WO2022142820A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2022142820A1
WO2022142820A1 PCT/CN2021/131176 CN2021131176W WO2022142820A1 WO 2022142820 A1 WO2022142820 A1 WO 2022142820A1 CN 2021131176 W CN2021131176 W CN 2021131176W WO 2022142820 A1 WO2022142820 A1 WO 2022142820A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
coupling
antenna unit
frequency
antenna assembly
Prior art date
Application number
PCT/CN2021/131176
Other languages
English (en)
French (fr)
Inventor
吴小浦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21913563.9A priority Critical patent/EP4266493A1/en
Publication of WO2022142820A1 publication Critical patent/WO2022142820A1/zh
Priority to US18/215,802 priority patent/US20230344151A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an antenna assembly and an electronic device.
  • the present application provides an antenna assembly and an electronic device that improve communication quality and facilitate the miniaturization of the whole machine.
  • an antenna assembly including:
  • a first antenna unit including a first radiator
  • the second antenna unit includes a second radiator, a first slot is formed between one end of the second radiator and the first radiator, and at least part of the second radiator passes through the first slot and the said first radiator coupling;
  • the third antenna unit includes a third radiator, a second slot is formed between the third radiator and the other end of the second radiator, and at least part of the third radiator passes through the second slot and is connected to the other end of the second radiator. the second radiator is coupled;
  • the electromagnetic wave signals sent and received by the second antenna unit under the coupling action of the first radiator and the second radiator and under the coupling action of the second radiator and the third radiator cover at least GPS -L1 band, Wi-Fi 2.4G band, LTE-MHB band and NR-MHB band.
  • an embodiment of the present application provides an electronic device, including a casing and the antenna assembly, the antenna assembly is at least partially integrated on the casing; or, the antenna assembly is provided in the casing.
  • the antenna assembly provided by the embodiments of the present application, by designing capacitive coupling between the first radiator of the first antenna unit and the second radiator of the second antenna unit through the first slot, the second radiator of the second antenna unit is connected to the The third antenna unit and the third radiator are capacitively coupled through the second slot; the first radiator of the first antenna unit, the second radiator of the second antenna unit, and the third radiator of the third antenna unit realize the Mutual multiplexing, thereby realizing the three-antenna unit design, the electromagnetic waves sent and received by the second antenna unit in the three-antenna unit design cover at least GPS-L1 frequency band, Wi-Fi 2.4G frequency band, LTE-MHB frequency band and NR-MHB frequency band The frequency band enables the entire antenna assembly to transmit and receive signals with a larger bandwidth, which improves the communication quality of the antenna assembly, so that the antenna assembly can reduce the overall volume of the antenna assembly while increasing the frequency bandwidth, which is conducive to the overall miniaturization of electronic equipment.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is the exploded schematic diagram of the electronic device that Fig. 1 provides;
  • FIG. 3 is a schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the circuit structure of the first antenna assembly provided in FIG. 3;
  • FIG. 5 is a schematic structural diagram of a first first frequency selection filter circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a second type of first frequency selection filter circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a third first frequency selection filter circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a fourth first frequency selection filter circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a fifth first frequency selection filter circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a sixth first frequency selection filter circuit provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a seventh first frequency selection filter circuit provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an eighth first frequency selection filter circuit provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the circuit structure of the second type of antenna assembly provided in FIG. 3;
  • FIG. 14 is a schematic diagram of the circuit structure of the third antenna assembly provided in FIG. 3;
  • FIG. 15 is an equivalent circuit diagram of the first antenna unit provided in FIG. 4;
  • FIG. 16 is a graph of the return loss of several resonant modes in which the first antenna unit provided in FIG. 4 works;
  • FIG. 17 is an equivalent circuit diagram of the second antenna unit provided in FIG. 4;
  • FIG. 18 is a graph of the return loss of several resonant modes in which the second antenna unit provided in FIG. 4 works;
  • FIG. 19 is an equivalent circuit diagram of the third antenna unit provided in FIG. 4;
  • FIG. 20 is a graph of the return loss of several resonant modes in which the third antenna unit provided in FIG. 4 works;
  • FIG. 21 is a graph of the isolation degree between the first antenna unit, the second antenna unit and the third antenna unit provided in FIG. 4;
  • FIG. 22 is a graph of the total working efficiency of the first antenna unit, the second antenna unit and the third antenna unit provided in FIG. 4;
  • FIG. 23 is a schematic diagram of the circuit structure of the fourth antenna assembly provided in FIG. 3;
  • FIG. 24 is a schematic diagram of the circuit structure of the fifth antenna assembly provided in FIG. 3;
  • FIG. 25 is a schematic diagram of the circuit structure of the sixth antenna assembly provided in FIG. 3;
  • FIG. 26 is a schematic diagram of the circuit structure of the seventh antenna assembly provided in FIG. 3;
  • FIG. 27 is a schematic structural diagram of the first antenna assembly provided on the housing provided by the embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of a second antenna assembly provided in an embodiment of the present application disposed in a housing;
  • FIG. 29 is a schematic structural diagram of a third antenna assembly provided on a housing provided in an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an electronic device 1000 according to an embodiment of the present application.
  • the electronic device 1000 can be a phone, a TV, a tablet computer, a mobile phone, a camera, a personal computer, a notebook computer, a vehicle-mounted device, a headset, a watch, a wearable device, a base station, a vehicle-mounted radar, a customer premise equipment (CPE), etc.
  • the electronic device 1000 is defined with reference to the first viewing angle, the width direction of the electronic device 1000 is defined as the X direction, the length direction of the electronic device 1000 is defined as the Y direction, and the electronic device The thickness direction of 1000 is defined as the Z direction.
  • the direction indicated by the arrow is positive.
  • the electronic device 1000 includes the antenna assembly 100 .
  • the antenna assembly 100 is used for transmitting and receiving radio frequency signals, so as to realize the communication function of the electronic device 1000 .
  • At least some components of the antenna assembly 100 are provided on the main board 200 of the electronic device 1000 .
  • the electronic device 1000 also includes a display screen 300, a battery 400, a casing 500, a camera, a microphone, a receiver, a speaker, a face recognition module, a fingerprint recognition module, and other devices that can realize the basic functions of the mobile phone. In this embodiment, details are not repeated.
  • the antenna assembly 100 includes a first antenna unit 10 , a second antenna unit 20 , a third antenna unit 30 and a reference ground pole 40 .
  • the first antenna unit 10 , the second antenna unit 20 , and the third antenna unit 30 are arranged in sequence, and the first antenna unit 10 , the second antenna unit 20 , and the third antenna unit 30 are all electrically connected to the reference ground pole 40 .
  • the first antenna unit 10 includes a first radiator 11 and a first RF front-end unit 61 electrically connected to the first radiator 11 .
  • the first radio frequency front-end unit 61 is used to feed the first radio frequency signal into the first radiator 11 , so that the first radiator 11 can send and receive the first electromagnetic wave signal.
  • the second antenna unit 20 includes a second radiator 21 and a second RF front-end unit 62 electrically connected to the second radiator 21 .
  • a first slot 101 is formed between one end of the second radiator 21 and the first radiator 11 , and at least part of the second radiator 21 is coupled with the first radiator 11 through the first slot 101 .
  • the specific width of the first slit 101 is not limited in the present application, for example, the width of the first slit 101 is less than or equal to 2 mm, but not limited to this size.
  • the second radio frequency front-end unit 62 is used to feed the second radio frequency signal into the second radiator 21 , so that the second radiator 21 can send and receive the second electromagnetic wave signal.
  • the third antenna unit 30 includes a third radiator 31 and a third RF front-end unit 63 electrically connected to the third radiator 31 .
  • the third radio frequency front-end unit 63 is configured to feed the third radio frequency signal into the third radiator 31 , so that the third radiator 31 can send and receive third electromagnetic wave signals.
  • a second slit 102 is formed between the other end of the second radiator 21 and the third radiator 31 , and at least part of the third radiator 31 passes through the second slit 102 and the second radiator 21 Coupling.
  • the present application does not limit the specific width of the second slit 102, for example, the width of the second slit 102 is less than or equal to 2 mm, but not limited to this size.
  • the third radio frequency front-end unit 63 is used to feed the third radio frequency signal into the third radiator 31 , so that the third radiator 31 can send and receive third electromagnetic wave signals.
  • the second antenna element 20 is under the coupling action of the first radiator 11 and the second radiator 21 and between the second radiator 21 and the first radiator 21
  • the second electromagnetic wave signals sent and received under the coupling action of the three radiators 31 cover at least the GPS-L1 frequency band, the Wi-Fi 2.4G frequency band, the LTE-MHB frequency band and the NR-MHB frequency band.
  • the present application designs the second radiator 21 and the second RF front-end unit 62 of the second antenna unit 20 , and sets the third radiator 31 of the third antenna unit 30 and the first radiation of the first antenna unit 10
  • the body 11 is coupled with the second antenna unit 20, so that the second antenna unit 20 can achieve coverage of various frequency bands such as GPS-L1 frequency band, Wi-Fi 2.4G frequency band, LTE-MHB frequency band and NR-MHB frequency band.
  • GPS-L1 frequency band, Wi-Fi 2.4G frequency band, LTE-MHB frequency band and NR-MHB frequency band are several common antenna frequency bands. Compared with the traditional technology, multiple antenna modules are used to cover the above frequency bands.
  • the GPS-L1 frequency band and the Wi-Fi 2.4G frequency band are respectively covered by two different antenna modules or antenna units. Only one antenna unit can achieve the coverage of the above-mentioned frequency bands, which greatly simplifies the structure of the antenna assembly 100, improves the functional integration of the antenna assembly 100, reduces the overall volume of the antenna assembly 100, and is conducive to improving the electronic components installed with the antenna assembly 100. Communication quality of the device 1000 and reduction of the overall size.
  • the antenna assembly 100 provided in this embodiment of the present application, by designing capacitive coupling between the first radiator 11 of the first antenna unit 10 and the second radiator 21 of the second antenna unit 20 through the first slot 101, the second antenna unit The second radiator 21 of 20 and the third antenna unit 30 and the third radiator 31 are capacitively coupled through the second slot 102; The radiator 21 and the third radiator 31 of the third antenna unit 30 are mutually multiplexed, thereby realizing a three-antenna unit integrated design.
  • the electromagnetic waves sent and received by the second antenna unit 20 in the three-antenna unit integrated design cover at least GPS- The L1 frequency band, the Wi-Fi 2.4G frequency band, the LTE-MHB frequency band and the NR-MHB frequency band enable the entire antenna assembly 100 to cover a larger bandwidth for transmitting and receiving signals, improve the communication quality of the antenna assembly 100, and thus increase the frequency bandwidth of the antenna assembly 100.
  • the overall volume of the antenna assembly 100 can also be reduced, which is beneficial to the overall miniaturization of the electronic device 1000 .
  • the first electromagnetic wave signals received and received by the first antenna unit 10 at least cover the LTE-MHB frequency band, the NR-MHB frequency band and the NR-UHB frequency band.
  • the present application designs the first radiator 11 and the first RF front-end unit 61 of the first antenna unit 10, and sets the second radiator 21 of the second antenna unit 20 to couple with the first antenna unit 10, so that the The first antenna unit 10 realizes coverage of various frequency bands such as LTE-MHB frequency band, NR-MHB frequency band and NR-UHB frequency band.
  • LTE-MHB frequency band, NR-MHB frequency band and NR-UHB frequency band are all kinds of Commonly used antenna frequency bands, compared to the conventional technology that covers the above-mentioned frequency bands by multiple antenna modules, the antenna assembly 100 provided by the present application can realize the above-mentioned frequency bands through one antenna unit of one antenna assembly 100 (ie, one antenna module).
  • the coverage of the antenna assembly 100 greatly simplifies the structure of the antenna assembly 100, improves the functional integration of the antenna assembly 100, saves stacking space, reduces the overall volume of the antenna assembly 100, and is beneficial to improve the communication quality of the electronic device 1000 installed with the antenna assembly 100. and reduce the overall size.
  • the third electromagnetic wave signal received and received by the third antenna unit 30 covers at least the NR-UHB frequency band and the Wi-Fi 5G frequency band.
  • the present application designs the third radiator 31 and the third RF front-end unit 63 of the third antenna unit 30, and sets the second radiator 21 of the second antenna unit 20 to couple with the third antenna unit 30, so that the The third antenna unit 30 realizes coverage of various frequency bands such as the NR-UHB frequency band and the Wi-Fi 5G frequency band.
  • the NR-UHB frequency band and the Wi-Fi 5G frequency band are several commonly used antenna frequency bands.
  • multiple antenna modules are used to jointly cover the above-mentioned frequency bands, and the antenna assembly 100 provided by the present application can realize the coverage of the above-mentioned frequency bands through one antenna unit of one antenna assembly 100 (ie, one antenna module), which greatly simplifies the antenna.
  • the structure of the assembly 100 improves the functional integration of the antenna assembly 100, reduces the overall volume of the antenna assembly 100, improves the communication quality of the electronic device 1000 installed with the antenna assembly 100, and reduces the overall size.
  • the second antenna unit 20 and the third antenna unit 30 are coupled to each other, so that the first electromagnetic wave signal received and received by the first antenna unit 10 covers at least the LTE-MHB frequency band, the NR-MHB frequency band and the NR-UHB frequency band, and the second The electromagnetic wave signal covers at least the GPS-L1 frequency band, the Wi-Fi 2.4G frequency band, the LTE-MHB frequency band and the NR-MHB frequency band, and the third electromagnetic wave signal sent and received by the third antenna unit 30 covers at least the NR-UHB frequency band and the Wi-Fi 5G frequency band
  • the three antenna units are integrated and the antenna signals of multiple different frequency bands are integrated into one antenna unit or one antenna assembly 100, which saves stacking space and reduces the overall volume of the antenna assembly 100, which is conducive to reducing Small overall size; multiple modes in
  • first antenna unit 10 the second antenna unit 20
  • third antenna unit 30 The specific structures of the first antenna unit 10 , the second antenna unit 20 , and the third antenna unit 30 are illustrated below with reference to the accompanying drawings.
  • the shape of the first radiator 11 is strip-shaped.
  • the first radiator 11 can be formed on the casing or a carrier inside the casing by coating, printing or the like.
  • the extending track of the first radiator 11 includes, but is not limited to, a straight line, a bent line, a curved line, and the like.
  • the extending trajectory of the first radiator 11 is a straight line.
  • the first radiator 11 may be a line with a uniform width on the extending track, or may be a line with varying widths, such as a gradual change in width, a widened area, or the like.
  • the first radiator 11 includes a first ground terminal G1 and a first coupling terminal H1 , and a first feeding point A disposed between the first ground terminal G1 and the first coupling terminal H1 .
  • the first ground terminal G1 and the first coupling terminal H1 are two ends of the first radiator 11 respectively.
  • the first ground terminal G1 is electrically connected to the reference ground electrode 40 .
  • the reference ground 40 includes a first reference ground GND1.
  • the first ground terminal G1 is electrically connected to the first reference ground GND1.
  • the first RF front-end unit 61 at least includes a first signal source 12 and a first frequency selection filter circuit M1 .
  • the first frequency selection filter circuit M1 is disposed between the first feeding point A and the first signal source 12 . Specifically, the output end of the first signal source 12 is electrically connected to the input end of the first frequency selection filter circuit M1 , and the output end of the first frequency selection filter circuit M1 is electrically connected to the first feeding point A of the first radiator 11 .
  • the first signal source 12 is used to generate an excitation signal (also referred to as a radio frequency signal), and the first frequency selection filter circuit M1 is used to filter the clutter of the excitation signal transmitted by the first signal source 12 to form a first radio frequency signal and convert the first radio frequency signal.
  • the radio frequency signal is transmitted to the first radiator 11 , so that the first radiator 11 sends and receives the first electromagnetic wave signal.
  • the shape of the second radiator 21 is a bar.
  • the second radiator 21 may be formed on the casing or a carrier inside the casing by coating, printing or the like.
  • the extending trajectory of the second radiator 21 includes, but is not limited to, a straight line, a bent line, a curved line, and the like.
  • the extending trajectory of the second radiator 21 is a straight line.
  • the second radiator 21 may be a line with uniform width on the extending track, or may be a line with unequal width, such as a gradual change in width, a widened area, or the like.
  • the second radiator 21 includes a second coupling end H2 and a third coupling end H3 disposed opposite to each other, and a second feeding point C disposed between the second coupling end H2 and the third coupling end H3 .
  • the second coupling end H2 and the first coupling end H1 are spaced apart to form a first gap 101 .
  • the first gap 101 is formed between the second radiator 21 and the first radiator 11 .
  • the first radiator 11 and the second radiator 21 are capacitively coupled through the first slot 101 .
  • Capacitive coupling means that an electric field is generated between the first radiator 11 and the second radiator 21, the signal of the first radiator 11 can be transmitted to the second radiator 21 through the electric field, and the signal of the second radiator 21 can The electric field is transmitted to the first radiator 11 so that the first radiator 11 and the second radiator 21 can conduct electrical signals even in a disconnected state.
  • the second RF front-end unit 62 includes a second signal source 22 and a second frequency selection filter circuit M2 .
  • the reference ground electrode 40 further includes a second reference ground electrode GND2.
  • the second reference ground GND2 and the first reference ground GND1 may be the same reference ground or different reference grounds.
  • the second frequency selection filter circuit M2 is disposed between the second feed point C and the second signal source 22 .
  • the second signal source 22 is electrically connected to the input end of the second frequency selection filter circuit M2
  • the output end of the second frequency selection filter circuit M2 is electrically connected to the second radiator 21 .
  • the second signal source 22 is used to generate an excitation signal
  • the second frequency selection filter circuit M2 is used to filter the clutter of the excitation signal transmitted by the second signal source 22 to form a second radio frequency signal and transmit the second radio frequency signal to the second radiation body 21, so that the second radiator 21 can send and receive the second electromagnetic wave signal.
  • the shape of the third radiator 31 is a bar.
  • the third radiator 31 may be formed on the casing or a carrier inside the casing by coating, printing or the like.
  • the extending track of the third radiator 31 includes, but is not limited to, a straight line, a bent line, a curved line, and the like.
  • the extending trajectory of the third radiator 31 is a straight line.
  • the third radiator 31 may be a line with uniform width on the extending track, or may be a line with unequal width, such as a gradual change in width, a widened area, or the like.
  • the third radiator 31 includes a fourth coupling terminal H4 and a second ground terminal G2, and a third feeding point E disposed between the fourth coupling terminal H4 and the second ground terminal G2.
  • the fourth coupling terminal H4 and the second ground terminal G2 are two ends of the third radiator 31 .
  • a second gap 102 is formed between the fourth coupling end H4 and the third coupling end H3.
  • the third RF front-end unit 63 includes a third signal source 32 and a third frequency selection filter circuit M3 .
  • the third frequency selection filter circuit M3 is used to filter the clutter of the radio frequency signal transmitted by the third signal source 32 to form a third radio frequency signal, and transmit the third radio frequency signal to the third radiator 31 to excite the third radiator 31 Transceives the third electromagnetic wave signal.
  • the reference ground 40 further includes a third reference ground GND3 , wherein the third frequency selection filter circuit M3 and the second ground terminal G2 are both electrically connected to the third reference ground GND3 .
  • the third reference ground GND3 , the second reference ground GND2 and the first reference ground GND1 may be an integrated structure or a separate separate structure.
  • the present application does not specifically limit the specific formation methods of the first radiator 11 , the second radiator 21 , and the third radiator 31 .
  • the molding forms of the first radiator 11 , the second radiator 21 and the third radiator 31 include, but are not limited to, flexible printed circuit (Flexible Printed Circuit, FPC) antenna radiators or Laser Direct Structuring (LDS)
  • FPC Flexible Printed Circuit
  • LDS Laser Direct Structuring
  • the antenna radiator is either a Print Direct Structuring (PDS) antenna radiator, or at least one of metal branches and the like.
  • the materials of the first radiator 11 , the second radiator 21 , and the third radiator 31 are all conductive materials, and the specific materials include but are not limited to metals, transparent conductive oxides (such as indium tin oxide ITO), carbon nanomaterials Tubes, graphene, etc.
  • the materials of the first radiator 11 , the second radiator 21 , and the third radiator 31 are metal materials, such as silver, copper, and the like.
  • the first signal source 12, the second signal source 22, the third signal source 32, the first frequency selection filter circuit M1, the second frequency selection filter circuit M2, the third The frequency selection filter circuits M3 are all disposed on the main board 200 of the electronic device 1000 .
  • the first signal source 12 , the second signal source 22 , and the third signal source 32 are the same signal source, or the third signal source 32 and the first signal source 12 and the second signal source 22 are different signals source.
  • the first signal source 12, the second signal source 22, and the third signal source 32 are the same signal source.
  • the same signal source transmits excitation signals toward the first frequency selection filter circuit M1, the second frequency selection filter circuit M2, and the third frequency selection filter circuit M3, respectively.
  • the frequency band of the circuit M3 is different, so that the first radiator 11, the second radiator 21 and the third radiator 31 respectively send and receive the first electromagnetic wave, the second electromagnetic wave and the third electromagnetic wave under different excitation signals, and the first electromagnetic wave
  • the frequency bands of the signal, the second electromagnetic wave signal and the third electromagnetic wave signal are different, so that the coverage frequency band of the antenna assembly 100 is wider and the signal transceiver isolation between each antenna unit is higher and interference is small.
  • the first signal source 12, the second signal source 22, and the third signal source 32 are mutually different signal sources.
  • the first signal source 12, the second signal source 22, and the third signal source 32 may be integrated in the same chip or in different chips packaged separately.
  • the first signal source 12 is used to generate a first excitation signal, the first excitation signal is filtered by the first frequency selection filter circuit M1 to form a first radio frequency signal, and the first radio frequency signal is loaded on the first radiator 11, so that the first radio frequency signal is The radiator 11 transmits and receives the first electromagnetic wave signal.
  • the second signal source 22 is used to generate a second excitation signal, the second excitation signal is filtered by the second frequency selection filter circuit M2 to form a second radio frequency signal, and the second radio frequency signal is loaded on the second radiator 21 to make the second radio frequency signal
  • the radiator 21 transmits and receives the second electromagnetic wave signal.
  • the third signal source 32 is used to generate a third excitation signal, the third excitation signal is filtered by the third frequency selection filter circuit M3 to form a third radio frequency signal, and the third radio frequency signal is loaded on the third radiator 31 so that the third The radiator 31 transmits and receives third electromagnetic wave signals.
  • the settings of the first frequency selection filter circuit M1, the second frequency selection filter circuit M2, and the third frequency selection filter circuit M3 enable the first antenna unit 10, the second antenna unit 20, and the third antenna unit 30 to transmit and receive electromagnetic wave signals of different frequency bands, thereby improving the isolation of the first antenna unit 10 , the second antenna unit 20 , and the third antenna unit 30 .
  • the first frequency selection filter circuit M1, the second frequency selection filter circuit M2, and the third frequency selection filter circuit M3 can also make the electromagnetic wave signals sent and received by the first antenna unit 10 and the electromagnetic wave signals sent and received by the second antenna unit 20.
  • the electromagnetic wave signals sent and received by the third antenna unit 30 have little or no interference with each other.
  • the first frequency selection filter circuit M1 includes, but is not limited to, capacitors, inductors, resistors, etc., which are arranged in series and/or in parallel, and the first frequency selection filter circuit M1 may include a plurality of capacitors, inductances, A branch formed by a resistor, and a switch that controls the on-off of multiple branches. By controlling the on-off of different switches, the frequency selection parameters (including resistance value, inductance value and capacitance value) of the first frequency selection filter circuit M1 can be adjusted, and then the filter range of the first frequency selection filter circuit M1 can be adjusted, so that the first frequency selection filter circuit M1 can be adjusted.
  • a frequency-selective filter circuit M1 obtains the first radio frequency signal from the excitation signal emitted by the first signal source 12 , and then enables the first antenna unit 10 to send and receive the first electromagnetic wave signal.
  • the second frequency selection filter circuit M2 and the third frequency selection filter circuit M3 include multiple branches formed by capacitors, inductors and resistors connected in series and/or parallel, and switches for controlling the on-off of the multiple branches. The specific structures of the first frequency selection filter circuit M1, the second frequency selection filter circuit M2, and the third frequency selection filter circuit M3 are different.
  • the first frequency selection filter circuit M1, the second frequency selection filter circuit M2, and the third frequency selection filter circuit M3 are all used to adjust the impedance of the radiator to which it is electrically connected, so that the impedance of the radiator to which it is electrically connected can be generated accordingly.
  • the frequencies of the resonances are matched, so that the transmit and receive power of the radiator is larger. Therefore, the first frequency selection filter circuit M1, the second frequency selection filter circuit M2, and the third frequency selection filter circuit M3 can also be called matching circuits.
  • FIG. 5 to FIG. 12 are schematic diagrams of the first frequency selection filter circuit M1 provided by various embodiments, respectively.
  • the first frequency selection filter circuit M1 includes one or more of the following circuits.
  • the first frequency selection filter circuit M1 includes a band-pass circuit formed by an inductor L0 and a capacitor C0 connected in series.
  • the first frequency selection filter circuit M1 includes a band-stop circuit formed by an inductor L0 and a capacitor C0 in parallel.
  • the first frequency selection filter circuit M1 includes an inductor L0 , a first capacitor C1 , and a second capacitor C2 .
  • the inductor L0 is connected in parallel with the first capacitor C1, and the second capacitor C2 is electrically connected to a node where the inductor L0 and the first capacitor C1 are electrically connected.
  • the first frequency selection filter circuit M1 includes a capacitor C0 , a first inductor L1 , and a second inductor L2 .
  • the capacitor C0 is connected in parallel with the first inductor L1, and the second inductor L2 is electrically connected to a node where the capacitor C0 and the first inductor L1 are electrically connected.
  • the first frequency selection filter circuit M1 includes an inductor L0 , a first capacitor C1 , and a second capacitor C2 .
  • the inductor L0 is connected in series with the first capacitor C1, and one end of the second capacitor C2 is electrically connected to the first end of the inductor L0 that is not connected to the first capacitor C1, and the other end of the second capacitor C2 is electrically connected to one end of the first capacitor C1 that is not connected to the inductor L0. .
  • the first frequency selection filter circuit M1 includes a capacitor C0 , a first inductor L1 , and a second inductor L2 .
  • the capacitor C0 is connected in series with the first inductor L1, one end of the second inductor L2 is electrically connected to the end of the capacitor C0 not connected to the first inductor L1, and the other end of the second inductor L2 is electrically connected to the end of the first inductor L1 not connected to the capacitor C0.
  • the first frequency selection filter circuit M1 includes a first capacitor C1 , a second capacitor C2 , a first inductor L1 , and a second inductor L2 .
  • the first capacitor C1 is connected in parallel with the first inductor L1
  • the second capacitor C2 is connected in parallel with the second inductor L2
  • one end of the whole formed by the second capacitor C2 and the second inductor L2 in parallel is electrically connected to the first capacitor C1 and the first inductor L1 in parallel. form one end of the whole.
  • the first frequency selection filter circuit M1 includes a first capacitor C1, a second capacitor C2, a first inductor L1, and a second inductor L2.
  • the first capacitor C1 and the first inductor L1 are connected in series to form a first unit 111.
  • the second capacitor C2 and the second inductor L2 are connected in series to form the second unit 112 , and the first unit 111 and the second unit 112 are connected in parallel.
  • the second frequency selection filter circuit M2 may include one or more circuits in FIG. 5 to FIG. 12 .
  • the third frequency selective filter circuit M3 may include one or more of the circuits in FIGS. 5 to 12 .
  • the first frequency-selective filter circuit M1 exhibits different band-pass and band-stop characteristics in different frequency bands.
  • the resonant frequencies of the first antenna unit 10, the second antenna unit 20 and the third antenna unit 30 can be moved along the low frequency or high frequency, thereby realizing the antenna assembly.
  • the frequency modulation method provided by the present application is illustrated below with reference to the accompanying drawings, so as to obtain suitable impedance matching and improve the radiation power of the antenna assembly 100 .
  • the frequency modulation mode of the antenna unit provided by this application includes but is not limited to aperture frequency modulation and matching frequency modulation.
  • a frequency modulation circuit is provided so that the resonant frequency of the antenna unit moves in the direction of low frequency or high frequency, so that the antenna unit can transmit and receive electromagnetic waves in the required frequency band.
  • the second radiator 21 further includes a coupling point B disposed on the side of the second coupling end H2 away from the first coupling end H1 .
  • the second antenna unit 20 further includes a first frequency modulation circuit T1.
  • One end of the first frequency modulation circuit T1 is electrically connected to the coupling point B.
  • the other end of the first frequency modulation circuit T1 is grounded.
  • the first frequency modulation circuit T1 is directly electrically connected to the second radiator 21 to adjust the impedance matching characteristics of the second radiator 21, thereby realizing aperture adjustment.
  • the first frequency modulation circuit T1 may also be electrically connected to the second frequency selection filter circuit M2, and the first frequency modulation circuit T1 and the second frequency selection filter circuit M2 form a new matching circuit to adjust the second radiator 21
  • the impedance matching characteristics are realized, and the matching adjustment is realized.
  • the first frequency modulation circuit T1 includes a combination of switches and at least one of a capacitor and an inductor; and/or, the first frequency modulation circuit T1 includes a variable capacitor.
  • the first frequency modulation circuit T1 includes, but is not limited to, capacitors, inductances, and resistors arranged in series and/or parallel.
  • the first frequency modulation circuit T1 may include a plurality of capacitors, inductances, and branch, and a switch that controls the on-off of multiple branches. By controlling the on-off of different switches, the frequency selection parameters (including resistance value, inductance value and capacitance value) of the first frequency modulation circuit T1 can be adjusted, and then the impedance of the second radiator 21 can be adjusted, thereby adjusting the second radiator 21 the resonance frequency.
  • the present application does not limit the specific structure of the first frequency modulation circuit T1.
  • the first frequency modulation circuit T1 may include one or more of the circuits in FIGS. 5-12 .
  • the first frequency modulation circuit T1 includes but is not limited to a variable capacitor. By adjusting the capacitance value of the variable capacitor, the frequency modulation parameters of the first frequency modulation circuit T1 are adjusted, and the impedance of the second radiator 21 is adjusted, thereby adjusting the resonance frequency of the second radiator 21 .
  • the frequency modulation parameters (such as resistance value, capacitance value, inductance value) of the first frequency modulation circuit T1 are adjusted to adjust the impedance of the second radiator 21, so that the resonant frequency of the second radiator 21 is adjusted. Points are shifted in small ranges towards high or low frequency bands. In this way, the frequency coverage of the second antenna unit 20 in a wider frequency band can be improved.
  • the first antenna unit 10 further includes a second frequency modulation circuit T2.
  • the first radiator 11 also includes a frequency modulation point F.
  • the frequency modulation point F is located between the first feeding point A and the first coupling terminal H1.
  • One end of the second frequency modulation circuit T2 is electrically connected to the frequency modulation point F or to the first frequency selection filter circuit M1. The other end of the second frequency modulation circuit T2 is grounded.
  • the second frequency modulation circuit T2 is directly electrically connected to the first radiator 11 to adjust the impedance matching characteristics of the first radiator 11 and realize aperture adjustment.
  • the second frequency modulation circuit T2 may also be electrically connected to the first frequency selection filter circuit M1, and the second frequency modulation circuit T2 and the first frequency selection filter circuit M1 form a new matching circuit to adjust The impedance matching characteristics of the first radiator 11 realize matching adjustment.
  • the second frequency modulation circuit T2 includes a combination of a switch and at least one of a capacitor and an inductor; and/or, the second frequency modulation circuit T2 includes a variable capacitor.
  • the second frequency modulation circuit T2 includes, but is not limited to, capacitors, inductances, and resistors arranged in series and/or parallel, and the second frequency modulation circuit T2 may include a plurality of capacitors, inductances, and branch, and a switch that controls the on-off of multiple branches. By controlling the on-off of different switches, the frequency selection parameters (including resistance value, inductance value and capacitance value) of the second frequency modulation circuit T2 can be adjusted, and then the impedance of the first radiator 11 can be adjusted, thereby adjusting the first radiator 11 the resonance frequency.
  • the present application does not limit the specific structure of the second frequency modulation circuit T2.
  • the second frequency modulation circuit T2 may include one or more of the circuits in FIGS. 5-12 .
  • the second frequency modulation circuit T2 includes but is not limited to a variable capacitor. By adjusting the capacitance value of the variable capacitor, the frequency modulation parameters of the second frequency modulation circuit T2 are adjusted, thereby adjusting the impedance of the first radiator 11 and adjusting the resonance frequency of the first radiator 11 .
  • the frequency modulation parameters (such as resistance value, capacitance value, inductance value) of the second frequency modulation circuit T2 are adjusted to adjust the impedance of the first radiator 11, so that the resonant frequency of the first radiator 11 is adjusted. Points are shifted in small ranges towards high or low frequency bands. In this way, the frequency coverage of the first antenna unit 10 in a wider frequency band can be improved.
  • FIG. 15 is an equivalent circuit diagram of the first antenna unit 10 .
  • part of the second antenna unit 20 is capacitively coupled with the first antenna unit 10 .
  • FIG. 16 is a graph of the return loss of the first antenna unit 10 .
  • This application designs the number and structure of the antenna units of the antenna assembly 100, and also designs the effective electrical length and structure of the first radiator 11 in the first antenna unit 10, the position of the first feeding point A, the second radiator 21 and the effective electrical length of the first radiator 11 are designed to have a resonance mode in a frequency band with higher practicability, so as to transmit and receive electromagnetic waves in the frequency band with higher practicability, and further, through the frequency modulation circuit (including The first frequency modulation circuit T1 and the second frequency modulation circuit T2) adjust the impedance matching of the first radiator 11, so that the resonance mode of the first antenna unit 10 moves along the high frequency and low frequency bands, thus, the first antenna is realized
  • the unit 10 has an over-bandwidth in this highly practical frequency band.
  • the effective electrical length refers to the length of the first radio frequency signal acting on the first radiator 11 , which may be the actual length of the first radiator 11 , or may be slightly smaller or slightly larger than the actual length of the first radiator 11 . .
  • the radiator 11 is used to generate the first resonance mode a under the excitation of the radio frequency signal emitted by the first signal source 12 .
  • the first radiator 11 between the first feeding point A and the second coupling end H2 is used to generate a The second resonance mode b.
  • the frequency band of the first resonance mode a and the frequency band of the second resonance mode b jointly cover 2 GHz to 4 GHz.
  • the first resonance mode a is a 1/4 wavelength fundamental mode of the first antenna unit 10 operating at the first ground terminal G1 to the first coupling terminal H1. It can be understood that the 1/4 wavelength fundamental mode is a relatively efficient resonance mode of the first radio frequency signal between the first ground terminal G1 and the first coupling terminal H1.
  • the first antenna unit 10 operates in the fundamental mode and has higher transmit and receive power.
  • the frequency band covered by the first resonant mode a has higher transmit and receive power.
  • the frequency bands covered by the first resonance mode a include but are not limited to B40 ⁇ 41 and N41 frequency bands.
  • the effective electrical length of the first radiator 11 between the first ground terminal G1 and the first coupling terminal H1 is designed, for example, the distance between the first ground terminal G1 and the first coupling terminal H1 is The length is about 2.9cm.
  • the radiation of the first radiator 11 between the first ground terminal G1 and the first coupling terminal H1 is 1/4
  • the first resonant mode a of the fundamental mode of the wavelength For example, referring to FIG. 16 , the resonant frequency of the first resonant mode a is about 2.5495 GHz.
  • the second resonance mode b is the 1/4 wavelength fundamental mode of the first antenna unit 10 operating from the first feeding point A to the first coupling end H1.
  • the first antenna unit 10 operates in the second resonance mode b and has higher transmit and receive power.
  • the frequency band covered by the second resonance mode b has higher transmit and receive power.
  • the frequency bands covered by the second resonance mode b include but are not limited to the N77 and N78 frequency bands.
  • the effective electrical length of the first radiator 11 between the first feeding point A and the first coupling end H1 is designed, for example, the distance between the first feeding point A and the first coupling end H1 The length between them is about 2.1cm.
  • the radiation of the first radiator 11 between the first feeding point A and the first coupling end H1 is The second resonance mode b of the 1/4 wavelength fundamental mode.
  • the resonant frequency of the second resonant mode b is about 3.5293 GHz.
  • the size and structure of the first radiator 11 are designed, the position of the first feeding point A is designed, and the parameters of the first frequency modulation circuit T1 are adjusted, so that the first radiator 11 can operate in the frequency band of 2 GHz to 4 GHz.
  • a certain frequency band coverage is carried out within the range, so as to achieve coverage of B40 ⁇ 41, N41, N77 and N78 frequency bands, and has high transmit and receive power in these frequency bands.
  • the second radiator 21 between the coupling point B and the second coupling end H2 is used for capacitive coupling with the first radiator 11 .
  • the length of the second radiator 21 between the coupling point B and the second coupling end H2 is less than 1/4 of the wavelength of the electromagnetic wave at the resonance frequency of the second resonance mode b.
  • the length of the second radiator 21 between the coupling point B and the second coupling end H2 is less than 2.1 cm.
  • the second antenna unit 20 acts as a capacitive loading on the first antenna unit 10 , so that the electromagnetic wave signal radiated by the first antenna unit 10 is shifted along the low frequency band, and at the same time, the radiation efficiency of the first antenna unit 10 can be improved.
  • FIG. 17 is an equivalent circuit diagram of the second antenna unit 20 .
  • the third antenna unit 30 is capacitively coupled with the second antenna unit 20 .
  • FIG. 18 is a return loss curve diagram of the second antenna unit 20 .
  • the present application designs the number and structure of the antenna units of the antenna assembly 100, and also designs the effective electrical length and structure of the second radiator 21 in the second antenna unit 20, the position of the second feeding point C,
  • the effective electrical length of the coupling between the third radiator 31 and the second radiator 21 is designed to form a resonance mode in a frequency band with higher practicability, so as to transmit and receive electromagnetic waves in the frequency band with higher practicability.
  • the frequency modulation circuit (including the second frequency modulation circuit T2, the second frequency selection filter circuit M2, the third frequency selection filter circuit M3) adjusts the impedance matching of the second radiator 21, and realizes that the resonance mode of the second antenna unit 20 has a high edge. In this way, the second antenna unit 20 has an ultra-wide bandwidth in the frequency band with higher practicability.
  • the effective electrical length refers to the length of the second radio frequency signal acting on the second radiator 21 , which may be the actual length of the second radiator 21 , or may be slightly smaller or slightly larger than the actual length of the second radiator 21 . .
  • the second radiator 21 of the second antenna unit 20 by designing the effective electrical length of the second radiator 21, please refer to FIG. 18, the second radiator between the coupling point B and the third coupling end H3 21 is used to generate the third resonance mode c under the excitation of the radio frequency signal emitted by the second signal source.
  • the second radiator 21 between the second feeding point C and the third coupling end H3 is used to generate a fourth radiator under the excitation of the radio frequency signal emitted by the second signal source 22
  • the resonance mode d wherein the frequency bands of the third resonance mode c and the fourth resonance mode d jointly cover 1.5 GHz to 3 GHz.
  • the third resonance mode c is the 1/4 wavelength fundamental mode of the second antenna unit 20 operating from the coupling point B to the third coupling end H3.
  • the second antenna unit 20 operates in the fundamental mode and has higher transmit and receive power.
  • the frequency band covered by the third resonance mode c has higher transmit and receive power.
  • the frequency bands covered by the third resonance mode c include but are not limited to GPS-L1, B3 and N3 frequency bands.
  • the effective electrical length of the second radiator 21 between the coupling point B and the third coupling end H3 is designed, for example, the length between the coupling point B and the third coupling end H3 is about 4.6 cm , by adjusting the parameters of the second frequency modulation circuit T2, the second frequency selection filter circuit M2, and the third frequency selection filter circuit M3, so that the radiation of the second radiator 21 between the coupling point B and the third coupling end H3 is 1/
  • the third resonance mode c of the 4-wavelength fundamental mode For example, referring to FIG. 18 , the resonant frequency of the third resonant mode c is about 1.618 GHz.
  • the fourth resonance mode d is the 1/4 wavelength fundamental mode of the second antenna unit 20 operating from the second feeding point C to the third coupling end H3.
  • the second antenna unit 20 operates in the fourth resonance mode d and has higher transmit and receive power.
  • the frequency band covered by the fourth resonance mode d has higher transmit and receive power.
  • the frequency bands covered by the fourth resonance mode d include, but are not limited to, Wi-Fi 2.4 GHz, B7 ⁇ 40 ⁇ 41, N7 and N41 frequency bands.
  • the effective electrical length of the second radiator 21 between the second feeding point C and the third coupling end H3 is designed, for example, the distance between the second feeding point C and the third coupling end H3
  • the length is about 2.1cm, by adjusting the parameters of the first frequency modulation circuit T1, the second frequency selection filter circuit M2, and the third frequency selection filter circuit M3, so that the second feed point C to the third coupling end H3
  • the second radiator 21 radiates the fourth resonance mode d which is the fundamental mode of 1/4 wavelength.
  • the resonant frequency of the fourth resonant mode d is approximately 2.4943 GHz.
  • the position of the second feeding point C is designed, and the first frequency modulation circuit T1, the second frequency selection filter circuit M2, and the third frequency selection filter circuit M3 are adjusted. parameters, so that the second radiator 21 can cover a certain frequency band within the frequency range of 1.5GHz to 3GHz, so as to realize GPS-L1, Wi-Fi2.4, B3 ⁇ 7 ⁇ 40 ⁇ 41, N3 ⁇ 7 ⁇ 41 frequency bands for coverage, and have higher transmit and receive power in these frequency bands.
  • FIG. 19 is an equivalent circuit diagram of the third antenna unit 30 .
  • the second antenna unit 20 and the third antenna unit 30 are capacitively coupled.
  • FIG. 20 is a return loss curve diagram of the third antenna unit 30 .
  • the present application does not understand the effective electrical length and structure of the third radiator 31 in the third antenna unit 30 , the position of the third feeding point, and the effective electrical value of the coupling between the second radiator 21 and the third radiator 31 . length, etc., to form a resonance mode in the frequency band with higher practicability, so as to send and receive electromagnetic waves in the frequency band with higher practicability, and further, through the frequency modulation circuit (including the second frequency modulation circuit T2, the second frequency selection filter circuit M2, the third frequency selection filter circuit M3) adjust the impedance matching of the third radiator 31, so that the resonant mode of the third antenna unit 30 moves along the high frequency and low frequency bands, so that the third antenna unit 30 is realized It has super bandwidth in this practical frequency band.
  • the effective electrical length refers to the length of the third radio frequency signal acting on the third radiator 31 , which may be the actual length of the third radiator 31 , or may be slightly smaller or slightly larger than the actual length of the third radiator 31 . .
  • the third radiator 31 of the third antenna unit 30 by designing the effective electrical length of the third radiator 31, please refer to FIG. 19 and FIG. 20, between the second ground terminal G2 and the fourth coupling terminal H4
  • the third radiator 31 is used to generate the fifth resonance mode e and the sixth resonance mode f under the excitation of the radio frequency signal emitted by the third signal source 32 .
  • the second radiator 21 between the coupling point B and the third coupling end H3 is used to generate the seventh resonance mode g under the excitation of the radio frequency signal emitted by the third signal source 32 ; wherein, the frequency bands of the fifth resonance mode e, the sixth resonance mode f and the seventh resonance mode g jointly cover 3 GHz to 6.5 GHz.
  • the fifth resonance mode e is a 1/8 wavelength mode in which the third antenna unit 30 operates at the second ground terminal G2 to the fourth coupling terminal H4.
  • the fifth resonance mode e is a 1/4-1/8 wavelength mode in which the third antenna unit 30 operates at the second ground terminal G2 to the fourth coupling terminal H4.
  • the frequency band covered by the fifth resonance mode e includes, but is not limited to, the N77/78 frequency band.
  • the effective electrical length of the third radiator 31 between the second ground terminal G2 and the fourth coupling terminal H4 is designed, for example, the length between the second ground terminal G2 and the fourth coupling terminal H4. It is about 1.1cm to 2.2cm.
  • the third radiator 31 radiates the fifth resonance mode e which is a 1/8 wavelength mode.
  • the resonance frequency of the fifth resonance mode e is about 3.4258 GHz.
  • the distance between the third feeding point E and the second ground terminal G2 is greater than the distance between the third feeding point E and the fourth coupling terminal H4.
  • the third feeding point E is close to the fourth coupling terminal H4.
  • the third feeding point E is close to the second slot 102, so that the third feeding point E is capacitively coupled, so that the third radiator 31 between the second ground terminal G2 and the fourth coupling terminal H4 is more It is easy to excite the 1/8 wavelength mode for better coverage of the N77/78 frequency band and higher operating power in the N77/78 frequency band.
  • the sixth resonance mode f is the 1/4 wavelength fundamental mode of the third antenna unit 30 operating at the second ground terminal G2 to the fourth coupling terminal H4.
  • the third antenna unit 30 operates in the sixth resonance mode f and has higher transmit and receive power.
  • the frequency band covered by the sixth resonance mode f has higher transmit and receive power.
  • the frequency band covered by the sixth resonance mode f includes, but is not limited to, the Wi-Fi 5GHz frequency band.
  • the effective electrical length of the second radiator 21 between the second feeding point C and the third coupling end H3 is designed, for example, the distance between the second feeding point C and the third coupling end H3
  • the length of the interval is about 1.3cm.
  • the seventh resonance mode g is a 1/2 wavelength mode in which the third antenna unit 30 operates from the coupling point B to the third coupling end H3.
  • the antenna assembly 100 designed the capacitive coupling of the three antenna units, and designs the radiator, feeding point, and frequency modulation circuit of each antenna unit, so that the first antenna unit 10 transmits and receives the first
  • the electromagnetic wave signal covers at least B40/41+N41/78/77.
  • the B40 frequency band covers 2.3GHz to 2.5GHz
  • the B41 frequency band covers 2.5GHz to 2.69GHz
  • the N41 frequency band covers 2.49GHz to 2.69GHz
  • the N78 frequency band covers 3.3GHz to 3.8GHz
  • the N77 frequency band covers 3.3GHz to 4.2GHz.
  • the second electromagnetic wave signal sent and received by the second antenna unit 20 covers at least (GPS-L1)+(WI-FI2.4G)+(LTE-MHB)+(NR-MHB), wherein the frequency band of GPS-L1 covers 1.57542GHz,
  • the frequency band of WI-FI2.4G covers 2.4GHz to 2.5GHz, and the LTE-MHB includes B1/3/7/40/41.
  • the B1 frequency band covers 1.92 to 1.98GHz
  • the B3 frequency band covers 1.71 to 1.785GHz
  • the B7 frequency band covers 2.5 ⁇ 2.57GHz
  • B40 frequency band covers 2.3-2.4GHz
  • B40 frequency band covers 2.496-2.69GHz.
  • NR-MHB bands include N1/3/7/40/41.
  • N1 covers 1.920MHz-1.980
  • N3 covers 1.710GHz-1.785GHz
  • N7 covers 2.500GHz-2.570GHz
  • N40 covers 2.300GHz-2.400GHz
  • N41 covers 2.496GHz-2.690GHz.
  • the third electromagnetic wave signal sent and received by the third antenna unit 30 covers at least N77/78/79+WI-FI5G.
  • N77 covers 3.300GHz-4.200GHz
  • N78 covers 3.300GHz-3.800GHz
  • N79 covers 4.400GHz-5GHz
  • WI-FI5G covers 5.150GHz-5.85GHz.
  • the antenna assembly 100 has a relatively large coverage rate and relatively high radiation power in a frequency band (1-6 GHz) with high practicability. Through the design of the frequency modulation circuit, the antenna assembly 100 can be adjusted to the frequency band of the required radiation.
  • the first radiator 11 and the second radiator 21 are spaced apart and coupled to each other, that is, the first radiator 11 and the second radiator 21 have a common aperture.
  • the third radiator 31 and the second radiator 21 are spaced apart and coupled to each other, that is, the third radiator 31 and the second radiator 21 have a common aperture.
  • the antenna assembly 100 can reduce the size of the antenna assembly while increasing the bandwidth.
  • the overall volume of the electronic device 100 is beneficial to the overall miniaturization of the electronic device 1000 .
  • An antenna assembly 100 in the embodiment of the present application can support the first resonance mode a to the seventh resonance mode g, therefore, the antenna assembly 100 has a small volume and a relatively low cost, and also reduces the space occupied by the antenna assembly 100, This further reduces the difficulty of stacking the antenna assembly 100 and other devices, and also reduces the insertion loss of the radio frequency link.
  • FIG. 21 is a graph representing the isolation degree among the first antenna unit 10 , the second antenna unit 20 , and the third antenna unit 30 .
  • S2,1 represents the energy flow curve between the first antenna unit and the second antenna unit, when S2,1 is smaller, the signal interference between the first antenna unit and the second antenna unit is smaller, the first The better the isolation between the antenna unit and the second antenna unit.
  • the energy flow value between the first antenna unit and the second antenna unit is less than -14.955, indicating that the isolation between the first antenna unit and the second antenna unit is good.
  • S3,1 characterizes the energy flow graph between the first antenna element and the third antenna element.
  • S3,2 characterizes the energy flow graph between the second antenna element and the third antenna element. It can be seen from FIG. 21 that the isolation between the first antenna unit and the second antenna unit is relatively good. The isolation between the third antenna unit and the second antenna unit is good.
  • FIG. 22 is the total radiation efficiency curve of the first antenna unit 10 , the second antenna unit 20 , and the third antenna unit 30 in the complex environment of a full-screen mobile phone and a small headroom.
  • the return loss of the first antenna unit 10 , the second antenna unit 20 , and the third antenna unit 30 in the antenna assembly 100 provided by the implementation of this application is relatively small, and the first antenna unit 10 , the second antenna unit 10 and the second antenna unit 30 have relatively small return losses.
  • the third antenna unit 30 has better radiation efficiency.
  • the embodiment of the present application also provides an antenna assembly 100 , which not only has the function of receiving and transmitting electromagnetic wave signals, but also can sense the proximity of a subject to be detected, so as to increase the function of the antenna assembly 100 and improve the components of the antenna assembly 100
  • the degree of integration promotes miniaturization of the electronic device 1000 .
  • the antenna assembly 100 further includes a first isolation device 71 , a second isolation device 72 and a first proximity sensing device 81 .
  • the first isolation device 71 is electrically connected between the second radiator 21 and the second RF front-end unit 62 .
  • the number of the first isolation devices 71 is multiple.
  • the first isolation device 71 is disposed between the second radiator 21 and the second frequency selection filter circuit M2, and between the second radiator 21 and the first frequency modulation circuit T1.
  • the first isolation device 71 is used to isolate the first induction signal generated when the subject to be detected approaches the second radiator 21 and the electromagnetic wave signal transmitted and received by the second radiator 21 .
  • the first isolation device 71 includes at least a DC blocking capacitor.
  • the subject to be detected includes but is not limited to the human body.
  • One end of the second isolation device 72 is electrically connected between the second radiator 21 and the first isolation device 71 , and the second isolation device 72 is used to isolate the electromagnetic wave signals sent and received by the second radiator 21 and turning on the first sensing signal.
  • the second isolation device 72 includes at least an isolation inductor.
  • the first proximity sensing device 81 is electrically connected to the other end of the second isolation device 72 for sensing the magnitude of the first sensing signal.
  • the proximity sensing signal generated by the second radiator 21 is a DC signal.
  • the electromagnetic wave signal is an AC signal.
  • the present application does not limit the specific structure of the first proximity sensing device 81, and the first proximity sensing device 81 includes, but is not limited to, a sensor for sensing capacitance changes or inductance changes.
  • the antenna assembly 100 also includes a controller (not shown).
  • the controller is electrically connected to one end of the first proximity sensing device 81 away from the second isolation device 72 .
  • the controller is used to determine whether the subject to be detected is close to the second radiator 21 according to the magnitude of the first sensing signal, and to lower the first radiator when the subject to be detected is close to the second radiator 21 .
  • the working power of the two antenna units 20 is not limited.
  • the transmit power of the second antenna unit 20 can be reduced, thereby reducing the ratio of the human body to the electromagnetic wave signal emitted by the second antenna unit 20 Absorption rate; when the first proximity sensing device 81 detects that the human body is far away from the second antenna unit 20, the transmit power of the second antenna unit 20 can be increased to improve the antenna performance of the antenna assembly 100, and at the same time, it will not increase the human body's exposure to The specific absorption rate of the electromagnetic wave signal emitted by the second antenna unit 20 is in this way, so that the radiation performance of the electronic device 1000 can be adjusted intelligently, and the safety performance of the electronic device 1000 is improved.
  • the first antenna unit 10 further includes a third isolation device 73 .
  • the third isolation device 73 is disposed between the first radiator 11 and the first RF front-end unit 61 and between the first ground terminal G1 and the first reference ground GND1 to isolate the to-be-detected
  • the second induction signal generated when the main body is close to the first radiator 11 and the electromagnetic wave signal transmitted and received by the first radiator 11 are conducted.
  • the third isolation device 73 includes an isolation capacitor.
  • the third isolation device 73 is used to make the first radiator 11 in a "floating" state with respect to the DC signal.
  • the second induction signal is used to make the second radiator 21 through the coupling effect of the first radiator 11 and the second radiator 21 A sub-sensing signal is generated, and the first proximity sensing device 81 is further used for sensing the magnitude of the sub-sensing signal.
  • the first radiator 11 and the second radiator 21 are both used as sensing electrodes for sensing the proximity of the subject to be detected, and the proximity sensing path of the first radiator 11 is from the first radiator 11 , the second radiator 21 to the The first proximity sensing device 81 .
  • the first radiator 11 when the subject to be detected is close to the first radiator 11, the first radiator 11 generates a second sensing signal, and the second sensing signal causes the second radiator 21 to generate sub-sensing signals through coupling, so that the first proximity sensing
  • the device 81 is also capable of sensing the subject to be detected at the first radiator 11 .
  • the antenna assembly 100 further includes a fourth isolation device 74 .
  • One end of the fourth isolation device 74 is electrically connected between the first radiator 11 and the third isolation device 73 or is electrically connected to the first radiator 11 for isolating the first radiator 11 from transmitting and receiving the electromagnetic wave signal and turn on the second induction signal.
  • the fourth isolation device 74 includes an isolation inductor.
  • the antenna assembly 100 further includes a second proximity sensing device 82, the second proximity sensing device 82 is electrically connected to the other end of the fourth isolation device 74, and is used for sensing the second induction the size of the signal.
  • both the first radiator 11 and the second radiator 21 are sensing electrodes that sense the proximity of the subject to be detected, and the proximity sensing path of the first radiator 11 and the proximity sensing path of the second radiator 21 are independent of each other, which can accurately It is detected that the subject to be detected is close to the first radiator 11 or the second radiator 21 in a timely manner, thereby responding to the above approaching behavior in a timely manner.
  • the second induction signal generated by the first radiator 11 is a DC signal.
  • the electromagnetic wave signal is an AC signal.
  • the third isolation device 73 between the first radiator 11 and the first RF front-end unit 61, the second inductive signal will not flow to the first RF front-end unit 61 through the first radiator 11, so as to affect the first antenna Signal transmission and reception of the unit 10 .
  • the fourth isolation device 74 between the second proximity sensing device 82 and the first radiator 11 , the electromagnetic wave signal will not flow to the second proximity sensing device 82 through the first radiator 11 , thereby improving the second proximity sensing device.
  • the sensing efficiency of the measuring device 82 for the second sensing signal is measured.
  • the coupling of the second radiator 21 and the first radiator 11 may be used to transmit the induction signal of the second radiator 21 to the second proximity sensing device 82 through the first radiator 11 .
  • the other end of the fourth isolation device 74 is electrically connected to the first proximity sensing device 81 .
  • a coupling induction signal is generated when the first radiator 11 and the second radiator 21 are capacitively coupled.
  • the first proximity sensing device 81 is further configured to sense the variation of the coupled sensing signal when the subject to be detected approaches the first radiator 11 and/or the second radiator 21 .
  • a constant electric field is generated when the first radiator 11 and the second radiator 12 are coupled, which is manifested as generating a stable coupled induction signal.
  • the constant electric field will change, which is manifested as the change of the coupled induction signal, and the approach of the human body is detected according to the change of the coupled induction signal.
  • the first radiator 11 and the second radiator 12 serve as sensing electrodes at the same time. Accurate detection when there is a human body in it. There is no need to use two proximity sensing devices 81, and the coupling effect between the first radiator 11 and the second radiator 21 and the first proximity sensing device 81 are fully utilized, so that the first radiator 11 and the second radiator are 21 can also be reused during proximity detection, which increases device utilization, reduces the number of devices, and further promotes the integration and miniaturization of the electronic device 1000 .
  • the present application does not limit the specific structure of the second proximity sensing device 82, and the second proximity sensing device 82 includes, but is not limited to, a sensor for sensing capacitance changes or inductance changes.
  • a fifth isolation device 75 is provided between the third radiator 31 and the third RF front-end unit 63, and between the third radiator 31 and the third reference ground GND3, so that the third radiator 31 is also The approach of the subject to be detected can be detected.
  • the third radiator 31 is used as a sensing electrode for sensing the proximity of the human body, and its specific sensing path can be independent of the sensing path of the second radiator 21 or transmitted to the first proximity sensing device through coupling with the second radiator 21 81 , or generate a coupled inductive signal when capacitive coupling is formed with the second radiator 21 , and transmit the coupled inductive signal to the first proximity sensing device 81 .
  • the first radiator 11 is used as a sensing electrode, and details are not described herein again.
  • the area of the detection electrodes can be increased, so that the approach of the subject to be detected can be detected in a larger range, and the electronic device 1000 can be further improved.
  • the adjustment accuracy of the radiation performance can be formed as detection electrodes.
  • the radiator on the antenna assembly 100 can also multiplex the radiator on the antenna assembly 100 as an inductive electrode for the human body waiting to detect the approach of the subject while serving as a receiving and transmitting electromagnetic wave signal.
  • the induction signal and the electromagnetic wave signal are isolated, the communication performance of the antenna assembly 100 and the function of sensing the subject to be detected are realized, the radiation performance of the electronic device 1000 is intelligently adjustable, the safety performance of the electronic device 1000 is improved, and the electronic device 1000 is also improved.
  • the device utilization rate is improved, and the overall volume of the electronic device 1000 is reduced.
  • the antenna assembly 100 can be at least partially integrated on the casing 500 or completely disposed in the casing 500 .
  • the antenna assembly 100 is at least partially integrated on the housing 500 .
  • the reference ground pole 40 , the signal source, the frequency modulation circuit, and the frequency selection filter circuit of the antenna assembly 100 are all disposed on the main board 200 .
  • the third radiator 3111 , the second radiator 21 and the third radiator 31 are integrated into a part of the housing 500 .
  • the casing 500 includes a middle frame 501 and a battery cover 502 .
  • the display screen 300 , the middle frame 501 and the battery cover 502 are covered and connected in sequence.
  • the third radiator 3111 , the second radiator 21 and the third radiator 31 are embedded on the middle frame 501 to form a part of the middle frame 501 .
  • the middle frame 501 includes a plurality of metal segments 503 and an insulating segment 504 spaced between two adjacent metal segments 503 .
  • the multi-segment metal segments 503 form the third radiator 3111 , the second radiator 21 and the third radiator 31 respectively, the insulating segment 504 between the third radiator 3111 and the second radiator 21 is filled in the first gap 101 , the second The insulating segment 504 between the radiator 21 and the third radiator 31 is filled in the second gap 102 .
  • the third radiator 3111 , the second radiator 21 and the third radiator 31 are embedded on the battery cover 502 to form a part of the battery cover 502 .
  • the surface of the radiator may be provided with a layer of insulating film with high transmittance to electromagnetic waves.
  • the antenna assembly 100 is disposed in the casing 500 .
  • the reference ground pole 40 , the signal source and the frequency modulation circuit of the antenna assembly 100 are arranged on the main board 200 .
  • the third radiator 3111 , the second radiator 21 and the third radiator 31 can be formed on the flexible circuit board and attached to the inner surface of the casing 500 and other positions.
  • the casing 500 includes a first side 51 , a second side 52 , a third side 53 and a fourth side 54 which are connected end to end in sequence.
  • the first side 51 and the third side 53 are disposed opposite to each other.
  • the second side 52 is disposed opposite to the fourth side 54 .
  • the length of the first side 51 is smaller than the length of the second side 52 .
  • the junction of two adjacent sides forms the corner of the casing 500 .
  • a part of the first antenna unit 10 and the second antenna unit 20 are arranged on the first side 51
  • another part of the second antenna unit 20 and the third antenna unit 30 are arranged on the second side 52.
  • the third radiator 3111 is disposed on or along the first side 51 of the housing 500 .
  • the second radiator 21 is disposed on the first side 51 , the second side 52 and the corners therebetween.
  • the third radiator 31 is disposed on or along the second side 52 of the casing 500 .
  • the first side 51 is the side away from the ground
  • the third side 53 is the side close to the ground.
  • the controller controls the power of the first antenna unit 10 to decrease and the third antenna unit 30 to increase the power.
  • the controller reduces the transmission and reception power of electromagnetic waves near the head of the subject to be detected, thereby reducing the specific absorption rate of the subject to be detected for electromagnetic waves.
  • the controller is configured to control the power of the first antenna unit 10 to be greater than the power of the third antenna unit 30 when the display screen 300 is in a vertical display state. Specifically, when the display screen 300 is in the vertical display state or the user holds the electronic device 1000 in the vertical direction, the fingers generally cover the second side 52 and the fourth side 54 . At this time, the controller can control the setting on the first side 51
  • the first antenna unit 10 mainly transmits and receives electromagnetic wave signals, so as to avoid the third antenna unit 30 disposed on the second side 52 being blocked by fingers and unable to transmit and receive electromagnetic wave signals, thereby improving the communication quality of the electronic device 1000 in various usage scenarios.
  • the controller is further configured to control the power of the third antenna unit 30 to be greater than the power of the first antenna unit 10 when the display screen 300 is in a landscape display state.
  • the fingers generally cover the first side 51 and the third side 53 .
  • the third antenna unit 30 mainly transmits and receives electromagnetic waves of electromagnetic wave signals, so as to prevent the first antenna unit 10 disposed on the first side 51 from being blocked by fingers and unable to transmit and receive electromagnetic waves of electromagnetic wave signals, thereby improving the communication quality of the electronic device 1000 in various usage scenarios .
  • the first antenna unit 10 , the second antenna unit 20 , and the third antenna unit 30 are all disposed on the same side of the casing 500 .

Abstract

本申请公开了一种天线组件及电子设备,天线组件包括第一天线单元、第二天线单元及第三天线单元,第一天线单元包括第一辐射体;第二天线单元包括第二辐射体,第二辐射体的一端与第一辐射体之间形成第一缝隙,第二辐射体的至少部分通过第一缝隙与第一辐射体耦合;第三天线单元包括第三辐射体,第三辐射体与第二辐射体的另一端之间形成第二缝隙,第三辐射体的至少部分通过第二缝隙与第二辐射体耦合;第二天线单元在第一辐射体与第二辐射体的耦合作用下和在第二辐射体与第三辐射体的耦合作用下收发的电磁波信号至少覆盖GPS-L1频段、WiFi 2.4G频段、LTE-MHB频段及NR-MHB频段。本申请提供的天线组件及电子设备能够提高通信质量及利于整机小型化。

Description

天线组件及电子设备 技术领域
本申请涉及通信技术领域,尤其涉及一种天线组件和电子设备。
背景技术
随着技术的发展,手机等具有通信功能电子设备的普及度越来越高,且功能越来越强大。电子设备中通常包括天线组件以实现电子设备的通信功能。如何在提高电子设备的通信质量的同时还能够促进电子设备的小型化,成为需要解决的技术问题。
发明内容
本申请提供了一种提高通信质量及利于整机小型化的天线组件及电子设备。
第一方面,本申请实施例提供了一种天线组件,包括:
第一天线单元,包括第一辐射体;
第二天线单元,包括第二辐射体,所述第二辐射体的一端与所述第一辐射体之间形成第一缝隙,所述第二辐射体的至少部分通过所述第一缝隙与所述第一辐射体耦合;及
第三天线单元,包括第三辐射体,所述第三辐射体与所述第二辐射体的另一端之间形成第二缝隙,所述第三辐射体的至少部分通过所述第二缝隙与所述第二辐射体耦合;
所述第二天线单元在所述第一辐射体与所述第二辐射体的耦合作用下和在所述第二辐射体与所述第三辐射体的耦合作用下收发的电磁波信号至少覆盖GPS-L1频段、Wi-Fi 2.4G频段、LTE-MHB频段及NR-MHB频段。
第二方面,本申请实施例提供了一种电子设备,包括壳体及所述的天线组件,所述天线组件至少部分集成于所述壳体上;或者,所述天线组件设于壳体内。
本申请实施例提供的天线组件,通过设计第一天线单元的第一辐射体与第二天线单元的第二辐射体之间通过第一缝隙容性耦合,第二天线单元的第二辐射体与第三天线单元与第三辐射体之间通过第二缝隙容性耦合;第一天线单元的第一辐射体、第二天线单元的第二辐射体、第三天线单元的第三辐射体实现了相互复用,进而实现三天线单元共体设计,三天线单元共体设计中的第二天线单元收发的电磁波至少覆盖GPS-L1频段、Wi-Fi 2.4G频段、LTE-MHB频段及NR-MHB频段,使得整个天线组件收发信号覆盖的频宽较大,提高天线组件的通信质量,从而天线组件在增加频宽的同时,还能够减小天线组件的整体体积,利于电子设备的整体小型化。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1提供的电子设备的分解示意图;
图3是本申请实施例提供的一种天线组件的结构示意图;
图4是图3提供的第一种天线组件的电路结构示意图;
图5是本申请实施例提供的第一种第一选频滤波电路的结构示意图;
图6是本申请实施例提供的第二种第一选频滤波电路的结构示意图;
图7是本申请实施例提供的第三种第一选频滤波电路的结构示意图;
图8是本申请实施例提供的第四种第一选频滤波电路的结构示意图;
图9是本申请实施例提供的第五种第一选频滤波电路的结构示意图;
图10是本申请实施例提供的第六种第一选频滤波电路的结构示意图;
图11是本申请实施例提供的第七种第一选频滤波电路的结构示意图;
图12是本申请实施例提供的第八种第一选频滤波电路的结构示意图;
图13是图3提供的第二种天线组件的电路结构示意图;
图14是图3提供的第三种天线组件的电路结构示意图;
图15是图4提供的第一天线单元的等效电路图;
图16是图4提供的第一天线单元工作的几种谐振模式的回波损耗曲线图;
图17是图4提供的第二天线单元的等效电路图;
图18是图4提供的第二天线单元工作的几种谐振模式的回波损耗曲线图;
图19是图4提供的第三天线单元的等效电路图;
图20是图4提供的第三天线单元工作的几种谐振模式的回波损耗曲线图;
图21是图4提供的第一天线单元、第二天线单元及第三天线单元两两之间的隔离度曲线图;
图22是图4提供的第一天线单元、第二天线单元及第三天线单元工作总效率曲线图;
图23是图3提供的第四种天线组件的电路结构示意图;
图24是图3提供的第五种天线组件的电路结构示意图;
图25是图3提供的第六种天线组件的电路结构示意图;
图26是图3提供的第七种天线组件的电路结构示意图;
图27是本申请实施例提供的第一种天线组件设于壳体上的结构示意图;
图28是本申请实施例提供的第二种天线组件设于壳体内的结构示意图;
图29是本申请实施例提供的第三种天线组件设于壳体上的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请所列举的实施例之间可以适当的相互结合。
请参照图1,图1为本申请实施例提供的一种电子设备1000的结构示意图。电子设备1000可以为电话、电视、平板电脑、手机、照相机、个人计算机、笔记本电脑、车载设备、耳机、手表、可穿戴设备、基站、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备。以电子设备1000为手机为例,为了便于描述,以电子设备1000处于第一视角为参照进行定义,电子设备1000的宽度方向定义为X向,电子设备1000的长度方向定义为Y向,电子设备1000的厚度方向定义为Z向。箭头所指示的方向为正向。
请参阅图2,电子设备1000包括天线组件100。天线组件100用于收发射频信号,以实现电子设备1000的通讯功能。天线组件100的至少部分器件设于电子设备1000的主板200上。可以理解的,电子设备1000还包括显示屏300、电池400、壳体500、摄像头、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组等等能够实现手机的基本功能的器件,在本实施例中不再赘述。
请参阅图3,天线组件100包括第一天线单元10、第二天线单元20、第三天线单元30及参考地极40。第一天线单元10、第二天线单元20、第三天线单元30依次排列设置,且第一天线单元10、第二天线单元20、第三天线单元30皆电连接参考地极40。
请参阅图3及图4,第一天线单元10包括第一辐射体11及电连接第一辐射体11的第一射频前端单元61。第一射频前端单元61用于将第一射频信号馈入第一辐射体11,以使第一辐射体11收发第一电磁波信号。
请参阅图3及图4,第二天线单元20包括第二辐射体21及电连接第二辐射体21的第二射频前端单元62。其中,第二辐射体21的一端与第一辐射体11之间形成第一缝隙101,所述第二辐射体21的至少部分通过所述第一缝隙101与所述第一辐射体11耦合。本申请对于第一缝隙101的具体宽度不做限定,例如,第一缝隙101的宽度小于等于2mm,但不限于此尺寸。其中,第二射频前端单元62用于将第二射频信号馈入第二辐射体21,以使第二辐射体21收发第二电磁波信号。
请参阅图3及图4,第三天线单元30包括第三辐射体31及电连接第三辐射体31的第三射频前端单元63。第三射频前端单元63用于将第三射频信号馈入第三辐射体31,以使第三辐射体31收发第三电磁波信号。其中,其中,第二辐射体21的另一端与第三辐射体31之间形成第二缝隙102,所述第三辐射体31的至少部分通过所述第二缝隙102与所述第二辐射体21耦合。本申请对于第二缝隙102的具体宽度不做限定,例如,第二缝隙102的宽度小于等于2mm,但不限于此尺寸。其中,第三射频前端单元63用于将第三射频信号馈入第三辐射体31,以使第三辐射体31收发第三电磁波信号。
在相互耦合的三单元天线形成的天线组件100中,第二天线单元20在所述第一辐射体11和第 二辐射体21的耦合作用下和在所述第二辐射体21与所述第三辐射体31的耦合作用下收发的第二电磁波信号至少覆盖GPS-L1频段、Wi-Fi 2.4G频段、LTE-MHB频段及NR-MHB频段。换言之,本申请通过对第二天线单元20的第二辐射体21、第二射频前端单元62进行设计,及设置第三天线单元30的第三辐射体31及第一天线单元10的第一辐射体11与第二天线单元20耦合,以使第二天线单元20实现GPS-L1频段、Wi-Fi 2.4G频段、LTE-MHB频段及NR-MHB频段等多种频段的覆盖,在实际应用中,GPS-L1频段、Wi-Fi 2.4G频段、LTE-MHB频段及NR-MHB频段皆为几种常用天线频段,相较于传统技术中通过多个天线模组共同覆盖上述的频段,例如,传统技术中,GPS-L1频段、Wi-Fi 2.4G频段分别由两个不同的天线模组或天线单元进行辐射覆盖,本申请提供的天线组件100通过一个天线组件100(即一个天线模组)的一个天线单元即可实现上述频段的覆盖,极大地简化了天线组件100的结构,提高天线组件100功能集成度,减小了天线组件100的整体体积,利于提高安装有该天线组件100的电子设备1000的通信质量及减小整机尺寸。
本申请实施例提供的天线组件100,通过设计第一天线单元10的第一辐射体11与第二天线单元20的第二辐射体21之间通过第一缝隙101容性耦合,第二天线单元20的第二辐射体21与第三天线单元30与第三辐射体31之间通过第二缝隙102容性耦合;第一天线单元10的第一辐射体11、第二天线单元20的第二辐射体21、第三天线单元30的第三辐射体31实现了相互复用,进而实现三天线单元共体设计,三天线单元共体设计中的第二天线单元20收发的电磁波至少覆盖GPS-L1频段、Wi-Fi 2.4G频段、LTE-MHB频段及NR-MHB频段,使得整个天线组件100收发信号覆盖的频宽较大,提高天线组件100的通信质量,从而天线组件100在增加频宽的同时,还能够减小天线组件100的整体体积,利于电子设备1000的整体小型化。
可选的,在相互耦合的三单元天线形成的天线组件100中,第一天线单元10所收发的第一电磁波信号至少覆盖LTE-MHB频段、NR-MHB频段及NR-UHB频段。换言之,本申请通过对第一天线单元10的第一辐射体11、第一射频前端单元61进行设计,及设置第二天线单元20的第二辐射体21与第一天线单元10耦合,以使第一天线单元10实现LTE-MHB频段、NR-MHB频段及NR-UHB频段等多种频段的覆盖,在实际应用中,LTE-MHB频段、NR-MHB频段及NR-UHB频段皆为几种常用天线频段,相较于传统技术中通过多个天线模组共同覆盖上述的频段,本申请提供的天线组件100通过一个天线组件100(即一个天线模组)的一个天线单元即可实现上述频段的覆盖,极大地简化了天线组件100的结构,提高天线组件100功能集成度,节省堆叠空间,减小了天线组件100的整体体积,利于提高安装有该天线组件100的电子设备1000的通信质量及减小整机尺寸。
可选的,在相互耦合的三单元天线形成的天线组件100中,第三天线单元30所收发的第三电磁波信号至少覆盖NR-UHB频段及Wi-Fi 5G频段。换言之,本申请通过对第三天线单元30的第三辐射体31、第三射频前端单元63进行设计,及设置第二天线单元20的第二辐射体21与第三天线单元30耦合,以使第三天线单元30实现NR-UHB频段及Wi-Fi 5G频段等多种频段的覆盖,在实际应用中,NR-UHB频段及Wi-Fi 5G频段皆为几种常用天线频段,相较于传统技术中通过多个天线模组共同覆盖上述的频段,本申请提供的天线组件100通过一个天线组件100(即一个天线模组)的一个天线单元即可实现上述频段的覆盖,极大地简化了天线组件100的结构,提高天线组件100功能集成度,减小了天线组件100的整体体积,利于提高安装有该天线组件100的电子设备1000的通信质量及减小整机尺寸。
由上可知,通过对第一天线单元10、第二天线单元20及第三天线单元30进行结构设计并使得第一天线单元10与第二天线单元20之间相互耦合,第二天线单元20与第三天线单元30之间相互耦合,使得第一天线单元10收发的第一电磁波信号至少覆盖LTE-MHB频段、NR-MHB频段及NR-UHB频段,还使得第二天线单元20收发的第二电磁波信号至少覆盖GPS-L1频段、Wi-Fi 2.4G频段、LTE-MHB频段及NR-MHB频段,及使得第三天线单元30收发的第三电磁波信号至少覆盖NR-UHB频段及Wi-Fi 5G频段,如此,实现了三天线单元共体及将多种不同频段的天线信号覆盖集成于一个天线单元或一个天线组件100中,节省了堆叠空间,减小了天线组件100的整体体积,利于减小整机尺寸;天线组件100中多个模式同时工作,实现了超宽带,提高安装有该天线组件100的电子设备1000的通信质量。
以下结合附图对于第一天线单元10、第二天线单元20及第三天线单元30的具体结构进行举例说明。
本实施例中,第一辐射体11的形状呈条形。第一辐射体11可通过涂布、印刷等方式成型于壳 体上或壳体内部的载体上。第一辐射体11的延伸轨迹包括但不限于为直线、弯折线、曲线等。本实施例中,第一辐射体11的延伸轨迹为直线。第一辐射体11在延伸轨迹上可以为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的线条。
请参阅图3及图4,第一辐射体11包括第一接地端G1及第一耦合端H1,以及设于第一接地端G1与第一耦合端H1之间的第一馈电点A。第一接地端G1及第一耦合端H1分别为第一辐射体11的两个末端。
第一接地端G1电连接参考地极40。参考地极40包括第一参考地极GND1。第一接地端G1电连接第一参考地极GND1。
请参阅图4,第一射频前端单元61至少包括第一信号源12及第一选频滤波电路M1。
请参阅图4,第一选频滤波电路M1设于第一馈电点A与第一信号源12之间。具体的,第一信号源12的输出端电连接第一选频滤波电路M1的输入端,第一选频滤波电路M1的输出端电连接至第一辐射体11的第一馈电点A。第一信号源12用于产生激励信号(也称为射频信号),第一选频滤波电路M1用于过滤第一信号源12传送的激励信号的杂波,形成第一射频信号并将第一射频信号传送至第一辐射体11,以使第一辐射体11收发第一电磁波信号。
请参阅图4,本实施例中,第二辐射体21的形状呈条形。第二辐射体21可通过涂布、印刷等方式成型于壳体上或壳体内部的载体上。第二辐射体21的延伸轨迹包括但不限于为直线、弯折线、曲线等。本实施例中,第二辐射体21的延伸轨迹为直线。第二辐射体21在延伸轨迹上可以为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的线条。
请参阅图4,第二辐射体21包括相对设置的第二耦合端H2及第三耦合端H3,以及设于第二耦合端H2及第三耦合端H3之间的第二馈电点C。
第二耦合端H2与第一耦合端H1之间间隔设置,形成第一缝隙101。换言之,第二辐射体21与第一辐射体11之间形成第一缝隙101。第一辐射体11与第二辐射体21之间通过第一缝隙101容性耦合。“容性耦合”是指,第一辐射体11与第二辐射体21之间产生电场,第一辐射体11的信号能够通过电场传递至第二辐射体21,第二辐射体21的信号能够通过电场传递至第一辐射体11,以使第一辐射体11与第二辐射体21即使在断开的状态下也能够实现电信号导通。
请参阅图3及图4,第二射频前端单元62包括第二信号源22及第二选频滤波电路M2。参考地极40还包括第二参考地极GND2。第二参考地极GND2与第一参考地极GND1可以为同一个参考地或不同的参考地。
请参阅图4,第二选频滤波电路M2设于第二馈电点C与第二信号源22之间。具体的,第二信号源22电连接第二选频滤波电路M2的输入端,第二选频滤波电路M2的输出端电连接至第二辐射体21。第二信号源22用于产生激励信号,第二选频滤波电路M2用于过滤第二信号源22传送的激励信号的杂波,形成第二射频信号并将第二射频信号传送至第二辐射体21,以使第二辐射体21收发第二电磁波信号。
本实施例中,第三辐射体31的形状呈条形。第三辐射体31可通过涂布、印刷等方式成型于壳体上或壳体内部的载体上。第三辐射体31的延伸轨迹包括但不限于为直线、弯折线、曲线等。本实施例中,第三辐射体31的延伸轨迹为直线。第三辐射体31在延伸轨迹上可以为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的线条。
请参阅图4,第三辐射体31包括第四耦合端H4和第二接地端G2,以及设于第四耦合端H4和第二接地端G2之间的第三馈电点E。第四耦合端H4和第二接地端G2为第三辐射体31的两个末端。第四耦合端H4与第三耦合端H3之间形成第二缝隙102。
请参阅图4,第三射频前端单元63包括第三信号源32及第三选频滤波电路M3。
其中,第三选频滤波电路M3的一端电连接第三馈电点E,第三选频滤波电路M3的另一端电连接第三信号源32。第三选频滤波电路M3用于过滤第三信号源32传送的射频信号的杂波,以形成第三射频信号,并将第三射频信号传输至第三辐射体31,以激励第三辐射体31收发第三电磁波信号。
请参阅图3及图4,参考地极40还包括第三参考地极GND3,其中,第三选频滤波电路M3、第二接地端G2皆电连接第三参考地极GND3。可选的,第三参考地极GND3、第二参考地极GND2 及第一参考地极GND1可以为一体结构或为单独的分体结构。
本申请对于第一辐射体11、第二辐射体21、第三辐射体31的具体形成方式不做具体的限定。第一辐射体11、第二辐射体21、第三辐射体31的成型形式包括但不限于为柔性电路板(Flexible Printed Circuit,FPC)天线辐射体或者为激光直接成型(Laser Direct Structuring,LDS)天线辐射体、或者为印刷直接成型(Print Direct Structuring,PDS)天线辐射体、或者为金属枝节等中的至少一者。
具体的,第一辐射体11、第二辐射体21、第三辐射体31的材质皆为导电材质,具体的材质包括但不限于金属、透明导电氧化物(例如氧化铟锡ITO)、碳纳米管、石墨烯等等。本实施例中,第一辐射体11、第二辐射体21、第三辐射体31的材质为金属材质,例如,银、铜等。
可选的,天线组件100应用于电子设备1000时,第一信号源12、第二信号源22、第三信号源32、第一选频滤波电路M1、第二选频滤波电路M2、第三选频滤波电路M3皆设置在电子设备1000的主板200上。
可选的,第一信号源12、第二信号源22、第三信号源32为同一个信号源,或者,第三信号源32与第一信号源12、第二信号源22为不同的信号源。
具体的,第一信号源12、第二信号源22、第三信号源32为同一个信号源。该同一个信号源分别朝向第一选频滤波电路M1、第二选频滤波电路M2、第三选频滤波电路M3发射激励信号。由于第一选频滤波电路M1、第二选频滤波电路M2、第三选频滤波电路M3的电路结构不同,第一选频滤波电路M1、第二选频滤波电路M2、第三选频滤波电路M3选通频段不同,进而使得第一辐射体11、第二辐射体21及第三辐射体31在不同的激励信号下分别收发第一电磁波、第二电磁波及第三电磁波,且第一电磁波信号、第二电磁波信号及第三电磁波信号的频段各不相同,以使天线组件100的覆盖频段较宽及各个天线单元之间的信号收发隔离度较高,干扰小。
在另一种可能的实施方式中,第一信号源12、第二信号源22、第三信号源32为互不相同的信号源。第一信号源12、第二信号源22、第三信号源32可集成在同一个芯片或分别单独封装的不同芯片中。第一信号源12用于产生第一激励信号,第一激励信号经由第一选频滤波电路M1滤波后形成第一射频信号,第一射频信号加载在第一辐射体11上,以使得第一辐射体11收发第一电磁波信号。第二信号源22用于产生第二激励信号,第二激励信号经由第二选频滤波电路M2滤波后形成第二射频信号,第二射频信号加载在第二辐射体21上,以使得第二辐射体21收发第二电磁波信号。第三信号源32用于产生第三激励信号,第三激励信号经由第三选频滤波电路M3滤波后形成第三射频信号,第三射频信号加载在第三辐射体31上,以使得第三辐射体31收发第三电磁波信号。
本实施方式中,第一选频滤波电路M1、第二选频滤波电路M2及第三选频滤波电路M3的设置可使第一天线单元10、第二天线单元20、第三天线单元30收发不同频段的电磁波信号,从而提高第一天线单元10、第二天线单元20、第三天线单元30的隔离度。换而言之,第一选频滤波电路M1、第二选频滤波电路M2、第三选频滤波电路M3还可使得第一天线单元10收发的电磁波信号、第二天线单元20收发的电磁波信号及第三天线单元30收发的电磁波信号相互干扰极小或相互之间无干扰。
可以理解的,第一选频滤波电路M1包括但不限于串联和/或并联设置的电容、电感、电阻等,第一选频滤波电路M1可包括多个串联和/或并联的电容、电感、电阻形成的支路,及控制多个支路的通断的开关。通过控制不同开关的通断,可以调节第一选频滤波电路M1的选频参数(包括电阻值、电感值及电容值),进而调节第一选频滤波电路M1的滤波范围,从而可使第一选频滤波电路M1从第一信号源12发射的激励信号中获取第一射频信号,进而使得第一天线单元10收发第一电磁波信号。同样地,第二选频滤波电路M2、第三选频滤波电路M3皆包括多个串联和/或并联的电容、电感、电阻形成的支路,及控制多个支路的通断的开关。第一选频滤波电路M1、第二选频滤波电路M2、第三选频滤波电路M3的具体结构不同。第一选频滤波电路M1及第二选频滤波电路M2、第三选频滤波电路M3皆用于对其所电连接的辐射体进行阻抗调节,使其所电连接的辐射体的阻抗与其产生谐振的频率相匹配,进而实现辐射体的收发功率较大,故第一选频滤波电路M1、第二选频滤波电路M2、第三选频滤波电路M3也可称为匹配电路。
请一并参阅图5至图12,图5-图12分别为各个实施方式提供的第一选频滤波电路M1的示意图。第一选频滤波电路M1包括以下一种或多种电路。
请参阅图5,第一选频滤波电路M1包括电感L0与电容C0串联形成的带通电路。
请参阅图6,第一选频滤波电路M1包括电感L0与电容C0并联形成的带阻电路。
请参阅图7,第一选频滤波电路M1包括电感L0、第一电容C1、及第二电容C2。电感L0与第一电容C1并联,且第二电容C2电连接电感L0与第一电容C1电连接的节点。
请参阅图8,第一选频滤波电路M1包括电容C0、第一电感L1、及第二电感L2。电容C0与第一电感L1并联,且第二电感L2电连接电容C0与第一电感L1电连接的节点。
请参阅图9,第一选频滤波电路M1包括电感L0、第一电容C1、及第二电容C2。电感L0与第一电容C1串联,且第二电容C2的一端电连接电感L0未连接第一电容C1的第一端,第二电容C2的另一端电连接第一电容C1未连接电感L0的一端。
请参阅图10,第一选频滤波电路M1包括电容C0、第一电感L1、及第二电感L2。电容C0与第一电感L1串联,第二电感L2的一端电连接电容C0未连接第一电感L1的一端,第二电感L2的另一端电连接第一电感L1未连接电容C0的一端。
请参阅图11,第一选频滤波电路M1包括第一电容C1、第二电容C2、第一电感L1、及第二电感L2。第一电容C1与第一电感L1并联,第二电容C2与第二电感L2并联,且第二电容C2与第二电感L2并联形成的整体的一端电连接第一电容C1与第一电感L1并联形成的整体的一端。
请参阅图12,第一选频滤波电路M1包括第一电容C1、第二电容C2、第一电感L1、及第二电感L2,第一电容C1与第一电感L1串联形成第一单元111,第二电容C2与第二电感L2串联形成第二单元112,且第一单元111与第二单元112并联。
可以理解的,本申请中,第二选频滤波电路M2可包括图5至图12中的一种或多种电路。第三选频滤波电路M3可包括图5至图12中的一种或多种电路。
第一选频滤波电路M1在不同的频段呈现不同的带通带阻特性。
由上述可知,通过设置调频电路及对调频电路的参数进行调节,可使得第一天线单元10、第二天线单元20、第三天线单元30的谐振频率沿低频或高频移动,进而实现天线组件100超宽带,以同时覆盖GPS、Wi-Fi、4G、5G频段,甚至更多的频段,增加天线组件100的天线信号的覆盖度及通信质量。
以下结合附图对于本申请提供的调频方式进行举例说明,以得到适合的阻抗匹配,提高天线组件100的辐射功率。可选的,本申请提供的天线单元的调频方式包括但不限于口径调频和匹配调频。本申请通过设置调频电路,以使天线单元的谐振频率沿低频或高频方向移动,进而使得天线单元能够收发所需频段的电磁波。
请参阅图4,第二辐射体21还包括设于第二耦合端H2远离第一耦合端H1一侧的耦合点B。第二天线单元20还包括第一调频电路T1。第一调频电路T1的一端电连接耦合点B。第一调频电路T1的另一端接地。本实施方式中,第一调频电路T1直接电连接第二辐射体21,以调节第二辐射体21的阻抗匹配特性,实现了口径调节。在其他实施方式中,第一调频电路T1还可以电连接于第二选频滤波电路M2,第一调频电路T1与第二选频滤波电路M2形成新的匹配电路,以调节第二辐射体21的阻抗匹配特性,实现了匹配调节。
可选的,第一调频电路T1包括开关与电容、电感两者中的至少一者的组合;和/或,第一调频电路T1包括可变电容。
在一实施方式中,第一调频电路T1包括但不限于串联和/或并联设置的电容、电感、电阻等,第一调频电路T1可包括多个串联和/或并联的电容、电感、电阻形成的支路,及控制多个支路的通断的开关。通过控制不同开关的通断,可以调节第一调频电路T1的选频参数(包括电阻值、电感值及电容值),进而对于第二辐射体21的阻抗进行调节,进而调节第二辐射体21的谐振频点。本申请对于第一调频电路T1的具体结构不做限定。例如,第一调频电路T1可包括图5-图12中的一种或多种电路。
在另一实施方式中,第一调频电路T1包括但不限于可变电容。通过调节变电容的电容值,以调节第一调频电路T1的调频参数,进而对于第二辐射体21的阻抗进行调节,进而调节第二辐射体21的谐振频点。
通过设置第一调频电路T1,调节第一调频电路T1的调频参数(例如电阻值、电容值、电感值),以对第二辐射体21进行阻抗调节,以使第二辐射体21的谐振频点朝向高频段或低频段进行小范围的偏移。如此,可提高第二天线单元20在较宽频段的频率覆盖范围。
进一步地,请参阅图13及图14,第一天线单元10还包括第二调频电路T2。第一辐射体11还包括调频点F。调频点F位于第一馈电点A与第一耦合端H1之间。第二调频电路T2的一端电连接调频点F或电连接第一选频滤波电路M1。第二调频电路T2的另一端接地。
本实施方式中,请参阅图13,第二调频电路T2直接电连接第一辐射体11,以调节第一辐射体11的阻抗匹配特性,实现了口径调节。在其他实施方式中,请参阅图14,第二调频电路T2还可以电连接于第一选频滤波电路M1,第二调频电路T2与第一选频滤波电路M1形成新的匹配电路,以调节第一辐射体11的阻抗匹配特性,实现了匹配调节。
可选的,第二调频电路T2包括开关与电容、电感两者中的至少一者的组合;和/或,第二调频电路T2包括可变电容。
在一实施方式中,第二调频电路T2包括但不限于串联和/或并联设置的电容、电感、电阻等,第二调频电路T2可包括多个串联和/或并联的电容、电感、电阻形成的支路,及控制多个支路的通断的开关。通过控制不同开关的通断,可以调节第二调频电路T2的选频参数(包括电阻值、电感值及电容值),进而对于第一辐射体11的阻抗进行调节,进而调节第一辐射体11的谐振频点。本申请对于第二调频电路T2的具体结构不做限定。例如,第二调频电路T2可包括图5-图12中的一种或多种电路。
在另一实施方式中,第二调频电路T2包括但不限于可变电容。通过调节变电容的电容值,以调节第二调频电路T2的调频参数,进而对于第一辐射体11的阻抗进行调节,进而调节第一辐射体11的谐振频点。
通过设置第二调频电路T2,调节第二调频电路T2的调频参数(例如电阻值、电容值、电感值),以对第一辐射体11进行阻抗调节,以使第一辐射体11的谐振频点朝向高频段或低频段进行小范围的偏移。如此,可提高第一天线单元10在较宽频段的频率覆盖范围。
以下结合附图对于本申请中第一天线单元10的等效电路图和谐振模式进行举例说明。
请参阅图15,图15为第一天线单元10的等效电路图。其中,第二天线单元20的部分与第一天线单元10容性耦合。请参阅图16,图16为第一天线单元10的回波损耗曲线图。
本申请对于天线组件100的天线单元的数量、结构进行设计,还对第一天线单元10中的第一辐射体11的有效电长度、结构,第一馈电点A的位置,第二辐射体21与第一辐射体11相耦合的有效电长度等进行设计,形成在实用性较高的频段内具有谐振模式,以收发该实用性较高的频段的电磁波,进一步地,通过调频电路(包括第一调频电路T1和第二调频电路T2)对第一辐射体11的阻抗匹配进行调节,实现了第一天线单元10的谐振模式沿高频和低频段移动,如此,实现了该第一天线单元10在该实用性较高的频段内具有超频宽。其中,有效电长度是指,第一射频信号在第一辐射体11上作用的长度,其可以是第一辐射体11的实际长度,也可以稍小于或稍大于第一辐射体11的实际长度。
对于第一天线单元10的第一辐射体11而言,通过对第一辐射体11的有效电长度进行设计,请参阅图16,第一接地端G1与第一耦合端H1之间的第一辐射体11用于在第一信号源12发射的射频信号的激励下产生第一谐振模式a。通过对第一馈电点A的位置进行设计,第一馈电点A与第二耦合端H2之间的第一辐射体11用于在第一信号源12发射的射频信号的激励下于产生第二谐振模式b。其中,第一谐振模式a的频段和第二谐振模式b的频段共同覆盖2GHz~4GHz。
进一步地,第一谐振模式a为第一天线单元10工作在第一接地端G1至第一耦合端H1的1/4波长基模。可以理解的,1/4波长基模为第一射频信号在第一接地端G1至第一耦合端H1的较为高效的谐振模式。第一天线单元10工作在基模下具有较高的收发功率。换言之,第一谐振模式a所覆盖的频段具有较高的收发功率。第一谐振模式a所覆盖的频段包括但不限于为B40\41及N41频段。
在一实施方式中,通过对第一接地端G1与第一耦合端H1之间的第一辐射体11的有效电长度进行设计,例如,第一接地端G1与第一耦合端H1之间的长度为2.9cm左右,通过调节第一调频电路T1及第一选频滤波电路M1的参数,以使第一接地端G1与第一耦合端H1之间的第一辐射体11辐射为1/4波长基模的第一谐振模式a。举例而言,请参阅图16,第一谐振模式a的谐振频率约为2.5495GHz。
进一步地,请参阅图16,第二谐振模式b为第一天线单元10工作在第一馈电点A至第一耦合 端H1的1/4波长基模。第一天线单元10工作在第二谐振模式b下具有较高的收发功率。换言之,第二谐振模式b所覆盖的频段具有较高的收发功率。第二谐振模式b所覆盖的频段包括但不限于为N77及N78频段。
在一实施方式中,通过对第一馈电点A至第一耦合端H1之间的第一辐射体11的有效电长度进行设计,例如,第一馈电点A至第一耦合端H1之间的长度为2.1cm左右,通过调节第一调频电路T1及第一选频滤波电路M1的参数,以使第一馈电点A与第一耦合端H1之间的第一辐射体11辐射为1/4波长基模的第二谐振模式b。举例而言,请参阅图16,第二谐振模式b的谐振频率约为3.5293GHz。
本申请实施例通过设计第一辐射体11的尺寸和结构,对第一馈电点A的位置进行设计,调节第一调频电路T1的参数,以使第一辐射体11能够在2GHz~4GHz频段范围内进行一定的频段覆盖,从而实现对B40\41、N41、N77及N78频段进行覆盖,且在这些频段内具有较高的收发功率。
可以理解的,耦合点B与第二耦合端H2之间的第二辐射体21用于与第一辐射体11容性耦合。具体的,耦合点B与第二耦合端H2之间的第二辐射体21的长度小于第二谐振模式b的谐振频点的电磁波波长的1/4。耦合点B与第二耦合端H2之间的第二辐射体21的长度小于2.1cm。第二天线单元20对第一天线单元10起到容性加载的作用,以使第一天线单元10辐射的电磁波信号沿低频段偏移,同时还能够提升第一天线单元10的辐射效率。
以下结合附图对于本申请中第二天线单元20的等效电路图和谐振模式进行举例说明。
请参阅图17,图17为第二天线单元20的等效电路图。其中,第三天线单元30与第二天线单元20容性耦合。请参阅图18,图18为第二天线单元20的回波损耗曲线图。
可以理解的,本申请对于天线组件100的天线单元的数量、结构进行设计,还对第二天线单元20中的第二辐射体21的有效电长度、结构,第二馈电点C的位置,第三辐射体31与第二辐射体21相耦合的有效电长度等进行设计,形成在实用性较高的频段内具有谐振模式,以收发该实用性较高的频段的电磁波,进一步地,通过调频电路(包括第二调频电路T2、第二选频滤波电路M2、第三选频滤波电路M3)对第二辐射体21的阻抗匹配进行调节,实现了第二天线单元20的谐振模式沿高频和低频段移动,如此,实现了该第二天线单元20在该实用性较高的频段内具有超频宽。其中,有效电长度是指,第二射频信号在第二辐射体21上作用的长度,其可以是第二辐射体21的实际长度,也可以稍小于或稍大于第二辐射体21的实际长度。
对于第二天线单元20的第二辐射体21而言,通过对第二辐射体21的有效电长度进行设计,请参阅图18,耦合点B与第三耦合端H3之间的第二辐射体21用于在第二信号源发射的射频信号激励下产生第三谐振模式c。通过对第二馈电点C的位置进行设计,第二馈电点C与第三耦合端H3之间的第二辐射体21用于在第二信号源22发射的射频信号激励下产生第四谐振模式d,其中,第三谐振模式c及第四谐振模式d的频段共同覆盖1.5GHz~3GHz。
进一步地,第三谐振模式c为第二天线单元20工作在耦合点B至第三耦合端H3的1/4波长基模。第二天线单元20工作在基模下具有较高的收发功率。换言之,第三谐振模式c所覆盖的频段具有较高的收发功率。第三谐振模式c所覆盖的频段包括但不限于为GPS-L1、B3及N3频段。
在一实施方式中,通过对耦合点B与第三耦合端H3之间的第二辐射体21的有效电长度进行设计,例如耦合点B与第三耦合端H3之间的长度为4.6cm左右,通过调节第二调频电路T2、第二选频滤波电路M2、第三选频滤波电路M3的参数,以使耦合点B与第三耦合端H3之间的第二辐射体21辐射为1/4波长基模的第三谐振模式c。举例而言,请参阅图18,第三谐振模式c的谐振频率约为1.618GHz。
进一步地,第四谐振模式d为第二天线单元20工作在第二馈电点C至第三耦合端H3的1/4波长基模。第二天线单元20工作在第四谐振模式d下具有较高的收发功率。换言之,第四谐振模式d所覆盖的频段具有较高的收发功率。第四谐振模式d所覆盖的频段包括但不限于为Wi-Fi2.4GHz、B7\40\41、N7及N41频段。
在一实施方式中,通过对第二馈电点C至第三耦合端H3之间的第二辐射体21的有效电长度进行设计,例如,第二馈电点C至第三耦合端H3之间的长度为2.1cm左右,通过调节第一调频电路T1、第二选频滤波电路M2、第三选频滤波电路M3的参数,以使第二馈电点C至第三耦合端H3之间的第二辐射体21辐射为1/4波长基模的第四谐振模式d。举例而言,请参阅图18,第四谐 振模式d的谐振频率约为2.4943GHz。
本申请实施例通过设计第二辐射体21的尺寸和结构,对第二馈电点C的位置进行设计,调节第一调频电路T1、第二选频滤波电路M2、第三选频滤波电路M3的参数,以使第二辐射体21能够在1.5GHz~3GHz频段范围内进行一定的频段覆盖,从而实现对GPS-L1、Wi-Fi2.4、B3\7\40\41、N3\7\41频段进行覆盖,且在这些频段内具有较高的收发功率。
以下结合附图对于本申请中第三天线单元30的等效电路图和谐振模式进行举例说明。
请参阅图19,图19为第三天线单元30的等效电路图。其中,第二天线单元20与第三天线单元30容性耦合。请参阅图20,图20为第三天线单元30的回波损耗曲线图。
可以理解的,本申请对第三天线单元30中的第三辐射体31的有效电长度、结构,第三馈电点的位置,第二辐射体21与第三辐射体31相耦合的有效电长度等进行设计,形成在实用性较高的频段内具有谐振模式,以收发该实用性较高的频段的电磁波,进一步地,通过调频电路(包括第二调频电路T2、第二选频滤波电路M2、第三选频滤波电路M3)对第三辐射体31的阻抗匹配进行调节,实现了第三天线单元30的谐振模式沿高频和低频段移动,如此,实现了该第三天线单元30在该实用性较高的频段内具有超频宽。其中,有效电长度是指,第三射频信号在第三辐射体31上作用的长度,其可以是第三辐射体31的实际长度,也可以稍小于或稍大于第三辐射体31的实际长度。
对于第三天线单元30的第三辐射体31而言,通过对第三辐射体31的有效电长度进行设计,请参阅图19及图20,第二接地端G2与第四耦合端H4之间的第三辐射体31用于在第三信号源32发射的射频信号激励下产生第五谐振模式e及第六谐振模式f。通过对第三馈电点E的位置进行设计,耦合点B至第三耦合端H3之间的第二辐射体21用于在第三信号源32发射的射频信号激励下产生第七谐振模式g;其中,第五谐振模式e、第六谐振模式f及第七谐振模式g的频段共同覆盖3GHz~6.5GHz。
进一步地,第五谐振模式e为第三天线单元30工作在第二接地端G2至第四耦合端H4的1/8波长模态。具体的,第五谐振模式e为第三天线单元30工作在第二接地端G2至第四耦合端H4的1/4~1/8波长模态。第五谐振模式e所覆盖的频段包括但不限于为N77/78频段。
在一实施方式中,通过对第二接地端G2至第四耦合端H4之间的第三辐射体31的有效电长度进行设计,例如第二接地端G2至第四耦合端H4之间的长度为1.1cm~2.2cm左右,通过调节第二调频电路T2、第二选频滤波电路M2、第三选频滤波电路M3的参数,以使第二接地端G2至第四耦合端H4之间的第三辐射体31辐射为1/8波长模态的第五谐振模式e。举例而言,第五谐振模式e的谐振频率约为3.4258GHz。
进一步地,所述第三馈电点E与所述第二接地端G2之间的距离大于所述第三馈电点E与所述第四耦合端H4之间的距离。第三馈电点E靠近第四耦合端H4。换言之,第三馈电点E靠近第二缝隙102,以使第三馈电点E为容性耦合馈,以使第二接地端G2至第四耦合端H4之间的第三辐射体31更加容易激发出1/8波长模态,以对于N77/78频段进行更好的覆盖及在N77/78频段具有较高的工作功率。
进一步地,第六谐振模式f为第三天线单元30工作在第二接地端G2至第四耦合端H4的1/4波长基模。第三天线单元30工作在第六谐振模式f下具有较高的收发功率。换言之,第六谐振模式f所覆盖的频段具有较高的收发功率。第六谐振模式f所覆盖的频段包括但不限于为Wi-Fi 5GHz频段。
在一实施方式中,通过对第二馈电点C至第三耦合端H3之间的第二辐射体21的有效电长度进行设计,例如,第二馈电点C至第三耦合端H3之间的长度为1.3cm左右,通过调节第一调频电路T1、第二选频滤波电路M2、第三选频滤波电路M3的参数,以使第二馈电点C至第三耦合端H3之间的第二辐射体21辐射为1/4波长基模的第六谐振模式f。举例而言,第六谐振模式f的谐振频率约为5.7357GHz。
进一步地,第七谐振模式g为第三天线单元30工作在耦合点B至第三耦合端H3的1/2波长模态。
本申请实施例提供的天线组件100通过设计三个天线单元的容性耦合,及对每个天线单元的辐射体、馈电点、调频电路进行设计,以使第一天线单元10收发的第一电磁波信号至少覆盖B40/41+N41/78/77。其中,B40频段覆盖2.3GHz~2.5GHz,B41频段覆盖2.5GHz~2.69GHz,N41频段覆盖2.49GHz~2.69GHz,N78频段覆盖3.3GHz~3.8GHz,N77频段覆盖3.3GHz~4.2GHz。第 二天线单元20收发的第二电磁波信号至少覆盖(GPS-L1)+(WI-FI2.4G)+(LTE-MHB)+(NR-MHB),其中,GPS-L1的频段覆盖1.57542GHz,WI-FI2.4G的频段覆盖2.4GHz~2.5GHz,LTE-MHB包括B1/3/7/40/41,其中,B1频段覆盖1.92~1.98GHz,B3频段覆盖1.71~1.785GHz,B7频段覆盖2.5~2.57GHz,B40频段覆盖2.3-2.4GHz,B40频段覆盖2.496–2.69GHz。NR-MHB频段包括N1/3/7/40/41。其中,N1覆盖1.920MHz–1.980,N3覆盖1.710GHz–1.785GHz,N7覆盖2.500GHz–2.570GHz,N40覆盖2.300GHz–2.400GHz,N41覆盖2.496GHz–2.690GHz。第三天线单元30收发的第三电磁波信号至少覆盖N77/78/79+WI-FI5G。其中,N77覆盖3.300GHz–4.200GHz,N78覆盖3.300GHz–3.800GHz,N79覆盖4.400GHz-5GHz,WI-FI5G覆盖5.150GHz–5.85GHz。如此,实现了天线组件100在实用性较高的频段(1~6GHz)内具有较大的覆盖率及较高的辐射功率。通过对调频电路的设计,以使天线组件100可调至所需辐射的频段。
由于第一辐射体11及第二辐射体21间隔设置且相互耦合,也即,第一辐射体11及第二辐射体21共口径。第三辐射体31及第二辐射体21间隔设置且相互耦合,也即,第三辐射体31及第二辐射体21共口径。当天线组件100工作时,第一信号源12产生的第一激励信号可经由第一辐射体11耦合到第二辐射体21上。换而言之,第一天线单元10工作时不但可以利用第一辐射体11并且可以利用第二天线单元20中的第二辐射体21来收发电磁波信号,从而使得第一天线单元10可以工作在较宽的频段。同样地,第二天线单元20工作时不但可以利用第二辐射体21并且还可以利用第一天线单元10中的第一辐射体11、第三天线单元30中的第三辐射体31来收发电磁波信号,从而使得第二天线单元20可工作在较宽的频段。同样地,第三天线单元30工作时不但可以利用第三辐射体31并且还可以利用第二天线单元20中的第二辐射体21来收发电磁波信号,从而使得第三天线单元30可工作在较宽的频段。如此,由于第一天线单元10和第二天线单元20之间的辐射体实现可了相互复用,实现多天线单元共体,所以天线组件100在增加频宽的同时,还能够减小天线组件100的整体体积,利于电子设备1000的整体小型化。
相关技术中需要较多的天线单元或者需要增加辐射体的长度,才能支持到第一谐振模式a至第七谐振模式g,从而导致天线组件100的体积较大。本申请实施例中的一个天线组件100可支持第一谐振模式a至第七谐振模式g,因此,天线组件100的体积较小、成本相对较小,还减小天线组件100所占据的空间,进而减小了天线组件100与其他器件的堆叠难度,还可减少射频链路插损。
请参阅图21,图21为表征第一天线单元10、第二天线单元20、第三天线单元30之间的隔离度曲线。其中,S2,1表征第一天线单元与第二天线单元之间的能量流动曲线图,当S2,1越小,表征第一天线单元与第二天线单元之间的信号干扰越小,第一天线单元与第二天线单元之间的隔离度越好。第一天线单元与第二天线单元之间的能量流动值小于-14.955,说明第一天线单元与第二天线单元之间的隔离度较好。相应地,S3,1表征第一天线单元与第三天线单元之间的能量流动曲线图。S3,2表征第二天线单元与第三天线单元之间的能量流动曲线图。由图21可知,第一天线单元与第二天线单元之间的隔离度较好。第三天线单元与第二天线单元之间的隔离度较好。
请参阅图22,图22为第一天线单元10、第二天线单元20、第三天线单元30在全面屏手机复杂整机环境中并且净空空间很小的情况下的总辐射效率曲线。根据图22可知,本申请实施提供的天线组件100中的第一天线单元10、第二天线单元20、第三天线单元30的回波损耗相对较小,第一天线单元10、第二天线单元20、第三天线单元30具有较好的辐射效率。
本申请实施例还提供了一种天线组件100,该天线组件100不仅仅具有收发电磁波信号的作用,还能够对待检测主体的接近进行感应,以增加天线组件100的功能,提高天线组件100的器件集成度,促进电子设备1000的小型化。
请参阅图23,所述天线组件100还包括第一隔离器件71、第二隔离器件72及第一接近感测器件81。第一隔离器件71电连接于第二辐射体21与第二射频前端单元62之间。
具体的,所述第一隔离器件71的数量为多个。所述第一隔离器件71设于所述第二辐射体21与所述第二选频滤波电路M2之间、所述第二辐射体21与所述第一调频电路T1之间。所述第一隔离器件71用于隔离待检测主体靠近所述第二辐射体21时产生的第一感应信号及导通所述第二辐射体21收发的电磁波信号。具体的,第一隔离器件71至少包括隔直电容。待检测主体包括但不限于人体。
所述第二隔离器件72的一端电连接所述第二辐射体21与所述第一隔离器件71之间,所述第二隔离器件72用于隔离所述第二辐射体21收发的电磁波信号及导通所述第一感应信号。具体的, 第二隔离器件72至少包括隔离电感。
所述第一接近感测器件81电连接于所述第二隔离器件72的另一端,用于感测所述第一感应信号的大小。
其中,待检测主体靠近第二辐射体21时,第二辐射体21产生的接近感测信号为直流信号。电磁波信号为交流信号。通过在第二辐射体21与第二射频前端单元62之间设置第一隔离器件71,以使第一感应信号不会经第二辐射体21流向第二射频前端单元62,以影响第二天线单元20的信号收发。通过在第一接近感测器件81与第二辐射体21之间设置第二隔离器件72,以使电磁波信号不会经第二辐射体21流向第一接近感测器件81,提高第一接近感测器件81对于接近感测信号的感测效率。
本申请对于第一接近感测器件81的具体结构不做限定,第一接近感测器件81包括但不限于为用于感测电容变化或电感变化的传感器。
所述天线组件100还包括控制器(未图示)。所述控制器电连接所述第一接近感测器件81远离所述第二隔离器件72的一端。所述控制器用于根据所述第一感应信号的大小判断所述待检测主体是否靠近所述第二辐射体21,并在所述待检测主体靠近所述第二辐射体21时降低所述第二天线单元20的工作功率。具体的,当第一接近感测器件81检测到人体靠近第二天线单元20时,可减小第二天线单元20的发射功率,进而减小人体对于第二天线单元20发射的电磁波信号的比吸收率;当第一接近感测器件81检测到人体远离第二天线单元20时,可增加第二天线单元20的发射功率,以提高天线组件100的天线性能,同时又不会增大人体对于第二天线单元20发射的电磁波信号的比吸收率,如此,进而实现电子设备1000的辐射性能智能可调,且提高了电子设备1000的安全性能。
请参阅图24,第一天线单元10还包括第三隔离器件73。所述第三隔离器件73设于所述第一辐射体11与所述第一射频前端单元61之间及第一接地端G1与第一参考地极GND1之间,用于隔离所述待检测主体靠近所述第一辐射体11时产生的第二感应信号及导通所述第一辐射体11收发的电磁波信号。具体的,第三隔离器件73包括隔离电容。第三隔离器件73用于使第一辐射体11相对于直流信号为“悬浮”状态。
在第一种可能的实施方式中,请参阅图24,所述第二感应信号用于通过所述第一辐射体11与所述第二辐射体21的耦合作用使所述第二辐射体21产生子感应信号,所述第一接近感测器件81还用于感测所述子感应信号的大小。
本实施方式中,第一辐射体11与第二辐射体21皆作为感应待检测主体靠近的感应电极,且第一辐射体11的接近感应路径为第一辐射体11、第二辐射体21至第一接近感测器件81。换言之,当待检测主体靠近第一辐射体11时,第一辐射体11产生第二感应信号,该第二感应信号通过耦合作用使第二辐射体21产生子感应信号,这样第一接近感测器件81也能够感应到第一辐射体11处的待检测主体。无需使用两个接近感测器件81,还充分利用了第一辐射体11与第二辐射体21之间的耦合作用及第一接近感测器件81,使第一辐射体11与第二辐射体21在接近检测时也能够复用,增加了器件的利用率,减小器件数量,进一步地促进电子设备1000集成化和小型化。
在第二种可能的实施方式中,请参阅图25,所述天线组件100还包括第四隔离器件74。所述第四隔离器件74的一端电连接于所述第一辐射体11与所述第三隔离器件73之间或电连接所述第一辐射体11,用于隔离所述第一辐射体11收发的电磁波信号及导通所述第二感应信号。具体的,第四隔离器件74包括隔离电感。
进一步地,所述天线组件100还包括第二接近感测器件82,所述第二接近感测器件82电连接于所述第四隔离器件74的另一端,用于感测所述第二感应信号的大小。具体的,第一辐射体11和第二辐射体21皆为感应待检测主体靠近的感应电极,且第一辐射体11的接近感应路径与第二辐射体21的接近感应路径相互独立,可以准确地检测到待检测主体靠近第一辐射体11或第二辐射体21,进而及时地响应上述的靠近行为。具体的,待检测主体靠近第一辐射体11时,第一辐射体11产生的第二感应信号为直流信号。电磁波信号为交流信号。通过在第一辐射体11与第一射频前端单元61之间设置第三隔离器件73,以使第二感应信号不会经第一辐射体11流向第一射频前端单元61,以影响第一天线单元10的信号收发。通过在第二接近感测器件82与第一辐射体11之间设置第四隔离器件74,以使电磁波信号不会经第一辐射体11流向第二接近感测器件82,提高第二接近感测器件82对于第二感应信号的感测效率。
在其他实施方式中,可以利用第二辐射体21与第一辐射体11的耦合将第二辐射体21的感应信号经过第一辐射体11传输至第二接近感测器件82。
在第三种可能的实施方式中,请参阅图26,所述第四隔离器件74的另一端电连接所述第一接近感测器件81。所述第一辐射体11与所述第二辐射体21容性耦合时产生耦合感应信号。所述第一接近感测器件81还用于在所述待检测主体靠近所述第一辐射体11和/或所述第二辐射体21时感应所述耦合感应信号的变化量。
具体的,第一辐射体11与第二辐射体12之间耦合时产生恒定电场,表现为产生稳定的耦合感应信号。当人体靠近该恒定电场时,该恒定电场会发生变化,表现为耦合感应信号的变化,根据耦合感应信号的变化量来检测人体的靠近。
本实施方式,第一辐射体11与第二辐射体12同时作为感应电极,可对于第一辐射体11所对应的区域、第二辐射体12所对应的区域及第一缝隙101所对应的区域内具有人体靠近时进行准确检测。无需使用两个接近感测器件81,还充分利用了第一辐射体11与第二辐射体21之间的耦合作用及第一接近感测器件81,使第一辐射体11与第二辐射体21在接近检测时也能够复用,增加了器件的利用率,减小器件数量,进一步地促进电子设备1000集成化和小型化。
本申请对于第二接近感测器件82的具体结构不做限定,第二接近感测器件82包括但不限于为用于感测电容变化或电感变化的传感器。
请参阅图24,在第三辐射体31与第三射频前端单元63之间、第三辐射体31与第三参考地极GND3之间设置第五隔离器件75,以使第三辐射体31也能够检测待检测主体的靠近。第三辐射体31作为感应人体靠近的感应电极,其具体的感应路径可以与第二辐射体21的感应路径相互独立、或通过与第二辐射体21耦合作用后传输至第一接近感测器件81、或通过与第二辐射体21形成容性耦合时产生耦合感应信号,并将该耦合感应信号传输至第一接近感测器件81。具体的实施方式可以参考第一辐射体11作为感应电极的实施方式,在此不再赘述。
将第一辐射体11、第二辐射体21及第三辐射体31皆形成检测电极,可增加检测电极的面积,进而在更大的范围内对待检测主体的靠近进行检测,进一步提高电子设备1000的辐射性能的调节准确性。
天线组件100上的辐射体在作为收发电磁波信号的同时还能够复用天线组件100上的辐射体为人体等待检测主体靠近的感应电极,并通过第一隔离器件71、第二隔离器件72分别对感应信号和电磁波信号进行隔离,实现了天线组件100的通信性能和感应待检测主体的作用,实现电子设备1000的辐射性能智能可调,且提高了电子设备1000的安全性能,还提高电子设备1000的器件利用率,减小电子设备1000的整体体积。
对于电子设备1000而言,天线组件100可至少部分集成于壳体500上或全部设于壳体500内。
在一实施方式中,请参阅图4及图27,天线组件100至少部分集成于壳体500上。具体的,天线组件100的参考地极40、信号源、调频电路、选频滤波电路皆设于主板200上。第三辐射体3111、第二辐射体21及第三辐射体31集成为壳体500的一部分。进一步地,壳体500包括中框501及电池盖502。其中,显示屏300、中框501及电池盖502依次盖合连接。第三辐射体3111、第二辐射体21及第三辐射体31嵌设于中框501上,以形成中框501的一部分。
可选的,中框501包括多段金属段503及间隔相邻两个金属段503之间的绝缘段504。多段金属段503分别形成第三辐射体3111、第二辐射体21及第三辐射体31,第三辐射体3111与第二辐射体21之间的绝缘段504填充于第一缝隙101,第二辐射体21与第三辐射体31之间的绝缘段504填充于第二缝隙102。或者,第三辐射体3111、第二辐射体21及第三辐射体31嵌设于电池盖502上,以形成电池盖502的一部分。
可以理解的,当辐射体作为感应电极时,辐射体表面可以设有一层绝缘且对于电磁波的透过率较高的膜层。
在另一实施方式中,请参阅图4及图28,天线组件100设于壳体500内。天线组件100的参考地极40、信号源、调频电路设于主板200上。第三辐射体3111、第二辐射体21及第三辐射体31可成型于柔性电路板上并贴合于壳体500的内表面等位置。
请参阅图28,壳体500包括依次首尾相连的第一边51、第二边52、第三边53和第四边54。第一边51与第三边53相对设置。第二边52与第四边54相对设置。第一边51的长度小于第二边52的长度。相邻的两个边的连接处形成壳体500的拐角。
在一实施方式中,请参阅图28,第一天线单元10和第二天线单元20的一部分设于第一边51,第二天线单元20的另一部分和第三天线单元30设于第二边52。具体的,第三辐射体3111设于壳体500的第一边51或沿第一边51设置。第二辐射体21设于第一边51、第二边52及两者之间的拐角。第三辐射体31设于壳体500的第二边52或沿第二边52设置。当第二天线单元20作为检测待检测主体靠近的检测电极时,由于第二辐射体21设于第一边51和第二边52,所以第二辐射体21能够在多个方向上检测是否有待检测主体靠近,提高电子设备1000对待检测主体靠近的检测准确性。
进一步地,用户沿竖直方向握持电子设备1000时,第一边51为远离地面的边,第三边53为靠近地面的边。当用户接打电话时,用户的头部靠近第一边51。控制器在用户的头部靠近第一边51接听电话时,控制所述第一天线单元10的功率减小及控制所述第三天线单元30的功率增加。控制器降低所述待检测主体头部附近的电磁波收发功率,进而降低所述待检测主体对于电磁波的比吸收率。
控制器用于在显示屏300处于竖屏显示状态时控制第一天线单元10的功率大于第三天线单元30的功率。具体的,显示屏300处于竖屏显示状态或用户沿竖直方向握持电子设备1000时,手指一般遮挡第二边52和第四边54,此时,控制器可控制设于第一边51的第一天线单元10主要收发电磁波信号,以避免设于第二边52的第三天线单元30被手指遮挡而无法收发电磁波信号,提高电子设备1000在各种使用场景下的通信质量。
控制器还用于在显示屏300处于横屏显示状态时控制第三天线单元30的功率大于第一天线单元10的功率。具体的,显示屏300处于横屏显示状态或用户沿水平方向握持电子设备1000时,手指一般遮挡第一边51和第三边53,此时,控制器可控制设于第二边52的第三天线单元30主要收发电磁波信号的电磁波,以避免设于第一边51的第一天线单元10被手指遮挡而无法收发电磁波信号的电磁波,提高电子设备1000在各种使用场景下的通信质量。
在另一实施方式中,请参阅图29,第一天线单元10、第二天线单元20、第三天线单元30皆设于壳体500的同一边。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线组件,其特征在于,包括:
    第一天线单元,包括第一辐射体;
    第二天线单元,包括第二辐射体,所述第二辐射体的一端与所述第一辐射体之间形成第一缝隙,所述第二辐射体的至少部分通过所述第一缝隙与所述第一辐射体耦合;及
    第三天线单元,包括第三辐射体,所述第三辐射体与所述第二辐射体的另一端之间形成第二缝隙,所述第三辐射体的至少部分通过所述第二缝隙与所述第二辐射体耦合;
    所述第二天线单元在所述第一辐射体与所述第二辐射体的耦合作用下和在所述第二辐射体与所述第三辐射体的耦合作用下收发的电磁波信号至少覆盖GPS-L1频段、Wi-Fi 2.4G频段、LTE-MHB频段及NR-MHB频段。
  2. 如权利要求1所述的天线组件,其特征在于,所述第一天线单元所收发的电磁波信号至少覆盖LTE-MHB频段、NR-MHB频段及NR-UHB频段;和/或,所述第三天线单元所收发的电磁波信号至少覆盖NR-UHB频段及Wi-Fi 5G频段。
  3. 如权利要求1所述的天线组件,其特征在于,所述第一辐射体包括第一接地端、第一耦合端以及设于所述第一接地端与所述第一耦合端之间的第一馈电点;所述第一天线单元还包括第一选频滤波电路及第一信号源,所述第一选频滤波电路的一端电连接所述第一馈电点,所述第一信号源电连接所述第一选频滤波电路的另一端;所述第二辐射体还包括第二耦合端及设于所述第二耦合端远离所述第一耦合端一侧的耦合点,所述第二耦合端与所述第一耦合端之间形成所述第一缝隙;所述第二天线单元还包括第一调频电路,所述第一调频电路的一端电连接所述耦合点,所述第一调频电路的另一端接地。
  4. 如权利要求3所述的天线组件,其特征在于,所述第一接地端与所述第一耦合端之间的第一辐射体用于在所述第一信号源的激励下产生第一谐振模式;所述第一馈电点与所述第二耦合端之间的第一辐射体用在所述第一信号源的激励下于产生第二谐振模式,其中,所述第一谐振模式的频段和所述第二谐振模式的频段共同覆盖2GHz~4GHz。
  5. 如权利要求4所述的天线组件,其特征在于,所述第一谐振模式为所述第一天线单元工作在所述第一接地端至所述第一耦合端的1/4波长基模,所述第二谐振模式为所述第一天线单元工作在所述第一馈电点至所述第一耦合端的1/4波长基模。
  6. 如权利要求5所述的天线组件,其特征在于,所述耦合点与所述第二耦合端之间的第二辐射体的长度小于所述第二谐振模式的谐振频率的电磁波波长的1/4,所述耦合点与所述第二耦合端之间的第二辐射体用于与所述第一辐射体容性耦合。
  7. 如权利要求3所述的天线组件,其特征在于,所述第一天线单元还包括第二调频电路,所述第一辐射体还包括调频点,所述调频点位于所述第一馈电点与所述第一耦合端之间,所述第二调频电路的一端电连接所述调频点或电连接所述第一选频滤波电路,所述第二调频电路的另一端接地。
  8. 如权利要求3所述的天线组件,其特征在于,所述第二辐射体还包括第二馈电点及第三耦合端,所述第二馈电点位于所述耦合点与所述第三耦合端之间;
    所述第二天线单元还包括第二选频滤波电路及第二信号源,所述第二选频滤波电路的一端电连接所述第二馈电点,所述第二信号源电连接所述第二选频滤波电路的另一端,所述第二选频滤波电路的另一端接地;
    所述第三辐射体还包括依次设置的第四耦合端、第三馈电点及第二接地端,所述第四耦合端与所述第三耦合端之间形成所述第二缝隙;
    所述第三天线单元还包括第三选频滤波电路及第三信号源,所述第三选频滤波电路的一端电连接第三馈电点,所述第三信号源电连接所述第三选频滤波电路的另一端,所述第三选频滤波电路的另一端接地。
  9. 如权利要求8所述的天线组件,其特征在于,所述耦合点与所述第三耦合端之间的第二辐射体用于在所述第二信号源发射的射频信号激励下产生第三谐振模式;所述第二馈电点与所述第三耦合端之间的第二辐射体用于在所述第二信号源发射的射频信号激励下产生第四谐振模式,其中,所述第三谐振模式及所述第四谐振模式的频段共同覆盖1.5GHz~3GHz。
  10. 如权利要求9所述的天线组件,其特征在于,所述第三谐振模式为所述第二天线单元工作在所述耦合点至所述第三耦合端的1/4波长基模;所述第四谐振模式为所述第二天线单元工作在所述 第二馈电点至所述第三耦合端的1/4波长基模。
  11. 如权利要求8所述的天线组件,其特征在于,所述第二接地端与所述第四耦合端之间的第三辐射体用于在所述第三信号源发射的射频信号激励下产生第五谐振模式及第六谐振模式;所述耦合点至所述第三耦合端之间的第二辐射体用于在所述第三信号源发射的射频信号激励下产生第七谐振模式;其中,所述第五谐振模式、所述第六谐振模式及所述第七谐振模式的频段共同覆盖3GHz~6.5GHz。
  12. 如权利要求11所述的天线组件,其特征在于,所述第五谐振模式为所述第三天线单元工作在所述第二接地端至所述第四耦合端的1/8波长模态;所述第六谐振模式为所述第三天线单元工作在所述第二接地端至所述第四耦合端的1/4波长基模;所述第七谐振模式为所述第二天线单元工作在所述耦合点至所述第三耦合端的1/2波长模态。
  13. 如权利要求12所述的天线组件,其特征在于,所述第三馈电点与所述第二接地端之间的距离大于所述第三馈电点与所述第四耦合端之间的距离。
  14. 如权利要求8所述的天线组件,其特征在于,所述天线组件还包括第一隔离器件、第二隔离器件及第一接近感测器件,所述第一隔离器件设于所述第二辐射体与所述第二选频滤波电路之间、所述第二辐射体与所述第一调频电路之间,所述第一隔离器件用于隔离待检测主体靠近所述第二辐射体时产生的第一感应信号及导通所述第二辐射体收发的电磁波信号;所述第二隔离器件的一端电连接所述第二辐射体与所述第一隔离器件之间或电连接所述第二辐射体,所述第二隔离器件用于隔离所述第二辐射体收发的电磁波信号及导通所述第一感应信号;所述第一接近感测器件电连接于所述第二隔离器件的另一端,用于感测所述第一感应信号的大小。
  15. 如权利要求14所述的天线组件,其特征在于,所述天线组件还包括第三隔离器件,所述第三隔离器件电连接于所述第一接地端与参考地之间、所述第一馈电点与所述第一信号源之间,用于隔离所述待检测主体靠近所述第一辐射体时产生的第二感应信号及导通所述第一辐射体所收发的电磁波信号。
  16. 如权利要求15所述的天线组件,其特征在于,所述第二感应信号用于通过所述第一辐射体与所述第二辐射体的耦合作用使所述第二辐射体产生子感应信号,所述第一接近感测器件还用于感测所述子感应信号的大小。
  17. 如权利要求15所述的天线组件,其特征在于,所述天线组件还包括第四隔离器件,所述第四隔离器件的一端电连接于所述第一辐射体与所述第三隔离器件之间或电连接所述第一辐射体,用于隔离所述第一辐射体所收发的电磁波信号及导通所述第二感应信号,所述第四隔离器件的另一端用于输出所述第二感应信号;
    所述天线组件还包括第二接近感测器件,所述第二接近感测器件电连接于所述第四隔离器件的另一端,用于感测所述第二感应信号的大小;或者,
    所述第四隔离器件的另一端电连接所述第一接近感测器件,所述第一辐射体与所述第二辐射体容性耦合时产生耦合感应信号,所述第一接近感测器件还用于在所述待检测主体靠近所述第一辐射体和/或所述第二辐射体时感应所述耦合感应信号的变化量。
  18. 如权利要求14所述的天线组件,其特征在于,所述天线组件还包括控制器,所述控制器电连接所述第一接近感测器件远离所述第二隔离器件的一端,所述控制器用于根据所述第一感应信号的大小判断所述待检测主体是否靠近所述第二辐射体,并在所述待检测主体靠近所述第二辐射体时降低所述第二天线单元的功率。
  19. 一种电子设备,其特征在于,包括壳体及如权利要求1~18任意一项所述的天线组件,所述天线组件至少部分集成于所述壳体上;或者所述天线组件设于壳体内。
  20. 如权利要求19所述的电子设备,其特征在于,所述壳体包括依次首尾相连的第一边、第二边、第三边和第四边,所述第一边与所述第三边相对设置,所述第二边与所述第四边相对设置,所述第一边的长度小于所述第二边的长度,所述第一辐射体和所述第二辐射体的一部分设于所述第一边,所述第二辐射体的另一部分和所述第三辐射体设于所述第二边;或者,所述第一辐射体、所述第二辐射体、所述第三辐射体皆设于所述壳体的同一边。
PCT/CN2021/131176 2020-12-29 2021-11-17 天线组件及电子设备 WO2022142820A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21913563.9A EP4266493A1 (en) 2020-12-29 2021-11-17 Antenna assembly and electronic device
US18/215,802 US20230344151A1 (en) 2020-12-29 2023-06-28 Antenna assembly and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011613294.7A CN112751213B (zh) 2020-12-29 2020-12-29 天线组件及电子设备
CN202011613294.7 2020-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/215,802 Continuation US20230344151A1 (en) 2020-12-29 2023-06-28 Antenna assembly and electronic device

Publications (1)

Publication Number Publication Date
WO2022142820A1 true WO2022142820A1 (zh) 2022-07-07

Family

ID=75649926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131176 WO2022142820A1 (zh) 2020-12-29 2021-11-17 天线组件及电子设备

Country Status (4)

Country Link
US (1) US20230344151A1 (zh)
EP (1) EP4266493A1 (zh)
CN (1) CN112751213B (zh)
WO (1) WO2022142820A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751213B (zh) * 2020-12-29 2023-02-28 Oppo广东移动通信有限公司 天线组件及电子设备
CN115411501A (zh) * 2021-05-26 2022-11-29 Oppo广东移动通信有限公司 天线组件及电子设备
CN116345153A (zh) * 2021-12-23 2023-06-27 华为技术有限公司 一种电子设备
CN116365215A (zh) * 2021-12-28 2023-06-30 Oppo广东移动通信有限公司 电子设备及其控制方法
CN114335998A (zh) * 2022-02-14 2022-04-12 Oppo广东移动通信有限公司 天线组件和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160226143A1 (en) * 2015-01-30 2016-08-04 Pegatron Corporation Antenna Module and Mobile Communication Device Having the Same
CN109921174A (zh) * 2017-12-12 2019-06-21 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112086752A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112114202A (zh) * 2019-07-12 2020-12-22 中兴通讯股份有限公司 一种检测sar的装置、降低sar的方法及移动终端
CN112751213A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102306080B1 (ko) * 2015-08-13 2021-09-30 삼성전자주식회사 안테나 장치 및 안테나 장치를 포함하는 전자 장치
US10431872B1 (en) * 2018-04-05 2019-10-01 Lg Electronics Inc. Mobile terminal
CN108987908B (zh) * 2018-07-27 2021-05-18 北京小米移动软件有限公司 一种天线及移动终端
CN110247160B (zh) * 2019-04-30 2021-10-29 荣耀终端有限公司 一种天线组件及移动终端
CN111244616B (zh) * 2020-03-27 2022-01-11 维沃移动通信有限公司 一种天线结构及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160226143A1 (en) * 2015-01-30 2016-08-04 Pegatron Corporation Antenna Module and Mobile Communication Device Having the Same
CN109921174A (zh) * 2017-12-12 2019-06-21 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN112114202A (zh) * 2019-07-12 2020-12-22 中兴通讯股份有限公司 一种检测sar的装置、降低sar的方法及移动终端
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112086752A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112751213A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件及电子设备

Also Published As

Publication number Publication date
CN112751213B (zh) 2023-02-28
CN112751213A (zh) 2021-05-04
EP4266493A1 (en) 2023-10-25
US20230344151A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
WO2022142824A1 (zh) 天线系统及电子设备
WO2022142820A1 (zh) 天线组件及电子设备
WO2022142828A1 (zh) 电子设备
WO2022068827A1 (zh) 天线组件和电子设备
US20230361470A1 (en) Antenna assembly and electronic device
CN103311641B (zh) 电子设备的内置天线
CN112768959B (zh) 天线组件和电子设备
WO2023142785A1 (zh) 天线组件及电子设备
US20230344152A1 (en) Antenna assembly and electronic device
CN113013594A (zh) 天线组件和电子设备
US11355853B2 (en) Antenna structure and wireless communication device using the same
WO2023155559A1 (zh) 电子设备
WO2022247502A1 (zh) 天线组件及电子设备
US8896486B2 (en) Multiband antenna
WO2011103327A1 (en) Field-confined printed circuit board-printed antenna for radio frequency front end integrated circuits
CN112825386B (zh) 天线结构及具有该天线结构的无线通信装置
US20240072440A1 (en) Antenna assembly and electronic device
CN115036676B (zh) 天线组件及电子设备
US20140145885A1 (en) Printed wide band monopole antenna module
WO2023273604A1 (zh) 天线模组及电子设备
CN218586358U (zh) 一种终端设备
WO2024045853A1 (zh) 天线组件及电子设备
WO2023130418A1 (en) Antenna assembly capable of proxmity sensing and electronic device with the antenna assembly
WO2023273607A1 (zh) 天线模组及电子设备
WO2022247493A1 (zh) 天线装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021913563

Country of ref document: EP

Effective date: 20230731