WO2022001740A1 - 一种电子设备 - Google Patents

一种电子设备 Download PDF

Info

Publication number
WO2022001740A1
WO2022001740A1 PCT/CN2021/101395 CN2021101395W WO2022001740A1 WO 2022001740 A1 WO2022001740 A1 WO 2022001740A1 CN 2021101395 W CN2021101395 W CN 2021101395W WO 2022001740 A1 WO2022001740 A1 WO 2022001740A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
electronic device
antenna
antenna structure
port
Prior art date
Application number
PCT/CN2021/101395
Other languages
English (en)
French (fr)
Inventor
王家明
王吉康
余冬
张小伟
尤佳庆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022001740A1 publication Critical patent/WO2022001740A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises

Definitions

  • the present application relates to the field of wireless communication, and in particular, to an electronic device.
  • antennas From the development of antennas to the present, there are a wide variety of various types of antennas, each of which has specific characteristics and is classified by the corresponding field of demand. When it comes to low-profile antennas, they are widely used in the field of electronic products. In terms of processing and implementation, microstrip antennas are the most common type. Patch antennas are also widely used, and the origin of patch antennas can be It can be traced back to the planar monopole antenna of the large antenna category. In terms of mode analysis, it has a relatively special phenomenon. The two vertical modes can be used in polarization isolation, and can also be widely used in circular polarization.
  • the volume reserved for the antenna in the electronic device is limited, so the purpose of the antenna design is to cover the largest frequency range with the smallest volume, which requires comprehensive utilization of multiple modes of antenna operation.
  • An embodiment of the present application provides an electronic device, and the electronic device may include an antenna structure, which utilizes the band-pass characteristics of the feeding branch at 0° to 180° to excite multiple modes of the antenna structure and generate multiple modes.
  • the resonance of the antenna is slightly shifted to achieve broadband coverage of the antenna structure.
  • an electronic device including an antenna structure, the antenna structure includes: a metal radiating patch, a metal feed line and a feed unit; wherein the feed unit is at one end of the metal feed line The metal radiating patch is indirectly coupled to feed; the other end of the metal feed line is grounded.
  • the metal radiation patch and the metal feed line overlap along a first direction, and the first direction is a direction perpendicular to the plane where the metal radiation patch is located.
  • indirect coupling feeding can increase the bandwidth of the antenna structure.
  • the antenna structure can be more effectively Multiple modes are excited to effectively improve the working bandwidth of the antenna structure.
  • the length of the metal feed line is less than half of the wavelength corresponding to the maximum frequency of the working frequency band of the antenna structure.
  • the resonance point of the half-mode resonance generated by the metal feeder is outside the working frequency band of the antenna structure and will not affect the working frequency band of the antenna structure.
  • the antenna structure further includes: a parallel stub, and the parallel stub is electrically connected to the metal feed line.
  • the parallel stubs can be used to adjust the resonance point of the antenna structure to achieve optimal antenna matching.
  • there is a current zero point on the metal feeder If the current zero point is in the optimal excitation region of the left-inclined diagonal mode and the right-inclined diagonal mode, the two modes cannot be well excited. Therefore, after adding parallel stubs to the antenna structure, the parallel stubs can be used to adjust the current zero point on the metal feeder, and adjust the current zero point to deviate from the optimal excitation region of the left-tilt diagonal mode and right-tilt diagonal mode, so that the radiation characteristics of the antenna structure are better.
  • the width of the metal feed line is less than 3 mm.
  • the width of the metal feed line is 1 mm.
  • the width of the metal feeder can be adjusted according to actual design and production needs.
  • the width of the parallel branch is less than 3 mm.
  • the width of the parallel branch is 1 mm.
  • the width of the parallel branch can be adjusted according to actual design and production needs.
  • the electronic device further includes: an antenna support; wherein, the metal radiation patch is disposed on the first surface of the antenna support, and the metal feed line It is arranged on the second surface of the antenna support, and the first surface and the second surface are oppositely arranged.
  • the electronic device further includes: an antenna support and a back cover; wherein the metal radiation patch is disposed on the surface of the back cover, and the metal feeds The wires are arranged on the surface of the antenna support.
  • the electronic device further includes: a back cover; wherein the metal radiation patch is disposed on the third surface of the back cover, and the metal feed line It is arranged on the fourth surface of the back cover, and the third surface and the fourth surface are arranged opposite to each other.
  • the space in the electronic device is small, the above-mentioned several antenna structures are provided, so that the space in the electronic device can be effectively utilized.
  • the electronic device further includes: a printed circuit board (PCB) and a shielding case; wherein the shielding case is disposed on the PCB, and the shielding case is connected to the shielding case.
  • Electronic components are arranged in the space between the PCBs; the distance between the surface of the shielding cover and the metal radiation patch is less than 2 mm.
  • the antenna structure can be arranged above the shielding cover, and the space utilization rate in the electronic device can be increased.
  • the distance between the surface of the shielding case and the metal radiation patch is 1.2 mm.
  • the distance between the surface of the shielding cover and the metal radiation patch can be adjusted according to actual design and production needs.
  • the radiation patch is rectangular or circular.
  • the shape of the radiation patch can be based on actual design and production, providing more possibilities for antenna design.
  • FIG. 1 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a conventional patch antenna.
  • FIG. 3 is a schematic diagram of mode analysis of a patch antenna provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an equal feeding of a patch antenna provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a coupling structure of a microstrip line provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an open circuit at the end of a feeding branch provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an equivalent circuit of the coupling structure in FIG. 6 .
  • FIG. 8 is a schematic diagram of a short circuit at the end of a feeding branch provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an antenna provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an antenna structure using other feeding methods provided by an embodiment of the present application.
  • FIG. 12 is an S-parameter diagram corresponding to the antenna structure in (a) of FIG. 11 .
  • FIG. 13 is a Smith chart corresponding to the antenna structure of (a) in FIG. 11 .
  • FIG. 14 is a simulation diagram of the antenna efficiency corresponding to the antenna structure of (a) in FIG. 11 .
  • FIG. 15 is an S-parameter diagram corresponding to the antenna structure in (b) of FIG. 11 .
  • FIG. 16 is a Smith chart corresponding to the antenna structure in (b) of FIG. 11 .
  • FIG. 17 is a simulation diagram of the antenna efficiency corresponding to the antenna structure of (b) in FIG. 11 .
  • FIG. 18 is an S-parameter diagram corresponding to the antenna structure in FIG. 9 .
  • FIG. 19 is a Smith chart corresponding to the antenna structure in FIG. 9 .
  • FIG. 20 is a simulation diagram of the antenna efficiency corresponding to the antenna structure in FIG. 9 .
  • Figure 21 is a current distribution diagram of the antenna structure operating in the lateral mode.
  • Figure 22 is a current distribution diagram of the antenna structure operating in the right-tilt diagonal mode.
  • Figure 23 is a current distribution diagram of the antenna structure operating in longitudinal mode.
  • Figure 24 is a current distribution diagram of the antenna structure operating in the left-tilt diagonal mode.
  • the technical solutions provided in this application are applicable to electronic devices using one or more of the following communication technologies: Bluetooth (blue tooth, BT) communication technology, global positioning system (global positioning system, GPS) communication technology, wireless fidelity (wireless fidelity) communication technology , WiFi) communication technology, global system for mobile communications (GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (long term evolution, LTE) communication technology , 5G communication technology and other communication technologies in the future.
  • the electronic devices in the embodiments of the present application may be mobile phones, tablet computers, notebook computers, smart bracelets, smart watches, smart helmets, smart glasses, and the like.
  • the electronic device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, electronic devices in 5G networks or electronic devices in the future evolved public land mobile network (PLMN), etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the application examples are not limited to this.
  • FIG. 1 exemplarily shows the internal environment of an electronic device on which the antenna design solution provided by the present application is based, and the electronic device is a mobile phone for illustration.
  • the electronic device 10 may include: a cover glass 13, a display 15, a printed circuit board (PCB) 17, a housing 19 and a back cover ( rearcover ) 21.
  • PCB printed circuit board
  • the glass cover 13 may be disposed close to the display screen 15 , and may be mainly used for protecting and dustproofing the display screen 15 .
  • the printed circuit board PCB17 can be a flame-resistant material (FR-4) dielectric board, a Rogers (Rogers) dielectric board, or a mixed dielectric board of Rogers and FR-4, and so on.
  • FR-4 is the code name for a grade of flame-resistant materials
  • Rogers dielectric board is a high-frequency board.
  • a metal layer may be provided on the side of the printed circuit board PCB17 close to the casing 19 , and the metal layer may be formed by etching metal on the surface of the PCB17 . This metal layer can be used to ground the electronic components carried on the printed circuit board PCB17 to prevent electric shock to the user or damage to the equipment.
  • This metal layer can be referred to as the PCB floor.
  • the electronic device 10 may also have other floors for grounding, such as a metal middle frame.
  • the electronic device 10 may also include a battery, which is not shown here.
  • the battery can be arranged in the housing 19, and the battery can be divided into a main board and a sub-board by the PCB 17.
  • the main board can be arranged between the upper edge of the housing 19 and the battery, and the sub-board can be arranged between the housing 19 and the lower edge of the battery.
  • the housing 19 may include a frame 11, and the frame 11 may be formed of a conductive material such as metal.
  • the frame 11 can extend around the periphery of the electronic device 10 and the display screen 15 , and the frame 11 can specifically surround the four sides of the display screen 15 to help fix the display screen 15 .
  • the frame 11 made of metal material can be directly used as the metal frame of the electronic device 10 to form the appearance of the metal frame, which is suitable for metal ID.
  • the outer surface of the frame 11 may also be made of a non-metallic material, such as a plastic frame, to form the appearance of a non-metal frame, which is suitable for a non-metal ID.
  • the back cover 21 may be a back cover made of a metal material or a back cover made of a non-conductive material, such as a non-metal back cover such as a glass back cover and a plastic back cover.
  • FIG. 1 only schematically shows some components included in the electronic device 10 , and the actual shapes, actual sizes and actual structures of these components are not limited by FIG. 1 .
  • this antenna structure is the most common patch antenna.
  • the antenna structure shown in Figure 2 can excite different modes through the selection of different feeding positions.
  • This scheme has a wide range of applications.
  • the element elements of various antenna arrays use this type of antenna.
  • the feeding position selection If appropriate, circular polarization of the antenna can be achieved, and even more antenna feeds have recently appeared on the same antenna branch using the natural horizontal and vertical polarization modes to achieve the same frequency, or single-feed dual-frequency coverage.
  • this solution is applied to electronic equipment, such as mobile phones, the demand for space is relatively high, especially when the height is reduced to less than 2mm, due to the large area of the antenna and the high quality factor (Q), the antenna It is also becoming more and more difficult to cover dual frequencies.
  • the present application provides a magnetic loop-type feeding scheme, which can improve the defect that the original direct feeding and the indirect coupling feeding with an open end can only excite the single-mode or dual-mode of the patch antenna.
  • the technical solution provided by the present application can excite the four modes of the patch antenna, and can effectively expand the bandwidth of the patch antenna.
  • FIG. 3 is a schematic diagram of mode analysis of a patch antenna provided by an embodiment of the present application.
  • Patch antennas or planar monopole antennas, are distinguished from other forms of antennas by having a wider projection surface and a lower profile height.
  • a characteristic mode analysis is performed on the surface of the patch antenna shown in FIG. 3 .
  • the planar monopole antenna it can basically include four basic modes.
  • the four basic modes are divided into: landscape mode, portrait mode, right-tilt diagonal mode and left-tilt diagonal mode.
  • the four basic modes will be described with reference to FIG. 3 .
  • Transverse mode is the most ground state mode that satisfies the corresponding current distribution in the transverse axis direction, and is excited by a 50 ⁇ feed unit.
  • Figure 3 shows the optimal excitation position corresponding to the transverse mode, ie the area between the corresponding double lines.
  • the longitudinal mode is the most ground state mode that satisfies the corresponding current distribution in the longitudinal axis direction, and is excited by a 50 ⁇ feed unit.
  • Figure 3 shows the optimal excitation position corresponding to the longitudinal mode, ie the area between the corresponding double lines.
  • the oblique black shaded area in the figure is in an ideal feeding position for both the horizontal mode and the vertical mode, so the feeding unit can excite the horizontal and vertical dual modes in the corresponding shaded area.
  • This feature is widely used in circularly polarized antennas.
  • the horizontal gray shaded area in the figure is in an ideal feeding position for both the left-inclined diagonal mode and the right-inclined diagonal mode, so the feeding unit can excite both the left-inclined diagonal and right-inclined diagonal in the corresponding shaded area. model.
  • Patch antennas have also been applied to broadband antennas, which can utilize the transverse mode and the longitudinal mode.
  • the two modes are polarized and isolated from each other.
  • the patch antenna can be Get wider bandwidth.
  • the left-tilt diagonal mode and the right-tilt diagonal mode can also be used to achieve the same effect.
  • Figure 3 it can be found from Figure 3 that it is difficult to obtain an optimal excitation position where a point can be simultaneously in four modes with the commonly used direct feeding method. This also means that, in the structural design of the patch antenna, it is difficult to achieve the purpose of exciting three modes or four modes at the same time through direct feeding of a single feeding unit.
  • a coupling structure is readily contemplated.
  • the essence of the quarter-coupled feeding is to realize the change from an open circuit to a short circuit at a single feeding point, and it is still a single-point feeding.
  • this coupling structure can be abstracted, and the coupling structure can be equivalent to a feeding branch and a coupling branch, as shown in Figure 5.
  • the coupling structure of the microstrip line By analyzing the network parameters of the four ports, many unit circuit characteristics can be obtained.
  • the coupling structure of the microstrip line as a four-port network, can also be used as a filter circuit unit in addition to being used as a microstrip directional coupler.
  • the coupling structure of the microstrip line is used as a filter circuit unit, two ports are often short-circuited or open-circuited, so only two ports are connected to other circuits, which actually becomes a two-port network, introducing certain port conditions. Transform the four-port network into a two-port network and solve its network characteristics.
  • Ports 1 and 3 are set as two ports connected to other circuits. By assigning different conditions to ports 2 and 4, it is possible to Solve for its corresponding matrix parameter.
  • the microstrip line where the 1 port and the 4 port are located is the feeding branch
  • the microstrip line where the 2 port and the 3 port are located is the coupling branch, that is, the fed branch.
  • the four-port network can be simplified into a two-port network of 1-port to 2-port and 1-port to 3-port, as shown in Figure 6.
  • U1 is the voltage of port 1
  • U3 is the voltage of port 3
  • I 1 is the current of port 1
  • I 3 is the current of port 3
  • Z 11 is the characteristic impedance of port 1 when all ports except port 1 are open circuit
  • Z 33 is the characteristic impedance of port 3 when the other ports except port 3 are open circuit
  • Z 13 is the characteristic impedance of port 3 to port 1 when the other ports except port 3 are open circuit
  • Z 31 is when the other ports except port 1 are open circuit
  • the equivalent circuit corresponding to the two-port network has a band-pass characteristic.
  • FIG. 7 is an equivalent circuit diagram corresponding to the coupling structure in FIG. 6 obtained according to the parameters of the dual-port network in an embodiment of the present application.
  • the equivalent circuit diagram shown in (a) of FIG. 7 is a design unit of a band-pass filter.
  • an open line can be connected in series on the main line between port 1 and port 3, and its impedance is 0, which has no effect on the main line, and the position of the current zero point on the main line can be adjusted through the open line.
  • the impedance of the main line is (Ze-Zo)/2, which can be set according to the path impedance requirements corresponding to the working frequency band of the antenna.
  • the odd-mode impedance Zo and the even-mode impedance Ze can be controlled by line spacing, line width, and dielectric constant.
  • Z 12 is the characteristic impedance from port 2 to port 1 when all ports except port 2 are open-circuited.
  • the equivalent circuit corresponding to the two-port network has the characteristic of total resistance.
  • the 4-port when the 4-port is open-circuited, for the coupling branch where the 2-port and 3-port are located, it has a band-pass characteristic, and at a position where the electrical angle is relatively small, it does not have a path characteristic, and the corresponding characteristic impedance at this position is less than zero.
  • No transmission that is, when L is relatively small, there is a band-stop characteristic between port 1 and port 2. That is to say, for the coupling branch where the 2-port and the 3-port are located, the 2-port and the 3-port cannot be in the channel state at the same time.
  • the four-port network can be simplified to a two-port network of 1-port to 2-port and 1-port to 3-port, as shown in Figure 8.
  • the two-port network has band-pass characteristics when the four ports are short-circuited.
  • Z 22 -j(Ze+Zo)cot ⁇ /2+j[(Ze-Zo) 2 /(Ze+Zo)]cos2 ⁇ ;
  • the two-port network has a bandpass characteristic when the 4-port is shorted.
  • the coupling stub When the end of the feeding stub is open, the coupling stub has a certain bandwidth, but it has a total resistance characteristic for the position where the electrical angle is relatively small, and the equivalent band-pass bandwidth in the entire working frequency band is narrow;
  • the coupling branch When the end of the feeding branch is short-circuited, the coupling branch has a certain band-pass characteristic at any point. Its specific bandwidth and loss are affected by Ze and Zo of the four-port network, and also greatly affected by the medium, but it has more ideal feeding effect.
  • the embodiment of the present application uses this characteristic to design a magnetic loop feed structure with short ends, and uses its band-pass characteristics at 0° to 180° to excite the four basic modes of the patch antenna, so that the four basic modes of the patch antenna are excited.
  • the resonances generated by the fundamental modes are slightly shifted to achieve the maximum bandwidth coverage of the patch antenna.
  • FIG. 9 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • the antenna structure shown in FIG. 9 may be applied to the electronic device shown in FIG. 1 .
  • the antenna structure may include a metal radiating patch 110 , a metal feed line 120 and a feed unit 130 .
  • the feeding unit 130 is indirectly coupled and fed by the metal radiating patch 110 at one end of the metal feeding line 120 , and the other end of the metal feeding line 120 is grounded.
  • the metal radiation patch 110 and the metal feed line 120 are overlapped along a first direction, and the first direction is a direction perpendicular to the plane where the metal radiation patch 110 is located.
  • indirect coupling is a concept relative to direct coupling, that is, air-space coupling, and there is no direct electrical connection between the two.
  • direct coupling is a direct electrical connection, feeding directly at the feed point.
  • one end of the metal feeder 120 may be a distance from one end of the metal feeder 120 from the end point, not a point.
  • the other end of the metal feed line 120 can also be correspondingly understood as the above concept.
  • the floor may be a midframe or a PCB.
  • the PCB is formed by lamination of multi-layer dielectric boards.
  • the length L3 of the metal feed line 120 may be less than half of the wavelength corresponding to the maximum frequency of the working frequency band of the antenna structure.
  • the resonance point of the half-mode resonance generated by the metal feeder 120 is at the Outside the working frequency band, it will not affect the working frequency band of the antenna structure.
  • the antenna structure may further include a parallel stub 140 , and the parallel stub 140 may be electrically connected to the metal feed line 120 .
  • the parallel stubs 140 can be used to adjust the resonance point of the antenna structure to achieve optimal antenna matching.
  • the current transmitted from port 1 to port 2 and port 3 is reversed. Therefore, there is a current zero point on the metal feeder 120. If the current zero point is in the left-tilt diagonal mode and the optimal excitation region of the right-leaning diagonal mode, then the two modes cannot be well excited.
  • the parallel stubs 140 can be used to adjust the current zero point on the metal feeder 120, and adjust the current zero point to deviate from the optimal excitation area of the left-inclined diagonal mode and the right-inclined diagonal mode, so that the radiation of the antenna structure is improved.
  • the parallel stubs 140 can be used to adjust the current zero point on the metal feeder 120, and adjust the current zero point to deviate from the optimal excitation area of the left-inclined diagonal mode and the right-inclined diagonal mode, so that the radiation of the antenna structure is improved.
  • parallel stubs 140 are only one of the ways to adjust the radiation performance of the antenna structure, and series brackets can also be used to achieve the above effect, that is, the width of the metal feeder 120 can be adjusted everywhere, or the metal feeder 120 can be opened. groove to achieve the above effect. This application does not limit this, and only uses the parallel branch 140 as an example.
  • the length L4 of the parallel branch 140 may be less than 15 mm.
  • L4 is taken as an example of 6 mm. It should be understood that the length L4 of the parallel branch 140 can be adjusted according to actual design and production needs.
  • the width W1 of the metal feed line 120 may be less than 3 mm.
  • W1 is 1 mm as an example. It should be understood that the width W1 of the metal feed line 120 can be adjusted according to actual design and production needs.
  • the length L1 of the metal radiation patch 110 may be less than 50mm, and the width L2 may be less than 50mm.
  • L1 is 23.5mm and L2 is 19mm as an example. It should be understood that it can be adjusted according to actual design and production needs.
  • the length L1 and the width L2 of the metal radiating patch 110 are adjusted according to actual design and production needs.
  • the length L3 of the metal feeder 120 may be less than 25 mm.
  • L3 is taken as an example of 18mm. It should be understood that the length L3 of the metal feeder 120 can be adjusted according to actual design and production needs.
  • the distance H1 between the metal radiating patch 110 and the metal feed line 120 may be less than 2 mm.
  • H1 is 0.4 mm.
  • the distance H1 may be the vertical distance between the metal radiating patch 110 and the metal feeding line 120 or may be the straight-line distance between the two nearest adjacent points on the metal radiating patch 110 and the metal feeding line 120 .
  • the size of the above-mentioned antenna structure is only used as an example, and the embodiments of the present application do not limit the size of the antenna structure, and can be simulated and modified according to specific production and design needs.
  • the metal radiation patch 110 may be any shape, for example, may be a circle, a rectangle, a polygon, etc. For the convenience of description in the embodiments of the present application, only the metal radiation patch 110 is described as a rectangle, but the metal radiation patch is described as a rectangle.
  • the shape of 110 is not limited.
  • FIG. 10 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device may further include an antenna bracket 210 and a shielding cover 220 .
  • the antenna bracket 210 may be disposed between the PCB 17 of the electronic device and the back cover 21 .
  • a shield 220 may be provided on the surface of the PCB 14 close to the antenna bracket, and the shield 220 may be used to protect the electronic components on the PCB 17 from interference from the external electromagnetic environment.
  • the metal radiation patch 110 may be arranged on the surface of the back cover 21, and the metal feeder 120 may be arranged on the surface of the antenna support 210.
  • the metal radiating patch 110 may be disposed on the first surface of the antenna support 210, the metal feeder 120 may be disposed on the second surface of the antenna support 210, and the first surface and the second surface may be disposed opposite to each other; or, the metal radiating patch 110
  • the metal feed line 120 may be disposed on the third surface of the back cover 21 , and the metal feed line 120 may be disposed on the fourth surface of the back cover 21 , and the third surface and the fourth surface are oppositely disposed.
  • the present application does not limit the specific arrangement of the antenna structure.
  • the distance between the surface of the shielding case 220 and the metal radiation patch 110 may be less than 2 mm, that is, H1+H2 ⁇ 2 mm.
  • the distance H2 between the metal feed line 120 and the shielding case 220 may be 0.8 mm.
  • FIG. 11 is a schematic diagram of an antenna structure using other feeding methods provided by an embodiment of the present application.
  • the antenna structure shown in Figure 11 is provided as a comparison patch antenna structure.
  • the antenna structure shown in (a) of FIG. 11 adopts a direct feeding method.
  • the antenna structure shown in (b) of FIG. 11 is fed in such a way that the ends of the feeding branches are open-circuited.
  • the sizes of the metal radiating patches in (a) and (b) of FIG. 11 are the same as those of the metal radiating patches in FIG. 9 , both being 23.5mm ⁇ 19mm.
  • the resonance generated by the feeding branch 310 is controlled to 6.5 GHz, which will not affect the frequency band within the working bandwidth of the antenna structure. Therefore, the feeding The length L5 of the electric branch may be 10 mm. Meanwhile, the width W2 of the feeding branch 310 can be set to be the same as the width W1 of the metal feeding line shown in FIG. 9 , which can be 1 mm. At this time, in order to adjust the depth of the resonance generated by the antenna structure, the length of the parallel branch 320 is adjusted, which may be 3 mm.
  • 12 to 14 are simulation schematic diagrams corresponding to the antenna structure of (a) in FIG. 11 .
  • 12 is an S-parameter diagram corresponding to the antenna structure in (a) of FIG. 11 .
  • FIG. 13 is a Smith chart corresponding to the antenna structure of (a) in FIG. 11 .
  • FIG. 14 is a simulation diagram of the antenna efficiency corresponding to the antenna structure of (a) in FIG. 11 .
  • the bandwidth (BW) of the antenna structure is counted with the return loss ⁇ -4dB and the efficiency >-3dB as the limit.
  • BW 500MHz corresponding to the antenna structure using direct feeding in (a) of FIG. 11 .
  • 15 to 17 are simulation schematic diagrams corresponding to the antenna structure in (b) of FIG. 11 .
  • 15 is an S-parameter diagram corresponding to the antenna structure in (b) of FIG. 11 .
  • FIG. 16 is a Smith chart corresponding to the antenna structure in (b) of FIG. 11 .
  • FIG. 17 is a simulation diagram of the antenna efficiency corresponding to the antenna structure of (b) in FIG. 11 .
  • 18 to 20 are simulation schematic diagrams corresponding to the antenna structure in FIG. 9 .
  • 18 is an S-parameter diagram corresponding to the antenna structure in FIG. 9 .
  • FIG. 19 is a Smith chart corresponding to the antenna structure in FIG. 9 .
  • FIG. 20 is a simulation diagram of the antenna efficiency corresponding to the antenna structure in FIG. 9 .
  • the resonance generated by the metal feeder 120 is controlled to 6.5 GHz, which will not affect the frequency band within the working bandwidth of the antenna structure.
  • the parallel stubs 140 at corresponding positions are optimized to optimize the resonance of the antenna structure to achieve optimal antenna matching.
  • the coupled feeding can increase the bandwidth of the antenna structure compared with the direct feeding. If the magnetic loop feeding design scheme is short-circuited at the ends of the feeding branches, the antenna structure can be more effectively excited. From multiple modes, the improvement effect is more obvious in terms of efficiency.
  • FIGS. 21 to 24 the corresponding antenna patterns of the simulation are shown in FIGS. 21 to 24 .
  • Fig. 21 is a current distribution diagram of the antenna structure operating in the transverse mode.
  • Figure 22 is a current distribution diagram of the antenna structure operating in the right-tilt diagonal mode.
  • Figure 23 is a current distribution diagram of the antenna structure operating in longitudinal mode.
  • Figure 24 is a current distribution diagram of the antenna structure operating in the left-tilt diagonal mode.
  • the antenna structure can operate in lateral mode at 4.3 GHz. As shown in Figure 22, the antenna structure can operate in right-tilt diagonal mode at 4.8 GHz. As shown in Figure 23, the antenna structure can operate in portrait mode at 5.5GHz. As shown in Figure 24, the antenna structure can operate in left-tilt diagonal mode at 5.8 GHz.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical or other forms.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本申请实施例提供了一种电子设备,包括:一种天线结构,所述天线结构包括:金属辐射贴片,金属馈电线和馈电单元;其中,所述馈电单元在所述金属馈电线一端为所述金属辐射贴片间接耦合馈电;所述金属馈电线的另一端接地。本申请实施例利用馈电枝节在0°~180°的带通特性,用以激发天线结构的多个模式,使多个模式产生的谐振稍微错频,实现天线结构的宽频覆盖。

Description

一种电子设备
本申请要求于2020年6月29日提交中国专利局、申请号为202010601956.2、申请名称为“一种电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种电子设备。
背景技术
从天线发展到现在,存在着种类繁多的各种类型的天线,每一种天线都有着特定的特性而被对应需求的领域所分门别类。提起低剖面天线,其较为广泛的应用在电子产品领域,加工实现来看,微带天线是最为常见的一个类型,其中贴片(patch)天线的应用也比较广,而贴片天线的由来可以追溯到大天线类别的平面单极子天线,模式分析而言,其有着比较特殊的现象,垂直的两个模式可以应用在极化隔离中,也可以大量应用在圆极化中。
随着人们对于高速数据传输的需求提升,对于天线的要求越来高。但是电子设备内留给天线的体积有限,所以天线设计的目的是用最小的体积达到覆盖最大的频率范围,这需要综合利用天线工作的多个模式。
发明内容
本申请实施例提供一种电子设备,电子设备中可以包括一种天线结构,利用馈电枝节在0°~180°的带通特性,用以激发天线结构的多个模式,使多个模式产生的谐振稍微错频,实现天线结构的宽频覆盖。
第一方面,提供了一种电子设备,包括一种天线结构,所述天线结构包括:金属辐射贴片,金属馈电线和馈电单元;其中,所述馈电单元在所述金属馈电线一端为所述金属辐射贴片间接耦合馈电;所述金属馈电线的另一端接地。
其中,所述金属辐射贴片和所述金属馈电线沿第一方向重叠,所述第一方向为垂直于所述金属辐射贴片所在平面的方向。
根据本申请实施例的技术方案,相比于直接馈电,间接耦合馈电可以提升天线结构的带宽,如果按照馈电枝节末端短路的这种磁环馈电设计方案,天线结构可以更有效的激励起多个模式,有效提升天线结构的工作带宽。
结合第一方面,在第一方面的某些实现方式中,所述金属馈电线的长度小于所述天线结构的工作频段的最大频率对应的波长的二分之一。
根据本申请实施例的技术方案,金属馈电线产生的二分之一模式的谐振的谐振点在天线结构的工作频段外,不会对天线结构的工作频段产生影响。
结合第一方面,在第一方面的某些实现方式中,所述天线结构还包括:并联枝节,所述并联枝节与所述金属馈电线电连接。
根据本申请实施例的技术方案,并联枝节可以用于调整天线结构的谐振点,以达到最 优的天线匹配。同时,金属馈电线上存在电流零点,若电流零点在左倾对角模式和右倾对角模式最佳激励区域,则两个模式不能被很好的激励。因此,天线结构增加并联枝节后,并联枝节可以用于调整金属馈电线上的电流零点,将电流零点调整偏离左倾对角模式和右倾对角模式最佳激励区域,使天线结构的辐射特性更优。
结合第一方面,在第一方面的某些实现方式中,所述金属馈电线的宽度小于3mm。
结合第一方面,在第一方面的某些实现方式中,所述金属馈电线的宽度为1mm。
根据本申请实施例的技术方案,可以根据实际的设计及生产需要调整金属馈电线的宽度。
结合第一方面,在第一方面的某些实现方式中,所述并联枝节的宽度小于3mm。
结合第一方面,在第一方面的某些实现方式中,所述并联枝节的宽度为1mm。
根据本申请实施例的技术方案,可以根据实际的设计及生产需要调整并联枝节的宽度。
结合第一方面,在第一方面的某些实现方式中,所述电子设备还包括:天线支架;其中,所述金属辐射贴片设置于所述天线支架的第一表面,所述金属馈电线设置于所述天线支架的第二表面,所述第一表面和所述第二表面相对设置。
结合第一方面,在第一方面的某些实现方式中,所述电子设备还包括:天线支架和后盖;其中,所述金属辐射贴片设置于所述后盖的表面,所述金属馈电线设置于所述天线支架的表面。
结合第一方面,在第一方面的某些实现方式中,所述电子设备还包括:后盖;其中,所述金属辐射贴片设置于所述后盖的第三表面,所述金属馈电线设置于所述后盖的第四表面,所述第三表面和所述第四表面相对设置。
根据本申请实施例的技术方案,由于电子设备内的空间较小,提供了上述几种天线结构的设置方式,可以有效利用电子设备内的空间。
结合第一方面,在第一方面的某些实现方式中,所述电子设备还包括:印刷电路板PCB和屏蔽罩;其中,所述屏蔽罩设置于所述PCB上,所述屏蔽罩与所述PCB之间的空间设置有电子元件;所述屏蔽罩的表面与所述金属辐射贴片之间的距离小于2mm。
根据本申请实施例的技术方案,可以将天线结构设置于屏蔽罩上方,可以增加电子设备内的空间利用率。
结合第一方面,在第一方面的某些实现方式中,所述屏蔽罩的表面与所述金属辐射贴片之间的距离为1.2mm。
根据本申请实施例的技术方案,可以根据实际的设计及生产需要调整所述屏蔽罩的表面与所述金属辐射贴片之间的距离。
结合第一方面,在第一方面的某些实现方式中,所述辐射贴片为矩形或圆形。
根据本申请实施例的技术方案,辐射贴片的形状可以根据实际的设计及生产,为天线设计提供更多的可能性。
附图说明
图1是本申请实施例提供的电子设备的示意图。
图2是传统的贴片天线的结构示意图。
图3是本申请实施例提供的贴片天线模式分析的示意图。
图4是本申请实施例提供的贴片天线均等馈电的示意图。
图5是本申请实施例提供的微带线的耦合结构的示意图。
图6是本申请实施例提供的馈电枝节末端开路的示意图。
图7是图6中的耦合结构的等效电路示意图。
图8是本申请实施例提供的馈电枝节末端短路的示意图。
图9是本申请实施例提供的天线结构示意图。
图10是本申请实施例提供的电子设备的示意图。
图11是本申请实施例提供的采用其他方式馈电的天线结构的示意图。
图12是图11中的(a)的天线结构对应的S参数图。
图13是图11中的(a)的天线结构对应的史密斯(smith)圆图。
图14是图11中的(a)的天线结构对应的天线效率仿真图。
图15是图11中的(b)的天线结构对应的S参数图。
图16是图11中的(b)的天线结构对应的smith圆图。
图17是图11中的(b)的天线结构对应的天线效率仿真图。
图18是图9中的天线结构对应的S参数图。
图19是图9中的天线结构对应的smith圆图。
图20是图9中的天线结构对应的天线效率仿真图。
图21是天线结构工作在横向模式下的电流分布图。
图22是天线结构工作在右倾对角模式下的电流分布图。
图23是天线结构工作在纵向模式下的电流分布图。
图24是天线结构工作在左倾对角模式下的电流分布图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案适用于采用以下一种或多种通信技术的电子设备:蓝牙(blue tooth,BT)通信技术、全球定位系统(global positioning system,GPS)通信技术、无线保真(wireless fidelity,WiFi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、5G通信技术以及未来其他通信技术等。本申请实施例中的电子设备可以是手机、平板电脑、笔记本电脑、智能手环、智能手表、智能头盔、智能眼镜等。电子设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助手(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备,5G网络中的电子设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的电子设备等,本申请实施例对此并不限定。
图1示例性示出了本申请提供的天线设计方案所基于的电子设备内部环境,以电子设备为手机进行说明。
如图1所示,电子设备10可以包括:玻璃盖板(cover glass)13、显示屏(display)15、印刷电路板(printed circuit board,PCB)17、壳体(housing)19和后盖(rear cover) 21。
其中,玻璃盖板13可以紧贴显示屏15设置,可主要用于对显示屏15起到保护防尘作用。
其中,印刷电路板PCB17可以采用耐燃材料(FR-4)介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板一种高频板。印刷电路板PCB17靠近壳体19的一侧可以设置一金属层,该金属层可以通过在PCB17的表面蚀刻金属形成。该金属层可用于印刷电路板PCB17上承载的电子元件接地,以防止用户触电或设备损坏。该金属层可以称为PCB地板。不限于PCB地板外,电子设备10还可以具有其他用来接地的地板,可例如金属中框。
其中,电子设备10还可以包括电池,在此未示出。电池可以设置于壳体19内,电池可以件PCB17分为主板和子板,主板可以设置于壳体19和电池的上边沿之间,子板可以设置于壳体19和电池的下边沿之间。
其中,壳体19主要起整机的支撑作用。壳体19可以包括边框11,边框11可以由金属等传导性材料形成。边框11可以绕电子设备10和显示屏15的外围延伸,边框11具体可以包围显示屏15的四个侧边,帮助固定显示屏15。在一种实现中,金属材料制成的边框11可以直接用作电子设备10的金属边框,形成金属边框的外观,适用于金属ID。在另一种实现中,边框11的外表面还可以为非金属材料,例如塑料边框,形成非金属边框的外观,适用于非金属ID。
其中,后盖21可以是金属材料制成的后盖,也可以是非导电材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖。
图1仅示意性的示出了电子设备10包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1限定。
近年来,移动通信在人们生活中变得越来越重要了,尤其是第五代(fifth generation,5G)移动通信系统时代到来,对于天线的要求越来高。电子设备内留给天线的体积有限,因此,如何使天线设计的体积最小而达到覆盖最大的频率范围就是一个亟需解决的问题。
如图2所示,这种天线结构的则是最为常见的贴片天线。图2中所示的天线结构可以通过不同馈电位置的选择激励不同的模式,这种方案有较为广泛的应用,各种天线阵的单元阵子用的都是这种天线形式,馈电位置选择恰当的话可以实现天线的圆极化,甚至于最近出现比较多的天线馈电在同一个天线枝节上利用自然而然的横纵两个极化模式实现同频,或者是单馈电的双频覆盖。但是这种方案在电子设备,例如手机方面应用时,对于空间的需求也是比较高的,尤其高度降到2mm以内时由于天线的面积较大,品质因数(quality factor,Q)较高,天线所能覆盖的双频也越来越难。
本申请提供了一种磁环式的馈电方案,该技术方案可以改善原有的直接馈电以及末端开路的间接耦合馈电只能激励贴片天线的单模式或者双模式的缺陷。本申请提供的技术方案可以激励起贴片天线的四个模式,可以有效拓展贴片天线的带宽。
图3是本申请实施例提供的贴片天线模式分析的示意图。
贴片天线,或者称之为平面单极子天线以具有较宽的投影面,较低的剖面高度区别于其余形式的天线。
如图3所示,对于图3中所示的贴片天线的表面加以特征模分析。先分析几个最基本 的模,对于平面单极子天线来说,基本可以包括四个基本的模式,至于开槽的这里不进行展开分析。四个基本模式分为:横向模式,纵向模式,右倾对角模式和左倾对角模式。以下,结合图3对四个基本模式进行说明。
(1)横向模式:横向模式是横轴方向满足对应电流分布的最基态模式,通过50Ω的馈电单元进行激励。图3中示出了横向模式对应的最佳激励位置,即对应的双线之间的区域。
(2)纵向模式:纵向模式是纵轴方向满足对应电流分布的最基态模式,通过50Ω的馈电单元进行激励。图3中示出了纵向模式对应的最佳激励位置,即对应的双线之间的区域。
(3)右倾对角模式:沿着右倾的对角线满足对应电流分布的最基态模式,通过50Ω的馈电单元进行激励。图3中示出了右倾对角模式对应的最佳激励位置,即对应的双线之间的区域。
(4)左倾对角模式:沿着左倾的对角线满足对应电流分布的最基态模式,通过50Ω的馈电单元进行激励。图3中示出了左倾对角模式对应的最佳激励位置,即对应的双线之间的区域。
通过如上分析,可以看到图示斜向黑色阴影区域对于横向模式和纵向模式都处于比较理想的馈电位置,所以馈电单元在对应的阴影区域可以激励起横向和纵向双模式。这一特性在圆极化天线中的应用的较多。同样,可以看到图示水平灰色阴影区域对于左倾对角模式和右倾对角模式都处于比较理想的馈电位置,所以馈电单元在对应的阴影区域可以激励起左倾对角和右倾对角双模式。
贴片天线还被应用到宽带的天线中,可以利用横向模式和纵向模式,两种模式互为极化隔离,当横向模式和纵向模式所产生的谐振稍微错频设置,则可以使贴片天线获得更宽的带宽。或者,也可以利用左倾对角模式和右倾对角模式达到相同的效果。但是,如果需要更宽的带宽需求时,从图3中可以发现,常用的直接馈电方式很难取到一个点能够同时处于四个模式的最优激励位置。这也就意味着,在贴片天线的结构设计中,很难通过单个馈电单元直接馈电达到同时激励起三个模式或者四个模式的目的。
通过图3所示,假设贴片天线的结构设计中有一种可以能够在图4所示黑色区域达到均等馈电效果的馈电结构,则可以同时激励起四个基本模式。此后,可以通过调节辐射贴片的尺寸或者其他方式使四个基本模式所产生的谐振稍微错频,则可以解决贴片天线拓展带宽的问题。
为达到图4中所示的均等馈电的目的,很容易想到耦合结构。但是不同于传统的四分之一耦合馈电,四分之一耦合馈电的本质还是实现了单一馈电点由开路到短路的变化,还是单点馈电。为了方便进行计算,可以对这种耦合结构进行抽象,通过将耦合结构等效为馈电枝节和耦合枝节,如图5所示。
如图5所示,为微带线的耦合结构,通过对四个端口的网络参数进行分析,可以获得很多单元电路特性。实际上,微带线的耦合结构作为四端口网络,除了作为微带定向耦合器作外,通常也可以作为滤波器电路单元。而微带线的耦合结构作为滤波器电路单元时,经常把其中的两个端口引出短路或者开路,因而只有两个端口和其他电路相连,实际上成了两端口网络,引入一定的端口条件,把四端口网络变为两端口网络,求解其网络特性。如图5所示,微带线的耦合结构中有一段电角度为L的耦合微带,1端口和3端口设置为 和其他电路相连两端口,通过赋予2端口和4端口不同的条件,可以求解其对应的矩阵参量。
假设4端口开路时,1端口和4端口所在微带线为馈电枝节,2端口和3端口所在微带线为耦合枝节即被馈电枝节。则可以将四端口网络简化为1端口至2端口以及1端口至3端口的两端口网络,如图6所示。
如图6中的(a)所示,将四端口网络简化为两端口网络,则由I 2=I 4=0,只考虑1端口和3端口,其中,I 2为2端口的电流,I 4为4端口的电流。
引入奇模阻抗Zo和偶模阻抗Ze来计算1端口和3端口特性:
U1=Z 11I 1+Z 13I 3
U3=Z 31I 1+Z 33I 3
而其中,
Z 11=Z 33=-j(Ze+Zo)cotL/2;
Z 13=Z 31=-j(Ze-Zo)cscL/2;
其中,U1为1端口的电压,U3为3端口的电压,I 1为1端口的电流,I 3为3端口的电流,Z 11为除1端口外其余端口开路时,1端口的特性阻抗,Z 33为除3端口外其余端口开路时,3端口的特性阻抗,Z 13为除3端口外其余端口开路时,3端口至1端口的特性阻抗,Z 31为除1端口外其余端口开路时,1端口至3端口的特性阻抗。
如上述公式所示,4端口开路时,两端口网络对应的等效电路具有带通特性。
根据上述计算所得的双端口网络的参数,可以获得电路等效示意图。
图7是本申请实施例根据上述双端口网络的参数获得的图6中的耦合结构对应的等效电路图。
图6中的(a)所示的两端口网络,通过两端口网络的参数分析,等效电路如图7中的(a)所示。对于图7中的(a)所示的等效电路图来说,为带通滤波器的设计单元。
根据图7中的(a)所示的等效电路图,假设需要馈电的频段为f,电角度L=θ=90°。应理解,电角度与电长度相对应,1倍波长对应于360°,即L为四分之一波长。
可选地,可以在1端口与3端口之间的主线上串联开路线,其阻抗为0,对主线无影响,可以通过开路线调节主线上电流零点的位置。
而此时主线的阻抗为(Ze-Zo)/2,可以按照天线的工作频段对应的通路阻抗需求设定。具体的,奇模阻抗Zo和偶模阻抗Ze可以通过线间距,线宽,以及介电常数加以控制。那么,等效电路在1端口与3端口之间的主线上θ=0°处为断路点;在θ=90°处为短路点;在θ=180°处为断路点。
按照此思路分析,可以获得图6中的(b)中所示的1端口和2端口之间的等效电路图如图7中的(b)所示,并且可以获得1端口和2端口之间的传输特性,其阻抗参数特性为:
Z 11=Z 12-jZo cotL;
Z 12=-j(Ze-Zo)cotL/2;
其中,Z 12为除2端口外其余端口开路时,2端口至1端口的特性阻抗。
如上述公式所示,4端口开路时,两端口网络对应的等效电路具有全阻特性。
因此,4端口开路时,对于整个2端口和3端口所在的耦合枝节来说,其具有带通特性,在电角度比较小的位置,其不具有通路特性,在此位置对应的特性阻抗小于零不能传 输,即L比较小时,1端口和2端口之间呈带阻特性。也就是说,对于整个2端口和3端口所在的耦合枝节,2端口和3端口并不能同时为通路状态。
那么,可以继续假设馈电枝节上4端口的另一种可能性,即3端口短路接地。假设4端口开路时,则可以将四端口网络简化为1端口至2端口以及1端口至3端口的两端口网络,如图8所示。
根据上述思路分析,可以获得图8中的(a)中所示的1端口和3端口之间的传输特性,其阻抗参数特性为:
Z 11=Z 33=-j(Ze+Zo)cotθ/2;
Z 13=Z 31=-j(Ze-Zo)cscL/2;
如上述公式所示,其与图6中的(a)的等效电路相同,4端口短路时,两端口网络具有带通特性。
而根据上述思路分析,可以获得图8中的(b)中所示的1端口和2端口之间的传输特性,其阻抗参数特性为:
Z 11=j(Ze+Zo)tanθ/2;
Z 22=-j(Ze+Zo)cotθ/2+j[(Ze-Zo) 2/(Ze+Zo)]cos2θ;
Z 12=Z 21=j(Ze-Zo)tanθ/2;
如上述公式所示,4端口短路时,两端口网络具有带通特性。
因此,4端口短路时,对于1端口至2端口以及1端口至3端口的两端口网络都具有带通特性。则可以发现,对于馈电枝节的4端口短路的四端口网络来说,其中的耦合枝节具有较为理想的带通特性。
由此对比可以发现,四端口网络,当馈电枝节的一个端口处于不同状态(短路或开路)时,其对于耦合枝节的特性是不同的:
(1)馈电枝节末端开路时,耦合枝节具有一定的带宽,但是对于电角度比较小的位置具有全阻特性,整个工作频带内等效的带通的带宽较窄;
(2)馈电枝节末端短路时,耦合枝节在任何点都具有一定的带通特性,其具体的带宽以及损耗受四端口网络的Ze以及Zo影响,也受介质的影响较大,但是其具有较为理想的馈电效果。
根据以上特性,本申请实施例利用这种特性设计一种末端短路的磁环馈电结构,利用其在0°~180°的带通特性,用以激发贴片天线四个基本模式,使四个基本模式产生的谐振稍微错频,实现贴片天线最大的带宽覆盖。
图9是本申请实施例提供的天线结构示意图,图9所示的天线结构可以应用如图1所示的电子设备中。
如图9所示,天线结构可以包括金属辐射贴片110,金属馈电线120和馈电单元130。
其中,馈电单元130在金属馈电线120的一端为金属辐射贴片110间接耦合馈电,金属馈电线120的另一端接地。金属辐射贴片110和金属馈电线120沿第一方向重叠,第一方向为垂直于金属辐射贴片110所在平面的方向。
应理解,间接耦合是相对于直接耦合的概念,即隔空耦合,两者之间并不直接电连接。而直接耦合是直接电连接,在馈电点处直接馈电。同时,金属馈电线120的一端可以是金属馈电线120的距离端点的一端距离,并不是一个点。金属馈电线120的另一端也可以相应理解为上述概念。
可选地,在电子设备中,地板可以是中框或者PCB。PCB为多层介质板压合而成,多层介质板中存在金属镀层,可以作为天线的参考地。
可选地,金属馈电线120长度L3可以小于天线结构的工作频段的最大频率对应的波长的二分之一。
应理解,由于金属馈电线120长度L3小于天线结构的工作频段的最大频率对应的波长的二分之一,因此,金属馈电线120产生的二分之一模式的谐振的谐振点在天线结构的工作频段外,不会对天线结构的工作频段产生影响。
可选地,天线结构还可以包括并联枝节140,并联枝节140可以与金属馈电线120电连接。并联枝节140可以用于调整天线结构的谐振点,以达到最优的天线匹配。同时,由于天线结构等效的微带线的耦合结构中,1端口向2端口和3端口传输的电流为反向,因此,金属馈电线120上存在电流零点,若电流零点在左倾对角模式和右倾对角模式最佳激励区域,则两个模式不能被很好的激励。因此,天线结构增加并联枝节140后,并联枝节140可以用于调整金属馈电线120上的电流零点,将电流零点调整偏离左倾对角模式和右倾对角模式最佳激励区域,使天线结构的辐射特性更优。
应理解,并联枝节140只是其中一种调节天线结构的辐射性能的方式,也可以采用串联支架达到上述效果,即金属馈电线120的各处宽度可以进行调整,或者可以在金属馈电线120上开槽以达到上述效果。本申请对此并不做限制,仅以并联枝节140作为举例说明。
可选地,并联枝节140的长度L4可以小于15mm,为介绍简洁,以L4为6mm进行举例,应理解,可以根据实际的设计及生产需要调整并联枝节140的长度L4。
可选地,金属馈电线120的宽度W1可以小于3mm,为介绍简洁,以W1为1mm进行举例,应理解,可以根据实际的设计及生产需要调整金属馈电线120的宽度W1。
可选地,金属辐射贴片110的长度L1可以小于50mm,宽度L2可以小于50mm,为介绍简洁,以L1为23.5mm,L2为19mm进行举例,应理解,可以根据实际的设计及生产需要调整金属辐射贴片110的长度L1和宽度L2。
可选地,金属馈电线120长度L3可以小于25mm,为介绍简洁,以L3为18mm进行举例,应理解,可以根据实际的设计及生产需要调整金属馈电线120长度L3。
可选地,金属辐射贴片110与金属馈电线120之间的距离H1可以小于2mm,为介绍简洁,以H1为0.4mm进行举例。距离H1可以为金属辐射贴片110与金属馈电线120之间垂直方向的距离或者也可以是金属辐射贴片110与金属馈电线120上相邻最近的两个点之间的直线距离。
应理解,上述天线结构的尺寸仅作为举例使用,本申请实施例并不对天线结构的尺寸做限制,可以根据具体生产及设计需要进行仿真修改。同时,金属辐射贴片110可以为任意形状,例如,可以为圆形,矩形,多边形等,本申请实施例为方便表述,仅以金属辐射贴片110为矩形进行说明,但对金属辐射贴片110的形状不做限制。
图10是本申请实施例提供的电子设备的示意图。
如图10所示,电子设备还可以包括天线支架210和屏蔽罩220。
其中,天线支架210可以在设置在电子设备的PCB17与后盖21之间。PCB14靠近天线支架的表面可以设置有屏蔽罩220,屏蔽罩220可用于保护PCB17上的电子元件不受外界电磁环境的干扰。
可选地,金属辐射贴片110可以设置于后盖21的表面,金属馈电线120可以设置于 天线支架210的表面。
应理解,本申请实施例提供的天线结构的设置方式仅为实际应用中多种设置方式中的一种。例如,金属辐射贴片110可以设置于天线支架210的第一表面,金属馈电线120可以设置于天线支架210的第二表面,第一表面和第二表面相对设置;或者,金属辐射贴片110可以设置于后盖21的第三表面,金属馈电线120可以设置于后盖21的第四表面,第三表面和第四表面相对设置。本申请对天线结构的具体设置方式并不做限制。
可选地,由于电子设备内空间紧凑,屏蔽罩220的表面与金属辐射贴片110之间的距离可以小于2mm,即H1+H2<2mm。
可选地,金属馈电线120与屏蔽罩220之间的距离H2可以为0.8mm。
图11是本申请实施例提供的采用其他方式馈电的天线结构的示意图。
为了对比上述理论分析中三种馈电方式对贴片天线带宽的影响,提供了如图11所示的天线结构,作为对比贴片天线结构。其中,图11中的(a)所示的天线结构采用直接馈电的方式。图11中的(b)所示的天线结构采用馈电枝节末端开路的方式馈电。为了与图9所示的天线结构对比,图11中的(a)与(b)中的金属辐射贴片的尺寸与图9中的金属辐射贴片的尺寸相同,均为23.5mm×19mm。
其中,对于图11中的(b)所示的天线结构,为了对比保证准确,使馈电枝节310产生的谐振控制到6.5GHz,对天线结构的工作带宽内的频段不会影响,因此,馈电枝节的长度L5可以为10mm。同时,可以设置馈电枝节310的宽度W2与图9中所示的金属馈电线的宽度W1相同,可以为1mm。而此时为了调节天线结构产生的谐振的深度调整了并联枝节320的长度,可以为3mm。
图12至图14是图11中的(a)的天线结构对应的仿真示意图。其中,图12是图11中的(a)的天线结构对应的S参数图。图13是图11中的(a)的天线结构对应的史密斯(smith)圆图。图14是图11中的(a)的天线结构对应的天线效率仿真图。
如图12至图14所示,以回波损耗<-4dB,效率>-3dB为界限,统计天线结构的带宽(bandwidth,BW)。此时,图11中的(a)的采用直接馈电的天线结构对应的BW=500MHz。
图15至图17是图11中的(b)的天线结构对应的仿真示意图。其中,图15是图11中的(b)的天线结构对应的S参数图。图16是图11中的(b)的天线结构对应的smith圆图。图17是图11中的(b)的天线结构对应的天线效率仿真图。
如图15至图17所示,相比于直接馈电,由于耦合馈电的参数特性,会使得其具有一定带宽的带通特性,处于4.4GHz的模式,是可以被激励的好一点的,但是其电路特性使得其处于滤波器的边缘,激励还是不足以激励起较好的效果。以回波损耗<-4dB,效率>-3dB为界限,此时,图11中的(a)的馈电枝节末端开路的天线结构对应的BW=600MHz。
图18至图20是图9中的天线结构对应的仿真示意图。其中,图18是图9中的天线结构对应的S参数图。图19是图9中的天线结构对应的smith圆图。图20是图9中的天线结构对应的天线效率仿真图。
为了对比保证准确,使金属馈电线120产生的谐振控制到6.5GHz,对天线结构的工作带宽内的频段不会影响。同时,优化对应位置的并联枝节140来优化天线结构的谐振,以达到最优的天线匹配。
如图18至图20所示,天线结构的几个模式都处于激励的比较好的状态。以回波损耗<-4dB,效率>-3dB为界限,此时,图9中的馈电枝节末端短路的天线结构对应的 BW=1100MHz。
对比上述3种天线结构的仿真发现,比起直接馈电,耦合馈电可以提升天线结构的带宽,如果按照馈电枝节末端短路的这种磁环馈电设计方案,天线结构可以更有效的激励起多个模式,按照效率看提升效果比较明显。
按照图9所示的天线结构,仿真对应的天线模式如图21至24所示。其中,图21是天线结构工作在横向模式下的电流分布图。图22是天线结构工作在右倾对角模式下的电流分布图。图23是天线结构工作在纵向模式下的电流分布图。图24是天线结构工作在左倾对角模式下的电流分布图。
如图21所示,天线结构可以在4.3GHz工作在横向模式。如图22所示,天线结构可以在4.8GHz工作在右倾对角模式。如图23所示,天线结构可以在5.5GHz工作在纵向模式。如图24所示,天线结构可以在5.8GHz工作在左倾对角模式。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种电子设备,其特征在于,包括一种天线结构,所述天线结构包括:
    金属辐射贴片,金属馈电线和馈电单元;
    其中,所述馈电单元在所述金属馈电线一端为所述金属辐射贴片间接耦合馈电;
    所述金属馈电线的另一端接地。
  2. 根据权利要求1所述的电子设备,其特征在于,所述金属馈电线的长度小于所述天线结构的工作频段的最大频率对应的波长的二分之一。
  3. 根据权利要求1所述的电子设备,其特征在于,所述天线结构还包括:并联枝节,所述并联枝节与所述金属馈电线电连接。
  4. 根据权利要求1至3中任一项所述的电子设备,其特征在于,所述金属馈电线的宽度小于3mm。
  5. 根据权利要求4所述的电子设备,其特征在于,所述金属馈电线的宽度为1mm。
  6. 根据权利要求3所述的电子设备,其特征在于,所述并联枝节的宽度小于3mm。
  7. 根据权利要求6所述的电子设备,其特征在于,所述并联枝节的宽度为1mm。
  8. 根据权利要求1至7中任一项所述的电子设备,其特征在于,所述电子设备还包括:
    天线支架;
    其中,所述金属辐射贴片设置于所述天线支架的第一表面,所述金属馈电线设置于所述天线支架的第二表面,所述第一表面和所述第二表面相对设置。
  9. 根据权利要求1至7中任一项所述的电子设备,其特征在于,所述电子设备还包括:
    天线支架和后盖;
    其中,所述金属辐射贴片设置于所述后盖的表面,所述金属馈电线设置于所述天线支架的表面。
  10. 根据权利要求1至7中任一项所述的电子设备,其特征在于,所述电子设备还包括:
    后盖;
    其中,所述金属辐射贴片设置于所述后盖的第三表面,所述金属馈电线设置于所述后盖的第四表面,所述第三表面和所述第四表面相对设置。
  11. 根据权利要求1至10中任一项所述的电子设备,其特征在于,所述电子设备还包括:
    印刷电路板PCB和屏蔽罩;
    其中,所述屏蔽罩设置于所述PCB上,所述屏蔽罩与所述PCB之间的空间设置有电子元件;
    所述屏蔽罩的表面与所述金属辐射贴片之间的距离小于2mm。
  12. 根据权利要求11所述的电子设备,其特征在于,所述屏蔽罩的表面与所述金属辐射贴片之间的距离为1.2mm。
  13. 根据权利要求1至12中任一项所述的电子设备,其特征在于,所述辐射贴片为矩形或圆形。
PCT/CN2021/101395 2020-06-29 2021-06-22 一种电子设备 WO2022001740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010601956.2 2020-06-29
CN202010601956.2A CN113937462B (zh) 2020-06-29 2020-06-29 一种电子设备

Publications (1)

Publication Number Publication Date
WO2022001740A1 true WO2022001740A1 (zh) 2022-01-06

Family

ID=79272701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101395 WO2022001740A1 (zh) 2020-06-29 2021-06-22 一种电子设备

Country Status (2)

Country Link
CN (2) CN113937462B (zh)
WO (1) WO2022001740A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115621717A (zh) * 2022-11-28 2023-01-17 小米汽车科技有限公司 辐射体、天线单元、天线组件、车辆和布置方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202333134U (zh) * 2011-11-18 2012-07-11 上海安费诺永亿通讯电子有限公司 一种双极化天线的新型馈电结构
CN203180080U (zh) * 2013-03-24 2013-09-04 成都携恩科技有限公司 用于rfid的贴片式天线的临近耦合馈电装置
EP3076481A1 (en) * 2015-03-31 2016-10-05 Sasidhar Vajha Non-contact antenna feed
CN108091992A (zh) * 2017-12-06 2018-05-29 南京邮电大学 小型化微带天线
CN108879086A (zh) * 2017-05-16 2018-11-23 南京理工大学 一种具有谐波抑制的紧凑型宽带微带贴片天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839601B1 (ko) * 2006-02-01 2008-06-20 한국전자통신연구원 종단이 단락된 급전 라인과의 근접 결합을 이용한 안테나,rfⅰd 태그 및 안테나 임피던스 정합 방법
US20100194643A1 (en) * 2009-02-03 2010-08-05 Think Wireless, Inc. Wideband patch antenna with helix or three dimensional feed
CN109713447A (zh) * 2018-02-09 2019-05-03 北京邮电大学 一种基于共面波导终端短路耦合馈电的双极化天线
CN210272672U (zh) * 2019-08-02 2020-04-07 广州视源电子科技股份有限公司 天线以及电子设备
CN111063990B (zh) * 2020-01-02 2021-12-21 电子科技大学 一种基于超表面加载的高增益双圆极化天线结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202333134U (zh) * 2011-11-18 2012-07-11 上海安费诺永亿通讯电子有限公司 一种双极化天线的新型馈电结构
CN203180080U (zh) * 2013-03-24 2013-09-04 成都携恩科技有限公司 用于rfid的贴片式天线的临近耦合馈电装置
EP3076481A1 (en) * 2015-03-31 2016-10-05 Sasidhar Vajha Non-contact antenna feed
CN108879086A (zh) * 2017-05-16 2018-11-23 南京理工大学 一种具有谐波抑制的紧凑型宽带微带贴片天线
CN108091992A (zh) * 2017-12-06 2018-05-29 南京邮电大学 小型化微带天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG JIN-DONG; ZHU LEI; WU QIONG-SEN; LIU NENG-WU; WU WEN: "A Compact Microstrip-Fed Patch Antenna With Enhanced Bandwidth and Harmonic Suppression", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE, USA, vol. 64, no. 12, 1 December 2016 (2016-12-01), USA, pages 5030 - 5037, XP011636063, ISSN: 0018-926X, DOI: 10.1109/TAP.2016.2618539 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115621717A (zh) * 2022-11-28 2023-01-17 小米汽车科技有限公司 辐射体、天线单元、天线组件、车辆和布置方法

Also Published As

Publication number Publication date
CN113937462B (zh) 2023-06-27
CN113937462A (zh) 2022-01-14
CN116759806A (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
CN112042054B (zh) 一种天线装置和终端设备
US20220239004A1 (en) Antenna Apparatus and Mobile Terminal
TWI521788B (zh) 天線組合及無線通訊裝置
WO2023155559A1 (zh) 电子设备
CN109980338B (zh) 一种应用于智能终端设备辐射平面共用的小型化mimo天线
WO2022179596A1 (zh) 毫米波天线、装置及电子设备
WO2023071478A1 (zh) 一种终端天线及电子设备
WO2020057136A1 (zh) 天线及移动终端
WO2018157661A1 (zh) 天线和终端
CN203056087U (zh) 双8字形结构谐振腔的超宽带天线
US20170194694A1 (en) Dual-band wi-fi antenna and mobile terminal
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
WO2022143320A1 (zh) 一种电子设备
SG189211A1 (en) Lte antenna pair for mimo/diversity operation in the lte/gsm bands
WO2022001740A1 (zh) 一种电子设备
CN113346238B (zh) 一种天线模组及电子设备
CN110212316B (zh) 一种基于复合左右手传输线的多频段天线
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
WO2022017220A1 (zh) 一种电子设备
EP4266497A1 (en) Electronic device
CN103151610A (zh) 一种小型化不对称平面超宽带天线
CN203180064U (zh) 一种小型化不对称平面超宽带天线
CN204516894U (zh) 一种覆盖七频段的小型移动通信设备天线
CN107994332A (zh) 一种三频微带缝隙天线
TWI704714B (zh) 天線系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832534

Country of ref document: EP

Kind code of ref document: A1