WO2023155559A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2023155559A1
WO2023155559A1 PCT/CN2022/138063 CN2022138063W WO2023155559A1 WO 2023155559 A1 WO2023155559 A1 WO 2023155559A1 CN 2022138063 W CN2022138063 W CN 2022138063W WO 2023155559 A1 WO2023155559 A1 WO 2023155559A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
frequency band
resonance
excitation signal
Prior art date
Application number
PCT/CN2022/138063
Other languages
English (en)
French (fr)
Inventor
王泽东
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023155559A1 publication Critical patent/WO2023155559A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors

Definitions

  • the present application relates to the technical field of communications, and in particular to an electronic device.
  • the present application provides an electronic device, the electronic device can support at least two radio frequency signals, and the electronic device can realize miniaturization design.
  • the application provides an electronic device, including:
  • the first antenna includes a first radiator, a second radiator, a first feed and an adjustment circuit, a first coupling gap is formed between one end of the first radiator and one end of the second radiator, so The other end of the first radiator and the other end of the second radiator extend in the opposite direction and are grounded; the first feed is electrically connected to the first radiator, and at least part of the regulating circuit is electrically connected between the first feed source and the first radiator;
  • the first feed source is used to provide a first excitation signal, and the first excitation signal enables the first radiator to achieve a first resonance under the action of the adjustment circuit; and/or,
  • the first feed source is used to provide a second excitation signal
  • the second excitation signal is coupled to the second radiator through the first coupling gap under the action of the adjustment circuit to make the second
  • the radiator achieves a second resonance, which is different from the first resonance.
  • FIG. 1 is a schematic diagram of a first structure of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a first current schematic diagram of the electronic device shown in FIG. 1 .
  • FIG. 3 is a second current schematic diagram of the electronic device shown in FIG. 1 .
  • FIG. 4 is a schematic diagram of a second structure of an electronic device provided by an embodiment of the present application.
  • FIG. 5 is a first equivalent circuit and current schematic diagram of the electronic device shown in FIG. 4 .
  • FIG. 6 is a second equivalent circuit and current schematic diagram of the electronic device shown in FIG. 4 .
  • FIG. 7 is a schematic diagram of a third equivalent circuit and current of the electronic device shown in FIG. 4 .
  • FIG. 8 is a schematic diagram of a fourth equivalent circuit and current of the electronic device shown in FIG. 4 .
  • FIG. 9 is an S-parameter curve diagram of the first antenna shown in FIG. 4 .
  • FIG. 10 is a radiation performance curve diagram of the first antenna shown in FIG. 4 .
  • FIG. 11 is a schematic diagram of the electrical connection of the regulating circuit provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of a third structure of an electronic device provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an electrical connection of the second antenna shown in FIG. 12 .
  • FIG. 14 is a schematic diagram of the first current of the second antenna shown in FIG. 13 .
  • FIG. 15 is a schematic diagram of a second current of the second antenna shown in FIG. 13 .
  • FIG. 16 is a schematic diagram of a third current of the second antenna shown in FIG. 13 .
  • FIG. 17 is a fourth current schematic diagram of the second antenna shown in FIG. 13 .
  • FIG. 18 is a fifth current schematic diagram of the second antenna shown in FIG. 13 .
  • FIG. 19 is an S-parameter curve diagram of the second antenna shown in FIG. 12 .
  • FIG. 20 is a radiation performance graph of the second antenna shown in FIG. 12 .
  • FIG. 21 is a schematic diagram of a fourth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of an S-parameter curve of the electronic device shown in FIG. 21 .
  • FIG. 23 is a schematic diagram of a fifth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 24 is a schematic diagram of a sixth structure of an electronic device provided by an embodiment of the present application.
  • the embodiment of the present application provides an electronic device 10.
  • the electronic device 10 can be a smart phone, a tablet computer, etc., or a game device, an augmented reality (Augmented Reality, referred to as AR) device, a car device, a data storage device, an audio player, etc. devices, video playback devices, laptops, desktop computing devices, etc.
  • the electronic device 10 may include an antenna arrangement.
  • the antenna device can realize the wireless communication function of the electronic device 10, for example, the antenna device can support Wireless Fidelity (Wi-Fi) signal, Global Positioning System (Global Positioning System, referred to as GPS) signal, third generation mobile communication technology ( 3rd-Generation, referred to as 3G), the fourth generation of mobile communication technology (4th-Generation, referred to as 4G), the fifth generation of mobile communication technology (5th-Generation, referred to as 5G), near field communication (Near field communication, referred to as NFC) signal , Bluetooth (Bluetooth, referred to as BT) signal, ultra-wideband communication (Ultra WideBand, referred to as UWB) signal, etc.
  • Wi-Fi Wireless Fidelity
  • GPS Global Positioning System
  • 3G Third generation mobile communication technology
  • 4G fourth generation of mobile communication technology
  • 4G fourth generation of mobile communication technology
  • 5G fifth generation of mobile communication technology
  • NFC Near field communication
  • Bluetooth Bluetooth
  • UWB ultra-wideband communication
  • FIG. 1 is a schematic diagram of a first structure of an electronic device 10 provided in an embodiment of the present application.
  • the electronic device 10 or the antenna device may at least include the first antenna 110 .
  • the first antenna 110 may include a first radiator 111 , a second radiator 112 , a first feed 113 and an adjustment circuit 114 .
  • the first radiator 111 and the second radiator 112 can be arranged opposite to each other, so that a first coupling gap 101 is formed between one end of the first radiator 111 and one end of the second radiator 112, and the other end of the first radiator 111
  • the other end of the second radiator 112 may extend in the opposite direction and be grounded.
  • the first feed source 113 may be directly or indirectly electrically connected to the first radiator 111
  • at least part of the regulating circuit 114 may be directly or indirectly electrically connected between the first feed source 113 and the first radiator 111 .
  • the first radiator 111 and the second radiator 112 may be antenna radiators made of conductive materials such as metals and conductive silver paste materials.
  • the first radiator 111 may include a first free end (not shown), a first ground end 1111 and a first feeding end (not shown), and the first free end may be close to At one end of the first coupling gap 101, the first free end may be spaced apart from the second radiator 112, the first ground terminal 1111 may extend away from the second radiator 112, and the first ground terminal 1111 may be away from the first One end of the coupling gap 101 , the electronic device 10 or the antenna device may further include a ground plane 200 , and the first ground terminal 1111 may be electrically connected to the ground plane 200 to realize grounding of the first radiator 111 .
  • the first feeding end may be disposed between the first free end and the first ground end 1111 .
  • the first feed terminal can be directly or indirectly electrically connected to the first feed source 113, and the first feed source 113 can provide excitation current to the first radiator 111 so that the first radiator 111 can transmit and receive wireless signals.
  • the second radiator 112 may include a second free end (not shown in the figure), a second ground end 1121 and a second feeding end (not shown in the figure) arranged at intervals, and the second free end may be close to the first coupling gap 101
  • One end, the second free end may be spaced apart from the first radiator 111, the second ground end 1121 may extend in a direction away from the first radiator 111, the second ground end 1121 may be an end away from the first coupling gap 101,
  • the second ground terminal 1121 can be electrically connected to the ground plane 200 to realize the grounding of the second radiator 112 .
  • the second feeding end may be disposed between the second free end and the second ground end 1121 .
  • the first radiator 111 and the second radiator 112 may form a mouth-to-mouth antenna.
  • first radiator 111 in addition to the first free end, the first grounding end 1111 and the first feeding end, other feeding ends can also be provided on the first radiator 111, so as to realize the connection between the first radiator 111 and other electronic devices. Electrical connection. Similarly, other feed terminals may also be provided on the second radiator 112 to realize the electrical connection between the second radiator 112 and other electronic devices. This embodiment of the present application does not limit it.
  • the first feed source 113 can be arranged on the circuit board 500 of the electronic device 10 or the antenna device, and the first feed source 113 can also be arranged on other small boards 600 of the electronic device 10 or the antenna device.
  • the first feed source 113 can be directly or indirectly electrically connected to the first radiator 111, the first feed source 113 can feed the excitation signal into the first radiator 111, and at least part of the excitation signal can be transmitted between the first radiator 111 and the first radiator 111.
  • the flow between the ground planes 200 enables the first radiator 111 to transmit and receive wireless signals to free space.
  • At least part of the excitation signal can also be coupled to the second radiator 112 through the first coupling gap 101 and flow on the second radiator 112, so that the second radiator 112 can also transmit and receive wireless signals to free space.
  • the adjustment circuit 114 can adjust the excitation signal provided by the first feed source 113.
  • the adjustment function can include, but not limited to, short circuit action, open circuit action, equivalent resistance action, equivalent capacitance action, coupling feed action, direct feed function etc.
  • FIG. 2 is a schematic diagram of a first current flow of the electronic device 10 shown in FIG.
  • the excitation signal I1 (most of the first excitation signal I1 can excite the first radiator 111 to form the first resonance, and a very small number of the first excitation signal I1 will return to the ground through the first feed source 113, the adjustment circuit 114 and other components.
  • the embodiment of the application does not limit the specific flow form of the first excitation signal I1 and other excitation signals hereinafter) can pass through the adjustment circuit 114 and under the action of the adjustment circuit 114, the first radiator 111 can achieve the first resonance and support Transmission and reception of a first wireless signal.
  • FIG. 3 is a schematic diagram of a second current flow of the electronic device 10 shown in FIG. 1 .
  • the first feed source 113 provides the second excitation signal I2
  • at least part of the first Two excitation signals I2 (most of the two excitation signals I2 can excite the second radiator 112 to form a second resonance, and a very small number of second excitation signals I2 can pass through the first feed source 113, the adjustment circuit 114, the first radiator 111
  • the first ground terminal 1111 and other components return to the ground, the embodiment of the present application does not limit the specific flow mode of the second excitation signal I2) can pass through the adjustment circuit 114 and be coupled through the first coupling gap 101 under the action of the adjustment circuit 114
  • the second radiator 112 can support the transmission and reception of the second wireless signal under the action of the second resonance.
  • the second resonance may be different from the first resonance, so that the second wireless signal may be different from the first wireless signal.
  • the center frequency of the first resonance may be different from the center frequency of the second resonance; correspondingly, the frequency of the first wireless signal may be different from the frequency of the second wireless signal.
  • the frequency of the first wireless signal may be relatively far from the frequency of the second wireless signal, so that when the first radiator 111 supports the first wireless signal, it is difficult to interfere with the second wireless signal supported by the second radiator 112 .
  • the first feed source 113 can feed the first excitation signal I1 to the first radiator 111 alone, so that the first radiator 111 realizes the first resonance; the first feed source 113 can also feed the first radiator 111 alone
  • the body 111 feeds the second excitation signal I2, so that the second radiator 112 can realize the second resonance; the first feed source 113 can also feed the first excitation signal I1 and the second excitation signal I2 to the first radiator 111 at the same time (for example, the carrier aggregation signal of the first excitation signal I1 and the second excitation signal I2 ), so that the first radiator 111 realizes the first resonance and the second radiator 112 realizes the second resonance.
  • first excitation signal I1 and the second excitation signal I2 may be signals with different frequencies, so that the first resonance may be different from the second resonance.
  • first excitation signal I1 and the second excitation signal I2 can also be the same signal, but after being adjusted by the adjustment circuit 114, the excitation signal can achieve the first resonance when passing through the first radiator 111, and the first The second resonance can be realized when the coupling gap 101 is coupled to the second radiator 112 , so that the first radiator 111 and the second radiator 112 can form different resonances even if the same excitation signal is fed.
  • the embodiment of the present application does not limit the specific manner of forming the first excitation signal I1 and the second excitation signal I2.
  • the branch length of the first radiator 111 may be different from the branch length of the second radiator 112, so that the center frequencies of the first resonance and the second resonance are different.
  • the branch length of the first radiator 111 can also be the same as the branch length of the second radiator 112, but after the regulation of the regulating circuit 114, the effective electrical length of the first radiator 111 when realizing the first resonance can be different.
  • the effective electrical length refers to the length when the radiator radiates signals, and the effective electrical length of the radiator may be greater than, less than or equal to its branch length.
  • the first excitation signal I1 provided by the first feed source 113 can make the first radiator 111 realize the first resonance through the action of the adjustment circuit 114, and the first antenna 110 can support the first wireless signal;
  • the second excitation signal I2 provided by the first feed source 113 can be coupled to the second radiator 112 through the first coupling gap 101 through the action of the adjustment circuit 114, so that the second radiator 112 can realize the second resonance, and the first antenna 110 can also A second wireless signal may be supported. Therefore, the electronic device 10 of the present application can support two types of wireless signals through one first feed source 113, and the electronic device 10 does not need to be provided with two feed sources, which can save production costs and realize the miniaturization design of the electronic device 10 . Meanwhile, the first wireless signal is supported by the first radiator 111 , and the second wireless signal is supported by the second radiator 112 , both of which can be transmitted simultaneously without interfering with each other, and the performance of the antenna of the electronic device 10 is better.
  • the adjusting circuit 114 can also adjust other excitation signals provided by the first feed source 113, so that the first antenna 110 can also support other wireless signals.
  • the first radiator 111 can realize the third resonance, the third excitation signal I3 can be mainly supported by the first radiator 111, and the first radiator 111 can be Support the third wireless signal.
  • the first radiator 111 can realize the fourth resonance, the fourth excitation signal I4 can be mainly supported by the first radiator 111, and the first radiator 111 can be Support the fourth wireless signal.
  • the first resonance, the second resonance, the third resonance, and the fourth resonance may be different from each other, so that the first wireless signal, the second wireless signal, the third wireless signal, and the fourth wireless signal are different from each other.
  • the second resonance may support the second wireless signal in the N78 frequency band (3.3 GHz to 3.8 GHz) or the B78 frequency band (3.3 GHz to 3.8 GHz).
  • the first resonance can support N28 frequency band (703MHz to 803MHz), B28 frequency band (703MHz to 803MHz), N3 frequency band (1.71GHz to 1.88GHz), B3 frequency band (1.71GHz to 1.88GHz), N41 frequency band (2.496GHz to 2.69GHz) Or the first wireless signal of B41 frequency band (2.496GHz to 2.69GHz);
  • the third resonance can also support the third wireless signal of N28 frequency band, B28 frequency band, N3 frequency band, B3 frequency band, N41 frequency band or B41 frequency band;
  • the fourth resonance can also support The fourth wireless signal of the N28 frequency band, B28 frequency band, N3 frequency band, B3 frequency band, N41 frequency band or B41 frequency band is supported, but the frequencies or frequency bands of the signals supported by the first resonance, the third resonance, and the fourth resonance are different.
  • the first resonance can support the N28 frequency band signal
  • the second resonance can support the N78 frequency band signal
  • the third resonance can support the B3 frequency band signal
  • the second resonance can support the N28 frequency band signal.
  • Four resonances can support N41 frequency band signals.
  • the first feed source 113 can provide the first excitation signal I1, the second excitation signal I2, the third excitation signal I3 or the fourth excitation signal I4 alone; or, the first feed source 113 can also provide the first Two or more of the excitation signal I1, the second excitation signal I2, the third excitation signal I3, and the fourth excitation signal I4. This embodiment of the present application does not limit it.
  • the effective effect of the first radiator 111 when realizing the first resonance, the third resonance and the fourth resonance Electrical lengths can vary.
  • the first radiator 111 when the first radiator 111 realizes the first resonance, the third resonance and the fourth resonance, the first radiator 111 may be in a 1/4 wavelength inverted F antenna (IFA) mode.
  • the second radiator 112 when the second radiator 112 realizes the second resonance, the second radiator 112 may also be in a 1/4 wavelength IFA mode.
  • FIG. 4 is a second structural schematic diagram of the electronic device 10 provided by the embodiment of the present application.
  • the embodiment of the present application provides an adjustment circuit 114, which can make the first radiator 111 and the second radiator 112 have different effective electrical lengths when they support different resonances through adjustment.
  • the adjustment circuit 114 may include, but is not limited to, a first matching circuit 1141 and a first filtering circuit 1142 .
  • the first matching circuit 1141 may be connected in series between the first feed source 113 and the first radiator 111 .
  • One end of the first matching circuit 1141 may be directly or indirectly electrically connected to the first feed source 113 , and the other end of the first matching circuit 1141 may be directly or indirectly electrically connected to the first radiator 111 .
  • One end of the first filter circuit 1142 may be connected in parallel between the first feed source 113 and the first radiator 111 , and the other end of the first filter circuit 1142 may be directly or indirectly electrically connected to the ground plane 200 for grounding.
  • the first filter circuit 1142 can form an equivalent capacitance or an equivalent inductance under the action of the excitation signal provided by the first feeder 113 to change the electrical length of the first radiator 111 or the second radiator 112 .
  • the first matching circuit 1141 can form an equivalent capacitance or an equivalent inductance under the action of the excitation signal provided by the first feed source 113, so that the excitation signal provided by the first feed source 113 can be coupled or directly fed to the first Radiator 111.
  • FIG. 5 is a schematic diagram of a first equivalent circuit and current flow of the electronic device 10 shown in FIG. 4 .
  • the first filter circuit 1142 can form a first equivalent capacitor C1, which is used to equivalently increase the effective electrical length of the first radiator 111
  • the first matching circuit 1141 can form a second equivalent capacitance C2 for coupling and feeding; at least part of the first excitation signal I1 can make the first radiator 111 realize the first resonance under the action of the adjustment circuit 114 And support the first wireless signal.
  • the first radiator 111 may support the first wireless signal of the N28 frequency band/B28 frequency band.
  • FIG. 6 is a second equivalent circuit and current schematic diagram of the electronic device 10 shown in FIG. 4 .
  • the first filter circuit 1142 can form a first equivalent inductance L1, which is used to equivalently reduce the effective electrical length of the first radiator 111
  • the first matching circuit 1141 can form a second equivalent inductance L2 for direct feeding; the second radiator 112 can support the second wireless signal of the N78 frequency band/B78 frequency band.
  • FIG. 7 is a third equivalent circuit and current schematic diagram of the electronic device 10 shown in FIG. 4 .
  • the first filter circuit 1142 can form a third equivalent inductance L3, which is used to equivalently reduce the length of the first radiation stub;
  • the first matching circuit 1141 can form a third equivalent capacitor C3 for coupling and feeding;
  • the first radiator 111 can support the third wireless signal in the B3 frequency band/N3 frequency band.
  • FIG. 8 is a fourth equivalent circuit and current schematic diagram of the electronic device 10 shown in FIG. 4 .
  • the first filter circuit 1142 can form a fourth equivalent inductance L4, which is used to equivalently reduce the length of the first radiation stub;
  • the first matching circuit 1141 can form a fifth equivalent inductance L5 for direct feeding; the first radiator 111 can support the fourth wireless signal in the N41 frequency band/B41 frequency band.
  • the capacitance values of the above multiple equivalent capacitors may be the same or different, and may also be partly the same or partly different.
  • the inductance values of the above multiple equivalent inductances may be the same or different, or partly the same and partly different.
  • the embodiments of the present application do not limit the specific capacitance and inductance values of the above-mentioned equivalent capacitance and equivalent inductance.
  • FIG. 9 is an S parameter curve diagram of the first antenna 110 shown in FIG. 4
  • FIG. 10 is a graph of the first antenna 110 shown in FIG. 4 A radiation performance curve.
  • the curve S1 in FIG. 9 is the reflection coefficient curve of the first antenna 110 working in the N28, B3 receiving frequency bands, N41 and N78 frequency bands.
  • Curves S2 and S3 in FIG. 10 respectively represent the radiation efficiency and system frequency of the first antenna 110 in the above frequency band.
  • the average system efficiency of the first antenna 110 in the N28 receiving frequency band is about -11.5dB
  • the system efficiency in the B3 receiving frequency band is about -4.8dB
  • the system efficiency in the N41 receiving frequency band is about - 4dB
  • the system efficiency in the N78 receiving frequency band is about -3.8dB.
  • the first antenna 110 has better radiation performance.
  • the adjustment circuit 114 may also include a switching circuit 1143, which may include one or more branches inside, and the switching circuit 1143 may be based on the first filtering circuit 1142, the first matching circuit 1141 to switch to different branches to increase or decrease the electrical length of the second radiator 112 and enable the first antenna 110 to form the aforementioned first to fourth resonances, for example, the first radiator can be made 111 forms the first resonance, the third resonance or the fourth resonance, and the second radiator 112 can realize the second resonance.
  • the adjusting circuit 114 may or may not include the switching circuit 1143; of course, the adjusting circuit 114 may also include other circuits, and the specific structure of the adjusting circuit 114 is not limited in this embodiment of the present application.
  • first filtering circuit 1142, the first matching circuit 1141, and the switching circuit 1143 may all include, but are not limited to, circuits composed of any series or parallel connections of capacitors, inductors, and resistors.
  • FIG. 11 is a schematic diagram of electrical connection of the regulating circuit 114 provided by the embodiment of the present application.
  • the first filter circuit 1142 may include a first capacitor C4, a second capacitor C5, and a first inductor L6.
  • the second capacitor C5 may be connected in parallel with the first inductor L6 to form an integral body.
  • the first capacitor C4 may be connected with the second capacitor C5, the first The inductance L6 is connected in parallel to form the whole in series, and the other end of the whole formed by the second capacitor C5 and the first inductance L6 in parallel can be grounded.
  • the first matching circuit 1141 may include a third capacitor C6 and a second inductor L7, and the third capacitor C6 and the second inductor L7 may be connected in series.
  • first filter circuit 1142 and the first matching circuit 1141 are not limited thereto.
  • the first filter circuit 1142 and the first matching circuit 1141 can also be, but not limited to, one or more capacitors connected in series or parallel , inductance, resistance. This embodiment of the present application does not limit this.
  • the first matching circuit 1141 in the embodiment of the present application can also perform impedance matching on the excitation signal provided by the first feed source 113 to adjust the first radiator 111, Multiple resonance frequency points realized by the second radiator 112 .
  • the first filter circuit 1142 can also open and short-circuit the excitation signal, so that the first radiator 111 and the second radiator 112 can realize the above-mentioned resonance.
  • the switching circuit 1143 can also open or short-circuit the excitation signal, change the capacitance, resistance, inductance, etc. of the electrical connection of the second radiator 112, so that the first antenna 110 can achieve the above resonance.
  • the embodiment of the present application does not specifically limit the functions of the first matching circuit 1141 , the first filter circuit 1142 , and the switching circuit 1143 .
  • first radiator 111 and the second radiator 112 in the embodiment of the present application can not only realize the corresponding resonance respectively, but also realize a certain resonance together, so that the first radiator 111 and the second radiator 112 can jointly support wireless signals.
  • the adjustment circuit 114 utilizes the different equivalent reactance characteristics of the first matching circuit 1141 and the first filter circuit 1142 in different frequency bands, so that the first radiator 111 and the second radiator 112 can operate in different frequency bands.
  • the first antenna 110 can support N28 frequency band/B28 frequency band, B3 frequency band/N3 frequency band, N41 frequency band/B41 frequency band, N78 frequency band/B78 frequency band.
  • the first antenna 110 supports more types of wireless signals, and the electronic device 10 can be further miniaturized.
  • the first antenna 110 in the embodiment of the present application may also support wireless signals in other frequency bands. It will not be described in detail here.
  • FIG. 12 is a schematic diagram of a third structure of an electronic device 10 provided in an embodiment of the present application.
  • the electronic device 10 can also include a first frame 321, a third frame 323, a second frame 322 and a fourth frame 324 connected in sequence, the second frame 322 can be set opposite to the first frame 321, and the third frame 323 can be arranged opposite to the first frame 323.
  • the four frames 324 are relatively arranged, and the length of the first frame 321 and the second frame 322 can be less than the length of the third frame 323 and the fourth frame 324, so that the first frame 321 and the second frame 322 can be shorter than the electronic device 10.
  • the frame, the third frame 323 and the fourth frame 324 may be the long frame of the electronic device 10 .
  • At least most of the radiators of the first antenna 110 can be disposed on the first frame 321 .
  • the radiator of the first antenna 110 may be directly or indirectly connected to the first frame 321 , and at least most of the projection of the first antenna 110 may be located on the first frame 321 .
  • the first frame 321 is made of a material such as a conductor
  • at least most of the radiators of the first antenna 110 can be part of the first frame 321, and at least most of the first antenna 110 can be formed on the first frame 321, so that Multiplexing of the first frame 321 is realized.
  • the first radiator 111 of the first antenna 110 can be completely arranged on the first frame 321, at least part of the second radiator 112 can be arranged on the first frame 321, and another part of the second radiator 112 can be arranged on the second frame 321.
  • the electronic device 10 or the antenna device may further include a second antenna 120 .
  • the second antenna 120 may be spaced apart from the first antenna 110 , and the two may be connected directly or indirectly.
  • At least most of the radiators of the second antenna 120 (such as all of the third radiator 121 and part of the fourth radiator 122 hereinafter) can also be disposed on the first frame 321 .
  • at least most of the radiators of the second antenna 120 can be directly or indirectly connected to the first frame 321 so that its projection can be located on the first frame 321, or formed on the first frame 321 to realize the multiplexing of the first frame 321 .
  • the second antenna 120 may include a third radiator 121 and a fourth radiator 122 , and a second coupling gap 102 may be formed between the third radiator 121 and the fourth radiator 122 .
  • the third radiator 121 may include a third free end (not shown in the figure) and a third ground end 1211 oppositely arranged, the third free end may be an end close to the second coupling gap 102, the third free end may be connected to the fourth radiator
  • the bodies 122 are arranged relatively at intervals, and the third ground end 1211 may be an end away from the second coupling gap 102 , and the third ground end 1211 may be electrically connected to the ground plane 200 to realize the grounding of the third radiator 121 .
  • the fourth radiator 122 may include a fourth free end (not shown) and a fourth ground end 1221 oppositely arranged, the fourth free end may be an end close to the second coupling gap 102, and the fourth free end may be connected to the third radiator.
  • the bodies 121 are arranged relatively at intervals, the fourth ground end 1221 may be an end away from the second coupling gap 102 , and the fourth ground end 1221 may be electrically connected to the ground plane 200 to realize the grounding of the second radiator 112 .
  • all the third radiators 121 can be arranged on the first frame 321, at least most of the fourth radiators 122 can be arranged on the first frame 321, and another part of the fourth radiators 122 can be arranged on the fourth frame 324.
  • the isolation between the first antenna 110 and the second antenna 120 can be achieved through a common ground terminal.
  • one end (such as the third ground terminal 1211) of the third radiator 121 of the second antenna 120 may coincide with the other end (such as the first ground terminal 1111) of the first radiator 111 of the first antenna 110, so that the two Both are grounded at the first ground terminal 1111 together.
  • the first ground terminal 1111 can isolate the signal supported by the first antenna 110 from the signal supported by the second antenna 120 .
  • most of the radiators of the first antenna 110 and most of the radiators of the second antenna 120 are arranged on the short frame 320 of the electronic device 10 at the same time, and the first antenna 110 and the second antenna 120 can rationally utilize the space of the short frame 320 of the electronic device 10 to reduce the space occupied by the first antenna 110 and the second antenna 120 .
  • the first antenna 110 and the second antenna 120 are grounded through the same ground terminal, the isolation between them is also high, and the mutual interference is small.
  • FIG. 13 is a schematic diagram of an electrical connection of the second antenna 120 shown in FIG. 12 .
  • the second antenna 120 may further include a second feed 123 , a second filter circuit 124 and a third feed 125 .
  • the second feed source 123 can be directly or indirectly electrically connected to the third radiator 121 , and the second feed source 123 can feed an excitation signal to the third radiator 121 so that the third radiator 121 can support wireless signals.
  • the third feeder 125 can be directly or indirectly electrically connected to the fourth radiator 122 , and the third feeder 125 can feed an excitation signal to the fourth radiator 122 so that the fourth radiator 122 can support wireless signals.
  • the second filter circuit 124 can be connected in series between the second feed source 123 and the third radiator 121, and the second filter circuit 124 can filter the excitation signal passing through it, so that the third radiator 121, the fourth radiator 122 Corresponding wireless signals can be supported.
  • FIG. 14 is a schematic diagram of a first current flow of the second antenna 120 shown in FIG. 13 .
  • the second feed source 123 can provide the fifth excitation signal I5, and when the second feed source 123 feeds the fifth excitation signal I5 to the third radiator 121, the second filter circuit 124 can allow the fifth excitation signal I5 to pass through, and the fifth The excitation signal I5 may flow from the second feed source 123 through the second filter circuit 124 and flow into the third radiator 121, and the fifth excitation signal I5 may excite the third radiator 121 to realize the fifth resonance and support the fifth wireless signal.
  • the fifth excitation signal I5 does not cause the third radiator 121 to couple with the fourth radiator 122 , and the fifth excitation signal I5 hardly flows on the fourth radiator 122 .
  • FIG. 15 is a schematic diagram of a second current flow of the second antenna 120 shown in FIG. 13 .
  • the third feed source 125 can provide the sixth excitation signal I6, when the third feed source 125 feeds the sixth excitation signal I6 to the fourth radiator 122, the sixth excitation signal I6 can flow from the third feed source 125 to the fourth In the radiator 122, the sixth excitation signal I6 can be coupled from the fourth radiator 122 to the third radiator 121 through the second coupling gap 102 and flow in the third radiator 121, and the second filter circuit 124 can prevent the sixth excitation Signal I6 passes through, and the second filter circuit 124 can be open to the sixth excitation signal I6, at least part of the sixth excitation signal I6 (part of the sixth excitation signal I6 can flow on the fourth radiator 122 and can return through the fourth ground terminal 1221 Ground) can be coupled to the third radiator 121 through the second coupling gap 102, and the sixth excitation signal I6 can excite the fourth
  • the open circuit of the second filter circuit 124 to the sixth excitation signal I6 may mean that under the resonance of the sixth excitation signal I6, the resistance of the second filter circuit 124 is infinite, so as to prevent the sixth excitation signal I6 from flowing into the second Feed 123.
  • the third radiator 121 and the fourth radiator 122 are arranged opposite to each other and the second coupling gap 102 is provided, and the second feed source 123, the third feed source 125 and the With the cooperation of the second filter circuit 124, the second feed source 123 can feed the fifth excitation signal I5 to the third radiator 121, and the third radiator 121 can realize the fifth resonance and support the fifth wireless signal; the third feed source 125 can feed the sixth excitation signal I6 to the fourth radiator 122 , and under the action of the second filter circuit 124 , the third radiator 121 and the fourth radiator 122 can jointly realize the sixth resonance and support the sixth wireless signal.
  • the two radiators can support at least two different radio frequency signals, which can not only save the space occupied by the radiator, but also support wireless signals in more frequency bands, and realize Miniaturization of the antenna device.
  • the second antenna 120 may further include a third filter circuit 126 and a fourth filter circuit 127 .
  • the third filter circuit 126 and the fourth filter circuit 127 may be arranged on the circuit board 500 or the small board 600 of the electronic device 10 or the antenna device.
  • One end of the third filter circuit 126 can be electrically connected between the fourth radiator 122 and the third feed source 125, and one end of the third filter circuit 126 can also be electrically connected to the third feed source 125 on the fourth radiator 122.
  • the feed end is anywhere near the side of the third radiator 121 .
  • the other end of the third filter circuit 126 can be electrically connected to the ground plane 200 to realize the grounding of the third filter circuit 126 .
  • one end of the fourth filter circuit 127 may also be electrically connected between the fourth radiator 122 and the third feed source 125, and one end of the fourth filter circuit 127 may also be electrically connected to the third feed source 125 in the fourth radiator.
  • the feeding end on the body 122 is close to any position on one side of the third radiator 121 .
  • the other end of the fourth filter circuit 127 can be electrically connected to the ground plane 200 to realize the grounding of the third filter circuit 126 .
  • FIG. 16 is a schematic diagram of a third current of the second antenna 120 shown in FIG. 13 .
  • the second feed source 123 can also provide a seventh excitation signal I7.
  • the seventh excitation signal I7 can pass through the second filter circuit 124 and flow into the In the third radiator 121 .
  • At least part of the seventh excitation signal I7 (part of the seventh excitation signal I7 can flow on the third radiator 121 and return to the ground through the third ground terminal 1211) can be coupled from the third radiator 121 to the fourth via the second coupling gap 102.
  • Radiator 122 and flows in the fourth radiator 122 .
  • the third filter circuit 126 can short-circuit at least part of the seventh excitation signal I7 and block at least part of the seventh excitation signal I7 from flowing into the third feed source 125 . At this time, at least part of the seventh excitation signal I7 can be returned to ground from the third filtering circuit 126 . At least part of the seventh excitation signal I7 can excite the third radiator 121 and at least part of the fourth radiator 122 can jointly form a seventh resonance and support the seventh wireless signal.
  • FIG. 17 is a schematic diagram of a fourth current of the second antenna 120 shown in FIG. 13 .
  • the second feed source 123 can also provide the ninth excitation signal I9, when the second feed source 123 feeds the ninth excitation signal I9 to the third radiator 121, the ninth excitation signal I9 can pass through the second filter circuit 124 and flow into the In the third radiator 121 . At least part of the ninth excitation signal I9 (part of the ninth excitation signal I9 can flow on the third radiator 121 and return to the ground through the third ground terminal 1211) can be coupled from the third radiator 121 to the fourth via the second coupling gap 102. Radiator 122 and flows in the fourth radiator 122 .
  • the fourth filter circuit 127 can short-circuit at least part of the ninth excitation signal I9 and block at least part of the ninth excitation signal I9 from flowing into the third feed source 125 . At this time, at least part of the ninth excitation signal I9 can be returned to ground from the fourth filtering circuit 127 .
  • the third radiator 121 and at least part of the fourth radiator 122 can jointly form a ninth resonance and support a ninth wireless signal.
  • the third filter circuit 126 and the fourth filter circuit 127 are short-circuited to the seventh excitation signal I7 and the ninth excitation signal I9, which may mean that the third The resistances of the filter circuit 126 and the fourth filter circuit 127 are infinitely small, so that the seventh excitation signal I7 and the ninth excitation signal I9 are grounded.
  • the antenna device may only include the third filter circuit 126 , may only include the fourth filter circuit 127 , or may include both the third filter circuit 126 and the fourth filter circuit 127 .
  • FIG. 18 is a schematic diagram of a fifth current of the second antenna 120 shown in FIG. 13 .
  • the third feed 125 may also provide an eighth excitation signal I8.
  • the eighth excitation signal I8 can flow from the third feed source 125 to the fourth radiator 122, and the eighth excitation signal I8 can excite the fourth radiator 122.
  • the radiator 122 generates an eighth resonance and supports an eighth wireless signal.
  • the eighth excitation signal I8 does not cause the fourth radiator 122 to couple with the third radiator 121 , and the eighth excitation signal I8 hardly flows in the third radiator 121 .
  • the second filter circuit 124 , the third filter circuit 126 , and the fourth filter circuit 127 may, but are not limited to, include circuits composed of any series connection or any parallel connection of capacitors and inductors. This embodiment of the present application does not limit it.
  • one or more of the above-mentioned fifth resonance, sixth resonance, seventh resonance, eighth resonance and ninth resonance may be formed simultaneously.
  • the third radiator 121 can realize the fifth resonance and the fourth radiation
  • the body 122 can realize the eighth resonance
  • the third radiator 121 and the fourth radiator 122 can jointly realize the sixth resonance, the seventh resonance and the ninth resonance.
  • the fifth wireless signal supported by the fifth resonance and the sixth wireless signal supported by the sixth resonance can be returned to the ground from the third ground terminal 1211 of the third radiator 121, and the eighth wireless signal supported by the eighth resonance can be returned from the fourth
  • the fourth ground terminal 1221 of the radiator 122 is returned to the ground
  • the seventh wireless signal supported by the seventh resonance can be returned to the ground from the other end of the third filter circuit 126
  • the ninth wireless signal supported by the ninth resonance can be transmitted from the fourth filter circuit 127 the other end back to the ground.
  • the second antenna 120 of the embodiment of the present application when the second feed source 123 feeds the excitation signal to the third radiator 121, the second filter circuit 124, the third filter circuit 126 and the fourth filter circuit 127 In this way, the third radiator 121 can support the fifth wireless signal, and the third radiator 121 and at least part of the fourth radiator 122 can jointly support the seventh wireless signal and the ninth wireless signal.
  • the third feed source 125 feeds the excitation signal to the fourth radiator 122
  • the fourth radiator 122 can support the eighth wireless signal
  • the fourth radiator 122 and at least part of the third radiator 121 can jointly support the sixth wireless signal.
  • the two radiators can support at least five kinds of radio frequency signals, which can not only save the space occupied by the radiator, but also support wireless signals in more frequency bands, and realize the second antenna 120 miniaturization.
  • the second antenna 120 may further include a second matching circuit 128 and a third matching circuit 129 .
  • the second matching circuit 128 may be coupled between the second feed source 123 and the third radiator 121 , for example, be connected in series between the second feed source 123 and the second filter circuit 124 .
  • the second matching circuit 128 can match the impedance when the second feed source 123 provides the excitation signal, so that the second feed source 123 can provide the fifth excitation signal I5, the seventh excitation signal I7 and the third radiator 121 to the third radiator 121.
  • the third matching circuit 129 may be coupled between the third feed source 125 and the fourth radiator 122 , for example, be connected in series between the third feed source 125 and the third filter circuit 126 and the fourth filter circuit 127 .
  • the second matching circuit 128 can match the impedance when the third feed source 125 provides the excitation signal, so that the third feed source 125 can provide the sixth excitation signal I6 and the eighth excitation signal I8 to the fourth radiator 122 .
  • the second matching circuit 128 and the third matching circuit 129 may, but are not limited to, include circuits composed of any series connection or any parallel connection of capacitors and inductors. This embodiment of the present application does not limit it.
  • the second antenna 120 may support wireless signals of various frequency bands.
  • FIG. 19 is an S parameter curve diagram of the second antenna 120 shown in FIG. 12
  • FIG. 20 is a radiation performance of the second antenna 120 shown in FIG. 12 Graph.
  • Two curves S4 of the upper part in Fig. 19 are a kind of reflection coefficient curve of the second antenna 120, and a curve S5 of the lower part is a kind of isolation degree curve of the second antenna 120;
  • Curve S6 and curve among Fig. 20 S7 is a radiation efficiency curve and a system efficiency curve when the second feed source 123 is working, respectively, and curves S8 and S9 are respectively a radiation efficiency curve and a system efficiency curve when the third feed source 125 is working.
  • the fifth resonance generated by the third radiator 121 can support the fifth wireless signal in the GPS-L5 frequency band (1.15 GHz to 1.5 GHz).
  • the sixth resonance generated by the fourth radiator 122 and at least part of the third radiator 121 can support the sixth wireless signal of the 2.4G Wi-Fi frequency band (2.4GHz to 2.48GHz), or support the N41 frequency band (2.496GHz to 2.69GHz) )/N41 frequency band (2.496GHz to 2.69GHz) sixth wireless signal.
  • the seventh resonance generated by the third radiator 121 and at least part of the fourth radiator 122 can support the seventh wireless signal in the N78 frequency band (3.3GHz to 3.8GHz)/B78 frequency band (3.3GHz to 3.8GHz).
  • the eighth resonance generated by the fourth radiator 122 can support the eighth wireless signal in the GPS-L1 (1.55GHz to 1.6GHz) frequency band.
  • the ninth resonance generated by the third radiator 121 and at least part of the fourth radiator 122 can support the ninth wireless signal in the N79 frequency band (4.4GHz to 5.0GHz)/B79 frequency band (4.4GHz to 5.0GHz).
  • the average system efficiency of the second antenna 120 in the GPS-L1 frequency band, the 2.4G Wi-Fi frequency band, and the N41/B41 frequency band is about -3dB, -4.1dB and - 3.2dB; the average system efficiency of the second antenna 120 in the GPS-L5 frequency band, N78 frequency band/B78 frequency band, N79 frequency band/B79 frequency band is about -9.8dB, -3.3dB and -3.8dB respectively; the radiation of the second antenna 120 The performance is extremely good.
  • the seventh resonance can also support the eighth wireless signal, for example, support the signal of the N79 frequency band.
  • the eighth resonance can also support the seventh wireless signal, for example, support the signal of the N78 frequency band. This embodiment of the present application does not limit it.
  • wireless signals supported by the fifth to ninth resonances are not limited to the above example, and other wireless signals may also be supported.
  • the embodiments of the present application do not limit this either.
  • the third filter circuit 126 and the fourth filter circuit 127 are respectively equivalent to a short circuit in the N78 and N79 frequency bands, and the seventh excitation signal I7 and the ninth excitation signal I9 are transmitted from the second filter circuit 124.
  • the third filter circuit 126 is grounded, so that when the second feed source 123 feeds power, the second antenna 120 can work in the N78 and N79 frequency bands, and at the same time, the second feed source 123 and the third feed source 125 can also generate Good isolation will not affect the performance of the second antenna 120 .
  • the second filter circuit 124 is equivalent to an open circuit in the 2.4GWi-Fi and N41 frequency bands, and the sixth excitation signal I6 is grounded from the end of the third radiator 121, so that when the second feed source 123 feeds power, the second antenna 120 can work in 2.4GWi-Fi and N41 frequency band, meanwhile, the second feed source 123 and the third feed source 125 can also produce good isolation.
  • the third radiator 121 and the fourth radiator 122 are arranged oppositely to form the second coupling gap 102, and realize the GPS-L1 frequency band, 2.4GWi-Fi frequency band, N41/B41 frequency band, GPS-L5 frequency band, N78/B78 frequency band and N79/B79 frequency band cover six frequency bands.
  • the antenna efficiency of the second antenna 120 in the GPS-L1 frequency band can be -3dB, and the performance is good.
  • the second antenna 120 can also work in the GPS-L5 frequency band, and the second antenna 120 can meet the dual frequency bands of GPS-L1 and GPS-L5 High-precision positioning also has a very good auxiliary effect on the positioning of the GPS system.
  • the second antenna 120 can also work in 2.4GWi-Fi, N41, N78 and N79 frequency bands, which is very suitable for the fifth generation mobile communication system.
  • FIG. 21 is a schematic diagram of a fourth structure of the electronic device 10 provided by the embodiment of the present application.
  • the electronic device 10 or the antenna device may further include a third antenna 130 , a fourth antenna 140 and a fifth antenna 150 .
  • the radiator of the third antenna 130 can be disposed on the third frame 323 .
  • the radiator of the third antenna 130 can be directly or indirectly connected to the third frame 323 and its projection is located on the third frame 323; It is directly formed on the third frame 323 to realize the multiplexing of the third frame 323 .
  • the radiator of the third antenna 130 may be spaced apart from the second radiator 112 of the first antenna 110 to reduce interference between the third antenna 130 and the first antenna 110 .
  • At least most of the radiators of the fourth antenna 140 can be disposed on the second frame 322 .
  • the radiator of the fourth antenna 140 can be connected to or formed on the second frame 322 .
  • the radiator of the fourth antenna 140 can be arranged opposite to the radiator of the first antenna 110 and the radiator of the second antenna 120, and the radiator of the fourth antenna 140 can also be arranged at intervals from the radiator of the third antenna 130, so that The interference between the four antennas 140 and the first antenna 110 , the second antenna 120 and the third antenna 130 is relatively small.
  • the radiator of the fifth antenna 150 can be disposed on the fourth frame 324 . Like the third antenna 130 , the radiator of the fifth antenna 150 can be connected to or formed on the fourth frame 324 .
  • the radiator of the fifth antenna 150 can be arranged opposite to the radiator of the third antenna 130, and the radiator of the fifth antenna 150 can also be arranged at intervals from the radiator of the second antenna 120 and the radiator of the fourth antenna 140, so that the radiator of the fifth antenna 150 can be arranged at intervals.
  • the interference between the five antennas 150 and the first antenna 110 , the second antenna 120 , the third antenna 130 and the fourth antenna 140 is relatively small.
  • the third antenna 130, the fourth antenna 140, and the fifth antenna 150 may all include electrically connected feeds and radiators thereof, so that the third antenna 130, the fourth antenna 140, and the fifth antenna 150 Can support wireless signal.
  • the third antenna 130 , the fourth antenna 140 , and the fifth antenna 150 may include, but are not limited to, one or more radiators. This embodiment of the present application does not limit it.
  • the first antenna 110, the second antenna 120, the third antenna 130, the fourth antenna 140, and the fifth antenna 150 can support wireless signals in the same frequency band, so that multiple antennas can realize In a multiple-in multiple-out (MIMO for short) transmission system, the electronic device 10 or the antenna device may have a better transmission rate.
  • the first antenna 110, the third antenna 130, the fourth antenna 140, and the fifth antenna 150 can all support signals of the N28 frequency band/B28 frequency band.
  • FIG. 22 is an S-parameter curve diagram of the electronic device 10 shown in FIG. 21 .
  • the four curves S10 in the upper part of Fig. 22 are respectively the reflection coefficient curves of the first antenna 110, the third antenna 130, the fourth antenna 140, and the fifth antenna 150;
  • the multiple curves S11 in the lower part of Fig. 22 are respectively the Isolation curves among the first antenna 110 , the third antenna 130 , the fourth antenna 140 , and the fifth antenna 150 .
  • the isolation between the first antenna 110 , the third antenna 130 , the fourth antenna 140 , and the fifth antenna 150 is less than -17 dB, and the isolation performance among multiple antennas is good.
  • four low-frequency antennas supporting the N28 frequency band are respectively located on the four sides of the electronic device 10 or the antenna device, and four low-frequency antennas with longer radiation branches can be reasonably arranged to realize electronic Miniaturized design of the device 10 or antenna arrangement.
  • FIG. 23 is a schematic diagram of a fifth structure of the electronic device 10 provided by the embodiment of the present application.
  • the N28 frequency band and the MHB (medium and high frequency) frequency band of LTE can be realized under the smaller size of the top. frequency band), N78 frequency band, and N79 frequency band set antenna architecture.
  • the electronic device 10 or the antenna device can also realize an antenna structure integrating GPS-L5 frequency band, GPS-L5 frequency band and four low-frequency antennas.
  • the MIMO application requirements of the frequency band can meet the requirements of high-speed communication while meeting the long-distance coverage.
  • the electronic device 10 may further include a sixth antenna 160 , a seventh antenna 170 and an eighth antenna 180 .
  • the radiator of the sixth antenna 160 can be arranged on the third frame 323, and one end (for example, a free end) of the radiator of the sixth antenna 160 can be spaced apart from one end (for example, a free end) of the radiator of the third antenna 130, and the second
  • the other end of the radiator of the six antenna 160 (for example, the ground end) can extend toward the direction away from the radiator of the third antenna 130 and be grounded, and the other end of the radiator of the third antenna 130 (for example, the ground end) can also face away from the third antenna 130.
  • the directions of the radiators of the six antennas 160 extend and are grounded.
  • the sixth antenna 160 may form a mouth-to-mouth antenna with the third antenna 130 .
  • the radiator of the sixth antenna 160 may be disposed between the radiator of the first antenna 110 and the radiator of the third antenna 130, in order to improve the isolation between the sixth antenna 160 and the first antenna 110,
  • the radiator of the sixth antenna 160 may share a ground terminal with the radiator of the first antenna 110 , for example, the radiator of the sixth antenna 160 may return to ground through the second ground terminal 1121 of the second radiator 112 of the first antenna 110 .
  • the radiator of the seventh antenna 170 can be arranged on the fourth frame 324, and one end (such as the ground end) of the radiator of the seventh antenna 170 can be spaced apart from the free end of the radiator of the fifth antenna 150.
  • the other end (free end) of the radiator of 170 may extend toward a direction away from the radiator of the fifth antenna 150 .
  • the radiator of the seventh antenna 170 may be disposed between the radiator of the second antenna 120 and the radiator of the fifth antenna 150 .
  • the radiator of the seventh antenna 170 can be isolated from the second antenna 120 by the fourth ground terminal 1221 of the fourth radiator 122 of the second antenna 120; the radiator of the seventh antenna 170 can also be isolated by its own ground terminal. It is isolated from the fifth antenna 150 , and the isolation between the seventh antenna 170 and the second antenna 120 and the fifth antenna 150 is better.
  • At least most of the radiator of the eighth antenna 180 can be arranged on the second frame 322, and one end (such as a free end) of the radiator of the eighth antenna 180 can be spaced from one end (such as a free end) of the radiator of the fourth antenna 140 It is provided that the other end of the radiator of the eighth antenna 180 (for example, the ground terminal) and the other end of the radiator of the fourth antenna 140 (for example, the ground terminal) extend in opposite directions and are grounded.
  • the eighth antenna 180 and the fourth antenna 140 may form a mouth-to-mouth antenna pair.
  • the sixth antenna 160, the seventh antenna 170, and the eighth antenna 180 may all include an electrically connected feed source and its radiator, so that the sixth antenna 160, the seventh antenna 170, and the eighth antenna 180 can support wireless signals.
  • the sixth antenna 160, the seventh antenna 170, and the eighth antenna 180 can all support medium-high frequency signals or high-frequency signals of long-term evolution technology, medium-high frequency signals or high-frequency signals of 5G new air interface technology, and 2.4G Wi-Fi frequency band At least one of signal, 5G Wi-Fi frequency band signal.
  • the sixth antenna 160 may but not be limited to support mid-high frequency/high frequency signals of LTE
  • the seventh antenna 170 may but not be limited to support 2.4G Wi-Fi signals or 5G Wi-Fi signals
  • the eighth antenna 180 may But not limited to supporting NR high-frequency signals, N78 or N79 frequency band signals. This embodiment of the present application does not limit it.
  • the sixth antenna 160 , the seventh antenna 170 , and the eighth antenna 180 may include, but are not limited to, one or more radiators. This embodiment of the present application does not limit it.
  • first antenna 110, the second antenna 120, the third antenna 130, the fourth antenna 140, the fifth antenna 150, the sixth antenna 160, the seventh antenna 170, and the eighth antenna 180 in the embodiment of the present application
  • Two or more of the antennas can support wireless signals in the same frequency band to form a MIMO transmission system; or, each antenna can support wireless signals in different frequency bands. This embodiment of the present application does not limit it.
  • eight antennas are arranged on four frames 320 , which can make rational use of the space on the frame 320 and make the layout of multiple antennas more compact.
  • FIG. 24 is a schematic diagram of a sixth structure of the electronic device 10 provided by the embodiment of the present application.
  • the electronic device 10 may further include a display screen 400 , a middle frame 300 , a circuit board 500 , a battery 700 and a rear case 800 .
  • the display screen 400 is disposed on the middle frame 300 to support the display surface of the electronic device 10 for displaying information such as images and texts.
  • the display screen 400 may include a display screen 400 of a type such as a liquid crystal display (Liquid Crystal Display, LCD) or an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the middle frame 300 may include a middle board 310 and a frame 320, the middle board 310 may be a thin-plate or sheet-like structure, and the frame 320 may be arranged around the edge of the middle board 310 to provide support for electronic devices or functional components in the electronic device 10 .
  • the frame 320 may include the aforementioned first frame 321 , second frame 322 , third frame 323 and fourth frame 324 .
  • the middle board 310 when the middle board 310 includes a conductive material, the middle board 310 can support the ground plane 200 of the electronic device 10 to realize the grounding of multiple antennas.
  • the ground plane 200 may also be disposed on other structures of the electronic device 10 , such as the circuit board 500 and the rear case 800 .
  • the embodiment of the present application does not limit the specific arrangement manner of the ground plane 200 .
  • the circuit board 500 is disposed on the middle frame 300 for fixing.
  • the circuit board 500 may be a main board of the electronic device 10 .
  • a processor may be integrated on the circuit board 500, and one or more functional components such as an earphone jack, an acceleration sensor, a gyroscope, and a motor may also be integrated.
  • the display screen 400 may be electrically connected to the circuit board 500 to control the display of the display screen 400 through the processor on the circuit board 500 .
  • the battery 700 is disposed on the middle frame 300 , and the battery 700 is sealed inside the electronic device 10 through the rear case 800 . Meanwhile, the battery 700 is electrically connected to the circuit board 500 , so that the battery 700 supplies power to the electronic device 10 .
  • the circuit board 500 may be provided with a power management circuit. The power management circuit is used to distribute the voltage provided by the battery 700 to various electronic devices in the electronic device 10 .
  • the rear case 800 can be connected with the middle frame 300 .
  • the rear case 800 may be bonded to the middle frame 300 by an adhesive such as double-sided tape to achieve connection with the middle frame 300 .
  • the rear case 800 is used to seal the electronic devices and functional components of the electronic device 10 inside the electronic device 10 together with the middle frame 300 and the display screen 400 , so as to protect the electronic devices and functional components of the electronic device 10 .
  • the electronic device 10 may not be limited to include the above-mentioned structures, for example, may also include a camera module, a sensor module, etc.
  • a camera module for example, may also include a camera module, a sensor module, etc.
  • a sensor module for specific structures, reference may be made to descriptions of related technologies, which will not be described here.
  • a plurality of slits 103 may be provided on the frame 320, and one or more of the plurality of slits 103 may be distributed in the first frame 321, the second On the frame 322 , the third frame 323 , and the fourth frame 324 , so that a plurality of metal branches 325 can be formed on the frame 320 .
  • the eight antennas in this embodiment of the present application may include, but are not limited to, one or more metal branches 325 therein.
  • the first antenna 110 may include at least two metal branches 325
  • the first radiator 111 may include but not limited to one or more metal branches 325
  • the second radiator 112 may also include but not limited to one or more metal branches 325.
  • the second antenna 120 may include at least two metal branches 325; the third antenna 130, the fourth antenna 140, the fifth antenna 150, the sixth antenna 160, the seventh antenna 170, and the eighth antenna 180 may include at least one metal branch 325 .
  • the embodiment of the present application does not limit the specific structure of the foregoing antenna.
  • multiple antennas are formed on the middle frame 300 , and the multiple antennas do not need to occupy additional space of the electronic device 10 , which can further realize the miniaturization of the electronic device 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)

Abstract

一种电子设备,第一辐射体的一端与第二辐射体的一端之间形成第一耦合间隙,第一辐射体的另一端与第二辐射体的另一端接地。第一馈源提供的第一激励信号在调节电路的作用下使第一辐射体实现第一谐振;和/或,第一馈源提供的第二激励信号在调节电路的作用下、经第一耦合间隙耦合至第二辐射体并使第二辐射体实现第二谐振。

Description

电子设备
本申请要求于2022年02月17日提交中国专利局、申请号为202210145942.3、发明名称为“电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种电子设备。
背景技术
随着通信技术的发展,诸如智能手机等电子设备能够实现的功能越来越多,电子设备的通信模式也更加多样化。可以理解的,电子设备的每一种通信模式都需要相应的天线来支持。
发明内容
本申请提供一种电子设备,电子设备至少可以支持两种射频信号,电子设备可以实现小型化设计。
本申请提供了一种电子设备,包括:
第一天线,包括第一辐射体、第二辐射体、第一馈源和调节电路,所述第一辐射体的一端与所述第二辐射体的一端之间形成有第一耦合间隙,所述第一辐射体的另一端与所述第二辐射体的另一端朝向相反的方向延伸并接地;所述第一馈源与所述第一辐射体电性连接,至少部分所述调节电路电连接于所述第一馈源与所述第一辐射体之间;其中,
所述第一馈源用于提供第一激励信号,所述第一激励信号在所述调节电路的作用下使所述第一辐射体实现第一谐振;和/或,
所述第一馈源用于提供第二激励信号,所述第二激励信号在所述调节电路的作用下、经所述第一耦合间隙耦合至所述第二辐射体并使所述第二辐射体实现第二谐振,所述第二谐振不同于所述第一谐振。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电子设备的第一种结构示意图。
图2为图1所示的电子设备的第一种电流示意图。
图3为图1所示的电子设备的第二种电流示意图。
图4为本申请实施例提供的电子设备的第二种结构示意图。
图5为图4所示的电子设备的第一种等效电路及电流示意图。
图6为图4所示的电子设备的第二种等效电路及电流示意图。
图7为图4所示的电子设备的第三种等效电路及电流示意图。
图8为图4所示的电子设备的第四种等效电路及电流示意图。
图9为图4所示的第一天线的一种S参数曲线图。
图10为图4所示的第一天线的一种辐射性能曲线图。
图11为本申请实施例提供的调节电路的一种电连接示意图。
图12为本申请实施例提供的电子设备的第三种结构示意图。
图13为图12所示的第二天线的一种电连接示意图。
图14为图13所示的第二天线的第一种电流示意图。
图15为图13所示的第二天线的第二种电流示意图。
图16为图13所示的第二天线的第三种电流示意图。
图17为图13所示的第二天线的第四种电流示意图。
图18为图13所示的第二天线的第五种电流示意图。
图19为图12所示的第二天线的一种S参数曲线图。
图20为图12所示的第二天线的一种辐射性能曲线图。
图21为本申请实施例提供的电子设备的第四种结构示意图。
图22为图21所示的电子设备的一种S参数曲线示意图。
图23为本申请实施例提供的电子设备的第五种结构示意图。
图24为本申请实施例提供的电子设备的第六种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图1至附图24,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请的保护范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例提供一种电子设备10,电子设备10可以是智能手机、平板电脑等设备,还可以是游戏设备、增强现实(Augmented Reality,简称AR)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。电子设备10可以包括天线装置。天线装置可以实现电子设备10的无线通信功能,例如天线装置可以支持无线保真(Wireless Fidelity,Wi-Fi)信号、全球定位系统(Global Positioning System,简称GPS)信号、第三代移动通信技术(3rd-Generation,简称3G)、第四代移动通信技术(4th-Generation,简称4G)、第五代移动通信技术(5th-Generation,简称5G)、近场通信(Near field communication,简称NFC)信号、蓝牙(Blue tooth,简称BT)信号、超宽带通信(Ultra WideBand,简称UWB)信号等。
请参考图1,图1为本申请实施例提供的电子设备10的第一种结构示意图。电子设备10或天线装置至少可以包括第一天线110。第一天线110可以包括第一辐射体111、第二辐射体112、第一馈源113和调节电路114。
第一辐射体111和第二辐射体112可以相对设置,以使得第一辐射体111的一端与第二辐射体112的一端之间形成有第一耦合间隙101,第一辐射体111的另一端与第二辐射体112的另一端可以朝向相反的方向延伸并接地。第一馈源113可以直接或间接地与第一辐射体111电性连接,至少部分调节电路114可以直接或间接地电性连接于第一馈源113与第一辐射体111之间。
第一辐射体111、第二辐射体112可以是由导电材料例如金属、导电银浆材料等制作的天线辐射体。如图1所示,第一辐射体111可以包括第一自由端(图未示)、间隔设置的第一接地端1111和第一馈电端(图未示),第一自由端可为靠近第一耦合间隙101的一端,第一自由端可以与第二辐射体112相对间隔设置,第一接地端1111可以朝向远离第二辐射体112的方向延伸,第一接地端1111可以是远离第一耦合间隙101的一端,电子设备10或天线装置还可以包括接地平面200,第一接地端1111可以与接地平面200电连接,以实现第一辐射体111的接地。第一馈电端可以设置在第一自由端和第一接地端1111之间。第一馈电端可以直接或间接地与第一馈源113电连接,第一馈源113可以向第一辐射体111提供激励电流以使得 第一辐射体111可以实现无线信号的发射和接收。
第二辐射体112可以包括第二自由端(图未示)、间隔设置的第二接地端1121和第二馈电端(图未示),第二自由端可以是靠近第一耦合间隙101的一端,第二自由端可以与第一辐射体111相对间隔设置,第二接地端1121可以朝向远离第一辐射体111的方向延伸,第二接地端1121可以是远离第一耦合间隙101的一端,第二接地端1121可以与接地平面200电连接,以实现第二辐射体112的接地。第二馈电端可以设置在第二自由端和第二接地端1121之间。第一辐射体111和第二辐射体112可以形成口对口天线。
可以理解的是,第一辐射体111上除了第一自由端、第一接地端1111和第一馈电端外,还可以设置其他的馈电端,以实现第一辐射体111与其他电子器件的电连接。同理,第二辐射体112上也还可以设置其他的馈电端,以实现第二辐射体112与其他电子器件的电连接。本申请实施例对此不进行限定。
第一馈源113可以设置在电子设备10或天线装置的电路板500上,第一馈源113也可以设置在电子设备10或天线装置的其他小板600上。第一馈源113可以直接或间接与第一辐射体111电性连接,第一馈源113可以将激励信号馈入至第一辐射体111中,至少部分激励信号可以在第一辐射体111与接地平面200之间流动,以使得第一辐射体111可以向自由空间发射和接收无线信号。至少部分激励信号也可以通过第一耦合间隙101耦合至第二辐射体112并在第二辐射体112上流动,以使得第二辐射体112也可以向自由空间发射和接收无线信号。
调节电路114可以对第一馈源113提供的激励信号进行调节作用,该调节作用可以但不限于包括短路作用、断路作用、等效电阻作用、等效电容作用、耦合馈电作用、直接馈电作用等。
示例性的,请结合图1并请参考图2,图2为图1所示的电子设备10的第一种电流示意图,当第一馈源113提供第一激励信号I1时,至少部分第一激励信号I1(绝大部分的第一激励信号I1可激励第一辐射体111形成第一谐振,极少数的第一激励信号I1会通过第一馈源113、调节电路114等部件回地,本申请实施例对第一激励信号I1以及后文的其他激励信号的具体流动形式不进行限定)可以经过调节电路114并在调节电路114的作用下可使第一辐射体111实现第一谐振并支持第一无线信号的发射和接收。
再示例性的,请结合图1并请参考图3,图3为图1所示的电子设备10的第二种电流示意图,当第一馈源113提供第二激励信号I2时,至少部分第二激励信号I2(绝大部分的二激励信号I2可激励第二辐射体112形成第二谐振,极少数的第二激励信号I2可通过第一馈源113、调节电路114、第一辐射体111的第一接地端1111等部件回地,本申请实施例对第二激励信号I2的具体流动方式不进行限定)可以经过调节电路114并在调节电路114的作用下、经第一耦合间隙101耦合至第二辐射体112并使第二辐射体112实现第二谐振,第二辐射体112在第二谐振的作用下可以支持第二无线信号的发射和接收。
可以理解的是,该第二谐振可以不同于第一谐振,以使得第二无线信号可以不同于第一无线信号。例如第一谐振的中心频点可以不同于第二谐振的中心频点;相对应的,第一无线信号的频率可以不同于第二无线信号的频率。并且,第一无线信号的频率可以与第二无线信号的频率相距较远,以使得第一辐射体111支持第一无线信号时不易与第二辐射体112支持的第二无线信号相互干扰。
可以理解的是,第一馈源113可以单独向第一辐射体111馈入第一激励信号I1,以使第一辐射体111实现第一谐振;第一馈源113也可以单独向第一辐射体111馈入第二激励信号I2,以使得第二辐射体112可以实现第二谐振;第一馈源113还可以同时向第一辐射体111馈入第一激励信号I1和第二激励信号I2(例如第一激励信号I1与第二激励信号I2的载波聚合信号),以使得第一辐射体111实现第一谐振且第二辐射体112实现第二谐振。
可以理解的是,第一激励信号I1和第二激励信号I2可以是频率不同的信号,以使得第一谐振可以不同于第二谐振。当然,该第一激励信号I1和第二激励信号I2也可以是同一种信号,但是经过调节电路114的调节后,激励信号在经过第一辐射体111时可实现第一谐振,在经第一耦合间隙101耦合至第二辐射体112时可以实现第二谐振,从而即使馈入同一激励信号也可使第一辐射体111和第二辐射体112形成不同的谐振。本申请实施例对第一激励信号I1和第二激励信号I2的具体形成方式不进行限定。
可以理解的是,第一辐射体111的枝节长度可以不同于第二辐射体112的枝节长度,以使得第一谐振与第二谐振的中心频率不同。当然,第一辐射体111的枝节长度也可以与第二辐射体112的枝节长度相同,但是,经过调节电路114的调节作用后,第一辐射体111实现第一谐振时的有效电长度可以不同于第二辐射体112实现第二谐振时的有效电长度。可以理解的是,有效电长度是指辐射体辐射信号时的长度,辐射体的有效电长度可以大于、小于或等于其枝节长度。
本申请实施例的电子设备10,第一馈源113提供的第一激励信号I1经过调节电路114的作用可使第一辐射体111实现第一谐振,第一天线110可以支持第一无线信号;第一馈源113提供的第二激励信号I2经过调节电路114的作用可经过第一耦合间隙101耦合至第二辐射体112而使第二辐射体112可实现第二谐振,第一天线110也可以支持第二无线信号。从而,本申请的电子设备10,通过一个第一馈源113可实现支持两种无线信号,电子设备10无需设置两个馈源,既可以节省生产成本,也可以实现电子设备10的小型化设计。同时,第一无线信号由第一辐射体111支持、第二无线信号由第二辐射体112支持,二者既可以同时传输,也不会相互干扰,电子设备10的天线性能较好。
其中,调节电路114还可以对第一馈源113提供的其他激励信号进行调节,以使得第一天线110还可以支持其他的无线信号。
示例性的,当第一馈源113提供第三激励信号I3(如后文的图7所示)时,至少部分第三激励信号I3(同上述第一激励信号I1、第二激励信号I2的解释)在调节电路114的作用下可使第一辐射体111实现第三谐振,第三激励信号I3可以主要由第一辐射体111支持,第一辐射体111在该第三谐振的作用下可以支持第三无线信号。
再示例性的,当第一馈源113提供第四激励信号I4(如后文的图8所示)时,至少部分第四激励信号I4(同上述第一激励信号I1、第二激励信号I2的解释)在调节电路114的作用下使第一辐射体111实现第四谐振,第四激励信号I4可以主要由第一辐射体111支持,第一辐射体111在该第四谐振的作用下可以支持第四无线信号。
可以理解的是,第一谐振、第二谐振、第三谐振、第四谐振可以互不相同,以使得第一无线信号、第二无线信号、第三无线信号和第四无线信号互不相同。例如,第二谐振可以支持N78频段(3.3GHz至3.8GHz)或B78频段(3.3GHz至3.8GHz)的第二无线信号。第一谐振可以支持N28频段(703MHz至803MHz)、B28频段(703MHz至803MHz)、N3频段(1.71GHz至1.88GHz)、B3频段(1.71GHz至1.88GHz)、N41频段(2.496GHz至2.69GHz)或B41频段(2.496GHz至2.69GHz)的第一无线信号;第三谐振也可以支持N28频段、B28频段、N3频段、B3频段、N41频段或B41频段的第三无线信号;第四谐振也可以支持N28频段、B28频段、N3频段、B3频段、N41频段或B41频段的第四无线信号,但是第一谐振、第三谐振、第四谐振支持的信号的频率或频段不同。例如,当第一辐射体111的枝节长度大于第二辐射体112的枝节长度时,第一谐振可以支持N28频段信号、第二谐振可以支持N78频段信号、第三谐振可以支持B3频段信号、第四谐振可以支持N41频段信号。
可以理解的是,第一馈源113可以单独提供第一激励信号I1、第二激励信号I2、第三激励信号I3或第四激励信号I4;或者,第一馈源113还可以同时提供第一激励信号I1、第二激 励信号I2、第三激励信号I3、第四激励信号I4中的两个或多个。本申请实施例对此不进行限定。
可以理解的是,考虑到第一谐振、第三谐振和第四谐振均由第一辐射体111支持,从而,第一辐射体111在实现第一谐振、第三谐振、第四谐振时的有效电长度可以不同。
可以理解的是,第一辐射体111实现第一谐振、第三谐振和第四谐振时,第一辐射体111可以处于1/4波长的倒F天线(IFA)模式。第二辐射体112实现第二谐振时,第二辐射体112也可以处于1/4波长的IFA模式。
其中,请参考图4,图4为本申请实施例提供的电子设备10的第二种结构示意图。本申请实施例提供一种调节电路114,该调节电路114可以通过调节使得第一辐射体111、第二辐射体112支持不同谐振时的有效电长度不同。调节电路114可以但不限于包括第一匹配电路1141和第一滤波电路1142。
第一匹配电路1141可以串联于第一馈源113和第一辐射体111之间。第一匹配电路1141的一端可以与第一馈源113直接或间接电性连接,第一匹配电路1141的另一端可以与第一辐射体111直接或间接电性连接。第一滤波电路1142的一端可以并联于第一馈源113和第一辐射体111之间,第一滤波电路1142的另一端可以与接地平面200直接或间接电性连接以实现接地。其中,第一滤波电路1142可以在第一馈源113提供的激励信号的作用下形成等效电容或等效电感,以改变第一辐射体111或第二辐射体112的电长度。第一匹配电路1141可以在第一馈源113提供的激励信号的作用下形成等效电容或等效电感,以对应使第一馈源113提供的激励信号耦合馈电或直接馈电至第一辐射体111。
示例性的,请结合图4并请参考图5,图5为图4所示的电子设备10的第一种等效电路及电流示意图。当第一馈源113提供第一激励信号I1例如N28频段/B28频段的信号时,第一滤波电路1142可以形成第一等效电容C1,用于等效增加第一辐射体111的有效电长度;与此同时,第一匹配电路1141可以形成第二等效电容C2,用于耦合馈电;至少部分第一激励信号I1在调节电路114的作用下可使第一辐射体111实现第一谐振并支持第一无线信号。例如,第一辐射体111可以支持N28频段/B28频段的第一无线信号。
再示例性的,请结合图4并请参考图6,图6为图4所示的电子设备10的第二种等效电路及电流示意图。当第一馈源113提供第二激励信号I2例如N78频段/B78频段的信号时,第一滤波电路1142可以形成第一等效电感L1,用于等效减少第一辐射体111的有效电长度;与此同时,第一匹配电路1141可以形成第二等效电感L2,用于直接馈电;第二辐射体112可以支持N78频段/B78频段的第二无线信号。
又示例性的,请结合图4并请参考图7,图7为图4所示的电子设备10的第三种等效电路及电流示意图。当第一馈源113提供第三激励信号I3例如B3频段/N3频段的信号时,第一滤波电路1142可以形成第三等效电感L3,用于等效减少第一辐射枝节的长度;与此同时,第一匹配电路1141可以形成第三等效电容C3,用于耦合馈电;第一辐射体111可以支持B3频段/N3频段的第三无线信号。
还示例性的,请结合图4并请参考图8,图8为图4所示的电子设备10的第四种等效电路及电流示意图。当第一馈源113提供第四激励信号I4例如N41频段/B41频段的信号时,第一滤波电路1142可以形成第四等效电感L4,用于等效减少第一辐射枝节的长度;与此同时,第一匹配电路1141可以形成第五等效电感L5,用以直接馈电;第一辐射体111可以支持N41频段/B41频段的第四无线信号。
可以理解的是,上述多个等效电容的电容值可以相同,也可以不同,还可以部分相同、部分不同。同理,上述多个等效电感的电感值可以相同,也可以不同,还可以部分相同、部分不同。本申请实施例对上述等效电容、等效电感的具体电容值、电感值不进行限定。
其中,请结合图4至图8并请参考图9和图10,图9为图4所示的第一天线110的一种S参数曲线图,图10为图4所示的第一天线110的一种辐射性能曲线图。其中,图9中的曲线S1为第一天线110工作在N28、B3接收频段、N41及N78频段的反射系数曲线。图10中的曲线S2、S3分别为第一天线110在上述频段下的辐射效率及系统频率。由曲线S1至S3可知,第一天线110在N28接收频段的系统效率均值约为-11.5dB、在B3接收频段系统效率均为约为-4.8dB、在N41接收频段系统效率均为约为-4dB、在N78接收频段系统效率均为约为-3.8dB。第一天线110具有较优的辐射性能。
其中,如图4至图8所示,调节电路114还可以包括切换电路1143,该切换电路1143内部可以包括一个或多个支路,切换电路1143可以根据第一滤波电路1142、第一匹配电路1141的不同作用而切换至不同的支路,以增加或减少第二辐射体112的电长度并使得第一天线110可以形成前述的第一谐振至第四谐振,例如,可以使得第一辐射体111形成第一谐振、第三谐振或第四谐振,第二辐射体112可以实现第二谐振。需要说明的是,调节电路114可以包括切换电路1143,也可以不包括切换电路1143;当然,调节电路114还可以包括其他的电路,本申请实施例调节电路114的具体结构不进行限定。
可以理解的是,第一滤波电路1142、第一匹配电路1141、切换电路1143都可以但不限于包括由电容、电感、电阻的任意串联或者任意并联所组成的电路。
示例性的,请参考图11,图11为本申请实施例提供的调节电路114的一种电连接示意图。第一滤波电路1142可以包括第一电容C4、第二电容C5和第一电感L6,第二电容C5可与第一电感L6并联并形成整体,第一电容C4可与第二电容C5、第一电感L6并联形成的整体串联,第二电容C5、第一电感L6并联形成的整体的另一端可接地。第一匹配电路1141可以包括第三电容C6和第二电感L7,该第三电容C6和第二电感L7可以串联。
需要说明的是,第一滤波电路1142、第一匹配电路1141的结构并不局限于此,例如,第一滤波电路1142、第一匹配电路1141还可以但不限于串联、并联一个或多个电容、电感、电阻。本申请实施例对此不进限定。
需要说明的是,本申请实施例的第一匹配电路1141除了可以形成等效电容、等效电感外,还可以对第一馈源113提供的激励信号进行阻抗匹配而调节第一辐射体111、第二辐射体112实现的多个谐振的频点。同理,第一滤波电路1142除了可以形成等效电容、等效电感外,还可以对激励信号进行开路、短路,以使得第一辐射体111、第二辐射体112可以实现上述谐振。切换电路1143除了可以改变第二辐射体112的电长度外,还可以对激励信号进行开路、短路、改变第二辐射体112电连接的电容、电阻、电感值等,以使得第一天线110可以实现上述谐振。本申请实施例对第一匹配电路1141、第一滤波电路1142、切换电路1143的作用不进行具体的限定。
需要说明的是,本申请实施例的第一辐射体111和第二辐射体112除了可以各自实现对应的谐振外,还可以共同实现某一谐振,以使得第一辐射体111和第二辐射体112可以共同支持无线信号。
本申请实施例的电子设备10,调节电路114利用第一匹配电路1141和第一滤波电路1142在不同频段的等效电抗特性不同,可以实现第一辐射体111、第二辐射体112在不同频段的1/4波长的IFA模式工作,第一天线110可以实现支持N28频段/B28频段、B3频段/N3频段、N41频段/B41频段、N78频段/B78频段。第一天线110支持的无线信号的种类更多,电子设备10可以进一步实现小型化设计。
需要说明的是,本申请实施例的第一天线110除了支持上述频段的无线信号外,还可以支持其他频段的无线信号。在此不再详述。
请参考图12,图12为本申请实施例提供的电子设备10的第三种结构示意图。电子设备 10还可以包括顺次连接的第一边框321、第三边框323、第二边框322和第四边框324,第二边框322可与第一边框321相对设置,第三边框323可与第四边框324相对设置,第一边框321、第二边框322的长度可以小于第三边框323、第四边框324的长度,以使得该第一边框321、第二边框322可以是电子设备10的短边框,第三边框323、第四边框324可以是电子设备10的长边框。
其中,至少大部分的第一天线110的辐射体(例如全部的第一辐射体111及大部分的第二辐射体112)可以设置于该第一边框321。例如,第一天线110的辐射体可以直接或间接连接于该第一边框321,至少大部分的第一天线110的投影可以位于第一边框321上。再例如,当第一边框321为导体等材质时,至少大部分第一天线110的辐射体可以是第一边框321的一部分,至少大部分第一天线110可以形成在第一边框321上,以实现第一边框321的复用。
可以理解的是,第一天线110的第一辐射体111可以全部设置于第一边框321,至少部分第二辐射体112可以设置于第一边框321、另一部分第二辐射体112可以设置于第三边框323。
其中,如图12所示,电子设备10或天线装置还可以包括第二天线120,第二天线120可以与第一天线110间隔设置,二者也可以直接或间接地相连接。至少大部分的第二天线120的辐射体(例如后文中的全部的第三辐射体121以及部分第四辐射体122)也可以设置于第一边框321。例如至少大部分的第二天线120的辐射体可以直接或间接连接于第一边框321而使其投影可以位于第一边框321上,或者形成于第一边框321而实现第一边框321的复用。
其中,第二天线120可以包括第三辐射体121和第四辐射体122,第三辐射体121和第四辐射体122之间可以形成第二耦合间隙102。第三辐射体121可以包括相对设置的第三自由端(图未示)和第三接地端1211,第三自由端可为靠近第二耦合间隙102的一端,第三自由端可以与第四辐射体122相对间隔设置,第三接地端1211可以是远离第二耦合间隙102的一端,第三接地端1211可以与接地平面200电连接,以实现第三辐射体121的接地。第四辐射体122可以包括相对设置的第四自由端(图未示)和第四接地端1221,第四自由端可以是靠近第二耦合间隙102的一端,第四自由端可以与第三辐射体121相对间隔设置,第四接地端1221可以是远离第二耦合间隙102的一端,第四接地端1221可以与接地平面200电连接,以实现第二辐射体112的接地。
可以理解的是,全部的第三辐射体121可以设置于第一边框321,至少大部分的第四辐射体122可以设置于第一边框321、另一部分第四辐射体122可以设置于第四边框324。
可以理解的是,第一天线110和第二天线120可以通过共同接地端而实现二者的隔离。例如,第二天线120的第三辐射体121的一端(例如第三接地端1211)可以与第一天线110的第一辐射体111的另一端(例如第一接地端1111)重合,以使得二者共同在第一接地端1111实现接地。该第一接地端1111可以对第一天线110支持的信号与第二天线120支持的信号起到隔离的作用。
本申请实施例的电子设备10,大部分的第一天线110的辐射体与大部分的第二天线120的辐射体同时设置于电子设备10的短边框320上,第一天线110和第二天线120可以合理利用电子设备10的短边框320的空间,以减少第一天线110、第二天线120占据的空间。同时,第一天线110和第二天线120通过同一接地端实现接地,二者之间的隔离度也较高,相互之间的干扰较小。
其中,请结合图12并请参考图13,图13为图12所示的第二天线120的一种电连接示意图。第二天线120还可以包括第二馈源123、第二滤波电路124和第三馈源125。
第二馈源123可以直接或间接地电性连接于第三辐射体121,第二馈源123可以向第三辐射体121馈入激励信号,以使得第三辐射体121可以支持无线信号。第三馈源125可以直接或间接地电性连接于第四辐射体122,第三馈源125可以向第四辐射体122馈入激励信号,以使 得第四辐射体122可以支持无线信号。第二滤波电路124可以串联于第二馈源123与第三辐射体121之间,第二滤波电路124可以对经过其的激励信号进行滤波,以使得第三辐射体121、第四辐射体122可以支持相应的无线信号。
示例性的,请结合图13并请参考图14,图14为图13所示的第二天线120的第一种电流示意图。第二馈源123可以提供第五激励信号I5,当第二馈源123向第三辐射体121馈入第五激励信号I5时,第二滤波电路124可以允许第五激励信号I5通过,第五激励信号I5可以从第二馈源123流经第二滤波电路124并流入至第三辐射体121,第五激励信号I5可以激励第三辐射体121实现第五谐振并支持第五无线信号。第五激励信号I5并不会使第三辐射体121与第四辐射体122耦合,第五激励信号I5几乎不在第四辐射体122上流动。
再示例性的,请结合图13并请参考图15,图15为图13所示的第二天线120的第二种电流示意图。第三馈源125可以提供第六激励信号I6,当第三馈源125向第四辐射体122馈入第六激励信号I6时,第六激励信号I6可以从第三馈源125流入至第四辐射体122中,第六激励信号I6可以从第四辐射体122经过第二耦合间隙102耦合至第三辐射体121并在第三辐射体121中流动,第二滤波电路124可以阻止第六激励信号I6通过,第二滤波电路124可以对第六激励信号I6开路,至少部分第六激励信号I6(部分第六激励信号I6可在第四辐射体122上流动并可通过第四接地端1221回地)可以经过第二耦合间隙102耦合至第三辐射体121,第六激励信号I6可以激励第四辐射体122、至少部分第三辐射体121共同产生第六谐振以支持第六无线信号。进而,第六激励信号I6不会从第二滤波电路124而流入至第二馈源123,第六激励信号I6可以从第三辐射体121的第三接地端1211接地并形成回路。
可以理解的是,第二滤波电路124对第六激励信号I6开路,可以是指在第六激励信号I6的谐振下,第二滤波电路124的电阻无穷大,以阻挡第六激励信号I6流入第二馈源123。
基于此,本申请实施例的电子设备10及天线装置,第三辐射体121与第四辐射体122相对设置且设有第二耦合间隙102,在第二馈源123、第三馈源125和第二滤波电路124的配合下,第二馈源123可以向第三辐射体121馈入第五激励信号I5,第三辐射体121可以实现第五谐振并支持第五无线信号;第三馈源125可以向第四辐射体122馈入第六激励信号I6,在第二滤波电路124的作用下,第三辐射体121和第四辐射体122可以共同实现第六谐振并支持第六无线信号。进而,本申请实施例的电子设备10或天线装置,两个辐射体至少可以支持两种不同的射频信号,既可以节约辐射体占据的空间体积,又可以支持更多频段的无线信号,可以实现天线装置的小型化。
其中,请再次参考图13,第二天线120还可以包括第三滤波电路126和第四滤波电路127。
第三滤波电路126和第四滤波电路127可以设置在电子设备10或天线装置的电路板500、小板600上。第三滤波电路126的一端可以电连接于第四辐射体122与第三馈源125之间,第三滤波电路126的一端也可以电连接于第三馈源125在第四辐射体122上的馈电端靠近第三辐射体121的一侧的任意位置。第三滤波电路126的另一端可以与接地平面200电性连接,以实现第三滤波电路126的接地。同理,第四滤波电路127的一端也可以电连接于第四辐射体122与第三馈源125之间,第四滤波电路127的一端也可以电连接于第三馈源125在第四辐射体122上的馈电端靠近第三辐射体121的一侧的任意位置。第四滤波电路127的另一端可以与接地平面200电性连接,以实现第三滤波电路126的接地。
其中,请结合图13并请参考图16,图16为图13所示的第二天线120的第三种电流示意图。第二馈源123还可以提供第七激励信号I7,当第二馈源123向第三辐射体121馈入第七激励信号I7时,第七激励信号I7可以经过第二滤波电路124并流入至第三辐射体121中。至少部分第七激励信号I7(部分第七激励信号I7可在第三辐射体121上流动并通过第三接地端1211回地)可以从第三辐射体121通过第二耦合间隙102耦合至第四辐射体122并在第四辐射体122中流 动。同时,第三滤波电路126可以对至少部分第七激励信号I7短路并阻挡至少部分第七激励信号I7流入至第三馈源125。此时,至少部分第七激励信号I7可以从第三滤波电路126回地。至少部分第七激励信号I7可以激励第三辐射体121及至少部分第四辐射体122可以共同形成第七谐振并支持第七无线信号。
其中,请结合图13并请参考图17,图17为图13所示的第二天线120的第四种电流示意图。第二馈源123还可以提供第九激励信号I9,当第二馈源123向第三辐射体121馈入第九激励信号I9时,第九激励信号I9可以经过第二滤波电路124并流入至第三辐射体121中。至少部分第九激励信号I9(部分第九激励信号I9可在第三辐射体121上流动并通过第三接地端1211回地)可以从第三辐射体121通过第二耦合间隙102耦合至第四辐射体122并在第四辐射体122中流动。同时,第四滤波电路127可以对至少部分第九激励信号I9短路并阻挡至少部分第九激励信号I9流入至第三馈源125。此时,至少部分第九激励信号I9可以从第四滤波电路127回地。第三辐射体121及至少部分第四辐射体122可以共同形成第九谐振并支持第九无线信号。
可以理解的是,第三滤波电路126、第四滤波电路127对第七激励信号I7、第九激励信号I9短路,可以是指在第七激励信号I7、第九激励信号I9频段下,第三滤波电路126、第四滤波电路127的电阻无穷小,以使第七激励信号I7、第九激励信号I9接地。
可以理解的是,天线装置可以仅包括第三滤波电路126,也可以仅包括第四滤波电路127,还可以同时包括第三滤波电路126和第四滤波电路127。
其中,请结合图13并请参考图18,图18为图13所示的第二天线120的第五种电流示意图。第三馈源125还可以提供第八激励信号I8。当第三馈源125向第四辐射体122馈入第八激励信号I8时,第八激励信号I8可以从第三馈源125流入至第四辐射体122,第八激励信号I8可以激励第四辐射体122产生第八谐振并支持第八无线信号。第八激励信号I8并不会使第四辐射体122与第三辐射体121耦合,第八激励信号I8几乎不会在第三辐射体121中流动。
可以理解的是,上述第二滤波电路124、第三滤波电路126、第四滤波电路127可以但不限于包括由电容、电感的任意串联或者任意并联所组成的电路。本申请实施例对此不进行限定。
可以理解的是,上述第五谐振、第六谐振、第七谐振、第八谐振和第九谐振中的一个或多个可以同时形成。例如,当第二馈源123向第三辐射体121馈入激励信号且第三馈源125向第四辐射体122馈入激励信号时,第三辐射体121可以实现第五谐振、第四辐射体122可以实现第八谐振,第三辐射体121和第四辐射体122可以共同实现第六谐振、第七谐振和第九谐振。其中,第五谐振支持的第五无线信号、第六谐振支持的第六无线信号可以从第三辐射体121的第三接地端1211回地,第八谐振支持的第八无线信号可以从第四辐射体122的第四接地端1221回地,第七谐振支持的第七无线信号可以从第三滤波电路126的另一端回地,第九谐振支持的第九无线信号可以从第四滤波电路127的另一端回地。
基于此,本申请实施例的第二天线120,当第二馈源123向第三辐射体121馈入激励信号时,在第二滤波电路124、第三滤波电路126和第四滤波电路127的作用下,第三辐射体121可以支持第五无线信号,第三辐射体121和至少部分第四辐射体122可以共同支持第七无线信号和第九无线信号。当第三馈源125向第四辐射体122馈入激励信号时,在第二滤波电路124、第三滤波电路126和第四滤波电路127的作用下,第四辐射体122可以支持第八无线信号,第四辐射体122和至少部分第三辐射体121可以共同支持第六无线信号。进而,本申请实施例的第二天线120,两个辐射体至少可以支持五种射频信号,既可以节约辐射体占据的空间体积,又可以支持更多频段的无线信号,可以实现第二天线120的小型化。
其中,如图13所示,第二天线120还可以包括第二匹配电路128和第三匹配电路129。
第二匹配电路128可以耦合在第二馈源123和第三辐射体121之间,例如串联于第二馈源 123与第二滤波电路124之间。该第二匹配电路128可以对第二馈源123提供激励信号时的阻抗进行匹配,以使得第二馈源123可以向第三辐射体121提供第五激励信号I5、第七激励信号I7和第九激励信号I9。
第三匹配电路129可以耦合在第三馈源125和第四辐射体122之间,例如串联于第三馈源125与第三滤波电路126、第四滤波电路127之间。该第二匹配电路128可以对第三馈源125提供激励信号时的阻抗进行匹配,以使得第三馈源125可以向第四辐射体122提供第六激励信号I6和第八激励信号I8。
可以理解的是,第二匹配电路128、第三匹配电路129可以但不限于包括由电容、电感的任意串联或者任意并联所组成的电路。本申请实施例对此不进行限定。
其中,第二天线120可以支持多种不同频段的无线信号。请结合图12并请参考图19和图20,图19为图12所示的第二天线120的一种S参数曲线图,图20为图12所示的第二天线120的一种辐射性能曲线图。图19中上半部分的两条曲线S4为第二天线120的一种反射系数曲线,下半部分的一条曲线S5为第二天线120的一种隔离度曲线;图20中的曲线S6和曲线S7分别为第二馈源123工作时的辐射效率曲线和系统效率曲线,曲线S8和曲线S9分别为第三馈源125工作时的辐射效率曲线和系统效率曲线。
由曲线S4至S9可知,第三辐射体121产生的第五谐振可以支持GPS-L5频段(1.15GHz至1.5GHz)的第五无线信号。第四辐射体122和至少部分第三辐射体121产生的第六谐振可以支持2.4G的Wi-Fi频段(2.4GHz至2.48GHz)的第六无线信号,或者支持N41频段(2.496GHz至2.69GHz)/N41频段(2.496GHz至2.69GHz)的第六无线信号。第三辐射体121和至少部分第四辐射体122产生的第七谐振可以支持N78频段(3.3GHz至3.8GHz)/B78频段(3.3GHz至3.8GHz)的第七无线信号。第四辐射体122产生的第八谐振可以支持GPS-L1(1.55GHz至1.6GHz)频段的第八无线信号。第三辐射体121和至少部分第四辐射体122产生的第九谐振可以支持N79频段(4.4GHz至5.0GHz)/B79频段(4.4GHz至5.0GHz)的第九无线信号。
可以理解的是,由曲线S4至S9可知,第二天线120在GPS-L1频段、2.4G的Wi-Fi频段、N41/B41频段下的系统效率均值分别约为-3dB、-4.1dB和-3.2dB;第二天线120在GPS-L5频段、N78频段/B78频段、N79频段/B79频段下的系统效率均值分别约为-9.8dB、-3.3dB和-3.8dB;第二天线120的辐射性能及其优良。
可以理解的是,第七谐振也可以支持第八无线信号,例如支持N79频段的信号。同理,第八谐振也可以支持第七无线信号,例如支持N78频段的信号。本申请实施例对此不进行限定。
可以理解的是,上述第五至第九谐振支持的无线信号并不局限于上述举例,还可以支持其他的无线信号。本申请实施例对此也不进行限定。
本申请实施例的第二天线120,利用第三滤波电路126和第四滤波电路127分别在N78和N79频段等效为短路,将第七激励信号I7和第九激励信号I9从第二滤波电路124、第三滤波电路126接地,从而使第二馈源123馈电时,第二天线120可以工作在N78和N79频段,与此同时,第二馈源123和第三馈源125也可以产生良好的隔离度,不会影响第二天线120的性能。并且,利用第二滤波电路124在2.4GWi-Fi和N41频段等效为开路,将第六激励信号I6从第三辐射体121末端接地,从而使第二馈源123馈电时,第二天线120可以工作在2.4GWi-Fi和N41频段,与此同时,第二馈源123和第三馈源125也可以产生良好的隔离度。
本申请实施例的第二天线120,利用第三辐射体121和第四辐射体122相对设置形成第二耦合间隙102,在较小的空间下实现了GPS-L1频段、2.4GWi-Fi频段、N41/B41频段、GPS-L5频段、N78/B78频段和N79/B79频段六个频段的覆盖。第二天线120在GPS-L1频段的天线效率可以在-3dB,性能良好,此外,第二天线120还可以工作在GPS-L5频段,第二天线120可 以满足GPS-L1和GPS-L5双频段高精度定位,对于GPS系统的定位也有很好的辅助作用。同时,第二天线120也可以工作在2.4GWi-Fi、N41、N78和N79频段,非常适用于第五代移动通信系统。
其中,请参考图21,图21为本申请实施例提供的电子设备10的第四种结构示意图。电子设备10或天线装置还可以包括第三天线130、第四天线140和第五天线150。
第三天线130的辐射体可以设置于第三边框323。例如,第三天线130的辐射体可以直接或间接连接于第三边框323且其投影位于第三边框323上;再例如,当第三边框323为导体材质时,第三天线130的辐射体可以直接形成于第三边框323以实现第三边框323的复用。第三天线130的辐射体可以与第一天线110的第二辐射体112间隔设置,以降低第三天线130与第一天线110之间的干扰。
至少大部分的第四天线140的辐射体可以设置于第二边框322。同第三天线130一样,第四天线140的辐射体可以连接于或形成于第二边框322。第四天线140的辐射体可以与第一天线110的辐射体、第二天线120的辐射体相对设置,第四天线140的辐射体也可以与第三天线130的辐射体间隔设置,从而,第四天线140与第一天线110、第二天线120、第三天线130之间的干扰较小。
第五天线150的辐射体可以设置于第四边框324。同第三天线130一样,第五天线150的辐射体可以连接于或形成于第四边框324。第五天线150的辐射体可以与第三天线130的辐射体相对设置,第五天线150的辐射体也可以与第二天线120的辐射体、第四天线140的辐射体间隔设置,从而,第五天线150与第一天线110、第二天线120、第三天线130、第四天线140之间的干扰较小。
可以理解的是,第三天线130、第四天线140、第五天线150可以均可以包括电性连接的馈源及其辐射体,以使得第三天线130、第四天线140、第五天线150可以支持无线信号。
可以理解的是,第三天线130、第四天线140、第五天线150中可以但不限于包括一个或多个辐射体。本申请实施例对此不进行限定。
可以理解的是,第一天线110、第二天线120、第三天线130、第四天线140、第五天线150中的一个或多个可以支持相同频段的无线信号,以使得多个天线可以实现多输入多输出(multiple-in multiple-out,简称MIMO)传输系统,电子设备10或天线装置可以具有更优的传输速率。例如,第一天线110、第三天线130、第四天线140、第五天线150均可以支持N28频段/B28频段的信号。
示例性的,请结合图21并请参考图22,图22为图21所示的电子设备10的一种S参数曲线图。图22中上半部分的四条曲线S10分别为第一天线110、第三天线130、第四天线140、第五天线150的反射系数曲线;图22中下半部分的多条曲线S11分别为第一天线110、第三天线130、第四天线140、第五天线150相互之间的隔离度曲线。由图22可以看出,第一天线110、第三天线130、第四天线140、第五天线150之间的隔离度小于-17dB,多个天线之间的隔离度性能良好。
本申请实施例的电子设备10或天线装置,四支支持N28频段的低频天线分别位于电子设备10或天线装置的四条侧边,可以合理地设置辐射枝节长度较长的四支低频天线,实现电子设备10或天线装置的小型化设计。
请参考图23,图23为本申请实施例提供的电子设备10的第五种结构示意图。当至少大部分的第二天线120的辐射体也设置于第一边框321时,此时,在顶部较小的尺寸下可以实现N28频段与LTE的MHB(中高频)频段(例如B3频段、N41频段)、N78频段、N79频段集合的天线构架。电子设备10或天线装置也可以实现一种集GPS-L5频段、GPS-L5频段及四支低频天线的天线构架,该天线构架可以满足GPS双频段高精度定位,也可以满足4×4的N28 频段的MIMO应用需求,在满足覆盖距离远的情况下,可以实现高速通信的需求。
其中,请再次参考图23,电子设备10还可以包括第六天线160、第七天线170和第八天线180。
第六天线160的辐射体可以设置于第三边框323,该第六天线160的辐射体的一端(例如自由端)可以与第三天线130的辐射体的一端(例如自由端)间隔设置,第六天线160的辐射体的另一端(例如接地端)可以朝向远离第三天线130的辐射体的方向延伸并接地,第三天线130的辐射体的另一端(例如接地端)也可以朝向远离第六天线160的辐射体的方向延伸并接地。第六天线160可以与第三天线130形成口对口天线。
可以理解的是,第六天线160的辐射体可以设置于第一天线110的辐射体和第三天线130的辐射体之间,为了提高第六天线160与第一天线110之间的隔离度,第六天线160的辐射体可以与第一天线110的辐射体共用接地端,例如第六天线160的辐射体可以通过第一天线110的第二辐射体112的第二接地端1121回地。
第七天线170的辐射体可以设置于第四边框324,第七天线170的辐射体的一端(例如接地端)可以与第五天线150的辐射体的自由端间隔设置,第七天线170的辐射体的另一端(自由端)可以朝向远离第五天线150的辐射体的方向延伸。
可以理解的是,第七天线170的辐射体可以设置于第二天线120的辐射体与第五天线150的辐射体之间。第七天线170的辐射体可以通过第二天线120的第四辐射体122的第四接地端1221与第二天线120相隔离;第七天线170的辐射体也可以通过其自身的接地端与第五天线150相隔离,第七天线170与第二天线120、第五天线150之间的隔离度较优。
至少大部分的第八天线180的辐射体可以设置于第二边框322,第八天线180的辐射体的一端(例如自由端)可以与第四天线140的辐射体的一端(例如自由端)间隔设置,第八天线180的辐射体的另一端(例如接地端)与第四天线140的辐射体的另一端(例如接地端)朝向相反的方向延伸并接地。第八天线180与第四天线140可以形成口对口天线对。
可以理解的是,第六天线160、第七天线170、第八天线180均可以包括电性连接的馈源及其辐射体,以使得第六天线160、第七天线170、第八天线180可以支持无线信号。第六天线160、第七天线170、第八天线180均可以支持长期演进技术的中高频信号或高频信号、5G新空口技术的中高频信号或高频信号、2.4G的Wi-Fi频段信号、5G的Wi-Fi频段信号中的至少一个。例如,第六天线160可以但不限于支持LTE的中高频/高频信号,第七天线170可以但不限于支持2.4G的Wi-Fi信号或5G的Wi-Fi信号,第八天线180可以但不限于支持NR高频信号、N78或N79频段的信号。本申请实施例对此不进行限定。
可以理解的是,第六天线160、第七天线170、第八天线180中可以但不限于包括一个或多个辐射体。本申请实施例对此不进行限定。
可以理解的是,本申请实施例的第一天线110、第二天线120、第三天线130、第四天线140、第五天线150、第六天线160、第七天线170、第八天线180中的两个或多个可以支持同一频段的无线信号,以形成MIMO传输系统;或者,每一天线均可以支持不同频段的无线信号。本申请实施例对此不进行限定。
本申请实施例的电子设备10或天线装置,将八个天线设置在四条边框320上,可以合理利用边框320上的空间,使得多个天线的布局更加紧凑。
其中,请参考图24,图24为本申请实施例提供的电子设备10的第六种结构示意图。电子设备10还可以包括显示屏400、中框300、电路板500、电池700和后壳800。
显示屏400设置在中框300上,以支持电子设备10的显示面,用于显示图像、文本等信息。显示屏400可以包括液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏等类型的显示屏400。
中框300可以包括中板310和边框320,中板310可以为薄板状或薄片状的结构,边框320可以环绕中板310的边缘设置,以为电子设备10中的电子器件或功能组件提供支撑作用。该边框320可以包括前述的第一边框321、第二边框322、第三边框323和第四边框324。
可以理解的是,当中板310包括导体材质时,中板310可以支持电子设备10的接地平面200,以实现多个天线的接地。当然,接地平面200也可以设置在电子设备10的其他结构上,例如设置在电路板500、后壳800。本申请实施例对接地平面200的具体设置方式不进行限定。
电路板500设置在中框300上以进行固定。其中,电路板500可以为电子设备10的主板。电路板500上可以集成有处理器,此外还可以集成耳机接口、加速度传感器、陀螺仪、马达等功能组件中的一个或多个。同时,显示屏400可以电连接至电路板500,以通过电路板500上的处理器对显示屏400的显示进行控制。
电池700设置在中框300上,并通过后壳800将电池700密封在电子设备10的内部。同时,电池700电连接至电路板500,以实现电池700为电子设备10供电。其中,电路板500上可以设置有电源管理电路。电源管理电路用于将电池700提供的电压分配到电子设备10中的各个电子器件。
后壳800可与中框300连接。例如,后壳800可以通过诸如双面胶等粘接剂贴合到中框300上以实现与中框300的连接。其中,后壳800用于与中框300、显示屏400共同将电子设备10的电子器件和功能组件密封在电子设备10内部,以对电子设备10的电子器件和功能组件支持保护作用。
可以理解的是,电子设备10还可以不局限于包括上述结构,例如还可以包括摄像模块、传感器模块等,其具体结构可以参见相关技术的说明,在此不进行说明。
其中,请再次参考图24,当电子设备10的边框320为导体材质时,边框320上可以设置多个缝隙103,多个缝隙103中的一个或多个可以分布在第一边框321、第二边框322、第三边框323、第四边框324上,以使得边框320上可以形成多个金属枝节325。本申请实施例的八个天线可以但不限于包括其中的一个或多个金属枝节325。
例如,第一天线110至少可以包括两个金属枝节325,第一辐射体111可以但不限于包括一个或多个金属枝节325,第二辐射体112也可以但不限于包括一个或多个金属枝节325。第二天线120可以至少包括两个金属枝节325;第三天线130、第四天线140、第五天线150、第六天线160、第七天线170、第八天线180至少可以包括一个金属枝节325。本申请实施例对上述天线的具体结构不进行限定。
本申请实施例的电子设备10或天线装置,多个天线形成在中框300上,多个天线不用额外占据电子设备10的空间,可以进一步实现电子设备10的小型化。
需要理解的是,在本申请的描述中,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
以上对本申请实施例所提供的电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种电子设备,包括:
    第一天线,包括第一辐射体、第二辐射体、第一馈源和调节电路,所述第一辐射体的一端与所述第二辐射体的一端之间形成有第一耦合间隙,所述第一辐射体的另一端与所述第二辐射体的另一端朝向相反的方向延伸并接地;所述第一馈源与所述第一辐射体电性连接,至少部分所述调节电路电连接于所述第一馈源与所述第一辐射体之间;其中,
    所述第一馈源用于提供第一激励信号,所述第一激励信号在所述调节电路的作用下使所述第一辐射体实现第一谐振;和/或,
    所述第一馈源用于提供第二激励信号,所述第二激励信号在所述调节电路的作用下、经所述第一耦合间隙耦合至所述第二辐射体并使所述第二辐射体实现第二谐振,所述第二谐振不同于所述第一谐振。
  2. 根据权利要求1所述的电子设备,其中,所述第一馈源还用于提供第三激励信号,所述第三激励信号在所述调节电路的作用下使所述第一辐射体实现第三谐振。
  3. 根据权利要求2所述的电子设备,其中,所述第一馈源还用于提供第四激励信号,所述第四激励信号在所述调节电路的作用下使所述第一辐射体实现第四谐振。
  4. 根据权利要求3所述的电子设备,其中,所述第一谐振用于支持N28频段、B28频段、N3频段、B3频段、N41频段或B41频段信号,所述第三谐振用于支持N28频段、B28频段、N3频段、B3频段、N41频段或B41频段信号,所述第四谐振用于支持N28频段、B28频段、N3频段、B3频段、N41频段或B41频段信号,所述第一谐振、所述第三谐振、所述第四谐振用于支持不同频段的信号;所述第二谐振用于支持N78频段或B78频段的信号。
  5. 根据权利要求3所述的电子设备,其中,所述第一辐射体以四分之一波长模态实现所述第一谐振、所述第三谐振或所述第四谐振;所述第二辐射体以四分之一波长模态实现所述第二谐振。
  6. 根据权利要求1所述的电子设备,其中,所述调节电路包括第一匹配电路和第一滤波电路,所述第一匹配电路串联于所述第一馈源和所述第一辐射体之间;所述第一滤波电路的一端并联于所述第一馈源和所述第一辐射体之间、另一端接地。
  7. 根据权利要求6所述的电子设备,其中,所述第一匹配电路用于在所述第一馈源提供的激励信号的作用下形成等效电容或等效电感,以对应使所述第一馈源提供的激励信号耦合馈电或直接馈电至所述第一辐射体;
    所述第一滤波电路用于在所述第一馈源提供的激励信号的作用下形成等效电容或等效电感,以增加或减少所述第一辐射体或所述第二辐射体的电长度。
  8. 根据权利要求6所述的电子设备,其中,所述调节电路还包括切换电路,所述切换电路电连接于所述第二辐射体,所述切换电路用于增加或减少所述第二辐射体的电长度,以使所述第一天线形成所述第一谐振或所述第二谐振。
  9. 根据权利要求1所述的电子设备,其中,所述电子设备还包括第一边框和第二天线,至少大部分所述第二天线的辐射体与至少大部分所述第一天线的辐射体设置于所述第一边框。
  10. 根据权利要求9所述的电子设备,其中,所述第二天线包括:
    第三辐射体,所述第三辐射体的一端与所述第一辐射体的另一端连接并通过所述第一辐射体的另一端接地;
    第二馈源,电连接于所述第三辐射体,所述第二馈源用于提供第五激励信号,所述第五激励信号用于激励所述第三辐射体产生第五谐振;
    第二滤波电路,所述第二滤波电路串联于所述第二馈源和所述第三辐射体之间;
    第四辐射体,所述第四辐射体的一端与所述第三辐射体的另一端之间形成第二耦合间隙、所述第四辐射体的另一端接地;及
    第三馈源,电连接于所述第四辐射体,所述第三馈源用于提供第六激励信号;其中,
    所述第二滤波电路对所述第六激励信号开路,所述第六激励信号经所述第二耦合间隙耦合至所述第三辐射体,所述第六激励信号用于激励所述第三辐射体和所述第四辐射体共同产生第六谐振。
  11. 根据权利要求10所述的电子设备,其中,所述第二天线还包括:
    第三滤波电路,所述第三滤波电路的一端电连接于所述第四辐射体与所述第三馈源之间、另一端接地;
    所述第二馈源还用于提供第七激励信号,所述第七激励信号经所述第二耦合间隙耦合至所述第四辐射体,所述第三滤波电路对所述第七激励信号短路,所述第七激励信号用于激励所述第三辐射体和至少部分所述第四辐射体共同产生第七谐振。
  12. 根据权利要求11所述的电子设备,其中,所述第三馈源还用于提供第八激励信号,所述第八激励信号用于激励所述第四辐射体产生第八谐振。
  13. 根据权利要求12所述的电子设备,其中,所述第五谐振用于支持GPS-L5频段信号,所述第六谐振用于支持2.4G的Wi-Fi频段信号、N41频段或B41频段信号,第七谐振用于支持N78频段、B78频段、N79频段或B79频段信号,第八谐振用于支持GPS-L1频段信号。
  14. 根据权利要求10所述的电子设备,其中,所述第二天线还包括:
    第四滤波电路,所述第四滤波电路的一端电连接于所述第四辐射体与所述第三馈源之间、另一端接地;
    所述第二馈源还用于提供第九激励信号,所述第九激励信号经所述第二耦合间隙耦合至所述第四辐射体,所述第四滤波电路对所述第就激励信号短路,所述第就激励信号用于激励所述第三辐射体和至少部分所述第四辐射体共同产生第九谐振。
  15. 根据权利要求1所述的电子设备,其中,所述电子设备还包括顺次连接的第一边框、第三边框、第二边框和第四边框,所述第一边框与所述第二边框相对设置,所述第三边框与所述第四边框相对设置,所述第一边框、所述第二边框的长度小于所述第三边框、所述第四边框的长度;
    所述电子设备还包括第三天线、第四天线和第五天线,至少大部分的所述第一天线的辐射体设置于第一边框,所述第三天线的辐射体设置于所述第三边框,至少大部分的所述第四天线的辐射体设置于所述第二边框,所述第五天线的辐射体设置于所述第四边框,所述第一天线、所述第三天线、所述第四天线和所述第五天线用于实现对无线信号的多输入多输出传输。
  16. 根据权利要求15所述的电子设备,其中,所述第一天线、所述第三天线、所述第四天线、所述第五天线用于支持N28频段或B28的信号。
  17. 根据权利要求15所述的电子设备,其中,所述电子设备还包括第二天线,至少大部分所述第二天线的辐射体设置于所述第一边框。
  18. 根据权利要求15所述的电子设备,其中,所述电子设备还包括:
    第六天线,所述第六天线的辐射体设置于所述第三边框,所述第六天线的辐射体一端与所述第三天线的辐射体一端间隔设置,所述第六天线的辐射体的另一端及所述第三天线的辐射体的另一端朝向相反的方向延伸并接地;
    第七天线,所述第七天线的辐射体设置于所述第四边框,所述第七天线的辐射体的接 地端与所述第五天线的辐射体的自由端间隔设置,所述第七天线的辐射体的自由端朝向远离所述第五天线的辐射体的方向延伸;及
    第八天线,至少大部分所述第八天线的辐射体设置于所述第二边框,所述第八天线的辐射体的一端与所述第四天线的辐射体的一端间隔设置,所述第八天线的辐射体的另一端与所述第四天线的辐射体的另一端朝向相反的方向延伸并接地。
  19. 根据权利要求18所述的电子设备,其中,所述第六天线、所述第七天线或所述第八天线用于支持长期演进技术的中高频信号或高频信号、5G新空口技术的中高频信号或高频信号、2.4G的Wi-Fi频段信号、5G的Wi-Fi频段信号中的至少一个。
  20. 根据权利要求1所述的电子设备,其中,所述电子设备还包括:
    边框,所述边框上设有多个缝隙,以在所述边框上形成至少两个金属枝节,所述第一辐射体包括一个或多个所述金属枝节,所述第二辐射体包括一个或多个所述金属枝节。
PCT/CN2022/138063 2022-02-17 2022-12-09 电子设备 WO2023155559A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210145942.3A CN114530691A (zh) 2022-02-17 2022-02-17 电子设备
CN202210145942.3 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023155559A1 true WO2023155559A1 (zh) 2023-08-24

Family

ID=81623528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138063 WO2023155559A1 (zh) 2022-02-17 2022-12-09 电子设备

Country Status (2)

Country Link
CN (1) CN114530691A (zh)
WO (1) WO2023155559A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644438A (zh) * 2021-08-31 2021-11-12 维沃移动通信有限公司 天线装置及电子设备
CN114530691A (zh) * 2022-02-17 2022-05-24 Oppo广东移动通信有限公司 电子设备
CN114883782A (zh) * 2022-06-06 2022-08-09 Oppo广东移动通信有限公司 电子设备
CN114976600A (zh) * 2022-06-27 2022-08-30 Oppo广东移动通信有限公司 天线组件、中框组件以及电子设备
CN115084837B (zh) * 2022-07-27 2024-05-07 Oppo广东移动通信有限公司 天线装置和电子设备
CN117691336A (zh) * 2022-09-05 2024-03-12 维沃移动通信有限公司 天线结构和电子设备
CN117977161A (zh) * 2022-10-25 2024-05-03 Oppo广东移动通信有限公司 一种天线组件和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687111A (zh) * 2018-12-29 2019-04-26 维沃移动通信有限公司 一种天线结构及通信终端
CN112736461A (zh) * 2020-12-28 2021-04-30 Oppo广东移动通信有限公司 天线装置及电子设备
WO2021179808A1 (zh) * 2020-03-12 2021-09-16 Oppo广东移动通信有限公司 天线组件和电子设备
CN113764866A (zh) * 2020-06-03 2021-12-07 华为技术有限公司 一种天线装置、电子设备
CN114530691A (zh) * 2022-02-17 2022-05-24 Oppo广东移动通信有限公司 电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394545A (zh) * 2020-03-12 2021-09-14 Oppo广东移动通信有限公司 天线组件和电子设备
WO2021179825A1 (zh) * 2020-03-12 2021-09-16 Oppo广东移动通信有限公司 天线组件和电子设备
CN215771542U (zh) * 2021-05-28 2022-02-08 荣耀终端有限公司 一种三模宽带终端天线和终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687111A (zh) * 2018-12-29 2019-04-26 维沃移动通信有限公司 一种天线结构及通信终端
WO2021179808A1 (zh) * 2020-03-12 2021-09-16 Oppo广东移动通信有限公司 天线组件和电子设备
CN113764866A (zh) * 2020-06-03 2021-12-07 华为技术有限公司 一种天线装置、电子设备
CN112736461A (zh) * 2020-12-28 2021-04-30 Oppo广东移动通信有限公司 天线装置及电子设备
CN114530691A (zh) * 2022-02-17 2022-05-24 Oppo广东移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN114530691A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2023155559A1 (zh) 电子设备
WO2022142659A1 (zh) 天线装置及电子设备
WO2022142824A1 (zh) 天线系统及电子设备
CA2914269C (en) Multiple-antenna system and mobile terminal
WO2019090690A1 (zh) 一种移动终端的天线及移动终端
TW201115837A (en) High isolation antenna system
WO2022142820A1 (zh) 天线组件及电子设备
CN106450752B (zh) 一种用于智能手机实现高隔离度的mimo天线
WO2021238347A1 (zh) 天线和电子设备
CN114284721A (zh) 一种天线装置及电子设备
WO2021213125A1 (zh) 天线单元和电子设备
WO2023124646A1 (zh) 天线组件及电子设备
US20170194694A1 (en) Dual-band wi-fi antenna and mobile terminal
US20240154295A1 (en) Antenna and communication device
US20240088541A1 (en) Electronic Device
WO2022121453A1 (zh) 天线装置及电子设备
WO2021254322A1 (zh) 天线装置与电子设备
WO2021244115A1 (zh) 一种天线装置、电子设备
WO2023236494A1 (zh) 电子设备
CN110829023B (zh) 天线模组及终端
WO2023273493A1 (zh) 天线装置及电子设备
WO2022237346A1 (zh) 天线组件及电子设备
WO2022017220A1 (zh) 一种电子设备
WO2022001740A1 (zh) 一种电子设备
CN102157794A (zh) 谐振产生的三频段天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926862

Country of ref document: EP

Kind code of ref document: A1