WO2023103736A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2023103736A1
WO2023103736A1 PCT/CN2022/132626 CN2022132626W WO2023103736A1 WO 2023103736 A1 WO2023103736 A1 WO 2023103736A1 CN 2022132626 W CN2022132626 W CN 2022132626W WO 2023103736 A1 WO2023103736 A1 WO 2023103736A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
frequency band
antenna device
connection end
point
Prior art date
Application number
PCT/CN2022/132626
Other languages
English (en)
French (fr)
Inventor
周林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023103736A1 publication Critical patent/WO2023103736A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas

Definitions

  • the present application relates to the technical field of mobile communications, and more specifically, to an antenna device and electronic equipment.
  • a communication antenna is usually installed in an electronic device to meet a communication requirement of a user.
  • the power of antennas in electronic devices is also increasing, resulting in greater radiation effects from antennas on the human body, which will have adverse effects on the human body.
  • Embodiments of the present application provide an antenna device and electronic equipment.
  • an embodiment of the present application provides an antenna device, which includes a first radiator and a second radiator connected to the first radiator.
  • the first radiator includes a first connection end, a second connection end, and a feed point and a ground point arranged between the first connection end and the second connection end, the feed point is used for connecting a feed source, the ground point and the ground point
  • the distance between the second connection ends is greater than the distance between the feeding point and the second connection ends.
  • the second radiator is electrically connected to the first connection end.
  • the first radiator is used to support the first frequency band, and the second radiator is used to support the second frequency band.
  • the first frequency band and the second frequency band are different; when the first radiator supports the first frequency band, the excitation current input through the feed point Distributed on the first radiator and the second radiator.
  • an embodiment of the present application provides an electronic device, which includes a housing and the above-mentioned antenna device, and a radiator is integrated into the housing.
  • an embodiment of the present application provides an electronic device, which includes a frame and the above-mentioned antenna device, where the material of the frame includes metal, and the antenna device is integrated into the frame.
  • FIG. 1 is a schematic diagram of a structure of an antenna device provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of another structure of an antenna device provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of another structure of an antenna device provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of an application example of the antenna device provided by the embodiment of the present application.
  • FIG. 5 is an S-parameter diagram of the antenna device shown in FIG. 4 .
  • FIG. 6-7 are simulation diagrams of electric field distribution of the antenna device shown in FIG. 4 .
  • FIG. 8-9 are schematic diagrams of radiation efficiency of the antenna device shown in FIG. 4 .
  • Figure 10-11 is a schematic diagram of the body SAR simulation of the antenna device shown in Figure 4.
  • Fig. 12 is a schematic diagram of another structure of the antenna device provided by the embodiment of the present application.
  • Fig. 13 is a schematic diagram of another structure of the antenna device provided by the embodiment of the present application.
  • Fig. 14 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the internal structure of the electronic device shown in FIG. 14 .
  • FIG. 16 is a schematic structural diagram of an antenna device provided by an embodiment of the present application applied to an electronic device.
  • Electronic equipment as used in the embodiments of this application includes, but is not limited to, configured to be connected via a wire line (such as via a public switched telephone network (PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for a cellular network, a wireless local area network (WLAN), a digital television network such as a DVB-H network, a satellite network, an AM-FM broadcast transmitter, and/or A device for receiving/transmitting communication signals through a wireless interface of another communication terminal.
  • a wire line such as via a public switched telephone network (PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • WLAN wireless local area network
  • Digital television network such as a DVB-H network
  • satellite network such as a satellite network
  • AM-FM broadcast transmitter AM-FM broadcast transmitter
  • a communication terminal arranged to communicate over a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal”, “electronic device” and/or “electronic equipment”.
  • electronic devices include, but are not limited to, satellite or cellular telephones; Personal Communication Systems (PCS) terminals that may combine cellular radiotelephones with data processing, facsimile, and data communication capabilities; may include radiotelephones, pagers, Internet/Intranet access , a PDA with a web browser, organizer, calendar, and/or Global Positioning System (GPS) receiver; and a conventional laptop and/or palm-sized receiver, game console, or other electronic device including a radiotelephone transceiver.
  • PCS Personal Communication Systems
  • GPS Global Positioning System
  • Electromagnetic wave energy absorption ratio (SAR, Specific Absorption Rate) is usually called absorption ratio or absorption ratio, which refers to the electromagnetic wave energy absorption ratio of electronic equipment.
  • SAR Specific Absorption Rate
  • absorption ratio or absorption ratio refers to the electromagnetic wave energy absorption ratio of electronic equipment.
  • the specific meaning is: under the action of an external electromagnetic field, an induced electromagnetic field will be generated in the human body. Since each organ of the human body is a lossy medium, the electromagnetic field in the body will generate an induced current, causing the human body to absorb and dissipate electromagnetic energy.
  • SAR is commonly used to characterize this physical process.
  • the meaning of SAR is the electromagnetic power absorbed or consumed by human tissue per unit mass, and the unit is W/kg, or mw/g.
  • Ei is the effective value of the electric field intensity in the cell tissue, expressed in V/m;
  • is the electrical conductivity of human tissue, expressed in S/m
  • is the density of human tissue, expressed in kg/m3.
  • SAR in human tissue is proportional to the square of the electric field strength in that tissue and is determined by the parameters of the incident electromagnetic field (such as frequency, strength, direction, and source of the electromagnetic field), the relative position of the target, and the typical tissue of the exposed human body. genetic characteristics, ground effects, and environmental effects of exposure.
  • the European standard is less than 2.0w/kg per 10 grams
  • the American standard is less than 1.6mw/g per gram.
  • the commonly used methods to reduce the SAR value are as follows: (1) directly reduce the transmission power of the antenna to reduce the absorption of electromagnetic waves by the human body, but it is difficult to ensure the total radiated power (TRP) by reducing the transmission power of the antenna requirements, the TRP is too low, and the communication quality is also low, which usually cannot meet the increasing communication requirements in the market; (2) reduce the transmission power of the antenna in different scenarios, and use the human tissue detection device (SAR SENSOR), only when the human body is close to the electronic It is also difficult to ensure the total radiation power requirements when reducing the transmission power of the equipment; (3) The transmission power of the antenna is transmitted through multiple antennas by using a power divider, but the current development trend of electronic equipment is that the thickness is getting thinner and thinner, resulting in antennas The space is getting smaller and smaller, and it is difficult to provide space for additional antennas; (4) Add grounding branches under the antenna floor to make the current distribution on the antenna more uniform, but this solution is only for FPC antennas, not suitable for metal frames Electronic equipment has great
  • the antenna device of the present application includes a first radiator and a second radiator connected to the first radiator.
  • the first radiator includes a first connection end, a second connection end, and a feed point and a ground point arranged between the first connection end and the second connection end.
  • the feed point is used to connect the feed source, and the ground point and the second The distance between the connection ends is greater than the distance between the feeding point and the second connection end.
  • the second radiator is electrically connected to the first connection end.
  • the first radiator is used to support the first frequency band
  • the second radiator is used to support the second frequency band.
  • the first frequency band and the second frequency band are different; when the first radiator supports the first frequency band, the excitation current input through the feed point
  • the excitation current corresponding to the signal of the first frequency band distributed on the first radiator and the second radiator is shunted by the first radiator and the second radiator, which can improve the current distribution of the first radiator, so that to a certain extent
  • the current concentration of the antenna device is balanced, thereby effectively reducing the overall SAR value of the antenna device. Therefore, the antenna device provided by the embodiment of the present application has a lower SAR value.
  • an embodiment of the present application provides an antenna device 100 , which includes a radiator 10 and a feeding circuit 30 connected to the radiator 10 .
  • the radiator 10 is used to receive and transmit radio frequency signals
  • the feeding circuit 30 is used to feed excitation current to the radiator 10 so that the radiator 10 can resonate to radiate radio frequency signals.
  • the feed circuit 30 is suitable for being connected to and controlled by the main board of the electronic device.
  • the radiator 10 includes a first radiator 12 and a second radiator 14 , and the first radiator 12 and the second radiator 14 are electrically connected.
  • the electrical connection relationship between the first radiator 12 and the second radiator 14 is realized through direct connection of physical structures, for example, the two are directly connected through physical structures.
  • the radiator 10 (including the first radiator 12 and the second radiator 14, etc.) in the drawings in this specification is represented as a simple geometric shape (such as a bar), however, it can be understood that the radiator Each part of the body 10 can actually have a certain width; similarly, each part of the radiator 10 appears as a relatively flat structure in the figure, however, in practice, in order to avoid such as the microphone hole of the electronic device, the earphone Jacks, receiver holes and other parts, each part of the radiator 10 may have certain features such as bends, holes, and gaps.
  • the actual specific shape of the radiator 10 should not be limited by the drawings provided in the embodiments of this application.
  • the radiator 10 including the first radiator 12 and the second radiator 14 can be an integrated antenna radiator, and the materials of the first radiator 12 and the second radiator 14 can be the same, or both There may not be an obvious dividing line between them, and even in some other embodiments, there may be a relatively obvious dividing line between the structures of the first radiator 12 and the second radiator 14 .
  • the first radiator 12 may be any one of a flexible circuit board radiator, a laser direct forming radiator, a printing direct forming radiator, or a metal radiator.
  • the second radiator 14 can also be any one of a flexible circuit board radiator, a laser direct forming radiator, a printing direct forming radiator or a metal branch, and the material or shape of the first radiator 12 and the second radiator 14
  • the methods may be the same or different, and this application does not limit this.
  • the first radiator 12 is used to support the first frequency band, and includes a first connection end 122 , a second connection end 124 , a feed point 127 and a ground point 129 .
  • the first connection end 122 and the second connection end 124 are spaced from each other, for example, the first connection end 122 and the second connection end 124 are respectively located at spaced positions on the first radiator 12 (such as being respectively located on the first radiator 12 opposite ends of the ).
  • the feed point 127 and the ground point 129 are disposed between the first connection end 122 and the second connection end 124 .
  • the extension size may not be greater than one-half of the overall extension size of the element; for another example, the The "end” part can also be the end face or end line of the extended end of the element; even, the "end” part can be the end of a certain part of the element, and another part of the element can also be connected to the end portion, so that the end portion does not have obvious stretched ends or end lines or end faces.
  • the feed point 127 is used to connect the feed source in the feed circuit 30 .
  • the feed point 127 is disposed on the first radiator 12 relatively close to the second radiator 14 , so that the distance between the feed point 127 and the second connection end 124 is greater than the distance between the feed point 127 and the first connection end 122 .
  • the grounding point 129 is spaced from the feeding point 127, and the grounding point 129 is arranged on the first radiator 12 at one end relatively close to the second radiator 14, and the distance between the grounding point 129 and the second connecting end 124 is greater than that of the feeding point 129
  • the distance from the second connection end 124 is that the ground point 129 is farther away from the second connection end 124 than the feed point 127 , and the ground point 129 is closer to the first connection end 122 than the feed point 127 .
  • the ground point 129 may be disposed at the first connection end 122 .
  • the ground point 129 may be grounded through an inductor (not shown in the figure).
  • the position of the grounding point 129 on the first radiator 12 is adjacent to the feeding point 127, so that the first radiator 12 roughly forms an IFA (Inverted-F Antenna, IFA) antenna structure, which can make the impedance matching of the first radiator 12 better. It has the advantages of small volume, simple structure and lower preparation cost.
  • IFA Inverted-F Antenna
  • the grounding point 129 and the feeding point 127 can be arranged on the first radiator 12 at intervals, but the distance between the two is limited within a specified distance, for example , the distance between the grounding point 129 and the feeding point 127 should be less than or equal to 5mm, so as to ensure that the inductance of the first radiator 12 introduced by the grounding point 129 is small, and the impedance matching performance of the first radiator 12 is better.
  • the specific grounding form of the grounding point 129 can be realized by a structure such as a grounding shrapnel, and the specific structure of the feeding point 127 can also be realized by a structure such as a feeding shrapnel, which is not limited in this application.
  • the first radiator 12 may further include a first main body portion 121 , and the first connection end 122 and the second connection end 124 are respectively located at opposite ends of the first main body portion 121 .
  • the first connection end 122 , the first main body portion 121 and the second connection end 124 are generally arranged in sequence along the first direction X, so that the first connection end 122 of the first radiator 12 , the first main body
  • the structures of the portion 121 and the second connecting end 124 are generally straight strips extending along the first direction X.
  • the feeding point 127 can be set on the first body part 121 or the first connection end 122 , of course, the grounding point 129 can also be set on the first body part 121 or the first connection end 122 .
  • the second radiator 14 is used to support a second frequency band, wherein the second frequency band is different from the first frequency band.
  • the second radiator 14 is connected to the first connection end 122 of the first radiator 12 .
  • the second radiator 14 is not provided with a ground point, and the feed circuit 30 is configured to input an excitation current to the first radiator 12 via the feed point 127, so that the first radiator 12 radiates the first frequency band signal, when the first radiator 12 radiates a signal in the first frequency band, the excitation current is distributed on the first radiator 12 and the second radiator 14 . Therefore, the excitation current corresponding to the first frequency band on the first radiator 12 is shunted by the second radiator 14 , which can balance the current concentration of the antenna device 100 to a certain extent, so that the SAR value of the antenna device 100 is relatively low.
  • the extension direction of the second radiator 14 from the first connection end 122 is different from the extension direction of the first radiator 12 from the first connection end 122 .
  • the "extending direction" of the radiator can be understood as the direction in which the radiator extends from the first connection end 122, and its direction is defined by the structure of the radiator itself, for example, the second radiator 14, the first connection end 122.
  • the first main body parts 121 are arranged sequentially in the first direction, so that the extension direction of the second radiator 14 from the first connection end 122 is opposite to the extension direction of the first radiator 12 from the first connection end 122, that is, In the embodiment shown in FIG.
  • the first radiator 12 extends along the positive direction of the first direction X
  • the second radiator 14 extends along the negative direction of the first direction X; as another example, in some other examples , the angle relationship (such as an obtuse angle) between the extending direction of the second radiator 14 from the first connecting end 122 and the extending direction of the first radiator 12 from the first connecting end 122 .
  • the second radiator 14 is connected to one end of the first radiator 12 provided with a grounding point 129 (such as the first connection end 122), but the second radiator 14 is not provided with a grounding point, That is, the second radiator 14 itself is not grounded by itself, and the current on it is grounded through the grounding point of the first radiator 12 after flowing back, which can ensure that the second radiator 14 and the first radiator 12 can play a role in the excitation current.
  • the specific structures of the first radiator 12 and the second radiator 14 in the present application should not be limited, as long as the second radiator 14 is guaranteed to be a branch connected to the first radiator 12 and can On the basis of the original radiation frequency band of the first radiator 12 , the second radiator 14 can be electrically connected to the feeding point 127 to realize the shunting function of the current.
  • the type can be selected and set according to specific application scenarios, for example, a G-type antenna can be selected, or a planar inverted-F antenna can be selected.
  • the first radiator 12 may include a plurality of radiation regions.
  • the first radiator 12 may be used to send or/and receive at least one signal of an operating frequency band, and the signal may be, for example, a Long Term Evolution (LTE) signal.
  • the working frequency band of the signal radiated by the first radiator 12 can include at least one frequency band of LTE, such as B1 frequency band (1.92GHz-2.17GHz), B3 frequency band (1.71GHz-1.88GHz), B2 frequency band (1.85GHz-1.99GHz) , B5 frequency band (0.824GHz-0.894GHz), B8 frequency band (0.88GHz-0.96GHz), B28 frequency band (0.703GHz-0.803GHz), B40 frequency band (2.30GHz-2.40GHz), B41 frequency band (2.496GHz-2.690GHz) , B7 frequency band (2.50GHz-2.69GHz) and so on.
  • LTE Long Term Evolution
  • the signal radiated by the first radiator 12 can also be a new air interface (New Radio, NR) signal, etc., and its working frequency band can also include at least one frequency band of NR, such as N1 frequency band (1.92GHz-2.17GHz), N2 frequency band (1.85 GHz-1.99GHz) and so on.
  • the frequency band supported by the first radiator 12 may cover at least one of the above-mentioned working frequency bands.
  • the frequency range supported by the first radiator 12 can cover the frequency ranges of multiple operating frequency bands, such as covering the frequency ranges of B1, B3/N3 frequency bands and B5/N5 frequency bands, then the first radiator 12 can send or/and Receive signals in B1, B3/N3 frequency band or B5/N5 frequency band.
  • the second radiator 14 can be used to send or/and receive signals of at least one working frequency band, and its working frequency band can include at least one frequency band of LTE, such as the above-mentioned B1 frequency band, B2 frequency band, B3 frequency band, B7 frequency band, etc. It should be understood that the number of working frequency bands of signals supported by the first radiator 12 and the second radiator 14 may be one or more.
  • the second frequency band supported by the second radiator 14 is different from the first frequency band supported by the first radiator 12 .
  • the two frequency bands are "different" means that the frequency ranges of the two frequency bands are not completely the same, for example, the frequency ranges of the two frequency bands may be completely different (such as the two frequency bands have different intersection), as another example, the frequency ranges of two frequency bands may also partially overlap (for example, there is an intersection between the two, and at least part of the frequency of one frequency band is within the range of another frequency band).
  • the first frequency band may be lower than the second frequency band. It should be understood that "the first frequency band is lower than the second frequency band" means that the frequency range of the first frequency band is lower than that of the second frequency band, for example, the highest frequency of the first frequency band is lower than the lowest frequency of the second frequency band.
  • the first frequency band may be an intermediate frequency band, for example, the first frequency band may include at least one of the above-mentioned B1 and B3 frequency bands; the second frequency band may be a high frequency band, for example, the second frequency band may include The aforementioned B7 band.
  • the first frequency band in the embodiment of the present application should not be strictly limited to the intermediate frequency band, for example, the first frequency band may cover the intermediate frequency band, or the center frequency point of the first frequency band is within the intermediate frequency band (for example, the center frequency points of the first frequency band are all within the frequency band range of 1.7-2.2GHz), or the first frequency band and the intermediate frequency band have overlapping frequency ranges, which means that the upper limit of the frequency range of the first frequency band can be There is a slight offset relative to the upper limit of the intermediate frequency band (for example, the upper limit of the frequency range of the first frequency band can be slightly greater than or slightly smaller than the upper limit of the intermediate frequency band), the lower limit of the frequency range of the first frequency band There may be a slight offset relative to the lower limit value of the intermediate frequency band (for example, the lower limit value of the frequency band range of the first frequency band may be slightly greater than or slightly smaller than the lower limit value of the intermediate frequency band).
  • the frequency ranges of the first frequency band and the second frequency band may not be completely the same, or may be completely different.
  • the frequency band ranges of the first frequency band and the second frequency band may not overlap at all, or the frequency band ranges of the first frequency band may partially overlap.
  • the first radiator 12 may also be used to support a third frequency band, and the third frequency band may be lower than the first frequency band.
  • the third frequency band is lower than the first frequency band means that the frequency range of the third frequency band is lower than that of the first frequency band, for example, the highest frequency of the third frequency band is lower than the lowest frequency of the first frequency band.
  • the first frequency band may be an intermediate frequency band, for example, the first frequency band may include at least one of the above-mentioned B1 and B3 frequency bands; the third frequency band may be a low frequency band, for example, the third frequency band may include the above-mentioned At least one of the B5, B8, B28 frequency bands.
  • the second radiator 14 may also be used to support a fourth frequency band, and the fourth frequency band may be lower than the second frequency band.
  • the fourth frequency band is lower than the second frequency band means that the frequency range of the fourth frequency band is lower than that of the second frequency band, for example, the highest frequency of the fourth frequency band is lower than the lowest frequency of the second frequency band.
  • the fourth frequency band may be an intermediate frequency band, for example, the fourth frequency band may include at least one of the aforementioned frequency bands B1 and B3.
  • the fourth frequency band in the embodiment of the present application should not be strictly limited to the intermediate frequency band, for example, the fourth frequency band may cover the intermediate frequency band, or the center frequency point of the fourth frequency band is within the intermediate frequency band ( For example, the center frequency points of the fourth frequency band are all within the frequency band range of 1.7-2.2GHz), or the fourth frequency band and the intermediate frequency band have overlapping frequency ranges, which means that the upper limit of the frequency range of the fourth frequency band can be There is a slight offset relative to the upper limit of the intermediate frequency band (for example, the upper limit of the frequency range of the fourth frequency band can be slightly greater than or slightly smaller than the upper limit of the intermediate frequency band), the lower limit of the frequency range of the fourth frequency band There may be a slight offset relative to the lower limit of the intermediate frequency band (for example, the lower limit of the frequency range of the fourth frequency band may be slightly greater than or slightly smaller than the lower limit of the intermediate frequency band).
  • the first radiator 12 is configured to work in a corresponding resonant mode; in order to support the above-mentioned second frequency band, the second radiator 14 is configured to work in a corresponding resonant mode.
  • the first radiator 12 can work in the first resonant mode
  • the second radiator 14 can work in the second resonant mode, wherein the first resonant mode indicates that the first radiator 12 produces resonance in the first frequency band, and the second resonant mode It is characterized that the second radiator 14 generates resonance in the second frequency band.
  • the first radiator 12 is excited by current to form a first current path, for example, the first radiator 12 forms the first current path from the feeding point 127 to the second connection terminal 124, and the first current path
  • the higher-order mode of is used to form the first resonance mode to radiate signals in the first frequency band.
  • the first radiator 12 has an appropriate equivalent electrical length, so that the first current path can form the resonance of the 1/2 wavelength mode of the first frequency band, or form the resonance of the 3/4 wavelength mode of the first frequency band, or form a The resonance of the 5/8 wavelength mode of the first frequency band, or the resonance of the 5/4 wavelength mode forming the first frequency band (that is, the first resonance mode), where the first frequency band may be an intermediate frequency band.
  • the fundamental mode of the first current path is used to form a third resonance mode, so that the first radiator 12 can radiate signals of the third frequency band.
  • the equivalent electrical length of the first radiator 12 enables the first current path to form resonance in a 1/4 wavelength mode of the third frequency band (ie, the third resonance mode), where the third frequency band may be a low frequency band.
  • the first radiator 12 can be arranged at an appropriate equivalent electrical length so that the first radiator 12 can work in the above-mentioned first resonant mode without requiring additional impedance elements.
  • the physical physical length of the first radiator 12 may be designed within an appropriate range to configure the equivalent electrical length of the first radiator 12 .
  • the physical length of the first radiator 12 may be equal to one-half, three-quarters, or four-fifths of the wavelength of the first frequency band, so that the first resonance mode is the corresponding 1/4 wavelength mode, 3/4 wavelength mode or 3/4 wavelength mode.
  • an appropriate impedance element may be introduced into the circuit of the first radiator 12 to configure the equivalent electrical length of the first radiator 12 , which will not be elaborated in this specification.
  • the antenna device 100 may also include a frequency band selection circuit 50, one end of the frequency band selection circuit 50 is grounded, and the other end is connected to the first radiator.
  • the first radiator 12 and the frequency band selection circuit 50 are configured to connect different impedance elements into the loop of the antenna device 100, so that the first radiator 12 can switchably radiate radio frequency signals of different frequency bands.
  • the frequency band selection circuit 50 can be connected to the first radiator 12 from the feeding point 127 to the second connection end 124 (such as the first main body part 121), which is used to adjust the equal frequency of the first radiator 12.
  • the effective electric length is such that the first radiator 12 supports the first frequency band or the third frequency band.
  • the frequency band selection circuit 50 may include a plurality of parallel-connected adjustment inductors L1, and the frequency band selection circuit 50 is configured to connect at least one of the plurality of adjustment inductors L1 into the loop of the first radiator 12, so as to Adjust the equivalent electrical length of the first radiator 12 so that the first radiator 12 supports multiple sub-bands of the third frequency band.
  • the third frequency band is a low-frequency band
  • its frequency range can be 0.703GHz ⁇ 0.894GHz
  • its Can include B5 (uplink frequency range 0.824 ⁇ 0.849GHz, downlink frequency range 0.869 ⁇ 0.894GHz), B8 (uplink frequency range 0.880 ⁇ 0.915GHz, downlink frequency range 0.925 ⁇ 0.960GHz), B28 (uplink frequency range 0.703 ⁇ 0.748GHz, downlink frequency range 0.758 ⁇ 0.803 GHz).
  • the first radiator 12 may also be grounded through the frequency band selection circuit 50 .
  • the second radiator 14 is excited by the excitation current to form a second current path.
  • the end of the feed point 127 to the second radiator 14 forms a second current path, and the higher-order mode of the second current path is used to form a second current path.
  • the second radiator 14 has an appropriate equivalent electrical length, so that the second current path can form the resonance of the 1/2 wavelength mode of the second frequency band, or form the resonance of the 3/4 wavelength mode of the second frequency band, or form The resonance of the 5/8 wavelength mode of the second frequency band, or the resonance of the 5/4 wavelength mode forming the second frequency band (that is, the second resonance mode), where the second frequency band may be a high frequency band.
  • the fundamental mode of the second current path is used to form a fourth resonance mode
  • the fourth resonance mode indicates that the second radiator 14 can generate the resonance of the fourth frequency band, so that the second radiator 14 can radiate the resonance of the fourth frequency band.
  • the equivalent electrical length of the second radiator 14 enables the second current path to form the resonance of the 1/4 wavelength mode of the fourth frequency band (that is, the fourth resonance mode), wherein the fourth frequency band can be an intermediate frequency band, Or the center frequency points of the fourth frequency band are all within the frequency band range of 1.7-2.2 GHz.
  • the third frequency band is lower than the first frequency band and lower than the fourth frequency band.
  • the fourth frequency band may be approximately the same as the first frequency band, that is, the working frequency bands that the first radiator 12 and the second radiator 14 may be used to transmit or/and receive signals may be approximately the same, here
  • the current peak value on the radiator 10 can be reduced and the electric field distribution can be optimized, thereby reducing the SAR value of the antenna device 100 .
  • the number of working frequency bands of signals supported by the first radiator 12 and the second radiator 14 may be one or more.
  • the fourth frequency band is the same as the first frequency band, both of which can be 1.7GHz to 2GHz, and the frequency range covers the frequency range of the B1/B3 frequency band, so the first radiator 12 and the second radiator 14 can both support the working frequency band It is the signal of B1/B3 frequency band.
  • both the fourth frequency band and the first frequency band are intermediate frequency bands, and when the excitation current fed through the feed point 127 excites the first radiator 12 to generate resonance in the first frequency band, the second radiator 14 generates The resonance of the fourth frequency band is used to disperse the current distribution corresponding to the first frequency band on the first radiator 12. Therefore, the first radiator 12 and the second radiator 14 can jointly radiate signals in the intermediate frequency band, and the radiation efficiency is higher At the same time, the excitation current corresponding to the intermediate frequency band is shunted by the first radiator 12 and the second radiator 14, which can balance the current concentration of the radiator 10 to a certain extent, and the overall SAR value of the antenna device 100 is relatively low.
  • the frequency ranges of the fourth frequency band and the fourth frequency band may not be completely the same, for example, the center frequency point of the fourth frequency band is within the frequency range of the first frequency band, so that the first radiator 12 can radiate the first
  • the second radiator 14 can generate resonance about the first frequency band, and the two can jointly radiate at least part of the signal of the frequency band (that is, the signal of the first frequency band), so that the first radiator 12 corresponds to the first frequency band.
  • the current in the frequency band is shunted by the second radiator 14, which can improve the current distribution of the first radiator 12, thereby balancing the current concentration of the antenna device 100 to a certain extent, and effectively reducing the overall SAR value of the antenna device 100.
  • the center frequency point of the fourth frequency band is within the frequency range of the first frequency band, and there may be multiple situations as follows: the center frequency point of the fourth frequency band is within the intermediate frequency band; or the center frequency point of the fourth frequency band In the first band but not in the mid-band.
  • the second radiator 14 when the first radiator 12 radiates signals of the first frequency band, the second radiator 14 can generate resonance about the fourth frequency band, and the two can jointly radiate at least part of the signals of the frequency band (that is, the signals of the first frequency band signal), the second radiator 14 can also shunt the current of the first radiator 12 .
  • the second radiator 14 can be arranged at an appropriate equivalent electrical length so that the second radiator 14 can work in the above-mentioned second resonant mode without requiring additional impedance elements.
  • the physical physical length of the second radiator 14 can be designed within an appropriate range to configure the equivalent electrical length of the second radiator 14 .
  • the physical length of the second radiator 14 may be equal to one-half, three-quarters, or four-fifths of the wavelength of the second frequency band, so that the second resonance mode is the corresponding 1/2 wavelength mode, 3/4 wavelength mode or 3/4 wavelength mode.
  • the equivalent electrical length of the second radiator 14 can be configured by introducing a suitable impedance element into the circuit of the second radiator 14 , and this specification will not elaborate on them one by one.
  • the above-mentioned embodiments of the present application provide a possible structure of the radiator 10, in this structure, the electrical connection relationship between the first radiator 12 and the second radiator 14 is realized by direct connection of the physical structure, and the second A radiator 12 is approximately straight and extending.
  • the first radiator 12 has a bent radiation structure, so as to adapt to the complex environment when it is applied to electronic equipment and ensure sufficient physical length.
  • the bent radiation structure means that the structure is not a straight structure, and it has at least one bent corner. This structure can not only increase the physical length of the antenna device 100, but also reduce the coverage of the radiator 10. area.
  • FIG. 3 shows a possible structure of the radiator 10 in these embodiments.
  • the first radiator 12 of the radiator 10 may also include a second main body part 123 on the basis of the above-mentioned embodiments. and the connecting portion 125 .
  • the second main body portion 123 is disposed opposite to the first main body portion 121 in the second direction Y, and the second main body portion 123 is connected to the first main body portion 121 through the connecting portion 125 .
  • both the first main body portion 121 and the second main body portion 123 are substantially straight and strip-shaped, and both are substantially arranged along the first direction X.
  • the first direction X intersects the second direction Y, and the angle between them may be greater than or equal to 45 degrees.
  • the first direction X and the second direction Y may be perpendicular to each other, then the second main body 123 and The second body parts 123 may be disposed substantially parallel to each other.
  • connection portion 125 is disposed at an end of the first body portion 121 away from the second radiator 14 and connected to the second connection end 124 .
  • the connecting portion 125 is substantially in the shape of a bar, which is substantially extended along the second direction Y.
  • the connection part 125 is connected between the first main body part 121 and the second main body part 123, and when the second main body part 123 and the first main body part 121 are arranged at intervals in the second direction Y, the overall structure of the radiator 10 is The relatively compact "U"-shaped arrangement structure can ensure that the radiator 10 has a small coverage area when the radiator 10 has sufficient physical length.
  • the second radiator 14 is roughly strip-shaped, the second radiator 14 and the first main body 121 are extended along the first direction X, and the extension of the second radiator 14 from the first connecting end 122 The direction is opposite to the extending direction of the first main body portion 121 from the first connecting end 122 .
  • the second body part 123 includes a first corresponding segment 1231 and a second corresponding segment 1233, the first corresponding segment 1231 is relatively spaced from the first body part 121 (for example, both are approximately parallel to each other), the second corresponding segment 1233 is connected to the first corresponding segment 1233
  • the two radiators 14 are relatively spaced apart (for example, they are approximately parallel to each other).
  • the length of the second body portion 123 extending along the first direction X and the length of the second radiator 14 extending along the first direction X may be determined by the configured frequency ranges.
  • the length extending along the first direction X of the second body part 123 is the same as the length extending along the first direction X of the second radiator 14, or the length extending along the first direction X of the second body part 123 is longer than the length extending along the first direction X.
  • the length of the second radiator 14 extending along the first direction X, or the length of the second main body 123 extending along the first direction X is smaller than the length of the second radiator 14 extending along the first direction X, which is used to ensure that the second radiator 14 extends along the first direction X.
  • a radiator 12 has a sufficient physical length so that the first radiator 12 can work in a specified frequency band (such as a low frequency band).
  • the feed circuit 30 may include a feed source 32 and a matching circuit 34, the matching circuit 34 is connected between the feed source 32 and the first main body 121, and the matching circuit 34 feeds the first radiator through the feed point 127 12 is fed with a current signal, so that the first radiator 12 radiates signals in the first frequency band.
  • the form of the radiator 10 provided by the embodiment of the present application can be the form of the frame antenna shown in FIG. 4. It can be seen that the radiator 10 is provided with a gap, without The regular and curved shape is beneficial to avoid parts such as microphone holes, earphone jacks, and receiver holes of electronic equipment.
  • the specific shape of the radiator 10 shown in this embodiment is different from the shape of the radiator 10 in the drawings of the previous embodiments, it should be understood that the components, extensions, and orientations of the radiator 10 in this embodiment all cover The characteristics of the radiator 10 in the figures of the foregoing embodiments are described, and the specific structure of the radiator 10 shown in FIG. 4 should not be construed as a limitation to this solution.
  • Fig. 5 shows the S-parameter schematic diagram of the structure of the traditional antenna and the antenna device 100 of the embodiment shown in Fig.
  • the antenna device mostly generates resonance in the high frequency band (resonance point 4), and the resonance point 4 corresponds to the resonance of the second radiator in the second frequency band (high frequency).
  • the resonance point 3 in the figure represents the resonance of the antenna device 100 in the third frequency band (low frequency)
  • the resonance point 5 represents the resonance of the antenna device 100 in the first frequency band or the fourth frequency band (intermediate frequency).
  • Fig. 6 and Fig. 7 have shown two kinds of gray-scale diagrams of the current distribution graph simulated by the structure of the antenna device 100 of the traditional antenna and the embodiment shown in Fig. 4, which represent when the antenna The intensity of the radiated electric field when the resonant frequency of the device 100 is in the B1/B3 frequency band.
  • the traditional radiator does not have a second radiator, and the current concentration point on the first radiator is relatively obvious, for example, there is a current concentration point in the approximate middle of the second main body.
  • FIG. 8 and FIG. 9 show two kinds of gray scale diagrams of radiation efficiency schematic diagrams of a traditional antenna and an antenna device 100 provided by some embodiments of the present application. It can be seen from the figure that, compared with Compared with an antenna with a traditional radiator, the antenna efficiency of the antenna device 100 provided by the embodiment of the present application does not change greatly. Therefore, by setting the first radiator 12 and the second radiator 14 in the antenna device 100, the first radiator 12 and the second radiator 14 can shunt the excitation current when the frequency band needs to reduce the SAR value, and improve the performance of the antenna device 100.
  • the distribution of the electric field makes the maximum radiation intensity of the electric field in the frequency band where the SAR value needs to be reduced relatively low, and at the same time, the average value of the overall radiation does not decrease, and the antenna device 100 still has a high radiation efficiency.
  • FIG. 10 and FIG. 11 show the SAR value per 10 grams of the body of the antenna device 100 provided by some embodiments of the traditional antenna and the present application, indicating that when the resonant frequency of the antenna device 100 is at B3 Peak SAR at frequency band (1.785GHz).
  • the antenna device 100 provided in this application includes at least the first radiator 12 and the second radiator 14, which correspond to a SAR peak value of 0.655533W/ka. Compared with the antenna structure of a common radiator, the The peak value of the SAR value is reduced by 43%. It can be seen that the antenna device 100 provided by the embodiment of the present application can achieve a significant SAR reduction function.
  • the extension directions of the first radiator 12 and the second radiator 14 are opposite, so as to play a role of uniform electric field distribution.
  • the second radiator 14 and the first body portion 121 may extend along different directions.
  • the angle A between the second radiator 14 and the first main body portion 121 of the first radiator 12 is greater than 90 degrees, which can be obtained under a uniform electric field distribution. At the same time, avoid current cancellation to weaken the radiation efficiency.
  • the second radiator 14 may also be a bent structure connected to the first body portion 121 , for example, the second radiator 14 may include at least one straight portion and at least one bent portion.
  • the second radiator 14 may include a first straight portion 141 , a second straight portion 143 , a third straight portion 145 and a bent portion 147 , and the first straight portion 141 is connected to The first main body portion 121 or the first connecting end 122, the second straight portion 143 and the third straight portion 145 are respectively disposed on opposite sides of the first straight portion 141, and are spaced apart from the first straight portion 141 respectively.
  • the bent portion 147 is connected to the first straight portion 141, the second straight portion 143, and the third straight portion 145 at one end away from the first main body portion 121, and this structure forms an “E”-shaped structure.
  • the second radiator 14 can meet the multi-band requirements of the second radiator 14, and can increase the physical length of the radiator 10, so that the second radiator 14 can be used to support low frequency bands, intermediate frequency bands and high frequency bands, and The coverage area of the radiator 10 can be reduced.
  • the antenna device provided in the embodiment of the present application includes a first radiator and a second radiator connected to the first radiator.
  • the first radiator includes a first connection end, a second connection end, and a feed point and a ground point arranged between the first connection end and the second connection end.
  • the feed point is used to connect the feed source, and the ground point and the second
  • the distance between the connection ends is greater than the distance between the feeding point and the second connection end.
  • the second radiator is electrically connected to the first connection end.
  • the first radiator is used to support the first frequency band, and the second radiator is used to support the second frequency band.
  • the first frequency band and the second frequency band are different; when the first radiator supports the first frequency band, the excitation current input through the feed point
  • the excitation current corresponding to the signal of the first frequency band distributed on the first radiator and the second radiator is shunted by the first radiator and the second radiator, which can improve the current distribution of the first radiator, so that to a certain extent
  • the current concentration of the antenna device is balanced, thereby effectively reducing the overall SAR value of the antenna device. Therefore, the antenna device provided by the embodiment of the present application has a lower SAR value.
  • the embodiment of the present application also provides an electronic device 200 , which may be, but not limited to, electronic devices such as mobile phones, tablet computers, and smart watches.
  • the electronic device 200 in this embodiment will be described by taking a mobile phone as an example.
  • the electronic device 200 may further include a casing 1001 and a display screen 1003 and an antenna device 1004 disposed on the casing 1001 .
  • the display screen is connected to the casing 1001
  • the antenna device 1004 is integrated into the casing 1001 .
  • the display screen generally includes a display panel, and may also include a circuit for responding to a touch operation on the display panel.
  • the display panel can be a liquid crystal display panel (Liquid Crystal Display, LCD), and in some embodiments, the display panel can also be a touch screen.
  • the casing 1001 includes a rear case 1010 and a middle frame 1011 , and the rear case 1010 and the display screen are respectively disposed on opposite sides of the middle frame 1011 .
  • the middle frame 1011 can be integrally formed, and structurally can be divided into a bearing portion 1012 and a frame 1013 surrounding the bearing portion 1012 .
  • the "carrying part 1012" and “frame 1013” are just named divisions for the convenience of expression, and the structure filled with oblique lines in the figure is only for distinguishing and marking, and does not represent the actual structure of the two. There may not be an obvious dividing line between them, or two or more components may be assembled together.
  • the naming of "carrying part 1012" and "frame 1013” should not limit the structure of the middle frame 1011.
  • the carrying part 1012 is used to carry part of the structure of the display screen, and can also be used to carry or install electronic components of the electronic device 200 such as the motherboard 1005, battery 1006, sensor module 1007, etc., and the frame 1013 is connected to the periphery of the carrying part 1012. Further, the frame 1013 is disposed around the outer periphery of the carrying portion 1012 and protrudes relative to the surface of the carrying portion 1012 so that the two together form a space for accommodating electronic components.
  • the display screen is covered on the frame 1013 , and the frame 1013 , the rear case 1010 and the display screen jointly form the appearance surface of the electronic device 200 .
  • the antenna device 1004 can be any antenna device 100 provided in the above embodiments, or can have any one or a combination of features of the antenna device 100 above. The embodiment will not be described in detail.
  • the antenna device 1004 is integrated into the housing 1001 , for example, the antenna device 1004 may be disposed on the middle frame 1011 or the rear case 1010 , which is not limited in this specification. Roughly the same as the aforementioned antenna device, the antenna device 100 of this embodiment may include a first radiator 12 and a second radiator 14, and both the first radiator 12 and the second radiator 14 may be disposed on the middle frame 1011 or the rear case 1010.
  • the frame 1013 is at least partially made of metal, and the antenna device 1004 is integrated into the frame 1013 .
  • the frame 1013 includes at least part of a metal structure, and the metal structure forms the radiator 10 .
  • the radiator 10 can be one of a flexible circuit board antenna radiator, a laser direct molding antenna radiator, and a printing direct molding antenna radiator.
  • the radiator 10 can also be a metal branch, It can be attached directly to the surface of 1013.
  • the frame 1013 may include a top frame 1017 and a bottom frame 1019, and the top frame 1017 and the bottom frame 1019 are respectively arranged at opposite ends of the bearing part 1012, so the top frame 1017 and the bottom frame 1019 are approximately mutually Deviate from.
  • the aforementioned radiator 10 may be integrated into at least one of the top frame 1017 and the bottom frame 1019 .
  • the top frame 1017 and the bottom frame 1019 are respectively located at the top and the bottom of the electronic device 200, therefore, when the radiator 10 can be integrated into at least one of the top frame 1017 and the bottom frame 1019, the antenna device 1004 can be used as the electronic device 200
  • the top antenna or/and the bottom antenna which produce a lower SAR value, are more beneficial to human health.
  • top and bottom refer to the normal use state of the electronic device 200, for example, when the length direction of the electronic device 200 is placed vertically and the display screen 1003 faces the user, the electronic device is relatively high from the ground. The far end is considered the "bottom” and the other end is considered the "top”.
  • FIG. 16 shows a schematic structural diagram of an antenna device 100 (the antenna device 100 of the embodiment shown in FIGS. 8-11 ) integrated in a casing 1011 in an embodiment of the present application.
  • the antenna device 100 is a flexible circuit board antenna attached to the bottom frame 1019 of the frame 1013 .
  • At least part of the structure of the radiator 10 extends along the structure of the bottom frame 1019 , and has portions bent along corners of the bottom frame 1019 (such as the first extension portion 125 and the second extension portion 143 ).
  • the antenna device includes a first radiator and a second radiator connected to the first radiator.
  • the first radiator includes a first connection end, a second connection end, and a feed point and a ground point arranged between the first connection end and the second connection end.
  • the feed point is used to connect the feed source, and the ground point and the second
  • the distance between the connection ends is greater than the distance between the feeding point and the second connection end.
  • the second radiator is electrically connected to the first connection end.
  • the first radiator is used to support the first frequency band, and the second radiator is used to support the second frequency band.
  • the first frequency band and the second frequency band are different; when the first radiator supports the first frequency band, the excitation current input through the feed point
  • the excitation current corresponding to the signal of the first frequency band distributed on the first radiator and the second radiator is shunted by the first radiator and the second radiator, which can improve the current distribution of the first radiator, so that to a certain extent
  • the current concentration of the antenna device is balanced, thereby effectively reducing the overall SAR value of the antenna device. Therefore, the antenna device provided by the embodiment of the present application has a lower SAR value.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请涉及一种天线装置及电子设备。天线装置包括第一辐射体和连接于第一辐射体的第二辐射体。所述第一辐射体包括第一连接端、第二连接端和设置于所述第一连接端与所述第二连接端之间的馈电点和接地点,所述馈电点用于连接馈源,所述接地点与所述第二连接端之间的距离大于所述馈电点与所述第二连接端之间的距离。所述第二辐射体与所述第一连接端电连接。所述第一辐射体用于支持第一频段,所述第二辐射体用于支持第二频段,所述第一频段和所述第二频段不相同;所述第一辐射体支持所述第一频段时,经由所述馈电点输入的激励电流分布在所述第一辐射体和所述第二辐射体上。电子设备包括壳体以及上述的天线装置,辐射体集成于壳体。上述的天线装置的辐射体的电流分布较为均衡,天线装置的SAR值较低。

Description

天线装置及电子设备
相关申请的交叉引用
本申请要求于2021年12月07日提交的申请号为202111484395.3的中国申请的优先权,其在此出于所有目的通过引用将其全部内容并入本文。
技术领域
本申请涉及移动通信技术领域,更具体地,涉及一种天线装置及电子设备。
背景技术
随着科技的发展进步,通信技术得到了飞速发展和长足的进步,而随着通信技术的提高,智能电子产品的普及提高到了一个前所未有的高度,越来越多的智能终端或电子设备成为人们生活中不可或缺的一部分,如智能手机、智能手环、智能手表、智能电视和电脑等。目前电子设备中通常设置通信天线,以满足用户的通信需求。随着人们对通信效率和种类的需求越来越高,目前电子设备中的天线的功率也越来越大,导致天线对人体的辐射作用也更大,这将对人体产生不利影响。
发明内容
本申请实施例提供一种天线装置及电子设备。
根据本申请的第一方面,本申请实施例提供一种天线装置,其包括第一辐射体和连接于第一辐射体的第二辐射体。所述第一辐射体包括第一连接端、第二连接端和设置于第一连接端与第二连接端之间的馈电点和接地点,馈电点用于连接馈源,接地点与第二连接端之间的距离大于馈电点与第二连接端之间的距离。第二辐射体与第一连接端电连接。第一辐射体用于支持第一频段,第二辐射体用于支持第二频段,第一频段和第二频段不相同;第一辐射体支持第一频段时,经由馈电点输入的激励电流分布在第一辐射体和第二辐射体上。
根据本申请的第二方面,本申请实施例提供一种电子设备,其包括壳体以及上述的天线装置,辐射体集成于壳体。
根据本申请的第三方面,本申请实施例提供一种电子设备,其包括边框以及上述的天线装置,边框的材质包括金属,天线装置集成于边框。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的天线装置的一种结构的示意图。
图2是本申请实施例提供的天线装置的另一种结构的示意图。
图3是本申请实施例提供的天线装置的又一种结构的示意图。
图4是本申请实施例提供的天线装置的应用实例的一种结构示意图。
图5是图4所示天线装置的S参数图。
图6-7是图4所示天线装置的电场分布仿真图。
图8-9是图4所示天线装置的辐射效率示意图。
图10-11是图4所示天线装置的body SAR仿真示意图。
图12是本申请实施例提供的天线装置的再一种结构的示意图。
图13是本申请实施例提供的天线装置的另一种结构的示意图。
图14是本申请实施例提供的电子设备的示意图。
图15是图14所示电子设备的内部结构示意图。
图16是本申请实施例提供的天线装置应用于电子设备的一种结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如在说明书及权利要求当中使用了某些词汇来指称特定组件,本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一组件。说明书及权利要求并不以名称的差异作为区分组件的方式,而是以组件在功能上的差异作为区分的准则。如在通篇说明书及权利要求当中所提及的“包括”为一开放式用语,故应解释成“包含但不限定于”;“大致”是指本领域技术人员能够在一定误差范围内解决技术问题,基本达到技术效果。
作为在本申请实施例中使用的“电子设备”包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(PSTN)、数字用户线路(DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”、“无线终端”、“电子装置”以及/或“电子设备”。电子设备的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器、游戏机或包括无线电电话收发器的其它电子装置。
电磁波能量吸收比(SAR,Specific Absorption Rate)通常称为吸收比值或吸收比率,是指电子设备电磁波能量吸收比值。具体含义为:在外电磁场的作用下,人体内将产生感应电磁场,由于人体各器官均为有耗介质,因此体内的电磁场将产生感应电流,导致人体能吸收和耗散电磁能量,生物剂量学中常用SAR来表征这一物理过程。SAR的意义为单位质量的人体组织所吸收或消耗的电磁功率,单位为W/kg,或者mw/g。表达公式为:SAR=σ|Ei|2/2ρ,其中:
Ei为细胞组织中的电场强度有效值,以V/m表示;
σ为人体组织的电导率,以S/m表示;
ρ为人体组织密度,以kg/m3表示。
人体组织中的SAR与该组织中的电场强度的平方成正比,并且由入射的电磁场的参数(如频率,强度,方向和电磁场的源)、目标物的相对位置、暴露的人体的典型组织的遗传特性、地面影响以及暴露的环境影响来确定。目前很多国家和地区都已经建立了人体暴露于电磁波环境下的安全标准,如国际通用的标准中,欧洲标准是每10克小于2.0w/kg,美国标准是每克小于1.6mw/g。
目前常用的降低SAR值的方法主要有以下几种:(1)直接降低天线的发射功率以降低人体对电磁波的吸收,但是降低天线的发射功率很难保证总辐射功率(total radiated power,TRP)的要求,TRP过低,通信质量也较低,通常无法满足市场上日益提高的通信要求;(2)分场景降低天线的发射功率,利用人体组织检测器件(SAR SENSOR),只在人体接近电子设备时降低发射功率,同样很难保证总辐射功率的要求;(3)利用功分器将天线的发射功率通过多个天线发射,但是目前电子设备的发展趋势是厚度越来越薄,导致天线空间却越来越小,很难给额外的天线提供空间;(4)在天线地板下方增加接地分枝使天线上的电流分布更加均匀,但是此方案只针对FPC类天线,不适用于金属边框的电子设备,具有很大的局限性。可见,截止目前,仍没有一种较好的方案可以能有效降低天线的SAR。
因此,针对上述问题,本申请发明人经过大量、反复的研究后发现,目前的电子设备的天线的SAR热点基本集中在辐射体上的电流分布较强的区域,也即,辐射体上电流密度越大的区域,对应产生的SAR值越大。对此,发明人提出本申请的天线装置以及具有该天线装置的电子设备。该天线装置包括第一辐射体和连接于第一辐射体的第二辐射体。第一辐射体包括第一连接端、第二连接端和设置于第一连接端与第二连接端之间的馈电点和接地点,馈电点用于连接馈源,接地点与第二连接端之间的距离大于馈电点与第二连接端之间的距离。第二辐射体与第一连接端电连接。第一辐射体用于支持第一频段,第二辐射体用于支持第二频段,第一频段和第二频段不相同;第一辐射体支持第一频段时,经由馈电点输入的激励电流分布在第一辐射体和第二辐射体上第一频段的信号所对应的激励电流被第一辐射体与第二辐射体分流,可以改善第一辐射体的电流分布,从而能够在一定程度上均衡天线装置的电流集中状况,进而有效降低天线装置总体的SAR值。所以,本申请实施例提供的天线装置具有较低的SAR值。
下面将结合具体实施方式以及示意性的附图来对本申请提出的天线装置及电子设备进行进一步阐述。
请参阅图1,本申请实施方式提供一种天线装置100,其包括辐射体10以及连接于辐射体10的馈电电路30。辐射体10用于接收以及发射射频信号,馈电电路30用于向辐射体10馈入激励电流,使辐射体10能够发生谐振以辐射射频信号。馈电电路30适于连接至电子设备的主板并可以受控于电子设备的主板。
辐射体10包括第一辐射体12以及第二辐射体14,第一辐射体12和第二辐射体14电连接。在本申请实施例中,第一辐射体12与第二辐射体14之间的电连接关系通过物理结构直接连接来实现,例如二者之间直接通过物理结构进行连接。为了简洁起见,本说明书中附图中的辐射体10(包括第一辐射体12和第二辐射体14等)被表示为简单的几何形状(如条状),然而,可以理解的是,辐射体10的各个部分实际上可具有一定的宽度;类似地,辐射体10的各个部分在图中呈现为较平直的结构,然而,在实际中,为了避开比如电子设备的麦克风孔、耳机插孔、受话器孔等部位,辐射体10的各个部分可以有一定的弯折或孔、缺口等特征,实际的辐射体10的具体形态不应受到本申请实施例所提供的附图的限制。
在本实施例中,包括第一辐射体12和第二辐射体14的辐射体10可以为一体成型的天线辐射体,第一辐射体12和第二辐射体14的材质可以相同,或者二者之间可以不具备明显的分界线,甚至在另一些实施例中,第一辐射体12和第二辐射体14的结构之间也可以具备较为明显的分界线。进一步地,在本申请实施例中,第一辐射体12可以为柔性电路板辐射体、激光直接成型辐射体、印刷直接成型辐射体或者金属辐射枝节中的任一种。第二辐射体14也可以为柔性电路板辐射体、激光直接成型辐射体、印刷直接成型辐射体或者金属枝节中的任一种,且第一辐射体12和第二辐射体14的材质或成型方式可以相同也可以不相同,本申请对此不作限制。
在本申请实施例中,第一辐射体12用于支持第一频段,其包括第一连接端122、第二连接端124、馈电点127及接地点129。第一连接端122、第二连接端124彼此间隔,例如,第一连接端122、第二连接端124分别位于第一辐射体12上相间隔的位置处(如分别位于第一辐射体12上的相对两端处)。馈电点127及接地点129设置于第一连接端122和第二连接端124之间。应当理解的是,在本说明书中所阐述的“一个元件A设置于另外两个元件B和C之间”,其“之间”的位置方案应包括端点(可参考数值范围含端点值的情况),如元件A设置于元件B和C之间,可以包括以下情况:元件A位于元件B和C二者之间的部位上;元件A位于元件B上;元件A位于元件B上。应当理解的是,本申请实施例所称某个元件包括“端”部,该“端”部可以理解为占据一定实体空间的部位,且该“端”部位于所属元件的末端区域,例如,该“端”部可以为该元件的伸展末端的一部分实体,如该“端”部具有一定的延展尺寸,其延展尺寸可以不大于该元件整体的延展尺寸的二分之一;又例如,该“端”部也可以为该元件的伸展末端的端面或端线等结构;甚至,该“端”部可以为该元件的某一个部分的端部,该元件的另一个部分也可以连接于该端部,使该端部不会具备明显的伸展末端或端线或端面等结构。
馈电点127用于连接馈电电路30中的馈源。馈电点127设置于第一辐射体12上相对靠近第二辐射体14的位置处,使馈电点127与第二连接端124的距离大于馈电点127与第一连接端122的距离。
接地点129与馈电点127相间隔,接地点129设置于第一辐射体12上相对靠近第二辐射体14的一端,接地点129与第二连接端124之间的距离大于馈电点129与第二连接端124之间的距离,也即接地点129比馈电点127更远离第二连接端124、接地点129比馈电点127更靠近第一连接端122。在一些示例中,接地点129可以设置于第一连接端122。
进一步地,在一些示例中,接地点129可以通过电感(图中未示出)接地。接地点129在第一辐射体12上的位置与馈电点127邻近,使第一辐射体12大致形成IFA(Inverted-F Antenna,IFA)天线结构,能够使第一辐射体12的阻抗匹配更佳,且其体积小、结构简单、制备成本更低。在一些实施例中,如图1所示的实施例,接地点129可以与馈电点127间隔设置于第一辐射体12上,但二者之间的距离被限定在指定的距离内,例如,接地点129可以与馈电点127之间的距离应小于或等于5mm,从而保证第一辐射体12由接地点129引入的电感量较小,使第一辐射体12的阻抗匹配性能更好。接地点129的具体接地形式可以通过接地弹片等结构实现,馈电点127的具体结构形式也可以通过馈电弹片等结构实现,本申请对此不作限制。
进一步地,第一辐射体12还可以包括第一主体部121,第一连接端122、第二连接端124分别位于第一主体部121的相对两端。在本实施例中,第一连接端122、第一主体部121以及第二连接端124大致沿第 一方向X依次排布设置,使第一辐射体12的第一连接端122、第一主体部121以及第二连接端124的结构大致呈沿第一方向X延展的直条状。馈电点127可以设置于第一主体部121或第一连接端122,当然,接地点129也可以设置于第一主体部121或第一连接端122。
第二辐射体14用于支持第二频段,其中第二频段与第一频段不相同。第二辐射体14连接于第一辐射体12的第一连接端122。在本实施例中,第二辐射体14不设接地点,馈电电路30被配置为经由馈电点127向第一辐射体12输入激励电流,以使第一辐射体12辐射第一频段的信号,第一辐射体12辐射第一频段的信号时,该激励电流分布在第一辐射体12和第二辐射体14上。因此,第一辐射体12上对应于第一频段的激励电流被第二辐射体14分流,能够在一定程度上均衡天线装置100的电流集中状况,使得天线装置100的SAR值相对较低。
在本实施例中,第二辐射体14自第一连接端122的延伸方向与第一辐射体12自第一连接端122的延伸方向不同。本说明书中,辐射体的“延伸方向”可以理解为该辐射体从第一连接端122延展的方向,其方向由辐射体的本身的结构限定,例如,第二辐射体14、第一连接端122、第一主体部121在第一方向依次排布设置,使第二辐射体14自第一连接端122的延伸方向与第一辐射体12自第一连接端122的延伸方向相反,也即如图1所示的实施例,第一辐射体12沿着第一方向X的正方向延伸、第二辐射体14沿着第一方向X的负方向延伸;又如,在其他的一些示例中,第二辐射体14自第一连接端122的延伸方向与第一辐射体12自第一连接端122的延伸方向之间夹角关系(如钝角)。进一步地,在本申请实施例中,第二辐射体14连接于第一辐射体12设有接地点129的一端(如第一连接端122),但第二辐射体14上不设接地点,也即,第二辐射体14本身不自行接地,其上的电流回流后经由第一辐射体12的接地点接地,这样能够保证第二辐射体14和第一辐射体12能够对激励电流起到电流分流作用而降低SAR值的作用。
应当理解的是,本申请的第一辐射体12和第二辐射体14的具体结构不应受到限制,只要保证第二辐射体14是连接于第一辐射体12的分支,并能够在保证第一辐射体12原始的辐射频段的基础上,第二辐射体14能够电性连接于馈电点127以实现电流的分流作用即可。例如,第一辐射体12或第二辐射体14延伸对应的长度以及经相应的弯折后,形成对应类型的天线。本实施例中,该类型可根据具体的应用场景选择设置,例如可选择为G型天线,也可以为平面倒F天线。又如,第一辐射体12可以包括多个辐射区,通过将多个辐射区的长度、结构形状设置为不同的参数,能够形成不同的电流路径,以形成能够与多个信号频段(例如824~894MHz、1710~2170MHz、2300MHz-2690MHz等)产生谐振的辐射体。应当理解的是,在本申请实施例中,“多个”应理解为两个或两个以上,除非有特别说明之处,下文将对第一辐射体12和第二辐射体14的工作频段进行一些说明。
在本申请实施例中,第一辐射体12可用于发送或/及接收至少一种工作频段的信号,该信号可以例如是长期演进(Long Term Evolution,LTE)信号。第一辐射体12辐射的信号的工作频段可以包括LTE的至少一种频段,例如B1频段(1.92GHz-2.17GHz)、B3频段(1.71GHz-1.88GHz)、B2频段(1.85GHz-1.99GHz)、B5频段(0.824GHz-0.894GHz)、B8频段(0.88GHz-0.96GHz)、B28频段(0.703GHz-0.803GHz)、B40频段(2.30GHz-2.40GHz)、B41频段(2.496GHz-2.690GHz)、B7频段(2.50GHz-2.69GHz)等等。第一辐射体12辐射的信号还可以是新空口(New Radio,NR)信号等,其工作频段还可以包括NR的至少一种频段, 例如N1频段(1.92GHz-2.17GHz)、N2频段(1.85GHz-1.99GHz)等等。在本申请的实施例中,第一辐射体12支持的频段可以覆盖至少一种上述的工作频段。例如,第一辐射体12支持的频段范围可以覆盖多个工作频段的频段范围,如围覆盖B1、B3/N3频段和B5/N5频段的频段范围,则第一辐射体12可以发送或/及接收B1、B3/N3频段或者B5/N5频段的信号。
第二辐射体14可用于发送或/及接收至少一种工作频段的信号,其工作频段可以包括LTE的至少一种频段,例如上述的B1频段、B2频段、B3频段、B7频段等。应理解的是,第一辐射体12和第二辐射体14可支持的信号的工作频段的数量可以是一个或多个。
在本申请实施例中,第二辐射体14所支持的第二频段与第一辐射体12所支持的第一频段不相同。应理解的是,在本申请实施例中,两个频段“不相同”指的是两个频段的频频率范围不完全相同,例如,两个频段的频率范围可以是完全不同(如二者没有交集),又如,两个频段的频率范围也可以部分重叠(例如,二者之间存在交集、其中一个频段的至少部分频率在另一个频段的范围内)。
在一些实施例中,第一频段可以低于第二频段。应理解的是,“第一频段低于第二频段”指的是第一频段的频率范围低于第二频段的频率范围,例如第一频段的最高频率低于第二频段的最低频率。在一些实施例中,第一频段可以为中频频段,例如,第一频段可以包括上述的B1、B3频段中的至少一种;第二频段可以为高频频段,例如,第二频段可以包括上述的B7频段。应理解的是,本申请实施例中的第一频段并不应被严格限制为中频频段,例如,第一频段可以覆盖中频频段,或者第一频段的中心频点在中频频段内(如第一频段的中心频点均在1.7-2.2GHz的频带范围内),或者第一频段与中频频段具有重叠的频段范围,这就意味着,第一频段的频段范围的上限值可以相对于中频频段的上限值略有偏移(如第一频段的频段范围的上限值可以稍大于或稍小于中频频段的上限值)、第一频段的频段范围的下限值可以相对于中频频段的下限值略有偏移(如第一频段的频段范围的下限值可以稍大于或稍小于中频频段的下限值)。
在一些实施例中,第一频段和第二频段的频段范围可以不完全相同,或者完全不相同。例如,第一频段和第二频段的频段范围可以完全没有重叠的部分,或者的频段范围可以部分重叠。
进一步地,在本申请实施例中,第一辐射体12还可以用于支持第三频段,第三频段可以低于第一频段。应理解的是,“第三频段低于第一频段”指的是第三频段的频率范围低于第一频段的频率范围,例如第三频段的最高频率低于第一频段的最低频率。在一些实施例中,第一频段可以为中频频段,例如,第一频段可以包括上述的B1、B3频段中的至少一种;第三频段可以为低频频段,例如,第三频段可以包括上述的B5、B8、B28频段中的至少一种。
进一步地,在本申请实施例中,第二辐射体14还可以用于支持第四频段,第四频段可以低于第二频段。“第四频段低于第二频段”指的是第四频段的频率范围低于第二频段的频率范围,例如第四频段的最高频率低于第二频段的最低频率。在一些实施例中,第四频段可以为中频频段,例如,第四频段可以包括上述的B1、B3频段中的至少一种。应理解的是,本申请实施例中的第四频段并不应被严格限制为中频频段,例如,第四频段可以覆盖中频频段,或者第四频段的中心频点在中频频段内(如第四频段的中心频点均在1.7-2.2GHz的频带范围内),或者第四频段与中频频段具有重叠的频段范围,这就意味着,第四频段的频段范围的上限值可以相对于中频频段的上限值略有偏移(如第四频段的频段范围的上限值可以稍大于或稍小于中频频段 的上限值)、第四频段的频段范围的下限值可以相对于中频频段的下限值略有偏移(如第四频段的频段范围的下限值可以稍大于或稍小于中频频段的下限值)。
进一步地,为了支持上述的第一频段,第一辐射体12被配置为工作于对应的谐振模式;为了支持上述的第二频段,第二辐射体14被配置为工作于对应的谐振模式。如第一辐射体12能够工作于第一谐振模式、第二辐射体14能够工作于第二谐振模式,其中,第一谐振模式表征第一辐射体12产生第一频段的谐振,第二谐振模式表征第二辐射体14产生第二频段的谐振。
具体而言,第一辐射体12上由电流激励而形成第一电流路径,例如,第一辐射体12上自馈电点127到第二连接端124形成该第一电流路径,第一电流路径的高次模用于形成第一谐振模式以辐射第一频段的信号。例如,第一辐射体12具有适宜的等效电长度,使第一电流路径能够形成第一频段的1/2波长模式的谐振,或形成第一频段的3/4波长模式的谐振,或者形成第一频段的5/8波长模式的谐振、或者形成第一频段的5/4波长模式的谐振(也即第一谐振模式),此处的第一频段可以为中频频段。进一步地,第一电流路径的基次模用于形成第三谐振模式,以使第一辐射体12能够辐射第三频段的信号。例如,第一辐射体12的等效电长度使第一电流路径能够形成第三频段的1/4波长模式的谐振(也即第三谐振模式),其中,第三频段可以为低频频段。
本申请实施例中,可以将第一辐射体12配置在适宜的等效电长度使第一辐射体12能够工作于上述的第一谐振模式,而不需要额外的阻抗元件。例如,可以将第一辐射体12的实体物理长度设计在适宜的范围内来配置第一辐射体12的等效电长度。具体而言,第一辐射体12的物理长度可以等于第一频段的波长的二分之一、四分之三或者五分之四等,从而第一谐振模式为对应的1/4波长模式、3/4波长模式或者3/4波长模式。又如,可以在第一辐射体12的回路中引入适宜的阻抗元件内来配置第一辐射体12的等效电长度,本说明书不再一一展开。
进一步地,本实施例中,为了保证第一辐射体12能够支持第一频段、第三频段,天线装置100还可以包括频段选择电路50,频段选择电路50的一端接地,另一端连接第一辐射体12,频段选择电路50被配置为利用不同的阻抗元件接入天线装置100的回路中,以使第一辐射体12可切换地辐射不同频段的射频信号。具体而言,频段选择电路50可以连接于第一辐射体12上自馈电点127至第二连接端124的部分(如第一主体部121),其用于调节第一辐射体12的等效电长度,以使第一辐射体12支持第一频段或第三频段。在本申请实施例中,频段选择电路50可以包括多个并联的调节电感L1,频段选择电路50被配置为将多个调节电感L1中的至少一个接入第一辐射体12的回路中,以调节第一辐射体12的等效电长度,使第一辐射体12支持第三频段的多个子频段,当第三频段为低频频段时,其频段范围可以为0.703GHz~0.894GHz,其子频段可以包括B5(上行频段0.824~0.849GHz,下行频段0.869~0.894GHz)、B8(上行频段0.880~0.915GHz,下行频段0.925~0.960GHz)、B28(上行频段0.703~0.748GHz,下行频段0.758~0.803GHz)。在本实施例中,第一辐射体12还可以通过频段选择电路50接地。
第二辐射体14上由激励电流激励而形成第二电流路径,例如,馈电点127到第二辐射体14的末端形成第二电流路径,第二电流路径的高次模用于形成第二谐振模式以辐射第二频段的信号。例如,第二辐射体14具有适宜的等效电长度,使第二电流路径能够形成第二频段的1/2波长模式的谐振,或形成第二频段 的3/4波长模式的谐振,或者形成第二频段的5/8波长模式的谐振、或者形成第二频段的5/4波长模式的谐振(也即第二谐振模式),此处的第二频段可以为高频频段。进一步地,第二电流路径的基次模用于形成第四谐振模式,第四谐振模式表征第二辐射体14能够产生第四频段的谐振,以使第二辐射体14能够辐射第四频段的信号。例如,第二辐射体14的等效电长度使第二电流路径能够形成第四频段的1/4波长模式的谐振(也即第四谐振模式),其中,第四频段可以为中频频段,或者第四频段的中心频点均在1.7-2.2GHz的频带范围内。进一步地,第三频段低于第一频段、且低于第四频段。
在本申请的一些实施例中,第四频段可以与第一频段可以大致相同,即第一辐射体12和第二辐射体14可用于发送或/及接收的信号的工作频段可以大致相同,此时来自馈源的激励电流被第一辐射体12和第二辐射体14分流,从而能够降低辐射体10上的电流峰值、优化其电场分布,从而利于降低天线装置100的SAR值。应理解的是,此时,第一辐射体12和第二辐射体14可支持的信号的工作频段的数量可以是一个或多个。例如第四频段与第一频段相同,二者可以均为1.7GHz~2GHz,该频段范围覆盖了B1/B3频段的频段范围,则第一辐射体12和第二辐射体14均可支持工作频段为B1/B3频段的信号。
例如,在一些示例中,第四频段和第一频段均为中频频段,经由馈电点127馈入的激励电流激励第一辐射体12产生第一频段的谐振时,第二辐射体14产生第四频段的谐振,以分散第一辐射体12上对应于第一频段的电流分布,因此,第一辐射体12和第二辐射体14能够共同辐射中频频段的信号,辐射效率较高的同时,中频频段所对应的激励电流被第一辐射体12与第二辐射体14分流,能够在一定程度上均衡辐射体10的电流集中状况,天线装置100总体的SAR值相对较低。
又如,在一些示例中,第四频段和第四频段的频段范围可以不完全相同,如第四频段的中心频点在第一频段的频段范围内,使第一辐射体12在辐射第一频段的信号时,第二辐射体14能够产生关于第一频段的谐振,二者能够共同辐射至少部分频段的信号(也即第一频段的信号),从而第一辐射体12上对应于第一频段的电流被第二辐射体14分流,可以改善第一辐射体12的电流分布,从而能够在一定程度上均衡天线装置100的电流集中状况,进而有效降低天线装置100总体的SAR值。应该理解的是,第四频段的中心频点在第一频段的频段范围内,可以存在以下的多种情况:第四频段的中心频点在中频频段内;或者第四频段的中心频点在第一频段内但不在中频频段内。在这些情况下,第一辐射体12在辐射第一频段的信号时,第二辐射体14能够产生关于第四频段的谐振,二者能够共同辐射至少部分频段的信号(也即第一频段的信号),第二辐射体14同样能够对第一辐射体12的电流进行分流。
本申请实施例中,可以将第二辐射体14配置在适宜的等效电长度使第二辐射体14能够工作于上述的第二谐振模式,而不需要额外的阻抗元件。例如,可以将第二辐射体14的实体物理长度设计在适宜的范围内来配置第二辐射体14的等效电长度。具体而言,第二辐射体14的物理长度可以等于第二频段的波长的二分之一、四分之三或者五分之四等,从而第二谐振模式为对应的1/2波长模式、3/4波长模式或者3/4波长模式。又如,可以在第二辐射体14的回路中引入适宜的阻抗元件内来配置第二辐射体14的等效电长度,本说明书不再一一展开。
本申请的上述实施例提供了一种可能的辐射体10的结构,在该结构中,第一辐射体12与第二辐射体14之间的电连接关系通过物理结构直接连接来实现,且第一辐射体12大致呈平直延伸的形态。本申请还将 提供另一些实施例,在另一些实施例中,第一辐射体12具有弯折的辐射结构,以适应其应用在电子设备时的复杂环境、保证足够的物理长度。应当理解的是,弯折的辐射结构是指该结构不是平直的结构,其至少有一个弯折转角部,此结构既可以增加天线装置100的物理长度,又可以减小辐射体10的覆盖面积。
请参阅图3,图3示出了这些实施例的辐射体10的一种可能的结构,辐射体10的第一辐射体12在上述实施例的基础之上,还可以包括第二主体部123以及连接部125。
在本实施例中,第二主体部123与第一主体部121在第二方向Y上相对间隔设置、且第二主体部123通过连接部125连接于第一主体部121。进一步地,第一主体部121与第二主体部123均大致呈平直的条状,二者均大致沿第一方向X设置。其中,第一方向X与第二方向Y相交,二者的夹角可以大于或者等于45度,在本实施例中第一方向X与第二方向Y可以彼此垂直,则第二主体部123与第二主体部123可以大致彼此平行设置。
连接部125设置于第一主体部121远离第二辐射体14的一端,并与第二连接端124连接。在图3所示的实施例中,连接部125大致呈条形,其大致沿第二方向Y延伸设置。连接部125连接于第一主体部121与第二主体部123之间,且第二主体部123与第一主体部121在第二方向Y上相对间隔设置时,使辐射体10的整体结构呈较为紧凑的“U”形排布结构,能够保证辐射体10具有足够的物理长度时,具有较小的覆盖面积。
在本实施例中,第二辐射体14大致呈条形,第二辐射体14与第一主体部121沿着第一方向X延伸设置,且第二辐射体14自第一连接端122的延伸方向与第一主体部121自第一连接端122的延伸方向相反。
进一步地,第二主体部123包括第一对应段1231以及第二对应段1233,第一对应段1231与第一主体部121相对间隔(例如二者大致彼此平行),第二对应段1233与第二辐射体14相对间隔(例如二者大致彼此平行)。在本实施例中,第二主体部123沿着第一方向X延伸的长度与第二辐射体14沿着第一方向X延伸的长度可以由各自所被配置的频段范围决定。例如,第二主体部123沿着第一方向X延伸的长度与第二辐射体14沿着第一方向X延伸的长度相同,或者第二主体部123沿着第一方向X延伸的长度大于第二辐射体14沿着第一方向X延伸的长度,或者第二主体部123沿着第一方向X延伸的长度小于第二辐射体14沿着第一方向X延伸的长度,其用于保证第一辐射体12具有足够的物理长度,使第一辐射体12能够工作在指定频段(如低频频段)。
在本实施例中,馈电电路30可以包括馈源32以及匹配电路34,匹配电路34连接于馈源32与第一主体部121之间,匹配电路34经馈电点127向第一辐射体12馈入电流信号,以使第一辐射体12辐射第一频段内的信号。
请参阅图4,在一些具体的示例中,本申请实施例所提供的辐射体10的形态可以为图4所示的边框天线的形态,可以看出,辐射体10为设有缺口的,不规则的、弯曲的形态,有利于避开比如电子设备的麦克风孔、耳机插孔、受话器孔等部位。尽管本实施例示出的辐射体10的具体形态和前文实施例的图中的辐射体10的形态有所不同,但是应理解的是,本实施例的辐射体10的部件、延伸、走向均涵盖了前文实施例的图中辐射体10的特征,且图4所示的辐射体10的具体结构不应理解为对本方案的限制。
请参阅图5,图5示出了传统的天线和图4所示实施例的天线装置100的结构的S参数示意图,从图中 可以看出,本申请所提供的天线装置100相对于传统的天线装置多产生了高频频段的谐振(谐振点4),该谐振点4对应于第二辐射体在第二频段(高频)上的谐振。进一步地,图中的谐振点3表示天线装置100在第三频段(低频)的谐振,谐振点5表示天线装置100在第一频段或第四频段(中频)上的谐振。
请参阅图6及图7,图6及图7示出了传统的天线和图4所示实施例的天线装置100的结构所模拟的电流分布图的两种灰度图,表示的是当天线装置100的谐振频率在B1/B3频段时辐射的电场强度。如图6及图7中的(A)图显示,传统的辐射体并不具备第二辐射体,其第一辐射体上的电流集中点较为明显,例如在第二主体部的大致中部位置存在较强的电流集中点,如图6及图7中的(B)图显示,由于本申请提供的辐射体10中采用第二辐射体14对第一辐射体12进行分流,原始高次模(B1/B3)的电流向第二辐射体14流动,使第一辐射体12上的电流集中点(如第二主体部123)的集中程度得到明显降低,可见,本申请实施例提供的天线装置100的第一辐射体12电流分布较均匀,进而天线装置100可实现降SAR功能。
请参阅图8及图9,图8及图9示出了传统的天线和本申请一些实施例提供的天线装置100的辐射效率示意图的两种灰度图,从图中可看到,相较于具备传统辐射体的天线,本申请实施例提供的天线装置100的天线效率并没有发生大的变化。所以天线装置100通过设置第一辐射体12和第二辐射体14,能够在需要降SAR值的频段时,第一辐射体12和第二辐射体14对激励电流进行分流,改善天线装置100的电场分布状况,使需要降SAR值的频段的电场最大辐射强度相对较低的同时,整体辐射的平均值并没有降低,天线装置100仍具备较高的辐射效率。
请参阅图10及图11,图10及图11示出了传统的天线和本申请一些实施例提供的天线装置100的每10克body SAR值,表示的是当天线装置100的谐振频率在B3频段(1.785GHz)时的SAR峰值。在本申请所提供的天线装置100的结构中,其至少包括第一辐射体12和第二辐射体14,其对应SAR峰值为0.655533W/ka,相较于普通的辐射体的天线结构,该SAR值的峰值降低了43%,可见,本申请实施例提供的天线装置100可实现显著的降SAR功能。
本说明书上述实施例提供的辐射体10中,第一辐射体12和第二辐射体14的延伸方向相反,从而起到均匀电场分布的作用。应当理解的是,在其他实施例中,第二辐射体14与第一主体部121可以沿不同的方向延伸。例如,请参阅图12,在图12所示的实施例中,第二辐射体14与第一辐射体12的第一主体部121之间的夹角A大于90度,能够在均匀电场分布得同时,避免电流抵消而削弱辐射效率。
在其他实施例中,第二辐射体14也可以是连接于第一主体部121的弯折结构,例如,第二辐射体14可以包括至少一个平直部以及至少一个弯折部。具体而言,请参阅图13,第二辐射体14可以包括第一平直部141、第二平直部143、第三平直部145以及弯折部147,第一平直部141连接于第一主体部121或第一连接端122,第二平直部143和第三平直部145分别设置于第一平直部141的相对两侧,并分别与第一平直部141相互间隔(如相互平行),弯折部147连接于第一平直部141、第二平直部143、第三平直部145远离第一主体部121的一端,此结构形成“E”型结构的第二辐射体14,能够满足第二辐射体14多频段的需求,既可以增加辐射体10的物理长度,使第二辐射体14能够用于支持低频频段、中频频段和高频频段,又可以减小辐射体10的覆盖面积。
本申请实施例提供的天线装置包括第一辐射体和连接于第一辐射体的第二辐射体。第一辐射体包括第 一连接端、第二连接端和设置于第一连接端与第二连接端之间的馈电点和接地点,馈电点用于连接馈源,接地点与第二连接端之间的距离大于馈电点与第二连接端之间的距离。第二辐射体与第一连接端电连接。第一辐射体用于支持第一频段,第二辐射体用于支持第二频段,第一频段和第二频段不相同;第一辐射体支持第一频段时,经由馈电点输入的激励电流分布在第一辐射体和第二辐射体上第一频段的信号所对应的激励电流被第一辐射体与第二辐射体分流,可以改善第一辐射体的电流分布,从而能够在一定程度上均衡天线装置的电流集中状况,进而有效降低天线装置总体的SAR值。所以,本申请实施例提供的天线装置具有较低的SAR值。
请参阅图14,本申请实施例还提供一种电子设备200,电子设备200可以为但不限于手机、平板电脑、智能手表等电子装置。本实施方式的电子设备200以手机为例进行说明。
在本申请的实施例中,电子设备200还可以包括壳体1001以及设置于壳体1001上的显示屏1003和天线装置1004。显示屏连接于壳体1001,天线装置1004集成于壳体1001。
在一些实施方式中,显示屏通常包括显示面板,也可以包括用于响应对显示面板进行触控操作的电路等。显示面板可以为一个液晶显示面板(Liquid Crystal Display,LCD),在一些实施例中,显示面板可以同时为触摸显示屏。
具体在本申请实施方式中,壳体1001包括后壳1010以及中框1011,后壳1010与显示屏分别设置于中框1011的相对两侧。
请参阅图15,中框1011可以为一体成型结构,其从结构上可以划分为承载部1012以及环绕于承载部1012的边框1013。应当理解的是,“承载部1012”与“边框1013”仅仅为便于表述而进行的命名划分,图中的结构填充斜线条仅为区分而标识,并不代表二者的实际结构,二者之间可以不具备明显的分界线,也可以为分别为两个或更多的部件组装于一起,“承载部1012”与“边框1013”的命名不应对中框1011的结构造成限制。承载部1012用于承载显示屏的一部分结构,也可以用于承载或安装电子设备200的电子部件如主板1005、电池1006、传感器模块1007等,边框1013连接于承载部1012的周缘。进一步地,边框1013环绕于承载部1012的外周设置,并相对于承载部1012的表面凸伸,使二者共同形成用于容纳电子部件的空间。在本实施例中,显示屏盖设于边框1013,边框1013、后壳1010以及显示屏共同形成电子设备200的外观表面。
在本实施例中,天线装置1004可以为以上实施例提供的任一种天线装置100,或者可以具备以上天线装置100的任意一个或多个特征的结合,相关的特征可以参考前述实施例,本实施例不再赘述。
在一些实施方式中,天线装置1004集成于壳体1001中,例如,天线装置1004可以设置于中框1011,也可以设置于后壳1010,本说明书对此不作限制。与前述的天线装置大致相同,本实施例的天线装置100可以包括第一辐射体12和第二辐射体14,第一辐射体12和第二辐射体14均可以设置于中框1011或者后壳1010。
进一步地,在图15所示的实施例中,边框1013至少部分由金属制成,天线装置1004集成于边框1013。在本实施例中,边框1013包括至少部分金属结构,金属结构形成辐射体10。如此,利用金属制的边框1013作为天线装置1004的辐射体10的一部分,有利于节省电子设备200内的空间,也为天线装置1004提供更大的净空区,有利于保证较高的辐射效率。在一些实施方式中,进一步地,辐射体10可以为柔性电路板天 线辐射体、激光直接成型天线辐射体、印刷直接成型天线辐射体中的一种,当然,辐射体10也可为金属枝节,其可以直接附着于1013的表面。进一步地,在本申请实施例中,边框1013可以包括顶部边框1017和底部边框1019,顶部边框1017和底部边框1019分别设置于承载部1012的相对两端,因此顶部边框1017和底部边框1019大致相互背离。上述的辐射体10可以集成于顶部边框1017和底部边框1019中的至少一者。在应用中,顶部边框1017和底部边框1019分别位于电子设备200的顶部和底部,因此,辐射体10可以集成于顶部边框1017和底部边框1019中的至少一者时,天线装置1004作为电子设备200的顶部天线或/及底部天线,其产生的SAR值较低,更有利于人体健康。应当理解的是,上述的“顶部”和“底部”是以电子设备200通常的使用状态作为参考,如,电子设备200的长度方向竖直放置且显示屏1003朝向用户时,电子设备离地面较远的一端视为“底部”,另一端则视为“顶部”。
请参阅图16,图16示出了本申请一个实施例中的天线装置100(如图8-11所示的实施例的天线装置100)集成在壳体1011的结构示意图。在该实施例中,天线装置100为柔性电路板天线,贴附于边框1013的底部边框1019。辐射体10的至少部分结构沿着底部边框1019的结构延伸,且具有顺着底部边框1019的转角弯折的部位(如第一延伸部125和第二延伸部143)。
本申请实施例提供的天线装置及电子设备中,该天线装置包括第一辐射体和连接于第一辐射体的第二辐射体。第一辐射体包括第一连接端、第二连接端和设置于第一连接端与第二连接端之间的馈电点和接地点,馈电点用于连接馈源,接地点与第二连接端之间的距离大于馈电点与第二连接端之间的距离。第二辐射体与第一连接端电连接。第一辐射体用于支持第一频段,第二辐射体用于支持第二频段,第一频段和第二频段不相同;第一辐射体支持第一频段时,经由馈电点输入的激励电流分布在第一辐射体和第二辐射体上第一频段的信号所对应的激励电流被第一辐射体与第二辐射体分流,可以改善第一辐射体的电流分布,从而能够在一定程度上均衡天线装置的电流集中状况,进而有效降低天线装置总体的SAR值。所以,本申请实施例提供的天线装置具有较低的SAR值。
需要说明的是,在本申请说明书中,当一个组件被认为是“设置于”另一个组件,它可以是连接于或者直接设置在另一个组件上,或者可能同时存在居中组件(也即二者间接连接)。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”或“其他的实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特定包含于本申请的至少一个实施例或示例中。在本说明书中,对术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特定可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种天线装置,其中,包括:
    第一辐射体,所述第一辐射体包括第一连接端、第二连接端和设置于所述第一连接端与所述第二连接端之间的馈电点和接地点,所述馈电点用于连接馈源,所述接地点与所述第二连接端之间的距离大于所述馈电点与所述第二连接端之间的距离;
    第二辐射体,所述第二辐射体与所述第一连接端电连接;
    所述第一辐射体用于支持第一频段,所述第二辐射体用于支持第二频段,所述第一频段和所述第二频段不相同;所述第一辐射体支持所述第一频段时,经由所述馈电点输入的激励电流分布在所述第一辐射体和所述第二辐射体上。
  2. 如权利要求1所述的天线装置,其中,所述接地点设置于所述第一连接端。
  3. 如权利要求1-2中任一项所述的天线装置,其中,所述第一辐射体包括第一主体部,所述第一连接端和所述第二连接端分别位于所述第一主体部的两端,所述馈电点设置于所述第一主体部或所述第一连接端,所述第二辐射体、所述第一连接端、所述第一主体部在第一方向依次排布设置。
  4. 如权利要求3所述的天线装置,其中,所述第一辐射体还包括第二主体部以及连接部,所述第二主体部与所述第一主体部在第二方向上相对间隔设置,所述连接部连接于所述第二连接端与第二主体部之间;所述第二方向垂直于所述第一方向。
  5. 如权利要求4所述的天线装置,其中,所述第二主体部包括第一对应段以及第二对应段,所述第一对应段与所述第一主体部相对间隔,所述第二对应段与所述第二辐射体相对间隔。
  6. 如权利要求1所述的天线装置,其中,所述第一辐射体具有弯折的辐射结构,所述第一辐射体包括第一主体部,所述第一连接端位于所述第一主体部的一端,所述馈电点及所述接地点均设置于所述第一主体部或均设置于所述第一连接端,所述第二辐射体、所述第一主体部沿不同的方向延伸设置。
  7. 如权利要求6所述的天线装置,其中,所述第二辐射体与所述第一主体部之间的夹角大于90度。
  8. 如权利要求1-7中任一项所述的天线装置,其中,所述第一辐射体上由所述电流激励而形成第一电流路径,所述第一电流路径的高次模用于形成第一谐振模式,所述第一谐振模式表征所述第一辐射体产生所述第一频段的谐振;
    所述馈电点到所述第二辐射体的末端形成第二电流路径,所述第二电流路径用于形成第二谐振模式,所述第二谐振模式表征所述第二辐射体产生所述第二频段的谐振。
  9. 如权利要求8所述的天线装置,其中,所述第一电流路径的基次模用于形成区别于第一谐振模式的第三谐振模式,所述第三谐振模式表征所述第一辐射体产生第三频段的谐振,所述第三频段低于所述第一频段。
  10. 如权利要求9所述的天线装置,其中,所述第二电流路径的高次模用于形成所述第二谐振模式、基次模用于形成区别于所述第二谐振模式的第四谐振模式,所述第四谐振模式表征所述第二辐射体产生第四频段的谐振,所述第四频段低于所述第二频段。
  11. 如权利要求10所述的天线装置,其中,所述第一频段、所述第四频段为中频频段,所述激励电流激励所述第一辐射体产生所述第一频段的谐振时,所述第二辐射体产生所述第四频段的谐振,以分散所述第一辐射体上对应于所述第一频段的电流分布。
  12. 如权利要求10-11中任一项所述的天线装置,其中,所述第三频段低于所述第一频段、且低于所述第四频段;或者,
    所述第一频段、所述第四频段为中频频段,所述第三频段为低频频段;或者,
    所述第一频段的中心频点在中频频段的频段范围内;或者,
    所述第一频段的中心频点、所述第四频段的中心频点均在1.7-2.2GHz的频带范围内。
  13. 如权利要求8-12中任一项所述的天线装置,其中,所述第二辐射体的等效电长度使所述第二辐射体能够工作于所述第二谐振模式。
  14. 如权利要求9所述的天线装置,其中,所述天线装置还包括连接于所述第一辐射体的频段选择电路,所述频段选择电路被配置为调节所述第一辐射体的等效电长度,以使所述第一辐射体支持所述第一频段或所述第三频段。
  15. 如权利要求14所述的天线装置,其中,所述频段选择电路包括多个并联的调节电感,所述频段选择电路被配置为将多个所述调节电感中的至少一个接入所述第一辐射体的回路中,以调节所述第一辐射体的等效电长度,使所述第一辐射体支持所述第三频段的多个子频段。
  16. 如权利要求1所述的天线装置,其中,所述馈电点与所述第二连接端的距离大于所述馈电点与所述第一连接端的距离;所述接地点与所述第二连接端的距离大于所述接地点与所述第一连接端的距离。
  17. 如权利要求1~16中任一项所述的天线装置,其中,所述第一辐射体为柔性电路板辐射体、激光直接成型辐射体、印刷直接成型辐射体或者金属辐射枝节中的任一种;所述第二辐射体为柔性电路板辐射体、激光直接成型辐射体、印刷直接成型辐射体或者金属枝节中的任一种。
  18. 一种电子设备,其中,包括壳体以及权利要求1至17中任一项所述的天线装置,所述第一辐射体及所述第二辐射体集成于所述壳体。
  19. 如权利要求18所述的电子设备,其中,所述壳体包括承载部以及连接于所述承载部的顶部边框和底部边框,所述顶部边框和所述底部边框分别位于所述承载部的相对两端,所述第一辐射体及所述第二辐射体集成于所述顶部边框。
  20. 一种电子设备,其中,包括边框以及权利要求1至17中任一项所述的天线装置,所述边框的材质包括金属,所述天线装置集成于所述边框。
PCT/CN2022/132626 2021-12-07 2022-11-17 天线装置及电子设备 WO2023103736A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111484395.3 2021-12-07
CN202111484395.3A CN116315598A (zh) 2021-12-07 2021-12-07 天线装置及电子设备

Publications (1)

Publication Number Publication Date
WO2023103736A1 true WO2023103736A1 (zh) 2023-06-15

Family

ID=86729591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132626 WO2023103736A1 (zh) 2021-12-07 2022-11-17 天线装置及电子设备

Country Status (2)

Country Link
CN (1) CN116315598A (zh)
WO (1) WO2023103736A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439604A1 (en) * 2003-01-15 2004-07-21 Filtronic LK Oy Multiband antenna
CN108631040A (zh) * 2018-03-28 2018-10-09 广东欧珀移动通信有限公司 电子装置
CN109687151A (zh) * 2018-12-26 2019-04-26 维沃移动通信有限公司 一种天线结构及移动终端
CN111244616A (zh) * 2020-03-27 2020-06-05 维沃移动通信有限公司 一种天线结构及电子设备
CN112467387A (zh) * 2020-11-20 2021-03-09 Oppo广东移动通信有限公司 天线装置及电子设备
CN214254714U (zh) * 2021-03-15 2021-09-21 维沃移动通信有限公司 天线组件和电子设备
CN214378835U (zh) * 2020-12-04 2021-10-08 瑞声科技(新加坡)有限公司 天线模组及移动终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439604A1 (en) * 2003-01-15 2004-07-21 Filtronic LK Oy Multiband antenna
CN108631040A (zh) * 2018-03-28 2018-10-09 广东欧珀移动通信有限公司 电子装置
CN109687151A (zh) * 2018-12-26 2019-04-26 维沃移动通信有限公司 一种天线结构及移动终端
CN111244616A (zh) * 2020-03-27 2020-06-05 维沃移动通信有限公司 一种天线结构及电子设备
CN112467387A (zh) * 2020-11-20 2021-03-09 Oppo广东移动通信有限公司 天线装置及电子设备
CN214378835U (zh) * 2020-12-04 2021-10-08 瑞声科技(新加坡)有限公司 天线模组及移动终端
CN214254714U (zh) * 2021-03-15 2021-09-21 维沃移动通信有限公司 天线组件和电子设备

Also Published As

Publication number Publication date
CN116315598A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US9577331B2 (en) Wireless communication device
EP1482646B1 (en) Portable terminal having tuner for changing radiation pattern
US6204817B1 (en) Radio communication device and an antenna system
JP3713476B2 (ja) 移動通信端末
US20230318180A1 (en) Antenna Structure and Electronic Device
WO2022111053A1 (zh) 电子设备及其壳体
CN104425880A (zh) 移动装置
CN112542678A (zh) 电子设备
WO2022111054A1 (zh) 天线装置、壳体及电子设备
WO2023103735A1 (zh) 天线装置及电子设备
US20230246335A1 (en) Antenna apparatus and electronic device
WO2024051743A1 (zh) 天线装置和电子设备
WO2023103736A1 (zh) 天线装置及电子设备
WO2022111064A1 (zh) 电子设备
US11405060B2 (en) Electronic device
WO2024098959A1 (zh) 天线装置及电子设备
WO2024098969A1 (zh) 天线装置及电子设备
JP2007043558A (ja) 携帯通信端末装置
WO2022247493A1 (zh) 天线装置及电子设备
RU2523443C2 (ru) Антенное устройство для портативного беспроводного терминала
CN112952341A (zh) 行动装置和可拆卸天线结构
CN114156633B (zh) 低sar天线装置及电子设备
WO2024041357A1 (zh) 一种天线系统及电子设备
CN218215653U (zh) 终端设备
EP4350883A1 (en) Microstrip antenna and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903159

Country of ref document: EP

Kind code of ref document: A1