WO2022247493A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2022247493A1
WO2022247493A1 PCT/CN2022/086085 CN2022086085W WO2022247493A1 WO 2022247493 A1 WO2022247493 A1 WO 2022247493A1 CN 2022086085 W CN2022086085 W CN 2022086085W WO 2022247493 A1 WO2022247493 A1 WO 2022247493A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna radiator
antenna
frequency band
radiator
antenna device
Prior art date
Application number
PCT/CN2022/086085
Other languages
English (en)
French (fr)
Inventor
路宝
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022247493A1 publication Critical patent/WO2022247493A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present application relates to the technical field of mobile communication, and in particular to an antenna device and electronic equipment.
  • a communication antenna is usually installed in an electronic device to meet a communication requirement of a user.
  • the power of antennas in electronic devices is also increasing, resulting in greater radiation effects of antennas on human bodies, which will have adverse effects on human bodies.
  • Embodiments of the present application provide an antenna device and electronic equipment.
  • an embodiment of the present application provides an antenna device, and the device includes a first antenna radiator and a second antenna radiator.
  • One end of the first antenna radiator is provided with a feed point, and the feed point is used for connecting a feed source.
  • One end of the second antenna radiator is connected to the feeding point, and the other end of the second antenna radiator is grounded.
  • the first antenna radiator is used for sending or/and receiving signals of the first frequency band
  • the second antenna radiator is used for sending or/and receiving signals of the second frequency band.
  • the second frequency band is the same as the first frequency band; or, the second frequency band is a sub-frequency band of the first frequency band.
  • the embodiment of the present application further provides an electronic device, including a feed source and the above-mentioned antenna device, where the feed source is electrically connected to the feed point.
  • the embodiment of the present application further provides an electronic device, including a housing and the above-mentioned antenna device, where the antenna device is integrated into the housing.
  • Fig. 1 is a schematic diagram of an antenna device provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of another antenna device provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of another antenna device provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a working frequency band of a first antenna radiator according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a filter circuit according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of radiation efficiency of the antenna device shown in FIG. 3 .
  • FIG. 7 is a schematic diagram of simulation of near-field electric field distribution of the antenna device shown in FIG. 3 .
  • Fig. 8 is a schematic diagram of another structure of the antenna device provided by the embodiment of the present application.
  • Fig. 9 is a schematic diagram of another structure of the antenna device provided by the embodiment of the present application.
  • Fig. 10 is a schematic diagram of still another structure of the antenna device provided by the embodiment of the present application.
  • Fig. 11 is a schematic diagram of still another structure of the antenna device provided by the embodiment of the present application.
  • Fig. 12 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the internal structure of the electronic device shown in FIG. 12 .
  • Electronic equipment as used in the embodiments of this application includes, but is not limited to, configured to be connected via a wire line (such as via a public switched telephone network (PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for a cellular network, a wireless local area network (WLAN), a digital television network such as a DVB-H network, a satellite network, an AM-FM broadcast transmitter, and/or A device for receiving/transmitting communication signals through a wireless interface of another communication terminal.
  • a wire line such as via a public switched telephone network (PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • WLAN wireless local area network
  • Digital television network such as a DVB-H network
  • satellite network such as a satellite network
  • AM-FM broadcast transmitter AM-FM broadcast transmitter
  • a communication terminal arranged to communicate over a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal”, “electronic device” and/or “electronic equipment”.
  • electronic devices include, but are not limited to, satellite or cellular telephones; Personal Communication Systems (PCS) terminals that may combine cellular radiotelephones with data processing, facsimile, and data communication capabilities; may include radiotelephones, pagers, Internet/Intranet access , a PDA with a web browser, organizer, calendar, and/or Global Positioning System (GPS) receiver; and a conventional laptop and/or palm-sized receiver, game console, or other electronic device including a radiotelephone transceiver.
  • PCS Personal Communication Systems
  • GPS Global Positioning System
  • Electromagnetic wave energy absorption ratio (SAR, Specific Absorption Rate) is usually referred to as absorption ratio or absorption ratio, and refers to the electromagnetic wave energy absorption ratio of electronic equipment.
  • the specific meaning is: under the action of an external electromagnetic field, an induced electromagnetic field will be generated in the human body. Since each organ of the human body is a lossy medium, the electromagnetic field in the body will generate an induced current, causing the human body to absorb and dissipate electromagnetic energy.
  • SAR is commonly used to characterize this physical process.
  • the meaning of SAR is the electromagnetic power absorbed or consumed by human tissue per unit mass, and the unit is W/kg, or mw/g.
  • Ei is the effective value of the electric field intensity in the cell tissue, expressed in V/m;
  • is the electrical conductivity of human tissue, expressed in S/m
  • is the density of human tissue, expressed in kg/m 3 .
  • SAR in human tissue is proportional to the square of the electric field strength in that tissue and is determined by the parameters of the incident electromagnetic field (such as frequency, strength, direction, and source of the electromagnetic field), the relative position of the target, and the typical tissue of the exposed human body. genetic characteristics, ground effects, and environmental effects of exposure.
  • the European standard is less than 2.0w/kg per 10 grams
  • the American standard is less than 1.6mw/g per gram.
  • the commonly used methods to reduce the SAR value are as follows: (1) directly reduce the transmission power of the antenna to reduce the absorption of electromagnetic waves by the human body, but it is difficult to ensure the total radiated power (TRP) by reducing the transmission power of the antenna requirements, the TRP is too low, and the communication quality is also low, which usually cannot meet the increasing communication requirements in the market; (2) The position of the antenna in the electronic device is set away from the user's head to reduce the absorption of electromagnetic waves by the human body, However, the current development trend of electronic equipment is that the thickness is getting thinner and thinner, resulting in smaller and smaller antenna space, and it is difficult to ensure the distance between the antenna and the user's head; The absorption of electromagnetic waves, but due to the limited space near the antenna due to the structural design of electronic equipment, it is difficult to attach wave materials, and the cost of wave-absorbing materials is also high. It can be seen that up to now, there is still no better solution that can effectively reduce the SAR of the antenna.
  • the inventors of the present application have found after a large number of repeated studies that the SAR hotspots of the antennas of current electronic equipment are basically concentrated in the area where the current distribution on the radiator is strong, that is, the current density on the radiator The larger the area, the larger the corresponding SAR value.
  • the inventor proposes the antenna device of the present application and electronic equipment including the antenna device.
  • the antenna device includes a first antenna radiator and a second antenna radiator, one end of the first antenna radiator is provided with a feed point, the feed point is used to connect to a feed source, and one end of the second antenna radiator is connected to the feed point , the other end of the second antenna radiator is grounded, the first antenna radiator is used to send or/and receive signals in the first frequency band, and the second antenna radiator is used to send or/and receive signals in the second frequency band, therefore, by Connect the second antenna radiator to the feed point of the first antenna radiator, and the excitation current input via the feed source is shunted by the first antenna radiator and the second antenna radiator, which can balance the current concentration of the antenna device to a certain extent conditions, thereby reducing the overall current peak value of the first antenna radiator, thereby effectively reducing the overall SAR value of the antenna device. Therefore, the antenna device provided by the embodiment of the present application can ensure that the antenna device has a lower SAR value.
  • an embodiment of the present application provides an antenna device 100 , which includes a first antenna radiator 110 and a second antenna radiator 120 .
  • the first antenna radiator 110 and the second antenna radiator 120 are used for sending and/or receiving signals.
  • the first antenna radiator 110 and the second antenna radiator 120 are respectively connected to the feed source 30, and the feed source 30 is used to feed an excitation current to the first antenna radiator 110 and the second antenna radiator 120, so that the first antenna radiates
  • the body 110 and the second antenna radiator 120 can resonate to transmit a signal.
  • one end of the first antenna radiator 110 is provided with a feed point 111, and the feed point 111 is used to connect the feed source 30, so that the first antenna radiator 110 can feed the excitation at the feed source 30. Send a signal when the current flows.
  • One end of the second antenna radiator 120 is grounded.
  • the structure in which the feed point 111 is connected to the feed source 30 may be: the feed point 111 is directly connected to the feed source 30 through a conductor; Components, for example, the feed point 111 is indirectly connected to the feed source 30 through a capacitor to realize coupled feeding, and for another example, the feed point 111 may also be indirectly connected to the feed source 30 through a matching circuit.
  • the other end of the first antenna radiator 110 may be an open end. In some other implementation manners, as shown in FIG. 2 , the other end of the first antenna radiator 110 is grounded.
  • the first antenna radiator 110 is used to send or/and receive signals in the first frequency band, that is, the first antenna radiator 110 can be used to send or/and receive signals whose operating frequency band is in the first frequency band. Signal.
  • the first antenna radiator 110 may be used to send or/and receive signals of at least one working frequency band, and the signals may be, for example, Long Term Evolution (LTE) signals.
  • the working frequency band of the signal may be at least one frequency band of LTE, such as B3 frequency band (1.71 GHz-1.88 GHz), B32 frequency band (1.45 GHz-1.5 GHz) and so on.
  • the signal may also be a New Radio (New Radio, NR) signal or the like.
  • the working frequency band of the signal may also be at least one frequency band of NR, such as N1 frequency band (1.92GHz-2.17GHz), N2 frequency band (1.85GHz-1.99GHz) and so on.
  • the first frequency band may cover at least one working frequency band.
  • the frequency range of the first frequency band can only cover the frequency range of a single working frequency band, such as the frequency range of the first frequency band only covers the frequency range of the B3/N3 frequency band, then the first antenna radiator 110 can send or/and receive B3/N3 Signals in the N3 frequency band.
  • the frequency range of the first frequency band can cover the frequency ranges of multiple operating frequency bands.
  • the frequency range of the first frequency band covers the frequency ranges of the B3/N3 frequency band and the B5/N5 frequency band, then the first antenna radiator 110 can transmit or /And receive the signal of B3/N3 frequency band or B5/N5 frequency band.
  • one end of the second antenna radiator 120 is connected to the feeding point 111 , and the other end of the second antenna radiator 120 is grounded. It should be understood that one end of the second antenna radiator 120 may be directly physically connected to the feed point 111, and one end of the second antenna radiator 120 may also be connected between the feed point 111 and the output end of the feed source, so that via The excitation current output by the feed source can be shunted by the first antenna radiator 110 and the second antenna radiator 120 .
  • the second antenna radiator 120 is used to send or/and receive signals in the second frequency band, that is, the second antenna radiator 120 can be used to send or/and receive signals whose working frequency band is in the second frequency band. It should be understood that the first The second frequency band can cover at least one working frequency band.
  • the second frequency band may be approximately the same as the first frequency band, that is, the first antenna radiator 110 and the second antenna radiator 120 may use approximately the same operating frequency band for transmitting or/and receiving signals.
  • the excitation current of the feed source 30 is divided by the first antenna radiator 110 and the second antenna radiator 120 . It should be understood that, at this time, the number of working frequency bands of signals supported by the first antenna radiator 110 and the second antenna radiator 120 may be one or more.
  • the second frequency band is the same as the first frequency band, both of which can be 2000MHz to 2700MHz, and this frequency band covers the frequency range of the B41/N41 frequency band (2496MHz-2690MHz), then the first antenna radiator 110 and the second antenna radiator 120 can support signals whose working frequency band is B41/N41 frequency band.
  • both the second frequency band and the first frequency band are 1 GHz to 2 GHz, and this frequency band covers the frequency range of B3/N3 and B32/N32 frequency bands, so both the first antenna radiator 110 and the second antenna radiator 120 can support
  • the working frequency band is the signal of B3/N3 and B32/N32 frequency band.
  • the second frequency band may be a sub-frequency band of the first frequency band, that is, the first frequency band covers the second frequency band.
  • the number of working frequency bands of signals that can be supported by the first antenna radiator 110 is more than that of the working frequency bands of signals that can be supported by the second antenna radiator 120 .
  • the number of working frequency bands of the signal that the second antenna radiator 120 can support can be one or more, and the working frequency band of the signal that the first antenna radiator 110 can support includes the work of the signal that the second antenna radiator 120 can support band.
  • the second frequency band is 1.4GHz ⁇ 1.6GHz, and the range of this frequency band covers the frequency range of the B32 frequency band.
  • the first frequency band is 1 GHz ⁇ 2 GHz, and the frequency range covers the frequency ranges of B3 and B32 frequency bands, and also covers the frequency range of the second frequency band.
  • the above-mentioned antenna device 100 is provided with a first antenna radiator 110 and a second antenna radiator 120, one end of the first antenna radiator 110 is provided with a feed point 111, and one end of the second antenna radiator 120 is connected to the feed point 111 , the excitation current is shunted by the first antenna radiator 110 and the second antenna radiator 120, which can balance the current concentration of the antenna device 100 to a certain extent, thereby reducing the overall current peak value of the first antenna radiator 110.
  • the antenna device 100 Basically, there will be no extremely strong single point of current on the radiator, but it will be roughly divided into at least two current strong points (at least two current strong points shunted on the first antenna radiator 110 and the second antenna radiator 120 The peak value must be smaller than the peak value of a very strong single point of current), and then the original SAR single hot spot is roughly dispersed to the first antenna radiator 110 and the second antenna radiator 120, forming weaker SAR multiple hot spots, making the antenna device The SAR value of 100 meets the specified requirements.
  • the current concentration of the antenna device 100 can be balanced to a certain extent, The peak value of the current single strong point is also relatively low, which meets the specified requirements, thereby making the SAR value of the antenna device 100 meet the specified requirements.
  • the first antenna radiator 110 may be roughly strip-shaped, for example, the first antenna radiator 110 may be a metal strip, and the feeding point 111 is set at one end of the first antenna radiator 110 .
  • the second antenna radiator 120 may also be roughly strip-shaped, for example, the first antenna radiator 110 may be a metal strip or a strip-shaped printed radiator, or the like.
  • the extension direction of the second antenna radiator 120 is consistent with the extension direction of the first antenna radiator 110, for example, the second antenna radiator 120 can be arranged side by side with the first antenna radiator 110, or the second antenna radiator 120 can substantially parallel to the first antenna radiator 110 , or, the length direction of the second antenna radiator 120 is substantially the same as the length direction of the first antenna radiator 110 .
  • the first antenna radiator 110 and the second antenna radiator 120 may also be in a shape other than a straight line, for example, the first antenna radiator 110 may be in the shape of a bent sheet, a sheet with branches, etc.
  • the extension direction of the first antenna radiator 110 should be understood as its overall extension direction, such as the direction represented by the length dimension; the second antenna radiator 120 can be in the shape of a bent sheet, a sheet with branches, etc.
  • the extension direction of the body 120 should be understood as its overall extension direction, such as the direction represented by the length dimension. In this case, the overall extension direction of the first antenna radiator 110 and the second antenna radiator 120 are the same.
  • the antenna device 100 can work in multiple working frequency bands. When the antenna device 100 operates in different operating frequency bands, correspondingly generated SAR values may be different. For example, when the antenna device 100 works in some of the multiple working frequency bands, the peak value of the SAR hot spot generated by the antenna device 100 is relatively large, which has a great impact on the human body. When the antenna device 100 works in other working frequency bands among the multiple working frequency bands, the SAR value generated by the antenna device 100 is small, and has little impact on the human body. In order to reduce the impact of the SAR hotspot peak generated when the antenna device 100 works on the human body, as shown in FIG. The other end is connected with the second antenna radiator 120 .
  • the filter circuit 130 is used to allow the excitation current corresponding to the signal of a specific frequency band that needs to reduce the SAR value (such as the signal belonging to the sub-band part of the second frequency band in the first frequency band) to pass through the second antenna radiator 120 to work in the antenna device 100.
  • the second antenna radiator 120 and the first antenna radiator 110 can shunt the excitation current, which can balance the current concentration of the antenna device 100 to a certain extent, thereby reducing the overall current peak value of the first antenna radiator , so that the SAR value generated by the antenna device 100 when working in a specific frequency band meets the specified requirements.
  • the SAR value corresponding to this part of the signal can be considered to have met the specified requirements.
  • the signal in this frequency band is subjected to SAR reduction processing.
  • the filter circuit 130 can be in a high-impedance state (such as can reduce or even block the excitation current corresponding to the signal in this frequency band through the second antenna radiator 120),
  • the signal in this frequency band can be radiated through the first antenna radiator 110 , which basically does not affect the normal operation of the antenna device 100 in other frequency bands, so the antenna device 100 can guarantee better performance.
  • the above-mentioned “specific frequency band” is the target frequency band set by the antenna device 100 as requiring SAR reduction, and the specific frequency band may be the same as the second frequency band, or may be a sub-frequency band in the first frequency band, the sub-frequency band It is a sub-frequency band corresponding to a relatively higher SAR value among all sub-frequency bands in the first frequency band; of course, this specific frequency band can also be set according to requirements.
  • the number of the sub-frequency bands is also not limited, for example, there may be one or more.
  • the first frequency band supported by the first antenna radiator 110 may include the first operating frequency band Band1 and the second operating frequency band Band2, that is, the first antenna radiator 110 may work in the first operating frequency band Band1 and the second working frequency band Band2.
  • the frequency band requiring SAR reduction may be the first working frequency band Band1.
  • the filter circuit 130 not only needs to reduce the SAR value generated by the first antenna radiator 110 when it works in the first working frequency band Band1, but also needs to ensure that the first antenna radiator 110 works normally in the second working frequency band Band2.
  • the filter circuit 130 is configured to be in a conducting state when the first antenna radiator 110 works in the first working frequency band Band1, and to be in a blocking state when working in the second working frequency band Band2, so that the second antenna radiator 110 can be used
  • the shunt effect of 120 makes for the first working frequency band Band1, since the filter circuit 130 is configured to be in a conduction state, the first antenna radiator 110 and the second antenna radiator 120 are jointly radiated by current shunting; for the second working frequency band Band2, since the filter circuit 130 is configured as a high-impedance state/blocking state, the shunt of the second antenna radiator 120 is small or even equivalent to being disconnected from the feed source 30, then the second operating frequency band Band2 is radiated by the first antenna
  • the body 110 mainly radiates or radiates alone, so that the SAR value of the antenna device 100 in the first working frequency band meets the specified requirements while not affecting the normal radiation performance of the second working frequency band.
  • the second frequency band supported by the second antenna radiator 120 may be the above-mentioned first working frequency band Band1.
  • the second frequency band is a sub-frequency band of the first frequency band, so the antenna device 100 needs to reduce the SAR value.
  • the specific frequency band may be a second frequency band.
  • the filter circuit 130 is configured to allow the excitation current corresponding to the signal in the second frequency band to pass through, and the excitation current from the feed source 30 is shunted by the first antenna radiator 110 and the second antenna radiator 120 .
  • the exciting current from the feed source 30 is shunted by the first antenna radiator 110 and the second antenna radiator 120 .
  • the filter circuit 130 may only allow the excitation current corresponding to the signal of a single working frequency band to pass through. In some other implementation manners, when the antenna device 100 needs to reduce the SAR value in multiple frequency bands, the filter circuit 130 may also be configured to allow excitation currents corresponding to signals of multiple operating frequency bands to pass through.
  • the filter circuit 130 when the second frequency band is a sub-band of the first frequency band, the filter circuit 130 is configured to allow the excitation current corresponding to the signal of the second frequency band to pass through, so that the excitation current from the feed source 30 is The first antenna radiator 110 and the second antenna radiator 120 split; for another example, when the second frequency band is a sub-band of the first frequency band, the filter circuit 130 is also configured to block The target excitation current leads to the second antenna radiator 120, and the target excitation current corresponds to signals in the first frequency band that do not belong to the second frequency band, wherein, "the filter circuit 130 blocks the target excitation current", It should be understood that when the feed source 30 outputs the target excitation current, the filter circuit 130 is in a high-impedance state to reduce or even completely block the target excitation current flowing to the second antenna radiator 120, so that the target excitation current flows to the first antenna radiation body 110, so that the first antenna radiator 110 radiates signals in the first frequency band that do not belong to the second frequency band.
  • filter circuit 130 may be a band-stop filter.
  • the filter circuit 130 may include a first capacitor 131 and a first inductor 132 . Wherein, the first capacitor 131 and the first inductor 132 are connected in parallel, and the parallel connected first capacitor 131 and first inductor 132 are connected in series between the second antenna radiator 120 and the feeding point 111 .
  • the capacitance value of the first capacitor 131 and the inductance value of the first inductor 132 can be determined according to the working frequency band that needs to reduce the SAR value, for example, the first frequency band of the antenna device 100 covers the B32 frequency band (1.45GHz-1.5GHz ) and B3 frequency band (1.71GHz-1.88GHz), the second frequency band of the antenna device 100 covers the B3 frequency band (1.71GHz-1.88GHz), that is, the B3 frequency band is a frequency band that needs to reduce the SAR value, and the filter circuit 130 is configured to allow B3 The excitation current corresponding to the signal in the frequency band passes through, and the filter circuit 130 is configured to prevent the excitation current corresponding to the signal in the B32 frequency band from passing through.
  • the capacitance value of the first capacitor 131 may be 2.2pF (picofarads), and the inductance value of the first inductor 132 may be 5.1nH (nanohenry).
  • the structure of the filter circuit 130 is not limited to this, and the filter circuit 130 can also adopt other implementation methods, as long as it can be used to allow the excitation current corresponding to the signal of the working frequency band that needs to reduce the SAR to pass through, and prevent the signals of other working frequency bands The corresponding excitation current can be applied to this application, and this application does not limit it.
  • the filter circuit 130 may include multiple band-stop filters and switches, one end of the multiple band-stop filters is connected to one end of the second antenna radiator 120, and the switch is arranged on the multiple band-stop filters. Between the other end of and the feed point 111, a plurality of band rejection filters are connected to the feed point 111 through switches.
  • the second antenna radiator 120 shunts the excitation current in different operating frequency bands, so that the excitation current is shunted in multiple operating frequency bands that need to reduce the SAR value, effectively reducing the SAR value. It can be understood that other structures that enable the second antenna radiator 120 to shunt the excitation current in multiple operating frequency bands can also be applied to the embodiments of the present application, which is not limited in the present application.
  • FIG. 6 shows a schematic diagram of radiation efficiency of a traditional antenna and an antenna device 100 provided by some embodiments of the present application. It can be seen from the figure that compared with an antenna with a traditional radiator, The antenna efficiency of the antenna device 100 provided in this example does not change greatly.
  • the filter circuit 130 can allow the excitation current to pass through the frequency band where the SAR value needs to be reduced, and the first antenna radiator 110 and the second antenna radiator 110
  • the two antenna radiators 120 shunt the excitation current to improve the electric field distribution of the antenna device 100, so that the maximum radiation intensity of the electric field in the frequency band that needs to reduce the SAR value is relatively low, and at the same time, the average value of the overall radiation does not decrease.
  • the antenna device 100 Still have high radiation efficiency.
  • FIG. 7 shows a schematic diagram of the simulation of the near-field electric field distribution of the traditional antenna and the antenna device 100 provided by some embodiments of the present application, indicating that when the resonant frequency of the antenna device 100 is in the B3 frequency band (1.71 GHz ) radiated electric field strength and the corresponding SAR peak value, wherein the filter circuit 130 is used to pass the excitation current corresponding to the signal in the B3 frequency band.
  • the antenna device 100 may further include a matching circuit 140 connected to the second antenna radiator 120 , wherein the second antenna radiator 120 is grounded through the matching circuit 140 .
  • the matching circuit 140 can be used to adjust the excitation current flowing through the first antenna radiator 110 and the excitation current flowing through the second antenna radiator 120 when the first antenna radiator 110 and the second antenna radiator 120 divide the excitation current. The ratio of the current, so as to adjust the signal transmission power of the first antenna radiator 110 based on the excitation current flowing through and the signal transmission power of the second antenna radiator 120 based on the excitation current flowing according to actual use needs.
  • the matching circuit 140 is a capacitor.
  • the capacitance value By setting the capacitance value, the ratio of the excitation current flowing through the first antenna radiator 110 to the excitation current flowing through the second antenna radiator 120 can be adjusted. For example, the larger the capacitance value, the smaller the ratio of the excitation current flowing through the first antenna radiator 110 to the excitation current flowing through the second antenna radiator 120, that is, the smaller the excitation current flowing through the first antenna radiator 110, The excitation current flowing through the second radiator becomes larger.
  • the second antenna radiator 120 and the external detection body can form an equivalent capacitor, and the second antenna radiator 120 can generate a capacitance signal when capacitance is formed between the second antenna radiator 120 and the external detection body , wherein the external detection body may include an electrical conductor (such as metal, human body, etc.) capable of exciting a capacitive signal to generate a signal.
  • the second antenna radiator 120 is used to sense the distance between the target object and the second antenna radiator 120 to generate a capacitive signal.
  • the target object can be, for example, a human body, such as a head, a body, a hand Department etc. When the target object is close to the second antenna radiator 120 , the second antenna radiator 120 can induce a capacitive signal.
  • the user's head when the user's head is close to the mobile phone to answer the phone, the user's head is close to the second antenna radiator 120, and the user's head and the second antenna radiator 120 can be equivalent to two plates of the capacitor, the user's head and the second antenna radiator 120.
  • the antenna radiator 120 forms a capacitor.
  • C ⁇ S/4 ⁇ kd (wherein, ⁇ is the dielectric constant, S is the area of the plates, d is the distance between the plates, and k is the electrostatic force constant), it can be seen that when the user is close to the mobile phone, that is, close to the second antenna radiator At 120, the distance between the user and the second antenna radiator 120 becomes smaller, that is, d decreases, and the capacitance value C increases.
  • the antenna device 100 may reduce its transmission power according to the increase in distance, so as to reduce the impact of radiation on the target object. Furthermore, when the capacitance value C decreases, which means that the target object is moving away from the antenna device 100 , the antenna device 100 can increase its transmission power according to the reduced distance, so as to ensure the radiation efficiency of the antenna device 100 .
  • the antenna device 100 may further include a sensor 150 .
  • One end of the sensor 150 is connected to the connection node between the matching circuit 140 and the second antenna radiator 120.
  • the sensor 150 uses the characteristic that the second antenna radiator 120 can form an equivalent capacitance with the target object to generate a capacitive signal.
  • the capacitance signal of the two antenna radiators 120 is used to determine whether there is a target object approaching.
  • connection node in this specification should be understood as a connection relationship in which two elements are electrically connected, and the connection relationship can be a physical connection point, or a collection of identical points on a circuit ( If two elements are connected by a piece of wire, and the potential of each point on the wire is approximately the same, then the connection node of the two elements can also be understood as the wire or any one or more points on the wire).
  • the senor 150 is used to convert the capacitance signal into a detection signal, and transmit the detection signal to the controller.
  • the antenna device 100 may further include a transmission line connected between the second antenna radiator 120 and the sensor 150, and the distance between the sensor 150 and the second antenna radiator 120 can be adjusted through the transmission line.
  • the feed source 30 feeds excitation current to the first antenna radiator 110 and the second antenna radiator 120, so that the first antenna radiator 110 and the second antenna radiator 120 can resonate to transmit Signal.
  • the feed source 30 can be fed with excitation currents of different output powers, so that the first antenna radiator 110 and the second antenna radiator 120 can resonate to send signals of different powers, that is, by controlling The output power of the feed source 30 can control the transmitting power of the first antenna radiator 110 and the second antenna radiator 120 .
  • the antenna device 100 may further include a controller 180, and the controller 180 is connected to the sensor 150 for controlling the transmission power of the first antenna radiator 110 or/and the second antenna radiator 120 according to the detection signal of the sensor 150.
  • the controller 180 can be electrically connected to the feed source 30 , and the controller 180 can be used to control the output power of the feed source 30 . Further, the controller 180 can also be used to control the output power of the feed 30 according to the capacitance signal of the second antenna radiator 120 , and then control the transmission power of the first antenna radiator 110 and the second antenna radiator 120 .
  • the controller 180 is configured to: when the capacitive signal received by the sensor 150 increases, reduce the output power of the feed source 30, thereby reducing the output power of the first antenna radiator 110 and/or the second antenna radiator 120. transmit power.
  • the controller 180 may be configured to reduce the first antenna radiator 110 based on the functional relationship. Or/and the transmission power of the second antenna radiator 120; when the capacitance signal received by the sensor 150 decreases, the controller 180 may be configured to increase the first antenna radiator 110 or/and the second antenna radiator 110 based on the functional relationship 120 transmit power.
  • a preset threshold can be set for the capacitance signal, and the controller 180 is configured to: when the capacitance signal received by the sensor 150 is greater than the preset threshold, reduce the output power of the feed source 30 to a specified value, thereby reducing The transmit power of the first antenna radiator 110 and/or the second antenna radiator 120 .
  • the preset threshold value of the capacitance signal can represent the preset value of the distance between the external detection object (such as the user's head) and the antenna device 100, and the preset value of the distance can be less than or equal to 30cm, 20cm or 10cm, etc.
  • the preset value of the distance can be any value from 0 to 50 cm
  • the transmitting power of the antenna radiator 120 can reduce the influence of the radiation of the antenna device 100 on the user when the distance between the user and the antenna device 100 is small.
  • the controller 180 may increase the output power of the feed 30 , thereby increasing the transmitting power of the first antenna radiator 110 and the second antenna radiator 120 .
  • the capacitance signal is less than the preset threshold value, the output power of the feed source 30 returns to the normal operating power, and the distance between the target object and the second antenna radiator 120 exceeds a preset value, and at this distance, the SAR value received by the target object is relatively low. Therefore, the output power of the feed source 30 is no longer controlled, and the transmission power of the first antenna radiator 110 and the second antenna radiator 120 resumes normal operation.
  • the preset threshold value of the capacitance signal and the preset value of the distance between the target object and the second antenna radiator 120 may be set according to actual needs, which is not limited in the present application.
  • the antenna device 100 may have a capacitor 40 in series on the path from the second antenna radiator 120 to the feed source 30 , the capacitor 40 can be used to isolate the DC current flowing from the feed source 30 .
  • the path from the second antenna radiator 120 to the feed 30 should be understood as the path through which the excitation current flows when the second antenna radiator 120 radiates a signal of the second frequency band, for example, in In some embodiments, one end of the second antenna radiator 120 is directly physically connected to the feed point 111, then "the path from the second antenna radiator 120 to the feed source 30" should be understood as "the output from the feed source 30, The path to the second antenna radiator 120 via the feed point 111", at this time, the capacitor 40 can be connected in series between the feed point 111 and the second antenna radiator 120, such as in series between the filter circuit 130 and the feed point 111 between, or in series between the second antenna radiator 120 and the filter circuit 130; as in other embodiments, one end of the second antenna radiator 120 is connected to the feed point 111 and the output end of the feed source 30 , then "the path from the second antenna radiator 120 to the feed source 30" should be understood as "the path from the feed source 30 output to the second antenna radiator 120 (may not pass through the feed point 11
  • the antenna device 100 can also have a capacitor 50 in series on the path from the second antenna radiator 120 to the ground, so as to isolate the DC current flowing from the ground, thereby isolating the direct current from the feed source 30 and the ground.
  • the interference of the capacitance value generated by the second antenna radiator 120 can be connected in series between the connection node of the sensor 150 and the second antenna radiator 120 to the ground, that is, the second antenna radiator 120 can be grounded through the capacitor 50, and the sensor 150 is connected to the capacitor 50 and the second antenna radiator 120.
  • the matching circuit 140 disposed between the second antenna radiator 120 and the ground includes a capacitor
  • the above-mentioned capacitor 50 may also reuse the capacitor of the matching circuit 140 to isolate the DC current from the ground system.
  • the antenna device 100 may further include a second inductor 190 .
  • the second inductor 190 is connected in series between the sensor 150 and the second antenna radiator 120.
  • the second inductance 190 can isolate the sensor 150 and the second antenna radiator 120, thereby reducing the influence of the sensor 150 on the first antenna radiator 110 and the second antenna radiator 120, and the value of the second inductance 190 can be adjusted according to actual use needs.
  • the value of the second inductor can be 100nH.
  • the first antenna radiator 110 is one of a flexible circuit board antenna radiator, a laser direct forming antenna radiator, a printing direct forming antenna radiator, or a metal branch.
  • the second antenna radiator 120 is one of a flexible circuit board antenna radiator, a laser direct forming antenna radiator, a printing direct forming antenna radiator, or a metal branch.
  • the antenna device 100 may further include a first connecting member 160 .
  • the first connecting member 160 is disposed between the second antenna radiator 120 and the first antenna radiator 110 , and is configured to achieve detachable connection between the second antenna radiator 120 and the first antenna radiator 110 .
  • the antenna device 100 may further include a second connecting member 170 .
  • the second connecting member 170 is disposed at an end of the second antenna radiator 120 away from the first antenna radiator 110 , and is used for detachably connecting the second antenna radiator 120 to the ground.
  • the first connecting member 160 and the second connecting member 170 may be elastic contact connecting members such as spring pins and shrapnel.
  • the antenna device includes a first antenna radiator and a second antenna radiator, and a feed point is provided at one end of the first antenna radiator, and the feed point is used to connect a feed source , one end of the second antenna radiator is connected to the feed point, the other end of the second antenna radiator is grounded, the first antenna radiator is used to send or/and receive signals in the first frequency band, and the second antenna radiator is used to send Or/and receive the signal of the second frequency band, therefore, by connecting the second antenna radiator to the feeding point of the first antenna radiator, the excitation current input via the feed source is transmitted by the first antenna radiator and the second antenna radiator
  • the shunting can balance the current concentration of the antenna device to a certain extent, thereby reducing the overall current peak value of the first antenna radiator, so that the SAR value of the antenna device meets the specified requirements.
  • the antenna device provided by the embodiment of the present application can ensure that the antenna device has a lower SAR value.
  • the excitation current is shunted, so there is basically no single point of extremely strong current on the radiator of the antenna device, but it is roughly shunted into at least two Strong current point (the peak value of at least two current strong points shunted on the first antenna radiator and the second antenna radiator must be smaller than the peak value of a very strong current point), so that the original SAR single hot spot is roughly dispersed to the second Weaker SAR multiple hotspots are formed on the first antenna radiator and the second antenna radiator, so that the SAR value of the antenna device meets the specified requirements.
  • the current concentration of the antenna device can be balanced to a certain extent, and the current single strong point
  • the peak value of the point is also relatively low, which meets the specified requirements, so that the SAR value of the antenna device meets the specified requirements.
  • the embodiment of the present application also provides an electronic device 200 , which may be, but not limited to, electronic devices such as mobile phones, tablet computers, and smart watches.
  • the electronic device 200 in this embodiment will be described by taking a mobile phone as an example.
  • the electronic device 200 includes a feed 30 and an antenna device 100 .
  • the feed source is electrically connected to the feed point 111 .
  • the terms “upper”, “lower”, “front”, “rear”, “left”, “right”, “in”, etc. indicate orientation or positional relationship based on the drawings The orientation or positional relationship shown is only to simplify the description for the convenience of describing the application, and does not imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, therefore, it cannot be understood as a limits.
  • the electronic device 200 may further include a casing 1001 and a display screen.
  • the display screen is connected to the casing 1001 , and the antenna device is integrated into the casing 1001 .
  • the display screen generally includes a display panel, and may also include a circuit for responding to a touch operation on the display panel.
  • the display panel can be a liquid crystal display panel (Liquid Crystal Display, LCD), and in some embodiments, the display panel can be a touch display at the same time.
  • LCD Liquid Crystal Display
  • descriptions referring to the terms "one embodiment”, “some embodiments” or “other embodiments” mean that specific features, structures, materials described in connection with the embodiment or examples, or specifically included in the In at least one embodiment or example of the present application. In this specification, schematic representations of terms are not necessarily directed to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art can combine and combine features of different embodiments or examples described in this specification under the condition of not contradicting each other.
  • the casing 1001 includes a rear case 1010 and a middle frame 1011 , and the rear case 1010 and the display screen are respectively disposed on opposite sides of the middle frame 1011 .
  • the middle frame 1011 can be integrally formed, and structurally can be divided into a bearing portion 1012 and a frame 1013 surrounding the bearing portion 1012 .
  • the "carrying part 1012" and “frame 1013” are just named divisions for the convenience of expression, and the structure filled with oblique lines in the figure is only for distinguishing and marking, and does not represent the actual structure of the two. There may not be an obvious dividing line between them, or two or more components may be assembled together.
  • the naming of "carrying part 1012" and "frame 1013” should not limit the structure of the middle frame 1011.
  • the carrying part 1012 is used to carry part of the structure of the display screen, and can also be used to carry or install electronic components of the electronic device 200 such as the motherboard 1005, battery 1006, sensor module 1007, etc., and the frame 1013 is connected to the periphery of the carrying part 1012. Further, the frame 1013 is disposed around the outer periphery of the carrying portion 1012 and protrudes relative to the surface of the carrying portion 1012 so that the two together form a space for accommodating electronic components.
  • the display screen is covered on the frame 1013 , and the frame 1013 , the rear case 1010 and the display screen jointly form the appearance surface of the electronic device 200 .
  • the antenna device 100 can be any one of the antenna devices 100 provided in the above embodiments, or can have any one or a combination of features of the antenna device 100 above. The embodiment will not be described in detail.
  • the antenna device 100 is integrated into the housing 1001 , for example, the antenna device 100 may be disposed on the middle frame 1011 or the rear case 1010 , which is not limited in this description. Roughly the same as the aforementioned antenna device, the antenna device 100 of this embodiment may include a first antenna radiator 110 and a second antenna radiator 120 . Wherein, the first antenna radiator 110 may be disposed on the middle frame 1011 , and the second antenna radiator 120 may be disposed on the carrying portion 1012 .
  • the frame 1013 is at least partially made of metal, and the antenna device 100 is integrated into the frame 1013 .
  • the frame 1013 includes at least part of a metal structure, and the metal structure forms the first antenna radiator 110 .
  • the metal frame 1013 is disposed on the bearing part 1012, and the antenna radiator can be one of a flexible circuit board antenna radiator, a laser direct molding antenna radiator, and a printing direct molding antenna radiator.
  • the second antenna radiator can be disposed on the middle frame 1011 or the rear case 1010, and can be used to detect the target object, and an induction signal is generated when a capacitance is formed between the second antenna radiator and the target object.
  • the main board 1005 is arranged on the bearing part 1012, and there is a certain distance between the edge of the main board 1005 and the first antenna radiator, so as to ensure that the antenna device has a large clearance area, and the current on the main board 1005
  • the concentration point and the current concentration point on the antenna device are dispersed as much as possible, which can also reduce the SAR value of the antenna device to a certain extent.
  • the distance between the main board 1005 and the first antenna radiator can be 1-5mm, for example, the distance between the main board 1005 and the first antenna radiator can be 1mm, 1.5mm, 2mm, 2.5mm, 3mm, 3.5mm, 4mm, 4.5mm, 5mm, etc.
  • the antenna device includes a first antenna radiator and a second antenna radiator, and a feed point is provided at one end of the first antenna radiator, and the feed point is used to connect a feed source , one end of the second antenna radiator is connected to the feed point, the other end of the second antenna radiator is grounded, the first antenna radiator is used to send or/and receive signals in the first frequency band, and the second antenna radiator is used to send Or/and receive the signal of the second frequency band, therefore, by connecting the second antenna radiator to the feeding point of the first antenna radiator, the excitation current input via the feed source is transmitted by the first antenna radiator and the second antenna radiator
  • the shunt can balance the current concentration of the antenna device to a certain extent, thereby reducing the overall current peak value of the first antenna radiator.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请涉及一种天线装置以及电子设备。该天线装置包括第一天线辐射体和第二天线辐射体,第一天线辐射体的一端设置有馈电点,馈电点用于连接馈源,第二天线辐射体的一端与馈电点连接,第二天线辐射体的另一端接地,第一天线辐射体用于发送或/及接收第一频段的信号,第二天线辐射体用于发送或/及接收第二频段的信号,因此,通过将第二天线辐射体连接至第一天线辐射体的馈电点,经由馈源输入的激励电流被第一天线辐射体与第二天线辐射体分流,能够在一定程度上均衡天线装置的电流集中状况,从而降低第一天线辐射体整体的电流峰值,使得天线装置的SAR值符合规定要求。

Description

天线装置及电子设备
相关申请的交叉引用
本申请要求于2021年05月27日提交中国专利局的申请号为CN 202110586740.8、名称为“天线装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种天线装置及电子设备。
背景技术
随着科技的发展进步,通信技术得到了飞速发展和长足的进步,而随着通信技术的提高,智能电子产品的普及提高到了一个前所未有的高度,越来越多的智能终端或电子设备成为人们生活中不可或缺的一部分,如智能手机、智能手环、智能手表、智能电视和电脑等。目前电子设备中通常设置通信天线,以满足用户的通信需求。随着人们对通信效率和种类的需求越来越高,目前电子设备中的天线的功率也越来越大,导致天线对人体的辐射作用也更大,这将对人体产生不利影响。
发明内容
本申请实施例提供一种天线装置以及电子设备。
第一方面,本申请实施例提供一种天线装置,该装置包括第一天线辐射体和第二天线辐射体。第一天线辐射体的一端设置有馈电点,馈电点用于连接馈源。第二天线辐射体的一端与馈电点连接,第二天线辐射体的另一端接地。第一天线辐射体用于发送或/及接收第一频段的信号,第二天线辐射体用于发送或/及接收第二频段的信号。其中,第二频段与第一频段相同;或者,第二频段是第一频段的子频段。
第二方面,本申请实施例还提供一种电子设备,包括馈源以及上述的天线装置,所述馈源与所述馈电点电连接。
第三方面,本申请实施例还提供一种电子设备,包括壳体以及上述的天线装置,天线装置集成于壳体。
附图说明
为了更清楚地说明申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种天线装置的示意图。
图2是本申请实施例提供的另一种天线装置的示意图。
图3是本申请实施例提供的又一种天线装置的示意图。
图4是本申请实施例的第一天线辐射体的工作频段示意图。
图5是本申请实施例的一种滤波电路的示意图。
图6是图3所示天线装置的辐射效率示意图。
图7是图3所示天线装置的近场电场分布的仿真示意图。
图8是本申请实施例提供的天线装置的再一种结构的示意图。
图9是本申请实施例提供的天线装置的还一种结构的示意图。
图10是本申请实施例提供的天线装置的又另一种结构的示意图。
图11是本申请实施例提供的天线装置的又再一种结构的示意图。
图12是本申请实施例提供的电子设备的示意图。
图13是图12所示电子设备的内部结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
作为在本申请实施例中使用的“电子设备”包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(PSTN)、数字用户线路(DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”、“无线终端”、“电子装置”以及/或“电子设备”。电子设备的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器、游戏机或包括无线电电话收发器的其它电子装置。
电磁波能量吸收比(SAR,Specific Absorption Rate)通常称为吸收比值或吸收比率,是指电子设备电磁波能量吸收比值。具体含义为:在外电磁场的作用下,人体内将产生感应电磁场,由于人体各器官均为有耗介质,因此体内的电磁场将产生感应电流,导致人体能吸收和耗散电磁能量,生物剂量学中常用SAR来表征这一物理过程。SAR的意义为单位质量的人体组织所吸收或消耗的电磁功率,单位为W/kg,或者mw/g。表达公式为:SAR=σ|Ei| 2/2ρ,其中:
Ei为细胞组织中的电场强度有效值,以V/m表示;
σ为人体组织的电导率,以S/m表示;
ρ为人体组织密度,以kg/m 3表示。
人体组织中的SAR与该组织中的电场强度的平方成正比,并且由入射的电磁场的参数(如频率,强度,方向和电磁场的源)、目标物的相对位置、暴露的人体的典型组织的遗传特性、地面影响以及暴露的环境影响来确定。目前很多国家和地区都已经建立了人体暴露于电磁波环境下的安全标准,如国际 通用的标准中,欧洲标准是每10克小于2.0w/kg,美国标准是每克小于1.6mw/g。
目前常用的降低SAR值的方法主要有以下几种:(1)直接降低天线的发射功率以降低人体对电磁波的吸收,但是降低天线的发射功率很难保证总辐射功率(total radiated power,TRP)的要求,TRP过低,通信质量也较低,通常无法满足市场上日益提高的通信要求;(2)将天线在电子设备中的位置设置在远离用户头部方向以降低人体对电磁波的吸收,但是目前电子设备的发展趋势是厚度越来越薄,导致天线空间却越来越小,很难保证与天线与用户头部的距离;(3)在天线附近贴附吸波材料以降低人体对电磁波的吸收,但是由于电子设备结构设计所限天线附近的空间极小,难以贴附波材料,且吸波材料的成本也较高。可见,截止目前,仍没有一种较好的方案可以能有效降低天线的SAR。
因此,针对上述问题,本申请发明人经过大量、反复的研究后发现,目前的电子设备的天线的SAR热点基本集中在辐射体上的电流分布较强的区域,也即,辐射体上电流密度越大的区域,对应产生的SAR值越大。对此,发明人提出本申请的天线装置以及具有该天线装置的电子设备。该天线装置包括第一天线辐射体和第二天线辐射体,第一天线辐射体的一端设置有馈电点,馈电点用于连接馈源,第二天线辐射体的一端与馈电点连接,第二天线辐射体的另一端接地,第一天线辐射体用于发送或/及接收第一频段的信号,第二天线辐射体用于发送或/及接收第二频段的信号,因此,通过将第二天线辐射体连接至第一天线辐射体的馈电点,经由馈源输入的激励电流被第一天线辐射体与第二天线辐射体分流,能够在一定程度上均衡天线装置的电流集中状况,从而降低第一天线辐射体整体的电流峰值,从而有效降低天线装置总体的SAR值。所以,本申请实施例提供的天线装置,能够确保天线装置具有较低的SAR值。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
请参阅图1,本申请实施方式提供一种天线装置100,其包括第一天线辐射体110以及第二天线辐射体120。第一天线辐射体110和第二天线辐射体120用于发送或/及接收信号。第一天线辐射体110和第二天线辐射体120分别与馈源30连接,馈源30用于向第一天线辐射体110和第二天线辐射体120馈入激励电流,以使第一天线辐射体110和第二天线辐射体120能够发生谐振以发送信号。
在本申请的实施例中,第一天线辐射体110的一端设置有馈电点111,馈电点111用于连接馈源30,以使第一天线辐射体110能够在馈源30馈入激励电流时发送信号。第二天线辐射体120的一端接地。在本申请说明书中,应当理解的是,当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件,也即,两个组件之间可以是间接连接。例如在本实施例中,馈电点111连接于馈源30的结构可以为:馈电点111通过导体直接连接至馈源30;或者,馈电点111和馈源30之间可以存在其他的元件,如,馈电点111通过电容间接地连接于馈源30以实现耦合馈电,又如,馈电点111还可以通过匹配电路间接地连接于馈源30。在一些实施方式中,如图1所示,第一天线辐射体110的另一端可以是开路端。在另一些实施方式中,如图2所示,第一天线辐射体110的另一端接地。
在本申请的实施例中,第一天线辐射体110用于发送或/及接收第一频段的信号,即第一天线辐射体110可以用于发送或/及接收工作频段在第一频段内的信号。
在本申请的实施例中,第一天线辐射体110可用于发送或/及接收至少一种工作频段的信号,该信 号可以例如是长期演进(Long Term Evolution,LTE)信号。信号的工作频段可以是LTE的至少一种频段,例如B3频段(1.71GHz-1.88GHz)、B32频段(1.45GHz-1.5GHz)等等。信号还可以是新空口(New Radio,NR)信号等。信号的工作频段还可以是NR的至少一种频段,例如N1频段(1.92GHz-2.17GHz)、N2频段(1.85GHz-1.99GHz)等等。在本申请的实施例中,第一频段可以覆盖至少一种工作频段。例如,第一频段的频段范围可以仅覆盖单个工作频段的频段范围,如第一频段的频段范围仅覆盖B3/N3频段的频段范围,则第一天线辐射体110可以发送或/及接收B3/N3频段的信号。又如,第一频段的频段范围可以覆盖多个工作频段的频段范围,如第一频段的频段范围覆盖B3/N3频段和B5/N5频段的频段范围,则第一天线辐射体110可以发送或/及接收B3/N3频段或者B5/N5频段的信号。
在本申请的实施例中,第二天线辐射体120的一端与馈电点111连接,第二天线辐射体120的另一端接地。应理解的是,第二天线辐射体120的一端可以直接物理连接至馈电点111,第二天线辐射体120的一端也可以连接在馈电点111和馈源的输出端之间,使经由馈源输出的激励电流能够被第一天线辐射体110和第二天线辐射体120分流。第二天线辐射体120用于发送或/及接收第二频段的信号,即第二天线辐射体120可以用于发送或/及接收工作频段在第二频段内的信号,应理解的是,第二频段可以覆盖至少一种工作频段。
在一些实施方式中,第二频段可以与第一频段可以大致相同,即第一天线辐射体110和第二天线辐射体120可用于发送或/及接收的信号的工作频段大致相同,此时来自所述馈源30的激励电流被所述第一天线辐射体110和所述第二天线辐射体120分流。应理解的是,此时,第一天线辐射体110和第二天线辐射体120可支持的信号的工作频段的数量可以是一个或多个。例如第二频段与第一频段相同,二者可以均为2000MHz~2700MHz,该频段范围覆盖了B41/N41频段(2496MHz-2690MHz)的频段范围,则第一天线辐射体110和第二天线辐射体120均可支持工作频段为B41/N41频段的信号。又如,第二频段与第一频段均为1GHz~2GHz,该频段范围覆盖了B3/N3、B32/N32频段的频段范围,则第一天线辐射体110和第二天线辐射体120均可支持工作频段为B3/N3和B32/N32频段的信号。
在一些实施方式中,第二频段可以是第一频段的子频段,即第一频段覆盖第二频段。此时,第一天线辐射体110可支持的信号的工作频段的数量多于第二天线辐射体120可支持的信号的工作频段。第二天线辐射体120可支持的信号的工作频段的数量可以是一个或多个,且第一天线辐射体110可支持的信号的工作频段包含了第二天线辐射体120可支持的信号的工作频段。例如,第二频段为1.4GHz~1.6GHz,该频段范围覆盖了B32频段的频率范围。第一频段为1GHz~2GHz,该频段范围覆盖了B3、B32频段的频率范围,且覆盖了第二频段的频段范围。
上述的天线装置100通过设置第一天线辐射体110和第二天线辐射体120,第一天线辐射体110的一端设置有馈电点111,第二天线辐射体120的一端与馈电点111连接,激励电流被第一天线辐射体110与第二天线辐射体120分流,能够在一定程度上均衡天线装置100的电流集中状况,从而降低第一天线辐射体110整体的电流峰值,因而天线装置100的辐射体上基本不会存在电流极强单点,而是被大概分流为至少两个电流强点(在第一天线辐射体110和第二天线辐射体120上分流的至少两个电流强点的峰值必然小于电流极强单点的峰值),进而使原本的SAR单热点被大致分散至第一天线辐射体110和第二天线辐射体120上,形成较弱的SAR多热点,使天线装置100的SAR值符合规定要求。或者,即使在 天线装置100的辐射体上存在电流单强点,由于激励电流被第一天线辐射体110与第二天线辐射体120分流,能够在一定程度上均衡天线装置100的电流集中状况,该电流单强点的峰值也相对较低,符合规定要求,进而使天线装置100的SAR值符合规定要求。
在本申请实施例中,第一天线辐射体110可以大致呈条形,如,第一天线辐射体110可以是金属条,馈电点111设置在第一天线辐射体110的一端。第二天线辐射体120也可以大致呈条形,如,第一天线辐射体110可以是金属条或者长条形的印刷辐射体等。第二天线辐射体120的延伸方向与第一天线辐射体110的延伸方向一致,例如,第二天线辐射体120可以与第一天线辐射体110并列间隔设置,或者,第二天线辐射体120可以大致平行于第一天线辐射体110,或者,第二天线辐射体120的长度方向与第一天线辐射体110的长度方向大致相同。在一些实施例中,第一天线辐射体110和第二天线辐射体120也可以为直线形以外的形状,如,第一天线辐射体110可以为弯折片状、具有分支的片状等,第一天线辐射体110的延伸方向应理解为其整体的延伸方向,如长度尺寸所表征的方向;第二天线辐射体120可以为弯折片状、具有分支的片状等,第二天线辐射体120的延伸方向应理解为其整体的延伸方向,如长度尺寸所表征的方向,在此情况下,第一天线辐射体110和第二天线辐射体120的整体延伸方向一致。
在一些实施方式中,天线装置100可以工作于多个工作频段。天线装置100在不同工作频段工作时,对应产生的SAR值有可能不同。例如,天线装置100在多个工作频段中的部分工作频段工作时,天线装置100产生的SAR热点的峰值较大,对人体影响较大。天线装置100在多个工作频段中的其它工作频段工作时,天线装置100产生的SAR值较小,对人体影响较小。为了降低天线装置100工作时产生的SAR热点峰值对人体的影响,请参阅图3所示,天线装置100还可以包括滤波电路130,滤波电路130的一端连接至馈电点111,滤波电路130的另一端与第二天线辐射体120连接。滤波电路130用于允许需要降SAR值的特定频段的信号(如第一频段中属于第二频段的子频段部分的信号)对应的激励电流通过第二天线辐射体120,以在天线装置100工作于特定频段时,第二天线辐射体120和第一天线辐射体110能够对激励电流进行分流,能够在一定程度上均衡天线装置100的电流集中状况,从而降低第一天线辐射体整体的电流峰值,从而使天线装置100在特定频段工作时产生的SAR值满足规定要求。对于第一频段的信号中不属于特定频段的部分的信号(如第一频段的信号中不属于第二频段的信号),这部分信号对应产生的SAR值可以认为其已满足规定要求,无需针对该频段的信号进行降SAR处理,当需要辐射该频段的信号时,滤波电路130能够处于高阻状态(如可以减少甚至可以阻断该频段信号对应的激励电流通过第二天线辐射体120),使该频段信号可以经由第一天线辐射体110辐射,基本不会影响天线装置100在其它频段下的正常工作,因此天线装置100能够保证具备较佳的性能。应当理解的是,上述的“特定频段”即为天线装置100设定为需要降SAR的目标频段,该特定频段可以与第二频段相同,也可以是第一频段中的子频段,该子频段为第一频段中所有子频段中所对应SAR值相对更高的子频段;当然,该特定频段也可以根据需求设置。该子频段的数量也不必限制,如其可以为一个或多个。
例如,参考图4所示,第一天线辐射体110所支持的第一频段可以包括第一工作频段Band1和第二工作频段Band2,也即,第一天线辐射体110可以工作于第一工作频段Band1和第二工作频段Band2。第一天线辐射体110工作于第一工作频段Band1时,需要降SAR的频段可以为第一工作频段Band1。 滤波电路130不仅需要降低第一天线辐射体110在第一工作频段Band1工作时产生的SAR值,还需要确保第一天线辐射体110在第二工作频段Band2正常工作。因此,滤波电路130被配置为在第一天线辐射体110在第一工作频段Band1工作时为导通状态,且在第二工作频段Band2工作时为阻断状态,从而可以利用第二天线辐射体120的分流作用,使得对于第一工作频段Band1,由于滤波电路130被配置为导通状态,因此由第一天线辐射体110和第二天线辐射体120通过电流分流共同辐射;对于第二工作频段Band2,由于滤波电路130被配置为高阻状态/阻断状态,因此第二天线辐射体120分流较小甚至等效至与馈源30断开连接,则第二工作频段Band2由第一天线辐射体110主要辐射或者单独辐射,进而使天线装置100在第一工作频段的SAR值符合规定要求的同时,不影响第二工作频段的正常辐射性能。
在一些实施方式中,第二天线辐射体120所支持的第二频段可以为上述的第一工作频段Band1,此时第二频段为第一频段的子频段,因此天线装置100需要降低SAR值的特定频段可以是第二频段。滤波电路130被配置为允许第二频段的信号对应的激励电流通过,来自馈源30的激励电流被第一天线辐射体110和第二天线辐射体120分流。例如,当第一天线辐射体110用于发送或/及接收第二频段的信号时,来自馈源30的激励电流被第一天线辐射体110和第二天线辐射体120分流。
在一些实施方式中,滤波电路130可以仅允许单个工作频段的信号对应的激励电流通过。在另一些实施方式中,天线装置100在多个频段存在降SAR值的需求时,滤波电路130也可以被配置成允许多个工作频段的信号对应的激励电流通过。例如,当所述第二频段是所述第一频段的子频段时,所述滤波电路130被配置为允许第二频段的信号对应的激励电流通过,使来自所述馈源30的激励电流被所述第一天线辐射体110和所述第二天线辐射体120分流;又如,当所述第二频段是所述第一频段的子频段时,所述滤波电路130还被配置为阻断目标激励电流通向所述第二天线辐射体120,所述目标激励电流对应于所述第一频段的信号中不属于第二频段的信号,其中,“滤波电路130阻断目标激励电流”,应理解为,当馈源30输出目标激励电流时,滤波电路130处于高阻状态,以减少甚至完全阻断流向第二天线辐射体120的目标激励电流,而使目标激励电流流向第一天线辐射体110,从而使第一天线辐射体110辐射第一频段的信号中不属于第二频段的信号。
在一些实施方式中,滤波电路130可以是带阻滤波器。参考图5所示,在一些实施方式中,滤波电路130可以包括第一电容131和第一电感132。其中,第一电容131和第一电感132并联,并联的第一电容131和第一电感132串联在第二天线辐射体120与馈电点111之间。可以理解的是,第一电容131的电容值和第一电感132的电感值可以根据需要降SAR值的工作频段进行确定,例如,天线装置100的第一频段覆盖B32频段(1.45GHz-1.5GHz)和B3频段(1.71GHz-1.88GHz),天线装置100的第二频段覆盖B3频段(1.71GHz-1.88GHz),即B3频段为需要进行降低SAR值的频段,滤波电路130被配置为允许B3频段的信号对应的激励电流通过,且滤波电路130被配置为阻止B32频段的信号对应的激励电流通过。作为一种实施方式,第一电容131的电容值可以为2.2pF(皮法),第一电感132的电感值可以为5.1nH(纳亨)。可以理解的是,滤波电路130的结构不限于此,滤波电路130也可以采用其它实施方式,只要可以用于允许需要降SAR的工作频段的信号对应的激励电流通过,且阻止其它工作频段的信号对应的激励电流通过的均可以适用于本申请,本申请对此不作限制。
在一些实施方式中,滤波电路130可以包括多个带阻滤波器和切换开关,多个带阻滤波器的一端与第二天线辐射体120的一端连接,切换开关设置于多个带阻滤波器的另一端和馈电点111之间,多个带阻滤波器通过切换开关与馈电点111连接。通过调整带阻滤波器的电容值和电感值,设置多个可以通过不同频段的信号对应的激励电流的带阻滤波器,并选择性地使其中一个带阻滤波器接入电路中,可以使第二天线辐射体120在不同工作频段下对激励电流进行分流,从而在多个需要降SAR值的工作频段下,对激励电流进行分流,有效降低SAR值。可以理解的是,其它可以使第二天线辐射体120在多个工作频段下对激励电流进行分流的结构也可以应用于本申请的实施例中,本申请对此不作限制。
具体可以参考图6,图6示出了传统的天线和本申请一些实施例提供的天线装置100的辐射效率示意图,从图中可看到,相较于具备传统辐射体的天线,本申请实施例提供的天线装置100的天线效率并没有发生大的变化。所以天线装置100通过设置第一天线辐射体110、第二天线辐射体120和滤波电路130,能够在需要降SAR值的频段时,滤波电路130允许激励电流通过,第一天线辐射体110和第二天线辐射体120对激励电流进行分流,改善天线装置100的电场分布状况,使需要降SAR值的频段的电场最大辐射强度相对较低的同时,整体辐射的平均值并没有降低,天线装置100仍具备较高的辐射效率。
可以继续参考图7,图7示出了传统的天线和本申请一些实施例提供的天线装置100的近场电场分布的仿真示意图,表示的是当天线装置100的谐振频率在B3频段(1.71GHz)时辐射的电场强度以及对应的SAR峰值,其中,滤波电路130用于通过B3频段的信号对应的激励电流。如图7中的(a)图显示,在传统的辐射体的结构中,其并不具备多个天线辐射体,其对应SAR峰值为2.11796W/kg;而图7的(b)图显示,在本申请所提供的天线装置的结构中,其至少包括第一天线辐射体110、第二天线辐射体120和滤波电路130,其对应SAR峰值为1.60775W/kg,相较于普通的辐射体的天线结构,该SAR值的峰值降低了24%,可见,本申请实施例提供的天线装置100可实现降SAR功能。
请参阅图8,在一些实施例中,天线装置100还可以包括连接于第二天线辐射体120的匹配电路140,其中,第二天线辐射体120通过匹配电路140接地。匹配电路140可以用于在第一天线辐射体110和第二天线辐射体120对激励电流进行分流时,调节流经第一天线辐射体110的激励电流与流经第二天线辐射体120的激励电流的比例,从而根据实际使用需要,调节第一天线辐射体110基于流经的激励电流的信号发射功率以及第二天线辐射体120基于流经的激励电流的信号发射功率。
在一些实施方式中,匹配电路140为电容。通过设置电容值,可以调节流经第一天线辐射体110的激励电流与流经第二天线辐射体120的激励电流的比例。例如,电容值越大,流经第一天线辐射体110的激励电流与流经第二天线辐射体120的激励电流的比例越小,即流经第一天线辐射体110的激励电流变小,流经第二辐射体的激励电流变大。
在一些实施方式中,第二天线辐射体120与外界的检测体可以形成等效电容器,第二天线辐射体120在第二天线辐射体120与外界的检测体之间形成电容时可以产生电容信号,其中外界的检测体可以包括能够激发电容信号产生信号的电导体(如金属、人体等)。在本申请实施例中,所述第二天线辐射体120用于感应目标对象和所述第二天线辐射体120的距离而产生电容信号,目标对象可以例如是人体,如头部、身体、手部等。当目标对象靠近第二天线辐射体120时,第二天线辐射体120可以感应产生电容信号。例如,用户头部靠近手机进行电话接听时,用户头部靠近第二天线辐射体120,用户头部和第 二天线辐射体120可以等效为电容的两个极板,用户头部和第二天线辐射体120形成电容器。根据公式C=εS/4πkd(其中,ε为介电常数,S为极板面积,d是极板间的距离,k是静电力常量)可知,当用户靠近手机,即靠近第二天线辐射体120时,用户与第二天线辐射体120的距离变小,即d减小,则电容值C增大。因此,通过获取第二天线辐射体120产生的电容信号,可以检测目标对象是否靠近。当电容值C增大,即表征目标对象正在靠近天线装置100,天线装置100可以根据距离增大的情况降低其发射功率,以降低辐射对于目标对象的影响。进一步地,当电容值C减小,即表征目标对象正在远离天线装置100,天线装置100可以根据距离减小的情况提高其发射功率,以保证天线装置100的辐射效率。
在一些实施方式中,为了进一步降低天线装置100的SAR峰值,参考图9所示,天线装置100还可以包括传感器150。传感器150的一端连接至匹配电路140与第二天线辐射体120的连接节点,传感器150利用第二天线辐射体120的可以与目标对象之间形成等效电容从而产生电容信号的特性,通过接收第二天线辐射体120的电容信号判断是否有目标对象靠近。应当理解的是,本说明书中的术语“连接节点”,应理解为两个元件发生电连接的连接关系,该连接关系可以为物理上的结合点,也可以为电路上相同的点的集合(如两个元件通过一段导线连接,该导线上各点的电位大致相同,则该两个元件的连接节点也可以理解为该导线或者导线上的任意一个或多个点)。
在一些实施方式中,传感器150用于将电容信号转换为检测信号,并将检测信号传送至控制器。为了灵活设置传感器150的位置,进一步地,天线装置100还可以包括传输线,传输线连接在第二天线辐射体120与传感器150之间,通过传输线可以调整传感器150与第二天线辐射体120的距离。
在本申请的实施例中,馈源30向第一天线辐射体110和第二天线辐射体120馈入激励电流,以使第一天线辐射体110和第二天线辐射体120能够发生谐振以发送信号。控制馈源30的输出功率,可以使馈源30馈入不同输出功率的激励电流,从而使第一天线辐射体110和第二天线辐射体120能够发生谐振以发送不同功率的信号,即通过控制馈源30的输出功率可以控制第一天线辐射体110和第二天线辐射体120的发射功率。
进一步地,天线装置100还可以包括控制器180,控制器180和传感器150连接,以用于根据传感器150的检测信号控制第一天线辐射体110或/及第二天线辐射体120之的发射功率。在一些实施方式中,控制器180可以和馈源30电连接,控制器180可以用于控制馈源30的输出功率。进一步地,控制器180还可以用于根据第二天线辐射体120的电容信号控制馈源30的输出功率,进而控制第一天线辐射体110和第二天线辐射体120的发射功率。在一些实施方式中,控制器180被配置为:在传感器150接收到的电容信号增大时,降低馈源30的输出功率,从而降低第一天线辐射体110或/及第二天线辐射体120的发射功率。
在一些实施例中,电容信号和发射功率之间可以存在预定的函数关系,当传感器150接收到的电容信号增大时,控制器180可以被配置为基于该函数关系降低第一天线辐射体110或/及第二天线辐射体120的发射功率;当传感器150接收到的电容信号减小时,控制器180可以被配置为基于该函数关系提高第一天线辐射体110或/及第二天线辐射体120的发射功率。在另一些实施例中,可以为电容信号设置预设阈值,控制器180被配置为:在传感器150接收到的电容信号大于预设阈值时,降低馈源30的输出功率至指定值,从而降低第一天线辐射体110或/及第二天线辐射体120的发射功率。其中,电容 信号的预设阈值能够表征外界检测体(如用户的头部)与天线装置100之间的距离的预设值,该距离的预设值可以小于或等于30cm,20cm或10cm等(如距离的预设值可以为0~50cm中的任意值),通过上述式C=εS/4πkd以及距离的预设值,可以设定电容信号的预设阈值大小。因此,天线装置100可以通过复用第二天线辐射体120作为传感器150的检测端子,将电容信号传送至传感器150,进而允许控制器1901根据电容信号控制第一天线辐射体110或/及第二天线辐射体120的发射功率,能够在用户与天线装置100之间距离较小时,降低天线装置100的辐射对用户的影响。
进一步地,在传感器150接收到的电容信号小于或等于预设阈值时,控制器180可以增加馈源30的输出功率,从而提高第一天线辐射体110和第二天线辐射体120的发射功率。当电容信号小于预设阈值时,馈源30的输出功率恢复至正常工作功率,此时目标对象与第二天线辐射体120距离超过预设值,在此距离下,目标对象受到的SAR值较小,因此不再对馈源30的输出功率进行控制,第一天线辐射体110和第二天线辐射体120恢复正常工作时的发射功率。其中,电容信号的预设阈值和目标对象与第二天线辐射体120的距离的预设值可以根据实际需要进行设置,本申请对此不作限制。
参考图10所示,在一些实施方式中,由于第二天线辐射体120的一端与馈源30连接,第二天线辐射体120的另一端接地,为了避免接馈源30和接地系统会传感器150的检测精度产生不利影响,以精确获得第二天线辐射体120与目标对象之间的电容信号,天线装置100可以在自所述第二天线辐射体120到馈源30的通路上串联有电容40,该电容40能够用于隔绝由馈源30流出的直流电流。值得注意的是,“自所述第二天线辐射体120到馈源30的通路”应理解为,在第二天线辐射体120辐射第二频段的信号时,激励电流流经的通路,例如在一些实施例中,第二天线辐射体120的一端直接物理连接至馈电点111,则“自所述第二天线辐射体120到馈源30的通路”应理解为“自馈源30输出、经由馈电点111到第二天线辐射体120的通路”,此时,该电容40可以串联在馈电点111和第二天线辐射体120之间,如串联在滤波电路130与馈电点111之间,或串联在第二天线辐射体120和滤波电路130之间;又如在另一些实施例中,第二天线辐射体120的一端连接至馈电点111和馈源30的输出端之间,则“自所述第二天线辐射体120到馈源30的通路”应理解为“自馈源30输出到第二天线辐射体120的通路(可以不必经过馈电点111)”,此时,该电容40可以串联在第二天线辐射体120和馈源30的输出端之间,如串联在滤波电路130与馈源30的输出端之间,或串联在第二天线辐射体120和滤波电路130之间。可选地,当设置于第二天线辐射体120与馈电点111之间的滤波电路130包括电容时,上述的电容40也可以复用滤波电路130的电容以起到隔绝来自馈源的直流电流。
在一些实施例方式中,天线装置100还可以在自第二天线辐射体120到地的通路上串联有电容50,以隔绝由地流出的直流电流,从而隔绝馈源30和地的直流电流对第二天线辐射体120所产生的电容值的干扰。进一步地,该电容50可以串联在传感器150和第二天线辐射体120的连接节点到地之间,也即,第二天线辐射体120可以通过该电容50接地,而传感器150连接至该电容50和第二天线辐射体120之间。可选地,当设置于第二天线辐射体120与地之间的匹配电路140包括电容时,上述的电容50也可以复用匹配电路140的电容以起到隔绝来自地系统的直流电流。
在一些实施方式中,为了减小传感器150对第一天线辐射体110和第二天线辐射体120的影响,天线装置100还可以包括第二电感190。其中,第二电感190串联在传感器150和第二天线辐射体120之 间。第二电感190可以隔离传感器150和第二天线辐射体120,从而减小传感器150对第一天线辐射体110和第二天线辐射体120的影响,第二电感190的值可以根据实际使用需要进行设置,例如,第二电感的值可以为100nH。
在一些实施方式中,第一天线辐射体110为柔性电路板天线辐射体、激光直接成型天线辐射体、印刷直接成型天线辐射体或者金属枝节中的一种。在一些实施方式中,第二天线辐射体120为柔性电路板天线辐射体、激光直接成型天线辐射体、印刷直接成型天线辐射体或者金属枝节中的一种。
请参阅图11,在一些实施方式中,天线装置100还可以包括第一连接件160。第一连接件160设置于第二天线辐射体120与第一天线辐射体110之间,并被配置为实现第二天线辐射体120与第一天线辐射体110之间的可拆卸连接。在一些实施方式中,天线装置100还可以包括第二连接件170。第二连接件170设置于第二天线辐射体120远离第一天线辐射体110的一端,并用于将第二天线辐射体120可拆卸地连接至地。可选地,第一连接件160和第二连接件170可以是弹针、弹片等弹性接触连接件。
本申请实施例提供的天线装置及电子设备中,该天线装置包括第一天线辐射体和第二天线辐射体,第一天线辐射体的一端设置有馈电点,馈电点用于连接馈源,第二天线辐射体的一端与馈电点连接,第二天线辐射体的另一端接地,第一天线辐射体用于发送或/及接收第一频段的信号,第二天线辐射体用于发送或/及接收第二频段的信号,因此,通过将第二天线辐射体连接至第一天线辐射体的馈电点,经由馈源输入的激励电流被第一天线辐射体与第二天线辐射体分流,能够在一定程度上均衡天线装置的电流集中状况,从而降低第一天线辐射体整体的电流峰值,从而使天线装置的SAR值符合规定要求。所以,本申请实施例提供的天线装置,能够确保天线装置具有较低的SAR值。具体而言,通过第二天线辐射体在辐射第二射频信号时,对激励电流进行分流,因而天线装置的辐射体上基本不会存在电流极强单点,而是被大概分流为至少两个电流强点(在第一天线辐射体和第二天线辐射体上分流的至少两个电流强点的峰值必然小于电流极强单点的峰值),进而使原本的SAR单热点被大致分散至第一天线辐射体和第二天线辐射体上,形成较弱的SAR多热点,使天线装置的SAR值符合规定要求。或者,即使在天线装置的辐射体上存在电流单强点,由于激励电流被第一天线辐射体与第二天线辐射体分流,能够在一定程度上均衡天线装置的电流集中状况,该电流单强点的峰值也相对较低,符合规定要求,进而使天线装置的SAR值符合规定要求。
请参阅图12,本申请实施例还提供一种电子设备200,电子设备200可以为但不限于手机、平板电脑、智能手表等电子装置。本实施方式的电子设备200以手机为例进行说明。
电子设备200包括馈源30和天线装置100。其中,馈源与馈电点111电连接。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“里”等指示方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请而简化描述,而不是指暗示所指的装置或元件必须具有特定的方位,以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本申请的实施例中,电子设备200还可以包括壳体1001及显示屏。显示屏连接于壳体1001,天线装置集成于壳体1001。
在一些实施方式中,显示屏通常包括显示面板,也可以包括用于响应对显示面板进行触控操作的电路等。显示面板可以为一个液晶显示面板(Liquid Crystal Display,LCD),在一些实施例中,显示面板 可以同时为触摸显示屏。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”或“其他的实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特定包含于本申请的至少一个实施例或示例中。在本说明书中,对术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特定可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例的特征进行结合和组合。
具体在本申请实施方式中,壳体1001包括后壳1010以及中框1011,后壳1010与显示屏分别设置于中框1011的相对两侧。
请参阅图13,中框1011可以为一体成型结构,其从结构上可以划分为承载部1012以及环绕于承载部1012的边框1013。应当理解的是,“承载部1012”与“边框1013”仅仅为便于表述而进行的命名划分,图中的结构填充斜线条仅为区分而标识,并不代表二者的实际结构,二者之间可以不具备明显的分界线,也可以为分别为两个或更多的部件组装于一起,“承载部1012”与“边框1013”的命名不应对中框1011的结构造成限制。承载部1012用于承载显示屏的一部分结构,也可以用于承载或安装电子设备200的电子部件如主板1005、电池1006、传感器模块1007等,边框1013连接于承载部1012的周缘。进一步地,边框1013环绕于承载部1012的外周设置,并相对于承载部1012的表面凸伸,使二者共同形成用于容纳电子部件的空间。在本实施例中,显示屏盖设于边框1013,边框1013、后壳1010以及显示屏共同形成电子设备200的外观表面。
在本实施例中,天线装置100可以为以上实施例提供的任一种天线装置100,或者可以具备以上天线装置100的任意一个或多个特征的结合,相关的特征可以参考前述实施例,本实施例不再赘述。
在一些实施方式中,天线装置100集成于壳体1001中,例如,天线装置100可以设置于中框1011,也可以设置于后壳1010,本说明书对此不作限制。与前述的天线装置大致相同,本实施例的天线装置100可以包括第一天线辐射体110和第二天线辐射体120。其中,第一天线辐射体110可以设置于中框1011,第二天线辐射体120可以设置于承载部1012。
进一步地,在图13所示的实施例中,边框1013至少部分由金属制成,天线装置100集成于边框1013。在本实施例中,边框1013包括至少部分金属结构,金属结构形成第一天线辐射体110。如此,利用金属制的边框1013作为天线装置100的辐射体的一部分,有利于节省电子设备200内的空间,也为天线装置100提供更大的净空区,有利于保证较高的辐射效率。在一些实施方式中,第二天线辐射体120设置于承载部1012,天线辐射体可以为柔性电路板天线辐射体、激光直接成型天线辐射体、印刷直接成型天线辐射体中的一种,如此,第二天线辐射体可以设置于中框1011或后壳1010,可以用于对目标对象进行检测,在第二天线辐射体与目标对象之间形成电容时产生感应信号。
进一步地,在本申请实施例中,主板1005设置于承载部1012上,主板1005的边缘与第一天线辐射体之间具有一定距离,保证天线装置具有较大净空区,且将主板1005上电流集中处与天线装置上电流集中处尽可能分散,也能在一定程度上降低天线装置的SAR值。在本实施例中,主板1005与第一天线辐射体之间的距离可以为1-5mm,例如,主板1005与第一天线辐射体之间的距离可以为1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm、5mm等等。
本申请实施例提供的天线装置及电子设备中,该天线装置包括第一天线辐射体和第二天线辐射体,第一天线辐射体的一端设置有馈电点,馈电点用于连接馈源,第二天线辐射体的一端与馈电点连接,第二天线辐射体的另一端接地,第一天线辐射体用于发送或/及接收第一频段的信号,第二天线辐射体用于发送或/及接收第二频段的信号,因此,通过将第二天线辐射体连接至第一天线辐射体的馈电点,经由馈源输入的激励电流被第一天线辐射体与第二天线辐射体分流,能够在一定程度上均衡天线装置的电流集中状况,从而降低第一天线辐射体整体的电流峰值,因而天线装置的辐射体上基本不会存在电流极强单点,而是被大概分流为至少两个电流强点(在第一天线辐射体和第二天线辐射体上分流的至少两个电流强点的峰值必然小于电流极强单点的峰值),进而使原本的SAR单热点被大致分散至第一天线辐射体和第二天线辐射体上,形成较弱的SAR多热点,使天线装置的SAR值符合规定要求。
需要说明的是,在本申请说明书中,当一个组件被认为是“设置于”另一个组件,它可以是连接于或者直接设置在另一个组件上,或者可能同时存在居中组件(也即二者间接连接)。
在本说明书中,描述的具体特征或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (24)

  1. 一种天线装置,其中,包括:
    第一天线辐射体,所述第一天线辐射体的一端设置有馈电点,所述馈电点用于连接馈源;
    第二天线辐射体,所述第二天线辐射体的一端与所述馈电点连接,所述第二天线辐射体的另一端接地;
    所述第一天线辐射体用于发送或/及接收第一频段的信号,所述第二天线辐射体用于发送或/及接收第二频段的信号;
    其中,所述第二频段与所述第一频段相同;或者,所述第二频段是所述第一频段的子频段。
  2. 如权利要求1所述的天线装置,其中,所述天线装置还包括滤波电路,所述滤波电路的一端连接至所述馈电点,所述滤波电路的另一端与所述第二天线辐射体连接。
  3. 如权利要求1或2所述的天线装置,其中,所述第一天线辐射体的另一端接地。
  4. 如权利要求1至3中任一项所述的天线装置,其中,当所述第二频段与所述第一频段相同时,来自所述馈源的激励电流被所述第一天线辐射体和所述第二天线辐射体分流。
  5. 如权利要求2至4中任一项所述的天线装置,其中,当所述第二频段是所述第一频段的子频段时,所述滤波电路被配置为允许第二频段的信号对应的激励电流通过,来自所述馈源的激励电流被所述第一天线辐射体和所述第二天线辐射体分流。
  6. 如权利要求5所述的天线装置,其中,所述滤波电路还被配置为减少或阻断目标激励电流通向所述第二天线辐射体,所述目标激励电流对应于所述第一频段的信号中不属于第二频段的信号。
  7. 如权利要求2所述的天线装置,其中,所述滤波电路包括第一电容和第一电感,所述第一电容和所述第一电感并联,并联的所述第一电容和所述第一电感串联在所述第二天线辐射体与所述馈电点之间。
  8. 如权利要求1至7中任一项所述的天线装置,其中,所述天线装置还包括连接于所述第二天线辐射体的匹配电路,所述第二天线辐射体通过所述匹配电路接地。
  9. 如权利要求8所述的天线装置,其中,所述匹配电路为电容。
  10. 如权利要求1至9中任一项所述的天线装置,其中,所述第一天线辐射体的延伸方向与所述第二天线辐射体的延伸方向一致。
  11. 如权利要求1至10中任一项所述的天线装置,其中,所述第二天线辐射体还用于感应目标对象和所述第二天线辐射体的距离而产生电容信号,所述天线装置还包括传感器,所述传感器的一端连接至所述第二天线辐射体与地之间,所述传感器用于接收所述电容信号;
    所述天线装置还包括控制器,所述控制器和所述传感器连接,所述控制器用于根据所述电容信号控制所述第一天线辐射体或/及所述第二天线辐射体的发射功率。
  12. 如权利要求11所述的天线装置,其中,所述控制器适于与所述馈源电连接,并配置为:在所述传感器接收到的所述电容信号增大时,降低所述馈源的输出功率,从而降低所述第一天线辐射体或/及所述第二天线辐射体的发射功率。
  13. 如权利要求11至12中任一项所述的天线装置,其中,自所述第二天线辐射体到所述馈源的通路上串联有电容,自所述第二天线辐射体与所述传感器的连接节点到地的通路上串联有电容。
  14. 如权利要求11至13中任一项所述的天线装置,其中,所述天线装置还包括第二电感,所述第二电感串联于所述传感器和所述第二天线辐射体之间。
  15. 如权利要求1至14任一项所述的天线装置,其中,所述第一天线辐射体为柔性电路板天线辐射体、激光直接成型天线辐射体、印刷直接成型天线辐射体或者金属枝节中的一种。
  16. 如权利要求1至15任一项所述的天线装置,其中,所述第二天线辐射体为柔性电路板天线辐射体、激光直接成型天线辐射体、印刷直接成型天线辐射体或者金属枝节中的一种。
  17. 一种电子设备,其中,包括馈源以及权利要求1至15任一项所述的天线装置,所述馈源与所述馈电点电连接。
  18. 如权利要求17所述的电子设备,其中,所述电子设备还包括壳体及显示屏,所述显示屏连接于所述壳体,所述天线装置集成于所述壳体。
  19. 如权利要求18所述的电子设备,其中,所述壳体包括中框以及后壳,所述后壳与所述显示屏分别设置于所述中框的相对两侧;所述中框包括承载部以及连接于所述承载部边缘的边框,所述显示屏连接于所述边框或/及所述承载部;所述后壳连接于所述边框;所述天线装置集成于所述边框。
  20. 如权利要求19所述的电子设备,其中,所述边框包括至少部分金属结构,所述金属结构形成所述第一天线辐射体。
  21. 如权利要求19或20所述的电子设备,其中,所述第二天线辐射体设置于所述承载部。
  22. 如权利要求17至21任一项所述的电子设备,其中,所述第二天线辐射体为柔性电路板天线辐射体、激光直接成型天线辐射体、印刷直接成型天线辐射体中的一种。
  23. 一种电子设备,其中,包括壳体以及权利要求1至15任一项所述的天线装置,所述天线装置集成于所述壳体。
  24. 如权利要求23所述的电子设备,其中,所述壳体包括中框以及承载部,所述第一天线辐射体设置于所述中框,所述第二天线辐射体设置于所述承载部。
PCT/CN2022/086085 2021-05-27 2022-04-11 天线装置及电子设备 WO2022247493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110586740.8 2021-05-27
CN202110586740.8A CN115411503B (zh) 2021-05-27 2021-05-27 天线装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022247493A1 true WO2022247493A1 (zh) 2022-12-01

Family

ID=84156415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086085 WO2022247493A1 (zh) 2021-05-27 2022-04-11 天线装置及电子设备

Country Status (2)

Country Link
CN (1) CN115411503B (zh)
WO (1) WO2022247493A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253886A (ja) * 2008-04-10 2009-10-29 Panasonic Corp アンテナ
CN105307432A (zh) * 2014-07-25 2016-02-03 联想(北京)有限公司 电子设备及其制造方法
WO2016045046A1 (zh) * 2014-09-25 2016-03-31 华为技术有限公司 多频段天线和通信终端
US20160190699A1 (en) * 2014-12-26 2016-06-30 Acer Incorporated Mobile device
CN111430940A (zh) * 2020-04-23 2020-07-17 维沃移动通信有限公司 一种天线结构及电子设备
CN112542678A (zh) * 2020-11-30 2021-03-23 Oppo广东移动通信有限公司 电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208386521U (zh) * 2018-05-28 2019-01-15 Oppo广东移动通信有限公司 电子装置
CN109980364B (zh) * 2019-02-28 2021-09-14 华为技术有限公司 一种天线模块、天线装置以及终端设备
CN113991287B (zh) * 2019-04-30 2022-12-30 荣耀终端有限公司 一种天线组件及移动终端
CN111029729A (zh) * 2019-12-24 2020-04-17 西安易朴通讯技术有限公司 天线组件及电子设备
CN111834745A (zh) * 2020-07-29 2020-10-27 Oppo广东移动通信有限公司 一种天线装置及电子设备
CN212277399U (zh) * 2020-09-30 2021-01-01 Oppo广东移动通信有限公司 天线组件和电子设备
CN112086752A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112467387B (zh) * 2020-11-20 2023-02-28 Oppo广东移动通信有限公司 天线装置及电子设备
CN112599959B (zh) * 2020-11-30 2023-05-23 Oppo广东移动通信有限公司 电子设备及其壳体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253886A (ja) * 2008-04-10 2009-10-29 Panasonic Corp アンテナ
CN105307432A (zh) * 2014-07-25 2016-02-03 联想(北京)有限公司 电子设备及其制造方法
WO2016045046A1 (zh) * 2014-09-25 2016-03-31 华为技术有限公司 多频段天线和通信终端
US20160190699A1 (en) * 2014-12-26 2016-06-30 Acer Incorporated Mobile device
CN111430940A (zh) * 2020-04-23 2020-07-17 维沃移动通信有限公司 一种天线结构及电子设备
CN112542678A (zh) * 2020-11-30 2021-03-23 Oppo广东移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN115411503A (zh) 2022-11-29
CN115411503B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2022142824A1 (zh) 天线系统及电子设备
US9577331B2 (en) Wireless communication device
JP4242780B2 (ja) 平衡マルチバンドアンテナ装置
KR100467569B1 (ko) 송수신일체형마이크로스트립패치안테나
US5945954A (en) Antenna assembly for telecommunication devices
WO2022142828A1 (zh) 电子设备
EP1482646B1 (en) Portable terminal having tuner for changing radiation pattern
CN104037501B (zh) 移动装置
CN114122712B (zh) 一种天线结构及电子设备
WO2022142820A1 (zh) 天线组件及电子设备
WO2022111053A1 (zh) 电子设备及其壳体
CN210092344U (zh) 天线组件及电子设备
CN103078174A (zh) 多频天线装置
US20230163457A1 (en) Electronic Device
CN112542678A (zh) 电子设备
CN112467371A (zh) 天线装置及电子设备
WO2022111054A1 (zh) 天线装置、壳体及电子设备
CN114336009A (zh) 电子设备
WO2023103735A1 (zh) 天线装置及电子设备
WO2022247493A1 (zh) 天线装置及电子设备
WO2022111064A1 (zh) 电子设备
CN113131195A (zh) 一种天线和通讯设备
CN214203955U (zh) 电子设备
CN211556116U (zh) 一种天线及移动终端
US20130093631A1 (en) Mobile wireless terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE