on the circuit with approximately the same potential.
  • the second end of the voltage divider circuit 60 can be connected to the common contact of the switch module 52 and the first radiator 141 , the first end is grounded through the first inductor L1 , and also That is, when the second switch K2 is turned off, the voltage divider circuit 60 is connected in series with the first inductor L1 and then grounded.
  • the circuit board area occupied by the voltage divider circuit 60 can be relatively small, which is beneficial for circuit board wiring;
  • the second end of the voltage divider circuit 60 can also be connected to the common contact of the switch module 52 and the first radiator 141, and the first end is grounded through the second inductor L2, that is, when the fourth switch K4 is turned off When turned on, the voltage divider circuit 60 is connected in series with the second inductor L2 and then grounded.
  • the voltage dividing circuit 60 may include elements such as resistors or/and inductances.
  • the voltage dividing circuit 60 includes a voltage dividing inductor L0, and the first end of the voltage dividing inductance L0 is grounded, and the second end is grounded.
  • the inductance of the circuit connected to the frequency band switching module 50 is greater than or equal to 30nH, so as to improve the withstand voltage of the frequency band switching module 50 .
  • the specific inductance of the voltage dividing inductance L0 may be adapted according to the inductance of the first inductance L1 or the second inductance L2 connected in series with it, which is not exhaustive in this specification.
  • the number of frequency band switching modules 50 is not limited.
  • there is one frequency band switching module 50 and the one frequency band switching module 50 is connected to the first conductive branch 14 for increasing the operating frequency band of the first conductive branch 14 .
  • there may be two frequency band switching modules 50 and the two frequency band switching modules 50 may be connected to the first conductive branch 14 and the second conductive branch 16 respectively, so as to increase the number of Operating frequency bands of a conductive branch 14 and a second conductive branch 16 .
  • Any one of the two frequency band switching modules 50 may have the features provided by the above embodiments, which will not be repeated in this embodiment.
  • one of the two frequency band switching modules 50 is connected to the first conductive branch 14 and the other is connected to the second conductive branch 16 ; the frequency band switching module 50 connected to the second conductive branch 16 is configured to switch the At least one of the at least two frequency band selection branches 54 is connected to the loop of the second conductive branch 16, so that the second conductive branch 16 can operate in different frequency bands. Further, the connection node between the frequency band switching module 50 and the second conductive branch 16 is located between the second feeding point 163 and the slot 12, so as to ensure high reliability of the frequency band switching module 50 during tuning.
  • the N slots 12 divide the antenna body 10 into N+1 conductive branches, and each conductive branch may be equipped with a corresponding frequency band
  • the switch module 50, the frequency band switch module 50 is configured to connect at least one of the at least two frequency band selection branches 54 to the loop of the corresponding conductive branch through the switch module 52, so that the corresponding conductive branch can work in different frequency band.
  • the first feeding circuit 32 includes a first feeding source 321 , and the first feeding source 321 is connected to the first feeding point 143 to feed the first current signal to the first conductive branch 14 . Further, the first feeding circuit 32 may further include a first matching sub-circuit 323 for adjusting the first radio frequency signal, the first matching sub-circuit 323 is connected between the first feeding source 321 and the first feeding point 143, The first matching sub-circuit 323 may be used to adjust the input impedance of the first radiator 141 to improve the transmission performance of the first radiator 141 .
  • the first matching sub-circuit 323 may include a combination of capacitance and/or inductance, among others.
  • the specific composition form of the first matching sub-circuit 323 is not further limited.
  • the first feeding point 143 is disposed at the end of the first conductive branch 14 away from the slot 12. It should be understood that, in other embodiments, the parameters of the first matching sub-circuit 323 may affect the first feeding
  • the setting position of the electric point 143 for example, the first feeding point 143 may be disposed at one end of the first electric branch 14 close to the slot 12, and the specific position of the first feeding point 143 is associated with the first matching circuit 241, that is, The specific position of the first feeding point 143 can be set according to the first matching circuit 241 .
  • the second feeding circuit 34 includes a second feeding source 341 , and the second feeding source 341 is connected to the second feeding point 163 to feed the second current signal to the second conductive branch 16 .
  • the second feeding circuit 34 may further include a second matching sub-circuit 343 for adjusting the second radio frequency signal, the second matching sub-circuit 343 is connected between the second feeding source 341 and the second feeding point 163,
  • the second matching sub-circuit 343 can be used to adjust the input impedance of the second radiator 161 to improve the transmission performance of the second radiator 161 .
  • the second matching sub-circuit 343 may include a combination of capacitance and/or inductance, among others.
  • the specific composition form of the second matching sub-circuit 343 is not further limited.
  • the second feeding point 163 is disposed at the end of the second conductive branch 16 away from the slot 12. It should be understood that, in other embodiments, the parameters of the second matching sub-circuit 343 may affect the second feeding
  • the setting position of the electric point 163, for example, the second feeding point 163 can be disposed at one end of the second electric branch 16 close to the slot 12, and the specific position of the second feeding point 163 is associated with the second matching circuit 241, that is, The specific position of the second feeding point 163 can be set according to the second matching circuit 241 .
  • the first feeding circuit 32 may further include a first filtering sub-circuit 325 , and the first filtering sub-circuit 325 is connected between the first matching sub-circuit 323 and the first feeding point 143 .
  • the first filtering sub-circuit 325 is used to filter out radio frequency signals other than the frequencies corresponding to the first radio frequency signal, so that the first radio frequency signal is in a conducting state when flowing through the first filtering sub-circuit 325 .
  • the first filter subcircuit 325 is a low pass filter subcircuit.
  • the low-pass filter subcircuit can be understood as a state in which the first radio frequency signal passes through the first filter subcircuit 325, and blocks non-first radio frequency signals with frequencies higher than the corresponding frequencies of the first radio frequency signal from passing through the first radio frequency signal.
  • Filter subcircuit 325 may include a third capacitor C3 and a third inductor L3, wherein the first end of the third capacitor C3 is connected to the first end of the third inductor L3 and the first feeding point 143, respectively, The other end of the third capacitor C3 is connected to the first matching sub-circuit 323; the second end of the third inductor L3 is grounded.
  • the second feeding circuit 34 may further include a second filtering sub-circuit 345 , and the second filtering sub-circuit 345 is connected between the second matching sub-circuit 343 and the second feeding point 163 .
  • the second filtering sub-circuit 345 is used for filtering out radio frequency signals other than the frequencies corresponding to the second radio frequency signal, so that the second radio frequency signal is in a conducting state when flowing through the second filtering sub-circuit 345 .
  • the second filter subcircuit 345 is a high pass filter subcircuit.
  • the high-pass filter sub-circuit can be understood as a state in which the second radio frequency signal passes through the second filter sub-circuit 345, and blocks the non-second radio frequency signal whose frequency is lower than the corresponding frequency of the second radio frequency signal to pass through the second filter Subcircuit 345.
  • the second filter sub-circuit 345 includes a fourth capacitor C4 and a fourth inductor L4, wherein the first end of the fourth capacitor C4 is respectively connected to the first end of the fourth inductor L4 and the second feeding point 163, and the first The other end of the four capacitors C4 is connected to the second matching sub-circuit 343; the second end of the fourth inductor L4 is grounded.
  • the antenna device 100 may further include a matching circuit module 70 , one end of the matching circuit module 70 is grounded, and the other end is connected to the first conductive branch 14 . Further, the matching circuit module 70 is connected to the first radiator 141 , and the connection node of the matching circuit module 70 and the first radiator 141 is located between the connection node of the frequency band switching module 50 and the first radiator 141 and the first feeding point 143 .
  • the matching circuit module 70 can not only be used to fine-tune and correct the frequency band of the first radio frequency signal, but also can be used to adjust the loop impedance of the first conductive branch 14, so as to improve the transmission performance of the first radiator 141, Make it work in a wider frequency band and adjust more reliably.
  • the matching circuit module 70 may include a combination of capacitance and/or inductance, and the parameters of the capacitance and/or inductance will not change with the working frequency band of the antenna device 100 after the antenna device 100 is debugged. In order to ensure that the matching circuit module 70 can reliably improve the impedance matching performance of the first radiator 141, the signal transmission performance of the antenna device 100 is better.
  • the matching circuit module 70 may include a matching capacitor C5, a first matching inductor L5 and a second matching inductor L6, and the first end of the second matching inductor L6 is connected to the first radiator 141, The second end is grounded, and the matching capacitor C5 is connected in series with the first matching inductor L5 and then connected in parallel to both ends of the second matching inductor L6, that is, the first end of the first matching inductor L5 is connected to the first end of the second matching inductor L6 , the second end is connected to the first end of the matching capacitor C5, and the second end of the matching capacitor C5 is connected to the second end of the second matching inductor L6.
  • the capacitance range of the matching capacitor C5 may be 0.5-2.7pF
  • the inductance range of the first matching inductance L5 may be 1nH-5.1nH
  • the inductance range of the second matching inductance L6 may be 5.6nH-20nH.
  • the first conductive branch 14 may include a first feeding part 147 , the first feeding part 147 is connected between the first radiator 141 and the first feeding circuit 32 , the first feeding part 147 is The feeding point 143 can be set at the first feeding part 147 , for example, at the end of the first feeding part 147 away from the first radiator 141 , or at the coupling point between the first feeding part 147 and the first radiator 141 .
  • the first feeding portion 147 may be a conductive elastic sheet or a screw coupling.
  • the first feeding point 143 may be connected to the first feeding circuit 32 through a conductive elastic sheet or a screw.
  • the first feeding circuit 32 can feed the first current signal to the first conductive branch 14 through the first feeding point 143 through the feeding method of shrapnel or screw, so as to generate radiation, that is, the radiation has multiple different operations.
  • the first conductive branch 14 may further include a first ground portion 149 connected to the first radiator 141 , and the first ground point 145 is disposed on the first ground portion 149 .
  • the first ground point 145 may be connected to the reference ground terminal through the first ground portion 149 to achieve conduction with the ground.
  • the first grounding portion 149 may be a conductor such as a spring sheet, a screw, or a flexible circuit board, and the first grounding portion 149 may also be a connecting arm made of the same material as the first conductive branch 14 .
  • the first ground portion 149 and the first conductive branch 14 may be integrally formed to simplify the structure of the antenna device 100 .
  • the second conductive branch 16 may include a second feeding part 167 connected between the second radiator 161 and the second feeding circuit 34 , and the second feeding point 163 may
  • the second feeder 167 is disposed at the end of the second feeder 167 away from the second radiator 161 , or at the coupling point of the second feeder 167 and the second radiator 161 .
  • the second feeding portion 167 may be a conductive elastic sheet or a screw coupling, and specifically, the second feeding point 163 may be connected to the second feeding circuit 32 through a conductive elastic sheet or a screw.
  • the second feeding circuit 32 can feed the second current signal to the second conductive branch 16 through the second feeding point 163 through the feeding method of shrapnel or screw, so as to generate radiation, that is, the radiation has multiple different operations.
  • the second conductive branch 16 may further include a second grounding portion 169 connected to the second radiator 161 , and the second grounding point 165 is disposed on the second grounding portion 169 .
  • the second ground point 165 can be connected to the reference ground terminal through the second ground portion 169 to realize conduction with the ground.
  • the second grounding portion 169 may be a conductor such as a spring sheet, a screw, or a flexible circuit board, and the second grounding portion 169 may also be a connecting arm made of the same material as the second conductive branch 16 .
  • the second ground portion 169 and the second conductive branch 16 may be integrally formed to simplify the structure of the antenna device 100 .
  • the above-mentioned antenna device is equipped with a frequency band switching module for the first conductive branch, and at least one of the at least two frequency band selection branches is connected to the loop of the first conductive branch through the switch module, so that the branch can be selected by means of different frequency bands.
  • the first conductive stubs can work in different frequency bands, thereby broadening the working frequency band of the first conductive stubs, and avoiding the need to add new conductive stubs to increase different frequency bands, thereby reducing the cost of the antenna device and occupying space to a certain extent. smaller.
  • an embodiment of the present application further provides an electronic device 400, and the electronic device 400 may be, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a handheld computer, a Mobile Internet Device (MID), a wearable Devices (such as smart watches, smart bracelets, pedometers, etc.) or other communication devices that can be equipped with antenna devices.
  • the electronic device 400 of the present embodiment will be described by taking a mobile phone as an example.
  • the electronic device 400 includes a casing 1001 , a display screen 1003 and an antenna device 1004 disposed on the casing 1001 .
  • the terms “upper”, “lower”, “front”, “rear”, “left”, “right”, “inside”, etc. indicate orientations or positional relationships based on the accompanying drawings The orientation or positional relationship shown is only to simplify the description for the convenience of describing the present application, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a reference to the present application. limits.
  • the display screen 1003 generally includes a display panel, and may also include a circuit or the like for responding to a touch operation on the display panel.
  • the display panel may be a liquid crystal display panel (Liquid Crystal Display, LCD), and in some embodiments, the display panel may be a touch display panel at the same time.
  • LCD Liquid Crystal Display
  • reference to the terms "one embodiment,” “some embodiments,” or “other embodiments,” or the like, means that a particular feature, structure, material, or characteristic described in connection with that embodiment or example is included in the in at least one embodiment or example of the present application. In this specification, schematic representations of terms are not necessarily directed to the same embodiment or example.
  • the casing 1001 includes a rear casing 1010 and a middle frame 1011 , and the rear casing 1010 and the display screen 1003 are respectively disposed on opposite sides of the middle frame 1011 .
  • the middle frame 1011 can be an integrally formed structure, which can be structurally divided into a carrying portion 1012 and a frame 1013 surrounding the carrying portion 1012 .
  • “bearing part” and “frame” are only named and divided for the convenience of description, and the diagonal lines filled with the structure in the figure are for identification only, and do not represent the actual structure of the two. There is no obvious dividing line, and two or more components may be assembled together. The naming of "bearing part” and "frame” should not limit the structure of the middle frame 1011 .
  • the carrying portion 1012 is used to carry a part of the structure of the display screen 1003, and can also be used to carry or install electronic components of the electronic device 200 such as the motherboard 1005, the battery 1006, the sensor module 1007, etc.
  • the frame 1013 is connected to the periphery of the carrying portion 1012. Further, the frame 1013 is disposed around the outer periphery of the carrying portion 1012 and protrudes relative to the surface of the carrying portion 1012, so that the two together form a space for accommodating electronic components.
  • the display screen 1013 is covered on the frame 1013 , and the frame 1013 , the rear case 1010 and the display screen 1003 together form the appearance surface of the electronic device 400 .
  • the antenna apparatus 1004 may be any of the antenna apparatuses 100 provided in the above embodiments, or may have any one or more features of the above antenna apparatus 100 in combination. The embodiments are not repeated here.
  • the antenna device 1004 is integrated in the casing 1001.
  • the antenna device 1004 may be disposed in the middle frame 1011 or in the rear casing 1010, which is not limited in this specification.
  • the antenna device 1004 of this embodiment may include an antenna body 10 , a feeding module 30 and a frequency band switching module 50 connected to the antenna body 10 , and the antenna body 10 may include a first conductive stub 14 and a first conductive branch 14 . Two conductive branches.
  • the antenna body 10 is disposed on the middle frame 1011 , the feeding module 30 can be connected to the main board 1005 , and the first ground point 145 and the second ground point 165 can be connected to at least one of the main board 1005 , the bearing portion 1012 and the rear case 1010 .
  • the frame 1013 is made of metal (the material of the frame 1013 includes metal).
  • the material of the frame 1013 may include aluminum alloy, magnesium alloy, and the like.
  • the antenna device 1004 is integrated in the frame 1013 .
  • the frame 1013 is provided with a slot 1014, the slot 1014 communicates with the outside world and divides the frame 1013 into two parts, the antenna device 1004 is integrated in one part of the frame 1013, and the slot 1014 is the slot 12 in the above embodiment .
  • using the metal frame 1013 as a part of the radiator of the antenna device 1004 is beneficial to save the space in the electronic device 400, and also provides a larger clearance area for the antenna device 1004, which is beneficial to ensure higher radiation efficiency.
  • the frame 1013 is a part of the antenna body 10, and a gap is provided between the frame 1013 and the bearing portion 1013, and the gap is communicated with the gap 1014, so that the radiator 12 (such as the radiator of the second conductive branch 16 or the first
  • the ground point of the radiator of the guide branch 14 and the bearing portion 1012 are spaced apart from each other, so as to prevent the bearing portion 1012 from affecting the resonant frequency of the radiator.
  • a non-shielding body 1015 may be provided in the slot 1014, and the non-shielding body 1015 is made of non-metal (eg, resin, etc.), which has the property of passing electromagnetic wave signals to allow the antenna device 1004 to perform signal transmission.
  • the outer surface of the non-shielding body 1015 is flush with the outer surface of the frame 1013 to ensure the integrity of the appearance of the electronic device 400 .
  • the frame 1013 may be made of non-metal, and the antenna device 100 may be integrated into the frame 1013 .
  • the frame 1013 may be made of plastic, resin or other materials, and the antenna body 10 of the antenna device 100 may be integrated into the frame 1013 by insert molding (eg, the antenna body 10 may be embedded in the frame 1013 as a whole), or may be attached to the frame 1013. is integrated into the frame 1013 (eg, the antenna body 10 is attached to the surface of the frame 1013 ).
  • the frame 1013 may be a rounded rectangular frame, wherein the frame 1013 may include a first frame and a third frame arranged opposite to each other, a second frame and a fourth frame arranged opposite to each other, wherein the second frame are respectively connected with the first frame and the third frame.
  • the first frame may be understood as the top frame of the electronic device 400
  • the third frame may be understood as the bottom frame of the electronic device 400
  • the second frame and the fourth frame may be regarded as the side frames of the electronic device 400 .
  • the antenna device 1004 may be partially or completely formed by a portion of the frame 1013 .
  • the antenna body 10 of the antenna device 1013 may be partially or integrated in at least one of the top frame, the bottom frame and the side frame of the electronic device 400 .
  • the first conductive branch is provided with a frequency band switching module, and at least one of the at least two frequency band selection branches is connected to the loop of the first conductive branch through the switch module , the impedance matching performance of the first conductive stub can be adjusted by means of different frequency band selection branches, so that the first conductive stub can work in different frequency bands, thus broadening the working frequency band of the first conductive stub, and avoiding the need to add new frequency bands to increase the frequency.
  • the increase of the conductive branches makes the antenna device less expensive and less space occupied.
  • At least two frequency band selection branches are arranged in parallel, and at least one of the at least two frequency band selection branches can be connected to the loop of the first conductive branch, for example, multiple frequency band selection branches are connected simultaneously.
  • these frequency band selection branches are connected into the loop in different combinations, which can make full use of the combination of the frequency band selection branches.
  • the first conductive branches work in more different frequency bands, while ensuring that the number of frequency band selection branches is relatively small, which further reduces the manufacturing cost of the antenna device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请涉及一种天线装置以及电子设备。天线装置包括天线本体、馈电模块以及频段切换模块。天线本体包括相间隔的第一导电枝节和第二导电枝节,第一导电枝节上设有第一馈电点,第二导电枝节上设有第二馈电点。馈电模块包括连接于第一馈电点的第一馈电电路和连接于第二馈电点的第二馈电电路。频段切换模块连接于第一导电枝节。频段切换模块的一端连接于第一导电枝节、另一端接地;频段切换模块包括开关模组以及至少两个频段选择支路,至少两个频段选择支路并联;开关模组选择性地将至少两个频段选择支路中的至少一个接入第一导电枝节的回路中,以使第一导电枝节可切换地辐射不同频段的第一射频信号。上述的天线装置的覆盖的频段范围较宽且成本较低。

Description

天线装置及电子设备
相关申请的交叉引用
本申请要求于2020年12月10日提交中国专利局的申请号为CN 202011455048.3、名称为“天线装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种天线装置及电子设备。
背景技术
随着科技的发展进步,通信技术得到了飞速发展和长足的进步,而随着通信技术的提高,智能电子产品的普及提高到了一个前所未有的高度,越来越多的智能终端或电子设备成为人们生活中不可或缺的一部分,如智能手机、智能手环、智能手表、智能电视和电脑等。这些电子设备通过内置的天线装置进行信号传输以实现语音通话、导航定位、无线上网等功能。辐射体作为天线装置的重要组成部分,其设计形态及在手机中的位置布局直接影响天线装置的通信性能。
目前的电子设备,通常在金属边框上开设一个或多个缝隙以将金属边框分割成多个金属枝节,可以形成多个金属边框天线,但是实现多个频段的信号辐射需要更多的金属枝节,天线装置的成本较高。
发明内容
本申请实施例提供一种天线装置以及电子设备。
第一方面,本申请实施例提供一种天线装置,包括天线本体、馈电模块以及频段切换模块。天线本体包括第一导电枝节和第二导电枝节,第一导电枝节和第二导电枝节之间设有缝隙。第一导电枝节上设有第一馈电点,第二导电枝节上设有第二馈电点。馈电模块包括第一馈电电路和第二馈电电路;第一馈电电路连接于第一馈电点,并被配置为经由第一馈电点向第一导电枝节馈入第一电流信号,以使第一导电枝节上辐射第一射频信号;第二馈电电路连接于第二馈电点,并被配置为经由第二馈电点向第二导电枝节馈入第二电流信号,以使第二导电枝节上的第二辐射体辐射第二射频信号。频段切换模块的一端连接于第一导电枝节、另一端接地。频段切换模块的一端连接于第一导电枝节、另一端接地;频段切换模块与第一导电枝节的连接节点位于第一馈电点与缝隙之间;频段切换模块包括开关模组以及至少两个频段选择支路,至少两个频段选择支路并联;频段切换模块被配置为通过开关模组选择性地将至少两个频段选择支路中的至少一个接入第一导电枝节的回路中,以使第一导电枝节能够基于第一电流信号可切换地辐射不同频段的第一射频信号。
第二方面,本申请实施例提供一种电子设备,包括壳体以及上述的天线装置,天线装置集成于壳体。
第三方面,本申请实施例提供一种电子设备,包括边框以及上述的天线装置,边框的材质包括金属,边框设有缝隙,边框的缝隙将边框划分为两个部分,天线装置集成于边框,边框的缝隙为第一导电枝节和第二导电枝节之间的缝隙。
附图说明
为了更清楚地说明申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的天线装置的一种结构的示意图。
图2是本申请实施例提供的天线装置的另一种结构的示意图。
图3是本申请实施例提供的天线装置的又一种结构的示意图。
图4是图3所示天线装置的天线效率意图。
图5是本申请实施例提供的配置有分压电路的天线装置一种结构的示意图。
图6是本申请实施例提供的配置有分压电路的天线装置的另一种结构的示意图。
图7是本申请实施例提供的天线装置的再一种结构的示意图。
图8是本申请实施例提供的天线装置的另一种结构的示意图。
图9是本申请实施例提供的天线装置的又一种结构的示意图。
图10是本申请实施例提供的天线装置的又一种结构的示意图。
图11是图8所示天线装置的匹配电路模块的示意图。
图12是本申请实施例提供的天线装置的又一种结构的示意图。
图13是本申请实施例提供的电子设备的示意图。
图14是图13所示电子设备的内部结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
作为在本申请实施例中使用的“电子设备”包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(PSTN)、数字用户线路(DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”、“无线终端”、“电子装置”以及/或“电子设备”。电子设备的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器、游戏机或包括无线电电话收发器的其它电子装置。
目前的电子设备,通常在金属边框上开设一个或多个缝隙以将金属边框分割成多个金属枝节,可以形成多个金属边框天线,但是实现多个频段的信号辐射需要更多的金属枝节,天线装置的成本较高。
针对上述问题,本申请发明人经过大量、反复的研究后发现,对目前的电子设备的天线进行改进,通过在馈源和辐射体之间添加具有滤波器的频段选择电路,通过设定滤波器的不同元件的参数值,例如,可以不同电容或不同电感的配置在滤波器中,以使馈源能够向辐射体馈入不同的电流信号,使辐射体能够辐射不同频段的射频信号,以增加天线的工作频段并避免增加额外的天线金属枝节。然而,针对这样的调谐方案,发明人进一步发现,通过滤波器来调整馈源向辐射体馈入的电流信号,若需要辐射体能够辐射多个频段的射频信号,则需要设置多个对应的滤波器以及对应的电路开关,此方案虽然能减少天线金属枝节的数量,但是如要满足更多的工作频段,滤波器的数量也随之上升,对天线的成本也是一个不小的负担。
因此,本申请发明人致力于研究如何使天线能够工作在尽可能多的频段的同时,尽可能地降低天线的成本。经过大量、反复的研究后,发明人提出本申请实施例的天线装置以及具有该天线装置的电子设备。天线装置包括天线本体、馈电模块以及频段切换模块。天线本体包括第一导电枝节和第二导电枝节,第一导电枝节和第二导电枝节之间设有缝隙。第一导电枝节上设有第一馈电点,第二导电枝节上设有第二馈电点。馈电模块包括第一馈电电路和第二馈电电路。第一馈电电路连接于第一馈电点,并被配置为经由第一馈电点向第一导电枝节馈入第一电流信号,以使第一导电枝节上辐射第一射频信号;第二馈电电路连接于第二馈电点,并被配置为经由第二馈电点向第二导电枝节馈入第二电流信号,以使第二导电枝节上的第二辐射体辐射第二射频信号。频段切换模块的一端连接于第一导电枝节、另一端接地。频段切换模块与第一导电枝节的连接节点位于第一馈电点与缝隙之间;频段切换模块包括开关模组以及至少两个频段选择支路,至少两个频段选择支路并联。频段切换模块被配置为通过开关模组选择性地将至少两个频段选择支路中的至少一个接入第一导电枝节的回路中,以使第 一导电枝节能够基于第一电流信号可切换地辐射不同频段的第一射频信号。
上述的天线装置通过为第一导电枝节配备频段切换模块,并经由开关模组将至少两个频段选择支路中的至少一个接入第一导电枝节的回路中,能够借助不同的频段选择支路调整第一导电枝节的阻抗匹配性能,使第一导电枝节能够工作在不同的频段,从而拓宽了第一导电枝节的工作频段,并避免为了增加不同频段而新增导电枝节,在一定程度上使天线装置的成本较低且占用的空间较小。进一步地,上述的天线装置将频段切换模块的一端接地、另一端直接接入第一导电枝节,不同的频段选择支路可选择地并联接入回路中,能够利用不同的频段选择支路的不同接入状态,实现更多的工作频段,且调频的稳定性较高。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
请参阅图1,本申请实施方式提供一种天线装置100,其包括天线本体10以及连接于天线本体10的馈电模块30和频段切换模块50。天线本体10用于接收以及辐射射频信号,馈电模块30用于向天线本体10馈入电流信号,使天线本体10能够发生谐振以辐射射频信号。馈电模块30适于连接至电子设备的主板并可以受控于电子设备的主板。频段切换模块50的一端接地,另一端连接天线本体10,频段切换模块50被配置为利用不同的阻抗元件接入天线装置100的回路中,以使天线本体10可切换地辐射不同频段的射频信号。
天线本体10包括第一导电枝节14和第二导电枝节16,第一导电枝节14和第二导电枝节16相间隔设置,二者之间设有缝隙12。应当理解的是,在一些实施例中,缝隙12可以是开设于天线本体10上的空隙部分,例如,在制备天线本体10时,通过切割、冲压等工艺在天线本体10的基材上成型缝隙12,以将天线本体10分割为第一导电枝节14和第二导电枝节16;在另一些实施例中,缝隙12可以是天线本体10的组装空隙部分,例如,天线本体10由第一导电枝节14和第二导电枝节16组装而成,第一导电枝节14和第二导电枝节16在组装时,二者之间间隔预定的距离,因此第一导电枝节14和第二导电枝节16之间的空间即形成缝隙12,本申请实施例对缝隙12的成型方式不作限定,而保证缝隙12为设置在天线本体10上的空隙部分,使第一导电枝节14和第二导电枝节16的至少部分结构相间隔即可。
在一些实施例中,天线本体10设置有至少一个缝隙12(如,一个、两个或两个以上缝隙12),至少一个缝隙12将天线本体10至少划分为第一导电枝节14和第二导电枝节16。在一些实施例中,缝隙12作为天线装置的一部分,该缝隙12可以理解为断缝,可以将天线本体10划分为至少两个导电枝节。示例性地,一个缝隙12用于将天线本体10划分为第一导电枝节14和第二导电枝节16。当缝隙12的数量为N时,可以将天线本体10划分为N+1个导电枝节。在一些实施例中,缝隙12可以填充有空气、塑料和/或其它电介质。缝隙12的形状可以是直的,或者可以具有一个或多个弯曲形状。需要说明的是,缝隙12可设置在天线本体10的任意位置。在本申请实施例中,对缝隙12的形状、尺寸、数量及缝隙12设置在天线本体10的位置均不做进一步的限定。
第一导电枝节14包括第一辐射体141以及设置于第一辐射体141的第一馈电点143,第一馈电点143用于连接馈电模块30,以使第一辐射体141能够在馈电模块30馈入电流信号时辐射第一射频信号。在一些实施例中,第一导电枝节14还包括第一接地点145,第一接地点145连接于第一辐射体141,并用于连接至参考地端。
第二导电枝节16包括第二辐射体161以及设置于第二辐射体161的第二馈电点163,第二馈电点163用于连接馈电模块30,以使第二辐射体161能够在馈电模块30馈入电流信号时辐射第二射频信号,其中,第一射频信号和第二射频信号的频段不相同。在一些实施例中,第二导电枝节16还包括第二接地点165,第二接地点165设置于第二辐射体141,并用于连接至参考地端。进一步地,在本申请实施例中,第二导电枝节16的长度小于第一导电枝节14的长度,以使第二导电枝节16以及第一导电枝节14分别用于辐射不同频段的射频信号,例如,第二导电枝节16被配置为辐射高频射频信号。进一步地,在一些实施例中,第一辐射体141被配置为在频段选择模块50的调谐下,其能量能够通过缝隙12与第二辐射体161发生能量耦合,以实现高频射频信号的调谐。此时,缝隙12的宽度可以大于等于0.8mm且小于等于1.5mm,例如,缝隙12的宽度可以为0.8mm,0.9mm,1.0mm,1.1mm,1.2mm,1.3mm,1.4mm,1.5mm等等。
馈电模块30包括第一馈电电路32和第二馈电电路34。第一馈电电路32经第一馈电点143向第一导电枝节14馈入第一电流信号,以使第一导电枝节14上的第一辐射体141辐射第一射频信号。第二馈电电路34经第二馈电点 163向第二导电枝节16馈入第二电流信号,以使第二导电枝节16上的第二辐射体161辐射第二射频信号。
频段选择模块50的一端接地,另一端连接于第一辐射体143。在本申请实施例中,频段选择模块50包括开关模组52以及至少两个频段选择支路54,至少两个频段选择支路54并联,开关模组52连接于至少两个频段选择支路54。频段切换模块50被配置为通过开关模组52选择性地将至少两个频段选择支路54中的至少一个接入第一导电枝节143的回路中,以使第一辐射体143能够基于第一电流信号可切换地辐射不同频段的第一射频信号。
在本申请实施例中,第一射频信号可切换地处于不同的工作频段。例如,第一射频信号可以包括长期演进(Long Term Evolution,LTE)信号,第一射频信号的工作频段可以包括LTE的至少两个频段。LTE信号可以分为低频射频信号(Low band,简称LB)、中频射频信号(Middle band,简称MB)、高频射频信号(High band,简称HB)。在本申请实施例中,第一导电枝节14的第一辐射体141在第一馈电电路32的激励下,可对应辐射LTE信号中的低频射频信号。其中,低频射频信号包括的频率范围为703MHz至960MHz。第二导电枝节16的第二辐射体161在第二馈电电路34的激励下,可对应辐射LTE信号中的中频和高频射频信号,也即,第二射频信号可以包括LTE的高频频段(HB),其中频频段(MB)的射频信号,中频射频信号包括的频率范围为1710MHz至2170MHz,高频射频信号包括的频率范围可以为2300MHz-2690MHz。
上述的天线装置通过为第一导电枝节配备频段切换模块,并经由开关模组将至少两个频段选择支路中的至少一个接入第一导电枝节的回路中,能够借助不同的频段选择支路调整第一导电枝节的阻抗匹配,使第一导电枝节能够工作在不同的频段,从而拓宽了第一导电枝节的工作频段,并避免为了增加不同频段而新增导电枝节,在一定程度上使天线装置的成本较低且占用的空间较小。进一步地,上述的天线装置将频段切换模块的一端接地、另一端直接接入第一导电枝节,不同的频段选择支路可选择地并联接入回路中,能够利用不同的频段选择支路的不同接入状态,实现更多的工作频段,且调频的稳定性较高。
请参阅图2,在一些实施例中,至少两个频段选择支路54包括第一支路541和第二支路543,第一支路541的一端接地、另一端连接第一辐射体141,第二支路543与第一支路541并联。第一支路541和第二支路543设有阻抗值不相同的阻抗元件,以在接入第一导电枝节14的回路时改变该回路的阻抗,从而将第一导电枝节14调节到适宜的阻抗匹配,以辐射所需频段的第一射频信号。在一些实施例中,第一支路541包括第一电容C1,第二支路543包括第一电感L1。第一电容C1与第一电感L1并联,二者均受控于开关模组52。开关模组52选择性地将第一电容C1或/及第一电感L1接入第一导电枝节14的回路。第一电容C1的电容值、第一电感L1的电感量可以根据第一射频信号的具体工作频段进行设置,本申请实施例对此不作限制。
请参阅图3,在一些实施例中,至少两个频段选择支路54还包括第三支路545和第四支路547,第三支路545的一端接地,另一端连接第一辐射体141,第四支路547与第三支路545并联。进一步地,第四支路547、第三支路545、第二支路543与第一支路541并联,并均连接于开关模组52。第四支路547、第三支路545设有阻抗值不相同的阻抗元件,以在接入第一导电枝节14的回路时改变该回路的阻抗,从而将第一导电枝节14调节到适宜的阻抗匹配,以辐射所需频段的第一射频信号。在一些实施例中,第三支路545包括第二电容C2,第四支路547包括第二电感L2。第二电容C2、第二电感L2、第一电容C1、第一电感L1并联,并均受控于开关模组52。在本实施例中,第一电容C1的电容值和第二电容C2的电容值不同,进一步地,第一电容C1的电容值可以大于第二电容C2的电容值;第一电感L1的电感量和第二电感L2的电感量不同,进一步地,第一电感L1的电感量可以大于第二电感L2的电感量。开关模组52选择性地将第一电容C1、第一电感L1、第二电容C2、第二电感L2中的至少一个接入第一导电枝节14的回路,以获取所需频段的第一射频信号。第二电容C2的电容值、第二电感L2的电感量可以根据第一射频信号的具体工作频段进行设置,本申请实施例对此不作限制。
在本实施例中,开关模组52连接于频段选择支路54,并用于控制每个频段选择支路54的通断。开关模组52可以连接于频段选择支路54与第一辐射体141之间,也可以连接于频段选择支路54与参考地端之间。在本实施例中,开关模组52包括至少两个开关,至少两个开关与至少两个频段选择支路54一一对应设置,每个开关连接于一个对应的述频段选择支路54,以控制对应的频段选择支路54的通断。具体在图3所示的实施例中, 开关模组52可以包括第一开关K1、第二开关K2、第三开关K3以及第四开关K4,第一开关K1连接于第一频段选择支路541与第一辐射体141之间,第二开关K2连接于第二频段选择支路543与第一辐射体141之间,第三开关K3连接于第三频段选择支路545与第一辐射体141之间,第四开关K4连接于第四频段选择支路547与第一辐射体141之间。在本实施例中,每个开关可以为单刀单掷开关或电子开关管等。其中,电子开关管可以为MOS管、晶体管等。在本申请实施例中,对开关模组54的具体组成器件不做进一步的限定,其满足符合对多个频段选择支路54的通断控制条件即可。
基于上述的频段切换模块50,下文将对其在切换第一导电枝节14的工作频段时的状态进行举例说明。在本实施例中,第一电感L1的电感量范围可以为25nH~45nH,第二电感L2的电感量范围可以为10nH~25nH,第一电容C1的电容值范围可以为0.5pF~1.5pF,第二电容C2的电容值范围可以为0.2~0.7pF。当需要第一导电枝节14工作在B5频段(上行824-849MHz,下行869-894MHz)的主集接收(Primary receive,PRX)频段时,通过开关模组52控制所有的频段选择支路54断开,或者通过第三开关K3控制第二电容C2导通接入回路,在第一馈电电路32的第一电流信号的激励下,即可获得B5频段的PRX频段的第一射频射信号。当需要第一导电枝节14工作在B5频段的分集接收(Diversity receive,DRX)频段时,通过第二开关K2控制第一电感L1导通接入回路,在第一馈电电路32的第一电流信号的激励下,即可获得B5频段的DRX频段的第一射频射信号。当需要第一导电枝节14工作在B8频段(上行880-915MHz,下行925-960MHz)的PRX频段时,通过第四开关K4控制第二电感L2导通接入回路,在第一馈电电路32的第一电流信号的激励下,即可获得B8频段的PRX频段的第一射频射信号。当需要第一导电枝节14工作在B8频段的DRX频段时,通过第二开关K2和第四开关K4控制第一电感L1第二电感L2并联接入回路,获得总电感量7.5nH~16nH,在第一馈电电路32的第一电流信号的激励下,即可获得B8频段的DRX频段的第一射频射信号。当需要第一导电枝节14工作在B28频段的DRX频段时,通过第三开关K3控制第二电容C2接入回路,在第一馈电电路32的第一电流信号的激励下,即可获得B28频段的DRX频段的第一射频射信号。当需要第一导电枝节14工作在B28频段的PRX频段时,通过第一开关K1、第三开关K3控制第一电容C1、第二电容C2并联接入回路,获得总电容值大约为0.7pF~2.0pF,在第一馈电电路32的第一电流信号的激励下,即可获得B28频段的PRX频段的第一射频射信号。
由此可见,通过本实施例提供的频段切换模块50,可以借助不同的频段选择支路54,获取LB频段的第一射频射信号,而在LB频段下的各频段,如B5,B8,B28等,又被细分为PRX频段以及DRX频段进行调谐,因此借助不同的频段选择支路54并联接入回路中,能够提升天线装置100的边带性能,避免LB带宽过窄。
进一步地,在本实施例中,还可以利用频段切换模块50辅助激励第一导电枝节14和第二导电枝节16之间的耦合状态,例如,第一辐射体141被配置为在频段选择模块50的调谐下,其能量能够通过缝隙12与第二辐射体161发生能量耦合,以满足中高频段的谐振需求。示例性地,天线装置100被调试处于1/2λ模式时,其工作频段进一步被调试到第二导电枝节16的1/4λ模式谐振点附近的频段,或调试到第一导电枝节14的3/4λ模式谐振点附近的频段,以获取混合模式,从使第二导电枝节16的1/4λ模式和第一导电枝节14的3/4λ模式的带宽较宽,同时提升天线效率。具体而言,可以在天线装置100处于1/2λ模式时,通过第一开关K1和第三开关K3控制第一电容C1和第二电容C2并联接入回路,与第二导电枝节16的1/4λ模式混合,获得B3频段(上行1710-1785MHz,下行1805-1880MHz)的第二射频信号。
请参阅图4,图4示出了本实施例提出的采用混合模式调谐获取B3频段时的天线效率与传统单模式获取B3频段时的天线效率,可以看出,本实施例利用频段切换模块50实现混合模式获取B3频段时,其带宽相对更宽,且效率更高。此时可以看到,第一电容C1和第二电容C2并联接入回路的频段切换模块50的状态,和上述的B28频段的PRX频段的频段切换模块50的状态相同,也即频段切换模块50的状态可以复用,通过同一种频段切换模块50的状态,可以获得两种模式的谐振,进一步保证本实施例的天线装置100所需的元件较少,以保证天线装置100的成本相对较低。
相应地,可以在天线装置100处于1/2λ模式时,通过第二开关K2和第四开关K4控制第一电感L1和第二电感L2并联接入回路,与第一导电枝节16的3/4λ模式混合,获得B41频段(2496Hz~2690MHz)的第二射频信号,其带宽相对更宽,且效率更高。此时可以看到,第一电感L1和第二电感L2并联接入回路的频段切换模块50的状 态,和上述的B8频段的DRX频段的频段切换模块50的状态相同,实现了频段切换模块50中的开关状态复用,可以有更多的载波聚合(Carrier Aggregation,CA)态。这是由于CA态需要天线同时支持两个及以上的频段,本申请实施例提供的线装置100可以使部分频段中高频同时存在(如:B3、B1同时存在,B3、B41同时存在等),而开关状态复用可以使LB频段和MHB频段各有一个频段同时存在,在不增加成本的情况下支持的CA态更多。其他的工作频段,可以通过调试不同的电容和电感接入电路获取,本说明书不再一一穷举。
上述的天线装置通过为第一导电枝节配备频段切换模块,并经由开关模组将至少两个频段选择支路中的至少一个接入第一导电枝节的回路中,能够借助不同的频段选择支路使第一导电枝节能够工作在不同的频段,从而拓宽了第一导电枝节的工作频段,并避免为了增加不同频段而新增导电枝节,在一定程度上使天线装置的成本较低且占用的空间较小。且频段切换模块的状态可以复用,通过同一种频段切换模块的状态,可以获得两种模式的谐振,进一步保证本实施例的天线装置所需的元件较少,以保证天线装置的成本相对较低。
请参阅图6,在一些实施例中,天线装置100还可以包括分压电路60,分压电路60连接于频段切换模块50,其用于对频段切换模块50的电路进行分压,以提高电路的耐压性,避免开关模组52的耐压值较低对电路造成的不良影响。进一步地,分压电路60的第一端接地、第二端接入频段切换模块50的电路,如在一些实施例中,分压电路60的第二端可以连接于开关模组52与第一辐射体141的共接点、第一端可以直接接地;在另一些实施例中,分压电路60的第二端可以连接于开关模组52与第一辐射体141的共接点、第一端可以连接于多个频段选择支路54在参考地端的共接点,此时可认为分压电路60与频段切换模块50并联(如图6所示)。应当理解的是,本申请实施例中,“共接点”应理解为电路的共接点,其不限于一个物理节点,而更应理解为电路上电位大致相同的点。
在另一些实施例中(如图7所示),分压电路60的第二端可以连接于开关模组52与第一辐射体141的共接点、第一端通过第一电感L1接地,也即,当第二开关K2断开时,分压电路60与第一电感L1串联后接地,如此设置,可以使分压电路60占用的电路板面积相对较小,利于电路板布线;当然,在一些实施例中,分压电路60的第二端也可以连接于开关模组52与第一辐射体141的共接点、第一端通过第二电感L2接地,也即,当第四开关K4断开时,分压电路60与第二电感L2串联后接地。
在本申请实施例中,分压电路60可以包括电阻或/及电感等元件,在本实施例中,分压电路60包括分压电感L0,分压电感L0的第一端接地、第二端接入频段切换模块50的电路,其电感量大于或等于30nH,以提高频段切换模块50的耐压性。当然,在其他的实施例中,分压电感L0的具体电感量可以根据与其串联的第一电感L1或第二电感L2的电感量适配,本说明书不作一一穷举。
应当理解的是,在本申请实施例提供的天线装置100中,频段切换模块50的数量不受限制。例如,在以上的实施例中,频段切换模块50为一个,该一个频段切换模块50连接于第一导电枝节14,以用于增加第一导电枝节14的工作频段。请参阅图5,在其他的一些实施例中,频段切换模块50可以为两个,两个频段切换模块50可以分别连接于第一导电枝节14和第二导电枝节16,以分别用于增加第一导电枝节14和第二导电枝节16的工作频段。两个频段切换模块50的任何一个,均可以具备以上各实施例提供的特征,本实施例不再赘述。例如,两个频段切换模块50的其中一个连接于第一导电枝节14,另一个连接于第二导电枝节16;连接于第二导电枝节16的频段切换模块50被配置为通过开关模组52将至少两个频段选择支路54中的至少一个接入第二导电枝节16的回路中,使第二导电枝节16能够工作在不同的频段。进一步地,频段切换模块50与第二导电枝节16的连接节点位于第二馈电点163与缝隙12之间,以便于保证频段切换模块50在调谐时的可靠性较高。
在其他的一些实施例中,当天线本体10设置有N个缝隙12时,N个缝隙12将天线本体10分隔为N+1个导电枝节,对于每个导电枝节,均可以配备一个对应的频段切换模块50,该频段切换模块50被配置为通过开关模组52将至少两个频段选择支路54中的至少一个接入对应的导电枝节的回路中,使该对应的导电枝节能够工作在不同的频段。
请参阅图8,在一些实施例中,第一馈电电路32包括第一馈源321,第一馈源321连接于第一馈电点143以向第一导电枝节14馈入第一电流信号。进一步地,第一馈电电路32还可以包括用于调节第一射频信号的第一匹配子电路323,第一匹配子电路323连接于第一馈源321和第一馈电点143之间,第一匹配子电路323可 以用于调节第一辐射体141的输入阻抗,以提高第一辐射体141的传输性能。第一匹配子电路323可以包括电容和/或电感等的组合。在本申请实施例中,对第一匹配子电路323的具体组成形式不做进一步的限定。在本实施例中,第一馈电点143设置于第一导电枝节14远离缝隙12的一端,应当理解的是,在其他的实施例中,第一匹配子电路323的参数可以影响第一馈电点143的设置位置,例如,第一馈电点143可以设置于第一电枝节14靠近缝隙12的一端,第一馈电点143的具体位置与第一匹配电路241相关联,也即,第一馈电点143的具体位置可以根据第一匹配电路241来设置。
在本实施例中,第二馈电电路34包括第二馈源341,第二馈源341连接于第二馈电点163以向第二导电枝节16馈入第二电流信号。进一步地,第二馈电电路34还可以包括用于调节第二射频信号的第二匹配子电路343,第二匹配子电路343连接于第二馈源341和第二馈电点163之间,第二匹配子电路343可以用于调节第二辐射体161的输入阻抗,以提高第二辐射体161的传输性能。第二匹配子电路343可以包括电容和/或电感等的组合。在本申请实施例中,对第二匹配子电路343的具体组成形式不做进一步的限定。在本实施例中,第二馈电点163设置于第二导电枝节16远离缝隙12的一端,应当理解的是,在其他的实施例中,第二匹配子电路343的参数可以影响第二馈电点163的设置位置,例如,第二馈电点163可以设置于第二电枝节16靠近缝隙12的一端,第二馈电点163的具体位置与第二匹配电路241相关联,也即,第二馈电点163的具体位置可以根据第二匹配电路241来设置。
请参阅图9,在一些实施例中,第一馈电电路32还可以包括第一滤波子电路325,第一滤波子电路325连接于第一匹配子电路323和第一馈电点143之间。第一滤波子电路325用于滤除第一射频信号对应频率以外的射频信号,以使第一射频信号流过该第一滤波子电路325时为导通的状态。在一些实施例中,第一滤波子电路325为低通滤波子电路。其中,低通滤波子电路可以理解为第一射频信号经过该第一滤波子电路325时为通过的状态,并阻断频率高于第一射频信号对应频率的非第一射频信号经过该第一滤波子电路325。具体地,第一滤波子电路325可以包括第三电容C3和第三电感L3,其中,第三电容C3的第一端分别与第三电感L3的第一端、第一馈电点143连接,第三电容C3的另一端与第一匹配子电路323连接;第三电感L3的第二端接地。
在一些实施例中,第二馈电电路34还可以包括第二滤波子电路345,第二滤波子电路345连接于第二匹配子电路343和第二馈电点163之间。第二滤波子电路345用于滤除第二射频信号对应频率以外的射频信号,以使第二射频信号流过该第二滤波子电路345时为导通的状态。在一些实施例中,第二滤波子电路345为高通滤波子电路。其中,高通滤波子电路可以理解为第二射频信号经过该第二滤波子电路345时为通过的状态,并阻断频率低于第二射频信号对应频率的非第二射频信号经过该第二滤波子电路345。具体地,第二滤波子电路345包括第四电容C4和第四电感L4,其中,第四电容C4的第一端分别与第四电感L4的第一端、第二馈电点163连接,第四电容C4的另一端与第二匹配子电路343连接;第四电感L4的第二端接地。
请参阅图10,在一些实施例中,天线装置100还可以包括匹配电路模块70,匹配电路模块70的一端接地、另一端连接第一导电枝节14。进一步地,匹配电路模块70连接于第一辐射体141,匹配电路模块70与第一辐射体141的连接节点位于频段切换模块50与第一辐射体141的连接节点和第一馈电点143之间,以使匹配电路模块70不仅能够用于对第一射频信号的频段进行微调校正,还可以用于调节第一导电枝节14的回路阻抗,以提高第一辐射体141的传输性能的同时,使其工作频带更宽且调节更为可靠。在本实施例中,匹配电路模块70可以包括电容和/或电感等的组合,其电容和/或电感的参数在天线装置100调试完成后将不再随着天线装置100的工作频段发生改变,以保证匹配电路模块70能够可靠提高第一辐射体141的阻抗匹配性能,从而使天线装置100的信号传输性能较佳。
请参阅图11,在一些实施例中,匹配电路模块70可以包括匹配电容C5、第一匹配电感L5以及第二匹配电感L6,第二匹配电感L6的第一端连接于第一辐射体141、第二端接地,匹配电容C5与第一匹配电感L5串联后并联在第二匹配电感L6的两端,也即,第一匹配电感L5的第一端连接于第二匹配电感L6的第一端、第二端连接于匹配电容C5的第一端,匹配电容C5的第二端连接于第二匹配电感L6的第二端。其中,匹配电容C5的电容值范围可以为0.5~2.7pF,第一匹配电感L5的电感量范围可以为1nH~5.1nH,第二匹配电感L6的电感量范围可以为5.6nH~20nH。通过在第一辐射体141上设置匹配电路模块70,匹配电路模块70与第一辐射体141的连接节点位于第一馈电点143和第二馈电点163之间,能够提高两个馈电点之间的隔离度,使天线装置100的信号传输性能较佳。
请参阅图12,在一些实施例中,第一导电枝节14可以包括第一馈电部147,第一馈电部147连接于第一辐射 体141与第一馈电电路32之间,第一馈电点143可以设置于第一馈电部147,例如设置于第一馈电部147远离第一辐射体141的一端,或设置于第一馈电部147与第一辐射体141的耦接点。第一馈电部147可为导电弹片或螺钉耦,具体地,第一馈电点143可通过导电弹片或螺钉与第一馈电电路32连接。其中,第一馈电电路32可通过弹片或螺钉的馈电方式将第一电流信号经第一馈电点143馈入至第一导电枝节14,以产生辐射,即可辐射具有多个不同工作频段的第一射频信号。第一导电枝节14还可以包括连接于第一辐射体141的第一接地部149,第一接地点145设置于第一接地部149。第一接地点145可通过第一接地部149与参考地端相连,以实现与地的导通。第一接地部149可以为弹片、螺钉等导电体或柔性电路板,第一接地部149还可以为与第一导电枝节14相同的材质制造的连接臂。示例性地,第一接地部149与第一导电枝节14可一体成型,以简化天线装置100的结构。
在本实施例中,第二导电枝节16可以包括第二馈电部167,第二馈电部167连接于第二辐射体161与第二馈电电路34之间,第二馈电点163可以设置于第二馈电部167,例如设置于第二馈电部167远离第二辐射体161的一端,或设置于第二馈电部167与第二辐射体161的耦接点。第二馈电部167可为导电弹片或螺钉耦,具体地,第二馈电点163可通过导电弹片或螺钉与第二馈电电路32连接。其中,第二馈电电路32可通过弹片或螺钉的馈电方式将第二电流信号经第二馈电点163馈入至第二导电枝节16,以产生辐射,即可辐射具有多个不同工作频段的第二射频信号。第二导电枝节16还可以包括连接于第二辐射体161的第二接地部169,第二接地点165设置于第二接地部169。第二接地点165可通过第二接地部169与参考地端相连,以实现与地的导通。第二接地部169可以为弹片、螺钉等导电体或柔性电路板,第二接地部169还可以为与第二导电枝节16相同的材质制造的连接臂。示例性地,第二接地部169与第二导电枝节16可一体成型,以简化天线装置100的结构。
上述的天线装置通过为第一导电枝节配备频段切换模块,并经由开关模组将至少两个频段选择支路中的至少一个接入第一导电枝节的回路中,能够借助不同的频段选择支路使第一导电枝节能够工作在不同的频段,从而拓宽了第一导电枝节的工作频段,并避免为了增加不同频段而新增导电枝节,在一定程度上使天线装置的成本较低且占用的空间较小。
请参阅图13,本申请实施例还提供一种电子设备400,电子设备400可以为但不限于为手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(Mobile Internet Device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等)或其他可设置天线装置的通信设备。本实施方式的电子设备400以手机为例进行说明。
电子设备400包括壳体1001以及设置于壳体1001上的显示屏1003和天线装置1004。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“里”等指示方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请而简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本申请的限制。
本实施例中,显示屏1003通常包括显示面板,也可包括用于响应对显示面板进行触控操作的电路等。显示面板可以为一个液晶显示面板(Liquid Crystal Display,LCD),在一些实施例中,显示面板可以同时为触摸显示屏。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”或“其他的实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
具体在本申请实施方式中,壳体1001包括后壳1010以及中框1011,后壳1010与显示屏1003分别设置于中框1011的相对两侧。
请参阅图14,中框1011可以为一体成型结构,其从结构上可以划分为承载部1012以及环绕于承载部1012的边框1013。应当理解的是,“承载部”与“边框”仅仅为便于表述而进行的命名划分,图中的结构填充斜线条仅为区分而标识,并不代表二者的实际结构,二者之间可以不具备明显的分界线,也可以为分别为两个或更多的部件组装于一起,“承载部”与“边框”的命名不应对中框1011的结构造成限制。承载部1012用于承载 显示屏1003的一部分结构,也可以用于承载或安装电子设备200的电子部件如主板1005、电池1006、传感器模组1007等,边框1013连接于承载部1012的周缘。进一步地,边框1013环绕于承载部1012的外周设置,并相对于承载部1012的表面凸伸,使二者共同形成用于容纳电子部件的空间。在本实施例中,显示屏1013盖设于边框1013,边框1013、后壳1010以及显示屏1003共同形成电子设备400的外观表面。
在本实施例中,天线装置1004可以为以上实施例提供的任一种天线装置100,或者可以具备以上天线装置100的任意一个或多个特征的结合,相关的特征可以参考前述实施例,本实施例不再赘述。天线装置1004集成于壳体1001中,例如,天线装置1004可以设置于中框1011,也可以设置于后壳1010,本说明书对此不作限制。与前述的天线装置100大致相同,本实施例的天线装置1004可以包括天线本体10以及连接于天线本体10的馈电模块30和频段切换模块50,天线本体10可以包括第一导电枝节14以及第二导电枝节。天线本体10设置于中框1011,馈电模块30可以连接于主板1005,第一接地点145、第二接地点165可以连接于主板1005、承载部1012、后壳1010中的至少一个。
进一步地,在图14所示的实施例中,边框1013由金属制成(边框1013的材质包括金属),如,边框1013的材质可以包括铝合金、镁合金等。天线装置1004集成于边框1013。在本实施例中,边框1013设有缝隙1014,缝隙1014与外界连通并将边框1013划分为两个部分,天线装置1004集成于边框1013的其中一部分,缝隙1014即为上述实施例中的缝隙12。如此,利用金属制的边框1013作为天线装置1004的辐射体的一部分,有利于节省电子设备400内的空间,也为天线装置1004提供更大的净空区,有利于保证较高的辐射效率。
在本实施例中,边框1013中作为天线本体10的部分,与承载部1013之间设有间隙,该间隙与缝隙1014连通,使辐射体12(如第二导电枝节16的辐射体或第一导枝节14的辐射体)的接地点与承载部1012之间相互间隔,以避免承载部1012影响辐射体的谐振频率。进一步地,缝隙1014中可以设有非屏蔽体1015,非屏蔽体1015由非金属制成(例如树脂等),其具有通过电磁波信号的特性,以允许天线装置1004进行信号传输。非屏蔽体1015的外表面与边框1013的外表面平齐,以保证电子设备400的外观的完整性。
在其他的一些实施例中,边框1013可以由非金属制成,天线装置100可以集成于边框1013。例如,边框1013可以由塑料、树脂等材料制成,天线装置100的天线本体10可以通过嵌件成型的方式集成于边框1013(如,天线本体10整体嵌入边框1013内部),也可以通过贴附的方式集成于边框1013(如,天线本体10贴附于边框1013的表面)。
在一些实施例中,边框1013可以为圆角矩形边框,其中,边框1013可包括相背设置的第一边框和第三边框,相背设置的第二边框和第四边框,其中,第二边框分别与第一边框、第三边框连接。其中,第一边框可以理解为电子设备400的顶边框,第三边框可以理解为电子设备400的底边框,第二边框和第四边框可以理解为电子设备400的侧边框。该天线装置1004可以部分或全部由该边框1013的一部分形成。示例性地,该天线装置1013的天线本体10可以部分或集成在该电子设备400的顶边框、底边框和侧边框的至少一个。
本申请实施例提供的天线装置及电子设备中,通过为第一导电枝节配备频段切换模块,并经由开关模组将至少两个频段选择支路中的至少一个接入第一导电枝节的回路中,能够借助不同的频段选择支路调整第一导电枝节的阻抗匹配性能,使第一导电枝节能够工作在不同的频段,从而拓宽了第一导电枝节的工作频段,并避免为了增加不同频段而新增导电枝节,在一定程度上使天线装置的成本较低且占用的空间较小。进一步地,至少两个频段选择支路为并联设置,至少两个频段选择支路中的至少一个能够被接选择入到第一导电枝节的回路中,例如,多个频段选择支路同时被接入第一导电枝节的回路中时、单个频段选择支路单独接入第一导电枝节的回路中时,这些频段选择支路采用不同的组合接入回路中,能够充分利用频段选择支路的组合状态,使第一导电枝节工作在更多不同的频段,而保证频段选择支路的数量相对较少,进一步降低了天线装置的制造成本。
需要说明的是,在本申请说明书中,当一个组件被认为是“设置于”另一个组件,它可以是连接于或者直接设置在另一个组件上,或者可能同时存在居中组件(也即二者间接连接);当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件,也即,两个组件之间可以是间接连接。
在本说明书中,描述的具体特征或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进 行结合和组合。最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种天线装置,其特征在于,包括:
    天线本体,包括第一导电枝节和第二导电枝节,所述第一导电枝节和所述第二导电枝节之间设有缝隙;
    所述第一导电枝节上设有第一馈电点,所述第二导电枝节上设有第二馈电点;
    馈电模块,包括第一馈电电路和第二馈电电路;所述第一馈电电路连接于所述第一馈电点,并被配置为经由所述第一馈电点向所述第一导电枝节馈入第一电流信号,以使所述第一导电枝节上辐射第一射频信号;所述第二馈电电路连接于所述第二馈电点,并被配置为经由所述第二馈电点向所述第二导电枝节馈入第二电流信号,以使所述第二导电枝节辐射第二射频信号;以及
    频段切换模块;所述频段切换模块的一端连接于所述第一导电枝节、另一端接地;所述频段切换模块与所述第一导电枝节的连接节点位于所述第一馈电点与所述缝隙之间;所述频段切换模块包括开关模组以及至少两个频段选择支路,所述至少两个频段选择支路并联;所述频段切换模块被配置为通过所述开关模组选择性地将至少两个频段选择支路中的至少一个接入所述第一导电枝节的回路中,以使所述第一导电枝节能够基于所述第一电流信号可切换地辐射不同频段的所述第一射频信号。
  2. 如权利要求1所述的天线装置,其特征在于,所述至少两个频段选择支路包括第一支路以及第二支路,所述第一支路包括第一电容,所述第二支路包括第一电感,所述第一电容与所述第一电感并联。
  3. 如权利要求2所述的天线装置,其特征在于,所述至少两个频段选择支路还包括第三支路以及第四支路,所述第三支路包括第二电容,所述第四支路包括第二电感,所述第一电容、所述第一电感、所述第二电容、所述第二电感并联。
  4. 如权利要求3所述的天线装置,其特征在于,所述第一电容的电容值和所述第二电容的电容值不同;所述第一电感的电感量和所述第二电感的电感量不同。
  5. 如权利要求1~4中任一项所述的天线装置,其特征在于,所述开关模组包括至少两个开关,所述至少两个开关与所述至少两个频段选择支路一一对应设置;每个所述开关连接于一个对应的述频段选择支路,以控制对应的频段选择支路的通断。
  6. 如权利要求1~5中任一项所述的天线装置,其特征在于,所述天线装置还包括分压电路,所述分压电路的第一端接地、第二端连接所述频段切换模块。
  7. 如权利要求6所述的天线装置,其特征在于,所述分压电路包括分压电感,所述分压电感的第一端接地、第二端连接所述频段切换模块。
  8. 如权利要求1~7中任一项所述的天线装置,其特征在于,所述天线装置还包括用于调节所述第一射频信号的匹配电路模块,所述匹配电路模块的一端接地、另一端连接所述第一导电枝节。
  9. 如权利要求8所述的天线装置,其特征在于,所述匹配电路模块与所述第一导电枝节的连接节点位于所述频段切换模块和所述第一导电枝节的连接节点与所述第一馈电点之间。
  10. 如权利要求8或9所述的天线装置,其特征在于,所述匹配电路模块包括匹配电容、第一匹配电感以及第二匹配电感,所述第六电感的第一端连接于所述第一导电枝节、第二端接地,所述第五电容与所述第五电感串联后 并联在所述第六电感的两端。
  11. 如权利要求1~10中任一项所述的天线装置,其特征在于,所述频段切换模块为两个,两个所述频段切换模块的其中一个连接于所述第一导电枝节,另一个连接于所述第二导电枝节;连接于所述第二导电枝节的频段切换模块被配置为通过开关模组将至少两个频段选择支路中的至少一个接入所述第二导电枝节的回路中,使所述第二导电枝节能够工作在不同的频段。
  12. 如权利要求11所述的天线装置,其特征在于,所述频段切换模块与所述第二导电枝节的连接节点位于所述第二馈电点与所述缝隙之间。
  13. 如权利要求1~12中任一项所述的天线装置,其特征在于,所述第一导电枝节包括第一辐射体以及第一接地点,所述第一馈电点设置于所述第一辐射体,所述第一接地点一端接地、另一端连接所述第一辐射体;
    所述第二导电枝节包括第二辐射体以及第二接地点,所述第二馈电点设置于所述第二辐射体,所述第二接地点一端接地、另一端连接所述第二辐射体。
  14. 如权利要求13所述的天线装置,其特征在于,所述第一导电枝节还包括第一馈电部,所述第一馈电部连接于所述第一辐射体与所述第一馈电电路之间,所述第一馈电点设置于所述第一馈电部;
    所述第二导电枝节还包括第二馈电部,所述第二馈电部连接于所述第二辐射体与所述第二馈电电路之间,所述第二馈电点设置于所述第二馈电部。
  15. 如权利要求1~14中任一项所述的天线装置,其特征在于,所述第一馈电电路包括第一馈源,所述第一馈源连接于所述第一馈电点并被配置为向所述第一导电枝节馈入所述第一电流信号;
    所述第二馈电电路包括第二馈源,所述第二馈源连接于所述第二馈电点并被配置为向所述第二导电枝节馈入所述第二电流信号。
  16. 如权利要求15所述的天线装置,其特征在于,所述第一馈电电路还包括第一匹配子电路以及第一滤波子电路,所述第一匹配子电路连接于所述第一馈源和所述第一馈电点之间,并被配置为调节所述第一导电枝节的输入阻抗;所述第一滤波子电路连接于所述第一匹配子电路和所述第一馈电点之间;
    所述第二馈电电路还包括第二匹配子电路以及第二滤波子电路,所述第二匹配子电路连接于所述第二馈源和所述第二馈电点之间,并被配置为调节所述第二导电枝节的输入阻抗;所述第二滤波子电路连接于所述第二匹配子电路和所述第二馈电点之间。
  17. 一种电子设备,其特征在于,包括壳体以及权利要求1至16任一项所述的天线装置,所述天线装置集成于所述壳体。
  18. 如权利要求17所述的电子设备,其特征在于,所述壳体包括承载部以及连接于所述承载部边缘的边框,所述缝隙设置于所述边框,所述天线装置集成于所述边框。
  19. 一种电子设备,其特征在于,包括边框以及权利要求1至16中任一项所述的天线装置,所述边框的材质包括金属,所述边框设有缝隙,所述边框的所述缝隙将所述边框划分为两个部分,所述天线装置集成于所述边框,所述边框的缝隙为第一导电枝节和第二导电枝节之间的缝隙。
  20. 如权利要求19所述的电子设备,其特征在于,所述缝隙中设置有用于供电磁波信号传输的非屏蔽体。
PCT/CN2021/120725 2020-12-10 2021-09-26 天线装置及电子设备 WO2022121453A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21902161.5A EP4254659A4 (en) 2020-12-10 2021-09-26 ANTENNA DEVICE AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011455048.3 2020-12-10
CN202011455048.3A CN114628882A (zh) 2020-12-10 2020-12-10 天线装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022121453A1 true WO2022121453A1 (zh) 2022-06-16

Family

ID=81895761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120725 WO2022121453A1 (zh) 2020-12-10 2021-09-26 天线装置及电子设备

Country Status (3)

Country Link
EP (1) EP4254659A4 (zh)
CN (1) CN114628882A (zh)
WO (1) WO2022121453A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246295A1 (zh) * 2022-06-20 2023-12-28 荣耀终端有限公司 一种终端天线及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976600A (zh) * 2022-06-27 2022-08-30 Oppo广东移动通信有限公司 天线组件、中框组件以及电子设备
WO2024158241A1 (ko) * 2023-01-26 2024-08-02 삼성전자주식회사 안테나를 포함하는 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180026340A1 (en) * 2016-07-21 2018-01-25 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN107634312A (zh) * 2016-07-19 2018-01-26 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN109390693A (zh) * 2017-08-05 2019-02-26 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN211350950U (zh) * 2020-03-12 2020-08-25 Oppo广东移动通信有限公司 天线组件和电子设备
CN211350951U (zh) * 2020-03-12 2020-08-25 Oppo广东移动通信有限公司 天线组件和电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI523319B (zh) * 2013-07-22 2016-02-21 宏碁股份有限公司 行動裝置
KR102306080B1 (ko) * 2015-08-13 2021-09-30 삼성전자주식회사 안테나 장치 및 안테나 장치를 포함하는 전자 장치
US10483622B2 (en) * 2016-07-19 2019-11-19 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN109921174B (zh) * 2017-12-12 2022-03-22 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN212676478U (zh) * 2018-04-25 2021-03-09 株式会社村田制作所 天线装置以及通信终端装置
CN108832263B (zh) * 2018-05-31 2021-04-27 北京小米移动软件有限公司 电子设备、调整电子设备中天线工作频段的方法
CN111029749B (zh) * 2019-12-27 2021-09-24 维沃移动通信有限公司 一种天线组件及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634312A (zh) * 2016-07-19 2018-01-26 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
US20180026340A1 (en) * 2016-07-21 2018-01-25 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN109390693A (zh) * 2017-08-05 2019-02-26 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN211350950U (zh) * 2020-03-12 2020-08-25 Oppo广东移动通信有限公司 天线组件和电子设备
CN211350951U (zh) * 2020-03-12 2020-08-25 Oppo广东移动通信有限公司 天线组件和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4254659A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246295A1 (zh) * 2022-06-20 2023-12-28 荣耀终端有限公司 一种终端天线及电子设备

Also Published As

Publication number Publication date
EP4254659A4 (en) 2024-06-05
EP4254659A1 (en) 2023-10-04
CN114628882A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2022121453A1 (zh) 天线装置及电子设备
CN103441331B (zh) 带有多个馈源的可调谐天线系统
WO2022142824A1 (zh) 天线系统及电子设备
CN104701618B (zh) 具有混合倒f缝隙天线的电子设备
CN104064879B (zh) 具有两个天线和三个端口的天线系统
CN109428157B (zh) 移动装置
CN104221215B (zh) 可调谐天线系统
TWI555267B (zh) 具有接收器分集的可調式天線系統
US8072390B2 (en) Antenna arrangement
US20050237251A1 (en) Antenna arrangement and module including the arrangement
CN112928456A (zh) 天线组件及电子设备
US20230344152A1 (en) Antenna assembly and electronic device
CN210092344U (zh) 天线组件及电子设备
TW201409956A (zh) 切換天線裝置及方法
CN114530691A (zh) 电子设备
WO2024001069A1 (zh) 天线组件、中框组件以及电子设备
WO2023273493A1 (zh) 天线装置及电子设备
US20240072440A1 (en) Antenna assembly and electronic device
CN110635229A (zh) 天线结构
CN111697351B (zh) 移动装置和天线结构
WO2024098969A1 (zh) 天线装置及电子设备
CN114628892B (zh) Pcb天线及电子设备
CN115498400A (zh) 天线装置及电子设备
TWI776303B (zh) 天線結構及具有該天線結構的無線通訊裝置
EP4297185A1 (en) Antenna assembly and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021902161

Country of ref document: EP

Effective date: 20230627

NENP Non-entry into the national phase

Ref country code: DE