WO2024032018A1 - 天线系统和终端设备 - Google Patents

天线系统和终端设备 Download PDF

Info

Publication number
WO2024032018A1
WO2024032018A1 PCT/CN2023/088359 CN2023088359W WO2024032018A1 WO 2024032018 A1 WO2024032018 A1 WO 2024032018A1 CN 2023088359 W CN2023088359 W CN 2023088359W WO 2024032018 A1 WO2024032018 A1 WO 2024032018A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating branch
antenna system
point
branch
radiating
Prior art date
Application number
PCT/CN2023/088359
Other languages
English (en)
French (fr)
Other versions
WO2024032018A9 (zh
Inventor
王毅
翟璇
郭超
朱若晴
褚少杰
魏鲲鹏
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024032018A1 publication Critical patent/WO2024032018A1/zh
Publication of WO2024032018A9 publication Critical patent/WO2024032018A9/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands

Definitions

  • This application relates to the field of antenna technology, and specifically to an antenna system and terminal equipment.
  • terminal equipment is more and more widely used in people's production and life, and users have higher and higher requirements for the communication quality of terminal equipment.
  • the communication quality of the terminal device depends largely on the performance of the terminal antenna installed on the terminal device.
  • 5G fifth generation mobile communication technology
  • MIMO multi-input multi-output
  • WIFI wireless fidelity
  • GPS global positioning system
  • terminal devices On some terminal devices, a full-screen structural solution with ultra-narrow bezels will be adopted. Such terminal devices have high requirements for compact structure. As terminal equipment incorporates multi-MIMO communication specifications, more antennas need to be added, further compressing the antenna space. In such highly space-compressed terminal equipment, MIMO antennas often need to use different antennas to transmit and receive signals in the same frequency band. In this way, when signals in the same frequency band are transmitted and received by different antennas, the isolation between the antennas will be reduced, resulting in the antenna system The performance is reduced.
  • This application provides an antenna system and terminal equipment that can improve the isolation between antennas, thereby improving the performance of the antenna system and improving communication quality.
  • an antenna system including: a first radiating branch, a second radiating branch and a third radiating branch; the first radiating branch and the second radiating branch are electrically connected, and the second radiating branch and the third radiating branch are electrically connected.
  • a first gap is provided between them; a first feed point is set on the first radiating branch, and the first feeding point is located at an end of the first radiating branch away from the second radiating branch; a second feeding point is set on the second radiating branch.
  • the second feed point is located at an end of the second radiating branch away from the first radiating branch;
  • the antenna system also includes: a first return point, the first return point is located at the electrical connection between the first radiating branch and the second radiating branch, and the first return point The location is between the first feed point and the second feed point; a second location is set on the third radiating branch, and the second location is located at an end of the third radiating branch away from the first gap.
  • a third radiating branch that can be decoupled is added, and the third radiating branch is not provided with a feed point, but a return point. , so that the third radiation branch acts as a suspended parasitic radiation branch and affects the excitation mode of the entire antenna system.
  • the addition of the third radiating branch can form a differential mode current on the first radiating branch and the second radiating branch when feed source 1 and feed source 2 feed signals of the same frequency at the same time, so that the two radiating branches Part of the current cancels, so that The signal flowing from feed source 2 to the first radiating branch is reduced, and the signal flowing from feed source 1 to the second radiating branch is also reduced, thereby reducing the mutual coupling between the two radiating branches and improving the efficiency of the two radiating branches.
  • the isolation between them achieves decoupling, thereby improving the performance of the entire antenna system.
  • the first feeding point is used to feed high-frequency signals
  • the second feeding point is used to feed high-frequency signals and/or intermediate-frequency signals.
  • the addition of the third radiating branch can make the connection between the first radiating branch and the second radiating branch
  • the differential mode current formed on the branches causes partial currents on the two radiating branches to cancel out, thus reducing the signal flowing from feed source 2 to the first radiating branch, and also reducing the signal flowing from feed source 1 to the second radiating branch, thus It reduces the mutual coupling between the two radiating branches in the MIMO scenario, improves the high-frequency isolation between the two radiating branches in the MIMO scenario, and improves the high-frequency band antenna of the entire antenna system in the MIMO scenario. performance, improving the communication quality in high-frequency bands in MIMO scenarios.
  • the second feed point can also feed an intermediate frequency signal, so that the second radiating branch can be compatible with the intermediate frequency band.
  • the antenna system supports the high frequency band and is also compatible with the intermediate frequency band, thereby expanding the bandwidth of the antenna system.
  • the current mode in the antenna system is a differential mode.
  • the current pattern in the differential mode causes part of the currents on the two radiating branches to cancel out, reducing the signal flowing from feed source 2 to the first radiating branch, and also reducing the signal flowing from feed source 1 to the second radiating branch, thereby reducing the signal flow between the two radiating branches.
  • the mutual coupling between the two radiating branches improves the high-frequency isolation between the two radiating branches and improves the antenna performance of the entire antenna system in the high-frequency band.
  • the high-frequency signal is a signal in the N41 frequency band.
  • the signal flowing from feed 2 to the first radiating branch is reduced, and the signal flowing from feed 1 to the second radiating branch is also reduced, thereby reducing the distance between the two radiating branches in the MIMO scenario.
  • the mutual interaction improves the isolation between the two radiating branches in the N41 frequency band in the MIMO scenario, improves the antenna performance of the entire antenna system in the N41 frequency band in the MIMO scenario, and improves the communication quality of the N41 frequency band in the MIMO scenario.
  • the difference between the length of the third radiation branch and the length of a quarter wavelength of the signal in the N41 frequency band is less than the length error threshold.
  • the length of the above-mentioned third radiation branch may be a quarter-wave length of the signal fed into the feed source 2, for example, it may be equal to the length of the quarter-wavelength, or it may be equal to the length of the quarter-wavelength.
  • the lengths are close, and the difference between the two is less than the preset length error threshold, which can be 0.5 mm, 1 mm, etc., thereby ensuring that the resonance state is reached when the signal is fed and the antenna performance is guaranteed.
  • the length of the third radiation branch may be one quarter of the wavelength corresponding to the center frequency of the N41 frequency band or close to one quarter of the wavelength. length to ensure the resonance state.
  • the distance between the first feed point and the second feed point is greater than the distance between the first feed point and the first feed point.
  • the second radiating branch serves as the main radiating branch.
  • the length of the first radiating branch serves as the main radiating branch. Therefore, in the resonant mode, the frequency band matched by the second radiating stub between the first return point and the second feed point is larger than the frequency band matched by the first radiating stub between the first feed point and the first return point.
  • the frequency is low, and the second radiating branch can be compatible with the intermediate frequency band, making the antenna system While supporting high-frequency bands, it is also compatible with mid-frequency bands, thereby expanding the bandwidth of the antenna system.
  • the second return point is located at an end of the third radiating branch away from the first slit, and the length of the third radiating branch is longer than the distance between the end of the second radiating branch close to the first slit and the second feed point. distance.
  • the length of the third radiating branch is greater than the distance between the end of the second radiating branch close to the first gap and the second feed point, which can ensure that the resonant frequency of the third radiating branch matches the frequency band that needs to be decoupled, thereby ensuring the decoupling effect.
  • a first tuning circuit is further provided on the third radiating branch, and one end of the third radiating branch close to the first gap is grounded through the first tuning circuit.
  • the above-mentioned arrangement of the first tuning circuit can add a ground-returning tuning point to the third radiating branch, thereby improving the tuning capability of the antenna system, thus further improving the performance of the antenna system.
  • a second tuning circuit is further provided on the second radiating branch.
  • the second tuning circuit is located between the second feed point and the first return point.
  • the second radiating branch is grounded through the second tuning circuit.
  • the above-mentioned arrangement of the second tuning circuit can add a tuning point to the second radiating branch, thereby improving the tuning capability of the antenna system, thus further improving the performance of the antenna system.
  • the antenna system further includes a third tuning circuit, and the first feed point is grounded through the third tuning circuit.
  • the antenna system further includes a fourth tuning circuit, and the second feed point is grounded through the fourth tuning circuit.
  • the arrangement of the third tuning circuit and/or the fourth tuning circuit can improve the tuning capability of the antenna system and further improve the performance of the antenna system.
  • the shape of the first radiating branch is L-shaped.
  • Using the first radiating branch with such an L-shaped structure can shorten the size of the antenna while ensuring the size of the antenna, which is beneficial to the antenna layout.
  • a second aspect provides a terminal device, including any antenna system in the technical solution of the first aspect.
  • Figure 1 is a schematic structural diagram of an example of a terminal device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a common antenna system and the corresponding S-parameter curve
  • FIG. 3 is a schematic structural diagram of an antenna system provided by an embodiment of the present application.
  • Figure 4 is a comparison diagram of the S-parameter curves of an antenna system provided by an embodiment of the present application and a traditional antenna system;
  • FIG. 5 is a schematic structural diagram of antenna systems with different structures provided by embodiments of the present application.
  • FIG. 6 is a schematic structural diagram of an antenna system with different tuning forms provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an antenna system with different tuning forms provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an antenna system with different tuning forms provided by an embodiment of the present application.
  • Figure 9 is an example of the current distribution diagram of a common antenna system during feeding
  • Figure 10 is a current distribution diagram during feeding of an example antenna system provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of current distribution corresponding to an antenna system before and after adding a third radiating branch according to an embodiment of the present application;
  • Figure 12 is a comparison chart of parameter curves of an antenna system before and after adding a third radiation branch provided by an example of an embodiment of the present application;
  • Figure 13 is an example of a curve comparison diagram of the correlation coefficients of the first radiating branch and the second radiating branch before and after adding the third radiating branch provided by the embodiment of the present application;
  • Figure 14 is a comparison diagram of the antenna pattern before and after adding the third radiation branch provided by the embodiment of the present application.
  • Figure 15 is an example of a S-parameter curve comparison diagram of an antenna system using third radiating branches of different lengths provided by an embodiment of the present application;
  • Figure 16 is a schematic diagram illustrating an example of the frequency of the pit points of S21 corresponding to the first radiating branch and the second radiating branch provided by the embodiment of the present application, and the frequency of the pit point being lower than the radiation efficiency of the D mode generated by the third radiating branch. ;
  • Figure 17 is an example of the case of third radiating branches of different sizes provided by the embodiment of the present application.
  • the frequency of the S21 pit point corresponding to the first radiating branch and the second radiating branch is lower than the D mode generated by the third radiating branch.
  • first”, “second” and “third” are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include one or more of these features.
  • the antenna system provided by the embodiment of the present application can be applied to mobile phones, tablet computers, wearable devices, vehicle-mounted devices, augmented reality (AR)/virtual reality (VR) devices, notebook computers, super mobile personal computers ( On terminal devices such as ultra-mobile personal computers (UMPC), netbooks, and personal digital assistants (personal digital assistants, PDA), the embodiments of the present application do not place any restrictions on the specific types of terminal devices.
  • AR augmented reality
  • VR virtual reality
  • PDA personal digital assistants
  • FIG. 1 is a schematic structural diagram of a terminal device 100 provided by an embodiment of the present application.
  • the terminal device 100 provided by the embodiment of the present application can be provided with a screen and cover 101, a metal shell 102, an internal structure 103, and a back cover 104 in order from top to bottom along the z-axis. .
  • the screen and cover 101 can be used to implement the display function of the terminal device 100 .
  • the metal shell 102 can serve as the main frame of the terminal device 100 and provide rigid support for the terminal device 100 .
  • the internal structure 103 may include a collection of electronic components and mechanical components that implement various functions of the terminal device 100 .
  • the internal structure 103 may include a shielding cover, screws, reinforcing ribs, etc.
  • the back cover 104 may be the exterior surface of the back of the terminal device 100.
  • the back cover 104 may be made of glass material, ceramic material, plastic, etc. in different implementations.
  • the antenna system provided by the embodiment of the present application can be applied in the terminal device 100 shown in figure a in Figure 1 to support the wireless communication function of the terminal device 100.
  • the antenna system may be disposed on the metal housing 102 of the terminal device 100 .
  • the antenna system involved in the antenna solution may It can be set on the back cover 104 of the terminal device 100 or the like.
  • diagrams b and c in FIG. 1 show a schematic composition of the metal housing 102 .
  • Figure b in Figure 1 shows an example in which the antenna system is arranged on the short side of the terminal device.
  • Figure c in Figure 1 shows an example in which the antenna system is arranged on the long side of the terminal device.
  • the antenna system can also be distributed on the short side of the terminal device and the long side adjacent to the short side.
  • the metal shell 102 can be made of metal material, such as aluminum alloy.
  • a reference ground may be provided on the metal shell 102 .
  • the reference ground can be a metal material with a large area, which is used to provide most of the rigid support and at the same time provide a zero potential reference for each electronic component.
  • a metal frame may also be provided around the reference ground.
  • the metal frame can be a complete closed metal frame, and the metal frame can include part or all of the metal bars that are suspended in the air.
  • the metal frame may also be a metal frame interrupted by one or more gaps as shown in Figure 1 b. For example, in the example of picture b in Figure 1, slit 1, slit 2 and slit 3 can be set at different positions on the metal frame. These gaps can break the metal frame to obtain independent metal branches.
  • some or all of these metal branches can be used as radiating branches of the antenna, thereby realizing structural reuse during the antenna setting process and reducing the difficulty of antenna setting.
  • the metal branches are used as radiating branches of the antenna, the positions corresponding to the gaps provided at one or both ends of the metal branches can be flexibly selected according to the settings of the antenna.
  • one or more metal pins can also be provided on the metal frame.
  • the metal pins may be provided with screw holes for fixing other structural members with screws.
  • the metal pin may be coupled to the feed point, so that when the metal branch connected to the metal pin is used as a radiating branch of the antenna, the antenna is fed through the metal pin.
  • the metal pins can also be coupled with other electronic components to achieve corresponding electrical connection functions. In the embodiment of the present application, in Figures b and c in Figure 1, the metal pins may be coupled to the feed point or grounded.
  • the arrangement of the printed circuit board (PCB) on the metal shell is also shown.
  • the main board and sub board split board design is taken as an example.
  • the main board and the small board can also be connected, such as an L-shaped PCB design.
  • a motherboard such as PCB1
  • PCB1 may be used to carry electronic components that implement various functions of the terminal device 100.
  • Small boards (such as PCB2) can also be used to carry electronic components.
  • USB Universal Serial Bus
  • the small board can also be used to carry the radio frequency circuit corresponding to the antenna provided at the bottom (ie, the negative y-axis part of the terminal device).
  • terminal equipment is more and more widely used in people's production and life, and users have higher and higher requirements for the communication quality of terminal equipment.
  • the communication quality of the terminal device depends largely on the performance of the terminal antenna installed on the terminal device.
  • 5G the demand for MIMO antenna technology in terminal equipment is getting higher and higher. It has gradually developed from a 2*2 antenna system to a 4*4 antenna system, coupled with the original WIFI and GPS antennas.
  • Current terminal equipment often has to accommodate 8 to 15 antennas with different functions.
  • terminal devices On some terminal devices, a full-screen structural solution with ultra-narrow bezels will be adopted. Such terminal devices have high requirements for compact structure. As terminal equipment incorporates multi-MIMO communication specifications, more antennas need to be added, further compressing the antenna space. In such highly space-compressed terminal equipment, MIMO antennas often need to use different antennas to transmit and receive signals in the same frequency band. In this way, when signals in the same frequency band are transmitted and received by different antennas, the isolation between the antennas will be reduced, resulting in the antenna system The performance is reduced.
  • a common MIMO antenna can be seen as the structure shown in a in Figure 2, including antenna 1 and antenna 2.
  • Feed point 1 is set up on antenna 1, and feed point 1 can be connected to feed source a;
  • feed point 2 is set up on antenna 2, and feed point 2 can be connected to feed source b;
  • antenna 1 and antenna 2 pass through the same return point.
  • Ground Taking the signal in the N41 frequency band as an example, when the two feed points are fed into the signal in the N41 frequency band (2.6GHz), the isolation curve (S12) of the two antennas can be seen in figure b in Figure 2. shows that it is only -8 decibels (dB), which cannot meet the antenna performance requirements.
  • the excitation mode is changed by adding a parasitic branch for decoupling to the original antenna system and setting a gap between the original antenna and the original antenna.
  • this parasitic radiation branch due to the addition of this parasitic radiation branch, differential mode currents can be generated on the original two antennas, causing part of the currents distributed on the two antennas to cancel out, thus reducing the flow from feed source a to
  • the signal on antenna 2 also reduces the signal flowing from feed source b to antenna 1, thereby reducing the mutual coupling of the two antennas and improving the isolation between the two antennas.
  • FIG. 3 is a schematic structural diagram of an antenna system provided by an embodiment of the present application.
  • This antenna system adds a third radiating branch 303 for decoupling in the above antenna solution.
  • the addition of the third radiating branch 303 can change the current pattern in the antenna system and improve the isolation between different antennas.
  • the antenna system includes: a first radiating branch 301 , a second radiating branch 302 and a third radiating branch 303 .
  • the first radiating branch 301 and the second radiating branch 302 are electrically connected.
  • the two are structurally connected as an integral structure, but have different functions and functions. They work as two radiators.
  • the third radiating branch 303 and the second radiating branch 302 are arranged sequentially along the length direction, and a first gap 304 is opened between the second radiating branch 302 and the third radiating branch 303 .
  • a first feed point 305 is provided on the first radiating branch 301 , and the first feeding point 305 is located at an end of the first radiating branch 301 away from the second radiating branch 302 .
  • a second feed point 306 is provided on the second radiating branch 302 , and the second feeding point 306 is located at an end of the second radiating branch 302 away from the first radiating branch 301 .
  • the antenna system also includes: a first return point 307.
  • the first return point 307 is located at the electrical connection between the first radiating branch 301 and the second radiating branch 302.
  • the first returning point 307 is located at the first feed point 305 and the second feed point. Between electrical points 306.
  • the first radiating branch 301 and the second radiating branch 302 share the first return location 307 .
  • a second return point 308 is also provided on the third radiating branch 303 , and the second return point 308 is located at an end of the third radiating branch 303 away from the first gap 304 .
  • the first feed point 305 can be connected to the feed source 1
  • the second feed point 306 can be connected to the feed source 2
  • the feed point and the feed source may be connected directly, may be connected through a series capacitor, or may be connected through other matching forms of matching circuits, which are not limited in the embodiments of the present application.
  • a third radiating branch 303 that can be decoupled is added to the first radiating branch 301 and the second radiating branch 302, and no feeder is provided on the third radiating branch 303. Instead of the electric point, the return point is set, so that the third radiation branch 303 acts as a suspended parasitic radiation branch to affect the excitation mode of the entire antenna system.
  • the addition of the third radiating branch 303 can form a differential mode electric current on the first radiating branch 301 and the second radiating branch 302 when the feed source 1 and the feed source 2 feed signals of the same frequency at the same time.
  • the mutual coupling between the two radiating branches improves the isolation between the two radiating branches and achieves decoupling, thus improving the performance of the entire antenna system.
  • the above-mentioned feed source 2 can feed low-frequency signals through the second feed point 306, such as low-frequency signals in frequency bands such as B5 and B8; it can also feed in intermediate-frequency signals, such as intermediate-frequency signals in frequency bands such as B1, B2, and B3. High-frequency signals in frequency bands such as B7 and B41 can also be fed.
  • the above-mentioned feed source 1 can feed low-frequency signals through the first feed point 305, such as low-frequency signals in frequency bands such as B5 and B8; it can also feed in intermediate-frequency signals, such as intermediate-frequency signals in frequency bands such as B1, B2, and B3. For example, high-frequency signals in B7, B41 and other frequency bands.
  • the embodiment of the present application does not limit the frequency band of the fed signal.
  • the above-mentioned feed source 2 can feed high-frequency signals, such as signals in high frequency bands such as B7 and N41, through the second feed point 306; it can also feed intermediate-frequency signals, such as B1, B2, B3, etc. frequency band signal.
  • the above-mentioned feed source 1 can feed high-frequency signals through the first feed point 305.
  • the addition of the third radiating branch 303 can form a differential mode current on the first radiating branch 301 and the second radiating branch 302, so that the two Part of the currents on the two radiating branches are offset, thus reducing the signal flowing from feed source 2 to the first radiating branch 301, and also reducing the signal flowing from feed source 1 to the second radiating branch 302, thereby reducing the two
  • the mutual coupling between the radiating branches improves the high-frequency isolation between the two radiating branches in the MIMO scenario, thereby improving the antenna performance of the entire antenna system in the high-frequency band in the MIMO scenario and improving the performance in the MIMO scenario. communication quality in the high-frequency band.
  • the antenna parameters of a specific embodiment are used to illustrate the technical effects of the embodiments of the present application.
  • the port of the antenna system connected to feed source 2 is referred to as port 1
  • the port of the antenna system connected to feed source 1 is referred to as port 2 for description.
  • S12 and S21 are forward transmission coefficients. Take S21 as an example. S21 represents the amount of energy transmitted from port 2 to port 1.
  • S21 is used to represent isolation, the smaller the value, the greater the isolation; S11 and S22 are 1-port and 2-port reflection systems respectively.
  • Figure 4 is a comparison diagram of the S-parameter curves before and after adding the third radiating branch 303 for decoupling to the antenna system.
  • the S-parameter curve obtained by adding the third radiating branch will be labeled: decoupled
  • the S-parameter curve obtained without adding the third radiating branch will be labeled: original. It can be seen from Figure 4 that after the third radiation branch 303 is added to the antenna system, the value of the isolation (S21) decreases significantly, from the original -8.7675dB (marker point 6) to -16.202dB (at 2.6GHz). Marking point 5), the isolation is reduced by more than 7dB.
  • the distance between the first feed point 307 and the second feed point 306 is greater than the distance between the first feed point 305 and the first feed point 307 .
  • the second radiating branch 302 serves as the main radiating branch.
  • the length of the first radiating branch 301 serves as the main radiating branch. Therefore, the length of the radiator is longer. Therefore, it matches at a quarter wavelength.
  • the frequency band matched by the second radiation branch 302 between the first feed point 307 and the second feed point 306 is larger than that of the first radiation branch 301 between the first feed point 305 and the first feed point 307 If the frequency of the matching frequency band is low, the second radiating branch 302 can be compatible with the intermediate frequency band, so that the antenna system supports the high frequency band and is also compatible with the intermediate frequency band, thereby expanding the bandwidth of the antenna system.
  • the second return point 308 may be located at an end of the third radiating branch 303 away from the first gap 304, for example, it may be a distance away from the end of the third radiating branch 303 away from the first gap 304, such as from the third radiating branch 303.
  • 303 is 1 mm, 0.5 mm and other smaller sizes away from the end of the first gap.
  • the second return point 308 may also be located at the end of the third radiating branch 303 away from the first gap 304 , as shown in FIG. 5 , for example.
  • Diagram a in FIG. 5 shows a structure in which the second return point 308 is located at the end far away from the first gap 304 when the third radiating branch 303 has a straight structure.
  • the second return point 308 is located at the end of the third radiating branch 303 away from the first gap, if the length of the third radiating branch 303 is too short, the current mode excited by the antenna system will be a differential mode.
  • the resonant frequency is too high, so the length of the third radiating branch 303 is greater than the distance between the end of the second radiating branch 302 close to the first gap 304 and the second feed point 306, which can ensure the resonance frequency of the third radiating branch 303 and the required solution.
  • the coupling frequency band is matched to ensure the decoupling effect.
  • the third radiating branch 303 can also have an "L"-shaped structure as shown in Figure 5(b). Using such an "L"-shaped radiating branch can shorten the antenna while ensuring the size of the antenna. size, which facilitates antenna layout.
  • the above-mentioned first radiating branch 301 may also be an "L" shaped structure, for example, as shown in Figure 5c. Such a structure can shorten the size of the antenna while ensuring the size of the antenna, which is beneficial to the antenna layout.
  • the antenna system can choose to set the first radiating branch 301 to an "L"-shaped structure or the third radiating branch 303 to an "L"-shaped structure according to the specific position in the terminal device, such as whether it is close to the left or close to the right. .
  • the length of the third radiation branch 303 may be a quarter-wavelength length of the signal fed at the feed source 2, for example, may be equal to the quarter-wavelength length.
  • the length can also be close to the length of the quarter wavelength, and the difference between the two is less than the preset length error threshold.
  • the length error threshold can be 0.5 mm, 1 mm, etc., thereby ensuring that when the signal is fed Reach the resonance state to ensure antenna performance.
  • the third radiation branch 303 may be one-quarter of the wavelength corresponding to the center frequency of the N41 frequency band.
  • the length of the third radiating branch 303 can be adjusted to match different frequencies.
  • the length of the third radiating branch 303 when it is necessary to adapt to a signal with a high frequency, the length of the third radiating branch 303 can be reduced; when it is necessary to adapt to a signal with a low frequency, the length of the third radiating branch 303 can be adjusted.
  • the length of the third radiation branch 303 is increased so that the length of the third radiation branch 303 is maintained near a quarter wavelength of the excitation signal to ensure the resonance state.
  • the antenna system can be as shown in Figure 6.
  • a first tuning circuit 309 can also be provided on the third radiating branch 303, and the third radiating branch 303 is close to one end of the first slot 304. Ground is connected through the first tuning circuit 309 .
  • the first tuning circuit 309 can be a microstrip line with fixed width and length, or a microstrip line with varying width and length, or can be in the form of an LC filter circuit, for example, it can include a series capacitor, a parallel capacitor, a series inductor, Any one or more combinations of parallel inductors and other forms.
  • the embodiment of the present application does not limit the specific form of the first tuning circuit 309.
  • the first tuning circuit 309 may also be a structure in which a multi-way switch connects different matching forms.
  • the first tuning circuit 309 may also be an electronic tuner (Tuner).
  • the first tuning circuit 309 is a T-shaped tuning circuit as an example.
  • the tuning circuit can be debugged according to the actual situation, and the capacitance value and inductance value in the tuning circuit are not limited.
  • the above-mentioned arrangement of the first tuning circuit 309 can add a tuning point back to ground on the third radiating branch 303, thereby improving the tuning capability of the antenna system, thus further improving the performance of the antenna system.
  • a second tuning circuit 310 is also provided on the second radiation branch 302 .
  • the antenna system can refer to the structure shown in FIG. 7 .
  • the second tuning circuit 310 is located between the second feed point 306 and the first return point 307 .
  • the second radiating branch 306 is grounded through the second tuning circuit 310 .
  • the implementation of the second tuning circuit 310 may be a microstrip line with a fixed width and length, a microstrip line with a varying width and length, or an LC filter circuit, which may include, for example, a series capacitor or a parallel capacitor. , series inductor, parallel inductor, any one or more combinations.
  • the above-mentioned second tuning circuit 310 may also be a structure in which multiple switches connect different matching forms.
  • the above-mentioned second tuning circuit 310 may also be an electronic tuner (Tuner).
  • the embodiment of the present application does not limit the specific form of the second tuning circuit 310.
  • the first tuning circuit 310 is an L-shaped tuning circuit as an example.
  • the actual tuning circuit can be debugged according to actual conditions, and the capacitance and inductance values in the tuning circuit are not limited.
  • the above arrangement of the second tuning circuit 310 can add a tuning point to the second radiating branch 302, thereby improving the tuning capability of the antenna system, thus further improving the performance of the antenna system.
  • the structure of the antenna system can also be shown in FIG. 8 , and can also include a third tuning circuit 311 , and the first feed point 305 is grounded through the third tuning circuit 311 .
  • the antenna system further includes a fourth tuning circuit 312 , and the second feed point 306 is grounded through the fourth tuning circuit 312 .
  • the implementation form of the third tuning circuit 311 and the fourth tuning circuit 312 may also refer to the description of the first tuning circuit 309 and the second tuning circuit 310.
  • the third tuning circuit 311 is configured to connect different matching forms
  • the fourth tuning circuit is configured to connect an electronic tuner.
  • the above-mentioned arrangement of the third tuning circuit 311 and/or the fourth tuning circuit 312 can improve the tuning capability of the antenna system and further improve the performance of the antenna system.
  • Figure 9 is a current distribution diagram before and after adding the third radiation branch 303 to the antenna system.
  • Picture a in Figure 9 shows the current distribution diagram before the third radiation branch 303 is added when the feed source 2 feeds the N41 frequency band signal from the second feed point 306.
  • Picture b in Figure 9 shows the current distribution diagram before the third radiation branch 303 is added when the feed source 1 feeds the N41 frequency band signal from the first feed point 305. It can be seen from the comparison that before the third radiating branch 303 is added, the current direction when feeding signals into the two feed points is the same, showing a common mode (Common mode, C mode). Continue to refer to the current distribution diagram shown in Figure 10 after adding the third radiation branch 303.
  • Common mode Common mode
  • Figure a in Figure 10 shows when the feed source 2 feeds the N41 frequency band signal from the second feed point 306, after the third radiation branch 303 is added.
  • Current distribution diagram Picture b in Figure 10 shows the current distribution diagram after the third radiation branch 303 is added when the feed source 1 feeds the N41 frequency band signal from the first feed point 305. It can be seen from the comparison that after the third radiating branch 303 is added, the current directions when the signals are fed into the two feed points are opposite, showing the form of differential mode (D mode).
  • D mode differential mode
  • the current distribution diagram can be seen as shown in Figure c in Figure 10.
  • the current distribution is relatively uniform and the effective radiator volume is relatively large. Large, it can ensure the antenna performance of the antenna system in the mid-frequency band.
  • Figure 11 is a schematic diagram of the current flow before the third radiation branch 303 is added when feed source 2 feeds the N41 frequency band signal from the second feed point 306, which is in the form of C mode;
  • Figure b in Figure 11 is a schematic diagram of the feed When source 1 feeds the N41 frequency band signal from the first feed point 305, the schematic diagram of the current flow before the third radiation branch 303 is added is in the form of C mode.
  • Figure c in Figure 11 is a schematic diagram of the current flow after the third radiation branch 303 is added when the feed source 2 feeds the N41 frequency band signal from the second feed point 306, which is in the form of D mode.
  • Diagram d in Figure 11 is a schematic diagram of the current flow after the third radiation branch 303 is added when the feed source 1 feeds the N41 frequency band signal from the first feed point 305, which is in the form of C mode. It can be seen from the comparison that after the third radiating branch 303 is added, the current direction when the signals are fed into the two feeding points is opposite, showing a differential mode.
  • Figures e and f in Figure 11 illustrate the principle of decoupling from the perspective of current.
  • A1 and A2 are the current amplitudes of port 1 and port 2 respectively
  • ⁇ 1 and ⁇ 2 are the phases of port 1 and port 2
  • the current multiplied by the phase is the size of the coupling current.
  • Picture a in Figure 12 is a curve comparison chart of the efficiency of the 1-port antenna in the original state and the decoupled state. As shown in graph a in Figure 12, compared with the original state, the radiation efficiency of the decoupled state at 2.6GHz is improved by about 1dB (1 point compared to 2 points). In figure a in Figure 12, S11 in the decoupled state drops more than the original state, about 3dB or more at 2.6GHZ; the total efficiency increases by about 2dB (6 points vs. 5 points).
  • Picture b in Figure 12 is a curve comparison chart of the efficiency of the 2-port antenna in the original state and the decoupled state. As shown in figure b in Figure 12, compared with the original state, the decoupling state does not change much at S22 at 2.6GHz.
  • the radiation efficiency in the decoupled state is improved by about 0.9dB compared with the original state (2 points vs. 3 points).
  • the total efficiency increased from -1.9 to -1.3, an increase of about 0.6dB (4 points vs. 5 points).
  • Figure 13 is a graph of the correlation number (ECC) of the first radiating branch and the second radiating branch in the original and decoupled states, taking the case where the third radiating branch is 12 mm as an example. illustrate.
  • ECC correlation number
  • the correlation coefficient in the decoupled state decreases significantly in the broadband range as a whole.
  • the isolation between radiating branches is high.
  • the length of the third radiating branch can affect the resonant frequency. Therefore, controlling the length of the third radiating branch can achieve mutual cancellation of the C-mode and D-mode currents.
  • the pit is the S21 in the frequency band with high isolation. The pit position of this S21 will change as the length of the third radiation branch changes.
  • Figure a in Figure 15 shows that other radiating branches remain unchanged. The curve of S21 corresponding to the length of different third radiating branches.
  • the matching form of the above-mentioned first tuning circuit 309 can also be adjusted to fine-tune the decoupling frequency point.
  • the parameter curve before and after fine-tuning the first tuning circuit 309 can be seen as shown in Figure b in Figure 15 .
  • the dotted line is the parameter curve before debugging (case0), and the solid line is the parameter curve after debugging (case5).
  • S22 has not changed much; S11 has been optimized in the intermediate frequency band; S21 has decreased Obviously, the 4 point is reduced from -15dB before debugging to -28dB.
  • the frequency of the pit points of S21 corresponding to the first radiation branch and the second radiation branch needs to be lower than the frequency of the pit point of the D-mode radiation efficiency generated by the third radiation branch.
  • the S21 pits of the first and second radiating branches are at 2.63GHz, and the frequency of the lowest point of the D-mode radiation efficiency of the third radiating branch is 3.15GHz.
  • the isolation degree of point 1 is -28dB, meeting the isolation requirements.
  • the sizes of the third radiating branches are 8 mm, 10 mm, 12 mm, and 16 mm respectively, the frequency of the pit point of S21 is higher than that of the D-mode radiation efficiency pit corresponding to the third radiating branch.
  • Point frequency is low:
  • the corresponding terminal device includes corresponding hardware structures for executing each function.
  • the disclosed structure can be implemented in other ways.
  • the structural embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or can be integrated into another device, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may be one physical unit or multiple physical units, that is, it may be located in one place, or it may be distributed to multiple different places. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Abstract

本申请涉及天线技术领域,提供了一种天线系统和终端设备,天线系统包括:第一辐射枝节、第二辐射枝节和第三辐射枝节;第一辐射枝节和第二辐射枝节电连接,第二辐射枝节和第三辐射枝节之间开设第一缝隙;第一辐射枝节上设置第一馈电点,第一馈电点位于第一辐射枝节远离第二辐射枝节的一端;第二辐射枝节上设置第二馈电点,第二馈电点位于第二辐射枝节远离第一辐射枝节的一端;天线系统还包括:第一回地点,第一回地点位于第一辐射枝节和第二辐射枝节的电连接处,且第一回地点位于第一馈电点和第二馈电点之间;第三辐射枝节上设置第二回地点,第二回地点位于第三辐射枝节远离第一缝隙的一端。该天线系统能够提高天线之间的隔离度。

Description

天线系统和终端设备
本申请要求于2022年8月9日提交国家知识产权局、申请号为202222089717.0、申请名称为“天线系统和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,具体涉及一种天线系统和终端设备。
背景技术
随着终端设备的快速发展和人们日益提升的使用需求,终端设备越来越广泛的应用于人们的生产和生活,用户对终端设备的通信质量要求也越来越高。
终端设备的通信质量很大程度依赖终端设备上设置的终端天线的性能。随着第五代移动通信技术(5th-Generation,5G)的普及,多输入多输出(multi-input multi-output,MIMO)天线技术在终端设备上的使用需求越来越高,目前终端设备已从2*2的天线系统逐渐发展到4*4的天线系统,加上原有的无线保真(wireless fidelity,WIFI)和全球定位系统(global positioning system,GPS)等天线,终端设备上往往要容纳8根~15根不同功能的天线。
在一些终端设备上,会采用具有超窄边框的全面屏的结构方案,这样的终端设备对结构的紧凑性要求很高。随着终端设备加入多MIMO的通信规格后需要增加更多的天线,进一步压缩了天线的空间。在这样高度压缩空间的终端设备中,MIMO天线往往需要使用不同的天线来收发相同频段的信号,这样同频段的信号在使用的不同天线收发时,天线之间的隔离度会降低,导致天线系统的性能降低。
发明内容
本申请提供了一种天线系统和终端设备,能够提高天线间的隔离度,从而提高天线系统的性能,提升通信质量。
第一方面,提供了一种天线系统,包括:第一辐射枝节、第二辐射枝节和第三辐射枝节;第一辐射枝节和第二辐射枝节电连接,第二辐射枝节和第三辐射枝节之间开设第一缝隙;第一辐射枝节上设置第一馈电点,第一馈电点位于第一辐射枝节远离第二辐射枝节的一端;第二辐射枝节上设置第二馈电点,第二馈电点位于第二辐射枝节远离第一辐射枝节的一端;天线系统还包括:第一回地点,第一回地点位于第一辐射枝节和第二辐射枝节的电连接处,且第一回地点位于第一馈电点和第二馈电点之间;第三辐射枝节上设置第二回地点,第二回地点位于第三辐射枝节远离第一缝隙的一端。
上述天线系统中,通过在第一辐射枝节和第二辐射枝节的基础上,加入了能够解耦的第三辐射枝节,并且第三辐射枝节上并不设置馈电点,而是设置了回地点,使得第三辐射枝节作为悬浮的寄生辐射枝节对整个天线系统的激励模式产生影响。该第三辐射枝节的加入,能够在馈源1和馈源2同时对相同频率的信号馈电时,在第一辐射枝节和第二辐射枝节上形成差模的电流,使得两个辐射枝节上部分电流抵消,这样就 减少了从馈源2流向第一辐射枝节的信号,也减少了从馈源1流向第二辐射枝节的信号,从而减小了两个辐射枝节之间的互相耦合,提高了这两个辐射枝节之间的隔离度,实现了解耦,从而提升了整个天线系统的性能。
在一些可能的实现方式中,第一馈电点用于馈入高频信号,第二馈电点用于馈入高频信号和/或中频信号。
在MIMO场景中,当馈源2和馈源1分别由第二馈电点和第一馈电点馈入高频信号时,第三辐射枝节的加入,能够在第一辐射枝节和第二辐射枝节上形成差模的电流,使得两个辐射枝节上部分电流抵消,这样就减少了从馈源2流向第一辐射枝节的信号,也减少了从馈源1流向第二辐射枝节的信号,从而减小了MIMO场景下两个辐射枝节之间的互相耦合,提高了MIMO场景下这两个辐射枝节之间在高频的隔离度,提升了整个天线系统在MIMO场景下的高频频段的天线性能,改善了MIMO场景下的高频频段的通信质量。第二馈电点还可以馈入中频信号,使得第二辐射枝节可以兼容中频频段,该天线系统支持高频频段的同时还兼容了中频频段,从而扩展了天线系统的带宽。
在一些可能的实现方式中,当第一馈电点和第二馈电点馈入高频信号时,天线系统中的电流模式为差模。
差模形式的电流模式使得两个辐射枝节上部分电流抵消,减少了从馈源2流向第一辐射枝节的信号,也减少了从馈源1流向第二辐射枝节的信号,从而减小了两个辐射枝节之间的互相耦合,提高了这两个辐射枝节之间在高频的隔离度,提升了整个天线系统在高频频段的天线性能。
在一些可能的实现方式中,高频信号为N41频段的信号。
在N41频段的MIMO场景下,减少了从馈源2流向第一辐射枝节的信号,也减少了从馈源1流向第二辐射枝节的信号,从而减小了MIMO场景下两个辐射枝节之间的互相,提高了MIMO场景下这两个辐射枝节之间在N41频段的隔离度,提升了整个天线系统在MIMO场景下的N41频段的天线性能,改善了MIMO场景下的N41频段的通信质量。
在一些可能的实现方式中,第三辐射枝节的长度和N41频段的信号的四分之一波长的长度差小于长度误差阈值。
上述第三辐射枝节的长度可以为馈源2处馈入的信号的四分之一波长的长度,例如可以是等于该四分之一波长的长度,也可以是和该四分之一波长的长度接近,二者的差值小于预设的长度误差阈值,该长度误差阈值可以为0.5毫米、1毫米等,从而确保在馈入该信号时达到谐振状态,保证天线性能。例如,当馈源1和馈源2馈入N41频段的信号时,该第三辐射枝节的长度可以为N41频段的中心频率对应的波长的四分之一的长度或与四分之一波长接近的长度,来保证谐振状态。
在一些可能的实现方式中,第一回地点和第二馈电点之间的距离,大于第一馈电点和第一回地点之间的距离。
当馈源2馈入信号时,第二辐射枝节作为主辐射枝节,相比馈源1馈入信号时第一辐射枝节作为主辐射枝节的辐射体的长度长。因此,在谐振模式下,第一回地点和第二馈电点之间的第二辐射枝节所匹配的频段比第一馈电点和第一回地点之间的第一辐射枝节匹配的频段的频率低,第二辐射枝节就可以兼容中频频段,使得该天线系统 支持高频频段的同时还兼容了中频频段,从而扩展了天线系统的带宽。
在一些可能的实现方式中,第二回地点位于第三辐射枝节远离第一缝隙的末端,且第三辐射枝节的长度大于第二辐射枝节靠近第一缝隙的末端至第二馈电点之间的距离。
当第二回地点位于第三辐射枝节远离第一缝隙的末端时,如果第三辐射枝节的长度太短,会使得天线系统所激励的电流模式为差模的情况下对应的谐振频率过高,因此第三辐射枝节的长度大于第二辐射枝节靠近第一缝隙的末端至第二馈电点之间的距离,能够确保第三辐射枝节谐振频率和需要解耦的频段匹配,从而确保解耦效果。
在一些可能的实现方式中,第三辐射枝节上还设置第一调谐电路,第三辐射枝节靠近第一缝隙的一端通过第一调谐电路接地。
上述第一调谐电路的设置,可以在第三辐射枝节上增加了一个回地的调谐点,提高了天线系统的调谐能力,因此能够进一步提高天线系统的性能。
在一些可能的实现方式中,第二辐射枝节上还设置第二调谐电路,第二调谐电路位于第二馈电点和第一回地点之间,第二辐射枝节通过第二调谐电路接地。
上述第二调谐电路的设置,可以在第二辐射枝节上增加了一个调谐点,提高了天线系统的调谐能力,因此能够进一步提高天线系统的性能。
在一些可能的实现方式中,天线系统还包括第三调谐电路,第一馈电点通过第三调谐电路接地。
在一些可能的实现方式中,天线系统还包括第四调谐电路,第二馈电点通过第四调谐电路接地。
上述第三调谐电路和/或第四调谐电路的设置,可以提高了天线系统的调谐能力,进一步提高天线系统的性能。
在一些可能的实现方式中,第一辐射枝节的形状为L型。
采用这样L型结构的第一辐射枝节能够在保证天线尺寸的情况下,缩短天线尺寸,利于天线布局。
第二方面,提供了一种终端设备,包括如第一方面的技术方案中任意一种天线系统。
附图说明
图1是本申请实施例提供的一例终端设备的结构示意图;
图2是一例常见的天线系统的结构示意图和对应的S参数的曲线图;
图3是本申请实施例提供的一例天线系统的结构示意图;
图4是本申请实施例提供的一例天线系统和传统的天线系统的S参数曲线的对比图;
图5是本申请实施例提供的不同结构的天线系统的结构示意图;
图6是本申请实施例提供的一例不同调谐形式的天线系统的结构示意图;
图7是本申请实施例提供的一例不同调谐形式的天线系统的结构示意图;
图8是本申请实施例提供的一例不同调谐形式的天线系统的结构示意图;
图9是一例常见的天线系统在馈电时的电流分布图;
图10是本申请实施例提供的一例天线系统在馈电时的电流分布图;
图11是本申请实施例提供的一例加入第三辐射枝节前后的天线系统对应的电流分布示意图;
图12是本申请实施例提供的一例加入第三辐射枝节前后的天线系统对应的参数曲线对比图;
图13是本申请实施例提供的一例加入第三辐射枝节前后的第一辐射枝节和第二辐射枝节的相关系数的曲线对比图;
图14是本申请实施例提供的一例加入第三辐射枝节前后的天线方向图的对比图;
图15是本申请实施例提供的一例采用不同长度的第三辐射枝节情况下天线系统的S参数曲线对比图;
图16是本申请实施例提供的一例第一辐射枝节和第二辐射枝节对应的S21的凹坑点的频率,低于第三辐射枝节产生的D模的辐射效率的凹坑点的频率的示意图;
图17是本申请实施例提供的一例不同尺寸的第三辐射枝节的情况下,第一辐射枝节和第二辐射枝节对应的S21的凹坑点的频率低于第三辐射枝节产生的D模的辐射效率的凹坑点的频率的示意图。
具体实施方式
下面将结合本申请实施例中的附图对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请实施例提供的天线系统可以应用于手机、平板电脑、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等终端设备上,本申请实施例对终端设备的具体类型不作任何限制。
请参考图1,为本申请实施例提供的一种终端设备100的结构示意图。如图1中的a图所示,本申请实施例提供的终端设备100沿z轴由上到下的顺序可以依次设置屏幕及盖板101,金属壳体102,内部结构103,以及后盖104。
其中,屏幕及盖板101可以用于实现终端设备100的显示功能。金属壳体102可以作为终端设备100的主体框架,为终端设备100提供刚性支撑。内部结构103可以包括实现终端设备100各项功能的电子部件以及机械部件的集合。比如,该内部结构103可以包括屏蔽罩,螺钉,加强筋等。后盖104可以为终端设备100背部外观面,该后盖104在不同的实现中可以使用玻璃材料,陶瓷材料,塑料等。
本申请实施例提供的天线系统能够应用在如图1中的a图所示的终端设备100中,用于支撑该终端设备100的无线通信功能。在一些实施例中,该天线系统可以设置在终端设备100的金属壳体102上。在另一些实施例中,该天线方案涉及的天线系统可 以设置在终端设备100的后盖104上等。
作为一种示例,以金属壳体102具有金属边框架构为例,图1中的b图和c图示出了一种金属壳体102的组成示意。其中,图1中的b图以天线系统设置在终端设备的短边为例示出,图1中的c图以天线系统设置在终端设备的长边为例示出。当然,天线系统还可以分布在终端设备的短边和与该短边相邻的长边上。以图1中的b图为例进行说明,金属壳体102可以采用金属材料,如铝合金等。如图1中的b图所示,该金属壳体102上可以设置有参考地。该参考地可以为具有较大面积的金属材料,用于提供大部分刚性支撑,同时为各个电子部件提供零电位参考。在如图1中的b图所示的示例中,在参考地外围还可以设置有金属边框。该金属边框可以是完整的一个闭合的金属边框,该金属边框可以包括部分或全部悬空设置的金属条。在另一些实现中,该金属边框也可以是如图1中的b图所示的通过一个或多个缝隙打断的金属边框。比如,在如图1中的b图的示例中,金属边框上可以分别在不同位置设置缝隙1,缝隙2以及缝隙3。这些缝隙可以打断金属边框,从而获取独立的金属枝节。在一些实施例中,这些金属枝节中的部分或全部可以用于作为天线的辐射枝节使用,从而实现天线设置过程中的结构复用,降低天线设置难度。在金属枝节作为天线的辐射枝节使用时,对应在金属枝节一端或两端设置的缝隙的位置可以根据天线的设置而灵活选取。
在如图1中的b图所示的示例中,金属边框上还可以设置一个或多个金属引脚。在一些示例中,金属引脚上可以设置有螺钉孔,用于通过螺钉固定其他结构件。在另一些示例中,金属引脚可以与馈电点耦接,以便在该金属引脚连接的金属枝节作为天线的辐射枝节使用时,通过金属引脚向天线进行馈电。在另一些示例中,金属引脚还可以与其他电子部件耦接,实现对应的电连接功能。在本申请的实施例中,上述图1中的b图和c图中,金属引脚可以是与馈电点耦接,也可以接地。
在本示例中,同时也示出了印制线路板(printed circuit board,PCB)在金属壳体上的设置示意。其中以主板(main board)和小板(sub board)分板设计为例。在另一些示例中,主板和小板还可以是连接的,比如L型PCB设计。在本申请的一些实施例中,主板(如PCB1)可以用于承载实现终端设备100的各项功能的电子部件。比如处理器,存储器,射频模块等。小板(如PCB2)也可以用于承载电子部件。比如通用串行总线(Universal Serial Bus,USB)接口以及相关电路,音腔(speak box)等。又如,该小板还可以用于承载设置在底部(即终端设备的y轴负方向部分)的天线对应的射频电路等。
需要说明的是,下文中提到的各种辐射枝节(第一辐射枝节、第二辐射枝节、第三辐射枝节、辐射枝节1、辐射枝节2和辐射枝节3等)以及各种辐射体,即为上文中的金属辐射枝节。
随着终端设备的快速发展和人们日益提升的使用需求,终端设备越来越广泛的应用于人们的生产和生活,用户对终端设备的通信质量要求也越来越高。
终端设备的通信质量很大程度依赖终端设备上设置的终端天线的性能。随着5G的普及,MIMO天线技术在终端设备上的使用需求越来越高,目前已从2*2的天线系统逐渐发展到4*4的天线系统,加上原有的WIFI和GPS等天线,目前的终端设备上往往要容纳8~15根不同功能的天线。
在一些终端设备上,会采用具有超窄边框的全面屏的结构方案,这样的终端设备对结构的紧凑性要求很高。随着终端设备加入多MIMO的通信规格后需要增加更多的天线,进一步压缩了天线的空间。在这样高度压缩空间的终端设备中,MIMO天线往往需要使用不同的天线来收发相同频段的信号,这样同频段的信号在使用的不同天线收发时,天线之间的隔离度会降低,导致天线系统的性能降低。
常见的MIMO天线可以参见图2中的a所示的结构,包括天线1和天线2。天线1上设置馈电点1,该馈电点1可以连接馈源a;天线2上设置馈电点2,该馈电点2可以连接馈源b;天线1和天线2通过同一个回地点接地。以辐射N41频段的信号为例,当这两个馈电点分别馈入N41频段的信号(2.6GHz)时,这两个天线的隔离度的曲线(S12)可以参见图2中的b图所示,只有-8分贝(dB),不能满足天线性能的要求。
本申请的技术方案中,通过在原有的天线系统中加入一段用于解耦的寄生枝节,和原本的天线之间设置缝隙来改变激励模式。当天线处于激励状态时,由于这个寄生辐射枝节的加入,能够在原本的两个天线上产生形成差模的电流,使得两个天线上分布的部分电流抵消,这样就减少了从馈源a流向天线2上的信号,也减少了从馈源b流向天线1的信号,从而减小了两个天线的互相耦合,提高了这两个天线之间的隔离度。
图3为本申请实施例提供的一个天线系统的结构示意图。该天线系统在上述天线方案中,增加了一个用于解耦的第三辐射枝节303,该第三辐射枝节303的加入能够改变天线系统中的电流模式,提高不同天线间的隔离度。如图3所示,该天线系统包括:第一辐射枝节301、第二辐射枝节302和第三辐射枝节303。其中,第一辐射枝节301和第二辐射枝节302电连接,二者从结构上为一个连接在一起的整体结构,但功能和作用不同,是作为两个辐射体工作。第三辐射枝节303和第二辐射枝节302沿长度方向依次设置,第二辐射枝节302和第三辐射枝节303之间开设第一缝隙304。
第一辐射枝节301上设置第一馈电点305,第一馈电点305位于第一辐射枝节301远离第二辐射枝节302的一端。第二辐射枝节302上设置第二馈电点306,第二馈电点306位于第二辐射枝节302远离第一辐射枝节301的一端。该天线系统还包括:第一回地点307,第一回地点307位于第一辐射枝节301和第二辐射枝节302的电连接处,第一回地点307位于第一馈电点305和第二馈电点306之间。第一辐射枝节301和第二辐射枝节302共用第一回地点307。第三辐射枝节303上还设置第二回地点308,第二回地点308位于第三辐射枝节303远离第一缝隙304的一端。
上述图3所示的天线系统中,上述第一馈电点305可以连接馈源1,第二馈电点306可以连接馈源2。可选地,馈电点和馈源之间可以直接连接,也可以通过串联电容连接,还可以通过其他匹配形式的匹配电路连接,本申请实施例对此不做限定。
上述图3所示的天线系统中,通过在第一辐射枝节301和第二辐射枝节302的基础上,加入了能够解耦的第三辐射枝节303,并且第三辐射枝节303上并不设置馈电点,而是设置了回地点,使得第三辐射枝节303作为悬浮的寄生辐射枝节对整个天线系统的激励模式产生影响。该第三辐射枝节303的加入,能够在馈源1和馈源2同时对相同频率的信号馈电时,在第一辐射枝节301和第二辐射枝节302上形成差模的电 流,使得两个辐射枝节上部分电流抵消,这样就减少了从馈源2流向第一辐射枝节301的信号,也减少了从馈源1流向第二辐射枝节302的信号,从而减小了两个辐射枝节之间的互相耦合,提高了这两个辐射枝节之间的隔离度,实现了解耦,从而提升了整个天线系统的性能。
可选地,上述馈源2可以通过第二馈电点306馈入低频信号,例如B5、B8等频段的低频信号;还可以馈入中频信号,例如B1、B2、B3等频段的中频信号,也可以馈入例如B7、B41等频段的高频信号。上述馈源1可以通过第一馈电点305馈入低频信号,例如B5、B8等频段的低频信号;还可以馈入中频信号,例如B1、B2、B3等频段的中频信号,也可以馈入例如B7、B41等频段的高频信号。本申请实施例对馈入的信号的频段不做限定。
在一些实施例中,上述馈源2可以通过第二馈电点306馈入高频信号,例如B7、N41等频率高的频段的信号;还可以馈入中频信号,例如B1、B2、B3等频段的信号。上述馈源1可以通过第一馈电点305馈入高频信号。在MIMO场景中,当馈源1和馈源2馈入高频信号时,第三辐射枝节303的加入,能够在第一辐射枝节301和第二辐射枝节302上形成差模的电流,使得两个辐射枝节上部分电流抵消,这样就减少了从馈源2流向第一辐射枝节301的信号,也减少了从馈源1流向第二辐射枝节302的信号,从而减小了MIMO场景下两个辐射枝节之间的互相耦合,提高了MIMO场景下这两个辐射枝节之间在高频的隔离度,从而提升了整个天线系统在MIMO场景下的高频频段的天线性能,改善了MIMO场景下的高频频段的通信质量。
此处以一个具体的实施例的天线参数来说明本申请实施例的技术效果。本申请一个实施例中,以馈源2连接的天线系统的端口为1端口,馈源1连接的天线系统的端口为2端口进行描述。需要说明的是,S12和S21为正向传输系数。以S21为例,S21表示从2端口传输至1端口的能量多少。S21用来表示隔离度的情况下,数值越小说明隔离度越大;S11和S22分别为1端口和2端口的反射系统,S11和S22越大,说明对应的端口反射的能量越多。端口反射的能量越多,能量损失多,匹配程度越低;反之,S11和S22越小,说明对应的端口反射的能量越少,能量损失少,匹配程度越高。
图4为天线系统加入用于解耦的第三辐射枝节303前后的S参数曲线的对比图。为了方便标注,将加入第三辐射枝节得到的S参数曲线上标注:解耦,将未加入第三辐射枝节得到的S参数曲线上标注:原始。由图4可以看出,天线系统加入第三辐射枝节303后,隔离度(S21)的数值降低幅度较大,在2.6GHz处由原来的-8.7675dB(标记点6)降低至-16.202dB(标记点5),隔离度降低了7dB以上。由图4还可以看出,加入第三辐射枝节303后,在中频频段,S11曲线出现较大的凹坑,说明在中频频段反射损失的能量减少。S11在2.5GHz-2.7GHz(即标记点2和标记点3之间)频段范围内有所降低,说明高频频段能量损失也减少。标记点1为1.71GHz频点,此处的反射系数为-7.4962dB,该频点处的S11降低。图4中还显示,S22变化不大,并没有恶化。
可选地,在上述各个实施例的基础上,第一回地点307和第二馈电点306之间的距离大于第一馈电点305和第一回地点307之间的距离。继续参见图3所示,当馈源 2馈入信号时,第二辐射枝节302作为主辐射枝节,相比馈源1馈入信号时第一辐射枝节301作为主辐射枝节的辐射体的长度长,因此,在四分之一波长匹配的谐振模式下,第一回地点307和第二馈电点306之间的第二辐射枝节302所匹配的频段比第一馈电点305和第一回地点307之间的第一辐射枝节301匹配的频段的频率低,第二辐射枝节302就可以兼容中频频段,使得该天线系统支持高频频段的同时还兼容了中频频段,从而扩展了天线系统的带宽。
可选地,上述第二回地点308可以位于第三辐射枝节303远离第一缝隙304的一端,例如可以是距离第三辐射枝节303远离第一缝隙304的末端一段距离,如距离第三辐射枝节303远离第一缝隙的末端1毫米、0.5毫米等较小的尺寸。第二回地点308也可以是位于第三辐射枝节303远离第一缝隙304的末端,例如可以参见图5所示。图5中的a图示出了第三辐射枝节303为一字型的结构时,第二回地点308位于远离第一缝隙304的末端的结构。并且,当第二回地点308位于第三辐射枝节303远离第一缝隙的末端时,如果第三辐射枝节303的长度太短,会使得天线系统所激励的电流模式为差模的情况下对应的谐振频率过高,因此第三辐射枝节303的长度大于第二辐射枝节302靠近第一缝隙304的末端至第二馈电点306之间的距离,能够确保第三辐射枝节303谐振频率和需要解耦的频段匹配,从而确保解耦效果。
在一些实施例中,第三辐射枝节303还可以如图5中的b图所示的“L”型结构,采用这样“L”型结构的辐射枝节能够在保证天线尺寸的情况下,缩短天线尺寸,利于天线布局。可选地,上述第一辐射枝节301也可以为“L”型结构,例如参见图5中的c图所示,这样的结构能够在保证天线尺寸的情况下,缩短天线尺寸,利于天线布局。天线系统可以根据在终端设备中的具体位置,例如是靠近左侧还是靠近右侧来选择将第一辐射枝节301设置为“L”型结构还是将第三辐射枝节303设置为“L”型结构。
可选地,在上述实施例的基础上,上述第三辐射枝节303的长度可以为馈源2处馈入的信号的四分之一波长的长度,例如可以是等于该四分之一波长的长度,也可以是和该四分之一波长的长度接近,二者的差值小于预设的长度误差阈值,该长度误差阈值可以为0.5毫米、1毫米等,从而确保在馈入该信号时达到谐振状态,保证天线性能。例如,当馈源1和馈源2馈入N41频段的信号时,该第三辐射枝节303可以是N41频段的中心频率对应的波长的四分之一。通常,可以通过调试该第三辐射枝节303的长度匹配不同的频率,例如需要适配频率高的信号时,可以减小第三辐射枝节303的长度;当需要适配频率低的信号时,可以增加第三辐射枝节303的长度,使得第三辐射枝节303的长度保持在激励信号的四分之一波长附近,来保证谐振状态。
可选地,在上述各个实施例的基础上,天线系统可以参见图6所示,第三辐射枝节303上还可以设置第一调谐电路309,并且第三辐射枝节303靠近第一缝隙304的一端通过第一调谐电路309接地。该第一调谐电路309可以是宽度和长度固定的微带线,也可以是宽度和长度变化的微带线,还可以是LC滤波电路的形式,例如可以包括串联电容、并联电容、串联电感、并联电感等形式中的任意一个或多个的组合,本申请实施例对第一调谐电路309的具体形式不做限定。可选地,上述第一调谐电路309还可以是多路开关连接不同匹配形式的结构上述第一调谐电路309还可以是电子调谐器(Tuner)。图6中以第一调谐电路309为T型结构的调谐电路为例示出,实际上的 调谐电路可以根据实际情况进行调试,调谐电路中的电容容值和电感感值也不做限定。上述第一调谐电路309的设置,可以在第三辐射枝节303上增加了一个回地的调谐点,提高了天线系统的调谐能力,因此能够进一步提高天线系统的性能。
在上述各个实施例的基础上,第二辐射枝节302上还设置第二调谐电路310。天线系统可以参见图7所示的结构,第二调谐电路310位于第二馈电点306和第一回地点307之间,第二辐射枝节306通过第二调谐电路310接地。其中,第二调谐电路310的实现方式可以是宽度和长度固定的微带线,也可以是宽度和长度变化的微带线,还可以是LC滤波电路的形式,例如可以包括串联电容、并联电容、串联电感、并联电感等形式中的任意一个或多个的组合。可选地,上述第二调谐电路310还可以是多路开关连接不同匹配形式的结构上述第二调谐电路310还可以是电子调谐器(Tuner)。本申请实施例对第二调谐电路310的具体形式不做限定。图7中以第一调谐电路310为L型结构的调谐电路为例示出,实际上的调谐电路可以根据实际情况进行调试,调谐电路中的电容容值和电感感值也不做限定。上述第二调谐电路310的设置,可以在第二辐射枝节302上增加了一个调谐点,提高了天线系统的调谐能力,因此能够进一步提高天线系统的性能。
可选地,在上述各个实施例的基础上,天线系统的结构还可以参见图8所示,还可以包括第三调谐电路311,第一馈电点305通过第三调谐电路311接地。可选地,继续参见图8所示,天线系统还包括第四调谐电路312,第二馈电点306通过第四调谐电路312接地。上述第三调谐电路311和第四调谐电路312的实现形式也可以是参见前述第一调谐电路309和第二调谐电路310的描述。图8中以第三调谐电路311为连接不同匹配形式的结构、第四调谐电路为连接电子调谐器为例示出。上述第三调谐电路311和/或第四调谐电路312的设置,可以提高了天线系统的调谐能力,进一步提高天线系统的性能。
为了更为清楚的说明本申请技术方案的实现原理,此处以一个具体的实施例结合电流分布的变化情况来对本申请实施例如何解决技术问题进行详细的描述。
如图9所示,图9为天线系统加入第三辐射枝节303前后的电流分布图。图9中的a图为馈源2从第二馈电点306馈入N41频段信号时,第三辐射枝节303加入前的电流分布图。图9中的b图为馈源1从第一馈电点305馈入N41频段信号时,第三辐射枝节303加入前的电流分布图。对比可以看出,第三辐射枝节303的加入前,两个馈电点馈入信号时的电流方向相同,呈现共模(Common模,C模)的形式。继续参见加入第三辐射枝节303后的图10所示的电流分布图,图10中的a图为馈源2从第二馈电点306馈入N41频段信号时,第三辐射枝节303加入后的电流分布图。图10中的b图为馈源1从第一馈电点305馈入N41频段信号时,第三辐射枝节303加入后的电流分布图。对比可以看出,第三辐射枝节303的加入后,两个馈电点馈入信号时的电流方向相反,呈现差模(Different模,D模)的形式。在加入第三辐射枝节303后,从第二馈电点306馈入中频频段的信号时,电流分布图可以参见图10中的c图所示,电流分布较为均匀,有效的辐射体体积较大,能够确保天线系统在中频频段的天线性能。
为了清楚的表达电流流向,这里将上述图9和图10所示的电流分布图抽象为电流 分布示意图,可以参见图11所示。图11中的虚线箭头代表对应状态下的电流的流向,粗虚线代表电流较强,细虚线代表电流较弱。图11中的a图为馈源2从第二馈电点306馈入N41频段信号时,第三辐射枝节303加入前的电流流向示意图,为C模的形式;图11中的b图为馈源1从第一馈电点305馈入N41频段信号时,第三辐射枝节303加入前的电流流向示意图,为C模的形式。由此可以看出,第三辐射枝节303的加入前,两个馈电点馈入信号时的电流方向相同,呈现共模的形式。图11中的c图为馈源2从第二馈电点306馈入N41频段信号时,第三辐射枝节303加入后的电流流向示意图,为D模的形式。图11中的d图为馈源1从第一馈电点305馈入N41频段信号时,第三辐射枝节303加入后的电流流向示意图,为C模的形式。对比可以看出,第三辐射枝节303的加入后,两个馈电点馈入信号时的电流方向相反,呈现差模的形式。图11中的e图和f图中从电流角度来说明解耦的原理。其中,A1和A2分别为1端口和2端口的电流幅度,Φ1和Φ2为1端口和2端口的相位,电流乘以相位就是耦合电流的大小。当A1ejφ1=A2ejφ2,说明从1端口耦合到2端口的电流,和从2端口耦合到1端口的电流大小相同。此时,电流大小相等方向相反,即可抵消,实现解耦。
本申请实施例的技术效果还可以从其他参数予以说明。
图12中的a图为原始状态和解耦状态下,1端口天线效率的曲线对比图。如图12中的a图所示,相比原始状态,解耦状态在2.6GHz的辐射效率提升约1dB(1点比2点)。图12中的a图中,解耦状态下S11相比原始状态下降较多,在2.6GHZ大约下降3dB以上;总效率提升了约2dB(6点比5点)。图12中的b图为原始状态和解耦状态下,2端口天线效率的曲线对比图。如图12中的b图所示,相比原始状态,解耦状态在2.6GHz的S22变化不大。图12中的b图中,解耦状态下的辐射效率相比原始状态提升0.9dB左右(2点比3点)。总效率由-1.9提升至-1.3,提高了0.6dB左右(4点比5点)。
从相关性角度来看,图13为原始状态和解耦状态下第一辐射枝节和第二辐射枝节的相关性数(ECC)的曲线图,以第三辐射枝节为12毫米的情况为例进行说明。如图13所示,解耦状态下的相关系数从整体上看,宽带范围内降低了较多。尤其在2.4GHz-2.6GHz之间有原始状态的0.3、0.4,降低至不足0.05,说明解耦后第一辐射枝节和第二辐射枝节间的相关性很低,即第一辐射枝节和第二辐射枝节间的隔离度高。
从天线方向图角度分析,图14中,原始状态下,两个馈电点馈入N41信号时,天线方向图的高增益方向朝向接近,都为图示的右下方向(面向纸的方向),这种情况下第一辐射枝节和第二辐射枝节之间独立性较差,隔离度也不高;解耦状态下,第二馈电点馈入N41信号时,对应的天线方向图的高增益方向朝向由右下方向改变为左下方向,和第一馈电点馈入N41信号时的天线方向图的高增益方向不同,这样的情况下,第一辐射枝节和第二辐射枝节之间独立性提高,隔离度也提高。
接下来,结合曲线图来说明各个辐射枝节的尺寸对天线性能的影响。
上文中提到,第三辐射枝节的长度能够影响谐振频率,因此控制第三辐射枝节的长度在可以实现C模和D模的电流相互抵消,从S21的曲线上看,会出现一个S21的凹坑,即隔离度大的频段的S21,这个S21的凹坑位置会随着第三辐射枝节长度变化而变化。可以参见图15中的a图所示,图15中的a图示出了其他辐射枝节保持不变, 不同的第三辐射枝节的长度对应的S21的曲线图。由图15可以看出,第三辐射枝节的长度从分别为8毫米、10毫米、12毫米、16毫米时,对应的S21的凹坑分别对应的点为7点、6点、5点和8点,其中7点、6点、5点和8点分别对应频点3.24GHz、2.74GHz、2.5GHz和1.968GHz,由此可以看出,第三辐射枝节的长度越长,解耦的频点的频率越低;第三辐射枝节的长度越短,解耦的频点的频率越高。如果要解耦中频信号,例如解耦1.71GHz的信号时,则可以将第三辐射枝节的长度由16毫米继续加长。
在确定了第三辐射枝节的长度后,还可以调试上述第一调谐电路309的匹配形式来对解耦的频点进行微调。例如确定好第三辐射枝节的长度为12毫米,微调第一调谐电路309前后的参数曲线可以参见图15中的b图所示。图15中的b图中,虚线为调试前(case0)的参数曲线,实线为调试后(case5)的参数曲线,可以看出S22变化不大;S11在中频频段有所优化;S21降低明显,4点由调试前的-15dB降低为-28dB。
在调试过程中,需要将第一辐射枝节和第二辐射枝节对应的S21的凹坑点的频率,低于第三辐射枝节产生的D模的辐射效率的凹坑点的频率。如图16所示,第一辐射枝节和第二辐射枝节的S21凹坑在2.63GHz,第三辐射枝节的D模的辐射效率最差点的频率为3.15GHz处,此时点1的隔离度为-28dB,满足隔离度的要求。继续参见图17所示,第三辐射枝节的尺寸分别为8毫米、10毫米、12毫米、16毫米时,S21的凹坑点的频率比第三辐射枝节对应的D模的辐射效率的凹坑点的频率低:
第三辐射枝节为8mm时,S21Mark 3频率(3.25GHz)<Mark 7(D模最差点)的频率(4.49GHz);
第三辐射枝节为10mm时,S21Mark 2频率(2.74GHz)<Mark 6(D模最差点)的频率(3GHz);
第三辐射枝节12mm时,S21Mark 1频率(2.5GHz)<Mark 5(D模最差点)的频率(2.8GHz);
第三辐射枝节16mm时,S21Mark 4频率(1.97GHz)<Mark 8(D模最差点)的频率(2.2GHz)。
上文详细介绍了本申请提供的天线系统的示例。可以理解的是,相应的终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构。
在本申请所提供的几个实施例中,应该理解到,所揭露的结构,可以通过其它的方式实现。例如,以上所描述的结构实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种天线系统,其特征在于,包括:第一辐射枝节、第二辐射枝节和第三辐射枝节;
    所述第一辐射枝节和所述第二辐射枝节电连接,所述第二辐射枝节和所述第三辐射枝节之间开设第一缝隙;
    所述第一辐射枝节上设置第一馈电点,所述第一馈电点位于所述第一辐射枝节远离第二辐射枝节的一端;
    所述第二辐射枝节上设置第二馈电点,所述第二馈电点位于所述第二辐射枝节远离所述第一辐射枝节的一端;
    所述天线系统还包括:第一回地点,所述第一回地点位于所述第一辐射枝节和所述第二辐射枝节的电连接处,且所述第一回地点位于所述第一馈电点和所述第二馈电点之间;
    所述第三辐射枝节上设置第二回地点,所述第二回地点位于所述第三辐射枝节远离所述第一缝隙的一端。
  2. 根据权利要求1所述的天线系统,其特征在于,所述第一馈电点用于馈入高频信号,所述第二馈电点用于馈入高频信号和/或中频信号。
  3. 根据权利要求2所述的天线系统,其特征在于,当所述第一馈电点和所述第二馈电点馈入所述高频信号时,所述天线系统中的电流模式为差模。
  4. 根据权利要求2或3所述的天线系统,其特征在于,所述高频信号为N41频段的信号。
  5. 根据权利要求4所述的天线系统,其特征在于,所述第三辐射枝节的长度和N41频段的信号的四分之一波长的长度差小于长度误差阈值。
  6. 根据权利要求1至3任一项所述的天线系统,其特征在于,所述第一回地点和所述第二馈电点之间的距离,大于所述第一馈电点和所述第一回地点之间的距离。
  7. 根据权利要求6所述的天线系统,其特征在于,所述第二回地点位于所述第三辐射枝节远离所述第一缝隙的末端,且所述第三辐射枝节的长度大于所述第二辐射枝节靠近所述第一缝隙的末端至所述第二馈电点之间的距离。
  8. 根据权利要求7所述的天线系统,其特征在于,所述第三辐射枝节上还设置第一调谐电路,所述第三辐射枝节靠近所述第一缝隙的一端通过所述第一调谐电路接地。
  9. 根据权利要求7或8所述的天线系统,其特征在于,所述第二辐射枝节上还设置第二调谐电路,所述第二调谐电路位于所述第二馈电点和所述第一回地点之间,所述第二辐射枝节通过所述第二调谐电路接地。
  10. 根据权利要求9所述的天线系统,其特征在于,所述天线系统还包括第三调谐电路,所述第一馈电点通过所述第三调谐电路接地。
  11. 根据权利要求9所述的天线系统,其特征在于,所述天线系统还包括第四调谐电路,所述第二馈电点通过所述第四调谐电路接地。
  12. 根据权利要求1至11中任一项所述的天线系统,其特征在于,所述第一辐射枝节的形状为L型。
  13. 一种终端设备,其特征在于,包括如权利要求1至12中任一项所述的天线系统。
PCT/CN2023/088359 2022-08-09 2023-04-14 天线系统和终端设备 WO2024032018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222089717.0 2022-08-09
CN202222089717.0U CN218415017U (zh) 2022-08-09 2022-08-09 天线系统和终端设备

Publications (2)

Publication Number Publication Date
WO2024032018A1 true WO2024032018A1 (zh) 2024-02-15
WO2024032018A9 WO2024032018A9 (zh) 2024-04-04

Family

ID=85026923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088359 WO2024032018A1 (zh) 2022-08-09 2023-04-14 天线系统和终端设备

Country Status (2)

Country Link
CN (1) CN218415017U (zh)
WO (1) WO2024032018A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218415017U (zh) * 2022-08-09 2023-01-31 荣耀终端有限公司 天线系统和终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210091824A1 (en) * 2019-09-19 2021-03-25 Beijing Xiaomi Mobile Software Co., Ltd. Electronic device
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN114221127A (zh) * 2021-11-30 2022-03-22 荣耀终端有限公司 自解耦宽带天线系统和终端设备
CN218415017U (zh) * 2022-08-09 2023-01-31 荣耀终端有限公司 天线系统和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210091824A1 (en) * 2019-09-19 2021-03-25 Beijing Xiaomi Mobile Software Co., Ltd. Electronic device
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN114221127A (zh) * 2021-11-30 2022-03-22 荣耀终端有限公司 自解耦宽带天线系统和终端设备
CN218415017U (zh) * 2022-08-09 2023-01-31 荣耀终端有限公司 天线系统和终端设备

Also Published As

Publication number Publication date
CN218415017U (zh) 2023-01-31
WO2024032018A9 (zh) 2024-04-04

Similar Documents

Publication Publication Date Title
WO2022206237A1 (zh) 天线组件及电子设备
TWI425713B (zh) 諧振產生之三頻段天線
US6894647B2 (en) Inverted-F antenna
WO2023098162A1 (zh) 自解耦宽带天线系统和终端设备
TW201806243A (zh) 天線結構及具有該天線結構的無線通訊裝置
WO2023071478A1 (zh) 一种终端天线及电子设备
TW201906228A (zh) 行動裝置
TWI724635B (zh) 天線結構及電子裝置
WO2024032018A1 (zh) 天线系统和终端设备
TWI673910B (zh) 天線架構及通訊裝置
TW202002396A (zh) 天線結構
JPH0983233A (ja) 携帯無線端末
WO2022099545A1 (zh) 一种天线组件和电子设备
TW202007008A (zh) 行動裝置
US20080129611A1 (en) Antenna module and electronic device using the same
TWM624317U (zh) 天線系統
WO2023185083A1 (zh) 一种终端天线及电子设备
JP2004335155A (ja) アンテナ装置
CN218498380U (zh) 缝隙天线和电子设备
TWI841002B (zh) 天線結構
TWI823588B (zh) 寬頻天線結構
WO2023273604A1 (zh) 天线模组及电子设备
CN114883791B (zh) 天线系统和终端设备
TWI823597B (zh) 耦合式多支路天線系統
US20240128634A1 (en) Antenna structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851248

Country of ref document: EP

Kind code of ref document: A1