WO2024098959A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2024098959A1
WO2024098959A1 PCT/CN2023/119150 CN2023119150W WO2024098959A1 WO 2024098959 A1 WO2024098959 A1 WO 2024098959A1 CN 2023119150 W CN2023119150 W CN 2023119150W WO 2024098959 A1 WO2024098959 A1 WO 2024098959A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
frequency band
antenna device
point
frame
Prior art date
Application number
PCT/CN2023/119150
Other languages
English (en)
French (fr)
Inventor
周林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024098959A1 publication Critical patent/WO2024098959A1/zh

Links

Definitions

  • the present application relates to the field of mobile communication technology, and more specifically, to an antenna device and an electronic device.
  • Embodiments of the present application provide an antenna device and an electronic device.
  • an embodiment of the present application provides an antenna device, which includes a feed source and a radiator, and the radiator is used to support the first frequency band of the fifth generation mobile communication technology (5th Generation Mobile Communication Technology, 5G) signal.
  • the radiator is provided with a feeding point and a first grounding point, and the feeding point is connected to the feed source; the first grounding point is arranged at an interval from the feeding point.
  • the portion of the radiator from the feeding point to the first grounding point forms a designated current path, and the ring mode resonance mode of the designated current path is used to excite the radiator to generate resonance in the first frequency band.
  • an embodiment of the present application provides an electronic device, which includes a housing and the above-mentioned antenna device, and a radiator is arranged in the housing.
  • FIG. 1 is a schematic diagram of a structure of an antenna device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another structure of the antenna device of the embodiment of FIG. 1 .
  • FIG. 3 is a schematic diagram of another structure of the antenna device of the embodiment of FIG. 1 .
  • FIG. 4 is a schematic diagram of another structure of the antenna device of the embodiment of FIG. 1 .
  • FIG. 5 is a schematic structural diagram of an application example of the antenna device provided in an embodiment of the present application.
  • FIG. 6 is an S-parameter diagram of the antenna device shown in FIG. 5 .
  • FIG. 7 is a schematic diagram of a simulation of the radiation efficiency of the antenna device shown in FIG. 5 .
  • FIG. 8 is a schematic diagram of an actual test of the radiation efficiency of the antenna device shown in FIG. 5 .
  • FIG. 9 is a schematic diagram of electric field distribution of the antenna device shown in FIG. 5 when supporting LTE signals.
  • FIG10 is a schematic diagram of the electric field distribution of the antenna device shown in FIG5 when supporting the 5G signal N78 frequency band.
  • FIG11 is a schematic diagram of SAR hotspot distribution of the antenna device shown in FIG5 when supporting the 5G signal N78 frequency band.
  • FIG. 12 is a schematic diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the internal structure of the electronic device shown in FIG. 13 .
  • electronic devices include, but are not limited to, devices configured to receive/send communication signals via a wireline connection (such as via a public switched telephone network (PSTN), a digital subscriber line (DSL), a digital cable, a direct cable connection, and/or another data connection/network) and/or via a wireless interface (for example, for a cellular network, a wireless local area network (WLAN), a digital television network such as a DVB-H network, a satellite network, an AM-FM broadcast transmitter, and/or another communication terminal).
  • a wireline connection such as via a public switched telephone network (PSTN), a digital subscriber line (DSL), a digital cable, a direct cable connection, and/or another data connection/network
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • WLAN wireless local area network
  • digital television network such as a DVB-H network
  • satellite network such as a satellite network
  • AM-FM broadcast transmitter and/or another communication terminal
  • Communication terminals configured to communicate via a wireless interface may be referred to as “wireless communication terminals", “wireless terminals”, “electronic devices” and/or “electronic devices”.
  • electronic devices include, but are not limited to satellite or cellular phones; personal communication system (PCS) terminals that may combine cellular radio telephones with data processing, fax, and data communication capabilities; PDAs that may include radio telephones, pagers, Internet/intranet access, web browsers, notepads, calendars, and/or global positioning system (GPS) receivers; and conventional laptop and/or palmtop computers.
  • PCS personal communication system
  • PDAs may include radio telephones, pagers, Internet/intranet access, web browsers, notepads, calendars, and/or global positioning system (GPS) receivers
  • GPS global positioning system
  • the Specific Absorption Rate is usually called the absorption ratio or absorption rate, which refers to the electromagnetic wave energy absorption ratio of electronic equipment.
  • the specific meaning is: under the action of the external electromagnetic field, an induced electromagnetic field will be generated in the human body. Since all organs of the human body are lossy media, the electromagnetic field in the body will generate induced currents, causing the human body to absorb and dissipate electromagnetic energy. SAR is often used in biodosimetry to characterize this physical process.
  • the meaning of SAR is the electromagnetic power absorbed or consumed by unit mass of human tissue, in units of W/kg, or mw/g.
  • Ei is the effective value of the electric field intensity in the cell tissue, expressed in V/m;
  • is the conductivity of human tissue, expressed in S/m
  • is the human tissue density, expressed in kg/m3.
  • SAR in human tissue is proportional to the square of the electric field strength in the tissue, and is determined by the parameters of the incident electromagnetic field (such as frequency, strength, direction and source of the electromagnetic field), the relative position of the target, the genetic characteristics of typical tissues of the exposed human body, ground effects, and environmental effects of exposure.
  • the European standard is less than 2.0w/kg per 10g
  • the US standard is less than 1.6mw/g per gram.
  • the commonly used methods to reduce the SAR value are mainly the following: (1) directly reducing the antenna transmission power to reduce the absorption of electromagnetic waves by the human body, but it is difficult to ensure the total radiated power (TRP) requirement by reducing the antenna transmission power.
  • TRP total radiated power
  • the communication quality is also low, which usually cannot meet the increasingly high communication requirements in the market; (2) reducing the antenna transmission power in different scenarios, using human tissue detection devices (SAR SENSOR), only reducing the transmission power when the human body is close to the electronic device, it is also difficult to ensure the total radiated power requirement; (3) using a power divider to transmit the antenna transmission power through multiple antennas, but the current development trend of electronic devices is that the thickness is getting thinner and thinner, resulting in smaller and smaller antenna space, and it is difficult to provide space for additional antennas; (4) adding a grounding branch under the antenna floor to make the current distribution on the antenna more uniform, but this solution is only for FPC type antennas, not for electronic devices with metal frames, and has great limitations. It can be seen that up to now, there is still no better solution that can effectively reduce the SAR of the antenna.
  • the inventors of the present application have found after extensive and repeated research that the SAR hotspots of the antennas of current electronic devices are basically concentrated in the areas with strong current distribution on the radiator, that is, the larger the current density on the radiator, the larger the corresponding SAR value.
  • the inventors propose the antenna device of the present application and an electronic device having the antenna device.
  • the radiator of the antenna device includes a feeding circuit and a radiator, and the radiator is used to support the first frequency band of the fifth generation mobile communication technology (5th Generation Mobile Communication Technology, 5G) signal.
  • the radiator is provided with a feeding point and a first grounding point, and the feeding point is connected to the feeding circuit; the first grounding point is spaced apart from the feeding point.
  • the portion of the radiator from the feeding point to the first grounding point forms a designated current path, and the ring mode resonance mode of the designated current path is used to excite the radiator to produce resonance in the first frequency band. Therefore, the designated current path on the antenna device is located between the interval-set feeding point and the first grounding point, and its ring mode resonance mode is used to support the first frequency band.
  • the radiator When the radiator generates ring mode resonance, the first grounding point serves as the return ground portion of the ring mode resonance mode. Therefore, the radiator can form two secondary current strong points at the feeding point (or near the feeding point) and the first grounding point (or near the first grounding point), respectively, compared with the traditional radiator's current extremely strong single point.
  • the radiator of the embodiment of the present application can disperse the current strong point to form two separated current secondary strong points, and the single point peak value of the current is reduced, which can improve the current distribution of the radiator, thereby improving the current concentration of the antenna device as a whole when supporting 5G signals to a certain extent, thereby effectively reducing the overall SAR value of the antenna device. Therefore, the antenna device provided by the embodiment of the present application has a lower SAR value when supporting 5G signals.
  • an embodiment of the present application provides an antenna device 100, which includes a radiator 10 and a feed source 30 connected to the radiator 10.
  • the radiator 10 is used to receive and transmit radio frequency signals
  • the feed source 30 is used to feed an excitation current to the radiator 10 so that the radiator 10 can resonate to radiate radio frequency signals.
  • the feed source 30 is suitable for being connected to a mainboard of an electronic device and can be controlled by the mainboard of the electronic device.
  • the radiator 10 is used to send or/and receive a signal of at least one working frequency band, which signal may include, for example, a fifth generation mobile communication technology (5th Generation Mobile Communication Technology, 5G) new radio (New Radio, NR) signal, and its working frequency band may also include at least one frequency band of 5G NR, such as N1 band (1.92GHz-2.17GHz), N2 band (1.85GHz-1.99GHz), N38 band (2.570GHz-2.620GHz), N41 band (2.496GHz-2.690GHz), N78 band (3.30GHz-3.80GHz), etc.
  • 5G fifth generation mobile communication technology
  • 5G new radio
  • the radiator 10 is provided with a feeding point 127 and a first grounding point 128, and the feeding point 127 and the first grounding point 128 are arranged at intervals from each other, for example, the feeding point 127 and the first grounding point 128 can be respectively located at opposite ends of the radiator 10.
  • the radiator 10 can be directly connected to the feed source 30 through the feeding point 127. It should be understood that although different graphics are used in FIG1 to illustrate the structure of the radiator 10, it is made for the convenience of explaining the scheme and should not be regarded as a limitation on the structure of the radiator 10 provided in the present application.
  • the radiator 10 can be any one of a flexible circuit board radiator, a laser direct forming radiator, a printed direct forming radiator, or a metal radiation branch (such as a metal inlay on the structure), and a metal frame antenna body.
  • the radiator 10 roughly forms an IFA (Inverted-F Antenna, IFA) antenna structure, which can make the impedance matching of the radiator 10 better, and it has a small size, simple structure, and lower preparation cost.
  • IFA Inverted-F Antenna
  • the radiator 10 is used to support the first frequency band of the 5G signal.
  • the feed point 127 is used to connect the feed source 30, which can be understood as the entire radio frequency (RF) circuit connected to the RF front end of the radiator 10.
  • the feed source 30 may include a radio frequency transceiver, a low noise power amplifier (Low Noise Amplifier, LNA), a power amplifier (Power Amplifier, PA), a filter and other devices, wherein the radio frequency transceiver is used to control the signal (it can also be controlled by the processor in the electronic device).
  • the radio frequency transceiver can be integrated with other devices (such as LNA, PA, filter, etc.) to form a chip module, which can be formed on the motherboard of the electronic device.
  • the feed source 30 feeds an excitation current to the radiator 10 through the feeding point, so that the radiator 10 can radiate 5G signals in the first frequency band.
  • the portion of the radiator 10 from the feeding point 127 to the first grounding point 128 forms a designated current path, and the ring mode resonance mode of the designated current path is used to excite the radiator to generate resonance in the first frequency band.
  • the 1/2 wavelength ring mode resonance mode of the designated current path is used to excite the radiator to generate resonance in the first frequency band.
  • the number of working frequency bands of 5G signals that the radiator 10 can support can be one or more.
  • the first frequency band can be a frequency band range of 2.496GHz-2.69GHz and a frequency band range of 3.3DHz-3.80GHz, which covers the frequency band range of N41 and N78 bands.
  • the radiator 10 can support signals with working frequency bands of N41 and N78 bands.
  • the first frequency band may be a high frequency band, for example, the first frequency band may include at least one of the above-mentioned N41, N38, and N78 frequency bands, or the center frequency of the first frequency band (or the center frequency of at least one sub-band of the first frequency band) is within the frequency band range of 2.496 GHz-2.690 GHz or 3.30 GHz-3.80 GHz.
  • the first frequency band mentioned in the present application should not be strictly limited to the high frequency band, for example, the first frequency band may cover the high frequency band, or the center frequency of the first frequency band is within the frequency band range of the high frequency band, or the first frequency band and the high frequency band have overlapping frequency bands, which means that the upper limit value of the frequency band range of the first frequency band may be slightly offset relative to the upper limit value of the high frequency band (such as the upper limit value of the frequency band range of the first frequency band may be slightly greater than or slightly less than the upper limit value of the high frequency band), and the lower limit value of the frequency band range of the first frequency band may be slightly offset relative to the lower limit value of the high frequency band (such as the lower limit value of the frequency band range of the first frequency band may be slightly greater than or slightly less than the lower limit value of the high frequency band).
  • the upper limit value of the frequency band range of the first frequency band may be slightly offset relative to the upper limit value of the high frequency band (such as the upper limit value of the frequency band range of the first frequency band may
  • the signal radiated by the radiator 10 may also include a Long Term Evolution (LTE) signal.
  • the working frequency band of the signal radiated by the radiator 10 may include at least one frequency band of LTE, such as a low frequency band (LB band), and the sub-bands of the LB band may include: B5 band (0.824GHz-0.894GHz), B8 band (0.88GHz-0.96GHz), B20 band (0.791GHz-0.862GHz), and B28 band (0.703GHz-0.803GHz); for example, a medium frequency band (MB band), and the sub-bands of the MB band may include: B1 band (1.92GHz-2.17GHz), B3 band (1.71GHz-1.88GHz), and B2 band (1.85GHz-1.99GHz); for example, a high frequency band (HB band), and the sub-bands of the HB band may include: B40 band (2.30GHz-2.40GHz), B41 band (2.496GHz-2.690GHz), and the like.
  • B5 band 0.824GHz-0.894GHz
  • the antenna device 100 provided in this embodiment can simultaneously support the fourth generation mobile communication technology (4th Generation Mobile Communication Technology, 4G) signal and the 5G signal, and the SAR value of the radiated 5G signal is relatively low, which can solve the problem of high SAR value corresponding to the 5G signal in related technologies.
  • 4G Fourth Generation Mobile Communication Technology
  • the radiator 10 is also used to support the second frequency band and the third frequency band of the LTE signal, and the second frequency band is different from the third frequency band.
  • the two frequency bands are "different" means that the frequency ranges of the two frequency bands are not completely the same.
  • the frequency ranges of the two frequency bands can be completely different (such as there is no intersection between the two), and for another example, the frequency ranges of the two frequency bands can also partially overlap (for example, there is an intersection between the two, and at least part of the frequency of one frequency band is within the range of the other frequency band).
  • the center frequency of the second frequency band is higher than the center frequency of the third frequency band.
  • the center frequency of the sub-bands of the second frequency band can all be higher than the center frequency of the sub-bands of the third frequency band.
  • the second frequency band may be a high frequency band, or the center frequency of the second frequency band may fall within the frequency band range of 2.30 GHz to 3.690 GHz, for example, the center frequency of a sub-band of the second frequency band may fall within the frequency band range of 2.30 GHz to 2.40 GHz (B40 band) or/and within the frequency band range of 2.496 GHz to 2.690 GHz (B41 band);
  • the third frequency band may be a medium frequency band, or the center frequency of the third frequency band may fall within the frequency band range of 1.71 GHz to 2.17 GHz, for example, the center frequency of a sub-band of the third frequency band may fall within the frequency band range of 1.92 GHz to 2.17 GHz (B1 band) or/and within the frequency band range of 1.71 GHz to 1.88 GHz (B3 band).
  • the radiator 10 in this embodiment can be used to support the intermediate frequency band and the high frequency band (MHB) of the LTE signal.
  • the low-order mode of the designated current path is used to excite the radiator to generate resonance in the second frequency band or the third frequency band.
  • the radiator 10 can have a suitable equivalent electrical length so that the designated current path can form a resonance of the 1/4 wavelength mode of the second frequency band, and the second frequency band here can be the high frequency band of the LTE signal; or, the radiator 10 can have a suitable equivalent electrical length so that the designated current path can form a resonance of the 1/4 wavelength mode of the third frequency band, and the third frequency band here can be the intermediate frequency band of the LTE signal.
  • the equivalent electrical length of the radiator 10 can be adjusted by its own physical length, or by connecting to a tuning circuit and introducing different impedance elements in the circuit for adjustment, so the antenna device 100 of this embodiment is a multi-frequency antenna.
  • the antenna device 100 may also include a tuning circuit 50.
  • One end of the tuning circuit 50 is grounded, and the other end is connected to the radiator 10.
  • the tuning circuit 50 is used to adjust the frequency deviation of the antenna device 100.
  • the tuning circuit 50 can also be configured to use different impedance elements to be connected to the loop of the radiator 10, so that the radiator 10 can switchably radiate radio frequency signals of different frequency bands.
  • the tuning circuit 50 can be directly connected to a designated position of the radiator 10. Specifically in the embodiment shown in FIG. 2 , the first grounding point 128 is grounded through the tuning circuit 50.
  • the tuning circuit 50 includes a switch module 52 and at least two tuning branches 54, the at least two tuning branches 54 are connected in parallel, and the switch module 52 is connected to the at least two tuning branches 54.
  • the tuning circuit 50 is configured to selectively connect at least one of the at least two tuning branches 54 to the loop of the radiator 10 through the switch module 52, so that the radiator 10 can switchably radiate signals of the second frequency band or the third frequency band, or sub-frequency bands of these frequency bands based on the excitation current.
  • At least two tuning branches 54 include a first branch 541 and a second branch 543, one end of the first branch 541 is grounded and the other end is connected to the radiator 10, and the second branch 543 is connected in parallel with the first branch 541.
  • the first branch 541 and the second branch 543 are provided with impedance elements with different impedance values, so as to change the impedance of the loop when connected to the loop of the radiator 10, so as to adjust the radiator 10 to a suitable impedance matching to radiate the signal of the required frequency band.
  • the first branch 541 includes a first capacitor C1
  • the second branch 543 includes a first inductor L1.
  • the first capacitor C1 is connected in parallel with the first inductor L1, and both are controlled by the switch module 52.
  • the switch module 52 selectively connects the first capacitor C1 or/and the first inductor L1 to the loop of the radiator 10.
  • the capacitance value of the first capacitor C1 and the inductance of the first inductor L1 can be set according to the specific working frequency band of the radiator 10, and the embodiment of the present application is not limited to this.
  • At least two tuning branches 54 further include a third branch 545 and a fourth branch 547.
  • One end of the third branch 545 is grounded and the other end is connected to the radiator 10.
  • the fourth branch 547 is connected in parallel with the third branch 545.
  • the fourth branch 547, the third branch 545, and the second branch 543 are connected in parallel with the first branch 541 and are all connected to the switch module 52.
  • the fourth branch 547 and the third branch 545 are provided with impedance elements with different impedance values to change the impedance of the loop when connected to the loop of the radiator 10, so as to adjust the radiator 10 to a suitable impedance matching to radiate the signal of the required frequency band.
  • the third branch 545 includes a second inductor L2, and the fourth branch 547 includes a third inductor L3.
  • the third inductor L3, the second inductor L2, the first capacitor C1, and the first inductor L1 are connected in parallel and are all controlled by the switch module 52.
  • the inductances of the first inductor L1, the second inductor L2, and the third inductor L3 are different.
  • the switch module 52 selectively switches the first capacitor C1, the first inductor L1, the third inductor L3, and the second inductor L2 to At least one of them is connected to the loop of the radiator 10 to obtain the signal of the required frequency band.
  • the inductance of the first inductor L1, the second inductor L2, and the third inductor L3 can be set according to the specific working frequency band of the radiator 10, and the embodiment of the present application is not limited to this.
  • the switch module 52 is connected to the tuning branch 54, and is used to control the on and off of each tuning branch 54 in the path where the radiator 10 is grounded through the first grounding point 128.
  • the switch module 52 can be connected between the tuning branch 54 and the radiator 10, or between the tuning branch 54 and the reference ground terminal.
  • the switch module 52 includes at least two switches, at least two switches are arranged in a one-to-one correspondence with at least two tuning branches 54, and each switch is connected to a corresponding tuning branch 54 to control the on and off of the grounding path of the radiator 10 through the first grounding point 128 and the corresponding tuning branch 54.
  • each switch can be a single-pole single-throw switch or an electronic switch tube, etc.
  • the electronic switch tube can be a MOS tube, a transistor, etc.
  • the specific components of the switch module 52 are not further limited, and it can meet the on and off control conditions of the grounding paths corresponding to the multiple tuning branches 54.
  • the above-mentioned antenna device 100 is equipped with a tuning circuit 50 for the radiator 10, and at least one of the at least two tuning branches 54 is connected to the loop of the radiator 10 via the switch module 52.
  • the impedance matching of the radiator 10 can be adjusted, so that the radiator 10 can operate in different frequency bands, such as multiple sub-bands of the second frequency band or the third frequency band, thereby broadening the operating frequency band of the radiator 10 and achieving higher stability of frequency modulation.
  • the antenna device 100 may further include a tuning inductor L0, one end of which is grounded, and the other end of which is connected to the feeding point 127, that is, connected to the common point of the feed source 30 and the feeding point 127.
  • the tuning inductor L0 is used to cooperate with the tuning circuit 50 to tune the radiator 10.
  • the radiator 10 may also be provided with a second grounding point 129, the feeding point 127 is located between the first grounding point 128 and the second grounding point 129, and the radiator 10 is also grounded through the second grounding point 129.
  • the second grounding point 129 By introducing the second grounding point 129, a certain amount of inductance can be introduced into the loop of the radiator 10, so as to achieve the function of tuning or adjusting the frequency deviation in coordination with the tuning circuit 50.
  • the distance between the second grounding point 129 and the feeding point 127 can be determined according to the actual inductance to be introduced, for example, the two can be arranged adjacently, and the second grounding point 129 can be arranged at an end of the radiator 10 away from the first grounding point 128, that is, the first grounding point 128 and the second grounding point 129 are respectively located at opposite ends of the radiator 10.
  • a certain element referred to in the embodiments of the present application includes an "end" portion, and the "end” portion can be understood as a portion occupying a certain physical space, and the "end” portion is located in the end area of the element to which it belongs.
  • the "end” portion can be a part of the entity at the extended end of the element.
  • the "end” portion has a certain extension size, and its extension size may not be greater than one half of the overall extension size of the element; for another example, the "end” portion can also be a structure such as an end face or end line at the extended end of the element.
  • the distance between the feeding point 127 and the first grounding point 128 is greater than the distance between the feeding point 127 and the second grounding point 129.
  • the second grounding point 129 can be spaced apart from the feeding point 127 on the radiator 10, but the distance between the two is limited to a specified distance, for example, the distance between the second grounding point 129 and the feeding point 127 should be less than or equal to 5 mm, Thereby, it is ensured that the inductance introduced by the second grounding point 129 of the radiator 10 is appropriate, so that the impedance matching performance of the radiator 10 is better.
  • the potential of the second grounding point 129 can be the same as the potential of the feeding point 127, for example, the second grounding point 129 can be the same point as the feeding point 127.
  • the specific grounding form of the second grounding point 129 can be achieved by structures such as grounding springs, and the specific structural form of the feeding point 127 can also be achieved by structures such as feeding springs, which is not limited in the present application.
  • the radiator 10 provided in the embodiment of the present application may be in the form of the frame antenna shown in FIG5. It can be seen that the radiator 10 may be in the form of an irregular curved structure with a notch, which is conducive to avoiding parts such as the microphone hole, headphone jack, and receiver hole of the electronic device.
  • the specific form of the radiator 10 shown in this embodiment is different from the form of the radiator 10 in the figure of the previous embodiment, it should be understood that the components, extensions, and directions of the radiator 10 in this embodiment all cover the features of the radiator 10 in the figure of the previous embodiment, and the specific structure of the radiator 10 shown in FIG5 should not be understood as a limitation to this solution.
  • Figure 6 shows a schematic diagram of the S parameters of the antenna device 100 of the embodiment shown in Figure 5.
  • Figure 7 shows a schematic diagram of the simulation of the radiation efficiency of the antenna device 100 of the embodiment shown in Figure 5. It can be seen from the figure that the antenna device 100 can support multiple frequency bands (including B1 band, B3 band, B41 band) of LTE signals in multiple resonance modes, and can support N78 band and N41 band, and both have high radiation efficiency.
  • Figure 8 shows a schematic diagram of the actual test of the radiation efficiency of the antenna device 100 shown in Figure 5. It can be seen from the figure that in the actual test diagram, the efficiency trend of the antenna device 100 is basically corresponding to the efficiency trend in the simulation test in Figure 7. Therefore, the antenna device 100 provided in this embodiment has a high radiation efficiency.
  • FIG9 shows a schematic diagram of the electric field distribution of the antenna device 100 of the embodiment shown in FIG5 when supporting LTE signals.
  • (A) (B) (C) in FIG9 respectively represent the electric field distribution radiated when the resonant frequency of the antenna device 100 is in the B3 frequency band, the B1 frequency band, and the B41 frequency band, wherein after the tuning circuit 50 is adjusted to a suitable impedance matching, the 1/4 wavelength resonant mode of the designated current path is used to excite the resonance of the B3 frequency band, the B1 frequency band, and the B41 frequency band.
  • the performance of the antenna device 100 is still good.
  • FIG. 10 shows a grayscale schematic diagram of the electric field distribution of the antenna device 100 of the embodiment shown in FIG. 5 when supporting 5G signals, which represents the electric field distribution radiated when the resonant frequency of the antenna device 100 is in the N78 frequency band
  • FIG. 11 shows a schematic diagram of the SAR hotspot distribution when the resonant frequency of the antenna device 100 is in the N78 frequency band, wherein the 1/2 wavelength ring mode resonance mode (i.e., 1/2 ⁇ Loop mode) of the designated current path on the radiator 10 is used to excite the resonance of the N78 frequency band.
  • 1/2 wavelength ring mode resonance mode i.e., 1/2 ⁇ Loop mode
  • the electric field strength point is divided into two parts, one of which is at or near the feeding point 127 of the radiator 10, and the other is at or near the first grounding point 128 of the radiator 10.
  • the position of the electric field intensity point also corresponds to the SAR hot spot distribution in FIG. 11 , wherein there is no longer a single strong current point on the radiator 10, but it is dispersed into two secondary current strong points, and the single point peak value of the current is obtained.
  • the SAR value corresponds to the corresponding active performance Total Radiation Power (TRP).
  • TRP active performance Total Radiation Power
  • the radiator 10 is set to be able to support the first frequency band of the 5G signal, and the designated current path on the radiator 10 is located between the interval-set feeding point 127 and the first grounding point 128.
  • the ring mode resonance mode of the designated current path is used to support the first frequency band.
  • Two secondary current points can be formed at the feeding point 127 (or near the feeding point 127) and the first grounding point 128 (or near the first grounding point 128), respectively.
  • the radiator 10 of the embodiment of the present application can disperse the current strong point to form two interval-wise secondary current points, and the single-point peak value of the current is reduced, which can improve the current distribution of the radiator 10, thereby being able to improve the current concentration of the antenna device 100 as a whole when supporting 5G signals to a certain extent, so that the SAR value of the antenna device 100 meets the specified requirements.
  • the present embodiment further provides an electronic device 200 , which may be, but not limited to, a mobile phone, a tablet computer, a smart watch, etc.
  • the electronic device 200 of this embodiment is described by taking a mobile phone as an example.
  • the electronic device 200 may further include a housing 1001, and a display screen 1003 and an antenna device 1004 disposed on the housing 1001.
  • the display screen 1003 is connected to the housing 1001, and the antenna device 1004 is disposed in the housing 1001.
  • the antenna device 1004 may be disposed inside the housing 1001, or may be integrated in the housing 1001.
  • the display screen 1003 generally includes a display panel, and may also include a circuit for responding to a touch operation on the display panel.
  • the display panel may be a liquid crystal display panel (LCD), and in some embodiments, the display panel may also be a touch display screen.
  • the housing 1001 includes a rear shell 1010 and a middle frame 1011 , and the rear shell 1010 and the display screen 1003 are respectively disposed on opposite sides of the middle frame 1011 .
  • the middle frame 1011 may be an integrally formed structure, which may be structurally divided into a bearing portion 1012 and a frame 1013 surrounding the bearing portion 1012. It should be understood that the "bearing portion 1012" and the “frame 1013” are named for ease of description only, and the structural filled oblique lines in the figure are only used for distinction and do not represent the actual structure of the two. There may not be a clear dividing line between the two, or the two may be two or more parts assembled together. The naming of the "bearing portion 1012" and the "frame 1013” should not limit the structure of the middle frame 1011.
  • the bearing portion 1012 is used to support a portion of the display screen 1003, and may also be used to support or
  • the electronic components of the electronic device 200 such as the motherboard 1005, the battery 1006, the sensor module 1007, etc., are installed, and the frame 1013 is connected to the periphery of the carrying portion 1012. Further, the frame 1013 is arranged around the periphery of the carrying portion 1012, and protrudes relative to the surface of the carrying portion 1012, so that the two together form a space for accommodating electronic components.
  • the display screen 1003 is covered by the frame 1013, and the frame 1013, the rear shell 1010 and the display screen 1003 together form the appearance surface of the electronic device 200.
  • the antenna device 1004 may be any antenna device 100 provided in the above embodiments, or may have a combination of any one or more features of the above antenna devices 100.
  • the relevant features may refer to the above embodiments and will not be described in detail in this embodiment.
  • the antenna device 1004 is integrated into the housing 1001.
  • the antenna device 100 can be disposed in the middle frame 1011 or in the rear housing 1010. This specification does not limit this.
  • the antenna device 100 of this embodiment can include a radiator 10 and a feed source 30.
  • the radiator 10 can be disposed in the middle frame 1011 (for example, integrated in the mounting portion 1012 or the frame 1013) or in the rear housing 1010.
  • the frame 1013 is at least partially made of metal, for example, the material of the frame 1013 may include aluminum alloy, magnesium alloy, etc.
  • the antenna device 1004 is integrated in the frame 1013, which can also be understood as using the structure of the frame 1013 itself to form the radiation branches of the radiator 10. Therefore, using the metal frame 1013 as a part of the radiator of the antenna device 1004 is conducive to saving space in the electronic device 400, and also provides a larger clearance area for the antenna device 1004, which is conducive to ensuring a higher radiation efficiency.
  • the radiator 10 can be any one of a flexible circuit board radiator, a laser direct forming radiator, a printed direct forming radiator, or a metal branch (such as a metal insert on the structure), and a metal frame antenna body.
  • the radiator 10 can also be a metal branch, which can be directly attached to the surface of the frame 1013.
  • the frame 1013 can be made of non-metal, and the antenna device 100 can be integrated in the frame 1013.
  • the frame 1013 can be made of materials such as plastic and resin, and the radiator 10 of the antenna device 100 can be integrated into the frame 1013 by insert molding (e.g., the radiator 10 is embedded in the frame 1013 as a whole), or can be integrated into the frame 1013 by attachment (e.g., the radiator 10 is attached to the surface of the frame 1013).
  • the material of the frame 1013 includes plastic/plastic/resin, etc.
  • the material of the frame 1013 may include engineering plastics such as polycarbonate (PC) or/and acrylonitrile-butadiene-styrene copolymer (ABS), or may include composite materials, such as engineering plastics with added high-performance fibers (carbon fiber or/and glass fiber or/and Kevlar fiber), etc.
  • the radiator 10 may be a flexible circuit board radiator, which may be directly attached/stacked on the inner surface of the frame 1013, or may be integrated into the frame 1013 by insert molding (e.g., the radiator 10 is entirely embedded in the frame 1013).
  • the frame 1013 may include a top frame 1017, a bottom frame 1019 and two side frames 1018, and the top frame 1017 and the bottom frame 1019 are respectively arranged at opposite ends of the bearing portion 1012, so that the top frame 1017 and the bottom frame 1019 are substantially opposite to each other.
  • the two ends of each side frame 1018 are respectively connected to the top frame 1017 and the bottom frame 1019, and the two side frames 1018 are substantially opposite to each other.
  • the above-mentioned radiator 10 can be integrated into at least one of the top frame 1017, the bottom frame 1019, and the two side frames 1018.
  • the top frame 1017 and the bottom frame 1019 are respectively located at the top and the bottom of the electronic device 200, so when the radiator 10 can be integrated into at least one of the top frame 1017 and the bottom frame 1019, the antenna
  • the device 1004 serves as the top antenna or/and bottom antenna of the electronic device 200, and the SAR value generated is lower, which is more beneficial to human health.
  • the above-mentioned “top” and “bottom” are based on the normal use state of the electronic device 200. For example, when the length direction of the electronic device 200 is placed vertically and the display screen 1003 faces the user, the end of the electronic device farther from the ground is regarded as the "bottom” and the other end is regarded as the "top”.
  • the antenna device is configured to support the first frequency band of 5G signals by setting the radiator to a designated current path on the radiator between the feed point and the first grounding point set at intervals, and the designated current path ring mode resonance mode is used to support the first frequency band, and two secondary current points can be formed at the feed point (or near the feed point) and the first grounding point (or near the first grounding point), respectively.
  • the radiator of the embodiment of the present application can disperse the current strong point to form two spaced secondary current points, and the single point peak value of the current is reduced, which can improve the current distribution of the radiator, thereby improving the current concentration of the antenna device as a whole when supporting 5G signals to a certain extent, thereby effectively reducing the overall SAR value of the antenna device. Therefore, the antenna device provided in the embodiment of the present application has a lower SAR value when supporting 5G signals.

Landscapes

  • Support Of Aerials (AREA)

Abstract

本申请涉及一种天线装置及电子设备。天线装置包括馈源以及辐射体,辐射体用于支持第五代移动通信技术(5G)信号的第一频段。辐射体设有馈电点和第一接地点,馈电点连接于馈源;第一接地点与馈电点间隔设置。辐射体上自馈电点到第一接地点的部分形成指定电流路径,指定电流路径的环模谐振模式用于激励辐射体产生第一频段的谐振。因此,利用指定电流路径环模谐振模式用于支持该第一频段,可以将电流强点分散而形成间隔的两个电流次强点,电流的单点峰值得到降低,能够在一定程度上改善天线装置在支持5G信号时的电流集中状况,从而使得天线装置的SAR值相对较低。

Description

天线装置及电子设备
相关申请的交叉引用
本申请要求于2022年11月11日提交的申请号为202211420850.8的中国申请的优先权,其在此出于所有目的通过引用将其全部内容并入本文。
技术领域
本申请涉及移动通信技术领域,更具体地,涉及一种天线装置及电子设备。
背景技术
随着科技的发展进步,通信技术得到了飞速发展和长足的进步,而随着通信技术的提高,智能电子产品的普及提高到了一个前所未有的高度,越来越多的智能终端或电子设备成为人们生活中不可或缺的一部分,如智能手机、智能手环、智能手表、智能电视和电脑等。目前电子设备中通常设置通信天线,以满足用户的通信需求。随着人们对通信效率和种类的需求越来越高,目前电子设备中的天线的功率也越来越大,导致天线对人体的辐射作用也更大,这将对人体产生不利影响。
发明内容
本申请实施例提供一种天线装置及电子设备。
根据本申请的第一方面,本申请实施例提供一种天线装置,其包括馈源以及辐射体,辐射体用于支持第五代移动通信技术(5th Generation Mobile Communication Technology,5G)信号的第一频段。辐射体设有馈电点和第一接地点,馈电点连接于馈源;第一接地点与馈电点间隔设置。辐射体上自馈电点到第一接地点的部分形成指定电流路径,指定电流路径的环模谐振模式用于激励辐射体产生第一频段的谐振。
根据本申请的第二方面,本申请实施例提供一种电子设备,其包括壳体以及上述的天线装置,辐射体设置于壳体。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的天线装置的一种结构的示意图。
图2是图1实施例的天线装置的另一种结构的示意图。
图3是图1实施例的天线装置的又一种结构的示意图。
图4是图1实施例的天线装置的再一种结构的示意图。
图5是本申请实施例提供的天线装置的应用实例的一种结构示意图。
图6是图5所示天线装置的S参数图。
图7是图5所示天线装置的辐射效率的仿真示意图。
图8是图5所示天线装置的辐射效率的实际测试示意图。
图9是图5所示天线装置在支持LTE信号时的电场分布示意图。
图10是图5所示天线装置在支持5G信号N78频段时的电场分布示意图。
图11是图5所示天线装置在支持5G信号N78频段时的SAR热点分布示意图。
图12是本申请实施例提供的电子设备的示意图。
图13是图13所示电子设备的内部结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如在说明书及权利要求当中使用了某些词汇来指称特定组件,本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一组件。说明书及权利要求并不以名称的差异作为区分组件的方式,而是以组件在功能上的差异作为区分的准则。如在通篇说明书及权利要求当中所提及的“包括”为一开放式用语,故应解释成“包含但不限定于”;“大致”是指本领域技术人员能够在一定误差范围内解决技术问题,基本达到技术效果。
作为在本申请实施例中使用的“电子设备”包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(PSTN)、数字用户线路(DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”、“无线终端”、“电子装置”以及/或“电子设备”。电子设备的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(GPS)接收器的PDA;以及常规膝上型和/或掌上型 接收器、游戏机或包括无线电电话收发器的其它电子装置。
电磁波能量吸收比(SAR,Specific Absorption Rate)通常称为吸收比值或吸收比率,是指电子设备电磁波能量吸收比值。具体含义为:在外电磁场的作用下,人体内将产生感应电磁场,由于人体各器官均为有耗介质,因此体内的电磁场将产生感应电流,导致人体能吸收和耗散电磁能量,生物剂量学中常用SAR来表征这一物理过程。SAR的意义为单位质量的人体组织所吸收或消耗的电磁功率,单位为W/kg,或者mw/g。表达公式为:SAR=σ|Ei|2/2ρ,其中:
Ei为细胞组织中的电场强度有效值,以V/m表示;
σ为人体组织的电导率,以S/m表示;
ρ为人体组织密度,以kg/m3表示。
人体组织中的SAR与该组织中的电场强度的平方成正比,并且由入射的电磁场的参数(如频率,强度,方向和电磁场的源)、目标物的相对位置、暴露的人体的典型组织的遗传特性、地面影响以及暴露的环境影响来确定。目前很多国家和地区都已经建立了人体暴露于电磁波环境下的安全标准,如国际通用的标准中,欧洲标准是每10克小于2.0w/kg,美国标准是每克小于1.6mw/g。
目前常用的降低SAR值的方法主要有以下几种:(1)直接降低天线的发射功率以降低人体对电磁波的吸收,但是降低天线的发射功率很难保证总辐射功率(total radiated power,TRP)的要求,TRP过低,通信质量也较低,通常无法满足市场上日益提高的通信要求;(2)分场景降低天线的发射功率,利用人体组织检测器件(SAR SENSOR),只在人体接近电子设备时降低发射功率,同样很难保证总辐射功率的要求;(3)利用功分器将天线的发射功率通过多个天线发射,但是目前电子设备的发展趋势是厚度越来越薄,导致天线空间却越来越小,很难给额外的天线提供空间;(4)在天线地板下方增加接地分枝使天线上的电流分布更加均匀,但是此方案只针对FPC类天线,不适用于金属边框的电子设备,具有很大的局限性。可见,截止目前,仍没有一种较好的方案可以能有效降低天线的SAR。
因此,针对上述问题,本申请发明人经过大量、反复的研究后发现,目前的电子设备的天线的SAR热点基本集中在辐射体上的电流分布较强的区域,也即,辐射体上电流密度越大的区域,对应产生的SAR值越大。对此,发明人提出本申请的天线装置以及具有该天线装置的电子设备。该天线装置的辐射体包括馈电电路以及辐射体,辐射体用于支持第五代移动通信技术(5th Generation Mobile Communication Technology,5G)信号的第一频段。辐射体设有馈电点和第一接地点,馈电点连接于馈电电路;第一接地点与馈电点间隔设置。辐射体上自馈电点到第一接地点的部分形成指定电流路径,指定电流路径的环模谐振模式用于激励辐射体产生第一频段的谐振。因此,该天线装置上指定电流路径位于间隔设置的馈电点和第一接地点之间,其环模谐振模式用于支持该第一频段,辐射体产生环模谐振时,第一接地点作为环模谐振模式的回地部位,因此,辐射体可以在馈电点(或馈电点附近)和第一接地点(或第一接地点附近)分别形成两个电流次强点,相对于传统的辐射体的电流极强单点来 说,本申请实施例的辐射体可以将电流强点分散而形成间隔的两个电流次强点,电流的单点峰值得到降低,可以改善辐射体的电流分布,从而能够在一定程度上改善天线装置整体在支持5G信号时的电流集中状况,进而有效降低天线装置总体的SAR值。所以,本申请实施例提供的天线装置在支持5G信号时具有较低的SAR值。
下面将结合具体实施方式以及示意性的附图来对本申请提出的天线装置及电子设备进行进一步阐述。
请参阅图1,本申请实施方式提供一种天线装置100,其包括辐射体10以及连接于辐射体10的馈源30。辐射体10用于接收以及发射射频信号,馈源30用于向辐射体10馈入激励电流,使辐射体10能够发生谐振以辐射射频信号。馈源30适于连接至电子设备的主板并可以受控于电子设备的主板。
辐射体10用于发送或/及接收至少一种工作频段的信号,该信号可以包括例如第五代移动通信技术(5th Generation Mobile Communication Technology,5G)新空口(New Radio,NR)信号,其工作频段还可以包括5G NR的至少一种频段,例如N1频段(1.92GHz-2.17GHz)、N2频段(1.85GHz-1.99GHz)、N38频段(2.570GHz-2.620GHz)、N41频段(2.496GHz-2.690GHz)、N78频段(3.30GHz-3.80GHz)等等。
在本实施例中,辐射体10设有馈电点127和第一接地点128,馈电点127和第一接地点128彼此间隔设置,例如馈电点127和第一接地点128可以分别位于辐射体10的相对两端。辐射体10可以通过馈电点127直接连接于馈源30。应当理解的是,尽管图1中采用不同的图形示出了辐射体10的结构,但其是为便于阐述方案而作出、其不应视为对本申请所提供的辐射体10的结构的限定。在本申请实施例中,辐射体10可以为柔性电路板辐射体、激光直接成型辐射体、印刷直接成型辐射体或者金属辐射枝节(例如结构上的金属嵌件)、金属边框天线体中的任一种。
第一接地点128在辐射体10上的位置与馈电点127之间具有一定的间隔。作为一种示例,辐射体10大致形成IFA(Inverted-F Antenna,IFA)天线结构,能够使辐射体10的阻抗匹配更佳,且其体积小、结构简单、制备成本更低。
在本申请实施例中,辐射体10用于支持5G信号的第一频段。馈电点127用于连接馈源30,馈源30可以理解为连接至辐射体10的射频前端的射频(Radio Frequency,RF)电路整体,例如,馈源30可以包括射频收发器、低噪声功率放大器(Low Noise Amplifier,LNA)、功率放大器(Power Amplifier,PA)、滤波器等器件,其中,射频收发器用于对信号起到控制功能(也可受电子设备中处理器的控制)。进一步地,射频收发器可以与其他器件(如LNA、PA、滤波器等)整合,共同构成芯片模组,该芯片模组可以成型在电子设备的主板上。馈源30通过馈电点向辐射体10馈入激励电流,使辐射体10能够辐射第一频段的5G信号。具体而言,辐射体10上自馈电点127到第一接地点128的部分形成指定电流路径,指定电流路径的环模谐振模式用于激励辐射体产生第一频段的谐振,例如,指定电流路径的1/2波长环模谐振模式用于激励辐射体产生第一频段的谐振。利用环模谐振支持5G频段,可以改善辐射体10的电流分布,进而能够在一定程度上改善天线装置100在 支持5G信号时的电流集中状况,有效降低天线装置100总体的SAR值。应理解的是,此时,辐射体10可支持的5G信号的工作频段的数量可以是一个或多个。例如第一频段可以为2.496GHz-2.69GHz的频带范围及3.3DHz-3.80GHz的频带范围,该频带范围覆盖了N41、N78频段的频带范围,则辐射体10可支持工作频段为N41、N78频段的信号。
在一些实施例中,第一频段可以为高频频段,例如,第一频段可以包括上述的N41、N38、N78频段中的至少一种,或者第一频段的中心频点(或第一频段的至少一个子频段的中心频点)在2.496GHz-2.690GHz或3.30GHz-3.80GHz的频带范围内。应理解的是,本申请所说的第一频段并不应被严格限制为高频频段,例如,第一频段可以覆盖高频频段,或者第一频段的中心频点在高频频段的频带范围内,或者第一频段与高频频段具有重叠的频带范围,这就意味着,第一频段的频带范围的上限值可以相对于高频频段的上限值略有偏移(如第一频段的频带范围的上限值可以稍大于或稍小于高频频段的上限值)、第一频段的频带范围的下限值可以相对于高频频段的下限值略有偏移(如第一频段的频带范围的下限值可以稍大于或稍小于高频频段的下限值)。
在本申请实施例中,辐射体10辐射的信号还可以包括长期演进(Long Term Evolution,LTE)信号。辐射体10辐射的信号的工作频段可以包括LTE的至少一种频段,例如低频频段(LB频段),LB频段的子频段可以包括:B5频段(0.824GHz-0.894GHz)、B8频段(0.88GHz-0.96GHz)、B20频段(0.791GHz-0.862GHz)、B28频段(0.703GHz-0.803GHz);例如中频频段(MB频段),MB频段的子频段可以包括:B1频段(1.92GHz-2.17GHz)、B3频段(1.71GHz-1.88GHz)、B2频段(1.85GHz-1.99GHz);例如高频频段(HB频段),HB频段的子频段可以包括:B40频段(2.30GHz-2.40GHz)、B41频段(2.496GHz-2.690GHz)等等。因此,本实施例所提供的天线装置100能够同时支持第四代移动通信技术(4th Generation Mobile Communication Technology,4G)信号以及5G信号,且在辐射5G信号的SAR值相对较低,能够解决相关技术中5G信号对应的SAR值居高不下的问题。
具体在本实施例中,辐射体10还用于支持LTE信号的第二频段和第三频段,第二频段与第三频段不相同。应理解的是,在本申请实施例中,两个频段“不相同”指的是两个频段的频率范围不完全相同,例如,两个频段的频率范围可以是完全不同(如二者没有交集),又如,两个频段的频率范围也可以部分重叠(例如,二者之间存在交集、其中一个频段的至少部分频率在另一个频段的范围内)。在一些实施例中,第二频段的中心频点高于第三频段的中心频点,例如,第二频段的子频段的中心频点可以均高于第三频段的子频段的中心频点。作为一种示例,第二频段可以为高频频段,或者第二频段的中心频点落在2.30GHz-3.690GHz的频带范围内,例如第二频段的子频段的中心频点落在2.30GHz-2.40GHz(B40频段)的频带范围内或/及落在2.496GHz-2.690GHz(B41频段)的频带范围内;第三频段可以为中频频段,或者第三频段的中心频点落在1.71GHz-2.17GHz的频带范围内,例如第三频段的子频段的中心频点可以落在1.92GHz-2.17GHz(B1频段)的频带范围内或/及落在1.71GHz-1.88GHz(B3频段)的频带范围内。
因此,本实施例中的辐射体10可以用于支持LTE信号的中频频段和高频频段(MHB)。其中,指定电流路径的低次模用于激励辐射体产生第二频段或第三频段的谐振。例如,辐射体10可以具有适宜的等效电长度,使指定电流路径能够形成第二频段的1/4波长模式的谐振,此处的第二频段可以为LTE信号的高频频段;或者,辐射体10可以具有适宜的等效电长度,使指定电流路径能够形成第三频段的1/4波长模式的谐振,此处的第三频段可以为LTE信号的中频频段。辐射体10的等效电长度,可以通过其自身的物理长度进行调节,也可以通过接入调谐电路,并在电路中引入不同的阻抗元件进行调节,因而本实施例的天线装置100为多频天线。
请参阅图2,在一些实施例中,为了保证辐射体10能够支持第一频段、第二频段以及第三频段,天线装置100还可以包括调谐电路50,调谐电路50的一端接地,另一端连接辐射体10,调谐电路50用于调节天线装置100的频偏,调谐电路50还可以被配置为使用不同的阻抗元件接入辐射体10的回路中,以使辐射体10可切换地辐射不同频段的射频信号。
调谐电路50可以直接连接于辐射体10的指定位置。具体在图2所示的实施例中,第一接地点128通过调谐电路50接地。调谐电路50包括开关模组52以及至少两个调谐支路54,至少两个调谐支路54并联,开关模组52连接于至少两个调谐支路54。调谐电路50被配置为通过开关模组52选择性地将至少两个调谐支路54中的至少一个接入辐射体10的回路中,以使辐射体10能够基于激励电流可切换地辐射第二频段或第三频段,或这些频段的子频段的信号。
在一些实施例中,至少两个调谐支路54包括第一支路541和第二支路543,第一支路541的一端接地、另一端连接辐射体10,第二支路543与第一支路541并联。第一支路541和第二支路543设有阻抗值不相同的阻抗元件,以在接入辐射体10的回路时改变该回路的阻抗,从而将辐射体10调节到适宜的阻抗匹配,以辐射所需频段的信号。在一些实施例中,第一支路541包括第一电容C1,第二支路543包括第一电感L1。第一电容C1与第一电感L1并联,二者均受控于开关模组52。开关模组52选择性地将第一电容C1或/及第一电感L1接入辐射体10的回路。第一电容C1的电容值、第一电感L1的电感量可以根据辐射体10的具体工作频段进行设置,本申请实施例对此不作限制。
请参阅图3,在一些实施例中,至少两个调谐支路54还包括第三支路545和第四支路547,第三支路545的一端接地,另一端连接辐射体10,第四支路547与第三支路545并联。进一步地,第四支路547、第三支路545、第二支路543与第一支路541并联,并均连接于开关模组52。第四支路547、第三支路545设有阻抗值不相同的阻抗元件,以在接入辐射体10的回路时改变该回路的阻抗,从而将辐射体10调节到适宜的阻抗匹配,以辐射所需频段的信号。在一些实施例中,第三支路545包括第二电感L2,第四支路547包括第三电感L3。第三电感L3、第二电感L2、第一电容C1、第一电感L1并联,并均受控于开关模组52。在本实施例中,第一电感L1、第二电感L2、第三电感L3的电感量各不相同。开关模组52选择性地将第一电容C1、第一电感L1、第三电感L3、第二电感L2 中的至少一个接入辐射体10的回路,以获取所需频段的信号。第一电感L1、第二电感L2、第三电感L3的电感量可以根据辐射体10的具体工作频段进行设置,本申请实施例对此不作限制。
在本实施例中,开关模组52连接于调谐支路54,并用于控制每个调谐支路54在辐射体10通过第一接地点128接地的路径中的通断。开关模组52可以连接于调谐支路54与辐射体10之间,也可以连接于调谐支路54与参考地端之间。在本实施例中,开关模组52包括至少两个开关,至少两个开关与至少两个调谐支路54一一对应设置,每个开关连接于一个对应的述调谐支路54,以控制辐射体10通过第一接地点128及对应的调谐支路54的接地路径的通断。在本实施例中,每个开关可以为单刀单掷开关或电子开关管等。其中,电子开关管可以为MOS管、晶体管等。在本申请实施例中,对开关模组52的具体组成器件不做进一步的限定,其满足符合对多个调谐支路54所对应的接地路径的通断控制条件即可。
上述的天线装置100通过为辐射体10配备调谐电路50,并经由开关模组52将至少两个调谐支路54中的至少一个接入辐射体10的回路中,能够借助不同的调谐支路54调整辐射体10的阻抗匹配,使辐射体10能够工作在不同的频段,如第二频段或第三频段的多个子频段,从而拓宽了辐射体10的工作频段,且调频的稳定性较高。
在本实施例中,天线装置100还可以包括调谐电感L0,调谐电感L0的一端接地,另一端连接于馈电点127,也即连接于馈源30与馈电点127的共接点。调谐电感L0用于配合调谐电路50对辐射体10进行调谐。采用上述的电感L0和调谐电路50配合,能够采用较少的电路元件进行阻抗匹配,成本相对较低。
在一些实施例中,请参阅图4,辐射体10还可以设有第二接地点129,馈电点127位于第一接地点128和第二接地点129之间,辐射体10还通过第二接地点129接地。通过引入第二接地点129,可以在辐射体10的回路中引入一定量的电感,从而达到配合调谐电路50调谐或者调节频偏的作用。第二接地点129与馈电点127之间的距离可以根据实际要引入的电感量确定,例如,二者可以邻近设置,第二接地点129可以设置在辐射体10上远离第一接地点128的一端,也即,第一接地点128和第二接地点129分别位于辐射体10的相对两端。应当理解的是,本申请实施例所称某个元件包括“端”部,该“端”部可以理解为占据一定实体空间的部位,且该“端”部位于所属元件的末端区域,例如,该“端”部可以为该元件的伸展末端的一部分实体,如该“端”部具有一定的延展尺寸,其延展尺寸可以不大于该元件整体的延展尺寸的二分之一;又例如,该“端”部也可以为该元件的伸展末端的端面或端线等结构。
进一步地,馈电点127与第一接地点128之间的距离大于馈电点127与第二接地点129之间的距离。在一些实施例中,第二接地点129可以与馈电点127间隔设置于辐射体10上,但二者之间的距离被限定在指定的距离内,例如,第二接地点129与馈电点127之间的距离应小于或等于5mm, 从而保证辐射体10由第二接地点129引入的电感量适当,使辐射体10的阻抗匹配性能更好。在另外一些实施例中,第二接地点129的电位可以与馈电点127的电位相同,例如,第二接地点129可以与馈电点127为同一点。第二接地点129的具体接地形式可以通过接地弹片等结构实现,馈电点127的具体结构形式也可以通过馈电弹片等结构实现,本申请对此不作限制。
请参阅图5,在本申请的一些实施例中,本申请实施例所提供的辐射体10的形态可以为图5所示的边框天线的形态,可以看出,辐射体10可以为设有缺口的,不规则的、具有弯曲结构的形态,有利于避开比如电子设备的麦克风孔、耳机插孔、受话器孔等部位。尽管本实施例示出的辐射体10的具体形态和前文实施例的图中的辐射体10的形态有所不同,但是应理解的是,本实施例的辐射体10的部件、延伸、走向均涵盖了前文实施例的图中辐射体10的特征,且图5所示的辐射体10的具体结构不应理解为对本方案的限制。
请参阅图6、图7和图8,图6示出了图5所示实施例的天线装置100的S参数示意图,图7示出了图5所示实施例的天线装置100的辐射效率的仿真示意图,从图中可以看出,天线装置100能够以多种谐振模式支持LTE信号的多个频段(包括B1频段、B3频段、B41频段),并且能够支持N78频段及N41频段,且均具有较高的辐射效率。图8示出了图5所示的天线装置100辐射效率的实际测试示意图,从图中可以看出,在实际测试图中,天线装置100的效率趋势与图7中的仿真测试中的效率趋势基本可以对应,因此本实施例所提供的天线装置100具有较高的辐射效率。
请参阅图9,图9示出了图5所示实施例的天线装置100在支持LTE信号时的电场分布的示意图,图9中的(A)(B)(C)分别表示的是当天线装置100的谐振频率在B3频段、B1频段以及B41频段时辐射的电场分布,其中,在调谐电路50调节到适宜的阻抗匹配后,指定电流路径的1/4波长谐振模式用于激励B3频段、B1频段以及B41频段的谐振。从图中可以看出,在当前天线装置100的环境恶劣的状态下(在测试中,天线装置100应用在电子设备中,其周围净空区较小,例如天线装置100正下方和周围均为金属等),天线装置100的性能依然较好。
请参阅图10及图11,图10示出了图5所示实施例的天线装置100在支持5G信号时的电场分布的灰度示意图,表示的是当天线装置100的谐振频率在N78频段时辐射的电场分布;图11示出了当天线装置100的谐振频率在N78频段时的SAR热点分布示意图,其中,辐射体10上的指定电流路径的1/2波长环模谐振模式(也即1/2λLoop模式)用于激励N78频段的谐振。从图10中可看出,天线装置100在辐射N78频段的信号时,电场强点分为了两个部分,其中一部分为辐射体10的馈电点127处或馈电点127附近,另一部分为辐射体10的第一接地点128处或第一接地点128附近。天线装置100在辐射N78频段的信号时,电场强点的位置也与图11中的SAR热点分布一一对应,其中,辐射体10上不再存在极强的电流单强点,而是被分散为两个电流次强点,电流的单点峰值得到 降低。进一步地,如下表1所示,SAR值对应相应的有源性能总辐射功率(Total Radiation Power,TRP),在TRP为23.8dBm时,测试显示SAR值仍低于1.0W/kg,表示N78频段所对应的SAR值为较优的水平。
表1
因此,本申请实施例提供的天线装置100中,其通过将辐射体10设置为能够支持5G信号的第一频段,且辐射体10上指定电流路径位于间隔设置的馈电点127和第一接地点128之间,指定电流路径的环模谐振模式用于支持该第一频段,可以在馈电点127(或馈电点127附近)和第一接地点128(或第一接地点128附近)分别形成两个电流次强点,相对于传统的辐射体的电流极强单点来说,本申请实施例的辐射体10可以将电流强点分散而形成间隔的两个电流次强点,电流的单点峰值得到降低,可以改善辐射体10的电流分布,从而能够在一定程度上改善天线装置100整体在支持5G信号时的电流集中状况,使天线装置100的SAR值符合规定要求。
请参阅图12,本申请实施例还提供一种电子设备200,电子设备200可以为但不限于手机、平板电脑、智能手表等电子装置。本实施方式的电子设备200以手机为例进行说明。
在本申请的实施例中,电子设备200还可以包括壳体1001以及设置于壳体1001上的显示屏1003和天线装置1004。显示屏1003连接于壳体1001,天线装置1004设置于壳体1001,例如,天线装置1004可以设置于壳体1001内部,也可以集成于壳体1001。
在一些实施方式中,显示屏1003通常包括显示面板,也可以包括用于响应对显示面板进行触控操作的电路等。显示面板可以为一个液晶显示面板(Liquid Crystal Display,LCD),在一些实施例中,显示面板可以同时为触摸显示屏。
具体在本申请实施方式中,壳体1001包括后壳1010以及中框1011,后壳1010与显示屏1003分别设置于中框1011的相对两侧。
请参阅图13,中框1011可以为一体成型结构,其从结构上可以划分为承载部1012以及环绕于承载部1012的边框1013。应当理解的是,“承载部1012”与“边框1013”仅仅为便于表述而进行的命名划分,图中的结构填充斜线条仅为区分而标识,并不代表二者的实际结构,二者之间可以不具备明显的分界线,也可以为分别为两个或更多的部件组装于一起,“承载部1012”与“边框1013”的命名不应对中框1011的结构造成限制。承载部1012用于承载显示屏1003的一部分结构,也可以用于承载或 安装电子设备200的电子部件如主板1005、电池1006、传感器模块1007等,边框1013连接于承载部1012的周缘。进一步地,边框1013环绕于承载部1012的外周设置,并相对于承载部1012的表面凸伸,使二者共同形成用于容纳电子部件的空间。在本实施例中,显示屏1003盖设于边框1013,边框1013、后壳1010以及显示屏1003共同形成电子设备200的外观表面。
在本实施例中,天线装置1004可以为以上实施例提供的任一种天线装置100,或者可以具备以上天线装置100的任意一个或多个特征的结合,相关的特征可以参考前述实施例,本实施例不再赘述。
在一些实施方式中,天线装置1004集成于壳体1001中,例如,天线装置100可以设置于中框1011,也可以设置于后壳1010,本说明书对此不作限制。与前述的天线装置100大致相同,本实施例的天线装置100可以包括辐射体10和馈源30,辐射体10可以设置于中框1011(例如集成于装设部1012或者边框1013)或者后壳1010。
进一步地,在图13所示的实施例中,边框1013至少部分由金属制成,如,边框1013的材质可以包括铝合金、镁合金等。天线装置1004集成于边框1013,也可理解为利用边框1013本身的结构来形成辐射体10的辐射枝节,因此利用金属制的边框1013作为天线装置1004的辐射体的一部分,有利于节省电子设备400内的空间,也为天线装置1004提供更大的净空区,有利于保证较高的辐射效率。辐射体10可以为柔性电路板辐射体、激光直接成型辐射体、印刷直接成型辐射体或者金属枝节(例如结构上的金属嵌件)、金属边框天线体中的任一种,例如,辐射体10也可为金属枝节,其可以直接附着于边框1013的表面。又如,边框1013可以由非金属制成,天线装置100可以集成于边框1013。例如,边框1013可以由塑料、树脂等材料制成,天线装置100的辐射体10可以通过嵌件成型的方式集成于边框1013(如,辐射体10整体嵌入边框1013内部),也可以通过贴附的方式集成于边框1013(如,辐射体10贴附于边框1013的表面)。
例如,在另一些实施例中,边框1013的材质包括塑胶/塑料/树脂等,例如,边框1013的材质可以包括聚碳酸酯(PC)或/及丙烯腈-丁二烯-苯乙烯共聚合物(ABS)等工程塑料,也可以包括复合材料,例如添加了高性能纤维(碳纤维或/及玻璃纤维或/及凯芙拉纤维)的工程塑料等。在这样的实施例中,辐射体10可以为柔性电路板辐射体,其可以直接附着/叠置于边框1013的内表面,还可以通过嵌件成型的方式集成于边框1013(如,辐射体10整体嵌入边框1013内部)。
进一步地,在本申请实施例中,边框1013可以包括顶部边框1017、底部边框1019以及两个侧边框1018,顶部边框1017和底部边框1019分别设置于承载部1012的相对两端,因此顶部边框1017和底部边框1019大致相互背离。每个侧边框1018的两端分别连接于顶部边框1017和底部边框1019,两个侧边框1018大致相互背离。上述的辐射体10可以集成于顶部边框1017、底部边框1019、两个侧边框1018中的至少一者。在应用中,顶部边框1017和底部边框1019分别位于电子设备200的顶部和底部,因此,辐射体10可以集成于顶部边框1017和底部边框1019中的至少一者时,天线 装置1004作为电子设备200的顶部天线或/及底部天线,其产生的SAR值较低,更有利于人体健康。应当理解的是,上述的“顶部”和“底部”是以电子设备200通常的使用状态作为参考,如,电子设备200的长度方向竖直放置且显示屏1003朝向用户时,电子设备离地面较远的一端视为“底部”,另一端则视为“顶部”。
本申请实施例提供的天线装置及电子设备中,该天线装置通过将辐射体设置为能够支持5G信号的第一频段,且辐射体上指定电流路径位于间隔设置的馈电点和第一接地点之间,指定电流路径环模谐振模式用于支持该第一频段,可以在馈电点(或馈电点附近)和第一接地点(或第一接地点附近)分别形成两个电流次强点,相对于传统的辐射体的电流极强单点来说,本申请实施例的辐射体可以将电流强点分散而形成间隔的两个电流次强点,电流的单点峰值得到降低,可以改善辐射体的电流分布,从而能够在一定程度上改善天线装置整体在支持5G信号时的电流集中状况,进而有效降低天线装置总体的SAR值。所以,本申请实施例提供的天线装置在支持5G信号时具有较低的SAR值。
需要说明的是,在本申请说明书中,当一个组件被认为是“设置于”另一个组件,它可以是连接于或者直接设置在另一个组件上,或者可能同时存在居中组件(也即二者间接连接)。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”或“其他的实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特定包含于本申请的至少一个实施例或示例中。在本说明书中,对术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特定可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种天线装置,其中,包括:
    馈源;以及
    辐射体,所述辐射体用于支持第五代移动通信技术(5th Generation Mobile Communication Technology,5G)信号的第一频段;所述辐射体设有馈电点和第一接地点,所述馈电点连接于所述馈源;所述第一接地点与所述馈电点间隔设置,所述辐射体上自所述馈电点到所述第一接地点的部分形成指定电流路径,所述指定电流路径的环模谐振模式用于激励所述辐射体产生所述第一频段的谐振。
  2. 如权利要求1所述的天线装置,其中,所述天线装置还包括调谐电路,所述第一接地点通过所述调谐电路接地。
  3. 如权利要求2所述的天线装置,其中,所述调谐电路包括开关模组以及至少两个调谐支路,至少两个所述调谐支路并联;所述调谐电路被配置为通过所述开关模组选择性地将至少两个所述调谐支路中的至少一个接入所述辐射体的回路中。
  4. 如权利要求3所述的天线装置,其中,至少两个所述调谐支路包括第一支路和第二支路,所述第一支路的一端接地、另一端连接所述辐射体;所述第一支路包括第一电容,所述第二支路包括第一电感,所述第一电容与所述第一电感并联,所述开关模组选择性地将所述第一电容或/及所述第一电感接入所述辐射体的回路。
  5. 如权利要求1~4中任一项所述的天线装置,其中,所述辐射体还设有第二接地点,所述馈电点位于所述第一接地点和所述第二接地点之间,所述辐射体通过所述第二接地点接地。
  6. 如权利要求5所述的天线装置,其中,所述馈电点与所述第一接地点之间的距离大于所述馈电点与所述第二接地点之间的距离。
  7. 如权利要求1~6中任一项所述的天线装置,其中,所述天线装置还包括调谐电感,所述调谐电感的一端接地,另一端连接于所述馈电点。
  8. 如权利要求1~7中任一项所述的天线装置,其中,所述指定电流路径的1/2波长环模谐振模式用于激励所述辐射体产生所述第一频段的谐振。
  9. 如权利要求1~8中任一项所述的天线装置,其中,所述第一频段和高频频段的频带范围至少部分重合。
  10. 如权利要求1~9中任一项所述的天线装置,其中,所述第一频段为高频频段。
  11. 如权利要求1~10中任一项所述的天线装置,其中,
    所述第一频段的中心频点落入2.496GHz-2.690GHz的频带范围内;或者,
    所述第一频段的中心频点落入3.30GHz-3.80GHz的频带范围内。
  12. 如权利要求1~11中任一项所述的天线装置,其中,所述辐射体还用于支持长期演进(Long Term Evolution,LTE)信号的第二频段和第三频段,所述第二频段与所述第三频段不相同。
  13. 如权利要求12所述的天线装置,其中,
    所述第二频段为高频频段;或者,
    所述第三频段为中频频段。
  14. 如权利要求12或13所述的天线装置,其中,
    所述第二频段的中心频点落在2.30GHz-3.690GHz的频带范围内;或者,
    所述第三频段的中心频点落在1.71GHz-2.17GHz的频带范围内。
  15. 如权利要求12~14中任一项所述的天线装置,其中,所述指定电流路径的低次模用于激励所述辐射体产生所述第二频段或所述第三频段的谐振。
  16. 一种电子设备,其中,包括壳体以及权利要求1至15中任一项所述的天线装置,所述辐射体设置于所述壳体。
  17. 如权利要求16所述的电子设备,其中,所述壳体包括承载部以及连接于所述承载部的边框,所述辐射体集成于所述边框。
  18. 如权利要求16或17所述的电子设备,其中,所述边框的材质包括塑胶,所述辐射体为柔性电路板辐射体,所述辐射体叠置于所述边框的表面或嵌入所述边框内。
  19. 一种电子设备,其中,包括边框以及权利要求1至18中任一项所述的天线装置,所述边框的材质包括金属,所述天线装置集成于所述边框,所述辐射体为金属枝节,所述辐射体附着于所述边框的表面。
  20. 如权利要求19所述的电子设备,其中,所述边框可以包括顶部边框、底部边框以及两个侧边框,所述顶部边框和所述底部边框相互背离;每个所述侧边框的两端分别连接于所述顶部边框和所述底部边框,两个所述侧边框相互背离;所述辐射体集成于所述顶部边框、所述底部边框、两个所述侧边框中的至少一者。
PCT/CN2023/119150 2022-11-11 2023-09-15 天线装置及电子设备 WO2024098959A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211420850.8 2022-11-11
CN202211420850.8A CN118040294A (zh) 2022-11-11 2022-11-11 天线装置及电子设备

Publications (1)

Publication Number Publication Date
WO2024098959A1 true WO2024098959A1 (zh) 2024-05-16

Family

ID=90995732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119150 WO2024098959A1 (zh) 2022-11-11 2023-09-15 天线装置及电子设备

Country Status (2)

Country Link
CN (1) CN118040294A (zh)
WO (1) WO2024098959A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9973232B1 (en) * 2014-06-06 2018-05-15 Amazon Technologies, Inc. Low specific absorption rate (SAR) dual-band antenna structure
CN111029729A (zh) * 2019-12-24 2020-04-17 西安易朴通讯技术有限公司 天线组件及电子设备
CN112886210A (zh) * 2019-11-29 2021-06-01 RealMe重庆移动通信有限公司 穿戴式电子设备
CN112886245A (zh) * 2019-11-29 2021-06-01 RealMe重庆移动通信有限公司 穿戴式电子设备
CN113594697A (zh) * 2021-06-25 2021-11-02 荣耀终端有限公司 一种低sar天线及电子设备
WO2022110951A1 (zh) * 2020-11-27 2022-06-02 荣耀终端有限公司 天线模块及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9973232B1 (en) * 2014-06-06 2018-05-15 Amazon Technologies, Inc. Low specific absorption rate (SAR) dual-band antenna structure
CN112886210A (zh) * 2019-11-29 2021-06-01 RealMe重庆移动通信有限公司 穿戴式电子设备
CN112886245A (zh) * 2019-11-29 2021-06-01 RealMe重庆移动通信有限公司 穿戴式电子设备
CN111029729A (zh) * 2019-12-24 2020-04-17 西安易朴通讯技术有限公司 天线组件及电子设备
WO2022110951A1 (zh) * 2020-11-27 2022-06-02 荣耀终端有限公司 天线模块及电子设备
CN113594697A (zh) * 2021-06-25 2021-11-02 荣耀终端有限公司 一种低sar天线及电子设备

Also Published As

Publication number Publication date
CN118040294A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US9419328B2 (en) Terminal device
US7280856B2 (en) Portable terminal having tuner for changing radiation pattern
WO2022111053A1 (zh) 电子设备及其壳体
KR20150116417A (ko) 안테나를 구비한 전자 장치를 위한 보조 장치
US20230318180A1 (en) Antenna Structure and Electronic Device
CN112542678A (zh) 电子设备
CN112467371A (zh) 天线装置及电子设备
WO2022111054A1 (zh) 天线装置、壳体及电子设备
US20230246335A1 (en) Antenna apparatus and electronic device
WO2023103735A1 (zh) 天线装置及电子设备
WO2024098959A1 (zh) 天线装置及电子设备
WO2022111064A1 (zh) 电子设备
WO2024098969A1 (zh) 天线装置及电子设备
US11405060B2 (en) Electronic device
WO2023103736A1 (zh) 天线装置及电子设备
CN113067147A (zh) 天线组件及电子设备
RU2523443C2 (ru) Антенное устройство для портативного беспроводного терминала
CN115411503B (zh) 天线装置及电子设备
CN218525734U (zh) 天线模组及电子设备
CN217823237U (zh) 电子设备
CN114156633B (zh) 低sar天线装置及电子设备
TWI823597B (zh) 耦合式多支路天線系統
WO2024041357A1 (zh) 一种天线系统及电子设备
CN110571507B (zh) 移动装置及其天线结构
WO2020156063A1 (zh) 天线结构、多入多出mimo天线及终端