WO2018157661A1 - 天线和终端 - Google Patents

天线和终端 Download PDF

Info

Publication number
WO2018157661A1
WO2018157661A1 PCT/CN2017/119525 CN2017119525W WO2018157661A1 WO 2018157661 A1 WO2018157661 A1 WO 2018157661A1 CN 2017119525 W CN2017119525 W CN 2017119525W WO 2018157661 A1 WO2018157661 A1 WO 2018157661A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
monopole
monopole antenna
branch
antennas
Prior art date
Application number
PCT/CN2017/119525
Other languages
English (en)
French (fr)
Inventor
王龙龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018157661A1 publication Critical patent/WO2018157661A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas

Definitions

  • Embodiments of the present invention relate to, but are not limited to, the field of communications, and in particular, to an antenna and a terminal.
  • Common terminal multi-frequency antennas include microstrip antennas, slot antennas, monopole antennas, and the like.
  • the microstrip antenna can realize the miniaturized antenna design by increasing the thickness of the dielectric plate, reducing the relative dielectric constant of the dielectric plate, or increasing the aspect ratio of the antenna.
  • the microstrip antenna is too thick, the weight of the antenna will increase, and the surface wave of the antenna will be aroused, which will make the antenna pattern worse.
  • Increasing the antenna aspect ratio will also excite the antenna high-order mode;
  • the dielectric constant increases the size of the antenna and reduces the efficiency of the antenna.
  • Multi-frequency characteristics can be achieved by different combinations of slot antennas and microstrip feeders, but the size of such antennas is also relatively large, and the omnidirectionality of high-frequency patterns is poor; the high-frequency bandwidth of rectangular-ring monopole antennas is too Narrow, not suitable for use in mobile terminals.
  • Embodiments of the present invention provide an antenna and a terminal.
  • an antenna including: a dielectric plate;
  • One or more monopole antennas are disposed on the dielectric plate, wherein at least one of the monopole antennas is a continuous arcuate structure.
  • the monopole antennas of the plurality of monopole antennas are sequentially disposed in a near-to-far manner in a distance reference manner.
  • the first monopole antenna, the second monopole antenna, the third monopole antenna, and the fourth monopole antenna are sequentially disposed from near to far from the reference ground;
  • the first monopole antenna is connected to the reference ground through a feed port
  • One end of the second monopole antenna is connected to the first monopole antenna
  • One end of the third monopole antenna is connected to the first monopole antenna, and the other end is connected to the fourth monopole antenna.
  • the microstrip lines of the third monopole antenna and the fourth monopole antenna are arranged in a gradation structure.
  • the first monopole antenna, the second monopole antenna, the third monopole antenna, and the fourth monopole are sequentially disposed in order from the near to the farthest from the reference ground.
  • a sixth monopole antenna is disposed in an interval region between the second monopole antenna and the third monopole antenna, wherein the sixth monopole One end of the antenna is connected to the first monopole antenna.
  • the antenna is further provided with a third monopole antenna and a fourth monopole antenna arranged in order from the near to the far distance according to the reference ground, wherein the medium is A third monopole antenna is disposed on the board, wherein the third monopole antenna is connected to the fourth monopole antenna at one end and the other end is connected to the reference ground through the feed port.
  • the media plate is provided with a feed port that is connected to a center conductor of the feed line, wherein the outer conductor of the feed line is connected to a reference ground.
  • the feed line is a 50 ohm coaxial line.
  • a terminal comprising: the antenna described in the above embodiment.
  • the antenna and the terminal provided by the embodiments of the present invention, when designing the antenna, a plurality of monopole antennas are arranged on the dielectric board, and the monopole antenna is a continuous arcuate structure, or is called a serpentine fold shape,
  • the principle of the polar antenna combines the multimode resonance of the antenna to broaden the bandwidth of the antenna.
  • a miniaturized antenna that can achieve full network coverage is designed.
  • FIG. 1 is a schematic diagram of a design of an antenna according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a second design in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a third design in accordance with an embodiment of the present invention.
  • the antenna described in the embodiment of the present invention can be operated on a device such as a mobile phone terminal or other terminal device that needs to design a miniaturized antenna.
  • an antenna including: a dielectric plate;
  • One or more monopole antennas are disposed on the dielectric plate, wherein at least one of the monopole antennas is a continuous arcuate structure.
  • the monopole antennas of the plurality of monopole antennas are sequentially disposed in a near-to-far manner in a distance reference manner.
  • FIG. 1 is a schematic diagram of a design of an antenna according to an embodiment of the present invention.
  • the first monopole antenna is sequentially disposed from near to far according to the reference ground (Fig. Branch 1 in 1), second monopole antenna (branch 6 in Fig. 1), third monopole antenna (branch 4 in Fig. 1), fourth monopole antenna (branch 3 in Fig.
  • the first monopole a sub-antenna is connected to the reference ground through a feed port; one end of the second monopole antenna is connected to the first monopole antenna; one end of the third monopole antenna is connected to the first The monopole antenna has the other end connected to the fourth monopole antenna.
  • the microstrip lines of the third monopole antenna and the microstrip lines of the fourth monopole antenna are arranged in a gradation structure. It should be added that the gradual structure means that as the length of the microstrip line increases, its width changes successively. This structure is called a gradual structure.
  • the first monopole antenna, the second monopole antenna, the third monopole antenna, and the fourth monopole are sequentially disposed in order from the near to the farthest from the reference ground.
  • An antenna and a fifth monopole antenna (branch section 7 in FIG. 1), wherein one end of the fifth monopole antenna is connected to the first monopole antenna.
  • a sixth monopole antenna (branch 8 in FIG. 1) is disposed in an interval region between the second monopole antenna and the third monopole antenna, wherein One end of the sixth monopole antenna is connected to the first monopole antenna.
  • FIG. 2 is a schematic diagram of a second design scheme according to an embodiment of the present invention. As shown in FIG. 2, several monopole antennas are reduced relative to the design scheme of FIG. 1. For convenience of comparison, the design scheme of FIG. 2 remains Using the monopole antenna number in FIG. 1, a third monopole antenna (branch section 4 in FIG. 1) is disposed on the dielectric board, wherein one end of the third monopole antenna is connected to the fourth single The pole antenna (segment 3 in Figure 1) has the other end connected to the reference ground through a feed port.
  • a third monopole antenna (branch section 4 in FIG. 1) is disposed on the dielectric board, wherein one end of the third monopole antenna is connected to the fourth single The pole antenna (segment 3 in Figure 1) has the other end connected to the reference ground through a feed port.
  • a monopole antenna of the same name such as a third monopole antenna
  • a monopole antenna of the same name facilitates comparison of various embodiments of the present invention. That is, the embodiment of FIG. 2 may be obtained by adding or deleting a certain sub-antenna in the embodiment of FIG. 1. Therefore, the monopole antenna name in FIG. 1 is used in FIG.
  • the name of the conventional monopole antenna is not limited to the embodiment of FIG. 2, that is, the third monopole antenna of FIG. 2 has no practical meaning, and only refers to a monopole antenna of FIG.
  • the media plate is provided with a feed port that is connected to a center conductor of the feed line, wherein the outer conductor of the feed line is connected to a reference ground.
  • the feed line is a 50 ohm coaxial line.
  • a terminal comprising: the antenna described in the above nine exemplary embodiments.
  • each antenna branch is a description of the antenna structure, and the monopole antenna is a type of antenna.
  • each antenna branch is a monopole antenna, and the length of the monopole antenna is obtained by a certain resonant frequency of the electromagnetic wave.
  • the embodiment of the invention discloses a multi-band antenna for miniaturizing a mobile terminal, comprising: reference ground 2, a feed port 1, and a radiation patch.
  • the feed is fed by a 50 ohm coaxial line, and the feed line is
  • the outer conductor is soldered to the reference floor and the center conductor is connected to a feed port printed on the front side of the dielectric panel.
  • the radiation patch comprises six monopole antennas printed on the upper surface of the dielectric substrate 9, which are respectively a branch 3, a branch 4, a branch 5, a branch 6, a branch 7, and a branch 8.
  • the principle of using a monopole antenna is Combine the multimode resonance of the antenna to broaden the bandwidth of the antenna.
  • the antenna is composed of a monopole antenna with multiple branches, and the length and position of each branch are adjusted appropriately, so that the working center frequency of the branch 5 is 2100 MHz, the working frequency of the branch 6 is 1700 MHz, and the base mode of the branch 3 and the branch 4 is operated at 900 MHz.
  • the center frequency of the secondary mode is at 2000 MHz, and the center frequency of the cubic mode is at 2600 MHz.
  • a gradual structure is adopted for the microstrip lines of the branch 3 and the branch 4, and the branch 7 is added to enhance the radiation intensity of the antenna in the low-frequency passband, thereby realizing the low-frequency passband GSM 800/850 band. cover.
  • the microstrip line is in the form of a serpentine folding line.
  • the branch 8 is introduced, and the impedance of the branch 3 and the branch 7 is adjusted by adjusting the length of the branch, thereby changing the radiation characteristics of the antenna low-frequency pass band.
  • the basic structure of the antenna is shown in Figure 1, and the dark portion indicates the metal copper foil.
  • the antenna consists of three parts: reference ground 2, feed port 1, and radiation patch.
  • the antenna of this paper is fed by a 50 ohm coaxial cable.
  • the outer conductor of the feeder is soldered on the reference floor, and the center conductor is printed on the front side of the dielectric board.
  • the feeding ports are connected, the feeding port 1 is the point A marked in FIG. 1, the feeding port has a width of 2 mm, and the antenna is composed of a folded monopole of a plurality of branches, and each monopole antenna is printed on the dielectric substrate 9.
  • the surface, each branch is indicated in Figure 1.
  • the working frequency of the branch 5 is 2100MHz
  • the working frequency of the branch 6 is 1700MHz
  • the fundamental mode of the branch 3 and the branch 4 is 900MHz
  • the center frequency of the secondary mode is 2000MHz
  • the center frequency of the cubic mode is 2600MHz
  • the branch 7 is added. Enhance the radiation intensity of the antenna in the low-frequency passband to achieve coverage of the low-frequency passband GSM 800/850 band.
  • the branch 8 is introduced, and the impedance of the branch 3 and the branch 7 is adjusted by adjusting the length of the branch, thereby changing the radiation characteristics of the antenna low-frequency pass band.
  • the antenna structure is shown in Figure 1, and the dimensions are as shown in Table 1.
  • (9) is a dielectric substrate
  • Feed port 1 a rectangular metal patch with a length of 6 mm and a width of 2 mm.
  • the radiating patch of the antenna comprises six monopole antennas, which are printed on the upper surface of the dielectric substrate 9, which are respectively a branch 3, a branch 4, a branch 5, a branch 6, a branch 7, and a branch 8.
  • the dimensions are shown in Table 1.
  • the antenna is printed on a FR-4 dielectric plate with a plate thickness of 1 mm.
  • the dielectric constant of the substrate is 4.2, the thickness of the surface copper is 0.035 mm, and the size of the entire antenna is 30 mm ⁇ 67 mm.
  • the size of the ground is 33 mm x 30 mm, and the total area of the radiation patch is 34 mm x 30 mm.
  • Table 1 is a table of antenna size parameters in the antenna design scheme of Fig. 1 in the present application. As shown in Table 1, the size parameters of the antenna structure are shown.
  • the length of each branch of the antenna is optimized by using the microwave simulation software HFSS.
  • the final simulation data shows that the bandwidth of the antenna is 820-965MHz and 1700-3850MHz when the return loss is less than -6dB, which satisfies the whole network frequency of the mobile network. Coverage to get the final design of the antenna.
  • FIG. 3 is a schematic diagram of a third design according to an embodiment of the present invention. As shown in FIG. 3, compared with FIG. 1, the right end of the first monopole antenna of FIG. 3 is corresponding to the corresponding one in FIG. The portion is longer, and the right end of the first monopole antenna in FIG. 3 is almost connected to the fourth monopole antenna.
  • FIG. 4 is an experimental diagram according to an embodiment of the present invention. As shown in FIG. 4, a simulation and test result comparison diagram for the return loss of the antenna is given.
  • the high-frequency passband bandwidth of the antenna is narrowed compared to the simulation data.
  • the simulation is in good agreement with the test results.
  • the measured -6dB impedance bandwidth of the antenna sample is 820-968MHz, 1695-3020MHz, which can cover all frequency bands of the domestic mobile communication carrier network, and meets the design requirements of the antenna of the present application.
  • the principle of a monopole antenna is combined with the multimode resonance of the antenna to broaden the bandwidth of the antenna.
  • a miniaturized antenna that can achieve full network coverage is designed.

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线和终端,通过本发明实施例提供的天线和终端,在设计天线时,在介质板上设置若干个单极子天线,该单极子天线为连续的弓形结构,或者称为蛇形折叠形。

Description

天线和终端 技术领域
本发明实施例涉及但不限于通信领域,尤其是一种天线和终端。
背景技术
同时兼容中国大陆三大运营商的多种移动通信制式的全网通手机和其它应用设备成为移动通信应用研发的热点之一,由于天线作为手机系统的关键部件,而一般天线大多依赖手机外壳尺寸设计,体积较大,结构复杂,所以在轻便化的移动设备中,小型化设计就变的很重要。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
常见的终端多频天线有微带天线,缝隙天线,单极子天线等等。微带天线可以通过增加介质板厚度,降低介质板相对介电常数或者增大天线的长宽比等措施实现小型化天线设计。但是微带天线的过厚会使天线重量增大,同时会激起天线的表面波,使天线方向图变差;增大天线长宽比也会激发天线高次模;而降低介质板的相对介电常数则会使天线尺寸变大,降低了天线的效率。
可以通过缝隙天线与微带馈线的不同组合来实现多频特性,但这类天线的尺寸同样比较大,且高频方向图的全向性较差;矩形环单极子天线的高频带宽太窄,不适合应用在移动终端中。
本发明实施例提供了一种天线和终端。
根据本发明的一个实施例,提供了一种天线,包括:介质板;
在所述介质板上设置有一个或多个单极子天线,其中,至少一个所述单极子天线为连续的弓形结构。
在示例性的实施方式中,多个单极子天线中的单极子天线按照距离参考 地由近至远的方式依次设置。
在示例性的实施方式中,按照距离所述参考地由近至远依次设置为第一单极子天线、第二单极子天线、第三单极子天线、第四单极子天线;
所述第一单极子天线通过馈电端口连接至所述参考地;
所述第二单极子天线的一端连接至所述第一单极子天线;
所述第三单极子天线的一端连接至所述第一单极子天线,另一端连接至所述第四单极子天线。
在示例性的实施方式中,所述第三单极子天线和所述第四单极子天线的微带线设置为渐变结构。
在示例性的实施方式中,按照距离所述参考地由近至远的顺序,依次设置为第一单极子天线、第二单极子天线、第三单极子天线、第四单极子天线和第五单极子天线,其中,所述第五单极子天线的一端连接至所述第一单极子天线。
在示例性的实施方式中,在所述第二单极子天线和所述第三单极子天线之间的间隔区域,设置有第六单极子天线,其中,所述第六单极子天线的一端连接至所述第一单极子天线。
在示例性的实施方式中,所述天线还设置有以下形式:按照距离所述参考地由近至远依次设置为第三单极子天线、第四单极子天线,其中,在所述介质板上设置有第三单极子天线,其中,所述第三单极子天线一端连接至第四单极子天线,另一端通过馈电端口连接至参考地。
在示例性的实施方式中,所述介质板上设置有馈电端口,所述馈电端口连接至馈线的中心导体,其中,所述馈线的外导体连接至参考地。
在示例性的实施方式中,所述馈线为50欧姆的同轴线。
根据本发明的另一个实施例,还提供了一种终端,包括:上述实施例中记载的天线。
通过本发明的实施例提供的天线和终端,在设计天线时,在介质板上设置若干个单极子天线,该单极子天线为连续的弓形结构,或者称为蛇形折叠形,利用单极子天线的原理,结合天线的多模谐振,来展宽天线的带宽。采 用上述技术方案,设计出一种可以实现全网覆盖的小型化天线。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是根据本发明实施例的一种天线的设计方案的示意图;
图2是根据本发明实施例的第二种设计方案的示意图;
图3是根据本发明实施例的第三种设计方案的示意图;
图4是根据本发明实施例的实验图。
本发明的实施方式
下文中将参考附图并结合实施例来详细说明本申请。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例一
本发明实施例中记载的天线,可以运行于手机终端等设备,或者其他需要设计小型化天线的终端设备。
根据本发明的一个实施例,提供了一种天线,包括:介质板;
在所述介质板上设置有一个或多个单极子天线,其中,至少一个所述单极子天线为连续的弓形结构。
在示例性的实施方式中,多个单极子天线中的单极子天线按照距离参考地由近至远的方式依次设置。
图1是根据本发明实施例的一种天线的设计方案的示意图,如图1左侧的结构框图所示,按照距离所述参考地由近至远依次设置为第一单极子天线(图1中的枝节5)、第二单极子天线(图1中的枝节6)、第三单极子天线(图1中的枝节4)、第四单极子天线(图1中的枝节3);他们的连接关系简单表述为以下,具体结构参见附图1(需要补充的是,图1中的右侧部分 是图1中设计方案的天线结构的尺寸标号,在后续的表1中有记载相应的数值;在后续的本发明示例性的实施方式中有对图1中的各枝节标号的更详细记载,可以结合示例性的实施方式中的内容来理解):所述第一单极子天线通过馈电端口连接至所述参考地;所述第二单极子天线的一端连接至所述第一单极子天线;所述第三单极子天线的一端连接至所述第一单极子天线,另一端连接至所述第四单极子天线。
在示例性的实施方式中,所述第三单极子天线的微带线和所述第四单极子天线的微带线设置为渐变结构。需要补充的是,渐变结构是指:随着微带线尺寸长度的增加,其宽度在逐次改变,这种结构叫渐变结构。
在示例性的实施方式中,按照距离所述参考地由近至远的顺序,依次设置为第一单极子天线、第二单极子天线、第三单极子天线、第四单极子天线和第五单极子天线(图1中的枝节7),其中,所述第五单极子天线的一端连接至所述第一单极子天线。
在示例性的实施方式中,在所述第二单极子天线和所述第三单极子天线之间的间隔区域,设置有第六单极子天线(图1中的枝节8),其中,所述第六单极子天线的一端连接至所述第一单极子天线。
上述是一种设计,以下是本申请文件中提供的另一种设计方案。图2是根据本发明实施例的第二种设计方案的示意图,如图2所示,相对于图1中的设计方案少了几个单极子天线,为了对照方便,图2的设计方案依然使用图1中的单极子天线编号,在所述介质板上设置有第三单极子天线(图1中的枝节4),其中,所述第三单极子天线一端连接至第四单极子天线(图1中的枝节3),另一端通过馈电端口连接至参考地。
在本发明的多个实施例中均涉及到相同名称的单极子天线,例如第三单极子天线,需要说明的是,相同名称的单极子天线便于比较本发明的多个实施例,即图2的实施例可能是图1的实施例中增加或者删减某个子天线得到的,因而,在图2中沿用图1中的单极子天线名称。但是,沿用旧的单极子天线名称不限定图2的实施例,即图2中的第三单极子天线没有实际限定意义,只是指代图2中的一根单极子天线。
需要补充的是,本发明实施例中还提供了一种设计方案,在后续的示例 性的实施方式中说明。
在示例性的实施方式中,所述介质板上设置有馈电端口,所述馈电端口连接至馈线的中心导体,其中,所述馈线的外导体连接至参考地。在示例性的实施方式中,所述馈线为50欧姆的同轴线。
根据本发明的另一个实施例,还提供了一种终端,包括:上述9个示例性的实施方式中记载的天线。
以下结合示例性的实施方式进行详细说明。
需要说明的是,以下涉及到的括号内的编号,均为图1对应各部件的编号,各编号对应的部件在本申请中是全部适用的。
需要说明的是,枝节是形容天线结构的说法,而单极子天线是形容天线的类型。在本申请文件中,每一个天线枝节都是一个单极子天线,单极子天线的长度由电磁波的某一谐振频率来得到。
本发明实施例公开了一种小型化移动终端多频段天线,包括:参考地2、馈电端口1、辐射贴片三部分,所述的馈电采用50欧姆的同轴线馈电,馈线的外导体焊接在参考地板上,中心导体与印制在介质板正面的馈电端口相连。所述的辐射贴片包括六条单极子天线,印刷在介质基板9的上表面,分别为枝节3、枝节4、枝节5、枝节6、枝节7、枝节8,利用单极子天线的原理,结合天线的多模谐振,来展宽天线的带宽。
天线由多枝节的单极子天线构成,适当调节各枝节长度和位置,使得枝节5工作中心频率为2100MHz,枝节6工作中心频率为1700MHz,枝节3、枝节4的基模工作于900MHz,其二次模中心频率位于2000MHz,三次模中心频率位于2600MHz。为补偿天线的低频通带带宽,对枝节3、枝节4的微带线采用渐变结构,同时增加枝节7,以增强天线在低频通带的辐射强度,实现对低频通带GSM 800/850频段的覆盖。
在设计过程中,为了减小天线辐射单元占用的长度和空间,缩小天线尺寸,微带线采用蛇形折叠线的形式。为了进一步对天线带宽进行微调,引入枝节8,通过调节该枝节的长度,来调节枝节3和枝节7的阻抗,从而改变天线低频通带的辐射特性。
以下是本发明的示例性的实施方式:
天线基本结构如图1所示,深色部分表示金属铜箔。天线由参考地2、馈电端口1、辐射贴片三部分组成,本文天线采用50欧姆的同轴线馈电,馈线的外导体焊接在参考地板上,中心导体与印制在介质板正面的馈电端口相连,馈电端口1为图1中标注的A点,馈电端口的宽度为2mm,天线采用多枝节的折叠单极子构成,各单极子天线都印刷在介质基板9的上表面,各枝节在图1中所标示。枝节5工作中心频率为2100MHz,枝节6工作中心频率为1700MHz,枝节3和枝节4的基模工作于900MHz,其二次模中心频率位于2000MHz,三次模中心频率位于2600MHz,同时增加枝节7,以增强天线在低频通带的辐射强度,实现对低频通带GSM 800/850频段的覆盖。为了进一步对天线带宽进行微调,引入枝节8,通过调节该枝节的长度,来调节枝节3和枝节7的阻抗,从而改变天线低频通带的辐射特性。
所述的天线结构如图1所示,尺寸如表1。
其中:
(1)为馈电端口
(2)为参考地面
(3)为辐射枝节ADF
(4)为辐射枝节ADD’
(5)为辐射枝节AA’
(6)为辐射枝节ABB’
(7)为辐射枝节ADEE’
(8)为辐射枝节ACC’
(9)为介质基板
1、馈电端口1,其长度为6mm,宽为2mm的矩形金属贴片。
2、印刷在介质基板上的参考地面2,其长度为33mm,宽为30mm的矩形金属贴片。
3、天线的辐射贴片包括六条单极子天线组成,印刷在介质基板9的上表 面,分别为枝节3、枝节4、枝节5、枝节6、枝节7、枝节8。尺寸如表1。4、天线印制在板厚为1mm的FR-4介质板上,基板的介电常数为4.2,表面附铜厚度为0.035mm,整个天线的大小为30mm×67mm,其中参考地的大小为33mm×30mm,辐射贴片的总面积为34mm×30mm。
表1是根据本申请中图1中天线设计方案中的天线尺寸参数表,如表1所示,展示了天线结构的尺寸参数。
表1
Figure PCTCN2017119525-appb-000001
使用微波仿真软件HFSS对该天线各枝节的长度进行调谐优化,最终的仿真数据表明,在回波损耗小于-6dB下,天线的带宽为820-965MHz,1700-3850MHz,满足了移动网络全网频率覆盖,从而得到天线的最终设计方案。
图3是根据本发明实施例的第三种设计方案的示意图,如图3所示,与图1相比,图3中的第一单极子天线的右侧的一端比图1中的相应部位要更长,图3中的第一单极子天线的右端几乎与第四单极子天线连接。
通过调试图3各枝节的电长度至合适位置,可以获得比图2更多的谐振频点,并且谐振带宽会更宽。
使用微波仿真软件HFSS对天线各枝节的长度进行调谐优化,最终的仿真数据表明,在回波损耗小于-6dB下,天线的带宽为820-965MHz,1700-3850MHz,满足了移动网络全网频率覆盖,对仿真结果加工成实物,测试天线其 指标,图4是根据本发明的实施例的实验图,如图4所示,给出了为该天线回波损耗的仿真和测试结果对比图。
由于刻板机的精度、加工工艺、同轴馈电端口处能量损失以及FR-4基板的介电常数随频率变化等不确定因素的影响,相对于仿真数据,天线的高频通带带宽变窄,但总体而言,仿真与测试结果吻合较好。天线样品的实测-6dB阻抗带宽为820-968MHz,1695-3020MHz,能够覆盖国内移动通信运营商网络的所有频段,满足了本申请的天线的设计要求。
以上所述仅为本发明的示例性实施方式而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
利用单极子天线的原理,结合天线的多模谐振,来展宽天线的带宽。采用上述技术方案,设计出一种可以实现全网覆盖的小型化天线。

Claims (10)

  1. 一种天线,包括:介质板;
    在所述介质板上设置有一个或多个单极子天线,其中,至少一个所述单极子天线为连续的弓形结构。
  2. 根据权利要求1所述的天线,其中,所述多个单极子天线中的单极子天线按照距离参考地由近至远的方式依次设置。
  3. 根据权利要求2所述的天线,其中,按照距离所述参考地由近至远依次设置为第一单极子天线、第二单极子天线、第三单极子天线、第四单极子天线;
    所述第一单极子天线通过馈电端口连接至所述参考地;
    所述第二单极子天线的一端连接至所述第一单极子天线;
    所述第三单极子天线的一端连接至所述第一单极子天线,另一端连接至所述第四单极子天线。
  4. 根据权利要求3所述的天线,其中,
    所述第三单极子天线的微带线和所述第四单极子天线的微带线设置为渐变结构。
  5. 根据权利要求4所述的天线,所述天线还包括:第五单极子天线;
    按照距离所述参考地由近至远的顺序,依次设置为第一单极子天线、第二单极子天线、第三单极子天线、第四单极子天线和第五单极子天线,其中,所述第五单极子天线的一端连接至所述第一单极子天线。
  6. 根据权利要求3或者4或者5所述的天线,所述天线还包括:第六单极子天线;
    在所述第二单极子天线和所述第三单极子天线之间的间隔区域,设置有第六单极子天线,其中,所述第六单极子天线的一端连接至所述第一单极子天线。
  7. 根据权利要求2所述的天线,所述天线还设置有以下形式:
    按照距离所述参考地由近至远依次设置为第三单极子天线、第四单极子 天线,其中,在所述介质板上设置有所述第三单极子天线,其中,所述第三单极子天线一端连接至所述第四单极子天线,另一端通过馈电端口连接至参考地。
  8. 根据权利要求1所述的天线,其中,所述介质板上设置有馈电端口,所述馈电端口连接至馈线的中心导体,其中,所述馈线的外导体连接至参考地。
  9. 根据权利要求8所述的天线,其中,所述馈线为50欧姆的同轴线。
  10. 一种终端,包括:权利要求1至5,7至9中任一项所述的天线。
PCT/CN2017/119525 2017-02-28 2017-12-28 天线和终端 WO2018157661A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720186960.0U CN206619687U (zh) 2017-02-28 2017-02-28 天线和终端
CN201720186960.0 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018157661A1 true WO2018157661A1 (zh) 2018-09-07

Family

ID=60231437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119525 WO2018157661A1 (zh) 2017-02-28 2017-12-28 天线和终端

Country Status (2)

Country Link
CN (1) CN206619687U (zh)
WO (1) WO2018157661A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478038A (zh) * 2020-05-25 2020-07-31 常熟正昊电子科技有限公司 一种宽带s波段天线组件

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206619687U (zh) * 2017-02-28 2017-11-07 中兴通讯股份有限公司 天线和终端
CN108847527A (zh) * 2018-06-20 2018-11-20 袁涛 基于串联反加载的iot天线
CN108808236A (zh) * 2018-06-20 2018-11-13 袁涛 应用于NB-IoT领域的小型半双工天线

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588693A (zh) * 2004-09-23 2005-03-02 上海交通大学 小型宽频印刷单极天线
CN101593867A (zh) * 2009-07-06 2009-12-02 北京航空航天大学 极子天线的小型化优化方法及小型化弓形天线
US20090295667A1 (en) * 2008-05-30 2009-12-03 National Taiwan University Of Science And Technology Ultra high frequency planar antenna
CN103151611A (zh) * 2013-03-27 2013-06-12 云南银河之星科技有限公司 一种双频单极子馈电方式天线
CN203103510U (zh) * 2012-09-27 2013-07-31 东莞宇龙通信科技有限公司 Mimo天线装置及具有mimo天线装置的通信终端
CN104009289A (zh) * 2014-05-27 2014-08-27 复旦大学 具有折线结构的小型化433 MHz标签天线
CN107093793A (zh) * 2017-04-25 2017-08-25 西安电子科技大学 一种基于复合左右手传输线的全向滤波单极子天线
CN206619687U (zh) * 2017-02-28 2017-11-07 中兴通讯股份有限公司 天线和终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588693A (zh) * 2004-09-23 2005-03-02 上海交通大学 小型宽频印刷单极天线
US20090295667A1 (en) * 2008-05-30 2009-12-03 National Taiwan University Of Science And Technology Ultra high frequency planar antenna
CN101593867A (zh) * 2009-07-06 2009-12-02 北京航空航天大学 极子天线的小型化优化方法及小型化弓形天线
CN203103510U (zh) * 2012-09-27 2013-07-31 东莞宇龙通信科技有限公司 Mimo天线装置及具有mimo天线装置的通信终端
CN103151611A (zh) * 2013-03-27 2013-06-12 云南银河之星科技有限公司 一种双频单极子馈电方式天线
CN104009289A (zh) * 2014-05-27 2014-08-27 复旦大学 具有折线结构的小型化433 MHz标签天线
CN206619687U (zh) * 2017-02-28 2017-11-07 中兴通讯股份有限公司 天线和终端
CN107093793A (zh) * 2017-04-25 2017-08-25 西安电子科技大学 一种基于复合左右手传输线的全向滤波单极子天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478038A (zh) * 2020-05-25 2020-07-31 常熟正昊电子科技有限公司 一种宽带s波段天线组件

Also Published As

Publication number Publication date
CN206619687U (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
US10601117B2 (en) Antenna and mobile terminal
EP3896790A1 (en) Antenna structure and communication terminal
US9525212B2 (en) Feeding network, antenna, and dual-polarized antenna array feeding circuit
CN100474695C (zh) 双波段片状蝴蝶结隙缝天线结构
WO2018157661A1 (zh) 天线和终端
Hsieh et al. Compact dual-band slot antenna at the corner of the ground plane
EP2851997A1 (en) Printed circuit board antenna and printed circuit board
TW201537829A (zh) 天線結構
CN110676575B (zh) 一种小型化的高增益双频wifi天线
WO2021238347A1 (zh) 天线和电子设备
CN213753059U (zh) 多频低sar天线及电子设备
WO2008000175A1 (en) Miniature balanced antenna with differential feed
Alieldin et al. A dual-broadband dual-polarized fylfot-shaped antenna for mobile base stations using MIMO over-lapped antenna subarrays
WO2019223318A1 (zh) 室内基站及其pifa天线
CN107403996A (zh) 一种金属边框多耦合终端天线以及移动终端设备
TWI538310B (zh) 雙頻印刷式的單極天線
WO2016101136A1 (zh) 一种多频段介质谐振手机终端天线
CN209896263U (zh) 一种基于复合左右手传输线的多频段天线
CN110212316B (zh) 一种基于复合左右手传输线的多频段天线
CN104617395A (zh) 一种多频段介质谐振手机终端天线
Khabba et al. Beam-steering millimeter-wave antenna array for fifth generation smartphone applications
WO2022001740A1 (zh) 一种电子设备
TWI559614B (zh) Dual - frequency directional antenna device and its array
CN107039746A (zh) 一种小型化十一频段手机天线
Deng et al. A novel design of LTE smart mobile antenna with multiband operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898674

Country of ref document: EP

Kind code of ref document: A1