WO2023246295A1 - 一种终端天线及电子设备 - Google Patents

一种终端天线及电子设备 Download PDF

Info

Publication number
WO2023246295A1
WO2023246295A1 PCT/CN2023/091005 CN2023091005W WO2023246295A1 WO 2023246295 A1 WO2023246295 A1 WO 2023246295A1 CN 2023091005 W CN2023091005 W CN 2023091005W WO 2023246295 A1 WO2023246295 A1 WO 2023246295A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
unit
radiating
radiating unit
radiator
Prior art date
Application number
PCT/CN2023/091005
Other languages
English (en)
French (fr)
Inventor
张澳芳
魏鲲鹏
褚少杰
胡义武
路阳
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP23825948.5A priority Critical patent/EP4404382A1/en
Publication of WO2023246295A1 publication Critical patent/WO2023246295A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the field of antenna technology, and in particular, to a terminal antenna and electronic equipment.
  • Antennas in electronic devices provide wireless communication capabilities by radiating electromagnetic waves. When a large amount of electromagnetic waves are absorbed by the user, it may affect the user's health.
  • antennas in electronic devices need to improve radiation performance while reducing the human body's absorption of electromagnetic waves.
  • Embodiments of the present application provide a terminal antenna and electronic equipment, which can provide better radiation performance while providing smaller SAR. Since the SAR is low, the human body's absorption of electromagnetic waves is also low.
  • a terminal antenna is provided.
  • the terminal antenna is provided in an electronic device.
  • the terminal antenna includes: a first radiator.
  • the first radiator includes N radiating units connected end to end, where N is an integer greater than or equal to 2.
  • One end of any radiating unit is grounded through the reactance unit.
  • the N radiating units include a first radiating unit, and a feed source is provided on one end of the first radiating unit away from the reactance unit.
  • the terminal antenna provided by the embodiment of the present application can be obtained by arranging multiple radiating units in series.
  • grounding components on each radiating unit the current on the radiator can be uniformly adjusted when the radiating unit is working, thereby obtaining a relatively uniform current distribution at the feed end and the ground return end, thereby stimulating a uniform normal electric field for radiation. This results in better radiation performance and lower SAR.
  • a reactance unit is provided at one end of any radiation unit, including: for any radiation unit, the reactance unit is provided at an end of the radiation unit away from the feed source. In this way, by arranging the ground component at the end far away from the feed source, the radiation situation between the ground component and the feed source can be adjusted.
  • the N radiating units also include a second radiating unit.
  • the second radiating unit is disposed on a side of the first radiating unit close to the feed source, and a reactance unit is disposed at the first end of the second radiating unit.
  • the second radiating unit is connected to the third end of the first radiating unit at its second end. The second end is different from the first end, and the third end is the end of the first radiating unit where the feed source is provided.
  • the N radiating units also include a third radiating unit.
  • the third radiating unit is disposed on a side of the first radiating unit away from the feed source.
  • a reactance unit is disposed at the fourth end of the third radiating unit.
  • the third radiating unit is connected to the sixth end of the first radiating unit at the fifth end.
  • the fifth end is different from the fourth end.
  • the sixth end is the end of the first radiating unit away from the feed source.
  • the length of any radiation element does not exceed 1/4 wavelength of the working frequency band of the terminal antenna.
  • the radiating unit can cover the working frequency band by exciting the zero-order mode. Since the length is less than or equal to 1/4 of the wavelength, the antenna is more conducive to miniaturization design.
  • the farther away from the feed source the smaller the width of the radiating unit.
  • the width of the radiating element the current density of the radiating element far away from the feed source is increased, thereby getting closer to the current density of the radiating element close to the feed source.
  • the normal electric field intensity generated by the entire antenna tends to be uniform.
  • the reactance unit includes any of the following: lumped inductance, distributed inductance, electrical connection components.
  • the ground component can have different implementations, such as lumped inductance, distributed inductance (such as serpentine wire, etc.), or equivalent inductance through electrical connection devices (such as springs, thimbles, etc.) Implements the function of the inductor in this ground setting.
  • a tuning capacitor is also provided between the reactance unit and the reference ground. In this way, by adjusting the size of the tuning capacitor before returning to ground, frequency selection and frequency tuning can be achieved.
  • the working frequency band of the terminal antenna includes 5150MHz-5850MHz, and the inductance of the reactance unit is included in the range of [0.5nH, 5nH]. In this way, by adjusting the inductance of the ground component to this range, the zero-order mode can cover the 5G WiFi operating frequency band.
  • a uniform normal electric field is distributed near the radiator of the terminal antenna. In this way, better radiation performance is provided through uniform electric field radiation; because the electric field is uniformly distributed, there are no areas where energy is particularly concentrated, so the SAR is lower; in addition, because the human body absorbs less normal electric fields, the SAR is further reduced.
  • a second aspect provides an electronic device provided with a terminal antenna as described in the first aspect and any possible design thereof.
  • the electronic device transmits or receives signals, it transmits or receives signals through the terminal antenna.
  • Figure 1 is a schematic diagram of the interaction of multiple electronic devices
  • Figure 2 is a schematic diagram of the composition of an antenna
  • Figure 3 is a schematic diagram of radiation from a tablet computer
  • Figure 4 is a schematic diagram of the electric field distribution near a loop antenna
  • Figure 5 is a schematic diagram of the composition of an electronic device provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of an antenna arrangement provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of the composition of an antenna provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of the composition of a radiation unit provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of the composition of a terminal antenna provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of an electric field simulation provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of hotspot distribution provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of an efficiency simulation comparison provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of the composition of a terminal antenna provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of an electric field simulation provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of the composition of a terminal antenna provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of the composition of a terminal antenna provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of the composition of a terminal antenna provided by an embodiment of the present application.
  • Figure 18 is a schematic diagram of an electric field simulation provided by an embodiment of the present application.
  • Figure 19 is a schematic diagram of hotspot distribution provided by an embodiment of the present application.
  • Figure 20 is a schematic diagram of the composition of a terminal antenna provided by an embodiment of the present application.
  • Figure 21 is a schematic diagram of hotspot distribution provided by an embodiment of the present application.
  • Figure 22 is a schematic diagram of the composition of a terminal antenna provided by an embodiment of the present application.
  • Figure 23 is a schematic diagram of a simulation model provided by an embodiment of the present application.
  • Figure 24 is a schematic diagram of the composition of a terminal antenna provided by an embodiment of the present application.
  • Figure 25 is a schematic diagram of the composition of a terminal antenna provided by an embodiment of the present application.
  • the electronic device realizes wireless communication with other devices through the antenna provided therein.
  • communication between a tablet computer and other devices is taken as an example.
  • An antenna can be installed on the side (such as the long side) of the tablet computer. Through the conversion ability between the antenna's analog signal and radio electromagnetic waves, wireless signals can be sent and received, and wireless communication connections can be established with electronic devices such as mobile phones and routers.
  • Figure 2 is a schematic diagram of a traditional antenna design.
  • an antenna setting area may be provided on the side of the tablet computer.
  • the antenna can be set in this antenna setting area.
  • a loop antenna can be provided in the antenna setting area to support the wireless communication function of the tablet computer.
  • the Loop antenna may include a radiator 21, and feed sources and ground points may be respectively provided at both ends of the radiator 21.
  • the feed source can be used to couple with the RF module to receive the RF signal (analog signal) from the RF module into the antenna in the transmitting scenario, and transmit the RF signal out in the form of electromagnetic waves through the antenna, or to transmit the RF signal in the form of electromagnetic waves in the receiving scenario.
  • the analog signal obtained by converting the electromagnetic wave received by the antenna is transmitted to the radio frequency module, so that the radio frequency module can process the analog signal to achieve signal reception.
  • the ground point can be the connection point between the radiator and the reference ground.
  • the radiator 21 can be directly connected to the reference ground at this ground point.
  • the radiator 21 can be connected to the reference ground at the ground point through electronic components such as capacitors, inductors, and resistors.
  • the electromagnetic wave specific absorption rate can be used to describe the human body's absorption of electromagnetic waves when the antenna is working, that is, the impact of the electromagnetic waves emitted by the antenna on the human body. Since the radiation performance of antennas at different operating frequencies is different, the SAR at different frequency points can also be different. The higher the SAR, the greater the human body's absorption of electromagnetic waves at this frequency point, and the greater the impact of the electromagnetic waves emitted by the antenna on the human body during operation. On the contrary, the lower the SAR, the smaller the human body's absorption of electromagnetic waves at this frequency point, and the smaller the impact of the electromagnetic waves emitted by the antenna on the human body when the antenna is working.
  • the following provides examples of SAR characteristics when the antenna is working from the perspectives of radiation performance and electrical parameter distribution.
  • Radiation performance can be identified by efficiency (such as radiation efficiency, system efficiency), etc.
  • efficiency such as radiation efficiency, system efficiency
  • FIG 4 shows a schematic diagram of the electric field distribution when the Loop antenna is working.
  • the logical diagram corresponding to the electric field simulation is also given for presentation.
  • the loop antenna can operate in half-wavelength mode.
  • the electric field distribution can be different in the space near the feed source and near the ground point.
  • the energy distribution in the area close to the feed source (such as area 1) is stronger, and the energy distribution in the area close to the ground point (such as area 2) is relatively weak.
  • most of the radiated electromagnetic wave energy is concentrated in area 1. From the perspective of SAR, it corresponds to the concentration of hot spots, which leads to higher SAR and greater impact on the human body.
  • the antenna works in the zero-order mode.
  • the zero-order mode can generate a relatively uniform electric field for radiation during operation, so that the antenna emits
  • the energy distribution of electromagnetic waves in various spatial areas around the antenna is relatively balanced, thereby avoiding the concentration of hot spots caused by high local energy, thus making the antenna have a lower SAR;
  • the antenna length can be set relatively long without changing the electric field distribution characteristics of the antenna's zero-order mode, thereby further dispersing energy and reducing SAR.
  • the antenna can also provide better radiation performance, thereby providing better wireless communication quality.
  • the antenna solution provided by the embodiment of the present application can be applied in a user's electronic device to support the wireless communication function of the electronic device.
  • the electronic device can be a portable mobile device such as a mobile phone, a tablet computer, a personal digital assistant (PDA), an augmented reality (AR)/virtual reality (VR) device, a media player, etc.
  • PDA personal digital assistant
  • AR augmented reality
  • VR virtual reality
  • the electronic device may also be a wearable electronic device such as a smart watch.
  • the embodiments of the present application do not place any special restrictions on the specific form of the device.
  • the following takes the electronic device as a tablet computer, that is, the antenna solution provided by the embodiment of the present application is applied to the tablet computer to support the wireless communication function of the tablet computer.
  • the antenna can be used to support Bluetooth communication, WLAN communication, etc. of a tablet computer.
  • the working frequency band of the antenna can include Bluetooth One or more frequency bands (such as 2.4GHz), 2.4G WIFI frequency band (such as 2.4GHz-2.5GHz), and 5G WIFI frequency band (such as 5150MHz-5850MHz).
  • the antennas can be placed at different locations on the tablet.
  • the all-metal back shell can refer to the back shell of the tablet computer being made of metal.
  • the back shell can extend to the side of the tablet computer and wrap other components of the tablet computer, appearing as a complete metal back shell on the back and sides of the tablet computer.
  • Figure 5 shows a schematic diagram of the composition of a tablet computer with an all-metal back shell.
  • the electronic device i.e., tablet computer
  • the electronic device provided by the embodiment of the present application can be provided with a rear case 51 , a circuit board 52 , and a display screen 53 in sequence from bottom to top (i.e., from the back to the front) along the z-axis. .
  • the rear case 51 may have an all-metal structure.
  • the metal materials that make up the all-metal structure may include low carbon steel, aviation aluminum, high-strength aluminum alloy, stainless steel, and/or titanium alloy, etc.
  • the rear shell 51 can be used as the exterior surface of the back to provide basic support for the tablet computer.
  • the rear shell 51 may be provided with openings to cooperate with other components to implement corresponding functions.
  • a hole can be opened in the rear shell 51 at a position corresponding to the rear camera, so that the shooting components corresponding to the rear camera (such as the image acquisition part of the camera, etc.) can pass through the opening.
  • the hole extends outward to realize the shooting function.
  • the rear shell 51 can also extend from the xoy surface through the corner to the side (such as the xoz surface and/or the yoz surface), thereby achieving the effect of a full metal package.
  • the rear shell 51 can also be made of metal and non-metal materials.
  • a window structure is provided on the side of the rear case 51 to provide corresponding space for installing some components of the tablet computer.
  • components such as antennas can be provided in the window structure.
  • the back case 51 can provide a large area of zero potential reference. Therefore, the rear case 51 can also be used as a reference for other electronic components (such as antennas, radio frequency components or other electronic components).
  • the tablet computer in this application can also be provided with internal components such as a circuit board 52 .
  • the circuit board 52 may be made of a printed circuit board (Printed Circuit Board, PCB) and/or a flexible circuit board (Flexible Printed Circuit Board, FPC).
  • circuit board 52 may include one or more circuit boards.
  • the circuit board 52 can be used as a carrying structure for various electronic components, and signal transmission lines are provided between the various electronic components on the circuit board 52 to realize the interconnection of the various electronic components to ensure the operation of the electronic components.
  • the circuit board 52 can also be electrically connected to other reference grounds and used as a reference ground for the antenna.
  • the antenna ground can be connected to the circuit board 52 .
  • a processor may be provided on the circuit board 52 .
  • the processor may include one or more processing units.
  • the processor may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), an image signal processor (image signal processor (ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processing unit (NPU), etc.
  • different processing units can be independent devices or integrated in one or more processors.
  • the processor can generate operation control signals based on the instruction opcode and timing signals to complete the control of fetching and executing instructions.
  • a memory can also be provided in the processor to store instructions and data.
  • the memory in the processor may be a cache memory.
  • the processor may be a microprocessor unit (MPU) or a microcontroller unit (MCU).
  • MPU microprocessor unit
  • MCU microcontroller unit
  • Communication modules such as radio frequency modules may also be provided on the circuit board 52 .
  • the radio frequency module is connected to the baseband processor through the baseband line, and the radio frequency module can also be connected to the antenna, thereby realizing wireless communication functions.
  • the baseband processor sends a digital signal to the radio frequency module through the baseband line, and the radio frequency module converts and processes the digital signal to obtain the corresponding analog signal.
  • the radio frequency module transmits the analog signal to the antenna through the feed source, so that the antenna converts the analog signal into electromagnetic waves and radiates them outward.
  • the antenna converts electromagnetic waves into analog signals carrying information and transmits them to the radio frequency module through the feed source.
  • the radio frequency module performs radio frequency domain processing on the analog signal and then transmits it to the baseband processor.
  • the baseband processor analyzes the signal and obtains the information carried in the received signal.
  • the tablet computer in this application can also be provided with a display screen 53 .
  • the display screen 53 may be used to provide display functions to the user.
  • the display screen 53 can be attached to the side portion of the rear case 51 to obtain the overall appearance of the tablet computer.
  • the display screen 53 includes appearance glass and a display component (or called a display panel).
  • the display panel can use a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode).
  • a tablet computer may include one or more display screens 53.
  • an antenna may also be provided between the circuit board 52 and the rear case 51 .
  • the specific implementation of the antenna may differ in different implementations.
  • the radiator of the antenna can be arranged on the circuit board 52 to implement a PCB antenna.
  • the antenna can also be implemented in the form of FPC and mounted on the antenna bracket.
  • the antenna can also be realized by etching the antenna radiator on the antenna bracket through a laser direct structuring (LDS) process.
  • LDS laser direct structuring
  • the antenna can also be realized by processes such as Metalframe Diecasting for Anodicoxidation (MDA) and stamping.
  • MDA Metalframe Diecasting for Anodicoxidation
  • stamping stamping.
  • the antenna solution can also be obtained by combining at least two of the above implementation methods. The embodiments of this application do not limit the specific implementation form of the antenna.
  • the rear case 51 in order to meet the installation requirements of the antenna, can be provided with a window structure on the side, so as to provide a side radiation space for the antenna in the window structure.
  • the radiator of the antenna when the radiator of the antenna is arranged in the window structure, it can radiate through the non-display area on the front and radiate to the side through the window structure, thereby improving the radiation performance of the antenna.
  • the antenna may also be disposed in a position different from that shown in FIG. 5 or FIG. 6 .
  • the antenna can be mounted at any position inside the back case 51 .
  • the specific location of the antenna does not affect the composition and working mechanism of the antenna.
  • the back case 51 is an all-metal back case, and the antenna is set in a window-opening structure.
  • the antenna may be composed of N radiating units (such as radiating unit 1 - radiating unit N), where N is an integer greater than or equal to 2.
  • the radiating unit's Quantities can vary. N radiating units are arranged end-to-end in series to obtain the antenna solution provided by the embodiment of the present application.
  • the N radiating units constituting the antenna may or may not be identical.
  • the radiation unit may include a radiator.
  • the electrical length of the radiator may not be greater than 1/4 of the antenna's operating wavelength.
  • the electrical length of the radiator can be obtained by conversion based on electrical parameters such as the dielectric constant of the material used for the radiator. Taking the antenna's working frequency band as 5G WIFI (i.e. 5150MHz-5850MHz) as an example, the radiator length of the radiating unit can not exceed 8mm.
  • the electrical length of the radiator is simply referred to as the length of the radiator.
  • the length of the radiator of the radiating unit may also be greater than 1/4 of the antenna's operating wavelength.
  • a matching circuit can be provided at the feed source to adjust the resonance generated by the radiating unit to within the range of the working frequency band.
  • An electrical connection point may be provided at both ends of the radiator of the radiating unit.
  • the electrical connection point can be provided with a feed or connected to ground via an inductor.
  • Figure 7 shows a schematic structural diagram of a terminal antenna provided by an embodiment of the present application.
  • the antenna may include multiple radiating elements.
  • the left side of the feed source may include M1 radiating units
  • the right side of the feed source may include M2 radiating units.
  • the sum of M1 and M2 is equal to N, and N is an integer greater than or equal to 2.
  • M1 equals M2
  • the corresponding feed source is set in the middle of the antenna radiator, which is a mid-feed scheme.
  • M1 is not equal to M2, it corresponds to the offset feedback scheme.
  • the width of the radiating element may gradually decrease with increasing distance from the feed source.
  • connection between the feed source and the antenna radiator may be a direct connection, or may be coupled through one or more port matching components.
  • the port matching components may include capacitors, inductors and/or resistors.
  • the arrangement of the one or more port matching components may be used to adjust the port impedance of the antenna, and/or to tune the operating frequency of the antenna.
  • ground matching components may include capacitors, inductors and/or resistors.
  • the setting of one or more capacitors can be used to adjust the frequency selection state when the antenna is working. For example, when a SAR sensor is installed near the antenna, by setting the one or more capacitors, the impact of the operation of the SAR sensor on the operation of the antenna can be reduced or eliminated.
  • the one or more capacitors may also be used to tune the operating frequency band of the antenna.
  • composition of the radiating unit may be different in different embodiments.
  • the left end of the radiator of the radiating unit may be provided with a feed source, and the right end of the radiator of the radiating unit may be grounded through the inductor L1.
  • the left end of the radiator of the radiating unit may be grounded through the inductor L2, and the right end of the radiator of the radiating unit may be provided with a feed source.
  • the left end of the radiator of the radiating unit may be grounded through the inductor L3, and the right end of the radiator of the radiating unit may be grounded through the inductor L4.
  • L1, L2, L3 and L4 may have different inductance values, or may include at least two inductors with the same inductance value.
  • the inductance values of L1, L2, L3 and L4 can be flexibly selected according to the working frequency band of the antenna. For example, taking the working frequency band of the antenna as 5G WIFI (i.e. 5150MHz-5850MHz), the inductance values of L1, L2, L3 and L4 can be included in the range of 0.5nH-5nH.
  • the antenna solution provided by the embodiment of the present application in Figure 7 is composed of at least two or more radiating units connected in series as shown in Figure 8, and has only one feed source.
  • the antenna provided by the embodiment of the present application in Figure 7 is provided with a feed source and at least two ground points connected to a reference ground through an inductor.
  • the antenna can be equivalent to a material whose dielectric constant tends to zero.
  • the antenna can produce a relatively uniform electric field distribution in the surrounding space.
  • the electric field formed in the space near it is dominated by the normal electric field. Radiation based on this uniformly distributed normal electric field can minimize the human body's absorption of electromagnetic waves, thereby ensuring high radiation performance while having low SAR.
  • the zero-order mode is not directly related to the length of the antenna, so more radiating units can be connected in series without changing the uniform electric field distribution characteristics of the antenna's zero-order mode.
  • the electric field/magnetic field absorption conversion situation between the antenna and the human body can be determined based on the electromagnetic field boundary conditions.
  • the conversion conditions of the electric field and the magnetic field are identified from the normal component and the tangential component respectively.
  • the normal component can be the component of the electric field lines directed from the antenna to the human body, or the component directed from the human body to the antenna.
  • the tangential component is perpendicular to this normal component.
  • Formula (1) corresponds to the conversion relationship between the normal component E n1 of the electric field of the antenna and the normal component E n2 of the electric field generated in the human body.
  • ⁇ 1 is the dielectric constant of the dielectric material or air around the antenna, and ⁇ 2 is the dielectric constant of the human body.
  • Formula (2) corresponds to the conversion relationship between the normal component H n1 of the magnetic field of the antenna and the normal component H n2 of the magnetic field generated in the human body.
  • ⁇ 1 is the magnetic permeability of the dielectric material or air around the antenna, and ⁇ 2 is the magnetic permeability of the human body.
  • Formula (3) corresponds to the conversion relationship between the tangential component E t1 of the electric field of the antenna and the tangential component E t2 of the electric field generated in the human body.
  • Formula (4) corresponds to the conversion relationship between the tangential component H t1 of the electric field of the antenna and the tangential component H t2 of the magnetic field generated in the human body.
  • the dielectric constant of the human body is much greater than the dielectric constant of the dielectric materials (such as plastic brackets) around commonly used antennas.
  • the relative dielectric constant of the human body is about 40
  • the dielectric constant of the plastic bracket is about 3
  • the relative magnetic permeability of the two The rates are all 1. Therefore, based on formula (1), when the electromagnetic wave between the antenna and the human body is mainly reflected as a normal electric field, the electric field generated in the human body can be much smaller than the antenna radiation. Then, the human body has the smallest absorption of electromagnetic waves and the lowest SAR.
  • the SAR When the electromagnetic wave between the antenna and the human body is mainly reflected in the normal electric field, the more balanced the energy distribution (i.e. uniform electric field), the less local hot spots will be concentrated, so the SAR will be lower.
  • the zero-order mode antenna solution provided by the embodiment of the present application can generate a nearly uniformly distributed normal electric field between the antenna and the human body, and the electric field distribution characteristics of the zero-order mode have nothing to do with the length of the antenna, multiple ones can be connected in series. Radiating elements further disperse the energy and therefore have lower SAR.
  • the terminal antenna provided by the embodiment of the present application may include two radiating units.
  • the two radiating units may be the same or different.
  • Any radiation unit may have the composition of any radiation unit as shown in FIG. 8 .
  • FIG. 9 is a schematic diagram of the composition of a terminal antenna provided by an embodiment of the present application.
  • Figure 9 also includes a simulation model diagram of the antenna solution.
  • the antenna 910 may include two radiating units, namely a radiating unit 911 and a radiating unit 912 .
  • the radiation unit 911 may have the composition of 802 as shown in FIG. 8
  • the radiation unit 912 may have the composition of 801 as shown in FIG. 8 .
  • the radiators of the radiating unit 911 and the radiating unit 912 may be connected to each other at the end where the feed source is provided.
  • a feed source and grounding inductors at two ends can be provided on the radiator of the antenna 910 as shown in Figure 9.
  • the settings of L 913 and L 914 are also Please refer to the diagram of L1-L4 in Figure 8, which will not be described again here.
  • the antenna 910 shown in Figure 9 can also be described as: the antenna 910 can include a radiator, the length of the radiator does not exceed 1/2 of the operating wavelength.
  • Ground inductors are respectively provided at both ends of the radiator.
  • the inductance values of the two grounding inductors (such as L 913 and L 914 ) can be determined according to the operating frequency band. For example, taking the working frequency band covering the 5G WIFI frequency band as an example, the inductance values of the two ground inductors L 913 and L 914 can be set in the range of 0.5nH-5nH. In different embodiments, the inductance values of L 913 and L 914 may be the same or different.
  • the antenna 910 may also be provided with a feed source. The distance from the feed source to either end shall not exceed 1/4 of the operating wavelength. For example, when the length of the radiating unit 911 is the same as the length of the radiating unit 912, the feed source may be disposed at the middle position of the radiator of the antenna 910.
  • a uniformly distributed electric field can be formed between the radiator of the antenna 910 and the reference ground for radiation.
  • the uniformly distributed electric field may be the normal electric field between the antenna and the human body. In this way, based on the human body's small absorption of the normal electric field and the effect of evenly distributed energy distribution, the antenna 910 can obtain a lower SAR when working.
  • FIG. 10 shows an electric field simulation diagram of the antenna 910 shown in FIG. 9 when it is working.
  • Figure 10 also shows the electric field simulation diagram when the loop antenna shown in Figure 2 is working.
  • 1001 is the distribution of the surrounding electric field when the loop antenna is operating. It can be seen that there is a strong electric field distributed in the middle of the loop antenna setting area. Correspondingly, the electric field is weak at both ends of the loop antenna installation area. In other words, the electric field distribution when the loop antenna is working is not uniform.
  • 1002 in Figure 10 it is a simulation diagram of the electric field when the antenna 910 in this application is working. It can be seen that when the antenna 910 is working, the electric field intensity in its antenna installation area (such as the antenna 910 installation area shown as 1002) is uniformly distributed.
  • an electric field with uniform distribution characteristics can have a lower SAR.
  • FIG. 11 it is a schematic diagram of the SAR test hotspot of the antenna 910 shown in Figure 9.
  • Fig. 11 also provides a schematic diagram of the SAR test hot spots of the loop antenna as shown in Figure 2. Among them, the lighter the color, the stronger the energy.
  • 1101 in Figure 11 is a diagram of the SAR test hotspot of the loop antenna. It can be seen that when the loop antenna is working, there is a hot spot distributed near the antenna. In other words, most of the energy is concentrated in this hot spot area, and the SAR is high.
  • 1102 in Figure 11 is a schematic diagram of the SAR test hotspot of the antenna 910. It can be seen that when the antenna 910 is working, there are two hot spots distributed near the antenna.
  • the antenna 910 has more hot spots and the energy distribution is relatively more uniform, it can have a lower SAR than the loop antenna.
  • Table 1 shows the simulation results of the loop antenna and the SAR of the antenna 910 normalized using omnidirectional radiation power. Taking the 0mm body SAR simulation scenario and the working frequency band as 5G WIFI as an example, the unit is W/kg.
  • the 1g SAR simulation result of the Loop antenna is 2.22, and the 1g SAR simulation result of the antenna 910 provided in this application is 1.22.
  • the 1g SAR simulation result of the Loop antenna is 1.61, and the 1g SAR simulation result of the antenna 910 provided in this application is 1.33.
  • the 1g SAR simulation result of the Loop antenna is 2.9, and the 1g SAR simulation result of the antenna 910 provided in this application is 1.68. It can be seen that in the entire 5G WiFi frequency band, the SAR of the antenna 910 is significantly lower than that of the Loop antenna.
  • the radiator length of the loop antenna and the radiator length of the antenna 910 are set to be the same, such as 16 mm.
  • the antenna width is set to the same, such as 2mm.
  • the loop antenna can cover the operating frequency band through 1/2 wavelength mode.
  • the antenna 910 can cover the operating frequency band by stimulating a uniform electric field to radiate in a zero-order mode.
  • the electric field distribution characteristics of the zero-order mode of antenna excitation provided by the embodiments of the present application may be determined by the length of the radiator of any radiating unit and the size of the ground inductance provided on the radiating unit. The greater the number of radiating elements included in the antenna, the stronger the radiation performance, but the uniform electric field distribution characteristics of the excited zero-order mode will not change.
  • the antenna 910 provided by the embodiment of the present application can not only provide lower SAR in the entire frequency band, but also ensure better radiation performance.
  • FIG. 12 shows the efficiency simulation results of the antenna 910.
  • the antenna 910 is higher than the Loop antenna in the entire frequency band. In other words, the antenna 910 can provide better radiation performance when the ports in the full frequency band are fully matched. From the perspective of system efficiency, the peak efficiency of the antenna 910 is about 0.2dB higher than the peak efficiency of the Loop antenna, and the bandwidth is much larger than that of the Loop antenna. The efficiency in the entire 5G WiFi band is above -1.5dB, and the performance is even better, while the Loop antenna Only above -4dB. Therefore, the antenna 910 shown in FIG. 9 can not only provide lower SAR, but also provide better radiation performance.
  • Figure 13 is a schematic diagram of the composition of another terminal antenna provided by an embodiment of the present application.
  • Figure 12 also includes a simulation model diagram of the antenna solution.
  • the antenna 1310 may include two radiating units, namely a radiating unit 1311 and a radiating unit 1311.
  • the radiation unit 1311 may have the composition of 801 as shown in FIG. 8
  • the radiation unit 1312 may have the composition of 803 as shown in FIG. 8 .
  • One end of the radiation unit 1311 provided with the ground inductor L 1313 may be connected to any end of the radiation unit 1312 .
  • the two grounded inductors can be simplified into one grounded inductor (such as inductor L 1313 ).
  • One end of the radiation unit 1312 away from the radiation unit 1311 may be grounded through the inductor L 1314 .
  • the settings of the inductor L 1313 and the inductor L 1314 can also refer to the diagram of L1-L4 in Figure 8 and will not be described again here.
  • the antenna 1310 shown in Figure 13 can also be described as: the antenna 1310 can include a radiator, the length of the radiator does not exceed 1/2 of the operating wavelength.
  • a feed source is provided at one end of the radiator, and a ground inductor L 1314 is provided at the other end of the radiator.
  • Another grounded inductor L 1313 can also be provided on the radiator.
  • the inductance values of the two grounding inductors can be set in the range of 0.5nH-5nH. In different implementations, the two ground inductors may have the same or different inductance values.
  • the distance between the ground inductor L 1313 provided on the radiator and any end of the antenna 1310 does not exceed 1/4 of the operating wavelength.
  • the ground inductance L 1313 provided on the radiator at different ends may be located in the middle of the radiator of the antenna 1310 . Therefore, compared with the solution example shown in FIG. 9 , the antenna 1310 may have the characteristics of an offset feed setting.
  • a uniformly distributed electric field can be formed between the radiator of the antenna 1310 and the reference ground for radiation.
  • the uniformly distributed electric field may be the normal electric field between the antenna and the human body. Different from the solution shown in Figure 9, a uniform normal electric field can be distributed between the entire antenna 910 and the reference ground.
  • the radiating unit 1311 and the radiating unit 1312 can respectively radiate based on a uniform normal electric field. Since the radiator of the radiating unit 1311 and the radiating unit 1312 are at different distances from the feed source, the intensity of the normal electric fields generated by the radiating unit 1311 and the radiating unit 1312 may be slightly different. For example, the normal electric field intensity near the radiating unit 1312 may be slightly smaller than the normal electric field intensity near the radiating unit 1311 .
  • the antenna 1310 can obtain a lower SAR when working.
  • FIG. 14 shows an electric field simulation diagram of the antenna 1310 shown in FIG. 13 when it is working.
  • the darker the arrow color the greater the electric field intensity.
  • the electric field intensity in the antenna installation area (the antenna 1310 installation area shown in FIG. 14 ) is uniformly distributed.
  • an electric field with uniform distribution characteristics can have a lower SAR. Its principle and conclusion are similar to those of antenna 910.
  • the simulation parameter settings corresponding to Figure 9 are similar.
  • the radiator length of the loop antenna is The length of the radiator is set to be the same as that of the antenna 1310, such as 16 mm.
  • the antenna width is set to the same, such as 2mm.
  • the loop antenna can cover the operating frequency band through 1/2 wavelength mode.
  • the antenna 1310 may cover the operating frequency band by exciting a uniform electric field to radiate in a zeroth-order mode.
  • the electric field distribution characteristics of the zero-order mode of antenna excitation may be determined by the length of the radiator of any radiating unit and the size of the ground inductance provided on the radiating unit. The greater the number of radiating elements included in the antenna, the stronger the radiation performance, but the uniform electric field distribution characteristics of the excited zero-order mode will not change.
  • the electric field intensity generated by the two radiating units is different. Then, from the perspective of the overall electric field distribution, the energy will be concentrated near the radiation unit with a larger electric field intensity. For example, the energy will be concentrated near the radiation unit with a feed source. Near 1311. In this way, although the energy peak near the radiation unit 1311 is weakened compared to the loop antenna, there is still a relatively obvious energy accumulation area.
  • the size of the radiators of the radiating units with different distances from the feed source can be flexibly adjusted, so that the current on the radiator far away from the feed source can also have a current similar to that on the radiator close to the feed source.
  • the current distribution density enables the radiating unit far away from the feed source to generate a uniform normal electric field of similar intensity to the radiating unit close to the feed source. As a result, the electric field intensity distribution near the antenna is further evenly adjusted, further reducing the SAR of the antenna.
  • the antenna includes two radiating units.
  • Figure 15 is a schematic diagram of the composition of another terminal antenna provided by an embodiment of the present application.
  • the antenna 1510 may include two radiating units, namely a radiating unit 1511 and a radiating unit 1512.
  • the radiating unit 1511 in the antenna 1510 may have the composition of 801 as shown in FIG. 8
  • the radiating unit 1512 may have the composition of 803 as shown in FIG. 8 .
  • one end of the radiating unit 1511 may be provided with a feed source, and the other end of the radiating unit 1511 may be provided with a ground inductor L 1513 ; one end of the radiating unit 1512 may be connected to one end of the radiating unit 1511 provided with the ground inductor L 1513 , the other end of the radiation unit 1512 may be provided with a ground inductor L 1514 .
  • the inductor L 1513 may correspond to the inductor L 1313 in the antenna 1310
  • the inductor L 1514 may correspond to the inductor L 1314 in the antenna 1310 .
  • the radiating unit 1511 and the radiating unit 1512 may have different size settings.
  • the width of the radiating unit 1511 may be greater than the width of the radiating unit 1512.
  • the current density on the radiation unit 1512 does not change significantly.
  • the intensity of the uniform normal electric field generated by the current on the radiating unit 1512 is close to the intensity of the uniform normal electric field generated by the current on the radiating unit 1511 . Therefore, from the perspective of the antenna 1510 as a whole, the electric field distribution between the antenna radiator and the reference ground is more uniform than that of the antenna 1310, so the SAR is lower.
  • 1610 in Figure 16 can correspond to the composition of antenna 1310 as shown in Figure 13 .
  • the ground inductance set at the end of the antenna radiator as L 1601 and the ground inductance set between the end of the radiator and the feed source as L 1602 as an example.
  • the sense values of L 1601 and L 1602 can be the same or different.
  • the inductance values of L 1601 and L 1602 can be included in the range of 0.5nH-5nH.
  • the antenna having the composition shown in 1620 the radiating unit close to the feed source receives a relatively large current from the feed source, and at the same time, the current caliber is large; the radiating unit far away from the feed source receives a relatively small current, but the current caliber is relatively large. Small.
  • the current density on the radiating unit close to the feed source is not much different from the current density on the radiating unit far away from the feed source.
  • the electric field intensity near the radiating unit close to the feed can be further reduced, thereby further reducing the SAR value.
  • the radiation performance is better because the current distribution near the radiator is more uniform.
  • the width of the radiating unit far away from the feed source is reduced.
  • the current densities on the radiating unit close to the feed source and the radiating unit far away from the feed source are further closer, and the current densities on the radiating unit close to the feed source can be reached at 1620 Basically obtain lower SAR and better radiation performance.
  • Table 2 below shows the structural composition of 1610, 1620 and 1630 as shown in Figure 16.
  • the SAR of the 5G WiFi band is normalized using omnidirectional radiation power.
  • the simulation results of , the unit is W/kg.
  • the antenna with the structure shown in 1630 has the best SAR, the antenna with the structure shown in 1620 is second, and the antenna with the structure shown in 1610 is relatively high. .
  • FIGS 9 to 16 take the example of the antenna including two radiating units as an example. It can be seen that whether the feed is centered (the structure shown in Figure 9) or the feed is offset (the structure shown in Figure 13 or Figure 15), it can form a uniform distribution method between the antenna radiator and the reference ground. oriented electric field, thereby obtaining better radiation performance while obtaining lower SAR.
  • FIG. 17 is a schematic diagram of the composition of another terminal antenna provided by an embodiment of the present application.
  • antenna 1710 may include 4 radiating elements.
  • the selection and composition of radiating units can refer to the selection of the two radiating units in the above example.
  • any one of the four radiating units may use any of the examples shown in FIG. 8 .
  • the radiator lengths of each radiating unit are the same.
  • the antenna 1710 may be provided with a feed.
  • the feed can be placed in the middle of the radiator.
  • two grounding inductors can be evenly arranged, such as L 1711 , L 1712 , L 1713 and L 1714 from left to right.
  • the feed can be placed between L 1713 and L 1712 .
  • a simulation model of the antenna 1710 is also provided in FIG. 17 .
  • the inductance values of L 1711 , L 1712 , L 1713 and L 1714 may be the same or different. Taking the working frequency band of 5G WiFi as an example, the inductance values of L 1711 , L 1712 , L 1713 and L 1714 can all be included in the range of 0.5nH-5nH.
  • the antenna 1710 shown in FIG. 17 can be obtained by continuously setting one radiation unit on both sides of the antenna 910 .
  • the newly added radiation unit may have a structural composition as shown at 803 in Figure 8 .
  • a simulation is performed to illustrate the working conditions of the antenna based on the simulation results.
  • FIG 18 it is a schematic diagram of the electric field distribution when the antenna 1710 is working. It can be seen that when the antenna 1710 is working, although the length is doubled compared with the antenna 910, the antenna 1710 still maintains the zero-order mode, and the electric field distribution characteristics remain unchanged between the radiator and the reference ground (as shown in Figure 18 The area where the antenna 1710 is shown) is distributed with a uniform normal electric field. Therefore, the antenna 1710 can also have lower SAR and better radiation performance. In addition, compared with the antenna 910, the size of the antenna 1710 is larger, so the field strength of the uniformly distributed normal electric field is lower. Therefore, antenna 1710 may have a lower SAR than antenna 910. By analogy, in different implementations of the embodiments of the present application, when the lengths of the radiating units are the same, the greater the number of radiating units constituting the antenna, the lower the SAR will be.
  • Figure 19 shows a SAR simulation hotspot diagram of antenna 1710.
  • the antenna 1710 may also have two hot spots distributed on both sides of the feed source.
  • the hot spot distribution area on both sides of the antenna 1710 is larger, so the energy distribution is more dispersed and the SAR is relatively low.
  • Table 3 below shows the simulation results of the SAR of the antenna 1710 normalized using omnidirectional radiation power, in units of W/kg.
  • the maximum SAR of the antenna 1710 is 1.29. Compared with the maximum SAR of the antenna 910 in Table 1 which is 1.68 and the maximum SAR of the antenna 1630 in Table 2 which is 2.32, the antenna 1710 including four radiating units can Provides lower SAR.
  • the current density on different radiating units can be adjusted by adjusting the width of the radiating unit close to/away from the feed source, thereby obtaining better performance.
  • the width of the radiating elements on both sides far away from the feed source can be reduced, thereby increasing the current density of the radiating elements far away from the feed source, thereby making The normal electric field distribution near the antenna is more uniform.
  • FIG. 20 is a schematic diagram of the composition of another terminal antenna provided by an embodiment of the present application.
  • the antenna 2010 may include a radiator, and grounded inductors may be provided at both ends of the radiator.
  • four radiating units are assumed to be of the same length.
  • a total of four grounding inductors can be provided on the antenna 2010, such as L 2011 , L 2012 , L 2013 and L 2014 from left to right.
  • the feed can be set between L 2013 and L 2012 .
  • a simulation model of the antenna 2010 is also provided in FIG. 20 .
  • the inductance values of L 2011 , L 2012 , L 2013 and L 2014 may be the same or different. Taking the working frequency band of 5G WiFi as an example, the inductance values of L 2011 , L 2012 , L 2013 and L 2014 can all be included in the range of 0.5nH-5nH. As shown in Figure 20, in this example, the farther away from the feed source, the narrower the width of the radiating element. For example, the width of the radiating element between L 2011 and L 2012 may be smaller than the width of the radiating element between L 2012 and the feed source. For another example, the width of the radiating unit between L 2013 and L 2014 may be smaller than the width of the radiating unit between L 2013 and the feed source.
  • the width of the narrower radiating elements at both ends of the antenna 2010 is 1 mm, and the width of the two radiating elements close to the feed source is 2 mm.
  • Figure 21 shows a schematic diagram of the hot spot distribution of the antenna 2010. It can be seen that the antenna 2010 can also include 2 hot spots. Compared with the hot spot distribution of the antenna 1710 shown in Figure 19, the distribution areas of the two hot spots are more dispersed, and the hot spots are located further away from the feed source, so the SAR is lower.
  • Table 4 shows the simulation results of the SAR of the antenna 2010 normalized using omnidirectional radiation power, in units of W/kg.
  • Table 4 shows that the maximum SAR further drops from 1.29 for antenna 1710 to 1.06 for antenna 2010. It can be seen that antenna 2010 can provide a lower SAR than antenna 1710.
  • the number of radiating units on both sides can be the same. In other embodiments of the present application, when the feed source is placed in the middle, the number of radiating units on both sides may also be different. In addition, when two or more radiating units are provided on one side of the feed source, the width of the radiating unit can be reduced as the distance from the feed source increases, thereby making the distribution of current density on the radiating unit more uniform. , for better performance.
  • At least one end of the radiation unit is returned to the ground through a ground inductor.
  • the ground inductor can also be replaced by a distributed inductor or the equivalent inductance of other components.
  • antenna 910 shown in Figure 9 is taken as an example.
  • the grounding inductor at both ends of the antenna 910 can also realize its inductor grounding function through electrical connecting components.
  • the electrical connection component may be a metal spring.
  • the equivalent inductance of the metal shrapnel can be the same as the ground inductance.
  • the equivalent inductance of the metal shrapnel can be included in the range of 0.5nH-5nH.
  • Figure 23 shows a simulation model of the antenna solution shown in Figure 22 from another angle.
  • the antenna radiator of the antenna 910 may be a 3D structure.
  • the 3D structure of the antenna radiator as shown in Figure 23 can correspond to the copper-covered area in the FPC antenna, and the FPC antenna can be mounted on the antenna bracket for support.
  • the function of the grounding inductor can be realized by metal elastic pieces (such as elastic pieces 2302 and 2303).
  • the elastic piece 2301 is the corresponding electrical connection component at the feed source.
  • the elastic piece 2301 can realize the electrical connection between the antenna and the radio frequency circuit on the main board or the small board at the feed source, so that the electronic device can feed the antenna.
  • the FPC antenna can be provided with exposed copper gold fingers at the corresponding positions of the elastic piece 2301, the elastic piece 2302, and the elastic piece 2303, so that the elastic piece 2301, the elastic piece 2302, and the elastic piece 2302 can be overlaid with the FPC antenna at the exposed copper gold finger. Electrical connection to the copper area (i.e. antenna radiator).
  • a ground matching component may also be provided between the ground inductor (the metal spring as shown in Figure 22) and the reference ground.
  • the ground matching component as a tuning capacitor.
  • a tuning capacitor can be provided between the metal spring and the reference ground.
  • the metal spring piece can be welded on the PCB board, and the metal spring piece can be coupled to the reference ground through the solder pad.
  • the tuning capacitor may be provided on the radio frequency microstrip line between the pad and the reference ground for frequency selection and/or tuning of the operating frequency band.
  • the antenna 910 shown in FIG. 9 is taken as an example.
  • the grounding inductor at both ends of the antenna 910 can also realize its inductive grounding function through a distributed inductor.
  • the distributed inductance may be a serpentine line radiator.
  • the equivalent inductance of the serpentine radiator can be the same as the ground inductance.
  • the equivalent inductance of the serpentine line radiator can include In the range of 0.5nH-5nH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请实施例公开了一种终端天线及电子设备,涉及天线技术领域,能够在提供较小的SAR的同时,提供较好的辐射性能。具体方案为:终端天线包括:第一辐射体,第一辐射体包括N个首尾相连的辐射单元,N为大于或等于2的整数。任一个辐射单元的一端通过电抗单元接地。N个辐射单元中包括第一辐射单元,第一辐射单元上远离电抗单元的一端设置有馈源。

Description

一种终端天线及电子设备
本申请要求于2022年6月20日提交国家知识产权局、申请号为202210700287.3、发明名称为“一种终端天线及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种终端天线及电子设备。
背景技术
电子设备中的天线可以通过辐射电磁波提供无线通信功能。在电磁波被用户大量吸收时,可能会对用户的健康造成影响。
因此,电子设备中的天线需要在提高辐射性能的同时,减小人体对电磁波的吸收。
发明内容
本申请实施例提供一种终端天线及电子设备,能够在提供较小的SAR的同时,提供较好的辐射性能。由于SAR较低,因此人体对电磁波的吸收也就较低。
为了达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种终端天线,终端天线设置在电子设备中,终端天线包括:第一辐射体,第一辐射体包括N个首尾相连的辐射单元,N为大于或等于2的整数。任一个辐射单元的一端通过电抗单元接地。N个辐射单元中包括第一辐射单元,第一辐射单元上远离电抗单元的一端设置有馈源。
这样,通过多个辐射单元串联设置即可获取本申请实施例提供的终端天线。辐射单元的数量越多,该天线的性能越好。通过在每个辐射单元上设置接地部件,实现对辐射单元工作时辐射体上电流的均匀调节,从而获取馈电端和回地端相对均匀的电流分布,进而激励均匀的法向电场进行辐射。由此获取较好的辐射性能以及较低的SAR。
在一种可能的设计中,任一个辐射单元的一端设置有电抗单元,包括:对于任一个辐射单元,电抗单元设置在辐射单元上远离馈源的一端。这样,通过在远离馈源的一端设置接地部件,实现对接地部件以及馈源之间的辐射情况的调节。
在一种可能的设计中N个辐射单元中还包括第二辐射单元,第二辐射单元设置在第一辐射单元靠近馈源的一侧,第二辐射单元的第一端设置有电抗单元。第二辐射单元在第二端与第一辐射单元的第三端连接,第二端不同于第一端,第三端是第一辐射单元上设置有馈源的一端。这样,在第二辐射单元和第一辐射单元的辐射体首尾连接后,馈源就可以位于第一辐射单元和第二辐射单元的中间位置,在两端可以分别通过接地部件回地。
在一种可能的设计中,N个辐射单元还包括第三辐射单元,第三辐射单元设置在第一辐射单元远离馈源的一侧,第三辐射单元的第四端设置有电抗单元,第三辐射单元在第五端与第一辐射单元的第六端连接,第五端不同于第四端,第六端是第一辐射单元上远离馈源的一端。这样,在第三辐射单元和第一辐射单元首尾连接后,馈源就可以设置在第三辐射单元和第二辐射单元构成辐射体的一端,另一端可以通过接地部 件回地,在辐射体上还可以设置有一个接地部件。
在一种可能的设计中,任一个辐射单元的长度不超过终端天线的工作频段的1/4波长。这样,使得辐射单元能够通过激励零阶模覆盖工作频段。由于该长度小于或等于1/4波长的特性,使得该天线更利于小型化设计。
在一种可能的设计中,在N个辐射单元中,距离馈源越远,辐射单元的宽度越小。这样,通过调整辐射单元的宽度,使得远离馈源的辐射单元的电流密度得到提高,从而更加接近靠近馈源的辐射单元上的电流密度。由此使得天线整体产生的法向电场强度趋于均匀。
在一种可能的设计中,电抗单元包括以下中的任一种:集总电感,分布式电感,电连接部件。这样,在不同的实施例中,接地部件可以具有不同的实现,如集总式电感,分布式电感(如蛇形线等),或通过电连接器件(如弹片、顶针等)的等效电感实现该接地设置的电感的功能。
在一种可能的设计中,在电抗单元和参考地之间还设置有调谐电容。这样,通过调整回地之前的调谐电容大小,能够起到频率选择以及频率调谐的作用。
在一种可能的设计中,终端天线的工作频段包括5150MHz-5850MHz,电抗单元的电感包括在[0.5nH,5nH]的范围内。这样,通过将接地部件的电感调整到该范围内,使得零阶模能够覆盖5G WiFi的工作频段。
在一种可能的设计中,在终端天线工作时,终端天线的辐射体附近分布有均匀的法向电场。这样,通过均匀的电场辐射,提供更好的辐射性能;由于电场分布均匀,不存在能量特别集中的区域,因此SAR更低;此外由于人体对法向电场的吸收更少,进一步降低SAR。
第二方面,提供一种电子设备,该电子设备设置有如第一方面及其任一种可能的设计中所述的终端天线。该电子设备在进行信号发射或接收时,通过该终端天线进行信号的发射或接收。
应当理解的是,上述第二方面提供的技术方案,其技术特征均可对应到第一方面及其可能的设计中提供的终端天线,因此能够达到的有益效果类似,此处不再赘述。
附图说明
图1为一种多个电子设备交互的示意图;
图2为一种天线的组成示意图;
图3为一种平板电脑辐射的示意图;
图4为一种环天线附近电场分布的示意图;
图5为本申请实施例提供的一种电子设备的组成示意图;
图6为本申请实施例提供的一种天线设置的示意图;
图7为本申请实施例提供的一种天线的组成示意图;
图8为本申请实施例提供的辐射单元的组成示意图;
图9为本申请实施例提供的一种终端天线的组成示意图;
图10为本申请实施例提供的一种电场仿真示意图;
图11为本申请实施例提供的一种热点分布示意图;
图12为本申请实施例提供的一种效率仿真对比示意图;
图13为本申请实施例提供的一种终端天线的组成示意图;
图14为本申请实施例提供的一种电场仿真示意图;
图15为本申请实施例提供的一种终端天线的组成示意图;
图16为本申请实施例提供的一种终端天线的组成示意图;
图17为本申请实施例提供的一种终端天线的组成示意图;
图18为本申请实施例提供的一种电场仿真示意图;
图19为本申请实施例提供的一种热点分布示意图;
图20为本申请实施例提供的一种终端天线的组成示意图;
图21为本申请实施例提供的一种热点分布示意图;
图22为本申请实施例提供的一种终端天线的组成示意图;
图23为本申请实施例提供的一种仿真模型的示意图;
图24为本申请实施例提供的一种终端天线的组成示意图;
图25为本申请实施例提供的一种终端天线的组成示意图。
具体实施方式
电子设备通过其中设置的天线实现与其它设备之间的无线通信。示例性的,参考图1,以平板电脑与其它设备通信为例。在平板电脑的侧边(如长边)可以设置有天线,通过天线的模拟信号与无线电磁波之间的转换能力,实现无线信号的收发,进而与手机、路由器等电子设备建立无线通信连接。
作为一种示例,图2为一种传统的天线设计示意。在本示例中,平板电脑的侧边可以设置有天线设置区域。在该天线设置区域中可以设置天线。如图2的示例中,在天线设置区域中可以设置有环(Loop)天线,用于支持平板电脑的无线通信功能。
该Loop天线可以包括辐射体21,该辐射体21的两端可以分别设置有馈源和接地点。
馈源可以用于与射频模块耦接,以便在发射场景下接收来自射频模块的射频信号(模拟信号)馈入天线,通过天线以电磁波的形式将射频信号传输出去,或者,在接收场景下将天线接收到的电磁波转换获取的模拟信号传输给射频模块,以便射频模块对模拟信号进行处理实现信号接收。
接地点可以是辐射体与参考地的连接点。例如,辐射体21可以在该接地点与参考地直接连接。又如,辐射体21可以在该接地点通过电容/电感/电阻等电子部件与参考地连接。
应当理解的是,参考图3,天线在工作时,可以将射频信号以电磁波的形式辐射出去。相应的,在用户使用电子设备时,与天线的距离较近,也就会受到天线发射的电磁波的影响。在本申请中,可以通过电磁波比吸收率(Specific Absorption Rate,SAR)描述天线工作时,人体对电磁波的吸收情况,也即天线发出电磁波对人体的影响。由于天线在不同工作频点的辐射性能有差异,因此,在不同频点的SAR也可以不同。SAR越高,则表明人体对该频点的电磁波吸收越大,天线工作时发出的电磁波对人体影响越大。反之,SAR越低,则表明人体对该频点的电磁波吸收越小,天线工作时发出的电磁波对人体影响越小。
那么,为了控制天线工作时对用户人体的影响,则需要对天线在工作频段内的SAR 进行控制。多数地区的运营商也将天线的SAR作为终端设备准入的一项指标。
以下分别从辐射性能以及电参数分布的角度,对天线工作时的SAR特征进行举例说明。
从天线工作时,辐射性能的角度。辐射性能可以通过效率(如辐射效率、系统效率)等标识。在其他条件均相同的情况下,辐射性能越好,则效率越高,天线向空间中辐射的电磁波强度越大,SAR越高。对应的,辐射性能越差,则效率越低,天线向空间中辐射的电磁波强度越小,SAR越低。
从天线工作时,电参数分布的角度。以电参数为辐射体上分布的电场为例。在其它条件均相同的情况下,天线工作时,电场分布越分散,SAR越低。对应的,电场分布越集中,SAR越高。对于其它电参数的分布与SAR的对应关系,如电流分布与SAR的对应关系,磁场分布与SAR的对应关系,可以参考上述电场分布与SAR的对应关系,此处不再赘述。
可以看到,通过调整天线的辐射性能以及电参数分布,能够起到调整SAR的效果。
一般而言,为了保证天线提供的无线通信质量,降低辐射性能以便满足低SAR的要求显然不是较好的选择。而对于已知结构的天线而言,其电参数分布相对固定,难以调节。
示例性的,以图2所示的Loop天线为例。如图4示出了该Loop天线工作时的电场分布示意图。为了便于说明,同时给出了电场仿真对应的逻辑示意进行陈述。在该示例中,Loop天线可以工作在二分之一波长模式。对应的,在靠近馈源附近以及靠近接地点附近的空间中,电场分布可以不同。比如,在图4的示例中,靠近馈源的区域(如区域1)的能量分布更强,靠近接地点的区域(如区域2)的能量分布相对较弱。由此也就导致辐射电磁波能量多数集中在区域1中。从SAR的角度,则对应热点集中,进而导致SAR较高,对人体的影响较大。
为了解决现有天线SAR较高的问题,本申请实施例提供一种终端天线,天线工作在零阶模式下,第一,零阶模式能够在工作时产生相对均匀的电场进行辐射,使得天线发出电磁波在天线周围各个空间区域中的能量分布较为均衡,从而避免局部能量较高导致的热点集中的情况出现,由此使得天线具有较低的SAR;第二,由于零阶模式的均匀电场分布特性与天线尺寸无关,因此可以把天线长度设置得比较长,且不改变天线零阶模式的电场分布特性,从而进一步分散能量降低SAR。此外,该天线还可以提供较好的辐射性能,进而提供较好的无线通信质量。
以下将结合附图对本申请实施例提供的方案进行详细说明。
本申请实施例提供的天线方案,可以应用在用户的电子设备中,用于支持电子设备的无线通信功能。比如,该电子设备可以是手机、平板电脑、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备、媒体播放器等便携式移动设备,该电子设备也可以是智能手表等可穿戴电子设备。本申请实施例对该设备的具体形态不作特殊限制。
作为一种示例,以下以电子设备为平板电脑为例,即本申请实施例提供的天线方案应用于平板电脑中,用于支持平板电脑的无线通信功能。示例性的,该天线可以用于支持平板电脑的蓝牙通信、WLAN通信等。对应的,该天线的工作频段可以包括蓝牙 频段(如2.4GHz)、2.4G WIFI频段(如2.4GHz-2.5GHz)、5G WIFI频段(如5150MHz-5850MHz)中的一个或多个频段。
在不同实现中基于平板电脑的不同外观ID,天线可以设置在平板电脑的不同位置。
示例性的,以平板电脑具有全金属后壳的外观ID为例。其中,全金属后壳可以指,平板电脑的后壳为金属材质,后壳可以向平板电脑的侧面延伸,包裹平板电脑的其它部件,呈现为平板电脑的背面和侧面完整的一块金属后壳。
图5示出了一种具有全金属后壳的平板电脑的组成示意图。如图5所示,本申请实施例提供的电子设备(即平板电脑)沿z轴由下到上(即从背面到正面)的顺序可以依次设置后壳51,电路板52,以及显示屏53。
其中,后壳51可以具有全金属结构。组成该全金属结构的金属材质可以包括低碳钢、航空铝、高强度铝合金、不锈钢、和/或钛合金等。基于全金属结构的高强度特性,后壳51可以作为背面的外观面,为平板电脑提供基础支撑。在一些实施例中,后壳51上可以设置有开孔,以便配合其它部件实现对应功能。示例性的,在平板电脑中设置有后置摄像头时,后壳51上可以在后置摄像头对应位置开孔,以便后置摄像头对应的拍摄部件(如摄像头的图像采集部分等)可以通过该开孔向外伸出,实现拍摄功能。在本示例中,后壳51还可以从xoy面通过转角延伸到侧面(如xoz面和/或yoz面),从而实现全金属包裹的效果。当然,在另一些实施例中,该后壳51也可以为金属和非金属材料共同组成的。
在本示例中,后壳51的侧边设置开窗结构,以便为平板电脑的部分部件的设置提供相应的空间。比如,在该开窗结构中可以设置有天线等部件。
需要说明的是,由于后壳51的全金属结构设置,使得后壳51能够提供大面积的零电位参考。因此,该后壳51也可以作为其它电子部件(如天线、射频部件或其它电子部件)的参考地使用。
继续结合图5,本申请中的平板电脑还可以设置有电路板52等内部组件。电路板52可以由印制电路板(Printed Circuit Board,PCB)和/或柔性电路板(Flexible Printed Circuit Board,FPC)制备而成。在不同实现中,电路板52可以包括一个或多个。电路板52可以作为各个电子部件的承载结构,通过在电路板52上的各个电子部件之间设置信号传输线实现各个电子部件的互联,以保证电子部件的工作。电路板52也可以与其它参考地电连接,作为天线的参考地使用,天线接地可以连接在电路板52上。
示例性的,在电路板52上可以设置有处理器。处理器可以包括一个或多个处理单元,例如:处理器可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。处理器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。处理器中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器中的存储器可以为高速缓冲存储器。该存储器可以保存处理器用过或使用频率较高 的指令或数据。如果处理器需要使用该指令或数据,可从该存储器中直接调用。避免了重复存取,减少了处理器的等待时间,因而提高了系统的效率。在一些实施例中,处理器可以为微处理器(Microprocessor Unit,MPU)或微控制单元(Microcontroller Unit,MCU)。
在电路板52上还可以设置有射频模块等通信模块。射频模块通过基带线路与基带处理器连接,射频模块的还可以与天线连接,由此实现无线通信功能。示例性的,在进行信号发射时,基带处理器通过基带线路向射频模块发送数字信号,射频模块对数字信号进行转换、处理,获取对应的模拟信号。射频模块将该模拟信号经由馈源传输给天线,以便于天线将模拟信号转换成电磁波向外辐射。在进行信号接收时,天线将电磁波转换成携带有信息的模拟信号,并经由馈源传输给射频模块。射频模块对该模拟信号进行射频域处理后传输给基带处理器。基带处理器对该信号进行解析,获取接收到信号中携带的信息。
继续结合图5,本申请中的平板电脑还可以设置有显示屏53。该显示屏53可以用于向用户提供显示功能。在一些实现中,显示屏53可以通过与后壳51的侧边部分进行贴装,获取平板电脑的整体外观。示例性的,显示屏53包括外观玻璃以及显示部件(或称为显示面板)。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,平板电脑可以包括1个或多个显示屏53。
在本申请中,在电路板52和后壳51之间还可以设置有天线。在不同实现中,天线的具体实现可以不同。比如,天线的辐射体可以设置在电路板52上,实现PCB天线。又如,天线的实现还可以是采用FPC的形式贴装在天线支架上的。又如,天线的实现还可以是通过激光直接成型(Laser Direct Structuring,LDS)工艺将天线辐射体蚀刻在天线支架上的。此外,在另一些实施例中,天线的实现还可以是基于阳极氧化的压铸成型工艺(Metalframe Diecasting for Anodicoxidation,MDA)、冲压(Stamping)等工艺实现的。或者,该天线方案还可以是结合上述至少两种实现方式组合获取的。本申请实施例对于该天线的具体实现形式不做限定。
结合图6所示,在本申请中,为了满足天线的设置需求,后壳51在侧面可以设置有开窗结构,以便在该开窗结构中为天线提供侧面的辐射空间。这样,在天线的辐射体设置在该开窗结构中时,就能够通过正面的非显示区域进行辐射的同时,通过该开窗结构向侧面进行辐射,从而提升天线的辐射性能。
应当理解的是,在另一些实施例中,天线还可以设置在不同于如图5或图6所示的位置。比如,后壳51为非金属材料的情况下,则天线还可以贴装在后壳51内侧的任意位置。具体天线的设置位置,对于天线的组成以及工作机制并不构成影响。以下示例中,以后壳51为全金属后壳,该天线设置在开窗结构中为例。
如图6所示,本申请实施例提供的天线方案中,天线可以由N个辐射单元(如辐射单元1-辐射单元N)构成,N为大于或等于2的整数。在不同实现中,辐射单元的 数量可以不同。N个辐射单元首尾串联设置,以获取本申请实施例提供的天线方案。
需要说明的是,在不同实现中,组成天线的N个辐射单元可以相同,也可以不完全相同。
示例性的,对于任一个辐射单元而言,辐射单元可以包括一个辐射体。该辐射体的电长度可以不大于天线工作波长的1/4。其中,辐射体的电长度可以根据辐射体使用材料的介电常数等电参数换算获取。以天线的工作频段为5G WIFI(即5150MHz-5850MHz)为例,辐射单元的辐射体长度可以不超过8mm。以下为了便于说明,将辐射体的电长度简称为辐射体的长度。
需要说明的是,在本申请的一些实现中,辐射单元的辐射体的长度也可以大于天线工作波长的1/4。这样,可以通过在馈源处设置匹配电路,以便将辐射单元产生的谐振调整到工作频段的范围内。
在辐射单元的辐射体的两端可以分别设置有一个电连接点。电连接点可以设置有馈源或通过电感接地。
图7示出了本申请实施例提供的一种终端天线的结构示意图。在本示例中,该天线可以包括多个辐射单元。例如,馈源左侧可以包括M1个辐射单元,馈源右侧可以包括M2个辐射单元。M1与M2之和等于N,N为大于或等于2的整数。那么,在M1等于M2时,则对应馈源设置在天线辐射体中间位置,即为中馈方案。在M1不等于M2时,则对应偏馈方案。在一些实施例中,如图7所示,辐射单元的宽度可以随着与馈源距离的增加而梯度减小。
需要说明的是,在本申请实施例中,馈源与天线辐射体之间的连接可以为直连,也可以为通过一个或多个端口匹配部件耦接的。其中,端口匹配部件可以包括电容、电感和/或电阻。该一个或多个端口匹配部件的设置可以用于调整天线的端口阻抗,和/或用于调谐天线的工作频率。
与馈源处设置端口匹配部件类似的,在本申请的一些实施例中,在如图7所示的任一个或多个接地电感与辐射体之间,或者接地电感与参考地之间,也可以设置有一个或多个接地匹配部件。其中,接地匹配部件可以包括电容、电感和/或电阻。以接地匹配部件为电容为例,该一个或多个电容的设置可以用于调整天线工作时的频率选择状态。例如,在天线附近设置有SAR传感器(SAR sensor)时,通过设置该一个或多个电容,可以减小或消除SAR sensor的工作对天线的工作的影响。在另一些实施例中,该一个或多个电容还可以用于对天线的工作频段进行调谐。
上述端口匹配部件以及接地匹配部件的使用和功能均可以应用到本申请实施例提供的任一种方案实现中。为了便于说明,以下以馈源与辐射体直连,辐射体在接地电感处直接通过接地电感与参考地连接为例。
从单个辐射单元的结构组成的角度,不同实施例中,辐射单元的组成可以不同。
作为一种示例,请参考图8。在一些实施例中,如图8中的801所示,辐射单元的辐射体的左侧末端可以设置有馈源,辐射单元的辐射体的右侧末端可以通过电感L1接地。
在另一些实施例中,如图8中的802所示,辐射单元的辐射体的左侧末端可以通过电感L2接地,辐射单元的辐射体的右侧末端可以设置有馈源。
在另一些实施例中,如图8中的803所示,辐射单元的辐射体的左侧末端可以通过电感L3接地,辐射单元的辐射体的右侧末端可以通过电感L4接地。
其中,L1、L2、L3以及L4的感值可以各不相同,也可以包括至少两个感值相同的电感。该L1、L2、L3以及L4的感值可以根据天线的工作频段灵活选取。示例性的,以天线的工作频段为5G WIFI(即5150MHz-5850MHz)为例,L1、L2、L3以及L4的感值可以包括在0.5nH-5nH的范围内。
本申请中,图7中的本申请实施例提供的天线方案,由如图8所示的至少两个或多个辐射单元串联连接构成,且仅有一个馈源。
需要说明的是,图7中本申请实施例提供的天线,设置有一个馈源和至少两个通过电感连接参考地的接地点。这样,多个电感的边界条件可以使天线工作在零阶模式,此时天线可以等效为介电常数趋于零的材料,天线工作时,在周围空间中能够产生相对均匀的电场分布。在本示例中,在每个辐射单元工作时,在其附近空间中形成的电场都以法向电场为主。基于该均匀分布的法向电场进行的辐射,能够最大程度地降低人体对电磁波的吸收,从而在保证较高的辐射性能的同时,具有较低的SAR。此外,零阶模式与天线长度没有直接关系,所以可以将更多个辐射单元串联在一起,且不改变天线零阶模式的均匀电场分布特性。辐射单元数量越多,能量也就更加分散,从而增加天线单元数量能进一步降低SAR。
可以理解的是,天线在进行辐射时,与人体之间的电场/磁场吸收转换情况可以根据电磁场边界条件确定。示例性的,分别从法向分量和切向分量标识电场和磁场的转换情况。法向分量可以为电场线中由天线指向人体的分量,或者由人体指向天线的分量。切向分量与该法向分量垂直。
电场和磁场在法向以及切向分量的转换关系如下公式1-公式4所示:
En2=(ε12)En1……公式(1);
Hn2=(μ12)Hn1……公式(2);
Et2=Et1……公式(3);
Ht2=Ht1……公式(4)。
公式(1)对应为天线的电场的法向分量En1与人体内产生电场的法向分量En2的转换关系。ε1为天线周围的介质材料或者空气的介电常数,ε2为人体的介电常数。
公式(2)对应为天线的磁场的法向分量Hn1与人体内产生磁场的法向分量Hn2的转换关系。μ1为天线周围的介质材料或者空气的磁导率,μ2为人体的磁导率。
公式(3)对应为天线的电场的切向分量Et1与人体内产生电场的切向分量Et2的转换关系。
公式(4)对应为天线的电场的切向分量Ht1与人体内产生磁场的切向分量Ht2的转换关系。
人体的介电常数远大于常用天线周围介质材料(如塑胶支架)的介电常数,例如人体的相对介电常数为40左右,塑胶支架的介电常数为3左右,而两者的相对磁导率都是1。因此,基于公式(1),在天线与人体之间的电磁波主要体现为法向电场时,则人体内产生的电场可以远小于天线辐射。那么,人体对电磁波的吸收最小,SAR最低。
在天线与人体之间的电磁波主要体现为法向电场的情况下,能量分布越均衡(即均匀电场),则不会出现局部热点集中的情况,因此SAR更低。
基于上述说明,由于本申请实施例提供的零阶模式天线方案,能够在天线和人体之间产生接近均匀分布的法向电场,且零阶模式的电场分布特性与天线长度无关,可以串联多个辐射单元进一步分散能量,因此具有更低的SAR。
以下将通过举例,对本申请实施例提供的天线方案的具体实现进行详细说明。
示例性的,在一些实施例中,本申请实施例提供的终端天线可以包括2个辐射单元。该两个辐射单元可以相同,也可以不同。任一个辐射单元可以具有如图8所示的任一种辐射单元的组成。
请参考图9,为本申请实施例提供的一种终端天线的组成示意图。同时在图9中给出的还包括该天线方案的仿真模型示意。
如图9所述,该天线910可以包括2个辐射单元,分别为辐射单元911以及辐射单元912。在本示例中,辐射单元911可以具有如图8所示的802的组成,辐射单元912可以具有如图8所示的801的组成。辐射单元911和辐射单元912的辐射体可以在设置馈源的末端互相连接。对应的,在该如图9所示的天线910的辐射体上,就可以设置有一个馈源,以及两个末端的接地电感(如L913和L914),L913和L914的设置也可参考图8中L1-L4的示意,此处不再赘述。
在一些实施例中,该如图9所示的天线910还可以描述为:该天线910可以包括一个辐射体,该辐射体的长度不超过工作波长的1/2。在该辐射体的两个末端分别设置有接地电感。该两个接地电感(如L913和L914)的感值可以根据工作频段确定。示例性的,以工作频段覆盖5G WIFI频段为例,两个接地电感L913和L914的感值可以设置在0.5nH-5nH的范围内。在不同实施例中,L913和L914的感值可以相同,也可以不同。天线910上还可以设置有一个馈源。馈源到任一个末端的距离不超过工作波长的1/4。示例性的,在辐射单元911的长度和辐射单元912的长度相同时,则馈源可以设置在天线910的辐射体的中间位置。
如图9所示的天线910在工作时能够在天线910的辐射体与参考地之间形成均匀分布的电场进行辐射。该均匀分布的电场可以为天线与人体之间的法向电场。这样,基于人体较小吸收法向电场的特性,以及均匀分布的能量分布不集中的效果,该天线910在工作时能够获取较低的SAR。
示例性的,图10示出了图9所示的天线910在工作时的电场仿真示意。其中,箭头颜色越深,表明电场强度越大。作为对比,图10还给出了如图2所示的loop天线工作时的电场仿真示意。如图10所示,其中的1001为环(loop)天线工作时周围电场的分布。可以看到,在环天线设置区域的中间位置,分布有较强的电场。对应的,在环天线设置区域的两端,电场较弱。也就是说,该loop天线工作时的电场分布并不均匀。如图10中的1002所示,为本申请中天线910工作时的电场仿真示意。可以看到,在该天线910工作时,其天线设置区域(如1002所示的天线910设置区域)中的电场强度分布均匀。
基于前述说明,具有均匀分布特征的电场可以具有较低的SAR。
如图11所示,为如图9所示的天线910的SAR测试热点示意图。作为对比,图 11还给出了如图2所示的loop天线的SAR测试热点示意图。其中,颜色越浅,表明能量越强。图11中的1101为loop天线的SAR测试热点示意。可以看到,该loop天线工作时,天线附近分布有1个热点。也就是说,大部分能量集中在该热点区域,SAR较高。图11中的1102为天线910的SAR测试热点示意。可以看到,该天线910工作时,天线附近分布有2个热点。也就是说,能量可以分别在两个热点处聚集。因此,每个热点处的能量强度都小于loop天线的热点处的能量分布。那么,由于该天线910的热点更多,能量分布相对更均匀,因此相比于loop天线可以具有更低的SAR。
作为一种示例,以下表1为loop天线以及天线910的SAR使用全向辐射功率进行归一化的仿真结果。以0mm body SAR仿真场景,工作频段为5G WIFI为例,单位为W/kg。
表1
如表1所示,在5.2GHz处,Loop天线的1g SAR仿真结果为2.22,本申请提供的天线910的1g SAR仿真结果为1.22。在5.5GHz处,Loop天线的1g SAR仿真结果为1.61,本申请提供的天线910的1g SAR仿真结果为1.33。在5.8GHz处,Loop天线的1g SAR仿真结果为2.9,本申请提供的天线910的1g SAR仿真结果为1.68。可见,在5G WiFi全频段中,天线910的SAR都显著低于Loop天线。
应当理解的是,本示例的对比中,为了避免辐射体长度不一致导致的对比结果失准,在申请中,loop天线的辐射体长度和天线910的辐射体长度设置为相同,如16mm。天线宽度设置为相同,如2mm。那么,loop天线可以通过1/2波长模式覆盖工作频段。天线910可以通过激励均匀电场进行辐射的零阶模式覆盖工作频段。需要说明的是,本申请实施例提供的天线激励的零阶模式的电场分布特性,可以是由任一个辐射单元的辐射体长度以及该辐射单元上设置的接地电感的大小共同决定。天线中包括的辐射单元数量越多,辐射性能越强,但是激励的零阶模式的均匀电场分布特性不会发生变化。
本申请实施例提供的天线910,不仅能够在全频段提供较低的SAR,同时还能够保证较好的辐射性能。作为一种示例,图12示出了该天线910的效率仿真结果。
如图12所示,从辐射效率的角度,天线910在全频段均高于Loop天线。也就是说,该天线910在全频段端口完全匹配情况下,能够提供更好的辐射性能。从系统效率的角度,天线910的峰值效率比Loop天线的峰值效率高0.2dB左右,且带宽远大于Loop天线,在5G WiFi全频段的效率均在-1.5dB以上,表现更加优异,而Loop天线仅在-4dB以上。因此,如图9所示的天线910不仅能够提供更低的SAR,还能够提供更好的辐射性能。
请参考图13,为本申请实施例提供的又一种终端天线的组成示意图。同时在图12中给出的还包括该天线方案的仿真模型示意。
如图13所述,该天线1310可以包括2个辐射单元,分别为辐射单元1311以及辐 射单元1312。在本示例中,辐射单元1311可以具有如图8所示的801的组成,辐射单元1312可以具有如图8所示的803的组成。辐射单元1311设置接地电感L1313的一端可以与辐射单元1312的任一端连接。在两个辐射单元互相连接的一端,可以将两个接地电感简化为1个接地电感(如电感L1313)。辐射单元1312远离辐射单元1311的一端可以通过电感L1314接地。电感L1313以及电感L1314的设置也可参考图8中L1-L4的示意,此处不再赘述。
在一些实施例中,该如图13所示的天线1310还可以描述为:该天线1310可以包括一个辐射体,该辐射体的长度不超过工作波长的1/2。在该辐射体的一个末端设置有馈源,该辐射体的另一个末端设置有接地电感L1314。在该辐射体上还可以设置有另一个接地电感L1313。示例性的,以工作频段覆盖5G WIFI频段为例,两个接地电感的感值可以设置在0.5nH-5nH的范围内。在不同实现中,两个接地电感的感值可以相同也可以不同。该辐射体上设置的接地电感L1313到天线1310的任一个末端的距离不超过工作波长的1/4。示例性的,在辐射单元1311的长度和辐射单元1312的长度相同时,则设置在辐射体上不同于末端的接地电感L1313可以位于天线1310的辐射体的中间位置。由此,对比如图9所示的方案示例,该天线1310可以具有偏馈设置的特点。
如图13所示的天线1310在工作时能够在天线1310的辐射体与参考地之间形成均匀分布的电场进行辐射。该均匀分布的电场可以为天线与人体之间的法向电场。不同于如图9所示的方案中,天线910整体与参考地之间都可以分布有均匀的法向电场。在本示例中,辐射单元1311与辐射单元1312可以分别基于均匀的法向电场进行辐射。而由于辐射单元1311的辐射体与辐射单元1312的辐射体距离馈源的距离不同,因此,辐射单元1311和辐射单元1312分别产生的法向电场的强度可以稍有差别。例如,辐射单元1312附近的法向电场强度可以稍小于辐射单元1311附近的法向电场强度。
这样,基于人体较小吸收法向电场的特性,以及均匀分布的能量分布不集中的效果,该天线1310在工作时能够获取较低的SAR。
示例性的,图14示出了图13所示的天线1310在工作时的电场仿真示意。其中,箭头颜色越深,表明电场强度越大。如图14所示,在该天线1310工作时,其天线设置区域(如图14所示的天线1310设置区域)中的电场强度分布均匀。基于前述说明,具有均匀分布特征的电场可以具有较低的SAR。其原理与结论与天线910类似。
此外,上述对图13的仿真示例中,与图9对应的仿真参数设置类似的,为了避免辐射体尺寸不一致导致的对比结果失准,在如图13的仿真过程中,loop天线的辐射体长度和天线1310的辐射体长度设置为相同,如16mm。天线宽度设置为相同,如2mm。那么,loop天线可以通过1/2波长模式覆盖工作频段。天线1310可以通过激励均匀电场进行辐射的零阶模式覆盖工作频段。需要说明的是,本申请实施例提供的天线激励的零阶模式的电场分布特性,可以是由任一个辐射单元的辐射体长度以及该辐射单元上设置的接地电感的大小共同决定。天线中包括的辐射单元数量越多,辐射性能越强,但是激励的零阶模式的均匀电场分布特性不会发生变化。
需要说明的是,在如图13所示的天线1310的方案中,由于偏馈的结构设置,使得两个辐射单元产生的电场强度有所差别。那么,从整体的电场分布的角度,能量会集中在电场强度较大的辐射单元附近,比如,能量会集中在设置有馈源的辐射单元 1311附近。这样,虽然相较于loop天线,在辐射单元1311附近的能量峰值得到了减弱,但是依然有较为明显的能量聚集区域。
在本申请的另一些实施例中,可以通过灵活调整与馈源距离不同的辐射单元的辐射体尺寸,使得电流能够在远离馈源的辐射体上也具有与靠近馈源的辐射体上相近的电流分布密度,进而使得远离馈源的辐射单元也能够产生与靠近馈源的辐射单元类似强度的均匀法向电场。由此,使得天线附近的电场强度分布得到进一步均匀调节,进一步降低天线的SAR。
作为一种示例,继续以天线包括两个辐射单元为例。
请参考图15,为本申请实施例提供的又一种终端天线的组成示意图。
在本示例中,天线1510可以包括2个辐射单元,分别为辐射单元1511以及辐射单元1512。其中,类似于图13所示的天线1310的组成,该天线1510中的辐射单元1511可以具有如图8所示的801的组成,辐射单元1512可以具有如图8所示的803的组成。例如,在本示例中,辐射单元1511的一端可以设置有馈源,辐射单元1511的另一端可以设置有接地电感L1513;辐射单元1512的一端可以与辐射单元1511设置接地电感L1513的一端连接,辐射单元1512的另一端可以设置有接地电感L1514。其中,电感L1513可以对应到天线1310中的电感L1313,电感L1514可以对应到天线1310中的电感L1314。与天线1310不同的是,该辐射单元1511和辐射单元1512可以具有不同的尺寸设置。比如,辐射单元1511的宽度可以大于辐射单元1512的宽度。这样,电流在流入辐射单元1512时,虽然电流强度小于辐射单元1511上的电流强度,但是由于电流传输口径的减小,使得电流密度在辐射单元1512上并不会出现较大的变化。这样,辐射单元1512上的电流产生的均匀的法向电场的强度与辐射单元1511上的电流产生的均匀的法向电场的强度接近。由此,从天线1510整体的角度,天线辐射体与参考地之间的电场分布相较于天线1310更加均匀,因此SAR更低。
结合图16,为本申请实施例提供的几种天线1510的具体实现。其中,作为对比,图16中的1610可以对应到如图13所示天线1310的组成。以辐射体宽度h1=h2=2mm,设置在天线辐射体末端的接地电感为L1601,设置在辐射体末端以及馈源之间的接地电感为L1602为例。在不同实现中,L1601与L1602的感值可以相同也可以不同。以工作频段为5G WiFi为例,L1601与L1602的感值都可以包括在0.5nH-5nH的范围内。
图16中的1620,在1610的基础上,对靠近馈源的辐射单元的宽度进行加宽处理,例如,h3可以设置为3mm,远离馈源的辐射单元的宽度不变,例如,h4=2mm。这样,具有1620所示组成的天线,靠近馈源的辐射单元接收到来自馈源的电流较大,同时电流口径较大;远离馈源的辐射单元接收到的电流相对较小,但是电流口径较小。综合来看,靠近馈源的辐射单元上的电流密度与远离馈源的辐射单元上的电流密度差别不大。这样,相比于1610所示的天线组成,能够进一步降低靠近馈源的辐射单元附近的电场强度,从而进一步降低SAR值。此外,由于辐射体附近的电流分布更加均匀,因此其辐射性能也更好。
图16中的1630,在1620的基础上,对远离馈源的辐射单元的宽度进行缩减处理,例如,h6可以设置为1mm,靠近馈源的辐射单元的宽度不变,例如,h5=3mm。这样,靠近馈源的辐射单元与远离馈源的辐射单元上的电流密度进一步靠近,能够在1620 基础上获取更低的SAR以及更好的辐射性能。
作为一种示例,以下表2给出了如图16所示的1610,1620以及1630所示的结构组成,在0mm 1g的SAR仿真场景下,5G WiFi频段的SAR使用全向辐射功率进行归一化的仿真结果,单位为W/kg。
表2
可以看到,基于表2的仿真结果,与上述分析相应的,具有1630所示结构的天线具有最好的SAR,具有1620所示结构的天线次之,具有1610所示结构的天线相对较高。
上述图9-图16中均以天线包括两个辐射单元为例进行了说明。可以看到无论是馈源中置(如图9所示结构)或者馈源偏置(如图13或图15所示结构),都能够使得天线辐射体与参考地之间形成均匀分布的法向电场,从而在获取较低SAR的同时获取较好的辐射性能。
由于零阶模式的均匀分布电场特性与天线长度无关,所以可以串联多个辐射单元进一步分散能量,从而进一步降低SAR。以下将结合附图,对包括更多辐射单元的天线方案进行示例性说明。
请参考图17,为本申请实施例提供的又一种终端天线的组成示意图。
在本示例中,天线1710可以包括4个辐射单元。辐射单元的选取与组成可以参考上述示例中两个辐射单元的选择。例如,4个辐射单元中的任一个辐射单元可以使用如图8所示的任一种示例。从天线整体而言,如图17的天线1710组成中,以各个辐射单元的辐射体长度一致为例。该天线1710可以设置有一个馈源。该馈源可以设置在辐射体的中间位置。在馈源两侧,可以分别均匀设置有各两个接地电感,如从左向右依次为L1711,L1712,L1713以及L1714。馈源可以设置在L1713以及L1712之间。为了进行更加清楚的说明,图17中同时还给出了该天线1710的仿真模型。类似于前述接地电感的说明,在不同实现中,L1711,L1712,L1713以及L1714的感值可以相同也可以不同。以工作频段为5G WiFi为例,L1711,L1712,L1713以及L1714的感值都可以包括在0.5nH-5nH的范围内。
结合图9的示例,该图17所示的天线1710可以是在天线910的两侧分别接续设置一个辐射单元获取的。该新增的辐射单元可以具有如图8中的803所示的结构组成。示例性的,以图17所示的天线1710长度为32mm为例,对其进行仿真,以便结合仿真结果对该天线的工作情况进行说明。
如图18所示,为天线1710工作时的电场分布示意。可见,该天线1710工作时,虽然与天线910相比,长度增加了一倍,但是天线1710依然保持为零阶模式,电场分布特性不变,在辐射体与参考地之间(如图18所示的天线1710设置区域)分布有均匀的法向电场。因此该天线1710也可以具有较低的SAR以及较好的辐射性能。此外,与天线910相比,该天线1710的尺寸更大,那么均匀分布的法向电场的场强也就更低。 因此,该天线1710可以具有比天线910更低的SAR。由此类推,在本申请实施例的不同实现中,在辐射单元的长度相同的情况下,构成天线的辐射单元数量越多,则SAR越低。
图19给出了天线1710的SAR仿真热点示意。结合图11所示的天线910的热点分布示意,该天线1710也可以在馈源两侧分布有两个热点。在本示例中,天线1710两侧的热点分布区域更大,因此能量分布更加分散,SAR相对较低。作为一种示例,以下表3示出了该天线1710的SAR使用全向辐射功率进行归一化的仿真结果,单位为W/kg。
表3
如表3所示,该天线1710最大SAR为1.29,相比于表1中天线910的最大SAR为1.68,以及表2中天线1630的最大SAR为2.32,该包括四个辐射单元的天线1710能够提供更低的SAR。
结合图15-图16的说明,可以通过调整靠近/远离馈源的辐射单元宽度,对不同辐射单元上的电流密度进行调整,从而获取更好的性能。
示例性的,结合图17所示的天线1710,在该天线1710的基础上,可以将两侧远离馈源的辐射单元的宽度调小,从而提升远离馈源的辐射单元的电流密度,进而使得天线附近的法向电场分布更加均匀。
作为一种示例,图20为本申请实施例提供的又一种终端天线的组成示意图。如图20所示,该天线2010可以包括一个辐射体,该辐射体两端可以分别设置有接地电感。在本示例中,以四个辐射单元的长度相同为例。该天线2010身上共可设置四个接地电感,如从左向右依次为L2011,L2012,L2013以及L2014。馈源可以设置在L2013以及L2012之间。为了进行更加清楚的说明,图20中同时还给出了该天线2010的仿真模型。类似于前述接地电感的说明,在不同实现中,L2011,L2012,L2013以及L2014的感值可以相同也可以不同。以工作频段为5G WiFi为例,L2011,L2012,L2013以及L2014的感值都可以包括在0.5nH-5nH的范围内。如图20所示,在本示例中,距离馈源越远,则辐射单元的宽度越窄。例如,L2011以及L2012之间的辐射单元宽度可以小于,L2012和馈源之间的辐射单元宽度。又如L2013以及L2014之间的辐射单元宽度可以小于,L2013和馈源之间的辐射单元宽度。
以天线2010两端的较窄的辐射单元的宽度为1mm,靠近馈源的两个辐射单元的宽度为2mm为例。图21示出了该天线2010的热点分布示意。可以看到,该天线2010也可以包括2个热点。相比于图19所示的天线1710的热点分布,该两个热点的分布区域更加分散,且热点的位置更加远离馈源所在位置,因此SAR更低。
作为一种示例,以下表4示出了该天线2010的SAR使用全向辐射功率进行归一化的仿真结果,单位为W/kg。
表4
表4与表3相比,最大SAR从天线1710的1.29进一步降到了天线2010的1.06,可见该天线2010可以提供相较于天线1710更低的SAR。
应当理解的是,上述示例中,馈源中置的情况下,两侧的辐射单元数量可以相同。在本申请的另一些实施例中,馈源中置的情况下,两侧辐射单元数量也可以不同。此外,在馈源的一侧设置有两个或更多辐射单元时,辐射单元的宽度可以随着与馈源的距离的增大而降低,由此使得电流密度在辐射单元上的分布更加均匀,获取更好的性能。
此外,上述示例中,均以辐射单元的至少一端通过接地电感回地为例的。在本申请的另一些实施例中,接地电感还可以由分布式电感或者其它部件的等效电感替代。
示例性的,在一些实施例中,以图9所示的天线910为例。参考图22,天线910两端的接地电感也可以通过电连接部件实现其电感接地功能。在本示例中,该电连接部件可以为金属弹片。该金属弹片的等效电感可以与接地电感相同。例如,以天线的工作频段为5G WIFI(即5150MHz-5850MHz)为例,金属弹片的等效电感可以包括在0.5nH-5nH的范围内。
为了能够对如图22所示的天线方案进行更加详细的说明,图23中示出了该图22所示天线方案的另一个角度的仿真模型示意。如图23所示,在本示例中,该天线910的天线辐射体可以为3D结构。例如,在该天线910的辐射体通过FPC实现时,该如图23所示的天线辐射体的3D结构可以对应到FPC天线中的覆铜区域,该FPC天线可以贴装在天线支架上进行支撑。如图23所示,在本示例中,接地电感的功能可以通过金属弹片(如弹片2302以及弹片2303)实现。如图23中的弹片2301为馈源处对应的电连接部件。通过该弹片2301可以实现天线在馈源处与主板或小板上射频线路的电连接,实现电子设备对天线的馈电。在本示例中,在弹片2301、弹片2302以及弹片2303对应位置,FPC天线可以设置有露铜金手指,以便于弹片2301、弹片2302和弹片2302在该露铜金手指处实现与FPC天线上覆铜区域(即天线辐射体)的电连接。
结合前述说明,在本申请的一些实施例中,在接地电感(如图22所示的金属弹片)与参考地之间还可以设置有接地匹配部件。作为一种示例,以接地匹配部件为调谐电容为例。如图24所示,在金属弹片与参考地之间可以设置有调谐电容。在具体实施过程中,金属弹片可以焊接在PCB板上,金属弹片可以通过焊盘与参考地耦接。在本示例中,焊盘与参考地之间的射频微带线上可以设置有该调谐电容,用于进行频率选择和/或工作频段的调谐。
在另一些实施例中,以图9所示的天线910为例。参考图25,天线910两端的接地电感也可以通过分布式电感实现其电感接地功能。在本示例中,该分布式电感可以为蛇形线辐射体。该蛇形线辐射体的等效电感可以与接地电感相同。例如,以天线的工作频段为5G WIFI(即5150MHz-5850MHz)为例,蛇形线辐射体的等效电感可以包括 在0.5nH-5nH的范围内。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (11)

  1. 一种终端天线,其特征在于,所述终端天线设置在电子设备中,所述终端天线包括:
    第一辐射体,所述第一辐射体包括N个首尾相连的辐射单元,N为大于或等于2的整数;任一个所述辐射单元的一端通过电抗单元接地;
    N个所述辐射单元中包括第一辐射单元,所述第一辐射单元上远离电抗单元的一端设置有馈源。
  2. 根据权利要求1所述的天线,其特征在于,任一个所述辐射单元的一端通过电抗单元接地,包括:
    对于任一个所述辐射单元,所述电抗单元设置在所述辐射单元上远离所述馈源的一端。
  3. 根据权利要求1或2所述的天线,其特征在于,N个所述辐射单元中还包括第二辐射单元,所述第二辐射单元设置在所述第一辐射单元靠近所述馈源的一侧,所述第二辐射单元的第一端设置有所述电抗单元;
    第二辐射单元在第二端与所述第一辐射单元的第三端连接,所述第二端不同于所述第一端,所述第三端是所述第一辐射单元上设置有馈源的一端。
  4. 根据权利要求1-3中任一项所述的天线,其特征在于,所述N个辐射单元还包括第三辐射单元,所述第三辐射单元设置在所述第一辐射单元远离所述馈源的一侧,所述第三辐射单元的第四端设置有电抗单元,
    第三辐射单元在第五端与所述第一辐射单元的第六端连接,所述第五端不同于所述第四端,所述第六端是所述第一辐射单元上远离馈源的一端。
  5. 根据权利要求1-4中任一项所述的天线,其特征在于,任一个所述辐射单元的长度不超过所述终端天线的工作频段的1/4波长。
  6. 根据权利要求1-5中任一项所述的天线,其特征在于,在N个所述辐射单元中,距离所述馈源越远,所述辐射单元的宽度越小。
  7. 根据权利要求1-6中任一项所述的天线,其特征在于,所述电抗单元包括以下中的任一种:集总电感,分布式电感,电连接部件。
  8. 根据权利要求7所述的天线,其特征在于,在所述电抗单元和参考地之间还设置有调谐电容。
  9. 根据权利要求1-8中任一项所述的天线,其特征在于,所述终端天线的工作频段包括5150MHz-5850MHz,所述电抗单元的电感包括在[0.5nH,5nH]的范围内。
  10. 根据权利要求1-9中任一项所述的天线,其特征在于,在所述终端天线工作时,所述终端天线的辐射体附近分布有均匀的法向电场。
  11. 一种电子设备,其特征在于,所述电子设备设置有如权利要求1-10中任一项所述的终端天线;所述电子设备在进行信号发射或接收时,通过所述终端天线进行信号的发射或接收。
PCT/CN2023/091005 2022-06-20 2023-04-26 一种终端天线及电子设备 WO2023246295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23825948.5A EP4404382A1 (en) 2022-06-20 2023-04-26 Terminal antenna and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210700287.3A CN117293535A (zh) 2022-06-20 2022-06-20 一种终端天线及电子设备
CN202210700287.3 2022-06-20

Publications (1)

Publication Number Publication Date
WO2023246295A1 true WO2023246295A1 (zh) 2023-12-28

Family

ID=89257728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091005 WO2023246295A1 (zh) 2022-06-20 2023-04-26 一种终端天线及电子设备

Country Status (3)

Country Link
EP (1) EP4404382A1 (zh)
CN (1) CN117293535A (zh)
WO (1) WO2023246295A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203850424U (zh) * 2014-03-31 2014-09-24 小米科技有限责任公司 一种缝隙参与辐射的Loop天线系统
CN104167594A (zh) * 2013-05-20 2014-11-26 深圳富泰宏精密工业有限公司 宽频天线及应用该宽频天线的无线通信装置
US9812773B1 (en) * 2013-11-18 2017-11-07 Amazon Technologies, Inc. Antenna design for reduced specific absorption rate
US20200091595A1 (en) * 2018-09-19 2020-03-19 Wistron Neweb Corp. Antenna structure
CN112467371A (zh) * 2020-11-23 2021-03-09 Oppo广东移动通信有限公司 天线装置及电子设备
WO2022121453A1 (zh) * 2020-12-10 2022-06-16 Oppo广东移动通信有限公司 天线装置及电子设备
CN116247420A (zh) * 2021-12-07 2023-06-09 Oppo广东移动通信有限公司 天线装置及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329951B1 (en) * 2000-04-05 2001-12-11 Research In Motion Limited Electrically connected multi-feed antenna system
US9406998B2 (en) * 2010-04-21 2016-08-02 Pulse Finland Oy Distributed multiband antenna and methods
CN110718761B (zh) * 2018-07-11 2021-11-09 华为技术有限公司 天线装置及移动终端
CN112689033B (zh) * 2019-10-18 2022-07-22 荣耀终端有限公司 终端设备
CN112542678A (zh) * 2020-11-30 2021-03-23 Oppo广东移动通信有限公司 电子设备
CN114171900B (zh) * 2021-10-27 2022-11-22 荣耀终端有限公司 一种终端天线及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167594A (zh) * 2013-05-20 2014-11-26 深圳富泰宏精密工业有限公司 宽频天线及应用该宽频天线的无线通信装置
US9812773B1 (en) * 2013-11-18 2017-11-07 Amazon Technologies, Inc. Antenna design for reduced specific absorption rate
CN203850424U (zh) * 2014-03-31 2014-09-24 小米科技有限责任公司 一种缝隙参与辐射的Loop天线系统
US20200091595A1 (en) * 2018-09-19 2020-03-19 Wistron Neweb Corp. Antenna structure
CN112467371A (zh) * 2020-11-23 2021-03-09 Oppo广东移动通信有限公司 天线装置及电子设备
WO2022121453A1 (zh) * 2020-12-10 2022-06-16 Oppo广东移动通信有限公司 天线装置及电子设备
CN116247420A (zh) * 2021-12-07 2023-06-09 Oppo广东移动通信有限公司 天线装置及电子设备

Also Published As

Publication number Publication date
CN117293535A (zh) 2023-12-26
EP4404382A1 (en) 2024-07-24

Similar Documents

Publication Publication Date Title
US11735809B2 (en) Antenna system and terminal device
CN113451741B (zh) 一种天线及终端设备
TW201511406A (zh) 寬頻天線
US6252561B1 (en) Wireless LAN antenna with single loop
WO2023116353A1 (zh) 电子设备
CN103943942B (zh) 天线及具有所述天线的便携式设备
US10281954B1 (en) Wearable electronic device
WO2023236677A1 (zh) 一种终端天线及电子设备
CN115954654B (zh) 一种终端天线和电子设备
WO2015014200A1 (zh) 一种印制天线和终端设备
WO2023246295A1 (zh) 一种终端天线及电子设备
US20240072440A1 (en) Antenna assembly and electronic device
WO2024051743A1 (zh) 天线装置和电子设备
WO2024032018A1 (zh) 天线系统和终端设备
WO2023103735A1 (zh) 天线装置及电子设备
WO2021103974A1 (zh) 电子设备
TWI747551B (zh) 用於具有金屬框架手機之多天線結構
TW584978B (en) Grounding module of antenna in portable electronic device
WO2023185083A1 (zh) 一种终端天线及电子设备
WO2024041357A1 (zh) 一种天线系统及电子设备
WO2023082999A1 (zh) 天线及电子设备
WO2024046200A1 (zh) 一种电子设备
US20230238700A1 (en) Antenna structure and electronic device using the same
WO2024046199A1 (zh) 一种电子设备
CN218586355U (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023825948

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023825948

Country of ref document: EP

Effective date: 20240415