WO2022111054A1 - 天线装置、壳体及电子设备 - Google Patents

天线装置、壳体及电子设备 Download PDF

Info

Publication number
WO2022111054A1
WO2022111054A1 PCT/CN2021/122268 CN2021122268W WO2022111054A1 WO 2022111054 A1 WO2022111054 A1 WO 2022111054A1 CN 2021122268 W CN2021122268 W CN 2021122268W WO 2022111054 A1 WO2022111054 A1 WO 2022111054A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
support arm
arm
radiation support
radiator
Prior art date
Application number
PCT/CN2021/122268
Other languages
English (en)
French (fr)
Inventor
路宝
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022111054A1 publication Critical patent/WO2022111054A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to an antenna device casing and an electronic device.
  • Embodiments of the present application provide an antenna device, a casing, and an electronic device.
  • an embodiment of the present application provides an antenna device, including a radiator and a feeding point disposed on the radiator, the feeding point is used to feed an excitation current to the radiator, and the excitation current forms a strong current area.
  • the radiator includes a first radiation support arm and a second radiation support arm, the first radiation support arm and the second radiation support arm are connected in parallel to form a common end, at least part of the structure of the first radiation support arm, at least part of the structure of the second radiation support arm in the area of high current.
  • the feeding point is set at the common end.
  • an embodiment of the present application provides an electronic device, including a display screen and the above-mentioned antenna device.
  • an embodiment of the present application provides a casing, which is applied to an electronic device capable of wireless communication.
  • the casing includes a frame and a bearing portion connected to the frame.
  • the frame is at least partially made of metal.
  • the frame is provided with a slot, and the slot divides the frame into a ground part and an antenna part; the antenna part is provided with a feed point, the feed point is set between the slot and the ground part, and the feed point is used to feed the excitation current to the antenna part,
  • the excitation current forms a strong current region on the antenna portion.
  • the part from the feeding point to the slot on the antenna part is configured as the radiation end of the antenna of the electronic device, the radiation end is provided with a button hole for accommodating the keys of the electronic device, and the button hole divides the radiation end part into a parallel connection.
  • a radiating arm and a second radiating arm, at least part of the structure of the first radiating arm and at least part of the structure of the second radiating arm are located in the high current area, when the antenna part transmits or/and receives signals, the radiating end The current is shunted by the first radiation arm and the second radiation arm.
  • the embodiments of the present application provide an electronic device, a main board, a button and the above-mentioned housing, the main board is disposed on the bearing portion, the button is accommodated in the button hole, and is electrically connected to the main board.
  • the antenna device includes a radiator and a feeding point disposed on the radiator, the feeding point is used to feed the excitation current into the radiator, and the excitation current is formed on the radiator with a Strong current region, wherein the radiator includes a first radiation support arm and a second radiation support arm, the first radiation support arm and the second radiation support arm can be jointly used to generate resonance to receive/transmit signals, by setting two radiation support arms , and at least a part of each radiating arm is located in the strong current area, which can balance the current concentration of the radiator of the antenna device to a certain extent, thereby reducing the current peak value of the entire radiator and reducing the SAR value of the antenna device.
  • the first radiation support arm and at least part of the structure of the second radiation support arm are located in the strong current region, and the first radiation support arm and the second radiation support arm can divide the current of the radiator, so There is no single point of extremely strong current on the radiator, but is roughly divided into two sub-intensity points of current, so that the original single hot spot of SAR is roughly dispersed to the first radiation arm and the second radiation arm, forming a
  • the weaker SAR has multiple hot spots, which makes the overall SAR value of the antenna device weak. Since two radiating arms are arranged in parallel with each other, the overall current of the antenna device will not be affected, and the radiation performance of the antenna device will not be weakened.
  • the antenna device provided by the application embodiment can ensure strong antenna radiation performance and have a lower SAR value.
  • FIG. 1 is a schematic diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a structure of an antenna device provided by an embodiment of the present application.
  • FIG. 3 is a simulation schematic diagram of the near-field electric field distribution of the antenna device shown in FIG. 2 .
  • FIG. 4 is a schematic diagram of another structure of an antenna device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the radiation efficiency of the antenna device shown in FIG. 4 .
  • FIG. 6 is a schematic diagram of still another structure of an antenna device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of still another structure of an antenna device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the internal structure of the electronic device shown in FIG. 7 .
  • FIG. 10 is a schematic exploded view of a partial structure of the electronic device shown in FIG. 7 .
  • FIG. 11 is an exploded schematic diagram of another structure of the electronic device shown in FIG. 7 and a partial structure.
  • Electric equipment as used in the embodiments of this application includes, but is not limited to, is configured to connect via a wired line (eg, via a public switched telephone network (PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (eg, for cellular networks, wireless local area networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM broadcast transmitters, and/or A device for receiving/transmitting communication signals through a wireless interface of another communication terminal.
  • a communication terminal arranged to communicate over a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal”, “electronic device” and/or “electronic device”.
  • Examples of electronic devices include, but are not limited to, satellite or cellular telephones; Personal Communication System (PCS) terminals that may combine cellular radio telephones with data processing, fax, and data communication capabilities; may include radio telephones, pagers, Internet/Intranet access , Web browsers, notepads, calendars, and/or PDAs with global positioning system (GPS) receivers; and conventional laptop and/or palmtop receivers, game consoles, or other electronic devices including radiotelephone transceivers.
  • PCS Personal Communication System
  • Electromagnetic wave energy absorption ratio (SAR, Specific Absorption Rate) is usually called absorption ratio or absorption ratio, which refers to the electromagnetic wave energy absorption ratio of electronic equipment.
  • SAR Specific Absorption Rate
  • absorption ratio or absorption ratio refers to the electromagnetic wave energy absorption ratio of electronic equipment.
  • the specific meaning is: Under the action of the external electromagnetic field, an induced electromagnetic field will be generated in the human body. Since each organ of the human body is a lossy medium, the electromagnetic field in the body will generate an induced current, which will cause the human body to absorb and dissipate electromagnetic energy. In biological dosimetry SAR is often used to characterize this physical process.
  • the meaning of SAR is the electromagnetic power absorbed or consumed by a unit mass of human tissue, in W/kg, or mw/g.
  • Ei is the effective value of the electric field intensity in the cell tissue, expressed in V/m;
  • is the electrical conductivity of human tissue, expressed in S/m
  • is the density of human tissue, expressed in kg/m 3 .
  • SAR in human tissue is proportional to the square of the electric field strength in that tissue, and is determined by the parameters of the incident electromagnetic field (such as frequency, strength, direction, and source of the electromagnetic field), the relative position of the target, and the typical tissue of the exposed human body. Genetic traits, terrestrial effects, and environmental effects of exposure are determined. At present, many countries and regions have established safety standards for human exposure to electromagnetic waves. For example, in the international standard, the European standard is less than 2.0w/kg per 10 grams, and the American standard is less than 1.6mw/g per gram.
  • the commonly used methods to reduce the SAR value mainly include the following: (1) Directly reduce the transmission power of the antenna to reduce the absorption of electromagnetic waves by the human body, but it is difficult to reduce the transmission power of the antenna to meet the requirements of TRP, and the TRP is too low.
  • the position of the antenna in the electronic equipment is set away from the user's head to reduce the absorption of electromagnetic waves by the human body, but the current development trend of electronic equipment is thickness Thinner and thinner, the antenna space is getting smaller and smaller, and it is difficult to ensure the distance between the antenna and the user's head;
  • Attach a wave-absorbing material near the antenna to reduce the absorption of electromagnetic waves by the human body, but due to the structure of the electronic device
  • the space near the antenna limited by the design is extremely small, it is difficult to attach the wave material, and the cost of the wave absorbing material is also high. It can be seen that, up to now, there is still no better solution that can not only reduce the SAR of the antenna, but also reliably guarantee its TRP.
  • the inventors of the present application found after a large number of repeated studies that the SAR value corresponding to the antenna of the current electronic device is relatively large, mainly because the excitation current will form a strong current region on the radiator, and the corresponding The current on the main board of the electronic device will generate a current peak value.
  • the current peak value on the main board and the current peak value on the antenna radiator lead to a large SAR value corresponding to the antenna.
  • the inventor proposes the antenna device of the present application and an electronic device having the antenna device.
  • the antenna device includes a radiator and a feeding point arranged on the radiator, the feeding point is used for feeding an excitation current into the radiator, and the excitation current forms a strong current region on the radiator.
  • the radiator includes a first radiation support arm and a second radiation support arm, the first radiation support arm and the second radiation support arm are connected in parallel to form a common end, at least part of the structure of the first radiation support arm, at least part of the structure of the second radiation support arm in a high current area.
  • the feeding point is set at the common end.
  • the above-mentioned antenna device includes a radiator and a feeding point arranged on the radiator, the feeding point is used to feed the excitation current to the radiator, and the excitation current forms a strong current region on the radiator, wherein the radiator includes the first radiator.
  • the support arm and the second radiation support arm, the first radiation support arm and the second radiation support arm can be jointly used to generate resonance to receive/transmit signals, by setting two radiation support arms, and each radiation support arm has at least a part of the structure Located in the strong current region, the current concentration of the radiator of the antenna device can be balanced to a certain extent, thereby reducing the current peak value of the entire radiator and reducing the SAR value of the antenna device.
  • an embodiment of the present application provides an antenna device 100 , which includes an antenna body 10 and a feed 30 connected to the antenna body 10 .
  • the antenna body 10 is used for receiving and transmitting signals
  • the feed source 30 is used for feeding a current signal into the antenna body 10 so that the antenna body 10 can resonate to transmit signals.
  • the feed 30 is adapted to be connected to and can be controlled by the main board of the electronic device.
  • the antenna body 10 includes a radiator 12 and a feeding point 14 .
  • the feeding point 14 is used to feed the excitation current to the radiator 12, and the excitation current forms a strong current region on the radiator. surrounding current density.
  • the antenna body 10 transmits a signal, the current enters the radiator 12 from the feed source 30 via the feed point 14, and a strong current area is formed near the feed point 14, and the strong current area includes the point with strong current (the current density is higher than that of the current density). large point), so there will be a SAR hot spot at the feed point 14 of the radiator 12.
  • the antenna body 10 may further include a ground point 16 disposed on the radiator 12 .
  • the radiator 12 converts the electromagnetic wave signal into an electric current, and the current flows back through the ground point 16 , and the radiator 12 A strong current area will also be formed near the ground point 16 of the SAR, so there will also be a SAR hot spot at the ground point 16 .
  • the presence of these SAR hotspots, especially when the SAR hotspots are located close to the user, can adversely affect the body of the user using the antenna device.
  • the radiator 12 of the embodiment of the present application includes a first radiation support arm 121 and a second radiation support arm 123 , and the first radiation support arm 121 and the second radiation support arm 123 are connected in parallel to form a common end 125 , the feeding point 14 and the grounding point 16 are set at the common terminal 125 .
  • At least part of the structure of the first radiation support arm 121 and at least part of the structure of the second radiation support arm 123 are located in the high current region, and the first radiation support arm 121 and the second radiation support arm 123 can be jointly used to generate resonance for receiving/transmitting
  • the current concentration of the radiator of the antenna device 100 can be balanced to a certain extent, thereby reducing the current peak value of the radiator 12 as a whole and reducing the SAR value of the antenna device 100 .
  • the first radiation support arm 121 and at least a part of the structure of the second radiation support arm 123 are located in the high current region, and the first radiation support arm 121 and the second radiation support arm 123 may
  • the current is shunted, so there is no single point of extremely strong current on the radiator 12, but is roughly divided into two sub-intensity points of current, so that the original single point of SAR is roughly dispersed to the first radiation arm 121 and the first radiation arm 121.
  • weak SAR multiple hot spots are formed, so that the overall SAR value of the antenna device 100 is relatively weak.
  • the antenna device 100 Since two radiation arms are arranged in parallel with each other, the overall current of the antenna device 100 will not be affected, and the antenna device 100 can be guaranteed. The radiation performance of the antenna 100 is not weakened. Therefore, the antenna device 100 provided in the embodiment of the present application can ensure strong antenna radiation performance and have a lower SAR value.
  • the distance between the second radiating arm 123 and the feeding point 14 and the length of the traces of the second radiating arm 123 can affect the position of the resonance frequency point, so it can be determined according to specific application scenarios and specific conditions.
  • the frequency band to be tuned specifically sets the distance between the second radiation support arm 123 and the feeding point 14, or/and adjusts the length of the second radiation support arm.
  • the distance between the second radiating arm 123 and the feeding point 14 can be set to be greater than or equal to 2mm and less than or equal to 30mm, and specifically can be set to 2mm, 4mm, 5mm, 8mm, 10mm, 12mm, 14mm, 15mm, 18mm, 20mm, 22mm, 24mm, 25mm, 28mm, 30mm, etc.
  • the routing length of the second radiating arm 123 can be set to be approximately equal to a quarter wavelength of the center frequency point of the preset frequency band. ), so that the center frequency point generated by the second radiation arm 123 is located within the center frequency point range of the antenna body 10, so as to ensure that the radiation hot spots of the antenna body 10 can be dispersed, and the current density of the antenna body 10 can be effectively reduced, thereby The SAR value of the antenna body 10 is reduced.
  • the routing length of the second radiation arm 123 can be set to be less than or equal to a quarter wavelength of the center frequency of the preset frequency band, so as to avoid the second radiation arm 123 from walking.
  • the line is limited by the actual antenna attachment structure and affects the resonant frequency band.
  • the working frequency band of the antenna device 100 may be the WCDMA1900 frequency band (2100 MHz), and the length of the line of the second radiation arm 123 may be about 15 mm.
  • the extension directions of the first radiation support arm 121 and the second radiation support arm 123 are not limited.
  • the end of the first radiation support arm 121 and the end of the second radiation support arm 123 It can be extended in the same direction, and after extending corresponding lengths and bending correspondingly, corresponding types of antennas are formed.
  • the type can be selected and set according to a specific application scenario, for example, a G-type antenna can be selected.
  • the end of the first radiation arm 121 and the end of the second radiation arm 123 may extend in different directions, for example, the second radiation arm 123 is substantially perpendicular to the first radiation arm 121 , or A predetermined angle (eg, an acute angle) is formed between the second radiation support arm 123 and the first radiation support arm 121 , so that the second radiation support arm 123 can more effectively disperse the radiation hot spots of the antenna body 10 .
  • a predetermined angle eg, an acute angle
  • the second radiation support arm 123 may include a first radiation portion 1231 , a second radiation portion 1233 and a third radiation portion 1235 .
  • the first radiating part 1231 and the second radiating part 1233 are respectively connected to the first radiating support arm 121 , the first radiating part 1231 and the second radiating part 1233 are spaced apart from each other, and the third radiating part 1235 is connected to the first radiating part 1231 and the between the second radiation parts 1233 and spaced apart from the first radiation support arm 121 . Therefore, the structure of the second radiating arm 123 and the part of the first radiating arm 121 can jointly form a substantially annular drainage loop, which is beneficial to divert the current of the antenna body 10 .
  • the annular drainage loop may partially overlap with the high-current region, so as to divert the current in the high-current region.
  • the first radiating part 1231 , the second radiating part 1233 , the third radiating part 1235 and the first radiating arm 121 together enclose the shunt area 120 , and the shunt area 120 and the high current area at least partially overlap.
  • the shunt area 120 may be an area jointly surrounded by the first radiation part 1231 , the second radiation part 1233 , the third radiation part 1235 and the first radiation support arm 121 , which may be surrounded by the first radiation part 1231 , the second radiation part 1233 , the The three radiating parts 1235 and the outer contour boundaries of the first radiating arm 121 are defined.
  • the shunt region 120 and the high current region at least partially overlap can be understood as the shunt region can completely or partially cover the high current region, or, the high current region formed by the excitation current on the radiator 12 is located in the first Part of the structure of the radiator 121 or/and at least part of the structure of the second radiator 123 .
  • the extending direction of the first radiation portion 1231 relative to the first radiation support arm 121 is substantially perpendicular to the extension direction of the end of the first radiation support arm 121, and the second radiation portion 1233 is relative to the first radiation support arm 121.
  • the extension direction of the arm 121 is substantially perpendicular to the extension direction of the end of the first radiation support arm 121 , that is, the extension direction of the first radiation portion 1231 is substantially the same as the extension direction of the second radiation portion 1233 .
  • the first radiating part 1231 is farther from the feeding point 14 than the second radiating part 1233 , and a predetermined distance is reserved between the first radiating part 1231 and the end of the first radiating arm 121 to ensure the radiator 12 . Resonant radiation efficiency.
  • the distance between the first radiation portion 1231 and the end of the first radiation support arm 121 may be greater than or equal to 3 mm and less than or equal to 10 mm.
  • the first radiation portion 1231 and the first radiation portion may be set according to actual needs.
  • the connection between the second radiation support arm 123 and the first radiation support arm 121 is located in the high current region, so that the second radiation support arm 123 and the first radiation support arm 121 can shunt the current in the high current region.
  • the two current sub-intensity points of the radiator 12 are located on the first radiation support arm 121 and the third radiation part 1235 respectively. Since the third radiation part 1235 is spaced from the first radiation support arm 121, the radiator The two current sub-strong points of 12 are also spaced apart, so the SAR hot spots of the antenna device 100 are approximately two scattered SAR sub-hot spots, and the overall SAR value is relatively weak.
  • FIG. 3 is a schematic diagram showing the simulation of the near-field electric field distribution of a conventional antenna and the antenna device 100 provided by some embodiments of the present application, which indicates that when the resonant frequency of the antenna device 100 is 3.18GHZ, the radiation radiated The electric field strength and the corresponding SAR peak value, where the dotted line range A and dotted line range B show areas with strong electric field strength. In the dotted line range A and dotted line range B, the darker the color, the stronger the electric field strength and the lighter the color. Indicates that the electric field strength is stronger or weaker. As shown in Fig. 3 (a), in the structure of the traditional radiator, it does not have multiple radiating arms.
  • the extreme value of the electric field intensity and the electric field distribution range are obviously larger,
  • the corresponding peak SAR value is 6.38139W/kg; while (b) in Figure 3 shows that in the structure of the radiator provided by this application, it includes at least two radiating arms, which are in the dotted line range B at this time.
  • the extreme value of the electric field intensity and the distribution range of the electric field are relatively small, and the corresponding peak value of the SAR value is 4.16524W/kg, which is 34% lower than that of the common radiator antenna structure. It can be seen that the antenna device 100 provided by the embodiment of the present application has a lower SAR value.
  • the antenna device 100 may further include a matching circuit module 50, a matching circuit Module 50 is connected between feed 30 and feed point 14 .
  • the matching circuit module 50 is used to assist the tuning of the antenna body 10. By adjusting the impedance of each frequency band through the matching circuit module 50, the frequency band can have a better matching output, which can avoid the resonant frequency of the antenna device 100 from shifting, thereby ensuring that the antenna device 100 has higher radiation performance.
  • the matching circuit 30 may specifically include a PI-type matching circuit, a T-type matching circuit, or the like.
  • FIG. 5 shows a schematic diagram of the radiation efficiency of a conventional antenna and the antenna device 100 provided by some embodiments of the present application.
  • the antenna efficiency of the antenna device 100 provided in the example does not change greatly. Therefore, by adding two radiating arms, the antenna device 100 can disperse the current intensity points of the radiator 12 and improve the electric field distribution of the antenna device 100, so that the maximum radiation intensity of the electric field is relatively low, and the average value of the overall radiation does not decrease. , the antenna device 100 still has high radiation efficiency.
  • the number of the second radiation arms 123 is not limited. Referring to FIG. 6 , in some embodiments, the number of the second radiation arms 123 may be one or more.
  • the plurality of second radiation arms 123 are connected in parallel with the first radiation arms 123 to form the above-mentioned common end 125, that is, the plurality of second radiation arms 123 are connected from the common The terminal 125 is led out, so as to realize the shunting effect on the current of the radiator 12 .
  • the extending directions of the two second radiating arms 123 are opposite to rationally utilize the space of the antenna device 100 and facilitate the tuning of the antenna device 100 .
  • one of the two second radiating arms 123 is closer to the feeding point 14 than the other, which is beneficial to disperse the current intensity points at the feeding point 14, thereby improving the antenna.
  • the near-field radiation condition of the device 100 ensures that the antenna device 100 has a lower SAR value.
  • the shape of the second radiation support arm 123 is not limited.
  • the shape of the second radiation support arm 123 may be the frame shape, straight bar shape, etc. provided above, or arc-shaped or curved.
  • the second radiation arm 123 may be a substantially arc-shaped sheet structure, which may include a body 1237 , a first end 1238 and a second end 1239 .
  • the first end 1238 and the second end 1239 are located at opposite ends of the body 1237, respectively, and the first end 1238 and the second end 1239 are respectively connected to the first radiation support arm 121, so that there is a space between the body 1237 and the first radiation support arm 121. scheduled gap.
  • the structure of the second radiation support arm 123 and the partial structure of the first radiation support arm 121 can jointly form a substantially annular drainage loop, which is beneficial to divert the current of the antenna body 10 .
  • the annular drainage loop may partially overlap with the high-current region, so as to divert the current in the high-current region.
  • the body 1237 , the first end 1238 , the second end 1239 and the first radiation arm 121 together enclose the shunt area 120 , and the shunt area 120 and the high current area at least partially overlap.
  • the shunt area 120 may be an area jointly surrounded by the body 1237 , the first end 1238 , the second end 1239 and the first radiation arm 121 , which may be surrounded by the body 1237 , the first end 1238 , the second end 1239 and the first radiation arm
  • the outer contour boundary of 121 is delimited.
  • the maximum gap width between the first radiation support arm 121 can be set to be greater than or equal to 0.5mm and less than or equal to 3.0mm, and specifically can be set to 0.5mm, 0.8mm, 1.0mm, 1.2mm, 1.4mm, 1.5mm, 1.8mm , 2.0mm, 2.2mm, 2.4mm, 2.5mm, 2.8mm, 3.0mm and so on.
  • first end 1238 is farther from the feeding point 14 than the second end 1239 , and a predetermined distance is reserved between the first end 1238 and the end of the first radiation arm 121 to ensure the radiator 12
  • the resonance radiation efficiency is high.
  • the distance between the first end 1238 and the end of the first radiation arm 121 may be greater than or equal to 3 mm and less than or equal to 10 mm.
  • the antenna device 100 may further include a third radiation support arm 127 , and the third radiation support arm 127 is connected to the first radiation support arm 127 , which is substantially the same as the second radiation support arm 123 and is also It is used to shunt the current of the radiator 12 to ensure that the antenna device 100 has a lower SAR value. At least part of the structure of the third radiation arm 127 may also be located in the high current region, so as to shunt the current in the high current region.
  • the structure of the third radiation support arm 127 may be the same as the structure of any of the second radiation support arms 123 described above, which will not be repeated in this specification.
  • the distance between the third radiation arm 127 and the feed point 14 is smaller than the distance between the second radiation arm 123 and the feed point 14, and the third radiation arm 127 and the first radiation arm
  • the connection of 121 is located in the strong current area.
  • the third radiating arm 127 is set closer to the feeding point 14, which is beneficial to disperse the current strong point at the feeding point 14, so as to improve the electric field distribution of the radiator 12. , thereby effectively guaranteeing a lower SAR value.
  • the “distance” here should be understood as the shortest straight-line distance between the two components spaced apart from each other, for example, in this embodiment, the distance between the third radiation arm 127 and the feeding point 14
  • the distance can be understood as the distance between the connection point of the third radiation support arm 127 and the first radiation support arm 121 and the feed point 14, and the distance between the second radiation support arm 123 and the feed point 14 can be understood as the second The distance between the connection point of the radiation support arm 123 and the first radiation support arm 121 and the feeding point 14 .
  • the third radiation support arm 127 and the second radiation support arm 124 are respectively connected to opposite sides of the first radiation support arm 121 , and the third radiation support arm 127 protrudes from the first radiation support arm 121 The direction is opposite to the protruding direction of the second radiation support arm 127 relative to the first radiation support arm 121 , so as to further disperse the SAR hot spot of the antenna device 100 .
  • the third radiation support arm 127 may include a support arm body 1271 , a third end 1273 and a fourth end 1275 .
  • the third end 1273 and the fourth end 1275 are located at opposite ends of the arm body 1271 respectively, and are respectively connected to the first radiation arm 121, so that there is a predetermined gap between the arm body 1271 and the first radiation arm 121, which is defined by
  • the structure of the third radiating arm 127 and the part of the first radiating arm 121 can jointly form a substantially annular drainage loop, which is beneficial to divert the current of the antenna body 10 .
  • the arm body 1271 and the first radiation arm 121 can roughly form a structure around the current strong point, which is more conducive to improving the electric field distribution of the antenna device 100, wherein the arm body 1271 and the first radiation arm
  • the maximum gap width between the arms 121 can be greater than or equal to 0.5mm and less than or equal to 3.0mm, and can be specifically set to 0.5mm, 0.8mm, 1.0mm, 1.2mm, 1.4mm, 1.5mm, 1.8mm, 2.0mm, 2.2mm mm, 2.4mm, 2.5mm, 2.8mm, 3.0mm, etc.
  • the fourth end 1275 is closer to the feeding point 14 than the third end 1273 , and a predetermined distance is reserved between the third end 1273 and the end of the first radiation arm 121 to ensure the radiator 12 Resonant radiation efficiency.
  • the distance between the fourth end 1275 and the feeding point 14 is smaller than the distance between the second end 1239 and the feeding point 14.
  • the third radiating arm 127 is set closer to the feeding point 14, which is conducive to dispersion.
  • the current intensity point at the feeding point 14 can improve the electric field distribution of the radiator 12, thereby effectively ensuring a lower SAR value.
  • the distance between the fourth end 1275 and the feeding point 14 can be set to be greater than or equal to 2mm and less than or equal to 30mm, and specifically can be set to 2mm, 4mm, 5mm, 8mm, 10mm, 12mm, 14mm, 15mm, 18mm, 20mm, 22mm, 24mm, 25mm, 28mm, 30mm, etc.
  • the above-mentioned antenna device includes a radiator and a feeding point disposed on the radiator, the feeding point is used to feed the excitation current into the radiator, and the excitation current forms a strong current region on the radiator, wherein
  • the radiator includes a first radiation support arm and a second radiation support arm, the first radiation support arm and the second radiation support arm can be jointly used to generate resonance to receive/transmit signals, by setting two radiation support arms, and each radiation support arm. At least a part of the structure of the support arm is located in the strong current area, which can divert the current of the radiator, improve the electric field distribution of the antenna device, make the maximum radiation intensity of the electric field relatively low, and the antenna device can have higher radiation efficiency.
  • an embodiment of the present application further provides an electronic device 400 , and the electronic device 400 may be, but is not limited to, an electronic device such as a mobile phone, a tablet computer, and a smart watch.
  • the electronic device 400 of the present embodiment will be described by taking a mobile phone as an example.
  • the electronic device 400 includes a casing 1001 , a display screen 1003 and an antenna device 1004 disposed on the casing 1001 .
  • the terms “upper”, “lower”, “front”, “rear”, “left”, “right”, “inside”, etc. indicate orientations or positional relationships based on the accompanying drawings The orientation or positional relationship shown is only to simplify the description for the convenience of describing the present application, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a reference to the present application. limits.
  • the display screen 1003 generally includes a display panel, and may also include a circuit or the like for responding to a touch operation on the display panel.
  • the display panel may be a liquid crystal display panel (Liquid Crystal Display, LCD), and in some embodiments, the display panel may be a touch display panel at the same time.
  • LCD Liquid Crystal Display
  • reference to the terms "one embodiment,” “some embodiments,” or “other embodiments,” or the like, means that a particular feature, structure, material, or characteristic described in connection with that embodiment or example is included in the in at least one embodiment or example of the present application. In this specification, schematic representations of terms are not necessarily directed to the same embodiment or example.
  • the casing 1001 includes a rear casing 1010 and a middle frame 1011 , and the rear casing 1010 and the display screen 1003 are respectively disposed on opposite sides of the middle frame 1011 .
  • the middle frame 1011 can be an integrally formed structure, which can be structurally divided into a carrying portion 1012 and a frame 1013 surrounding the carrying portion 1012 .
  • “bearing part” and “frame” are only named and divided for the convenience of description, and the diagonal lines filled with the structure in the figure are for identification only, and do not represent the actual structure of the two. There is no obvious dividing line, and two or more components may be assembled together. The naming of "bearing part” and "frame” should not limit the structure of the middle frame 1011 .
  • the carrying portion 1012 is used to carry a part of the display screen 1003 , and can also be used to carry or install electronic components of the electronic device 200 such as the motherboard 1005 , the battery 1006 , the sensor module 1007 , etc.
  • the frame 1013 is connected to the periphery of the carrying portion 1012 . Further, the frame 1013 is disposed around the outer periphery of the carrying portion 1012 and protrudes relative to the surface of the carrying portion 1012, so that the two together form a space for accommodating electronic components.
  • the display screen 1013 is covered on the frame 1013 , and the frame 1013 , the rear case 1010 and the display screen 1003 together form the appearance surface of the electronic device 400 .
  • the antenna apparatus 1004 may be any of the antenna apparatuses 100 provided in the above embodiments, or may have any one or more features of the above antenna apparatus 100 in combination. The embodiments are not repeated here.
  • the antenna device 1004 is integrated in the casing 1001.
  • the antenna device 1004 may be disposed in the middle frame 1011 or in the rear casing 1010, which is not limited in this specification.
  • the antenna device 1004 of this embodiment may include an antenna body 10 and a feed 30 connected to the antenna body 10 , and the antenna body 10 may include a radiator 12 , a feeding point 14 and a grounding point 16 ,
  • the radiator 12 may include a first radiation support arm 121 and a second radiation support arm 123 .
  • the radiator 12 is disposed in the middle frame, the feed 30 can be connected to the main board 1005 , and the grounding point 16 can be connected to at least one of the main board 1005 , the bearing portion 1012 , and the rear case 1010 .
  • the frame 1013 is made of metal, and the antenna device 1004 is integrated in the frame 1013 .
  • the frame 1013 is provided with a slot 1014, the slot 1014 communicates with the outside world and divides the frame 1013 into two parts, the antenna device 1004 is integrated in one part of the frame 1013, and the end of the first radiation arm 121 is located in the slot On one side of 1014 , the second radiation support arm 123 is connected to the side of the first radiation support arm 121 facing the bearing portion 1012 .
  • using the metal frame 1013 as a part of the radiator of the antenna device 1004 is beneficial to save the space in the electronic device 400, and also provides a larger clearance area for the antenna device 1004, which is beneficial to ensure higher radiation efficiency.
  • a part of the frame 1013 serving as the radiator 12 is provided with a gap between the carrier part 1013 and the gap is communicated with the gap 1014 , so that the gap between the first radiation support arm 121 of the radiator 12 and the carrier part 1012 is formed. They are spaced apart from each other to prevent the bearing portion 1012 from affecting the resonance of the radiator 12 .
  • a non-shielding body (not shown in the figure) may be provided in the slot 1014, and the non-shielding body is made of non-metal (such as resin, etc.), which has the characteristic of passing electromagnetic wave signals, so as to allow the antenna device 1004 to perform signal transmission .
  • the outer surface of the non-shielding body is flush with the outer surface of the frame 1013 to ensure the integrity of the appearance of the electronic device 400 .
  • the electronic device 400 may further include a button 1009 , which is used as an input device of the electronic device 400 to receive user operations to enable the electronic device 400 to execute corresponding instructions.
  • the button 1009 is a side button, which is movably disposed on the frame 1013 and is electrically connected to the main board 1005 .
  • the second radiation support arm 123 can surround the button hole opened on the frame 1013, that is, the second radiation support arm 123 and the first radiation support arm 121.
  • the interval 129 between can form a key hole, and the key 1009 is movably accommodated between the second radiation support arm 123 and the first radiation support arm 121, thereby realizing the multiplexing of the key hole and the necessary gap of the antenna device 1004,
  • the manufacturing process flow and the structure of the frame 1013 can be simplified.
  • the main board 1005 is disposed on the bearing portion 1012, and there is a certain distance between the edge of the main board 1005 and the first radiation support arm 121 to ensure that the antenna device 1004 has a large clearance area, and the main board 1005
  • the upper current concentration locations and the upper current concentration locations on the antenna device 1004 are dispersed as much as possible, which can also reduce the SAR value of the antenna device 1004 to a certain extent.
  • the distance between the main board 1005 and the first radiation support arm 121 may be 1-5 mm, for example, the distance between the main board 1005 and the first radiation support arm 121 may be 1 mm, 1.5 mm, 2 mm, 2.5 mm mm, 3mm, 3.5mm, 4mm, 4.5mm, 5mm, etc.
  • the frame 1013 may be made of non-metal, and the antenna device 10 may be integrated into the frame 1013 .
  • the frame 1013 can be made of plastic, resin or other materials, and the radiator 12 of the antenna device 10 can be integrated into the frame 1013 by insert molding (for example, the radiator 12 can be embedded in the frame 1013 as a whole), or can be attached to the frame 1013. It is integrated in the frame 1013 (eg, the radiator 12 is attached to the surface of the frame 1013 ).
  • the antenna body 10 of the antenna device 1004 is substantially in the shape of a sheet, which is disposed on the frame 1013 and is substantially perpendicular to the plane where the display screen 1003 is located.
  • the first radiation support arm 121 is disposed on the side of the frame 1013 close to the display screen 1003, and the second radiation support arm 121 is connected to the side of the first radiation support arm 121 away from the display screen 1003, so that the current on the radiator 12 can be drained to a direction relatively far from the display screen 1003 . Further, the second radiation support arm 121 may protrude from the first radiation support arm 121 in a direction away from the display screen 1003 .
  • this embodiment diverts the current on the radiator 12 to a relatively far distance
  • the direction of the display screen 1003 that is, dispersing the SAR hot spots of the antenna device 1004 to a direction relatively far from the display screen 1003 can further reduce the radiation effect of the antenna device 1004 on the user.
  • the electronic device 400 may further include a key 1009 , which serves as an input device of the electronic device 400 and is used to receive user operations to enable the electronic device 400 to execute corresponding instructions.
  • the button 1009 is a side button, which is movably disposed on the frame 1013 and is electrically connected to the main board 1005 .
  • the frame 1013 may also have a key hole 1008 , and the key 1009 is accommodated in the key hole 1008 .
  • the position of the interval between the second radiating arm 123 and the first radiating arm 121 roughly corresponds to the position of the button hole 1008, so that the structure of the frame 1013 itself can be fully utilized to layout the antenna
  • the device 1004 is beneficial to reduce the thickness of the frame 1013 .
  • the first radiation support arm 121 may be disposed on one side of the key hole, the second radiation support arm 123 may at least partially surround the outer periphery of the key hole 1008, and the second radiation support arm 123 and the first radiation support arm 121 may Together, they surround the outer circumference of the key hole 1008 , so that the position of the interval between the second radiation support arm 123 and the first radiation support arm 121 approximately coincides with the position of the key hole 1008 .
  • the first radiation support arm and the second radiation support arm can be jointly used to generate resonance
  • the current concentration of the radiator of the antenna device can be balanced to a certain extent, thereby reducing the overall current peak value of the radiator and reducing the SAR value of the antenna device.
  • the first radiating arm and the second radiating arm can divide the current of the radiator, so there is no single point of extremely strong current on the radiator, but is roughly divided into two sub-strong points of current, Further, the original SAR single hot spot is roughly dispersed to the first radiation arm and the second radiation arm, forming a weaker SAR multi-hot spot, so that the overall SAR value of the antenna device is weaker. Since two radiating arms are arranged in parallel with each other, the overall current of the antenna device will not be affected, and the radiation performance of the antenna device can be guaranteed not to be weakened. Therefore, the antenna device provided by the embodiment of the present application can ensure strong antenna radiation performance and has a lower SAR value.
  • the embodiments of the present application can also provide a casing of an electronic device and an electronic device having the casing, the electronic device including the casing and a display disposed in the casing Screen.
  • the casing includes a frame and a bearing part connected to the frame, the frame is at least partially made of metal, and is generally arranged on the edge of the bearing part.
  • the frame is provided with a slot, and the slot divides the frame into a ground part and an antenna part.
  • the antenna part is made of metal.
  • the antenna part is provided with a feed point for feeding in electrical signals and a ground point for current return.
  • the feeding point is arranged between the slot and the grounding point, and the feeding point is used to feed the excitation current into the antenna part, and the excitation current forms a strong current region on the antenna part.
  • the portion of the antenna portion from the feeding point to the slot is configured to be the radiation end portion of the antenna of the electronic device, and the portion of the antenna portion from the feeding point to the ground point is configured to be the ground end portion of the antenna of the electronic device .
  • the radiation end is provided with a button hole for accommodating the button of the electronic device, and the button hole divides the radiation end into a first radiation support arm and a second radiation support arm in parallel, at least part of the structure of the first radiation support arm and the second radiation support arm.
  • At least part of the structure of the arm is located in the high current region, wherein the first radiation support arm can be arranged on one side of the key hole, and the second radiation support arm at least partially surrounds a part of the key hole.
  • the antenna part transmits or/and receives a signal
  • the current flowing through the radiation end is shunted by the first radiation arm and the second radiation arm. Therefore, there is no single point of extremely strong current on the radiation end, but is roughly divided into two secondary current points, so that the original single point of SAR is roughly dispersed to the first radiation arm and the second radiation arm
  • weak SAR multi-hot spots are formed, so that the overall SAR value of the antenna part is weak.
  • the antenna portion of the housing of the electronic device provided in this embodiment may be any antenna device provided in the above embodiments, or may have any one or more combinations of the above antenna devices.
  • the provided electronic device may be any of the electronic devices provided in the above embodiments, or may have any one or a combination of features of the above electronic devices. For relevant features, reference may be made to the foregoing embodiments, which will not be repeated in this embodiment.

Landscapes

  • Support Of Aerials (AREA)

Abstract

本申请涉及一种天线装置、壳体以及电子设备。天线装置包括辐射体以及设置于辐射体的馈电点,馈电点用于将激励电流馈入至辐射体,激励电流在辐射体上形成有强电流区域。辐射体包括第一辐射支臂及第二辐射支臂,第一辐射支臂与第二辐射支臂并联形成公共端,第一辐射支臂的至少部分结构、第二辐射支臂的至少部分结构位于强电流区域内。馈电点设置于公共端,天线装置在发送或/及接受信号时,流经馈电点的电流在辐射体内被第一辐射支臂以及第二辐射支臂分流。上述的天线装置,能够保证较强的天线辐射性能并拥有较低的SAR值。

Description

天线装置、壳体及电子设备
相关申请的交叉引用
本申请要求于2020年11月30日提交中国专利局的申请号为202011382268.8、名称为“天线装置、壳体 及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种天线装置壳体及电子设备。
背景技术
随着科技的发展进步,通信技术得到了飞速发展和长足的进步,而随着通信技术的提高,智能电子产品的普及提高到了一个前所未有的高度,越来越多的智能终端或电子设备成为人们生活中不可或缺的一部分,如智能手机、智能手环、智能手表、智能电视和电脑等。目前电子设备中通常设置通信天线,以满足用户的通信需求。随着人们对通信效率和种类的需求越来越高,目前电子设备中的天线的功率也越来越大,导致天线对人体的辐射作用也更大,这将对人体产生不利影响。
发明内容
本申请实施例提供一种天线装置、壳体以及电子设备。
第一方面,本申请实施例提供一种天线装置,包括辐射体以及设置于辐射体的馈电点,馈电点用于将激励电流馈入至辐射体,激励电流在辐射体上形成有强电流区域。辐射体包括第一辐射支臂及第二辐射支臂,第一辐射支臂与第二辐射支臂并联形成公共端,第一辐射支臂的至少部分结构、第二辐射支臂的至少部分结构位于强电流区域内。馈电点设置于公共端,天线装置在发送或/及接受信号时,流经馈电点的电流在辐射体内被第一辐射支臂以及第二辐射支臂分流。
第二方面,本申请实施例提供一种电子设备,包括显示屏以及上述的天线装置。
第三方面,本申请实施例提供一种壳体,应用于能够进行无线通信的电子设备,壳体包括边框和连接于边框的承载部;边框至少部分由金属制成。边框设有缝隙,缝隙将边框分为接地部和天线部;天线部设有馈电点,馈电点设置于缝隙和接地部之间,馈电点用于将激励电流馈入至天线部,激励电流在天线部上形成有强电流区域。天线部上自馈电点到缝隙之间的部分被配置成为电子设备的天线的辐射端部,辐射端部开设有用于收容电子设备的按键的按键孔,按键孔将辐射端部分为并联的第一辐射支臂和第二辐射支臂,第一辐射支臂的至少部分结构、第二辐射支臂的至少部分结构位于强电流区域内,天线部在发送或/及接受信号时,辐射端部的电流被第一辐射支臂以及第二辐射支臂分流。
第四方面,本申请实施例提供一种电子设备,主板、按键以及上述的壳体,主板设置于承载部,按键容置于按键孔,并与主板电连接。
本申请实施例提供的天线装置及电子设备中,天线装置包括辐射体以及设置于辐射体的馈电点,馈电点用于将激励电流馈入至辐射体,激励电流在辐射体上形成有强电流区域,其中辐射体包括第一辐射支臂以及第二辐射支臂,第一辐射支臂以及第二辐射支臂可以共同用于产生谐振以接收/发射信号,通过设置两个辐射支臂,且每个辐射支臂至少有一部分结构位于强电流区域内,能够在一定程度上均衡天线装置的辐射体的电流集中状况,从而减辐射体整体的电流峰值,降低天线装置的SAR值。具体而言,第一辐射支臂的至少部分结构、第二辐射支臂的至少部分结构位于强电流区域内,第一辐射支臂以及第二辐射支臂可以将辐射体的电流进行分流,因而辐射体上不会存在电流极强单点,而是被大概分流为两个电流次强点, 进而使原本的SAR单热点被大致分散至第一辐射支臂以及第二辐射支臂上,形成较弱的SAR多热点,使天线装置总体SAR值较弱,由于设置两个彼此并联的辐射支臂,不会影响天线装置的整体电流,能保证天线装置的辐射性能不被削弱,因此,本申请实施例提供的天线装置,能够保证较强的天线辐射性能并拥有较低的SAR值。
附图说明
为了更清楚地说明申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的天线装置的示意图。
图2是本申请实施例提供的天线装置的一种结构的示意图。
图3是图2所示天线装置的近场电场分布的仿真示意图。
图4是本申请实施例提供的天线装置的另一种结构的示意图。
图5是图4所示天线装置的辐射效率示意图。
图6是本申请实施例提供的天线装置的又一种结构的示意图。
图7是本申请实施例提供的天线装置的再一种结构的示意图。
图8是本申请实施例提供的电子设备的示意图。
图9是图7所示电子设备的内部结构示意图。
图10是图7所示电子设备的局部结构分解示意图。
图11是图7所示电子设备的另一种结构局部结构分解示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
作为在本申请实施例中使用的“电子设备”包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(PSTN)、数字用户线路(DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”、“无线终端”、“电子装置”以及/或“电子设备”。电子设备的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器、游戏机或包括无线电电话收发器的其它电子装置。
电磁波能量吸收比(SAR,Specific Absorption Rate)通常称为吸收比值或吸收比率,是指电子设备电磁波能量吸收比值。具体含义为:在外电磁场的作用下,人体内将产生感应电磁场,由于人体各器官均为有耗介质,因此体内的电磁场将产生感应电流,导致人体能吸收和耗散电磁能量,生物剂量学中常用SAR来表征这一物理过程。SAR的意义为单位质量的人体组织所吸收或消耗的电磁功率,单位为W/kg,或者mw/g。表达公式为:SAR=σ|Ei| 2/2ρ,其中:
Ei为细胞组织中的电场强度有效值,以V/m表示;
σ为人体组织的电导率,以S/m表示;
ρ为人体组织密度,以kg/m 3表示。
人体组织中的SAR与该组织中的电场强度的平方成正比,并且由入射的电磁场的参数(如频率,强度,方向和电磁场的源)、目标物的相对位置、暴露的人体的典型组织的遗传特性、地面影响以及暴露的环境影响来确定。目前很多国家和地区都已经建立了人体暴露于电磁波环境下的安全标准,如国际通用的标准中,欧洲标准是每10克小于2.0w/kg,美国标准是每克小于1.6mw/g。
由于天线的总辐射功率(TRP,Total Radio Power)越强,由其引起的SAR值越大,SAR与TRP之间形成相互制约的关系。这一相互制约的关系成了目前电子设备在保证高要求的发射功率条件下有低SAR值的难点。目前常用的降低SAR值的方法主要有以下几种:(1)直接降低天线的发射功率以降低人体对电磁波的吸收,但是降低天线的发射功率很难保证TRP的要求,TRP过低,通信质量也较低,通常无法满足市场上日益提高的通信要求;(2)将天线在电子设备中的位置设置在远离用户头部方向以降低人体对电磁波的吸收,但是目前电子设备的发展趋势是厚度越来越薄,导致天线空间却越来越小,很难保证与天线与用户头部的距离;(3)在天线附近贴附吸波材料以降低人体对电磁波的吸收,但是由于电子设备结构设计所限天线附近的空间极小,难以贴附波材料,且吸波材料的成本也较高。可见,截止目前,仍没有一种较好的方案可以既能降低天线的SAR,又能可靠的保证其TRP。
因此,针对上述问题,本申请发明人经过大量、反复的研究后发现,目前的电子设备的天线对应产生的SAR值较大,主要是因为激励电流会在辐射体上会形成强电流区域,相应在电子设备的主板上的电流就会产生电流峰值,主板上的电流峰值和天线辐射体上的电流峰值导致天线对应的SAR值较大。对此,发明人提出本申请的天线装置以及具有该天线装置的电子设备。该天线装置包括辐射体以及设置于辐射体的馈电点,馈电点用于将激励电流馈入至辐射体,激励电流在辐射体上形成有强电流区域。辐射体包括第一辐射支臂及第二辐射支臂,第一辐射支臂与第二辐射支臂并联形成公共端,第一辐射支臂的至少部分结构、第二辐射支臂的至少部分结构位于强电流区域。馈电点设置于公共端,天线装置在发送或/及接受信号时,流经馈电点的电流在辐射体内被第一辐射支臂以及第二辐射支臂分流。上述的天线装置包括辐射体以及设置于辐射体的馈电点,馈电点用于将激励电流馈入至辐射体,激励电流在辐射体上形成有强电流区域,其中辐射体包括第一辐射支臂以及第二辐射支臂,第一辐射支臂以及第二辐射支臂可以共同用于产生谐振以接收/发射信号,通过设置两个辐射支臂,且每个辐射支臂至少有一部分结构位于强电流区域内,能够在一定程度上均衡天线装置的辐射体的电流集中状况,从而减辐射体整体的电流峰值,降低天线装置的SAR值。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
请参阅图1,本申请实施方式提供一种天线装置100,其包括天线本体10以及连接于天线本体10的馈源30。天线本体10用于接收以及发射信号,馈源30用于向天线本体10馈入电流信号,使天线本体10能够发生谐振以发射信号。馈源30适于连接至电子设备的主板并可以受控于电子设备的主板。
在本实施例中,天线本体10包括辐射体12以及馈电点14。馈电点14用于将激励电流馈入至辐射体12,激励电流在辐射体上形成有强电流区域,在本说明书中,“强电流区域”可以理解为在该区域中电流密度要大于其周边的电流密度。例如,天线本体10在发射信号时,电流由馈源30经由馈电点14进入辐射体12,会在馈电点14处附近形成强电流区域,强电流区域包括电流较强点(电流密度较大的点),因此辐射体12的馈电点14处会存在SAR热点。在一些实施例中,天线本体10还可以包括设置于辐射体12的接地点16,天线本体10在接收信号时,辐射体12将电磁波信号转换为电流,电流经由接地点16回流,辐射体12的接地点16处附近也会形成强电流区域,因此接地点16处也会存在SAR热点。这些SAR热点的存在,尤其是当SAR热点位于靠近用户的位置时,会对使用天线装置的用户的身体造成不利影响。
为了削弱辐射体12的SAR热点,本申请实施例的辐射体12包括第一辐射支臂121以及第二辐射支臂123,第一辐射支臂121以及第二辐射支臂123并联形成公共端125,馈电点14以及接地点16设于公共端125。第一辐射支臂121的至少部分结构、第二辐射支臂123的至少部分结构位于强电流区域内,第一辐射支臂121以及第二辐射支臂123可以共同用于产生谐振以接收/发射信号,通过设置两个辐射支臂,可以在一定程度上均衡天线装置100的辐射体的电流集中状况,从而减辐射体12整体的电流峰值,降低天线装置100的SAR值。具体而言,第一辐射支臂121的至少部分结构、第二辐射支臂123的至少部分结构位于强电流区域内,第一辐射支臂121以及第二辐射支臂123可以将辐射体12的电流进行分流,因而辐射体12上不会存在电流极强单点,而是被大概分流为两个电流次强点,进而使原本的SAR单热点被大致分散至第一辐射支臂121以及第二辐射支臂123上,形成较弱的SAR多热点,使天线装置100总体SAR值较弱,由于设置两个彼此并联的辐射支臂,不会影响天线装置100的整体电流,能保证天线装置100的辐射性能不被削弱,因此,本申请实施例提供的天线装置100,能够保证较强的天线辐射性能并拥有较低的SAR值。
在本申请实施例中,第二辐射支臂123与馈电点14之间的距离、第二辐射支臂123的走线长度可以 影响谐振频点的位置,因此可根据具体的应用场景以及具体需要调谐的频段具体设置第二辐射支臂123和馈电点14之间的距离,或/及调节第二辐射支臂的长度。例如,第二辐射支臂123与馈电点14之间的距离可以设置为大于等于2mm且小于等于30mm,具体可设置为2mm、4mm、5mm、8mm、10mm、12mm、14mm、15mm、18mm、20mm、22mm、24mm、25mm、28mm、30mm等等。第二辐射支臂123的走线长度可以设置为大致等于预设频段中心频点的四分之一波长,此处的预设频段应理解为具体需要调谐的频段(也即天线本体10所在频段),以使第二辐射支臂123产生的中心频点位于天线本体10的中心频点范围内,用于以保证能够分散天线本体10的辐射热点,能够有效降低天线本体10的电流密度,从而降低天线本体10的SAR值。
进一步地,在一些具体的实施例中,第二辐射支臂123的走线长度可以设置为小于或等于预设频段中心频点的四分之一波长,以避免第二辐射支臂123的走线被实际的天线贴附结构限制而影响谐振频段。在本申请实施例中,第二辐射支臂123的长度可以基于天线本体10的中心工作频率的波长来设置。具体地,波长和频率的关系是倒数关系,具体的计算公式是:波长(单位:米)=300/频率(单位:MHz)。当信号的中心频点为150MHz时,波长就是2米,150MHz左右的信号也被称为2米波,而430MHz的波长是0.7米,所以430MHz左右的信号又称为70厘米波。在一些具体的实施例中,天线装置100的工作频段可以为WCDMA1900频段(2100MHz),则第二辐射支臂123的走线长度可以大约为15mm。
在本申请实施例中,第一辐射支臂121和第二辐射支臂123的延伸方向不受限制,在一些实施例中,第一辐射支臂121的末端和第二辐射支臂123的末端可以沿着同一方向延伸,且在延伸对应的长度以及经相应的弯折后,形成对应类型的天线。本实施例中,该类型可根据具体的应用场景选择设置,例如可选择为G型天线等。在另一些实施例中,第一辐射支臂121的末端和第二辐射支臂123的末端可以沿着不同的方向延伸,如第二辐射支臂123大致垂直于第一辐射支臂121,或者第二辐射支臂123与第一辐射支臂121之间呈预定夹角(如锐角),使第二辐射支臂123能够更有效地分散天线本体10的辐射热点。
请参阅图2,在本实施例中,第二辐射支臂123可以包括第一辐射部1231、第二辐射部1233以及第三辐射部1235。第一辐射部1231、第二辐射部1233分别连接于第一辐射支臂121,且第一辐射部1231、第二辐射部1233彼此间隔设置,第三辐射部1235连接于第一辐射部1231与第二辐射部1233之间,并与第一辐射支臂121相间隔。由此,第二辐射支臂123的结构可以与第一辐射支臂121的部分共同形成大致环形的引流回路,利于对天线本体10的电流进行分流。该环形的引流回路可以与强电流区域部分重合,从而将强电流区域内的电流进行分流。具体而言,第一辐射部1231、第二辐射部1233、第三辐射部1235以及第一辐射支臂121共同围成分流区域120,分流区域120与强电流区域至少部分重合。分流区域120可以为第一辐射部1231、第二辐射部1233、第三辐射部1235以及第一辐射支臂121共同包围的区域,其可以由第一辐射部1231、第二辐射部1233、第三辐射部1235以及第一辐射支臂121的外侧轮廓边界界定。在说明书中,“分流区域120与强电流区域至少部分重合”可以理解为,分流区域可以完全覆盖或者部分覆盖强电流区域,或者,激励电流在辐射体12上所形成的强电流区域位于第一辐射体121的部分结构或/及第二辐射体123的至少部分结构上。
进一步地,在本实施例中,第一辐射部1231相对于第一辐射支臂121的延伸方向与第一辐射支臂121的末端延伸方向大致垂直,第二辐射部1233相对于第一辐射支臂121的延伸方向与第一辐射支臂121的末端延伸方向大致垂直,也即,第一辐射部1231的延伸方向与第二辐射部1233的延伸方向大致相同。第一辐射部1231相较于第二辐射部1233离馈电点14更远,且第一辐射部1231与第一辐射支臂121的末端之间预留预定的距离,以保证辐射体12的谐振辐射效率。第一辐射部1231与第一辐射支臂121的末端之间的距离可以大于等于3mm且小于等于10mm,当然,在其他的实施例中,可以根据实际需求设置第一辐射部1231与第一辐射支臂121的末端之间的距离,使第二辐射支臂123与第一辐射支臂121的连接处位于第一辐射支臂121的末端和馈电点14之间,以获取实际所需位置的谐振点。进一步地,第二辐射支臂123与第一辐射支臂121的连接处位于强电流区域内,以使第二辐射支臂123与第一辐射支臂121能够将强电流区域内的电流进行分流,保证二者改善天线装置100的电场分布的效果。在本实施例中,辐射体12的两个电流次强点分别位于第一辐射支臂121和第三辐射部1235上,由于第三辐射部1235与第一辐射支臂121相间隔,辐射体12的两个电流次强点也相间隔,则天线装置100的SAR热点为大概分散的两个SAR次热点,其总体SAR值较弱。
具体可以参考图3,图3示出了传统的天线和本申请一些实施例提供的天线装置100的近场电场分布 的仿真示意图,表示的是当天线装置100的谐振频率在3.18GHZ时辐射的电场强度以及对应的SAR峰值,其中虚线范围A和虚线范围B内所示为电场强度较强的区域,在该虚线范围A和虚线范围B中,颜色越深表示电场强度越强,颜色越浅表示电场强度越强弱。如图3中的(a)图显示,在传统的辐射体的结构中,其并不具备多个辐射支臂,此时在虚线范围A中,电场强度极值以及电场分布范围明显较大,其对应SAR值峰值为6.38139W/kg;而图3中的(b)图显示,在本申请所提供的辐射体的结构中,其至少包括两个辐射支臂,此时在虚线范围B中,电场强度极值以及电场分布范围相对较小,其对应SAR值峰值为4.16524W/kg,相较于普通的辐射体的天线结构,该SAR值峰值降低了34%。可见,本申请实施例提供的天线装置100具有较低的SAR值。
请参阅图4,在一些实施例中,为了更好地调节天线装置100各波段的阻抗,以降低多个辐射支臂对谐振频率的影响,天线装置100还可以包括匹配电路模块50,匹配电路模块50连接于馈源30和馈电点14之间。匹配电路模块50用于辅助天线本体10的调谐,通过匹配电路模块50调节各波段的阻抗,可使波段有更好的匹配输出,能够避免天线装置100的谐振频率发生偏移,从而保证天线装置100具有较高的辐射性能。匹配电路30具体可包括PI型匹配电路或T型匹配电路等。
具体可以参考图5,图5示出了传统的天线和本申请一些实施例提供的天线装置100的辐射效率示意图,从图中可看到,相较于具备传统辐射体的天线,本申请实施例提供的天线装置100天线效率并没有发生大的变化。所以天线装置100通过增加两个辐射支臂,能够分散辐射体12的电流强点,改善天线装置100的电场分布状况,使电场最大辐射强度相对较低的同时,整体辐射的平均值并没有降低,天线装置100仍具备较高的辐射效率。
在本申请实施例的天线装置100中,第二辐射支臂123的数量不受限制。请参阅图6,在一些实施例中,第二辐射支臂123的数量可以为一个或多个。当第二辐射支臂123为多个时,多个第二辐射支臂123与第一辐射支臂123并联,并形成上述的公共端125,也即,多个第二辐射支臂123从公共端125引出,以实现对辐射体12的电流的分流作用。在图2所示的实施例中,第二辐射支臂123为两个,两个第二辐射支臂123的延伸方向相反,以合理利用天线装置100的空间,并利于天线装置100调谐。进一步地,两个第二辐射支臂123的其中一个第二辐射支臂123相较于另一个更为靠近馈电点14,有利于将馈电点14处的电流强点分散,从而改善天线装置100的近场辐射状况,保证天线装置100具有较低的SAR值。
在本申请实施例的天线装置100中,第二辐射支臂123的形状不受限制,例如,第二辐射支臂123的形状可以为上文所提供的框状、直条状等,还可以为圆弧状或者曲线状。请参阅图7,在一些实施例中,第二辐射支臂123可以大致为弧形片状结构,其可以包括本体1237、第一端1238以及第二端1239。第一端1238和第二端1239分别位于本体1237的相对两端,第一端1238和第二端1239分别连接于第一辐射支臂121,使本体1237与第一辐射支臂121之间具有预定间隙。由此,第二辐射支臂123的结构可以与第一辐射支臂121的部分结构共同形成大致环形的引流回路,利于对天线本体10的电流进行分流。该环形的引流回路可以与强电流区域部分重合,从而将强电流区域内的电流进行分流。具体而言,本体1237、第一端1238、第二端1239以及第一辐射支臂121共同围成分流区域120,分流区域120与强电流区域至少部分重合。分流区域120可以为本体1237、第一端1238、第二端1239以及第一辐射支臂121共同包围的区域,其可以由本体1237、第一端1238、第二端1239以及第一辐射支臂121的外侧轮廓边界界定。
进一步地,本体1237与第一辐射支臂121之间具有预定间隙,可以使第二辐射支臂123大致形成环绕电流强点的结构,更有利于改善天线装置100的电场分布,其中,本体1237与第一辐射支臂121之间的最大间隙宽度可以设置为大于等于0.5mm且小于等于3.0mm,具体可设置为0.5mm、0.8mm、1.0mm、1.2mm、1.4mm、1.5mm、1.8mm、2.0mm、2.2mm、2.4mm、2.5mm、2.8mm、3.0mm等等。进一步地,第一端1238相较于第二端1239离馈电点14更远,且第一端1238与第一辐射支臂121的末端之间预留预定的距离,以保证辐射体12的谐振辐射效率较高。第一端1238与第一辐射支臂121的末端之间的距离可以大于等于3mm且小于等于10mm。
在图7所示的实施例中,天线装置100还可以包括第三辐射支臂127,第三辐射支臂127连接于第一辐射支臂127,其与第二辐射支臂123大致相同,也是用于将辐射体12的电流进行分流,以保证天线装置100具有较低的SAR值。第三辐射支臂127的至少部分结构也可以位于强电流区域内,以对强电流区域内的电流进行分流。第三辐射支臂127的结构可以与上述任意一种第二辐射支臂123的结构相同,本说明书不再赘述。在一些实施例中,第三辐射支臂127与馈电点14之间的距离小于第二辐射支臂123与馈电点 14之间的距离,第三辐射支臂127与第一辐射支臂121的连接处位于强电流区域内,如,将第三辐射支臂127设置于更接近馈电点14处,有利于分散馈电点14处的电流强点,以改善辐射体12的电场分布,进而有效保证较低的SAR值。应当理解的是,此处的“距离”应理解为相互间隔的两个部件之间的最短的直线距离,例如,在本实施例中,第三辐射支臂127与馈电点14之间的距离可以理解为第三辐射支臂127与第一辐射支臂121的连接点与馈电点14之间的距离,第二辐射支臂123与馈电点14之间的距离可以理解为第二辐射支臂123与第一辐射支臂121的连接点与馈电点14之间的距离。在本实施例中,第三辐射支臂127和第二辐射支臂124分别连接于第一辐射支臂121的相对两侧,第三辐射支臂127相对于第一辐射支臂121的凸伸方向与第二辐射支臂127相对于第一辐射支臂121的凸伸方向相反,以便于进一步分散天线装置100的SAR热点。
在本实施例中,第三辐射支臂127可以包括支臂本体1271、第三端1273以及第四端1275。第三端1273以及第四端1275分别位于支臂本体1271的相对两端,并分别连接于第一辐射支臂121,使支臂本体1271与第一辐射支臂121之间具有预定间隙,由此第三辐射支臂127的结构可以与第一辐射支臂121的部分共同形成大致环形的引流回路,利于对天线本体10的电流进行分流。同时,支臂本体1271与第一辐射支臂121之间具有预定间隙,可以大致形成环绕电流强点的结构,更有利于改善天线装置100的电场分布,其中,支臂本体1271与第一辐射支臂121之间的最大间隙宽度可以为大于等于0.5mm且小于等于3.0mm,具体可设置为0.5mm、0.8mm、1.0mm、1.2mm、1.4mm、1.5mm、1.8mm、2.0mm、2.2mm、2.4mm、2.5mm、2.8mm、3.0mm等等。
进一步地,第四端1275相较于第三端1273离馈电点14更近,且第三端1273与第一辐射支臂121的末端之间预留预定的距离,以保证辐射体12的谐振辐射效率。第四端1275与馈电点14之间的距离小于第二端1239与馈电点14之间的距离,如此,将第三辐射支臂127设置于更接近馈电点14处,有利于分散馈电点14处的电流强点,以改善辐射体12的电场分布,进而有效保证较低的SAR值。其中,第四端1275与馈电点14之间的距离可以设置为大于等于2mm且小于等于30mm,具体可设置为2mm、4mm、5mm、8mm、10mm、12mm、14mm、15mm、18mm、20mm、22mm、24mm、25mm、28mm、30mm等等。
本申请实施例提供的上述天线装置,包括辐射体以及设置于辐射体的馈电点,馈电点用于将激励电流馈入至辐射体,激励电流在辐射体上形成有强电流区域,其中辐射体包括第一辐射支臂以及第二辐射支臂,第一辐射支臂以及第二辐射支臂可以共同用于产生谐振以接收/发射信号,通过设置两个辐射支臂,且每个辐射支臂至少有一部分结构位于强电流区域内,能够对辐射体的电流进行分流,改善天线装置的电场分布状况,使电场最大辐射强度相对较低,并且天线装置能够具备较高的辐射效率。
请参阅图8,本申请实施例还提供一种电子设备400,电子设备400可以为但不限于为手机、平板电脑、智能手表等电子装置。本实施方式的电子设备400以手机为例进行说明。
电子设备400包括壳体1001以及设置于壳体1001上的显示屏1003和天线装置1004。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“里”等指示方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请而简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本申请的限制。
本实施例中,显示屏1003通常包括显示面板,也可包括用于响应对显示面板进行触控操作的电路等。显示面板可以为一个液晶显示面板(Liquid Crystal Display,LCD),在一些实施例中,显示面板可以同时为触摸显示屏。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”或“其他的实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
具体在本申请实施方式中,壳体1001包括后壳1010以及中框1011,后壳1010与显示屏1003分别设置于中框1011的相对两侧。
请参阅图9,中框1011可以为一体成型结构,其从结构上可以划分为承载部1012以及环绕于承载部1012的边框1013。应当理解的是,“承载部”与“边框”仅仅为便于表述而进行的命名划分,图中的结构填充 斜线条仅为区分而标识,并不代表二者的实际结构,二者之间可以不具备明显的分界线,也可以为分别为两个或更多的部件组装于一起,“承载部”与“边框”的命名不应对中框1011的结构造成限制。承载部1012用于承载显示屏1003的一部分结构,也可以用于承载或安装电子设备200的电子部件如主板1005、电池1006、传感器模组1007等,边框1013连接于承载部1012的周缘。进一步地,边框1013环绕于承载部1012的外周设置,并相对于承载部1012的表面凸伸,使二者共同形成用于容纳电子部件的空间。在本实施例中,显示屏1013盖设于边框1013,边框1013、后壳1010以及显示屏1003共同形成电子设备400的外观表面。
在本实施例中,天线装置1004可以为以上实施例提供的任一种天线装置100,或者可以具备以上天线装置100的任意一个或多个特征的结合,相关的特征可以参考前述实施例,本实施例不再赘述。天线装置1004集成于壳体1001中,例如,天线装置1004可以设置于中框1011,也可以设置于后壳1010,本说明书对此不作限制。与前述的天线装置100大致相同,本实施例的天线装置1004可以包括天线本体10以及连接于天线本体10的馈源30,天线本体10可以包括辐射体12、馈电点14以及接地点16,其中,辐射体12可以包括第一辐射支臂121以及第二辐射支臂123。辐射体12设置于中框,馈源30可以连接于主板1005,接地点16可以连接于主板1005、承载部1012、后壳1010中的至少一个。
进一步地,在图9所示的实施例中,边框1013由金属制成,天线装置1004集成于边框1013。在本实施例中,边框1013设有缝隙1014,缝隙1014与外界连通并将边框1013划分为两个部分,天线装置1004集成于边框1013的其中一部分,其中第一辐射支臂121的末端位于缝隙1014的一侧,第二辐射支臂123则连接于第一辐射支臂121朝向承载部1012的一侧。如此,利用金属制的边框1013作为天线装置1004的辐射体的一部分,有利于节省电子设备400内的空间,也为天线装置1004提供更大的净空区,有利于保证较高的辐射效率。
在本实施例中,边框1013中作为辐射体12的部分,与承载部1013之间设有间隙,该间隙与缝隙1014连通,使辐射体12的第一辐射支臂121与承载部1012之间相互间隔,以避免承载部1012影响辐射体12的谐振。进一步地,缝隙1014中可以设有非屏蔽体(图中未标出),非屏蔽体由非金属制成(例如树脂等),其具有通过电磁波信号的特性,以允许天线装置1004进行信号传输。非屏蔽体的外表面与边框1013的外表面平齐,以保证电子设备400的外观的完整性。
在一些实施例中,请参阅图10,电子设备400还可以包括按键1009,按键1009作为电子设备400的输入装置,其用于接收用户的操作以使电子设备400能够执行相应的指令。在本实施例中,按键1009为侧边按键,其可活动地设置于边框1013,并与主板1005电连接。进一步地,当边框1013作为天线装置100的辐射体12时,第二辐射支臂123可以环绕开设于边框1013上的按键孔,也即,第二辐射支臂123和第一辐射支臂121之间的间隔129可以形成按键孔,而按键1009可活动地收容于第二辐射支臂123和第一辐射支臂121之间,由此,实现按键孔和天线装置1004的必要缝隙的复用,能够简化边框1013的制备工艺流程和本身结构。
进一步地,在本申请实施例中,主板1005设置于承载部1012上,主板1005的边缘与第一辐射支臂121之间具有一定距离,保证天线装置1004具有较大净空区,且将主板1005上电流集中处与天线装置1004上电流集中处尽可能分散,也能在一定程度上降低天线装置1004的SAR值。在本实施例中,主板1005与第一辐射支臂121之间的距离可以为1-5mm,例如,主板1005与第一辐射支臂121之间的距离可以为1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm、5mm等等。
在其他的一些实施例中,边框1013可以由非金属制成,天线装置10可以集成于边框1013。例如,边框1013可以由塑料、树脂等材料制成,天线装置10的辐射体12可以通过嵌件成型的方式集成于边框1013(如,辐射体12整体嵌入边框1013内部),也可以通过贴附的方式集成于边框1013(如,辐射体12贴附于边框1013的表面)。请参阅图11,在本实施例中,天线装置1004的天线本体10大致呈片状,其设置于边框1013上,并大致垂直于显示屏1003所在的平面。第一辐射支臂121设置于边框1013靠近显示屏1003的一侧,第二辐射支臂121连接于第一辐射支臂121远离显示屏1003的一侧,从而能够将辐射体12上的电流引流至相对远离显示屏1003的方向。进一步地,第二辐射支臂121可以自第一辐射支臂121上朝远离显示屏1003的方向凸伸。由于用户在使用电子设备400时,通常使显示屏1003朝向用户的身体(如接听电话时或浏览内容时显示屏1003朝向用户的面部),本实施例将辐射体12上的电流引流至相对远离显示屏1003的方向,也即将天线装置1004的SAR热点分散至相对远离显示屏1003的方向,能够进一步减 弱天线装置1004对用户的辐射影响。
在图11所示的实施例中,电子设备400还可以包括按键1009,按键1009作为电子设备400的输入装置,其用于接收用户的操作以使电子设备400能够执行相应的指令。在本实施例中,按键1009为侧边按键,其可活动地设置于边框1013,并与主板1005电连接。边框1013还可以开设有按键孔1008,按键1009容置于按键孔1008中。当天线装置1004集成于边框1013时,第二辐射支臂123和第一辐射支臂121之间的间隔的位置大致与按键孔1008的位置对应,从而能够充分地利用边框1013本身的结构布局天线装置1004,有利于减薄边框1013的厚度。具体而言,第一辐射支臂121可以设置于按键孔的一侧,第二辐射支臂123可以至少部分地环绕在按键孔1008外周,第二辐射支臂123和第一辐射支臂121可以共同环绕在按键孔1008的外周,使第二辐射支臂123和第一辐射支臂121之间的间隔的位置大致与按键孔1008的位置重合。
本申请实施例提供的天线装置及电子设备以及壳体中,通过为辐射体设置第一辐射支臂以及第二辐射支臂,第一辐射支臂以及第二辐射支臂可以共同用于产生谐振以接收/发射信号,通过设置两个辐射支臂,可以在一定程度上均衡天线装置的辐射体的电流集中状况,从而减辐射体整体的电流峰值,降低天线装置的SAR值。具体而言,第一辐射支臂以及第二辐射支臂可以将辐射体的电流进行分流,因而辐射体上不会存在电流极强单点,而是被大概分流为两个电流次强点,进而使原本的SAR单热点被大致分散至第一辐射支臂以及第二辐射支臂上,形成较弱的SAR多热点,使天线装置总体SAR值较弱。由于设置两个彼此并联的辐射支臂,不会影响天线装置的整体电流,能保证天线装置的辐射性能不被削弱,因此,本申请实施例提供的天线装置,能够保证较强的天线辐射性能并拥有较低的SAR值。
另外,基于上述的电子设备的壳体的结构,本申请实施例还可以提供一种电子设备的壳体和具有该壳体的电子设备,该电子设备包括该壳体以及设置于壳体的显示屏。壳体包括边框和连接于边框的承载部,边框至少部分由金属制成,其大致设置于承载部的边缘。边框设有缝隙,缝隙将边框分为接地部和天线部,天线部由金属制成,天线部设有用于馈入电信号的馈电点以及供电流回流的接地点,接地点相对远离缝隙,馈电点设置于缝隙和接地点之间,馈电点用于将激励电流馈入至所述天线部,激励电流在天线部上形成有强电流区域。天线部上自馈电点到缝隙之间的部分被配置成为电子设备的天线的辐射端部,天线部上自馈电点到接地点之间的部分被配置成为电子设备的天线的接地端部。辐射端部开设有用于收容电子设备的按键的按键孔,按键孔将辐射端部分为并联的第一辐射支臂和第二辐射支臂,第一辐射支臂的至少部分结构、第二辐射支臂的至少部分结构位于强电流区域内,其中,第一辐射支臂可以设置于按键孔的一侧,而第二辐射支臂至少部分地环绕形成按键孔的一部分。天线部在发送或/及接受信号时,流经辐射端部的电流被第一辐射支臂以及第二辐射支臂分流。所以,辐射端部上不会存在电流极强单点,而是被大概分流为两个电流次强点,进而使原本的SAR单热点被大致分散至第一辐射支臂以及第二辐射支臂上,形成较弱的SAR多热点,使天线部总体SAR值较弱。应当理解的是,本实施例提供的电子设备的壳体的天线部可以为以上实施例提供的任一种天线装置,或者可以具备以上天线装置的任意一个或多个特征的结合,本实施例提供的电子设备可以为以上实施例提供的任一种电子设备,或者可以具备以上电子设备的任意一个或多个特征的组合,相关的特征可以参考前述实施例,本实施例不再赘述。
需要说明的是,在本申请说明书中,当一个组件被认为是“设置于”另一个组件,它可以是连接于或者直接设置在另一个组件上,或者可能同时存在居中组件(也即二者间接连接);当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件,也即,两个组件之间可以是间接连接。
在本说明书中,描述的具体特征或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种天线装置,其特征在于,包括辐射体以及设置于所述辐射体的馈电点,所述馈电点用于将激励电流馈入至所述辐射体,所述激励电流在所述辐射体上形成有强电流区域;
    所述辐射体包括第一辐射支臂及第二辐射支臂,所述第一辐射支臂与所述第二辐射支臂并联形成公共端,所述第一辐射支臂的至少部分结构、所述第二辐射支臂的至少部分结构位于所述强电流区域内;
    所述馈电点设置于所述公共端,所述天线装置在发送或/及接受信号时,流经所述馈电点的电流在所述辐射体内被所述第一辐射支臂以及所述第二辐射支臂分流。
  2. 如权利要求1所述的天线装置,其特征在于,所述第二辐射支臂包括本体、第一端以及第二端,所述第一端及所述第二端分别位于所述本体的相对两端;所述第一端及所述第二端分别连接于所述第一辐射支臂,所述本体与所述第一辐射支臂相间隔。
  3. 如权利要求2所述的天线装置,其特征在于,所述本体、所述第一端、所述第二端与所述第一辐射支臂共同围成分流区域,所述分流区域与所述强电流区域至少部分重合。
  4. 如权利要求2所述的天线装置,其特征在于,所述第二端相较于所述第一端更靠近所述馈电点,且所述第一端与所述第一辐射支臂的末端之间预留预定的距离。
  5. 如权利要求2所述的天线装置,其特征在于,所述天线装置还包括第三辐射支臂,所述第三辐射支臂连接于所述公共端;所述激励电流在所述辐射体内被所述第一辐射支臂、所述第二辐射支臂以及所述第三辐射支臂分流。
  6. 如权利要求5所述的天线装置,其特征在于,所述第三辐射支臂与所述馈电点之间的距离小于所述第二辐射支臂与所述馈电点之间的距离,所述第三辐射支臂与所述第一辐射支臂的连接处位于所述强电流区域内。
  7. 如权利要求5所述的天线装置,其特征在于,所述第三辐射支臂包括支臂本体、第三端以及第四端,所述第三端及所述第四端分别位于所述支臂本体的相对两端;所述第三端及所述第四端分别连接于所述第一辐射支臂,所述支臂本体与所述第一辐射支臂相间隔。
  8. 如权利要求7所述的天线装置,其特征在于,所述第二端相较于所述第一端更靠近所述馈电点,所述第四端相较于所述第三端更靠近所述馈电点;所述第四端与所述馈电点之间的距离小于所述第二端与所 述馈电点之间的距离。
  9. 如权利要求1所述的天线装置,其特征在于,所述第二辐射支臂与所述第一辐射支臂的连接处位于所述第一辐射支臂的末端和所述馈电点之间,并位于所述强电流区域内。
  10. 如权利要求9所述的天线装置,其特征在于,所述天线装置还包括第三辐射支臂,所述第三辐射支臂连接于所述公共端;所述第三辐射支臂的至少部分结构位于所述强电流区域内。
  11. 如权利要求10所述的天线装置,其特征在于,所述第三辐射支臂和所述第二辐射支臂分别连接于所述第一辐射支臂的相对两侧;所述第三辐射支臂相对于所述第一辐射支臂的凸伸方向与所述第二辐射支臂相对于所述第一辐射支臂的凸伸方向相反。
  12. 如权利要求1~11中任一项所述的天线装置,其特征在于,所述第二辐射支臂的长度为所述天线装置的工作频段中心频点的四分之一波长,所述第一辐射支臂与所述第二辐射支臂的延伸方向不相同。
  13. 一种电子设备,其特征在于,包括显示屏以及权利要求1至12任一项所述的天线装置。
  14. 如权利要求13所述的电子设备,其特征在于,所述电子设备还包括壳体,所述显示屏连接于所述壳体,所述天线装置集成于所述壳体。
  15. 如权利要求13所述的电子设备,其特征在于,所述壳体包括承载部以及连接于所述承载部边缘的边框,所述显示屏连接于所述边框或/及所述承载部;所述边框设有与外界连通的缝隙,所述天线装置集成于所述边框上并位于所述缝隙的一侧。
  16. 如权利要求15所述的电子设备,其特征在于,所述显示屏盖设于所述边框,所述第一辐射支臂设置于所述边框靠近所述显示屏的一侧,所述第二辐射支臂连接于所述第一辐射支臂远离所述显示屏的一侧。
  17. 如权利要求16所述的电子设备,其特征在于,所述天线装置的辐射体为片状辐射体,所述辐射体设置于所述边框并垂直于所述显示屏所在的平面,所述第二辐射支臂相对所述第一辐射支臂朝远离所述显示屏的方向凸伸。
  18. 如权利要求15所述的电子设备,其特征在于,所述边框至少部分由金属制成;所述电子设备还包括按键,所述边框设有按键孔,所述按键可活动地收容于所述按键孔,所述第一辐射支臂设置于所述按键孔的一侧,所述第二辐射支臂至少部分地环绕在所述按键孔外周。
  19. 一种壳体,其特征在于,应用于能够进行无线通信的电子设备,所述壳体包括边框和连接于所述边框的承载部;所述边框至少部分由金属制成;
    所述边框设有缝隙,所述缝隙将所述边框分为接地部和天线部;所述天线部设有馈电点,所述馈电点设置于所述缝隙和所述接地部之间,所述馈电点用于将激励电流馈入至所述天线部,所述激励电流在所述天线部上形成有强电流区域;
    所述天线部上自所述馈电点到所述缝隙之间的部分被配置成为所述电子设备的天线的辐射端部,所述辐射端部开设有用于收容所述电子设备的按键的按键孔,所述按键孔将所述辐射端部分为并联的第一辐射支臂和第二辐射支臂,所述第一辐射支臂的至少部分结构、所述第二辐射支臂的至少部分结构位于所述强电流区域内,所述天线部在发送或/及接受信号时,流经所述辐射端部的电流被所述第一辐射支臂以及所述第二辐射支臂分流。
  20. 一种电子设备,其特征在于,包括主板、按键以及权利要求19所述的壳体,所述主板设置于所述承载部,所述按键容置于所述按键孔,并与所述主板电连接。
PCT/CN2021/122268 2020-11-30 2021-09-30 天线装置、壳体及电子设备 WO2022111054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011382268.8 2020-11-30
CN202011382268.8A CN112652879B (zh) 2020-11-30 2020-11-30 天线装置、壳体及电子设备

Publications (1)

Publication Number Publication Date
WO2022111054A1 true WO2022111054A1 (zh) 2022-06-02

Family

ID=75349764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122268 WO2022111054A1 (zh) 2020-11-30 2021-09-30 天线装置、壳体及电子设备

Country Status (2)

Country Link
CN (1) CN112652879B (zh)
WO (1) WO2022111054A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652879B (zh) * 2020-11-30 2022-08-12 Oppo广东移动通信有限公司 天线装置、壳体及电子设备
CN116247420A (zh) * 2021-12-07 2023-06-09 Oppo广东移动通信有限公司 天线装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304120A (zh) * 2007-05-08 2008-11-12 松下电器产业株式会社 在宽带下工作且具有阻止频带的缝隙天线装置
CN105529526A (zh) * 2015-12-31 2016-04-27 联想(北京)有限公司 天线系统及电子设备
US20180131075A1 (en) * 2016-11-04 2018-05-10 Acer Incorporated Mobile device
CN111755811A (zh) * 2019-03-28 2020-10-09 国巨电子(中国)有限公司 双频段天线
CN112652879A (zh) * 2020-11-30 2021-04-13 Oppo广东移动通信有限公司 天线装置、壳体及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304120A (zh) * 2007-05-08 2008-11-12 松下电器产业株式会社 在宽带下工作且具有阻止频带的缝隙天线装置
CN105529526A (zh) * 2015-12-31 2016-04-27 联想(北京)有限公司 天线系统及电子设备
US20180131075A1 (en) * 2016-11-04 2018-05-10 Acer Incorporated Mobile device
CN111755811A (zh) * 2019-03-28 2020-10-09 国巨电子(中国)有限公司 双频段天线
CN112652879A (zh) * 2020-11-30 2021-04-13 Oppo广东移动通信有限公司 天线装置、壳体及电子设备

Also Published As

Publication number Publication date
CN112652879B (zh) 2022-08-12
CN112652879A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
EP1482646B1 (en) Portable terminal having tuner for changing radiation pattern
WO2022111053A1 (zh) 电子设备及其壳体
WO2022111054A1 (zh) 天线装置、壳体及电子设备
US20230141980A1 (en) Electronic Device
JP2001211018A (ja) アンテナ装置及びそれを用いた腕時計型無線装置
CN106707729B (zh) 智能手表
KR20040093104A (ko) 밸런싱된 다중-대역 안테나 시스템
CN112467371B (zh) 天线装置及电子设备
WO2021063255A1 (zh) 可穿戴设备
CN112542678A (zh) 电子设备
US20230318180A1 (en) Antenna Structure and Electronic Device
WO2023103735A1 (zh) 天线装置及电子设备
WO2022111064A1 (zh) 电子设备
CN214203955U (zh) 电子设备
JP2002152353A (ja) 携帯端末機
WO2006013843A1 (ja) 携帯電話機
US20230008642A1 (en) Electronic Device
KR20080017857A (ko) 안테나 장치를 구비하는 휴대 단말기
WO2024098969A1 (zh) 天线装置及电子设备
WO2024098959A1 (zh) 天线装置及电子设备
CN211556116U (zh) 一种天线及移动终端
WO2023103736A1 (zh) 天线装置及电子设备
WO2022247493A1 (zh) 天线装置及电子设备
KR20060062969A (ko) 배터리 케이스에 평면 안테나가 구비된 무선통신 단말기
CN218385725U (zh) 一种移动电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896556

Country of ref document: EP

Kind code of ref document: A1