WO2023071478A1 - 一种终端天线及电子设备 - Google Patents

一种终端天线及电子设备 Download PDF

Info

Publication number
WO2023071478A1
WO2023071478A1 PCT/CN2022/114841 CN2022114841W WO2023071478A1 WO 2023071478 A1 WO2023071478 A1 WO 2023071478A1 CN 2022114841 W CN2022114841 W CN 2022114841W WO 2023071478 A1 WO2023071478 A1 WO 2023071478A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
terminal antenna
frequency band
antenna
electronic device
Prior art date
Application number
PCT/CN2022/114841
Other languages
English (en)
French (fr)
Inventor
侯思敏
魏鲲鹏
孟航
官乔
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22885376.8A priority Critical patent/EP4280379A1/en
Publication of WO2023071478A1 publication Critical patent/WO2023071478A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the technical field of antennas, in particular to a terminal antenna and electronic equipment.
  • the embodiment of the present application provides a terminal antenna and electronic equipment, which can better cover the medium and high frequency bands (such as 1.7GHz-2.7GHz), provide better bandwidth and radiation performance, reduce hardware costs, and have better SAR. Therefore, the wireless communication function of the electronic device is better supported.
  • medium and high frequency bands such as 1.7GHz-2.7GHz
  • a terminal antenna is provided.
  • the terminal antenna is set in an electronic device, and the terminal antenna includes: a first radiator, a feeding point, and a grounding point.
  • One end of the first radiator is grounded through the ground point, and the other end of the first radiator is provided with the feeding point.
  • the first radiator is also provided with a slot passing through the first radiator, the slot is in a finger structure, and the number of the slots is at least two.
  • a new antenna structure is provided, which can be applied to the antenna design of electronic equipment (such as mobile phones).
  • this solution can be applied to the lower antenna design of a mobile phone.
  • the antenna can be provided with an interdigitated structure to form a distributed capacitor, and the radiation characteristics of the current loop antenna can be obtained by connecting capacitors in series on the radiator.
  • the ground point is provided at the end away from the feeding point, it is also possible to excite a loop mode or the like. Therefore, through the at least two working modes, the two modes themselves have better radiation performances such as better bandwidth and efficiency, so that the electronic device with the antenna of the terminal can have better wireless communication capabilities.
  • the working frequency band of the terminal antenna includes at least a first frequency band and a second frequency band
  • the terminal antenna covers the first frequency band through the resonance corresponding to the zero-order mode
  • the resonance corresponding to the zero-order mode is determined by the submission refers to structural gaps generated.
  • the terminal antenna covers the second frequency band through the resonance corresponding to the Loop mode, and the first frequency band is different from the second frequency band.
  • the coverage mechanism of the terminal antenna to the working frequency band is provided.
  • the zero-order mode that is, the mode generated by the current loop
  • the resonance of the loop mode can also generate a resonance. In this way, at least two operating frequency bands required by the electronic device can be covered by the two resonances.
  • the gap is filled with a medium, and the dielectric constant of the medium is different from that of the first radiator.
  • the resonance coverage frequency bands corresponding to the zero-order mode are different.
  • the gap may be filled with a medium with a dielectric constant different from that of the first radiator.
  • the resonance frequency bands corresponding to the loop modes are different.
  • the resonance frequencies corresponding to the zero-order mode are different.
  • a limitation of the influence of different radiator lengths on the covered frequency band is provided. For example, by adjusting the length of the radiator, the purpose of adjusting the frequency band of the resonance corresponding to the loop mode and the resonance corresponding to the zero-order mode can be achieved.
  • the frequency bands corresponding to the resonances of the zero-order modes are different.
  • the structural parameters of the interdigitated structure include at least one of the following: the slot width s of the interdigitated structure parallel to the first radiator, the slot width g of the interdigitated structure perpendicular to the first radiator, the interdigitated structure refers to the length f of the structure parallel to the first radiator.
  • the slot width s parallel to the first radiator is within the range of 0.2 mm and 20%, and the slot width g of the interdigitated structure perpendicular to the first radiator is included within 0.3 mm.
  • the length f of the interdigitated structure parallel to the first radiator is included within the range of up and down 20% of 2.1 mm.
  • the first radiator is arranged at a corner of the electronic device, the first radiator includes a connected first part and a second part, and the first part is arranged on a side of the electronic device corresponding to the corner
  • the second part is arranged on the bottom edge of the electronic device corresponding to the corner
  • the feeding point is arranged at the end of the second part
  • the grounding point is arranged at the end of the first part.
  • the terminal antenna can be set at the lower left corner or the lower right corner of the electronic device (such as a mobile phone).
  • a part of the radiator can be located at the bottom of the mobile phone, and a part of the radiator can be located at the side of the mobile phone.
  • the feeding point can be set at the bottom, and the grounding point can be set at the side. Therefore, both the zero-order mode and the loop mode can better excite the floor current and obtain better radiation performance.
  • the terminal antenna is disposed on a flexible circuit board FPC, the first radiator is a conductive structure on the FPC, and the slot is opened on the conductive structure.
  • FPC flexible circuit board
  • the first radiator is a conductive structure on the FPC
  • the slot is opened on the conductive structure.
  • the number of slots presenting the finger structure is included in the range of two to five. Based on this solution, a specific limitation on the number of interdigitated structures is provided. When the number of interdigitated structures is greater than 2, the zero-order mode can be better excited, while the number of interdigitated structures is not greater than 5, so that the size of the terminal antenna will not be too large, thereby meeting the requirement of miniaturization.
  • the terminal antenna further includes a second radiator, the second radiator is not connected to the first radiator, the end of the second radiator away from the first part is grounded, and the second radiator One end of the body close to the first part is suspended in the air.
  • the second radiator can be set to form a parasitic structure with the first radiator, so as to realize the expansion of the covered frequency band.
  • the working frequency band of the terminal antenna also includes a third frequency band, the third frequency band is different from the first frequency band or the second frequency band, and the third frequency band corresponds to the terminal antenna through the balanced mode Covered by the resonance, the resonance corresponding to the balanced mode is generated by the second radiator.
  • the second radiator can introduce current from the first radiator to the second radiator through coupling, and since one end of the second radiator is grounded, a parasitic corresponding balanced mode can be generated. Therefore, the balanced mode can be used to cover a third working frequency band different from the zero-order mode and the loop mode. In turn, the bandwidth and radiation performance of the terminal antenna are improved.
  • the first frequency band, the second frequency band and the third frequency band jointly cover 1.7 GHz to 2.7 GHz.
  • the terminal antenna can be arranged on the lower half of the mobile phone to cover the middle and high frequency bands of the main frequency, so as to achieve the effect of improving the performance of the main frequency work.
  • an electronic device is provided, and the electronic device is provided with the terminal antenna as described in the first aspect and any possible design thereof.
  • the electronic device transmits or receives signals, it transmits or receives signals through the antenna of the terminal.
  • FIG. 1 is a schematic diagram of a location where an antenna is set in a mobile phone
  • FIG. 2 is a schematic diagram of the composition of a left-handed parasitic antenna
  • FIG. 3 is a schematic diagram of a simulation result of a left-handed parasitic antenna
  • FIG. 4 is a schematic diagram of the composition of an electronic device provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the location of a lower antenna area provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a topological structure of an antenna scheme provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an antenna solution provided by an embodiment of the present application.
  • FIG. 8A is a schematic composition diagram of an antenna scheme provided by an embodiment of the present application.
  • FIG. 8B is a schematic diagram of an interdigitated structure provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an interdigitated structure provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of S parameters of an antenna provided with an interdigitated structure provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a simulation of the influence of different structural parameters on the interdigitated structure and the working frequency band of the antenna provided by the embodiment of the present application;
  • FIG. 12 is a schematic diagram of another simulation of the influence of different structural parameters on the interdigitated structure and the working frequency band of the antenna provided by the embodiment of the present application;
  • FIG. 13 is a schematic diagram of simulation of the influence of another different structural parameters on the interdigitated structure and the working frequency band of the antenna provided by the embodiment of the present application;
  • Fig. 14 is a schematic diagram of a working effect simulation provided by the embodiment of the present application.
  • FIG. 15 is a schematic topology diagram of another antenna solution provided by the embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of another antenna solution provided by the embodiment of the present application.
  • Fig. 17 is a schematic diagram of a current analysis provided by the embodiment of the present application.
  • Fig. 18 is a schematic diagram of a working effect simulation provided by the embodiment of the present application.
  • FIG. 19 is a schematic diagram of a simulation of a direction diagram provided by an embodiment of the present application.
  • At least an antenna may be provided in the electronic device to support the wireless communication function of the electronic device.
  • the electronic device is a mobile phone as an example.
  • the battery provided inside the mobile phone for power supply can be provided in the middle or lower than the middle of the mobile phone.
  • an antenna may be arranged above and/or below the battery.
  • FIG. 1 shows a schematic diagram of a situation in which an antenna is arranged under a battery.
  • an antenna for 5G communication may also be provided in the electronic device.
  • the main antenna for data/voice transmission and reception that supports main frequency communication as an example.
  • the main antenna can be set in the lower antenna area under the battery as shown in Figure 1.
  • FIG. 2 shows a schematic diagram of a commonly used main antenna at present.
  • the antenna may be a left-handed parasitic antenna.
  • the left-hand parasitic antenna may include a left-hand part and a parasitic part.
  • the left-hand part may include a radiator, one end of the radiator may be connected to a feed point, and a left-hand capacitor may be arranged between the feed point and the radiator.
  • the left-hand capacitor can be used to excite the radiator of the left-hand part to generate a left-hand mode.
  • the feed point may be placed on the left hand part, close to one end of the parasitic part.
  • the end of the radiator in the left hand part away from the parasitic part may be grounded.
  • the structure and working mechanism of the left-handed antenna can refer to CN201380008276.8 and CN201410109571.9, and will not be repeated here.
  • the parasitic part of the left-handed parasitic antenna may include a radiator, and one end of the radiator may be grounded.
  • the end of the parasitic part away from the left-hand part can be directly grounded, and the end of the parasitic part close to the left-hand part can be provided with a matching (matching, M) circuit for tuning the operating frequency band and port impedance of the parasitic part .
  • FIG. 3 shows a simulation result of the left-handed parasitic antenna with the composition shown in FIG. 2 .
  • the left-handed parasitic antenna can cover the medium and high frequencies of 1.7GHz-2.7GHz.
  • the coverage of the medium and high frequencies can be achieved by two resonances. Due to the insufficient bandwidth of the two resonances, the return loss at both ends of the medium and high frequencies is poor, and a pit is also produced in the middle of the two resonances. For example, as shown in Figure 2, a significant increase in loss occurs between 2 GHz and 2.5 GHz.
  • Similar conclusions can also be drawn from the perspective of system efficiency. For example, the efficiency near 1.7GHz and 2.7GHz is poor, and at the same time, there is an efficiency pit between 2GHz and 2.5GHz. The worst system efficiency in this part is higher than -6dB.
  • one or more switches can be set at the feeding point and/or grounding point of the antenna to switch between different working frequency bands, so as to ensure that the entire Medium and high frequency coverage.
  • an embodiment of the present application provides a terminal antenna that can Combined with the current loop antenna and the 1/2 wavelength mode provided by Loop, it provides better radiation performance at both ends of the mid-high frequency and the middle frequency band.
  • the antenna solution provided in the embodiment of the present application may be applied in a user's electronic device to support the wireless communication function of the electronic device.
  • the electronic device may be a portable mobile device such as a mobile phone, a tablet computer, a personal digital assistant (personal digital assistant, PDA), an augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) device, a media player, etc.
  • PDA personal digital assistant
  • AR augmented reality
  • VR virtual reality
  • the electronic device may also be a wearable electronic device such as a smart watch.
  • the embodiment of the present application does not specifically limit the specific form of the device.
  • FIG. 4 is a schematic structural diagram of an electronic device 400 provided in an embodiment of the present application.
  • the electronic device 400 provided by the embodiment of the present application can be provided with a screen and a cover 401 , a metal shell 402 , an internal structure 403 , and a rear cover 404 in sequence along the z-axis from top to bottom.
  • the screen and the cover 401 can be used to realize the display function of the electronic device 400 .
  • the metal shell 402 can be used as a main frame of the electronic device 400 to provide rigid support for the electronic device 400 .
  • the internal structure 403 may include a collection of electronic components and mechanical components that implement various functions of the electronic device 400 .
  • the internal structure 403 may include a shield, screws, reinforcing ribs and the like.
  • the back cover 404 may be the exterior surface of the back of the electronic device 400, and the back cover 404 may use glass materials, ceramic materials, plastics, etc. in different implementations.
  • the antenna solution provided in the embodiment of the present application can be applied to the electronic device 400 shown in FIG. 4 , and is used to support the wireless communication function of the electronic device 400 .
  • the antenna involved in the antenna solution may be disposed on the metal casing 402 of the electronic device 400 .
  • the antenna involved in the antenna solution may be disposed on the rear cover 404 of the electronic device 400 and the like.
  • the antenna may be implemented in combination with a metal frame on the metal casing 402 as shown in FIG. 4 .
  • the antenna solution can also be implemented by using a flexible printed circuit (Flexible Printed Circuit, FPC), anodized die-casting (Metalframe Diecasting for Anodicoxidation, MDA) and other methods.
  • FPC Flexible Printed Circuit
  • MDA Metalframe Diecasting for Anodicoxidation
  • the antenna solution may also be obtained by combining at least two of the foregoing implementation manners.
  • the embodiment of the present application does not limit the specific implementation form of the magnetic current loop monopole antenna.
  • the FPC may include a non-conductive substrate on which a conductive layer may be disposed.
  • the conductive layer can be metal or other conductive materials.
  • the metal can be copper or silver, among others.
  • the radiator of the antenna is obtained.
  • a slot may be connected in series on the radiator, and the slot may be a through slot. That is to say, a gap can divide the radiator into two parts that are not connected to each other.
  • the purpose of adjusting the size of the distributed capacitance corresponding to the gap can be achieved by adjusting the medium filled in the gap and using a medium with a different dielectric constant.
  • the antenna solution provided by the embodiment of the present application can be arranged in the lower antenna area of the mobile phone.
  • the lower antenna area may be below the battery as shown in FIG. 2 .
  • the antenna solution provided in the present application may be disposed between the metal casing and the rear case as shown in FIG. 4 .
  • the antenna solution may use a part of the conductor on the metal shell to realize the radiation function of the antenna.
  • the lower antenna area may be located below a sound chamber (speaker, SPK).
  • SPK sound chamber
  • an antenna bracket made of a non-conductive material can be set under the SPK, and an antenna of the FPC process can be attached to the antenna bracket.
  • the antenna solution provided by the present application can also be implemented on the antenna support by using a laser direct structuring technology (Laser Direct Structuring, LDS) and/or an MDA process.
  • LDS Laser Direct Structuring
  • the antenna solution provided in the embodiment of the present application may also be applied to other locations.
  • it can be set in other corners of the electronic device, such as the upper left corner, upper right corner, etc.
  • FIG. 6 shows an example of an antenna solution provided by the embodiment of the present application.
  • the antenna may include at least one radiator (such as radiator 1).
  • One end of the radiator 1 can be connected to a feed point, and the other end of the radiator 1 can be grounded.
  • one or more matching devices may also be provided between the radiator 1 and the feeding point and/or the grounding point for port matching.
  • the radiator 1 is directly connected to the feeding point and the grounding point as an example.
  • at least one interdigitated structure may also be provided on the radiator 1 .
  • the interdigitated structure may be a gap presenting an interdigitated structure.
  • FIG. 1 shows an example of an antenna solution provided by the embodiment of the present application.
  • the number of the interdigitated structures may also include more or less, and the specific number may be flexibly set according to the actual situation, and the achieved effects thereof are similar, and details are not repeated here.
  • the corresponding modes when there are more than or equal to two interdigitated structures, the corresponding modes can be better excited, and the corresponding resonance can be obtained to cover the corresponding frequency band.
  • the interdigitated structure can achieve the effect of distributed capacitance, that is, at least one capacitor can be connected in series on the radiator 1 .
  • the radiator 1 can obtain the radiation characteristics of the current loop antenna. For example, a uniform magnetic field may be distributed between the radiator 1 and the reference ground, thereby obtaining better radiation performance in a smaller space.
  • the antenna with the composition shown in Figure 6 when the antenna with the composition shown in Figure 6 is working, in addition to the mode corresponding to the above-mentioned current loop antenna (such as called the zero-order mode), it can also work in the 1/2 wavelength mode of the loop (Loop) mode, thereby obtaining At least two resonances are used to cover mid and high frequencies.
  • the mode corresponding to the above-mentioned current loop antenna such as called the zero-order mode
  • loop 1/2 wavelength mode of the loop (Loop) mode
  • FIG. 7 shows a specific example of the antenna having the topological composition as shown in FIG. 6 .
  • the antenna may be disposed in the lower antenna area as shown in FIG. 5 .
  • the radiator 1 included in the antenna can be arranged at the lower left corner of the back view of the electronic device.
  • the radiator 1 may include connected first and second parts. Wherein, the first part on the radiator 1 can be arranged on the side of the electronic device, and the second part on the radiator 1 can be arranged on the bottom of the electronic device. Both ends of the radiator 1 may be respectively connected to a feeding point and a grounding point.
  • At least one interdigitated structure may be provided on the first part and/or the second part.
  • one interdigitated structure may be provided on the first part, and two interdigitated structures may be provided on the second part.
  • one or more interdigitated structures on the radiator 1 can divide the radiator 1 into multiple parts that are not connected to each other.
  • the arbitrary part that is not connected to each other is called a zero-order antenna radiating element.
  • the sizes of the multiple zero-order antenna radiating elements may be the same or different.
  • the radiator 1 may include a first zero-order antenna radiation unit and a second zero-order antenna radiation unit.
  • the X-direction length a of any zero-order antenna radiating unit (such as the first zero-order antenna radiating unit) can be set within a range of 50% up and down 10.5 mm.
  • the width w in the Y direction can be set within a range of 2mm up and down 50%.
  • the opposite end of the first zero-order antenna radiating unit and the second zero-order antenna radiating unit are alternately elongated to form an interdigitated structure, and the slot width s of the interdigitated structure (that is, the slot width s parallel to the radiator 1) can be 0.2mm within 20% range.
  • the X-direction length f of the alternately elongated interdigitated structure ie, the length f of the interdigitated structure parallel to the radiator 1
  • the slot width g of the interdigitated structure relative to the zero-order antenna radiating element on the other side can be set within a range of 0.3mm up and down 20%.
  • the slot width s parallel to the radiator 1 and the slot width g of the interdigitated structure perpendicular to the radiator 1 may be different.
  • the impact of these two parameters on the size of the distributed capacitance of the interdigitated structure needs to be controlled separately.
  • FIG. 8B a schematic illustration of another interdigitated structure is provided for the embodiment of the present application. It can be seen that g and s are two dimensions that are significantly different. In the following example, the influence of each parameter on the working frequency band corresponding to the zero-order mode will be described in combination with the control variables of each parameter.
  • the interdigitated structure can act as a coupling capacitor, and work together with the zero-order antenna radiation element to determine the resonance position of the zero-order mode. That is to say, the size of the distributed capacitance affected by each size of the interdigitated structure, and the overall length of the radiator 1 jointly affect the working frequency band of the antenna working in the zero-order mode mode. Wherein, in the case that the zero-order mode corresponds to the fundamental mode, the length of the radiator 1 may be less than 1/4 of the corresponding working frequency band.
  • the sizes of the zero-order antenna radiating elements included in the radiator 1 may be the same or equivalent, or may be different from each other.
  • the size from the right side of the third interdigitated structure to the end of the radiator connected to the feed point can match the capacitance of the interdigitated structure (such as the size of the distributed capacitance corresponding to the third interdigitated structure) , to effectively adjust the working frequency band of the zero-order mode.
  • the antenna with the above structure can also work in the Loop 1/2 mode (for example, referred to as the Loop mode for short).
  • the operating frequency band in the Loop mode may be determined by the length of the radiator 1 . That is to say, 1/2 of the operating frequency band of the Loop mode may correspond to the electrical length of the radiator between the feed point of the antenna and the ground point.
  • the interdigitated structure involved in the embodiment of the present application can generate coupling capacitance, and this structure can realize its function as a multi-stage coupled resonator.
  • the coupling capacitance required for the zero-order mode can be obtained according to the passband characteristics of the microstrip coupling resonator, and then the size of the interdigitated structure can be inferred based on this, so as to realize the size control of the interdigitated structure.
  • each dimension on the interdigitated structure (such as the slot width s parallel to the radiator 1, the length f of the interdigitated structure parallel to the radiator 1, and the interdigitated structure perpendicular to the radiation
  • the influence of the gap width g) of the body 1 on the working frequency band is explained.
  • the bandwidth formed by the dual ports can cover 1.66MHz-4.32MHz (S11 ⁇ -10dB), so it can effectively meet the bandwidth requirements of medium and high frequencies.
  • the isolation degree of the two ports is also shown in this FIG. 10 . It can be understood that from the perspective of the dual-port isolation, the capacitance of the interdigitated structure at the current size can be analyzed from one angle.
  • FIGS 11-13 below show the influence on S parameters (such as S11) in the case of controlling a single size change.
  • the working frequency band with an interdigitated structure as shown in FIG. 9 can be adjusted.
  • This conclusion can also be extended to structures with more interdigitated structures.
  • the working frequency band can also be adjusted according to the above conclusions.
  • the two resonances corresponding to the zero-order mode and the loop mode can be adjusted to the desired frequency band.
  • the feed point can be set at a point where the electric field of the floor is large (for example, the bottom edge of the mobile phone is close to the middle position, etc.), so that the floor current can be better stimulated, thereby obtaining a better zero The radiation performance of the order mode.
  • one or more of the capacitors connected in series on the radiator can also be realized by a lumped capacitor (such as a capacitive device, an adjustable capacitive device, etc.) .
  • the embodiment of the present application also provides a simulation diagram of the antenna scheme with the composition shown in FIG. 7 or FIG. 8A , which is used to prove that the antenna scheme has better radiation performance.
  • the zero-order mode resonance can be used to cover the low frequency of the mid-to-high frequency band
  • the loop mode resonance can be used to cover the high frequency of the mid-to-high band.
  • the antenna solution provided in this example has a better bandwidth and can better cover the sidebands through the two resonances. At the same time, because the bandwidth of the two resonances is sufficient, there will be no significant protrusions in the middle area. . In this way, better coverage of medium and high frequencies is achieved. This in turn provides better radiation performance.
  • the resonance of the zero-order mode and the loop mode achieves better coverage of medium and high frequencies.
  • the application of the zero-order mode and the loop mode may also be combined with other antenna forms to cover part of frequency bands in the middle and high frequencies in the main frequency.
  • the antenna scheme with any possible composition as shown in Fig. 6 to Fig. 8A can also be applied in the coverage of other working frequency bands. For example, it is used to cover WIFI, 5G, etc. Based on a mechanism similar to that described above, the zero-order mode and the loop mode can also better cover the corresponding frequency bands, which will not be repeated here.
  • the embodiment of the present application also provides an antenna solution.
  • a balanced mode is added to provide more resonances (for example, a total of three resonances), thereby further improving bandwidth coverage and further improving radiation performance.
  • FIG. 15 shows a topology diagram of an antenna solution.
  • the implementation of the zero-order mode through the interdigitated structure is still taken as an example for illustration.
  • a schematic topology is shown in conjunction with FIG. 6 .
  • a balanced mode structure is also added.
  • the balanced mode structure may include a radiator 2 .
  • One end of the radiator 2 may be set to be grounded, and the other end may be set opposite to the ground end of the radiator 1 .
  • the ground end of the radiator 2 may be an end away from the radiator 1 , and the non-ground end of the radiator 2 may be disposed close to the radiator 1 .
  • the non-ground terminal is set floating. In this way, when the antenna is working, energy can be coupled from the radiator 1 to the radiator 2, so that the radiator 2 obtains a parasitic effect, thereby obtaining radiation of a corresponding balanced mode.
  • FIG. 16 shows a specific implementation based on the topology in FIG. 15 .
  • This implementation manner can be obtained by evolution on the basis of the antenna structure shown in FIG. 7 or FIG. 8A .
  • the radiator in the antenna solution may further include a third part.
  • the third part may correspond to the balanced mode structure as shown in FIG. 15 .
  • the third part may include a radiator that is not connected to the first part and the second part.
  • part or all of the third part can be implemented by sharing the side metal frame of the electronic device (such as a mobile phone).
  • part or all of the third part can also be realized by setting a separate structure such as LDS or FPC.
  • the third part can provide resonances other than zero-order mode and loop mode, such as balanced mode resonance, which can further increase the bandwidth of the antenna, thereby providing better radiation performance.
  • the working mechanism of the antenna solution provided by the embodiment of the present application will be described in combination with the current simulation situation shown in FIG. 17 .
  • the antenna can also work in balanced mode. In this mode, currents can be distributed on the radiators of the antenna. For example, the currents on the side radiators (ie, the first part and the third part) are relatively large, which can form a radiation mechanism of a balanced mode.
  • FIG. 17 shows a simulation diagram of an antenna solution having the structure as shown in FIG. 15 or FIG. 16 .
  • the three resonances can be used to cover mid and high frequencies.
  • the loop mode resonance can be tuned to the middle range (such as 2.2GHz), and the middle and high frequencies can be covered by the balanced mode resonance. the front end of the frequency.
  • the S11 in the middle and high frequencies can be close to -5dB as a whole.
  • the radiation efficiency makes up for the bump in the middle section, and the overall system efficiency is also improved, exceeding -4dB in the entire frequency band.
  • the coverage frequency bands and/or sequence of each mode may also be adjusted according to actual conditions, so as to better cover the corresponding working frequency bands.
  • the solution provided by the embodiment of the present application is more convenient to implement, and can Save corresponding cost expenses.
  • there is no need to set a switch on the link there are no problems such as mismatch and loss corresponding to the switching device.
  • the antenna is arranged in the lower left corner of the back view of the electronic device as an example.
  • the antenna can also be arranged in other parts of the lower antenna area, based on a similar mechanism to excite the zero-order mode, the loop mode, or to excite the zero-order mode, the loop mode and the balanced mode, so as to achieve mid-high frequency Better coverage for better radiation performance.
  • the antenna solutions provided in the embodiments of the present application can provide better SAR while providing better radiation performance.
  • FIG. 19 shows a simulation example of a pattern of an antenna having the composition shown in FIG. 15 or FIG. 16 . It can be seen that under this plane, the radiation pattern of the antenna is relatively evenly distributed in all directions without significant depressions or protrusions, so the spatial field distribution of the antenna is relatively uniform, and the SAR will be lower.
  • Table 1 shows the measurement results of the SAR value of the antenna scheme in the middle and high frequency bands. Among them, they are all measured at a normalized 18dBm.
  • the SAR values of the bottom surface, the back surface, and the left side of the antenna are all low, so while providing better radiation performance, there is no need to use an additional SAR reduction scheme (For example, using a SAR sensor (SAR sensor) to perform power back-off), thus making the solution simpler and easier to implement, and at the same time saving the cost of response.
  • SAR sensor SAR sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请实施例公开了一种终端天线及电子设备,涉及天线技术领域,能够更好地覆盖中高频段,提供较好的带宽以及辐射性能,同时可以降低硬件成本,还具有较好的SAR。由此更好地支持电子设备的无线通信功能。具体方案为:该终端天线包括:第一辐射体,馈电点和接地点。该第一辐射体的一端通过该接地点接地,该第一辐射体的另一端设置有该馈电点。该第一辐射体上还设置有贯穿该第一辐射体的缝隙,该缝隙呈交指结构,该缝隙的数量为至少两个。

Description

一种终端天线及电子设备
本申请要求于2021年10月27日提交国家知识产权局、申请号为202111257249.7、发明名称为“一种终端天线及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种终端天线及电子设备。
背景技术
随着电子设备的发展,电子设备中能够为天线提供的环境越来越差。而为了保证电子设备(如手机等)的无线通信功能,就需要在较差的环境下提供较好辐射性能的天线方案。现有的天线方案越来越难以在现今的空间中保证辐射性能,因此就需要一种新的天线方案,能够在提供较好的辐射性能的同时,还能够满足天线的其他要求,比如满足对天线的SAR的要求。
发明内容
本申请实施例提供一种终端天线及电子设备,能够更好地覆盖中高频段(如1.7GHz-2.7GHz),提供较好的带宽以及辐射性能,同时可以降低硬件成本,还具有较好的SAR。由此更好地支持电子设备的无线通信功能。
为了达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种终端天线,该终端天线设置在电子设备中,该终端天线包括:第一辐射体,馈电点和接地点。该第一辐射体的一端通过该接地点接地,该第一辐射体的另一端设置有该馈电点。该第一辐射体上还设置有贯穿该第一辐射体的缝隙,该缝隙呈交指结构,该缝隙的数量为至少两个。
基于该方案,提供了一种新的天线结构,能够应用于电子设备(如手机)的天线设计中。在本示例中,该方案可以应用于手机的下天线设计中。其中,该天线上可以通过设置交指结构,形成分布式电容,以在辐射体上串联电容的方式获取电流环天线的辐射特征。此外,由于接地点设置在远离馈电点的一端,因此还能够激励环(loop)模式等。由此通过至少两个工作模式,能够通过该两个模式本身具有的较好带宽,效率等较好的辐射性能,使得设置该终端天线的电子设备能够具有较好的无线通信能力。
在一种可能的设计中,该终端天线的工作频段至少包括第一频段和第二频段,该终端天线通过零阶模对应的谐振覆盖该第一频段,该零阶模对应的谐振是由该呈交指结构的缝隙产生的。该终端天线通过Loop模对应的谐振覆盖该第二频段,该第一频段与该第二频段不同。基于该方案,提供了该终端天线对工作频段的覆盖机制。比如,零阶模(即电流环产生的模式)可以产生一个谐振,loop模的谐振还可以产生一个谐振。这样,通过该两个谐振就能够至少覆盖该电子设备需要的两个工作频段。
在一种可能的设计中,该缝隙中填充有介质,该介质与该第一辐射体的介电常数不同,填充不同该介质的情况下,该零阶模对应的谐振覆盖频段不同。基于该方案, 提供了一种缝隙的具体实现。在本示例中,在缝隙中可以填充有与第一辐射体的介电常数不同的介质,通过调整介质的介电常数,能够调整缝隙对应的分布式电容的大小,从而调整零阶模对应的谐振的频段范围。
在一种可能的设计中,该第一辐射体的长度不同时,Loop模对应的谐振所在频段不同。零阶模对应的谐振所在频段不同。基于该方案,提供了一种不同辐射体长度对覆盖频段的影响限定。比如,通过调整辐射体长度,可以实现对loop模对应的谐振以及零阶模对应的谐振所在频段进行调整的目的。
在一种可能的设计中,该交指结构的结构参数不同时,该零阶模对应的谐振所在频段不同。该交指结构的结构参数包括以下中的至少一项:该交指结构的平行于该第一辐射体的缝隙宽度s,该交指结构垂直于该第一辐射体的缝隙宽度g,该交指结构的平行于该第一辐射体的长度f。基于该方案,提供了一种不同交指结构的尺寸对天线工作影响的限定。比如,通过调整交指结构中的不同参数,可以实现对零阶模对应的谐振所在频段进行调整的目的。
在一种可能的设计中,该平行于该第一辐射体的缝隙宽度s包括在0.2mm上下20%的范围内,该交指结构垂直于该第一辐射体的缝隙宽度g包括在0.3mm上下20%范围内,该交指结构的平行于该第一辐射体的长度f包括在2.1mm上下20%范围内。基于该方案,提供了一种具体的交指结构的设置范围限定。在上述范围之内,可以使得交指结构能够提供能够适用于工作在中高频段的分布式电容,从而使得零阶模可以提供较好的辐射效果。
在一种可能的设计中,该第一辐射体设置在该电子设备的角落,该第一辐射体包括连接的第一部分和第二部分,该第一部分设置在该角落对应的该电子设备的侧边,该第二部分设置在该角落对应的该电子设备的底边,该馈电点设置在该第二部分的末端,该接地点设置在该第一部分的末端。基于该方案,提供了一种具体的终端天线的设置示例。在本示例中,终端天线可以设置在电子设备(如手机)的左下角或右下角。比如,一部分辐射体可以位于手机底边,一部分辐射体可以位于手机侧边。此外,馈电点可以设置在底边,接地点可以设置在侧边。由此能够使得零阶模和loop模都能够较好的激励地板电流,获取较好的辐射性能。
在一种可能的设计中,该终端天线设置在柔性电路板FPC上,该第一辐射体是该FPC上的导电结构,该缝隙开设在该导电结构上。基于该方案,提供了一种具体的该终端天线的实现方式。由于缝隙的尺寸直接决定了分布式电容的大小,进而影响到零阶模对应谐振的频段范围。因此,可以通过FPC对缝隙的尺寸进行精确的控制,进而提升天线的准确度。
在一种可能的设计中,该呈交指结构的缝隙的数量包括在两个到五个的范围内。基于该方案,提供了一种交指结构数量的具体限定。在交指结构大于2个时,能够较好地激励零阶模,而交指结构不大于5个则可以使得终端天线的尺寸不会过大,进而满足小型化的要求。
在一种可能的设计中,该终端天线还包括第二辐射体,该第二辐射体与该第一辐射体互不连接,该第二辐射体远离该第一部分的一端接地,该第二辐射体靠近该第一部分的一端悬空。基于该方案,提供了一种方案的扩展。在本示例中,可以通过设置 第二辐射体,构成与第一辐射体的寄生结构,从而实现覆盖频段的扩展。
在一种可能的设计中,在该终端天线的工作频段还包括第三频段,该第三频段与该第一频段或该第二频段不同,该第三频段是该终端天线通过平衡模对应的谐振覆盖的,该平衡模对应的谐振是该第二辐射体产生的。基于该方案,提供了设计有第二辐射体的情况下的工作状态示例。该第二辐射体可以从第一辐射体上通过耦合的方式将电流引入到第二辐射体上,由于该第二辐射体的一端接地,因此能够产生寄生对应的平衡模。由此该平衡模可以用于覆盖不同于零阶模和loop模的第三个工作频段。进而使得终端天线的带宽和辐射性能得到提升。
在一种可能的设计中,该第一频段,该第二频段以及该第三频段共同覆盖1.7GHz到2.7GHz。基于该方案,提供了一种该终端天线的具体工作场景示意。在个本示例中,该终端天线可以用于设置在手机的下半部分,用于覆盖主频的中高频段,从而实现对主频工作的性能提升的效果。
第二方面,提供一种电子设备,该电子设备设置有如第一方面及其任一种可能的设计中所述的终端天线。该电子设备在进行信号发射或接收时,通过该终端天线进行信号的发射或接收。
应当理解的是,上述第二方面提供的技术方案,其技术特征均可对应到第一方面及其可能的设计中提供的终端缝隙天线,因此能够达到的有益效果类似,此处不再赘述。
附图说明
图1为一种手机中设置天线的位置的示意图;
图2为一种左手寄生天线的组成示意图;
图3为一种左手寄生天线的仿真结果示意图;
图4为本申请实施例提供的一种电子设备的组成示意图;
图5为本申请实施例提供的一种下天线区域的位置示意图;
图6为本申请实施例提供的一种天线方案的拓扑结构示意图;
图7为本申请实施例提供的一种天线方案的结构示意图;
图8A为本申请实施例提供的一种天线方案的组成示意图;
图8B为本申请实施例提供的一种交指结构的示意图;
图9为本申请实施例提供的一种交指结构的示意图;
图10为本申请实施例提供的一种设置有交指结构的天线的S参数示意图;
图11为本申请实施例提供的一种不同结构参数对交指结构以及天线工作频段影响的仿真示意图;
图12为本申请实施例提供的又一种不同结构参数对交指结构以及天线工作频段影响的仿真示意图;
图13为本申请实施例提供的又一种不同结构参数对交指结构以及天线工作频段影响的仿真示意图;
图14为本申请实施例提供的一种工作效果仿真示意图;
图15为本申请实施例提供的又一种天线方案的拓扑结构示意图;
图16为本申请实施例提供的又一种天线方案的结构示意图;
图17为本申请实施例提供的一种电流分析示意图;
图18为本申请实施例提供的一种工作效果仿真示意图;
图19为本申请实施例提供的一种方向图的仿真示意图。
具体实施方式
电子设备中可以设置至少以天线,用于支持电子设备的无线通信功能。
示例性的,以电子设备为手机为例。结合图1,在手机内部设置的用于进行供电的电池可以设置在手机的中部或者中部偏下的位置。在手机中,电池的上方和/或电池的下方可以设置天线。图1中示出了在电池下方设置天线的情况示意。
可以理解的是,目前,大多数电子设备都支持700MHz-3GHz的主频通信,以及2.4GHz/5GHz的局域网通信。此外,为了适应5G网络的通信需求,在电子设备中还可以设置有用于进行5G通信的天线。
以支持主频通信的数据/语音收发的主天线为例,在一些实现中,由于电子设备的大部分芯片、电路等部件都设置在电池的上方,因此,为了给主天线提供更好的净空等环境,可以将主天线设置在如图1所示的电池下方的下天线区域。
作为一种示例,图2示出了一种目前常用的主天线的示意。如图2所示,在本示例中,该天线可以为左手寄生天线。该左手寄生天线可以包括左手部分以及寄生部分。
其中,左手部分可以包括一个辐射体,该辐射体的一端可以与馈电点连接,在馈电点与辐射体之间可以设置有左手电容。该左手电容可以用于激励左手部分的辐射体上产生左手模式。在本示例中,该馈电点可以设置在左手部分上,靠近寄生部分的一端。在左手部分的辐射体的远离寄生部分的一端,可以接地设置。其中,左手天线的结构以及工作机制可以参考CN201380008276.8和CN201410109571.9,在此不再赘述。
该左手寄生天线的寄生部分可以包括一个辐射体,该辐射体的一端可以接地。比如,如图2所示,寄生部分的远离左手部分的一端可以直接接地,寄生部分靠近左手部分的一端可以设置匹配(matching,M)电路,用于对寄生部分的工作频段以及端口阻抗进行调谐。
图3示出了具有如图2所示组成的左手寄生天线的仿真结果示意。从S11上看,该左手寄生天线可以覆盖中高频的1.7GHz-2.7GHz。该中高频的覆盖可以通过两个谐振实现。由于两个谐振的带宽不足,使得中高频两端的回波损耗较差,此外在两个谐振中间还产生了凹坑。比如,如图2所示的在2GHz-2.5GHz之间产生了显著的损耗增加的情况。从系统效率的角度也可以得到类似的结论,比如1.7GHz以及2.7GHz附近的效率较差,同时在2GHz-2.5GHz之间产生效率凹坑,该部分的系统效率最差高于-6dB。
需要说明的是,一般情况下,在需要完全覆盖中高频的情况下,可以在天线的馈电点和/或接地点设置一个或多个切换开关,用于切换不同的工作频段,从而确保整个中高频的覆盖。
为了解决现有的天线(如左手寄生天线)的在中高频部分端点的性能不足以及中高频中段(如1.7GHz-2.7GHz)效率较差的问题,本申请实施例提供一种终端天线,能够结合电流环天线以及Loop提供的1/2波长模式,在中高频的两端以及中部频段提供较好的辐射性能。
以下结合附图对本申请实施例提供的方案进行说明。
本申请实施例提供的天线方案,可以应用在用户的电子设备中,用于支持电子设备的无线通信功能。比如,该电子设备可以是手机、平板电脑、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备、媒体播放器等便携式移动设备,该电子设备也可以是智能手表等可穿戴电子设备。本申请实施例对该设备的具体形态不作特殊限制。
请参考图4,为本申请实施例提供的一种电子设备400的结构示意图。如图4所示,本申请实施例提供的电子设备400沿z轴由上到下的顺序可以依次设置屏幕及盖板401,金属壳体402,内部结构403,以及后盖404。
其中,屏幕及盖板401可以用于实现电子设备400的显示功能。金属壳体402可以作为电子设备400的主体框架,为电子设备400提供刚性支撑。内部结构403可以包括实现电子设备400各项功能的电子部件以及机械部件的集合。比如,该内部结构403可以包括屏蔽罩,螺钉,加强筋等。后盖404可以为电子设备400背部外观面,该后盖404在不同的实现中可以使用玻璃材料,陶瓷材料,塑料等。
本申请实施例提供的天线方案能够应用在如图4所示的电子设备400中,用于支撑该电子设备400的无线通信功能。在一些实施例中,该天线方案涉及的天线可以设置在电子设备400的金属壳体402上。在另一些实施例中,该天线方案涉及的天线可以设置在电子设备400的后盖404上等。
本申请实施例的不同实现中,天线的具体实现可以是不同的。比如,在一些实施例中,天线的实现可以是结合如图4所示的金属壳体402上的金属边框实现的。在另一些实施例中,该天线方案的实现还可以是采用柔性电路板(Flexible Printed Circuit,FPC),阳极氧化的压铸成型工艺(Metalframe Diecasting for Anodicoxidation,MDA)等方式实现的。或者,该天线方案还可以是结合上述至少两种实现方式组合获取的。本申请实施例对于磁流环单极子天线的具体实现形式不作限制。
以该天线由FPC实现为例。该FPC可以包括不导电的基材,在该基材上可以设置有导电层。比如,该导电层可以为金属或其他导电材料。在一些实现中,该金属可以为铜或银等。通过对该导电层的结构调整,获取天线的辐射体。在辐射体上可以串联有缝隙,该缝隙可以为贯穿的缝隙。也就是说,一个缝隙可以将辐射体划分为互不相连的两部分。在一些实现方式中,可以通过调整缝隙中填充的介质,使用不同介电常数的介质,实现调整缝隙对应的分布式电容的大小的目的。
在纵向,本申请实施例提供的天线方案可以设置在手机的下天线区域。比如,该下天线区域可以为如图2所示的电池的下方。例如,结合图5,在本申请的一些实现中,本申请提供的天线方案可以设置在如图4所示的金属壳体与后壳之间。或者,该天线方案可以利用一部分金属壳体上的导电体,用于实现天线的辐射功能。
在水平投影(如XOY平面投影)上,该下天线区域可以位于音腔(speaker,SPK)下方。比如,在SPK下方可以设置非导电材质的天线支架,在该天线支架上可以贴合FPC工艺的天线。或者,在天线支架上还可以通过激光直接成型技术(Laser Direct Structuring,LDS)和/或MDA工艺实现本申请提供的天线方案。
此外,在其他实现中,本申请实施例提供的天线方案还可以应用与其他位置。比 如,可以设置在电子设备的其他角落,如左上角,右上角等。
上述示例是本申请实施例提供的天线方案的应用环境的详细说明。以下将结合附图对本申请实施例提供的天线方案的具体组成以及能够达到的效果进行说明。
示例性的,图6示出了本申请实施例提供的一种天线方案的示例。该天线可以包括至少一个辐射体(如辐射体1)。该辐射体1的一端可以与馈电点连接,在该辐射体1的另一端可以接地。应当理解的是,在具体实现中,辐射体1与馈电点和/或接地点之间还可以设置有一个或多个匹配器件用于进行端口匹配。以下以辐射体1直接与馈电点以及接地点连接为例。如图6所示,该辐射体1上还可以设置有至少一个交指结构。该交指结构可以为呈交指结构的缝隙。在如图6的示例中,以在辐射体1上设置有3个交指结构为例。在另一些实现中,该交指结构的数量还可以包括更多或更少,具体数量可以根据实际情况灵活设置,其能够达到的效果类似,此处不再赘述。本申请实施例中,在交指结构大于或等于2个的情况下,能够更好地激励对应的模式,获取对应的谐振覆盖对应频段。
可以理解的是,交指结构可以达到分布式电容的效果,也就是说,在辐射体1上可以串联有至少一个电容。由此,使得该辐射体1可以获取电流环天线的辐射特性。比如,在辐射体1和参考地之间可以分布有均匀的磁场,由此在较小的空间内获取较好的辐射性能。
在具有如图6所示组成的天线在工作时,除了上述电流环天线对应的模式(如称为零阶模),还可以工作在环(Loop)模式的1/2波长模式下,从而获取至少两个谐振用于覆盖中高频。
图7示出了该具有如图6所示的拓扑组成的天线的一种具体示例。示例性的,该天线可以设置在如图5所示的下天线区域。
如图7所示,该天线包括的辐射体1可以设置在电子设备的背视图的左下角。在一些示例中,该辐射体1可以包括连接的第一部分和第二部分。其中,辐射体的上的第一部分可以设置在电子设备的侧边,该辐射体1上的第二部分可以设置在电子设备的底边。该辐射体1的两端可以分别与馈电点以及接地点连接。
在第一部分和/或第二部分上,可以设置有至少一个交指结构。示例性的,结合图7,在第一部分上可以设置有一个交指结构,在第二部分上可以设置有两个交指结构。
从另一个角度描述,辐射体1上的一个或多个交指结构可以将辐射体1分割为互不连接的多个部分。例如,将该任意一个互不连接的部分称为一个零阶天线辐射单元。在不同示例中,该多个零阶天线辐射单元的尺寸可以相同,也可以不同。比如,在一些实施例中,如图8A所示,该辐射体1可以包括第一零阶天线辐射单元和第二零阶天线辐射单元。其中,任一个零阶天线辐射单元(如第一零阶天线辐射单元)的X向长度a可以设置在10.5mm上下50%的范围内。Y向宽度w可以设置在2mm上下50%的范围内。
第一零阶天线辐射单元和第二零阶天线辐射单元相对设置的一端,交替伸长形成交指结构,该交指结构的缝隙宽度s(即平行于辐射体1的缝隙宽度s)可以在0.2mm上下20%的范围内。该交替伸长的交指结构的X向长度f(即交指结构的平行于辐射体1的长度f)可以设置在2.1mm上下20%范围内。交指结构相对于另一侧零阶天线辐射 单元的缝隙宽度g(即交指结构垂直于辐射体1的缝隙宽度g)可以设置在0.3mm上下20%范围内。
需要注意的是,在本申请实施例提供的方案中,平行于辐射体1的缝隙宽度s与交指结构垂直于辐射体1的缝隙宽度g可以是不同的。这两个参数对交指结构的分布式电容的大小影响需要分开控制。比如,结合图8B,为本申请实施例提供又一种交指结构的示意。可以看到g和s是显著不同的两个尺寸。以下示例中,将结合各个参数的控制变量,对各个参数对零阶模对应工作频段的影响情况进行说明。
应当理解的是,基于等效电路分析,交指结构可以起到耦合电容的作用,与零阶天线辐射单元共同作用,决定零阶模的谐振位置。也就是说,该交指结构的各个尺寸所影响的分布式电容的大小,以及该辐射体1的整体长度共同影响该天线工作在零阶模模式下时的工作频段。其中,在该零阶模模式对应于基模的情况下,该辐射体1的长度可以是小于对应工作频段的1/4的。此外,辐射体1中包括的各个零阶天线辐射单元的尺寸可以相同或相当,也可以互不相同。在本示例中,第三交指结构右侧,到与馈电点连接的辐射体的末端的尺寸,可以配合交指结构的电容大小(如第三交指结构对应的分布式电容的大小),对零阶模的工作频段进行有效调整。
此外,具有上述结构的天线还可以工作在Loop的1/2模式(如简称为Loop模)下。该Loop模下的工作频段可以由辐射体1的长度决定。也就是说,该Loop模的工作频段的1/2可以对应到该天线的馈电点到接地点之间的辐射体的电长度。
需要说明的是,本申请实施例涉及的交指结构可以产生耦合电容的,该结构可以作为多阶耦合谐振器实现其功能。在实际设计中,可以根据微带耦合谐振器的通带特性,获得零阶模所需的耦合电容,进而据此推断交指结构的各个尺寸的情况,从而实现对交指结构的尺寸控制。
作为一种示例,以下结合S11的仿真结构,对交指结构上各个尺寸(如平行于辐射体1的缝隙宽度s,交指结构的平行于辐射体1的长度f,交指结构垂直于辐射体1的缝隙宽度g)对于工作频段的影响进行解释说明。
为了便于说明,结合图9,以设置有1个交指结构为例。
如图10所示,在当前结构下,双端口形成的带宽可覆盖1.66MHz-4.32MHz(S11≤-10dB),因此能够有效满足中高频带宽需求。此外,在该图10中还示出了双端口的隔离度。可以理解的是,从双端口隔离度,能够从一个角度分析该交指结构在当前尺寸下的电容情况。
以下图11-图13为控制单个尺寸变化的情况下,对S参数(如S11)的影响情况。
图11示出了s=0.2mm,f=2.1mm的情况下,g分别为0.2mm,0.3mm以及0.4mm时对S11的影响。可以看到,随着g的增加,处于低频的谐振会逐渐向高频偏移。可以理解为随着g的增加,导致分布式电容的电容值的变化(如减小),由此导致处于低频的谐振出现频率的偏移(如向高频偏移)。
图12示出了g=0.3mm,f=2.1的情况下,s分别为0.1mm,0.2mm以及0.3mm时对S11的影响。可以看到,随着s的增加,处于低频的谐振会逐渐向高频偏移。可以理解为随着s的增加,导致分布式电容的电容值的变化(如减小),由此导致处于低频的谐振出现频率的偏移(如向高频偏移)。
图13示出了g=0.3mm,s=0.2mm的情况下,f分别为1.1mm,2.1mm以及3.1mm时对S11的影响。可以看到,随着f的增加,处于低频的谐振会逐渐向低频偏移。可以理解为随着f的增加,导致分布式电容的电容值的变化(如增加),由此导致处于低频的谐振出现频率的偏移(如向低频偏移)。
结合图11,图12以及图13的S参数示意,可以看到s和g的变化主要影响处于低频的谐振位置,该谐振即为零阶模对应的谐振。而f的变化会导致电容的变化,因此也会影响零阶模对应的谐振。而处于高频位置的Loop模,其工作频段(即谐振)与辐射体的整体尺寸相关,因此s和g的变化对Loop模影响不大,而f的变化会引起Loop模的响应变化。
根据上述结论,就可以对具有如图9所示的一个交指结构的工作频段进行调整。该结论还可以推广到设置有更多交指结构的结构中,比如,在天线具有如图6或图7后图8A所示的结构的情况下,也可以根据上述结论进行工作频段的调整,使得零阶模和loop模对应的两个谐振能够被调整到所需的频段。
此外,在本申请的一些实施例中,馈电点可以设置在地板的电场大点(如手机的底边靠近中间位置等),由此能够更好地激励地板电流,从而获取更好的零阶模的辐射性能。
需要说明的是,上述示例中,均以通过交指结构实现分布式电容,从而实现电流环天线为例进行说明的。在本申请的另一些实施例中,串联在辐射体(如辐射体1)上的电容中的一个或多个电容还可以是通过集总电容(如电容器件,可调电容器件等)实现的。
在上述说明的基础上,本申请实施例还提供了具有如图7或图8A所示组成的天线方案的仿真示意,用于佐证该天线方案具有较好的辐射性能。
示例性的,结合图14。可以看到,零阶模谐振可以用于覆盖中高频段的低频,loop模谐振可以用于覆盖中高频段的高频。虽然在S11上,在中高频段的中段产生了凸起,但是由于两个模式的带宽足够,因此从辐射效率和系统效率的角度看,在包括中段在内的整个中高频段的范围内,都具有较好的辐射性能。比如,在1.7GHz-2.7GHz之间辐射效率均在-2dB之上,在1.7GHz-2.7GHz之间系统效率均在-4dB之上。相比于前述说明中的现有的左手寄生天线的辐射性能,有大幅提升。因此,本示例提供的天线方案,具有更好的带宽,能够通过两个谐振更好地对边带进行覆盖,同时由于两个谐振的带宽足够,因此也不会在中间区域有显著的凸起。由此实现对中高频的较好覆盖。进而提供较好的辐射性能。
上述示例提供的天线方案中,通过零阶模和Loop模两个模式的谐振达到较好地覆盖中高频的效果。在本申请的另一些实施例中,该零阶模和loop模的应用还可以结合其他天线形式,用于覆盖主频中的中高频中的部分频段。在本申请的另一些实施例中,该具有如图6-图8A中任一种可能的组成的天线方案还能够应用在其他工作频段的覆盖中。比如,用于覆盖WIFI,5G等。基于上述说明中类似的机制,该零阶模和loop模也能够较好地覆盖对应的频段,此处不再赘述。
本申请实施例还提供一种天线方案,在上述零阶模和loop模的基础上,增加设置平衡模,以便提供更多的谐振(如共三个谐振),从而进一步提升带宽覆盖,进而提 升辐射性能。
示例性的,图15示出了一种天线方案的拓扑示意。其中依然以通过交指结构实现零阶模为例进行说明。结合图6示出了拓扑示意,在本示例中,在图6所示结构的基础上,还增加设置的平衡模结构。作为一种可能的实现方式,该平衡模结构可以包括辐射体2。该辐射体2的一端可以接地设置,另一端可以与辐射体1的接地端相对设置。比如,在如图6所示的示例中,辐射体2的接地端可以为远离辐射体1的一端,辐射体2的非接地端可以靠近辐射体1设置。该非接地端悬空设置。这样,在天线工作时,能量可以从辐射体1上耦合到辐射体2上,使得辐射体2获得寄生效果,从而获取对应的平衡模的辐射。
图16示出了在图15的拓扑结构的基础上的一种具体实现方式。该实现方式可以在如图7或图8A所示的天线结构的基础上演化获取。示例性的,在图7或图8A的基础上,该天线方案中的辐射体还可以包括第三部分。该第三部分可以对应到如图15所示的平衡模结构。在本示例中,该第三部分可以包括一个与第一部分和第二部分互不连接的辐射体。在一些实施例中,该第三部分的部分或全部可以共用电子设备(如手机)的侧边金属边框实现。在另一些实施例中,该第三部分的部分或全部还可以设置单独的LDS或FPC等结构实现。
在该天线工作的过程中,第三部分能够提供除零阶模以及loop模之外的谐振,比如平衡模谐振,能够进一步提升天线的带宽,从而提供更好的辐射性能。示例性的,结合如图17所示的电流仿真情况,对本申请实施例提供的天线方案的工作机制进行说明。
如图17所示,零阶模在工作时,电流集中在馈电点和接地点之间,在辐射体和参考地之间形成电流环结构,从而获得零阶模的工作机制。在loop模工作时,电流依然集中在馈电点和接地点之间,在辐射体上有一个电流零点,从而使得电流反向,由此获取工作在1/2波长的loop模。此外,该天线还可以工作在平衡模。在该模式下,天线的辐射体上都可以分布有电流,比如,在侧边辐射体(即第一部分和第三部分)上的电流较大,能够形成平衡模的辐射机制。
由此,通过上述三种在不同频段对应的工作机制的激励,能够同时获取三个谐振覆盖工作频段,获取更好的带宽和辐射性能。
示例性的,图17示出了具有如图15或图16所示组成的结构的天线方案的仿真示意。可以看到,在本示例中,该三个谐振可以用于覆盖中高频。从S11上看,由于加入了平衡模谐振,因此可以将loop模谐振调谐到中段(如2.2GHz)附近,中高频的后段可以通过平衡模谐振覆盖,零阶模谐振依然可以用于覆盖中高频的前段。这样可以使得中高频的S11整体都接近-5dB之下。对应的,辐射效率相较于有两个谐振覆盖中高频段情况弥补了中段的凸起,系统效率也整体得到提升,在全频段超过-4dB。当然,在本申请的另一些实施例中,还可以根据实际情况调整各个模式的覆盖频段和/或先后顺序,从而对对应的工作频段进行较好的覆盖。
结合上述图15-图18的说明,可以看到,在该示例中,通过增加平衡模,获取包括零阶模,loop模以及平衡模在内的三个模式对应的谐振。相比于现有的天线方案,比如左手寄生方案,能够提供更好的带宽以及辐射性能。
此外,由于零阶模,loop模以及平衡模的激励都不需要额外的切换开关就可以实现,因此相较于现有的左手寄生天线方案,本申请实施例提供的方案更加便于实施,同时能够节省对应的成本开销。同时,由于不需要在链路上设置开关,因此也就不存在开关器件对应的失配,损耗等问题。
需要说明的是,上述对本申请的具体实现的说明中,均以天线设置在电子设备的背视图左下角为例。在本申请的另一些实施例中,天线还可以设置在下天线区域的其他部分,基于类似的机制激励零阶模,loop模,或者激励零阶模,loop模以及平衡模,从而实现对中高频的更好覆盖,提供更好的辐射性能。
对于一般天线方案而言,在辐射性能提升的提供时,其SAR也会随之提升。而出于对用户的保护,以及符合各个市场准入的要求,电子设备中的天线方案在提供较好的辐射性能的同时,还需要保证SAR不超标。
本申请实施例提供的天线方案,比如上述图6-图14以及图15-图18提供的天线方案,能够在提供较好的辐射性能的提供时,提供较好的SAR。
应当理解的是,在一些情况下,当天线的方向图在各个方向都较为均匀,那么就表明在空间场的辐射中的能量分布较为分散,那么SAR就不会由于电流过于集中而导致局部过高的情况。图19示出了具有如图15或图16所示组成的天线的方向图仿真示例。可以看到,在该平面下,天线的方向图在各个方向分布都较为均匀,没有显著的凹陷或凸起,因此该天线的空间场分布较为均匀,那么SAR也就会更低。
示例性的,表1示出了该天线方案在中高频段的SAR值测量结果。其中,均以归一化的18dBm进行测量。
表1
Figure PCTCN2022114841-appb-000001
如表1所示,在中高频段范围内,底面,背面,以及天线所设置的左侧SAR值均较低,因此在提供较好的辐射性能的同时,也不需要使用额外的降SAR方案(如采用SAR传感器(SAR senser)等进行功率回退),由此使得方案更加简单便于实现,同时能够节省响应的成本开销。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅 仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (13)

  1. 一种终端天线,其特征在于,所述终端天线设置在电子设备中,所述终端天线包括:第一辐射体,馈电点和接地点;
    所述第一辐射体的一端通过所述接地点接地,所述第一辐射体的另一端设置有所述馈电点;
    所述第一辐射体上还设置有贯穿所述第一辐射体的缝隙,所述缝隙呈交指结构,所述缝隙的数量为至少两个。
  2. 根据权利要求1所述的终端天线,其特征在于,所述终端天线的工作频段至少包括第一频段和第二频段,所述终端天线通过零阶模对应的谐振覆盖所述第一频段,所述零阶模对应的谐振是由所述呈交指结构的缝隙产生的;所述终端天线通过Loop模对应的谐振覆盖所述第二频段,所述第一频段与所述第二频段不同。
  3. 根据权利要求2所述的终端天线,其特征在于,所述缝隙中填充有介质,所述介质与所述第一辐射体的介电常数不同,填充不同所述介质的情况下,所述零阶模对应的谐振覆盖频段不同。
  4. 根据权利要求2或3所述的终端天线,其特征在于,所述第一辐射体的长度不同时,Loop模对应的谐振所在频段不同,所述零阶模对应的谐振所在频段也不同。
  5. 根据权利要求2-4中任一项所述的终端天线,其特征在于,所述交指结构的结构参数不同时,所述零阶模对应的谐振所在频段不同;
    所述交指结构的结构参数包括以下中的至少一项:
    所述交指结构的平行于所述第一辐射体的缝隙宽度(s),所述交指结构垂直于所述第一辐射体的缝隙宽度(g),所述交指结构的平行于所述第一辐射体的长度(f)。
  6. 根据权利要求5所述的终端天线,其特征在于,
    所述平行于所述第一辐射体的缝隙宽度(s)包括在0.2mm上下20%的范围内,所述交指结构垂直于所述第一辐射体的缝隙宽度(g)包括在0.3mm上下20%范围内,所述交指结构的平行于所述第一辐射体的长度(f)包括在2.1mm上下20%范围内。
  7. 根据权利要求1-6中任一项所述的终端天线,其特征在于,所述第一辐射体设置在所述电子设备的角落,
    所述第一辐射体包括连接的第一部分和第二部分,所述第一部分设置在所述角落对应的所述电子设备的侧边,所述第二部分设置在所述角落对应的所述电子设备的底边,
    所述馈电点设置在所述第二部分的末端,所述接地点设置在所述第一部分的末端。
  8. 根据权利要求1-7中任一项所述的终端天线,其特征在于,所述终端天线设置在柔性电路板FPC上,所述第一辐射体是所述FPC上的导电结构,所述缝隙开设在所述导电结构上。
  9. 根据权利要求1-8中任一项所述的终端天线,其特征在于,所述呈交指结构的缝隙的数量包括在两个到五个的范围内。
  10. 根据权利要求1-9中任一项所述的终端天线,其特征在于,所述终端天线还包括第二辐射体,所述第二辐射体与所述第一辐射体互不连接,所述第二辐射体远离所述第一部分的一端接地,所述第二辐射体靠近所述第一部分的一端悬空。
  11. 根据权利要求10所述的终端天线,其特征在于,在所述终端天线的工作频段还包括第三频段,所述第三频段与所述第一频段或所述第二频段不同,所述第三频段是所述终端天线通过平衡模对应的谐振覆盖的,所述平衡模对应的谐振是所述第二辐射体产生的。
  12. 根据权利要求1-11中任一项所述的终端天线,其特征在于,所述第一频段,所述第二频段以及所述第三频段共同覆盖1.7GHz到2.7GHz。
  13. 一种电子设备,其特征在于,所述电子设备设置有如权利要求1-12中任一项所述的终端天线;所述电子设备在进行信号发射或接收时,通过所述终端天线进行信号的发射或接收。
PCT/CN2022/114841 2021-10-27 2022-08-25 一种终端天线及电子设备 WO2023071478A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22885376.8A EP4280379A1 (en) 2021-10-27 2022-08-25 Terminal antenna and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111257249.7 2021-10-26
CN202111257249.7A CN114171900B (zh) 2021-10-27 2021-10-27 一种终端天线及电子设备

Publications (1)

Publication Number Publication Date
WO2023071478A1 true WO2023071478A1 (zh) 2023-05-04

Family

ID=80477417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114841 WO2023071478A1 (zh) 2021-10-27 2022-08-25 一种终端天线及电子设备

Country Status (3)

Country Link
EP (1) EP4280379A1 (zh)
CN (2) CN116031612A (zh)
WO (1) WO2023071478A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116031612A (zh) * 2021-10-27 2023-04-28 荣耀终端有限公司 一种终端天线及电子设备
CN116799491A (zh) * 2022-03-18 2023-09-22 荣耀终端有限公司 一种终端天线
CN117293535A (zh) * 2022-06-20 2023-12-26 荣耀终端有限公司 一种终端天线及电子设备
CN114865291B (zh) * 2022-07-08 2022-12-02 荣耀终端有限公司 一种终端天线

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040212545A1 (en) * 2002-09-25 2004-10-28 Li Ronglin Multi-band broadband planar antennas
CN101257143A (zh) * 2007-02-26 2008-09-03 连展科技电子(昆山)有限公司 回圈式耦合天线
CN102694236A (zh) * 2012-05-18 2012-09-26 电子科技大学 一种应用于无线通信终端的高效率电小平面环天线
CN204793198U (zh) * 2015-06-16 2015-11-18 广东欧珀移动通信有限公司 天线系统及应用该天线系统的通信终端
CN106025514A (zh) * 2015-03-27 2016-10-12 英特尔Ip公司 用于无线通信的具有耦合器的天线配置
CN111463571A (zh) * 2020-04-21 2020-07-28 曲龙跃 一种基于正交电流模式的自解耦mimo天线系统
CN111628274A (zh) * 2019-02-27 2020-09-04 华为技术有限公司 天线装置及电子设备
CN113451741A (zh) * 2020-03-26 2021-09-28 华为技术有限公司 一种天线及终端设备
CN114171900A (zh) * 2021-10-27 2022-03-11 荣耀终端有限公司 一种终端天线及电子设备
CN114865291A (zh) * 2022-07-08 2022-08-05 荣耀终端有限公司 一种终端天线

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365698B2 (en) * 2005-08-19 2008-04-29 Rf Industries Pty Ltd Dipole antenna
TWI451631B (zh) * 2010-07-02 2014-09-01 Ind Tech Res Inst 一種多頻天線以及使天線可多頻操作之方法
CN103915682A (zh) * 2013-01-06 2014-07-09 华为技术有限公司 印刷电路板天线和印刷电路板
JP2019004266A (ja) * 2017-06-13 2019-01-10 富士通株式会社 アンテナ装置および電子機器
CN109244645B (zh) * 2018-09-13 2021-03-12 Oppo(重庆)智能科技有限公司 天线组件和电子设备
CN111628298B (zh) * 2019-02-27 2022-03-11 华为技术有限公司 共体天线及电子设备
CN112448162A (zh) * 2020-11-02 2021-03-05 Oppo广东移动通信有限公司 天线组件及电子设备
CN113471678B (zh) * 2021-06-11 2022-07-22 荣耀终端有限公司 一种终端天线及电子设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040212545A1 (en) * 2002-09-25 2004-10-28 Li Ronglin Multi-band broadband planar antennas
CN101257143A (zh) * 2007-02-26 2008-09-03 连展科技电子(昆山)有限公司 回圈式耦合天线
CN102694236A (zh) * 2012-05-18 2012-09-26 电子科技大学 一种应用于无线通信终端的高效率电小平面环天线
CN106025514A (zh) * 2015-03-27 2016-10-12 英特尔Ip公司 用于无线通信的具有耦合器的天线配置
CN204793198U (zh) * 2015-06-16 2015-11-18 广东欧珀移动通信有限公司 天线系统及应用该天线系统的通信终端
CN111628274A (zh) * 2019-02-27 2020-09-04 华为技术有限公司 天线装置及电子设备
CN113451741A (zh) * 2020-03-26 2021-09-28 华为技术有限公司 一种天线及终端设备
CN111463571A (zh) * 2020-04-21 2020-07-28 曲龙跃 一种基于正交电流模式的自解耦mimo天线系统
CN114171900A (zh) * 2021-10-27 2022-03-11 荣耀终端有限公司 一种终端天线及电子设备
CN114865291A (zh) * 2022-07-08 2022-08-05 荣耀终端有限公司 一种终端天线

Also Published As

Publication number Publication date
EP4280379A1 (en) 2023-11-22
CN116031612A (zh) 2023-04-28
CN114171900A (zh) 2022-03-11
CN114171900B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2023071478A1 (zh) 一种终端天线及电子设备
US10553932B2 (en) Mobile device and antenna structure
US20220239004A1 (en) Antenna Apparatus and Mobile Terminal
TW202141851A (zh) 天線結構及具有該天線結構之電子設備
TWI528642B (zh) 天線及電子裝置
KR20030053054A (ko) 평판 다중 안테나 및 휴대용 단말기
CN110556621B (zh) 天线架构及通信装置
TWI665822B (zh) 無線通訊裝置及其天線
WO2024027247A1 (zh) 包括天线的可折叠电子设备
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
WO2024032018A9 (zh) 天线系统和终端设备
CN209896263U (zh) 一种基于复合左右手传输线的多频段天线
CN110875514B (zh) 移动装置
CN218351719U (zh) 天线模块及笔记本电脑
WO2023082812A1 (zh) 一种终端天线系统及电子设备
WO2022001740A1 (zh) 一种电子设备
CN109088168B (zh) 一种移动终端天线和移动终端
WO2023093213A1 (zh) 一种终端天线
US20240136702A1 (en) Terminal antenna and electronic device
TW202220286A (zh) 天線結構及具有該天線結構的無線通訊裝置
WO2023185083A1 (zh) 一种终端天线及电子设备
WO2024060819A1 (zh) 天线组件及电子设备
WO2023020019A1 (zh) 一种耦合馈电的终端单极子天线
WO2023030015A1 (zh) 一种终端单极子天线
CN112838357B (zh) 一种多层双频宽带天线及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18547846

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022885376

Country of ref document: EP

Effective date: 20230817