WO2023142785A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2023142785A1
WO2023142785A1 PCT/CN2022/140480 CN2022140480W WO2023142785A1 WO 2023142785 A1 WO2023142785 A1 WO 2023142785A1 CN 2022140480 W CN2022140480 W CN 2022140480W WO 2023142785 A1 WO2023142785 A1 WO 2023142785A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
branch
antenna assembly
sub
electrically connected
Prior art date
Application number
PCT/CN2022/140480
Other languages
English (en)
French (fr)
Inventor
吴小浦
姜文禹
张云帆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023142785A1 publication Critical patent/WO2023142785A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set

Definitions

  • the present application relates to but not limited to the technical field of communication, and in particular relates to an antenna assembly and electronic equipment.
  • Embodiments of the present application provide an antenna assembly and an electronic device, which can solve the problem of how to transmit data of the electronic device.
  • An embodiment of the present application provides an antenna assembly, including a first radiator, a second radiator, a first matching module, a first feeding module, a second matching module, and a second feeding module, the first radiator It has a first ground terminal and a first coupled terminal, and a first feed point between the first ground terminal and the first coupled terminal, and the second radiator has a second coupled terminal and a second ground end, and a second feeding point located between the second coupling end and the second grounding end, there is a first coupling gap between the second coupling end and the first coupling end, and the first coupling end
  • a matching module is electrically connected between the first feeding point and the first feeding module, the first ground terminal is electrically connected to the first reference ground; the second matching module is electrically connected to the first Between the second feed point and the second feed module, the second ground terminal is electrically connected to a second reference ground;
  • the first radiator supports a first resonant mode when excited by the first feeding module, wherein the first resonant mode supports a low frequency band.
  • An electronic device the electronic device includes a casing and the above-mentioned antenna assembly, the radiator of the antenna assembly is integrated in the casing, or is arranged on the surface of the casing, or is arranged on the casing in the space enclosed by the body.
  • the antenna assembly and electronic equipment provided by the present application are capacitively coupled by designing the first radiator and the second radiator, the first radiator and the second radiator are common-aperture radiators, and the design of the first radiator is
  • a feed module supports the first resonant mode under excitation, wherein the first resonant mode supports a preset low-frequency band, so that the first radiator and the second radiator are multiplexed with each other, and while generating multiple resonant modes, can Increase support for low-frequency frequency bands, increase the number of frequency bands or bandwidth supported by antenna components, improve data transmission rates and communication quality, and facilitate antenna components to support signals of different protocol standards, avoiding the need to send and receive signals of different protocol standards through a radiator. The resulting RF link loss.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 2 is a schematic exploded view of the structure of the electronic device shown in FIG. 1;
  • Fig. 3 is a schematic structural diagram of the first antenna assembly in the electronic device shown in Fig. 2;
  • FIG. 4 is a schematic diagram of an S parameter curve of the first antenna unit shown in FIG. 3;
  • Fig. 5 is a schematic diagram of the first resonant current density distribution in the antenna assembly shown in Fig. 3;
  • Fig. 6 is a schematic diagram of the S parameter curve of the second antenna unit shown in Fig. 3;
  • FIG. 7A is a schematic diagram of the distribution of the second resonant current density in the antenna assembly shown in FIG. 3;
  • FIG. 7B is a schematic diagram of a third resonant current density distribution in the antenna assembly shown in FIG. 3;
  • FIG. 7C is a schematic diagram of a fourth resonant current density distribution in the antenna assembly shown in FIG. 3;
  • FIG. 7D is a schematic diagram of the fifth resonant current density distribution in the antenna assembly shown in FIG. 3;
  • Fig. 8 is a schematic structural diagram of the first matching module in Fig. 3;
  • FIG. 9B is a schematic structural diagram of the second type of first sub-branch provided by the embodiment of the present application.
  • Fig. 9C is a schematic structural diagram of the third first sub-branch provided by the embodiment of the present application.
  • FIG. 9D is a schematic structural diagram of the fourth first sub-branch provided by the embodiment of the present application.
  • FIG. 9E is a schematic structural diagram of the fifth first sub-branch provided by the embodiment of the present application.
  • FIG. 9F is a schematic structural diagram of the sixth first sub-branch provided by the embodiment of the present application.
  • FIG. 9G is a schematic structural diagram of the seventh first sub-branch provided by the embodiment of the present application.
  • FIG. 9H is a schematic structural diagram of the eighth first sub-branch provided by the embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of the second matching module in Fig. 3;
  • Fig. 11 is a structural schematic diagram of the first antenna assembly shown in Fig. 3 provided with adjustable branches;
  • Fig. 12 is another structural schematic diagram of the second matching module in Fig. 10;
  • FIG. 13 is a first schematic diagram of the structure of the first antenna assembly shown in FIG. 3 installed in electronic equipment;
  • FIG. 16 is a structural schematic diagram III of the first antenna assembly shown in FIG. 3 installed on electronic equipment;
  • Fig. 17 is a first structural schematic diagram of the second antenna assembly provided in the embodiment of the present application installed on an electronic device;
  • Fig. 18 is a schematic structural diagram of a second antenna assembly provided by an embodiment of the present application.
  • FIG. 19 is a second structural schematic diagram of the second antenna assembly shown in FIG. 17 installed on an electronic device;
  • FIG. 20 is a schematic diagram of an improved structure of the second antenna assembly shown in FIG. 19;
  • Fig. 21 is a schematic structural diagram of the second antenna assembly integrated proximity detection shown in Fig. 19;
  • Fig. 22 is a schematic structural diagram of a third antenna assembly provided by an embodiment of the present application.
  • Fig. 23 is a schematic diagram of the S parameter curve of the third antenna unit of the antenna assembly in Fig. 22;
  • 24A is a schematic diagram of the current density distribution of the sixth resonant mode in the antenna assembly shown in FIG. 23;
  • 24B is a schematic diagram of the current density distribution of the seventh resonant mode in the antenna assembly shown in FIG. 23;
  • 24C is a schematic diagram of the current density distribution of the eighth resonant mode in the antenna assembly shown in FIG. 23;
  • FIG. 25 is a schematic diagram of an S-parameter curve of a fourth antenna unit of the antenna assembly in FIG. 23;
  • 26A is a schematic diagram of the current density distribution of the tenth resonant mode in the antenna assembly shown in FIG. 23;
  • 26B is a schematic diagram of the current density distribution of the eleventh resonant mode in the antenna assembly shown in FIG. 23;
  • 26C is a schematic diagram of the current density distribution of the twelfth resonant mode in the antenna assembly shown in FIG. 23;
  • FIG. 27 is a schematic structural diagram of the antenna assembly shown in FIG. 23 installed in electronic equipment;
  • Fig. 28 is a graph of S parameters of the antenna assembly shown in Fig. 23;
  • Fig. 29A is a schematic structural diagram of a common radiator of the third antenna assembly provided by an embodiment of the present application as a proximity sensing electrode;
  • Fig. 29B is a schematic structural diagram of the second radiator of the third antenna assembly provided by the embodiment of the present application as a proximity sensing electrode;
  • Fig. 29C is a schematic structural diagram of the fourth radiator of the third antenna assembly provided by the embodiment of the present application as a proximity sensing electrode;
  • Fig. 29D is a schematic structural diagram of the common radiator and the fourth radiator of the third antenna assembly provided by the embodiment of the present application as proximity sensing electrodes;
  • Fig. 30 is a schematic structural diagram of adding a seventh matching module to the third antenna assembly provided by the embodiment of the present application.
  • Fig. 31 is a schematic structural diagram of adding the seventh matching module and the eighth matching module to the third antenna assembly provided by the embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • Electronic device 1000 includes antenna assembly 100 .
  • the antenna assembly 100 is used to send and receive electromagnetic wave signals, so as to realize the communication function of the electronic device 1000 .
  • the present application does not limit the position of the antenna assembly 100 in the electronic device 1000 .
  • the electronic device 1000 also includes a display screen 300 and a housing 200 that are closed and connected to each other.
  • the antenna assembly 100 can be disposed inside the casing 200 of the electronic device 1000 , or partially integrated with the casing 200 , or partially disposed outside the casing 200 .
  • the radiator of the antenna assembly 100 in FIG. 1 is integrated with the casing 200 .
  • the antenna assembly 100 can be provided on the retractable assembly of the electronic device 1000, in other words, at least a part of the antenna assembly 100 can extend out of the electronic device 1000 along with the retractable assembly of the electronic device 1000, and along with the retractable assembly retracted into the electronic device 1000; alternatively, the overall length of the antenna assembly 100 is extended as the retractable assembly of the electronic device 1000 is extended.
  • the electronic equipment 1000 includes but is not limited to telephones, televisions, tablet computers, mobile phones, cameras, personal computers, notebook computers, vehicle equipment, earphones, watches, wearable equipment, base stations, vehicle radar, customer premise equipment (Customer Premise Equipment, CPE ) and other devices capable of sending and receiving electromagnetic wave signals.
  • the electronic device 1000 is taken as an example of a mobile phone, and for other devices, reference may be made to the specific description in this application.
  • the X-axis direction, the Y-axis direction and the Z-axis direction are perpendicular to each other.
  • the direction indicated by the arrow is the positive direction.
  • the casing 200 includes a frame 210 and a rear cover 220 .
  • a middle plate 410 is formed in the frame 210 by injection molding, and a plurality of installation slots for installing various electronic devices are formed on the middle plate 410 .
  • the middle board 410 and the frame 210 together form the middle frame 420 of the electronic device 1000 .
  • the middle frame 420 and the rear cover 220 are closed, a receiving space is formed on both sides of the middle frame 420 .
  • One side (such as the rear side) of the frame 210 surrounds the periphery of the rear cover 220
  • the other side (such as the front side) of the frame 210 surrounds the periphery of the display screen 300 .
  • the electronic device 1000 also includes a battery, a camera, a microphone, a receiver, a loudspeaker, a face recognition module, a fingerprint recognition module, etc., which can realize the basic functions of the mobile phone, and will not be described in detail in this embodiment. .
  • the antenna assembly 100 provided by the present application will be described below with reference to the accompanying drawings.
  • the antenna assembly 100 provided by the present application includes but is not limited to the following embodiments.
  • the antenna assembly 100 at least includes a first radiator 11 , a second radiator 21 , a first matching module M1 , a first feeding module 13 , a second matching module M2 and a second feeding module 23 .
  • the first radiator 11, the second radiator 21, the first matching module M1 and the first feeding module 13 are defined as the first antenna unit 10.
  • the first radiator 11 , the second radiator 21 , the second matching module M2 and the second feeding module 23 are defined as the second antenna unit 20 .
  • the first radiator 11 has a first ground terminal 111 and a first coupling terminal 112 , and a first feeding point A located between the first ground terminal 111 and the first coupling terminal 112 .
  • the first grounding end 111 and the first coupling end 112 are opposite ends of the first radiator 11 in the shape of a straight line.
  • the first radiator 11 is bent, and the first ground terminal 111 and the first coupling terminal 112 may not face each other along a straight line, but the first ground terminal 111 and the first coupling terminal 112 are the first radiator 11 at both ends.
  • the second radiator 21 has a second coupling end 212 and a second grounding end 211 , and a second feeding point B located between the second coupling end 212 and the second grounding end 211 .
  • a first coupling gap 140 exists between the second coupling end 212 and the first coupling end 112 .
  • the first radiator 11 and the second radiator 21 can generate capacitive coupling through the first coupling slot 140 .
  • the second coupling end 212 and the second grounding end 211 are two ends of the second radiator 21 .
  • the first radiator 11 and the second radiator 21 may be arranged in a straight line or substantially in a straight line (that is, there is a small tolerance in the design process).
  • the first radiator 11 and the second radiator 21 may also be arranged in a staggered manner in the extending direction, so as to form an avoidance space and the like.
  • the first coupling end 112 is opposite to the second coupling end 212 and arranged at intervals.
  • the first coupling slot 140 is a gap between the first radiator 11 and the second radiator 21 , for example, the width of the first coupling slot 140 may be 0.5 to 2 mm, but is not limited to this size.
  • the first radiator 11 and the second radiator 21 can be regarded as two parts formed by the radiator being separated by the first coupling slot 140 .
  • the first radiator 11 and the second radiator 21 are capacitively coupled through the first coupling slot 140 .
  • capacitively coupling means that an electric field is generated between the first radiator 11 and the second radiator 21, the signal of the first radiator 11 can be transmitted to the second radiator 21 through the electric field, and the signal of the second radiator 21 Signals can be transmitted to the first radiator 11 through the electric field, so that the first radiator 11 and the second radiator 21 can realize electrical signal conduction even when they are not in direct contact or direct connection.
  • the present application does not limit the shape and structure of the first radiator 11 and the second radiator 21.
  • the shapes of the first radiator 11 and the second radiator 21 include but are not limited to strip shape, sheet shape, Rods, coatings, films, etc.
  • the application does not limit the extension tracks of the first radiator 11 and the second radiator 21, so the first radiator 11 and the second radiator 21 All can be extended in the form of straight lines, curves, multi-segment bends and other trajectories.
  • the aforementioned radiator can be a line with a uniform width on the extension track, or a bar shape with a gradually changing width or a widening area.
  • the first matching module M1 is electrically connected between the first feeding point A and the first feeding module 13 .
  • the first power feeding module 13 is a radio frequency transceiver chip for sending radio frequency signals or a power feeding part electrically connected to the radio frequency transceiver chip for sending radio frequency signals.
  • the first matching module M1 may include at least one of a switching device, a capacitive device, an inductive device, a resistive device, and the like.
  • the first ground terminal 111 is electrically connected to the first reference ground GND1, and its electrical connection methods include but not limited to direct welding, or indirect electrical connection through coaxial lines, microstrip lines, conductive shrapnel, conductive glue, etc. .
  • the present application does not limit the position of the first feeding point A on the first radiator 11 .
  • the second antenna unit 20 includes a first radiator 11 , a second radiator 21 , a second matching module M2 and a second feeding module 23 .
  • the second matching module M2 is electrically connected between the second feeding point B and the second feeding module 23 .
  • the second power feeding module 23 is a radio frequency transceiver chip for sending radio frequency signals or a power feeding part electrically connected to the radio frequency transceiver chip for sending radio frequency signals.
  • the second matching module M2 includes at least one of a switching device, a capacitive device, an inductive device, a resistive device and the like.
  • the second ground terminal 211 is electrically connected to the second reference ground GND2, and its electrical connection methods include but not limited to direct welding, or indirect electrical connection through coaxial lines, microstrip lines, conductive shrapnel, conductive glue, etc. .
  • the present application does not limit the specific position of the second feeding point A on the second radiator 21 .
  • the first reference ground GND1 and the second reference ground GND2 include but are not limited to the following several implementations.
  • the antenna assembly 100 itself has a reference ground.
  • Specific forms of the reference ground include, but are not limited to, metal conductive plates, metal conductive layers molded inside flexible circuit boards, and rigid circuit boards.
  • the first reference ground GND1 and the second reference ground GND2 may be an integrated reference ground in the antenna assembly 100 , or may be two independent but connected reference grounds in the antenna assembly 100 .
  • the reference ground of the antenna assembly 100 is electrically connected to the reference ground of the electronic device 1000 .
  • the antenna assembly 100 itself does not have a reference ground, and the first ground terminal 111 and the second ground terminal 211 of the antenna assembly 100 are directly electrically connected or indirectly electrically connected to the reference ground of the electronic device 1000 or the electronic device Reference ground for electronic devices within 1000.
  • the antenna assembly 100 is disposed in the electronic device 1000, and the metal alloy on the middle board 410 is used as the reference ground GND. That is, the first reference ground GND1 and the second reference ground GND2 are part of the mid-plane 410 or electrically connected to the mid-plane 410 , and the subsequent third reference ground GND3 to seventh reference ground GND7 are all part of the reference ground GND.
  • the first radiator 11 supports a first resonance mode under the excitation of the first feeding module 13 , wherein the first resonance mode supports a low frequency band.
  • the low-frequency frequency band is a frequency band less than 1 GHz
  • the frequency band supported by the first resonance mode may be the whole low-frequency frequency band, or one or more sub-frequency bands in the low-frequency frequency band.
  • the effective electrical length of the first radiator 11 is increased, so that the first radiator 11 supports the low frequency band under the excitation of the first feeding module 13 .
  • the effective electrical length of the first radiator 11 is 1/8 to 1/4 times the wavelength of the current frequency provided by the first feeding module 13 in the medium, where the wavelength refers to the wavelength of the electromagnetic wave in the medium. wavelength in the medium of the environment. Since the 1/8 to 1/4 wavelength mode is a relatively high-efficiency resonant mode, therefore, using an effective electrical length of 1/8 to 1/4 times the wavelength can facilitate the generation of a resonant mode and make the current resonate in the first radiator 1/8 to 1/4 wavelength mode on 11.
  • the current generated by the second feed module 23 can also resonate in at least one of the first radiator 11 and the second radiator 21, and the first radiator 11 and The second radiator 21 can be used not only as the radiator of the first antenna unit 10, but also as the radiator of the second antenna unit 20.
  • the present application The first antenna unit 10 and the second antenna unit 20 in the antenna assembly 100 provided by the embodiment realize common-aperture radiation and can generate more resonance modes. From another point of view, the antenna assembly 100 provided by the embodiment of the present application fully multiplexes the radiator while supporting the required frequency band (or supporting the required number of resonance modes), reducing the first radiation The stack length of the body 11 and the second radiator 21.
  • the second feeding module 23 resonates in the first radiator 11 or the second radiator 21 , so that the antenna assembly supports multiple resonance modes under the excitation of the second feeding module.
  • the current provided by the second feed module 23 resonates on the second radiator 21 to generate a resonance mode; in addition, due to the capacitive coupling between the first radiator 11 and the second radiator 21, the second feed The current provided by the electrical module 23 is also transmitted to the first radiator 11 through the first coupling slot 140 to generate a resonant mode on the first radiator 11 and increase the number of resonant modes supported by the second antenna unit 10 .
  • the current frequency provided by the feed module used by electronic equipment is in the high frequency band, and by designing the current frequency provided by the first feed module 21 to be a preset low frequency band, it can be effectively compared with conventional
  • the frequency generated by the feed module in the electronic equipment is different, so that the frequency band width and the number of frequency bands covered by the antenna assembly 100 as a whole are increased.
  • the effective electrical length of the first radiator 11 is about 1/8 to 1/4 times the wavelength of the current frequency provided by the second feed module 23 in the medium, where the wavelength refers to the electromagnetic wave at The wavelength in the medium of the environment. It can be beneficial to generate a resonance mode, so that the current resonates in the 1/8 to 1/4 wavelength mode on the second radiator 21, wherein the 1/8 to 1/4 wavelength mode is a resonance mode with relatively high efficiency, so it can increase The number of resonance modes supported by the second antenna unit 20 and the transceiving efficiency for the supported frequency bands enable the second antenna unit 20 to generate resonance modes on both the first radiator 11 and the second radiator 21 .
  • the number of resonance modes supported by the second antenna unit 20 is increased and a higher signal conversion efficiency is generated, thereby increasing the number of resonance modes supported by the antenna assembly 100.
  • the number of resonance modes is increased and a higher signal conversion efficiency is generated, thereby increasing the number of resonance modes supported by the antenna assembly 100. The number of resonance modes.
  • the number of resonance modes supported by the antenna assembly 100 increases, and the frequency band width and number of frequency bands covered by the antenna assembly 100 increase.
  • the frequency bandwidth supported by the antenna assembly 100 is relatively wide, and can form an ultra-wideband, which is a low-frequency , 1G, 1.5G or 2G, etc., to achieve ultra-broadband coverage, increase download bandwidth, increase throughput download speed, and improve user experience on the Internet;
  • the frequency bands supported by the multiple resonance modes of the antenna assembly 100 are not When continuous, the number of frequency bands supported by the antenna assembly 100 increases to achieve multi-band coverage.
  • the frequency bands supported by the antenna assembly 100 can simultaneously cover low frequency, 4G/5G medium and high frequency (such as 1000MHz to 3000MHz) and 4G/5G ultra-high frequency Frequency (such as 3000MHz to 10000MHz), support two different frequency bands at the same time, and support 4G/5G medium and high frequency bands and WiFi frequency bands (such as WiFi5G, 5.925GHz to 7.125GHz, etc.) and so on.
  • the frequency bands supported by multiple resonance modes are continuous, which means that two adjacent frequency bands supported by multiple resonance modes overlap at least in part.
  • the discontinuity of frequency bands supported by multiple resonance modes means that there is no overlap between two adjacent frequency bands supported by multiple resonance modes.
  • the first antenna unit 10 can support relatively many resonance modes, and the frequency band width covered is relatively large. wide and relatively large number of supported frequency bands, enabling the first antenna unit 10 to support one of the communication protocol signals that require more resonance mode support (such as mobile communication N77 frequency band or N78 frequency band signals), and the second antenna unit 20 can also support another communication protocol signal (for example, 4G/5G signal).
  • the communication protocol signals such as mobile communication N77 frequency band or N78 frequency band signals
  • the second antenna unit 20 can also support another communication protocol signal (for example, 4G/5G signal).
  • the antenna assembly 100 and the electronic device 1000 provided in the present application are capacitively coupled by designing the first radiator 11 and the second radiator 21, and the first radiator 11 and the second radiator 21 are used as the first antenna unit 10 and the second antenna
  • the common-aperture radiator of the unit 20, and the length of the first radiator 11 is designed to correspond to the 1/8 to 1/4 wavelength of the resonance frequency of the excitation current provided by the second feed module 23, so that the second feed module 23 While the transmitted current resonates on the second radiator 21, it can also resonate on the 1/8 to 1/4 wavelength mode on the first radiator 11 through the first coupling slot 140, so the support of the second antenna unit 20 can be increased.
  • the number of resonant modes and the transceiving efficiency for the supported frequency bands thereby increasing the number of frequency bands or bandwidth supported by the second antenna unit 20, improving the data transmission rate and communication quality, and also facilitating the second antenna unit 20 to support the same protocol standard signal, avoiding the radio frequency link loss caused by sending and receiving signals of different protocol standards through a radiator, improving the structural simplicity of the antenna unit 100 and reducing the radio frequency link loss.
  • the first antenna unit 10 supports the first resonant mode a
  • FIG. 4 is an S-parameter curve diagram of the first antenna unit 10 ; wherein, the resonant frequency of the first resonant mode a is 0.7468 GHz.
  • the first resonance mode a is that the excitation current (ie, the first resonance current) provided by the first feed module 13 resonates at 1/1 of the first radiator 11 8 to 1/4 wavelength mode.
  • the length of the first radiator 11 by designing the length of the first radiator 11 to be approximately 1/8 to 1/4 times the wavelength in the medium of the excitation current sent to the first radiator 11 by the first feeding module 13, to The first resonant mode a is excited on the first radiator 11 , and the frequency band supported by the first resonant mode a has higher radiation efficiency.
  • the length of the first radiator 11 is about 1/4 times the wavelength in the medium of the excitation current sent to the first radiator 11 by the first feeding module 13, at the first resonance frequency point f1 (the first The resonant frequency of a resonant mode a) tends to stimulate higher radiation efficiency.
  • capacitive loading can make the resonant frequency of the first resonant mode a shift towards low frequency , no longer follow the original requirement to produce a higher-efficiency resonance at the length of the first radiator 11 at about 1/4 wavelength, but can be at the length of the first radiator 11 corresponding to 1/8 to 1/4 wavelength Within the range, higher-efficiency resonance can be generated, so while forming resonance at the original first resonance frequency point f1, the length of the corresponding first radiator 11 can also be shortened, for example, reduced to the first resonance frequency point 1/8 times the wavelength corresponding to f1, etc., the size of the first radiator 11 is reduced, and the stacking length of the antenna assembly 100 is reduced.
  • the second antenna unit 20 supports the second resonant mode b, the third resonant mode c, the fourth resonant mode d and the fifth resonant mode e.
  • the resonant frequency of the second resonant mode b is 1.88 GHz
  • the resonant frequency of the third resonant mode c is 2.6323 GHz
  • the resonant frequency of the fourth resonant mode d is 3.5707 GHz
  • the resonant frequency of the fifth resonant mode e is 3.822 GHz.
  • the second radiator 11 supports at least the second resonant mode b, the third resonant mode c, the fourth resonant mode d and the fifth resonant mode e under the excitation of the second feeding module 13 .
  • the second resonance current density of the second resonance mode b is mainly distributed between the second ground terminal 211 and the second coupling terminal 212, and flows from the second ground terminal 211 to the second coupling terminal 212, or from the second The coupled end 212 flows to the second ground end 211 . It can be understood that the above is the main current density distribution of the second resonance mode b, and there is also a small amount of current density distribution on the first radiator 11 .
  • the second resonance mode b is that the excitation current (that is, the second resonance current) provided by the second feed module 23 resonates at 1/1 of the second radiator 11 8 to 1/4 wavelength mode.
  • the length of the second radiator 21 to be about 1/8 to 1/4 times the wavelength in the medium of the excitation current sent to the second radiator 21 by the second feed module 23, to The second resonance mode b is excited on the second radiator 21 , and the frequency band supported by the second resonance mode b has higher radiation efficiency.
  • the length of the second radiator 21 is about 1/4 times the wavelength of the excitation current in the medium sent by the second feed module 23 to the second radiator 21, at the second resonance frequency point f2 (the second The resonant frequency of the second resonant mode b) is easy to excite higher radiation efficiency.
  • capacitive loading can make the resonant frequency of the second resonant mode b shift towards low frequency , no longer follow the original requirement to generate a higher-efficiency resonance at the length of the second radiator 21 at about 1/4 of the wavelength, but can be at the length of the second radiator 21 corresponding to 1/8 to 1/4 of the wavelength Within the range, higher-efficiency resonance can be generated, so while forming resonance at the original second resonance frequency point f2, the length of the corresponding second radiator 21 can also be shortened, for example, reduced to the second resonance frequency point 1/8 of the wavelength corresponding to f2, etc., reduces the size of the second radiator 21 and reduces the stacking length of the antenna assembly 100 .
  • the third resonance current density of the third resonance mode c is mainly distributed between the first feeding point A and the first coupling end 112 . It flows from the second feeding point B to the second coupling end 212 , passes through the first coupling slot 140 , and then flows from the first coupling end 112 to the first feeding point A. It can be understood that the above is the main current density distribution of the third resonance mode c, and there is also a small amount of current density distribution between the first ground terminal 111 and the first feeding point A.
  • the third resonance mode c is the 1/4 wavelength mode in which the excitation current (third resonance current) provided by the second feed module 13 resonates on the first radiator 21 .
  • the length of the first radiator 11 is equal to that of the first feed module 13 1/8 to 1/4 times the wavelength of the excitation current in the medium, therefore, the length of the first radiator 11 is greater than 1/8 to 1/4 times the wavelength of the excitation current in the medium of the second feed module 23 , therefore, the first radiator 11 can support the second feed module 23 to excite the third resonance mode c on the first radiator 11 .
  • the first matching module M1 further includes at least one branch R electrically connected to the third reference ground, wherein the control branch R is gated when the antenna assembly 100 works in the third resonance mode.
  • this branch will be described in detail in the part about the first matching module M1 below.
  • the length of the first radiator 11 is about 1/8 to 1/4 times the wavelength of the excitation current sent by the second feed module 23 in the medium, at this time, at the third resonance frequency point f3 (The resonant frequency of the third resonant mode c) tends to excite higher radiation efficiency.
  • both capacitive loading can make the resonant frequency of the third resonant mode c shift toward low frequency , no longer follow the original requirement to produce a higher-efficiency resonance at the length of the first radiator 11 at about 1/4 wavelength, but can be at the length of the first radiator 11 corresponding to 1/8 to 1/4 wavelength Within the range, higher-efficiency resonance can be generated, so while forming resonance at the original third resonance frequency point f3, the length of the corresponding first radiator 11 can also be shortened, for example, reduced to the third resonance frequency point
  • the wavelength corresponding to f3 is 1/8 times, etc., reducing the size of the first radiator 11 and reducing the stacking length of the antenna assembly 100 .
  • the fourth resonance mode d is that the excitation current (fourth resonance current) provided by the second feed module 13 resonates at 1/4 of the second feed point B to the second coupling end 212 wavelength mode.
  • the length from the second feeding point B to the second coupling end 212 is designed to be about 1/8 of the wavelength in the medium of the excitation current sent to the second radiator 21 by the second feeding module 23 to 1/4 times, so as to excite the third resonant mode c from the second feeding point B to the second coupling end 212 .
  • the first radiator 11 has a ground point located between the first feeding point A and the first coupling end 112;
  • the antenna assembly also includes a filter circuit S, wherein the filter circuit S One end of the filter circuit S is connected to the ground point, and the other end of the filter circuit S is connected to the ground;
  • the antenna assembly 100 is used to support a fifth resonance mode, wherein the fifth resonance mode is that the excitation current of the second feed module 23 resonates at 1 between the ground point and the first coupling end 112. /4 wavelength mode;
  • the filter circuit S is used to turn on the frequency band supported by the fifth resonance mode and block other frequency bands other than the frequency band supported by the fifth resonance mode.
  • the filtering circuit S includes at least one of a first filtering branch and a second filtering branch, wherein: the first filtering branch includes a first inductor and a first capacitor connected in series; the The second filtering branch includes a second capacitance, a second inductance, and a third inductance, the second capacitance is connected in series with the second inductance, and one end of the third inductance is connected to the second capacitance which is not connected to the second One end of the inductor, the other end of the third inductor is connected to the end of the second inductor not connected to the second capacitor.
  • the fifth resonance mode e is the 1/4 wavelength mode in which the excitation current (fifth resonance current) provided by the second feed module 23 resonates between the ground point and the first coupling end 112 .
  • the length from the ground point to the first coupling end 112 to be about 1/4 times the wavelength in the medium of the excitation current sent by the second feed module 23 to the first radiator 11,
  • the fifth resonant mode e is excited from the ground point to the first coupling end 112 .
  • the length from the second feeding point B to the second coupling end 212 to be about 1/4 times the wavelength of the excitation current in the medium sent by the second feeding module 13, at this time, at the fifth resonance frequency Point f5 (resonant frequency of the fifth resonant mode e) tends to excite higher radiation efficiency.
  • capacitive loading can make the resonant frequency of the fifth resonant mode e shift towards low frequency , no longer follow the original requirement to generate a higher-efficiency resonance at the length from the second feeding point B to the second coupling end 212, which is about 1/4 of the wavelength, but can be at the ground point of the first radiator 11 to the second
  • the length of a coupled end 112 corresponds to a range of 1/4 wavelength, which can generate higher-efficiency resonance.
  • the length of the second coupling end 212 is shortened, for example, reduced to 1/8 times of the wavelength corresponding to the fifth resonance frequency point f5, etc., reducing the size of the second feeding point B to the second coupling end 212, reducing the antenna The stack length of the assembly 100.
  • the number of resonant modes generated by the excitation of the second feed module 23 on the first radiator 11 is increased, effectively improving the performance of the second antenna unit 20.
  • the number of frequency bands covered, the frequency band width, etc., increase the transmission data rate of the antenna assembly 100 .
  • the second feeding module 23 can Both the body 11 and the second radiator 21 excite resonant modes, increase the number of resonant modes that the second antenna unit 20 can support, effectively increase the number of frequency bands and frequency band widths that the second antenna unit 10 covers, and improve the antenna Component 100 transmits data rates.
  • the frequency bands supported by the second resonance mode b, the third resonance mode c, the fourth resonance mode b or the fifth resonance mode e include GPS frequency band, or LTE 4G frequency band, or NR 5G frequency band, or Wi-Fi 2.4 G frequency band, or Wi-Fi 5G frequency band, or Wi-Fi 6E frequency band, or the combined frequency band formed by LTE 4G frequency band and NR 5G frequency band, etc.
  • the frequency band supported by a resonance mode can be a separate LTE 4G frequency band, or a separate NR 5G frequency band, or a separate Wi-Fi frequency band, or a combined frequency band formed by the LTE 4G frequency band and the NR 5G frequency band, etc.
  • the resonant frequency of the second resonant mode b, the resonant frequency of the third resonant mode c, the resonant frequency of the fourth resonant mode d and the fifth resonant mode e are not limited.
  • the resonant frequencies of the second resonant mode b, the resonant frequency of the third resonant mode c, the resonant frequencies of the fourth resonant mode d and the fifth resonant mode e increase sequentially.
  • the frequency band supported by the second resonance mode b includes at least one of the GPS frequency band, LTE-4G MHB frequency band, and NR-5G MHB frequency band, for example, GPS-L1 frequency band, B3 frequency band, B1 frequency band, N3 frequency band , at least one of the N1 frequency bands.
  • the resonant frequency of the second resonant mode b is 1.7698 GHz.
  • the frequency band supported by the third resonance mode c includes at least one of Wi-Fi 2.4G frequency band, LTE-4G MHB frequency band, NR-5G MHB frequency band, etc., for example, Wi-Fi 2.4G frequency band, B7 frequency band, B41 frequency band, B38 frequency band, N7 frequency band, N41 frequency band, etc.
  • the resonant frequency of the third resonant mode c is 2.6185 GHz.
  • the supported frequency bands include at least one of LTE-4G UHB frequency bands, NR-5G UHB frequency bands, etc., for example, at least one of N78 frequency bands, B42 frequency bands, B43 frequency bands, etc.
  • the frequency bands supported by the fourth resonance mode d include the NR-5G UHB frequency band.
  • the resonant frequency of the fourth resonant mode d is 3.5983 GHz.
  • MHB refers to the medium and high frequency band (1000MHz to 3000MHz).
  • UHB refers to Ultra High Band (3000MHz to 10000MHz).
  • the frequency band supported by the fifth resonance mode e is at least one of the N77 frequency band and the N78 frequency band.
  • the frequency band covered by each resonance mode can be part or all of a certain frequency band, for example, it can fully cover the LTE 4G frequency band, or partially cover the LTE 4G frequency band.
  • the above explanation from the perspective of wavelength modes to explain the first resonant mode a to the fifth resonant mode e is a relatively understandable explanation, which illustrates the main characteristic appearance of each mode and is easy to distinguish.
  • the first antenna unit 10 and the second antenna unit 20 are not independent, but are coupled to each other, and the current will flow to each other through the coupling.
  • the first radiator 11 is similar to the parasitic radiator of the second radiator 21 .
  • the third resonance mode c and the fifth resonance mode e are resonance modes generated by the second feeding module 23 exciting the parasitic radiator (the first radiator 11 ).
  • the second feeding module 23 can provide the first feeding on the first radiator 11 Between the point A and the first coupled end 112 and between the ground point and the first coupled end 112, resonant modes are excited to increase the number of resonant modes that the second antenna unit 20 can support, effectively improving the second antenna unit 20.
  • the number of frequency bands covered, the frequency band width, etc., increase the transmission data rate of the antenna assembly 100 .
  • the first matching module M1 is set between the first feeding point A and the first feeding module 13, and is used to select the frequency of the signal fed by the first feeding module 13, for example, the first matching The module M1 selects a frequency band less than 1 GHz from the radio frequency signal transmitted by the first feeding module 13 to transmit the first feeding point A.
  • the first matching module M1 can also tune the resonance mode supported by the first antenna unit 10, so that the antenna assembly 100 can resonate at the frequency band required to be supported, and isolate the resonance signal of the second antenna unit 20, increasing The degree of isolation between the first antenna unit 10 and the second antenna unit 20 .
  • the first matching module M1 will be described below with reference to the accompanying drawings.
  • the first matching module M1 includes at least one branch as follows, wherein:
  • At least one second branch 15 connected in series between the first feed point A and the first feed module 13 .
  • both the first branch 14 and the second branch 15 include at least one of a capacitor and an inductor.
  • At least one of the first branches 14 includes a first sub-branch, one end of the first sub-branch is electrically connected to the first feed module 13, and the first sub-branch The other end is electrically connected to the third reference ground GND3, and the first sub-branch includes at least one of a capacitor and an inductor.
  • the first sub-branch is an inductor, denoted as L13.
  • the first branch 14 is in a pass state when the antenna assembly works in the second resonance mode.
  • the second branch 15 includes but is not limited to at least one of a single capacitor branch, a single inductor branch, and frequency-selective filter circuits listed in the following embodiments.
  • the second branch circuit 15 includes a band-pass circuit formed by an inductor L0 connected in series with a capacitor C0 .
  • the second branch circuit 15 includes a band stop circuit formed by parallel connection of the inductor L0 and the capacitor C0 .
  • the second branch circuit 15 includes a band-pass or band-stop circuit formed by the inductor L0 , the first capacitor C1 , and the second capacitor C2 .
  • the inductor L0 is connected in parallel with the first capacitor C1, and the second capacitor C2 is electrically connected to a node where the inductor L0 is electrically connected to the first capacitor C1.
  • the second branch 15 includes a band-pass or band-stop circuit formed by the capacitor C0 , the first inductor L1 , and the second inductor L2 .
  • the capacitor C0 is connected in parallel with the first inductor L1, and the second inductor L2 is electrically connected to a node where the capacitor C0 is electrically connected to the first inductor L1.
  • the second branch 15 includes a band-pass or band-stop circuit formed by the inductor L0 , the first capacitor C1 , and the second capacitor C2 .
  • the inductor L0 is connected in series with the first capacitor C1, and one end of the second capacitor C2 is electrically connected to the first end of the inductor L0 that is not connected to the first capacitor C1, and the other end of the second capacitor C2 is electrically connected to one end of the first capacitor C1 that is not connected to the inductor L0 .
  • the second branch 15 includes a band-pass or band-stop circuit formed by a capacitor C0 , a first inductor L1 , and a second inductor L2 .
  • the capacitor C0 is connected in series with the first inductor L1, one end of the second inductor L2 is electrically connected to the end of the capacitor C0 not connected to the first inductor L1, and the other end of the second inductor L2 is electrically connected to the end of the first inductor L1 not connected to the capacitor C0.
  • the second branch 15 includes a first capacitor C1 , a second capacitor C2 , a first inductor L1 , and a second inductor L2 .
  • the first capacitor C1 is connected in parallel with the first inductance L1
  • the second capacitor C2 is connected in parallel with the second inductance L2
  • one end of the whole formed by the parallel connection of the second capacitor C2 and the second inductance L2 is electrically connected to the first capacitor C1 and the first inductance L1 in parallel form one end of the whole.
  • the second branch 15 includes a first capacitor C1, a second capacitor C2, a first inductor L1, and a second inductor L2, the first capacitor C1 and the first inductor L1 are connected in series to form a first unit 101, and the second The capacitor C2 is connected in series with the second inductor L2 to form the second unit 102 , and the first unit 101 and the second unit 102 are connected in parallel.
  • the second branch 15 includes, but is not limited to, at least one of a single-capacitance grounding branch, a single-inductance grounding branch, and any of the grounding branches listed in any one of the implementations in FIG. 9A to FIG. 9H .
  • At least one of the second branches 15 includes a second sub-branch 151 and a third sub-branch 152 .
  • One end of the second sub-branch 151 is electrically connected to the first feeding point A, and the other end of the second sub-branch 151 is electrically connected to one end of the third sub-branch 152.
  • the branch 151 includes an inductor and a capacitor connected in parallel, denoted as C11 and L11.
  • the other end of the third sub-branch 152 is electrically connected to the first power feeding module 13 , and the third sub-branch 152 includes a capacitor, or an inductor, or an inductor and a capacitor connected in parallel.
  • the second sub-branch 152 is an inductor, denoted as L12.
  • a branch may be added between the second sub-branch 151 and the first feeding point A.
  • the second sub-branch 151 ( L11 , C11 ) and the third sub-branch 152 ( L12 ) are used for the frequency band corresponding to the resonance mode supported by the second antenna unit.
  • the above-mentioned second sub-branch 151 and third sub-branch 152 have low impedance or low impedance for the frequency band corresponding to the resonance mode supported by the first resonance mode Band pass, to pass through the frequency band supported by the first resonance mode a, and can also effectively filter out other frequency bands except the frequency band supported by the first resonance mode a, thereby reducing the frequency band signal supported by the first antenna unit 10 Effect on the second antenna unit 20 .
  • the first sub-branch L13 plays a role in tuning the frequency band supported by the first resonance mode a, and plays an isolation role in the frequency band supported by the first resonance mode a, so as to reduce the impact of the signal supported by the first antenna unit 10 on the first antenna unit 10.
  • the second matching module M2 is used to turn on the supported frequency band (such as WiFi 5G frequency band), and block other frequency bands (such as the second resonance mode b, the third frequency band) except the supported frequency band.
  • Resonant mode c, fourth resonant mode d and fifth resonant mode e supported frequency bands increase the isolation between the first antenna unit 10 and the second antenna unit 20, and tune the resonant frequency of the supported resonant mode.
  • the second matching module M2 will be described below with reference to the accompanying drawings.
  • the second matching module M2 includes at least one branch as follows, wherein:
  • At least one fourth branch 17 connected in series between the second feed point B and the second feed module 23 .
  • Both the third branch 16 and the fourth branch 17 include at least one of a capacitor and an inductor.
  • the third branch 16 includes but is not limited to at least one of a single capacitor branch, a single inductor branch, and the frequency-selective filter circuits listed in FIGS. 9A to 9H .
  • the fourth branch 17 includes but is not limited to at least one of a single capacitor branch, a single inductor branch, and the frequency-selective filter circuits listed in FIGS. 9A to 9H .
  • the second matching module M2 is used for tuning at least one of the resonant frequency of the second resonant mode b, the resonant frequency of the third resonant mode c, the resonant frequency of the fourth resonant mode d, and the resonant frequency of the fifth resonant mode e.
  • the second resonance Mode b can support GPS-L1
  • the third resonance mode c can support LTE/NR-MHB
  • the fourth resonance mode d can support WiFi-2.4GHz frequency band
  • the fifth resonance mode e can support N78 frequency band.
  • At least one third branch 16 includes a fourth sub-branch 161 , a fifth sub-branch 162 , and a sixth sub-branch 163 .
  • One end of the fourth sub-branch 161 is electrically connected to the second feeding point B, and the other end of the fourth sub-branch 161 is electrically connected to the third reference ground GND3.
  • the fourth sub-branch 161 includes a separate capacitor branch, or a capacitor and A series branch of an inductor.
  • the fourth sub-branch 161 is a single capacitive branch, denoted as C21.
  • one end of the fifth sub-branch 162 is electrically connected to the second feeding point B, and the other end of the fifth sub-branch 162 is electrically connected to the fourth reference ground GND4.
  • the second sub-branch 142 includes an inductor, or an inductor and a capacitor.
  • the fifth sub-branch 162 is a single inductance branch, denoted as L21.
  • the fifth sub-branch 162 may be a series branch of an inductor and a capacitor.
  • the sixth sub-branch 163 includes a capacitor, or a capacitor and an inductor.
  • the sixth sub-branch 163 is a single capacitor branch, denoted as C23.
  • the sixth sub-branch 163 may be a series branch of an inductor and a capacitor.
  • At least one fourth branch 17 includes a seventh sub-branch 171 and an eighth sub-branch 182 .
  • one end of the seventh sub-branch 171 is electrically connected to the second feeding point B.
  • the other end of the seventh sub-branch 171 is electrically connected to an end of the sixth sub-branch 163 away from the fourth reference ground GND4, and the seventh sub-branch 171 includes a capacitor, or a capacitor and an inductor.
  • the seventh sub-branch 171 is a capacitor, denoted as C22.
  • the fourth sub-branch 151 further includes a series branch of a capacitor and an inductor.
  • one end of the eighth sub-branch 172 is electrically connected to the other end of the seventh sub-branch 171 , and the other end of the eighth sub-branch 172 is electrically connected to the second feed module 23 .
  • the eighth sub-branch 172 includes an inductor.
  • the fifth sub-branch 172 is an inductor, denoted as L22.
  • a branch can be added between the fourth sub-branch 161 and the second feeding point B, or a branch can be added between the fourth sub-branch 171 A branch is added between the second feeding point B.
  • the fourth sub-branch 161 (C11) can also isolate the low-frequency band in the first antenna unit 10, so as to prevent interference to the second antenna unit 20 and improve the performance of the first antenna unit 10 and the The isolation of the second antenna unit 20 .
  • the fourth sub-branch 161 , the sixth sub-branch 163 and the eighth sub-branch 172 are used for the fourth resonance mode d.
  • the fifth sub-branch 162 and the seventh sub-branch 171 are used to tune the second resonance mode b.
  • the fourth sub-branch 161 (C11) is used for the resonance point of the fourth resonance mode d, so that the fourth resonance mode covers the supported frequency band.
  • the sixth sub-branch 163 (C23) and the fifth sub-branch 172 ( L22 ) are capable of tuning the fourth resonant mode d.
  • C12 1pF
  • C13 0.5pF
  • the third resonance mode c can efficiently support Ground supports WIFI 2.4G
  • the fourth resonance mode d efficiently supports the N41 frequency band
  • the fifth resonance mode e efficiently supports the N78 frequency band.
  • the second matching module M2 further includes at least one adjustable branch T electrically connected to the fourth reference ground GND4 .
  • the adjustable branch T can be the fourth sub-branch 161, or the fifth sub-branch 162, or the sixth sub-branch 163, or newly added Between the second feeding point B and the fourth sub-branch 161, or between the fourth sub-branch 161 and the fifth sub-branch 162, or between the sixth sub-branch 163 and the fourth sub-branch Wait between Road 144.
  • the adjustable branch T is used to tune the resonance frequency of the third resonance mode c.
  • the adjustable branch T is used to adjust the position of the resonant frequency point of the second resonant mode b and the position of the resonant frequency point of the fourth resonant mode d, so as to extend the second resonant mode b and the fourth resonant mode
  • the resonance mode d supports the required frequency range, for example, the second matching module M2 with the adjustable branch T moves the resonance frequency of the second resonance mode b from 1.77GHz to 1.92GHz, and moves the resonance frequency of the fourth resonance mode d
  • the frequency is moved from 3.6GHz to 3.7GHz. In this way, the frequency range supported by the antenna assembly 100 is realized.
  • the adjustable branch T includes at least one of a switch circuit and an adjustable capacitor.
  • the switch circuit includes but not limited to multiple branches of switches+capacitors, multiple branches of switches+resistors, multiple branches of switches+inductors, multiple branches of switches+inductors+capacitors, etc.
  • the adjustable branch T is a part of the fourth branch 17 .
  • the adjustable branch T includes a switch and a plurality of inductance devices with different inductance values arranged in parallel.
  • the inductance value of L211 is 4.3nH
  • the inductance value of L212 is 3nH.
  • Such switches include, but are not limited to, "single pole, multiple throw” or “multiple pole, multiple throw” switches.
  • the resonance frequency of the second resonance mode b is 1.77GHz
  • the resonance frequency of the third resonance mode c is 3.6GHz
  • the switch turns on L112 to the second matching module M2 the resonant frequency of the second resonant mode b is 1.92 GHz
  • the resonant frequency of the third resonant mode c is 3.7 GHz.
  • this embodiment also designs the position of the second feeding point B, etc., so that the adjustable branch T can control the second resonance mode b and While the fourth resonant mode d is being tuned, it does not affect or less affects the third resonant mode c and the fifth resonant mode e, thereby ensuring that the second matching module M2 can tune the second resonant mode b and the fourth resonant mode
  • the resonance mode d is used to increase the range of LTE 4G/NR 5G frequency bands that the antenna assembly 100 can support, improve the performance of each frequency band, and at the same time ensure that the antenna assembly 100 can maintain support for WiFi 2.4G, WiFi 5G, and WiFi 6E signals.
  • the second The tuning at the feeding point B has relatively little influence on the resonance of the third resonance mode c and the fifth resonance mode e, and has a relatively large influence on the resonance of the second resonance mode b and the fourth resonance mode d.
  • the current density distribution of the second radiator 21 increases first, then decreases and then increases from the second coupled end 212 to the second ground end 211 (for example, at the dotted line in FIG. 11 ), wherein, The current intensity point of the second radiator 21 is located at about 1/3 of the length from the second coupling end 212 to the second grounding end 211 .
  • the length between the second feeding point B and the second ground terminal 211 is (1/3 to 1) times the length of the second radiator 11 .
  • the second feeding point B is located at or near the current strong point of the second radiator 21 .
  • the second feeding point B By setting the second feeding point B to be located at the position of the current intensity point of the second radiator 21 or near the current intensity point.
  • the length between the second feeding point A and the second ground terminal 211 is (1/3 to 1) times the length of the second radiator 21 .
  • the length between the second feeding point B and the second coupling end 212 is approximately 1/3 of the length of the second radiator 21 , so that the second feeding point B is located at a position where the current is stronger.
  • the fourth resonance mode d The position of the resonance point of the fifth resonance mode e remains unchanged. In this way, while increasing the range of LTE 4G/NR 5G frequency bands that the antenna assembly 100 can support, it can be ensured that the antenna assembly 100 remains capable of supporting WiFi signals, so that the antenna assembly 100 can always support LTE 4G/NR 5G and WiFi signals.
  • the second matching module M2 is set between the second feeding point B and the second feeding module 23, and is used to select the frequency of the signal fed by the second feeding module 23, for example, the second matching The module M2 selects a frequency band from 1 GHz to 4.5 GHz from the radio frequency signal transmitted by the second feeding module 23 to transmit the second feeding point B.
  • the second matching module M2 can also tune the resonance mode supported by the second antenna unit 20, so that the antenna assembly 100 can resonate at the frequency band required to be supported; and isolate the resonance signal of the first antenna unit 10, increasing The degree of isolation between the first antenna unit 10 and the second antenna unit 20 .
  • the second matching module M2 will be described below with reference to the accompanying drawings.
  • the isolation curves between the first antenna unit 10 and the second antenna unit 20 shown in FIGS. The value of the isolation in is also below -15, indicating that there is a relatively high isolation between the first antenna unit 10 and the second antenna unit 20 .
  • the first antenna unit 10 and the second antenna unit 20 have higher isolation, which is beneficial to improve the respective isolation of the first antenna unit 10 and the second antenna unit 20.
  • the efficiency of sending and receiving antenna signals It can be seen from FIG. 4 that after the adjustable branch T is set in the first matching module M1 , there is still a high degree of isolation between the first antenna unit 10 and the second antenna unit 20 .
  • the antenna assembly 100 includes a coupled first antenna unit 10 and a second antenna unit 20, and realizes low frequency/LTE 4G/NR 5G/WiFi signal common aperture design;
  • the antenna assembly 100 supports multiple resonance modes at the same time, and the ultra-bandwidth design is realized through the carrier aggregation technology.
  • the antenna assembly 100 can support the dual connection technology of LTE 4G/NR 5G; wherein, the application adopts the length of the first radiator 11, The position of the first feeding point A and the length of the second radiator 21 are reasonably designed so that the first antenna unit 10 alone supports the low frequency band, and the second antenna unit supports LTE 4G/NR 5G mid-high frequency and ultra-high frequency, In the WiFi 2.4G frequency band, there is no need to install devices such as a combiner, so as to reduce the loss of the second antenna unit 20 and improve the radiation efficiency of the antenna assembly 100 .
  • the aforementioned antenna assembly 100 is disposed in the electronic device 1000 , and the electronic device 1000 is taken as an example of a mobile phone.
  • the present application does not limit the specific position where the radiator of the antenna assembly 100 is installed in the electronic device 1000 .
  • the radiator of the antenna assembly 100 is integrated in the housing 200 , or is disposed on the surface of the housing 200 , or is disposed in a space surrounded by the housing 200 .
  • the electronic device 1000 includes a reference ground GND, a circuit board 500 (refer to FIG. 2 ) and the like disposed in the casing 200 .
  • the reference ground GND includes, but is not limited to, the alloy in the middle plate 410 .
  • the reference ground GND includes the first reference ground GND1 to the seventh reference ground GND7 mentioned above.
  • the first feeding module 13 , the second feeding module 23 , the first matching module M1 and the second matching module M2 are all disposed on the circuit board 500 .
  • the first radiator 11 and the second radiator 21 can be integrated in the housing 200 , or disposed on the surface of the housing 200 , or disposed in the space surrounded by the housing 200 .
  • the first radiator 11 and the second radiator 21 are integrated with the frame 210 of the casing 200 .
  • the frame 210 is made of metal.
  • the first radiator 11 , the second radiator 21 and the frame 210 are all integrated into one body.
  • the first coupling gap 140 between the first radiator 11 and the second radiator 21 is filled with an insulating material.
  • the first radiator 11 and the second radiator 21 can also be integrated with the rear cover 220 . In other words, the first radiator 11 and the second radiator 21 are integrated into a part of the casing 200 .
  • the first radiator 11 and the second radiator 21 are formed on the surface of the frame 210 (for example, the inner surface or the outer surface of the frame 210 ).
  • the basic forms of the first radiator 11 and the second radiator 21 include but are not limited to patch radiators, laser direct structuring (Laser Direct Structuring, LDS), printing direct structuring (Print Direct Structuring, PDS) and other processes are formed on the inner surface of the frame 210.
  • the material of the frame 210 can be a non-conductive material (non-shielding material for electromagnetic wave signals, or a wave-transparent structure).
  • the first radiator 11 and the second radiator 21 may be disposed on the surface of the rear cover 220 .
  • the first radiator 11 and the second radiator 21 are disposed on a flexible circuit board, a hard circuit board or other carrier boards.
  • the first radiator 11 and the second radiator 21 can be integrated on a flexible circuit board, and the flexible circuit board is pasted on the inner surface of the middle frame 420 through glue or the like.
  • the material of the frame 210 can be non- Conductive material.
  • the first radiator 11 and the second radiator 21 can also be disposed on the inner surface of the rear cover 220 .
  • antenna assembly 100 for proximity detection of a subject to be tested and antenna signal transmission, and the installation positions of various components in the antenna assembly 100 in the electronic device 1000 .
  • the number of antenna assemblies 100 is one or more.
  • the present application does not limit the specific location of the antenna assembly 100 in the electronic device 1000 .
  • the reference ground GND is in the shape of a rectangular plate.
  • the reference ground GND includes a plurality of sides connected in sequence. The junction between two adjacent sides is a corner.
  • At least one antenna assembly 100 adopts at least one of the following configuration methods, wherein:
  • the first radiator 11 and the second radiator 21 of at least one antenna assembly 100 are arranged opposite to two intersecting sides and corners;
  • the first radiator 11 and the second radiator 21 of at least one antenna assembly 100 are all disposed opposite to one side.
  • the reference ground GND includes a first side 61 and a second side 62 oppositely arranged, and a third side 63 and a fourth side connected between the first side 61 and the second side 62 Side 64.
  • the junction between two adjacent sides is a corner 65 .
  • the first side 61 is the top side of the reference ground GND (referring to the state where the user holds and uses the electronic device 1000 in portrait orientation)
  • the second side 62 is the bottom side of the reference ground GND.
  • the frame 210 includes a plurality of side frames connected end to end.
  • the plurality of side frames include a top frame 2101 and a bottom frame 2102 opposite to each other, and a first side frame 2103 and a second side frame 2104 connected between the top frame 2101 and the bottom frame 2102 .
  • the top frame 2101 is the side away from the ground when the operator holds the electronic device 1000 facing the front of the electronic device 1000 and uses it
  • the bottom frame 2102 is the side facing the ground.
  • the junction between two adjacent side frames is the corner 2106 .
  • the top frame 2101 and the bottom frame 2102 are parallel and equal.
  • the first side frame 2103 and the second side frame 2104 are parallel and equal.
  • the length of the first side frame 2103 is greater than the length of the top frame 2101 .
  • the top frame 2101 is set opposite to the first side 61
  • the bottom frame 2102 is set opposite to the second side 62
  • the first side frame 2103 is set opposite to the third side 63
  • the second side frame 2104 is set opposite to the fourth side 64 relative settings.
  • the antenna assembly 100 is disposed on at least one of the top frame 2101, the first side frame 2103, the second side frame 2104, and the bottom frame 2102.
  • the number of antenna components 100 is one.
  • the first radiator 11 and the second radiator 21 of the antenna assembly 100 are integrated with the first side frame 2103 .
  • the first coupling gap 140 is close to or located in the middle of the first side frame 2103 .
  • the dotted-line boxes on both sides in FIG. 14 are gripping areas for fingers.
  • the user's hands are held relatively far away from the middle position of the first side frame 2103, so that the first coupling gap 140 is far away from the user. hand held position.
  • the user's finger is closer to the strong electric field point of the antenna assembly 100 (at the first coupling slot 140 ), the interference effect on the antenna assembly 100 is greater.
  • the antenna assembly 100 by disposing the antenna assembly 100 on the first side frame 2103 and making the first coupling slit 140 far away from the handheld position where the user holds the electronic device 1000 in a landscape orientation, the user can play games while holding the electronic equipment 1000 in a landscape orientation.
  • the first coupling slit 140 avoids the user's finger so that it is not blocked.
  • the distance between the position of the first coupling slot 140 and the top frame 2101 or the bottom frame 2102 is more than 40mm, so that the first antenna unit 10 and the second antenna unit 20 still have relatively high radiation efficiency, thereby improving The user's experience of using the electronic device 1000.
  • the two antenna assemblies 100 are respectively located on the first side frame 2103 and the second side frame 2104 .
  • the structures and supported frequency bands of the two antenna assemblies 100 may be the same or different.
  • the coupling slots of the two antenna assemblies 100 are respectively set at or close to the middle positions of the first side frame 2103 and the second side frame 2104, so as to reduce the user's holding of the horizontal screen
  • the shielding of the antenna assembly 100 is performed, the influence on the efficiency of the antenna assembly 100 is reduced.
  • the two antenna assemblies 100 can be switched to each other, so that the electronic device 1000 can communicate in more frequency bands or with a wider bandwidth, and improve the communication quality of the electronic device 1000 .
  • the first radiator 11 and the second radiator 21 of the antenna assembly 100 may be integrated near the corners of the top frame 210 , or any other position on the electronic device 1000 .
  • the present application realizes that the electronic device 1000 has a higher radiation performance in the landscape mode, and can realize the coexistence of LTE 4G/NR 5G/WiFi.
  • the antenna assembly 100 provided in the second implementation manner provided by the present application will be described below with reference to the accompanying drawings.
  • the antenna assembly 100 provided in this embodiment includes the antenna assembly 100 provided in the first embodiment.
  • the main difference is that, please refer to FIG. 17 and FIG.
  • the third radiator 31 , the third feeding module 33 and the third matching module M3 are defined as the third antenna unit 30 .
  • the third radiator 31 includes a third ground terminal 311 and a first free terminal 312 , and a third feeding point C disposed between the third ground terminal 311 and the first free terminal 312 .
  • the third ground terminal 311 is spaced apart from the first ground terminal 111 or connected via a conductor.
  • the third ground terminal 311 is electrically connected to the fifth reference ground GND5.
  • the third feeding module 33 is electrically connected to the third feeding point C.
  • the third matching module M3 is electrically connected between the third feeding point C and the third feeding module 33 .
  • the first radiator 11 and the second radiator 12 are arranged on the first side frame 2103, so that when the electronic device 1000 is used in a horizontal screen, the first coupling slot 140 is far away from the user's hands, thereby increasing the radiation efficiency when the electronic device 1000 is used in a landscape orientation.
  • the third radiator 31 is disposed at the corner 2106 between the first side frame 2103 and the top frame 2101. Since the corner 2106 has a relatively good clearance area, and the corner 2106 is more likely to stimulate a higher reference ground current, In order to improve the radiation efficiency of the third antenna unit 30 .
  • This application does not limit the frequency band covered by the third antenna unit 30 .
  • the third antenna unit 30 can cover (GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB).
  • the structure and size of the third antenna unit 30 can refer to the structure and size of the second antenna unit 20 .
  • a conductor is added between the second ground terminal 211 and the third ground terminal 311 to connect the second radiator 21 and the third radiator 31 .
  • the second radiator 21 and the third radiator 31 may not be cut off, that is, a part of the frame 210 is used as the first radiator.
  • the second radiator 21 uses another part of the frame 210 as the third radiator 31 .
  • the second radiator 21 and the third radiator 31 form a common radiator 32 .
  • the antenna assembly 100 further includes a fourth matching module M4.
  • One end of the fourth matching module M4 is electrically connected to the second ground terminal 211
  • the other end of the fourth matching module M4 is electrically connected to the second reference ground GND2 .
  • the fourth matching module M4 is in a low impedance state for the frequency band supported by the resonance mode (such as the second resonance mode b) that needs to be grounded at the second ground terminal 211 in the first antenna unit 10 and the second antenna unit 20, for example,
  • the fourth matching module M4 is an inductor, so that the resonant current in the resonant mode that needs to be grounded at the second ground terminal 211 is grounded.
  • the antenna assembly 100 further includes a fifth matching module M5.
  • One terminal of the fifth matching module M5 is electrically connected to the third ground terminal 311
  • the other terminal of the fifth matching module M5 is electrically connected to the fifth reference ground GND5 .
  • the fifth matching module M5 is in a low-impedance state for the frequency band supported by the resonance mode that needs to return to the ground in the third antenna unit 30. 311 returns the resonant current of the resonant mode back to the ground.
  • the antenna assembly 100 includes the fourth matching module M4 and the fifth matching module M5. In other embodiments, the antenna assembly 100 may only include the fourth matching module M4 or only the fifth matching module M5.
  • the second radiator 21 and the third radiator 31 are electrically connected to a common radiator 32 .
  • the fourth matching module M4 includes a capacitive device directly electrically connected to the second ground terminal 211 or in A capacitive device is provided between the fourth matching module M4 and the second ground terminal 211;
  • the fifth matching module M5 includes a capacitive device directly electrically connected to the third ground terminal 311 or between the fifth matching module M5 and the third ground terminal 311 A capacitive device is arranged between;
  • the second matching module M2 includes a capacitive device directly electrically connected to the second feeding point B or a capacitive device is set between the second feeding point B and the second matching module M2;
  • the third matching module M3 includes a capacitive device directly electrically connected to the third feeding point C or a capacitive device is arranged between the third feeding point
  • the fourth matching module M4 and the fifth matching module M5 include a switch selection circuit, for example, an inductance branch and a capacitance branch arranged in parallel.
  • the control switch conducts the capacitance and the second ground terminal 211; when the common body radiator 32 does not need to detect the approach of the human body, then controls the switch conduction inductance and the second ground terminal 211 .
  • the fourth matching module M4 and the fifth matching module M5 further include branches of capacitors and inductors.
  • the capacitor is electrically connected between the second ground terminal 211 and the inductor, and the capacitor makes the common body radiator 32 in a "suspension state" relative to the direct current, and the branch of the capacitor and the inductor needs to be connected from the second ground terminal 211, the second ground terminal 211, The frequency band corresponding to the resonant mode in which the three ground terminals 311 return to the ground is in a low-impedance state.
  • the fourth matching module M4 and the fifth matching module M5 are used for DC blocking matching, so that the common body radiator 32 can be used as a SAR (specific absorption rate) detection part.
  • the third matching module M3, the fourth matching module M4, and the fifth matching module M5 respectively add DC blocking capacitors C31/C32/C33/C34 (capacitance value is, for example, 22pF, for the antenna The signal basically has no effect), if the first matching module M1, the second matching module M2, the fourth matching module M4, and the fifth matching module M5 have DC blocking capacitors, there is no need to add additional C31/C32/C33/C34 .
  • the common body radiator 32 is suspended for the sensing signal, and the proximity sensor needs a suspended metal body to sense the capacitance change caused by the approach of the human body, so as to achieve the purpose of detection.
  • a detection circuit is added before C33, and an inductance L is added to the detection circuit to isolate higher frequencies (for example, the inductance is 82nH), so that the antenna is basically unaffected.
  • the detection circuit can be placed in front of C31/C32/C34, or anywhere on the antenna radiator. Through the detection of the human body on the antenna radiator, the approaching state of the human body is judged, so as to achieve the purpose of intelligent SAR reduction.
  • the common radiator 32 is used as the sensing electrode.
  • the first radiator 11 can also be used as the sensing electrode.
  • the antenna assembly 100 provided in the third embodiment will be described later in detail.
  • the antenna assembly 100 further includes a fourth radiator 41 , a fourth feeding module 43 and a sixth matching module M6 .
  • the fourth radiator 41 , the fourth feeding module 43 and the sixth matching module M6 are defined as the fourth antenna unit 40 .
  • the fourth radiator 41 includes a fourth ground terminal 411 and a second free terminal 412 , and a fourth feeding point D disposed between the fourth ground terminal 411 and the second free terminal 412 . Between the second free end 412 and the first free end 312 is the second coupling gap 150 .
  • the third radiator 31 and the fourth radiator 41 are coupled through the second coupling slot 150 .
  • the fourth ground terminal 411 is electrically connected to the sixth reference ground GND6.
  • the fourth feeding module 43 is electrically connected to the fourth feeding point D.
  • the sixth matching module M6 is electrically connected between the fourth feeding point D and the fourth feeding module 43 .
  • the third radiator 31 and the fourth radiator 41 are coupled to each other, so that the excitation current sent by the fourth feed module 43 can not only form a resonance on the fourth radiator 41, but also can resonate on the third radiator. 31, and the excitation current sent by the third feed module 33 can not only form a resonance on the third radiator 31, but also can form a resonance on the fourth radiator 41, so as to increase the third antenna unit 30 and the fourth
  • the resonance mode generated by the antenna unit 40 further increases the bandwidth and the number of frequency bands supported by the third antenna unit 30 and the fourth antenna unit 40 .
  • the third radiator 31 and the fourth radiator 41 can be jointly used as the radiator of the third antenna unit 30, and the third radiator 31 and the fourth radiator 41 can also be jointly used as the radiator of the fourth antenna unit 40 , so that the third antenna unit 30 and the fourth antenna unit 40 form a common-aperture antenna, to realize the multiplexing of the radiator, reduce the radiation of the third antenna unit 30 and the fourth antenna unit 40 while increasing the number of resonance modes The stack size of the body.
  • the first radiator 11 and the third radiator 31 are electrically connected.
  • the first antenna unit 10 , the second antenna unit 20 , the third antenna unit 30 and the fourth antenna unit 40 form a co-aperture antenna.
  • the resonant modes and resonant currents on the first antenna unit 10 and the second antenna unit 20 refer to the antenna assembly 100 provided in the first embodiment, and will not be repeated here.
  • the third antenna unit 30 is used to support the sixth resonant mode f, the seventh resonant mode g and the eighth resonant mode h.
  • the sixth resonance current density of the sixth resonance mode f is mainly distributed between the third ground terminal 311 and the first free terminal 312, and flows from the third ground terminal 311 to the first free terminal 312, or from the first The free end 312 flows to the third ground end 311 . It can be understood that the above is the main current density distribution of the sixth resonance mode g, and there is also a small amount of current density distribution on the fourth radiator 41 .
  • the sixth resonance mode f is a 1/8 to 1/4 wavelength mode in which the excitation current of the third feeding module 33 resonates on the third radiator 31 .
  • the length of the third radiator 31 to be about 1/8 to 1/4 times the wavelength in the medium of the excitation current sent to the third radiator 31 by the third feeding module 33, to The sixth resonant mode f is excited on the third radiator 31 , and the frequency band supported by the sixth resonant mode f has higher radiation efficiency.
  • the length of the third radiator 31 is about 1/4 times the wavelength of the excitation current in the medium sent by the third feed module 33 to the third radiator 31, at the sixth resonance frequency point (the sixth The resonant frequency of the resonant mode f) is easy to excite higher radiation efficiency.
  • capacitive loading can make the resonant frequency of the sixth resonant mode f shift toward low frequency , no longer follow the original requirement to generate higher-efficiency resonance at the length of the third radiator 31 at about 1/4 wavelength, but can be at the length of the third radiator 31 corresponding to 1/8 to 1/4 wavelength Within the range, higher-efficiency resonance can be generated, so while forming resonance at the frequency point of the original sixth resonance mode, the length of the corresponding third radiator 31 can also be shortened, for example, reduced to the sixth resonance frequency 1/8 of the wavelength corresponding to the point, etc., reducing the size of the third radiator 31 and reducing the stacking length of the antenna assembly 100 .
  • the seventh resonant current density of the seventh resonant mode g is mainly distributed between the third feeding point C and the first free end 312, and flows from the third feeding point C to the first free end 312, or, It flows from the first free end 312 to the second feeding point B. It can be understood that the above is the main current density distribution of the seventh resonant mode g, and there is also a small amount of current density distribution on the third ground terminal 311 to the third feeding point C and the fourth radiator 41 .
  • the seventh resonant mode g is the 1/8 to 1/4 wavelength mode in which the excitation current of the third feed module 33 resonates from the third feed point C to the first free end 312 .
  • the length from the third feed point C to the first free end 312 to be approximately 1/8 to 1/4 times of the wavelength in the middle, so as to excite the seventh resonant mode g from the third feeding point C to the first free end 312, and the frequency band supported by the seventh resonant mode g has a higher radiation efficiency.
  • the length from the third feed point C to the first free end 312 is designed to be about the wavelength in the medium of the excitation current sent by the third feed module 33 to the third feed point C to the first free end 312 1/4 times, at the seventh resonant frequency point (the resonant frequency of the seventh resonant mode g), it is easy to excite higher radiation efficiency.
  • the capacitive loading can make the seventh resonant mode g
  • the resonant frequency shifts towards the low frequency, and no longer follows the original requirement to generate a higher efficiency resonance at the length from the third feeding point C to the first free end 312 at about 1/4 wavelength, but can be at the third feeding point C
  • the length from the electrical point C to the first free end 312 corresponds to the range of 1/8 to 1/4 wavelength, which can generate higher-efficiency resonance, so the resonance can be formed at the original seventh resonance frequency point while the corresponding
  • the length from the third feeding point C to the first free end 312 is shortened, for example, reduced to 1/8 times the wavelength corresponding to the seventh resonance frequency point, etc., reducing the size of the third radiator 31 and reducing the antenna
  • the stack length of the assembly 100 is shortened, for example, reduced to 1/8 times the wavelength corresponding to the seventh resonance frequency point, etc., reducing the size of the third radiator 31 and reducing the antenna The stack length of the assembly 100.
  • the eighth resonance current density of the eighth resonance mode h is mainly distributed between the third feeding point C and the fourth ground terminal 411, wherein, between the third feeding point C and the first free end 312
  • the direction of the current flowing from the second free terminal 412 to the fourth ground terminal 411 is the same.
  • Flow from the third feeding point C to the first free end 312 pass through the second coupling slot 150 and then flow to the fourth ground end 411 through the second free end 412, or flow from the fourth ground end 411 to the second free end 412, through The second coupling slot 150 then flows to the third feeding point C.
  • the above is the main current density distribution of the eighth resonance mode h, and there is also a small amount of current density distribution from the third ground terminal 311 to the third feeding point C.
  • the eighth resonant mode h is that the excitation current of the third feed module 33 resonates in the 1/8 to 1/4 wavelength mode from the third feed point C to the first free end 312, and resonates in the second free end 412 to the first free end 312. 1/8 to 1/4 wavelength mode of the fourth ground terminal 411 .
  • the length from the third feed point C to the first free end 312 is designed to be about the wavelength in the medium of the excitation current sent by the third feed module 33 to the third feed point C to the first free end 312 1/4 times, and by designing the length from the second free end 412 to the fourth ground end 411 is about the wavelength in the medium of the excitation current sent by the third feed module 33 to the second free end 412 to the fourth ground end 411 1/4 times that of the eighth resonant frequency point (the resonant frequency of the eighth resonant mode h) is easy to excite higher radiation efficiency.
  • capacitive loading can make the resonant frequency of the eighth resonant mode h shift towards the low frequency, and no longer follow the original requirement.
  • the length from the third feeding point C to the first free end 312 is about 1/4 wavelength
  • the The length from the two free ends 412 to the fourth ground end 411 is about 1/4 of the wavelength to produce resonance with higher efficiency, but the length from the third feeding point C to the first free end 312 corresponds to 1/8 to 1 In the range of /4 wavelength, and the length from the second free end 412 to the fourth ground end 411 corresponds to the range of 1/8 to 1/4 wavelength, it can generate higher efficiency resonance, so the original eighth resonance frequency
  • the length from the corresponding third feed point C to the first free end 312 can be shortened and the length of the fourth radiator 41 can be shortened, for example, reduced to the wavelength corresponding to the eighth resonance frequency point 1/8 times, etc., reduce the size of the third radiator 31 and the fourth radiator 41, and reduce the stacking length of the antenna assembly 100.
  • the fourth antenna unit 40 is used to support the ninth resonant mode i, the tenth resonant mode j, the eleventh resonant mode k, and the twelfth resonant mode p.
  • the ninth resonant mode i is that the excitation current of the third feed module 33 resonates in the 1/8 to 1/4 wavelength mode from the third feed point C to the first free end 312, and resonates in the second free end 412 to the first free end 312. 1/8 to 1/4 wavelength mode of the four ground terminals 411 .
  • the ninth resonant current density distribution of the ninth resonant mode j may refer to the current density distribution of the eighth resonant mode h, please refer to FIG. 24C , which will not be repeated here.
  • the tenth resonant current density of the tenth resonant mode j is mainly distributed between the third feeding point C and the fourth ground terminal 411, wherein, between the third feeding point C and the first free end 312 The direction of the current flowing from the second free end 412 to the fourth grounding end 411 is opposite.
  • a part of the tenth resonant current flows from the third feed point C to the first free end 312, another part of the tenth resonant current flows from the fourth ground end 411 to the second free end 412, or, a part of the tenth resonant current flows from the first free end 412
  • One free end 312 flows to the third feed point C, and another part of the tenth resonant current flows from the second free end 412 to the fourth ground end 411 .
  • the tenth resonant mode j is that the excitation current of the third feed module 33 resonates in the 1/8 to 1/4 wavelength mode from the third feed point C to the first free end 312, and resonates in the second free end 412 to the first free end 312. 1/8 to 1/4 wavelength mode of the four ground terminals 411 .
  • the length from the third feed point C to the first free end 312 is designed to be about the wavelength in the medium of the excitation current sent by the third feed module 33 to the third feed point C to the first free end 312 1/4 times, and by designing the length from the second free end 412 to the fourth ground end 411 is about the wavelength in the medium of the excitation current sent by the third feed module 33 to the second free end 412 to the fourth ground end 411 1/4 times that of 10th resonant frequency point (the resonant frequency of the tenth resonant mode j) is easy to excite higher radiation efficiency.
  • capacitive loading can make the resonant frequency of the tenth resonant mode j shift toward the low frequency, and no longer follow the original requirement.
  • the length from the third feeding point C to the first free end 312 is about 1/4 wavelength
  • the The length from the two free ends 412 to the fourth ground end 411 is about 1/4 of the wavelength to produce resonance with higher efficiency, but the length from the third feeding point C to the first free end 312 corresponds to 1/8 to 1 In the range of /4 wavelength
  • the length from the second free end 412 to the fourth ground end 411 corresponds to the range of 1/8 to 1/4 wavelength, it can generate higher efficiency resonance, so at the original tenth resonance frequency
  • the length from the corresponding third feed point C to the first free end 312 can be shortened and the length of the fourth radiator 41 can be shortened, for example, reduced to the wavelength corresponding to the tenth resonance frequency point 1/8 times, etc., reduce the size of the third radiator 31 and the fourth radiator 41, and reduce the stacking length of the antenna assembly 100.
  • the eleventh resonance current density of the eleventh resonance mode k is mainly distributed between the fourth feeding point D and the second free end 412, and flows from the fourth feeding point D to the second free end 412, Or flow from the second free end 412 to the fourth feeding point D. It can be understood that the above is the main current density distribution of the eleventh resonance mode k, and there is also a small amount of current density distribution between the fourth ground terminal 411 and the fourth feeding point D and on the third radiator 31 .
  • the eleventh resonance mode k is that the excitation current (the eleventh resonance current) of the fourth feed module 43 resonates from 1/8 to 1 of the fourth feed point D to the second free end 412 /4 wavelength mode.
  • the length from the fourth feed point D to the second free end 412 is designed to be about 1/8 of the wavelength in the medium of the excitation current sent to the fourth radiator 41 by the fourth feed module 43 to 1/4 times, so as to excite the eleventh resonant mode k from the fourth feeding point D to the second free end 412 .
  • the length from the fourth feed point D to the second free end 412 is about 1/4 times the wavelength of the excitation current sent by the fourth feed module 43 in the medium, at this time, at the eleventh resonance
  • the frequency point ie, the resonant frequency of the eleventh resonant mode k is easy to excite higher radiation efficiency.
  • both capacitive loading can make the resonant frequency of the eleventh resonant mode k move towards a low frequency Offset, no longer follow the original requirement to generate a higher efficiency resonance at the length of about 1/4 wavelength from the fourth feeding point D to the second free end 412, but can be at the fourth feeding point D to the second free end 412
  • the length of the two free ends 412 corresponds to the range of 1/8 to 1/4 of the wavelength, which can generate higher-efficiency resonance, so the corresponding fourth resonance frequency point f11 can be resonated while the original eleventh resonance frequency point f11 is formed.
  • the length from the feeding point D to the fourth ground end 412 is shortened, for example, to 1/8 times the wavelength corresponding to the eleventh resonant frequency point f11, etc., reducing the length from the fourth feeding point D to the second free end 412
  • the size of the antenna assembly 100 is reduced to reduce the stacking length.
  • the twelfth resonance current density of the twelfth resonance mode 1 is mainly distributed between the third ground terminal 311 and the first free terminal 312, and flows from the third ground terminal 311 to the first free terminal 312, or from The first free end 312 flows to the third ground end 311 .
  • the above is the main current density distribution of the twelfth resonance mode 1, and there is also a small amount of current density distribution between the second free end 412 and the fourth ground end 411 .
  • the twelfth resonance mode 1 is a 3/4 wavelength mode in which the excitation current of the fourth feed module 43 resonates with the third radiator 31 .
  • the length of the third radiator 31 to be about 3/4 times the wavelength of the excitation current in the medium sent by the fourth feed module 43 to the third radiator 31, the third radiation A twelfth resonance mode l is excited on the body 31 .
  • the frequency bands supported by the third radiator 31 under the excitation of the third feed module 33 include GPS frequency band, Wi-Fi 2.4G frequency band, LTE-4G MHB frequency band, NR-5G MHB frequency band, LTE-4G UHB frequency band, NR-5G UHB frequency band.
  • the resonance frequencies of the seventh resonance mode g, the eighth resonance mode h, and the ninth resonance mode i are 1.5766 GHz, 2.4667 GHz, and 2.9773 GHz, respectively.
  • the third antenna unit 30 covers (GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB). In other embodiments, the third antenna unit 30 covers (GPS-L1)+(WIFI2.4G)+(LTE/NR-MHB+UHB)+N77/N78.
  • the frequency band supported by the fourth radiator 31 under the excitation of the fourth feed module 43 covers the N77 frequency band, N78 frequency band, Wi-Fi 5G frequency band, and Wi-Fi 6E frequency band.
  • the resonant frequencies of the ninth resonant mode i, the tenth resonant mode j, the eleventh resonant mode k, and the twelfth resonant mode l are 2.998 GHz, 3.6742 GHz, 5.5096 GHz, and 6.5722 GHz, respectively.
  • the fourth antenna unit 40 covers N77/N78+Wi-Fi 5G frequency band and Wi-Fi 6E frequency band. Certainly, in other implementation manners, the fourth antenna unit 40 covers the Wi-Fi 5G frequency band and the Wi-Fi 6E frequency band.
  • the distribution of the antenna assembly 100 in the electronic device 1000 provided in this embodiment includes but is not limited to the following embodiments, the first radiator 11 and the second radiator 12 are both arranged on the first side frame 2103, and the first coupling slot 140 is located at The first side frame 2103 is near the middle position. A part of the third radiator 31 is disposed on the first side frame 2103 , another part is disposed on the top frame 2101 , the fourth radiator 41 is disposed on the top frame 2101 , and the second coupling slot 150 is disposed on the top frame 2101 .
  • the first coupling slot 140 avoids the position held by the hand, so that the radiation efficiency of the first antenna unit 10 and the second antenna unit 20 is higher, and then the low frequency +( GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+Wi-Fi 5G/Wi-Fi 6E frequency bands to improve the horizontal screen experience.
  • the second coupling slot 150 avoids the position held by the hand, so that the radiation efficiency of the third antenna unit 30 and the fourth antenna unit 40 is higher, and then the transceiver (GPS- L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+Wi-Fi 5G/Wi-Fi 6E frequency bands to improve the vertical screen experience.
  • the antenna assembly 100 provided in this embodiment can efficiently cover (GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78 in both horizontal and vertical screens +Wi-Fi 5G/Wi-Fi 6E frequency band.
  • the electronic device 1000 further includes at least one button part (not shown); wherein at least one of the button parts adopts at least one of the following configuration methods, including:
  • At least one of the button parts is located between the first ground terminal 111 and the first feeding point A;
  • At least one of the button parts is located between the second ground terminal 211 and the third ground terminal 311 .
  • the reference ground GND is the alloy part of the middle plate 410.
  • the key circuit board 430 may be provided in the space between the first reference ground GND1 and the first power supply module 13, and the key part may be provided in the first radiator 11.
  • the button part includes but not limited to a power button, a volume button, a mute button and the like.
  • a button circuit board 430 may also be provided between the fourth matching module M4 and the fifth matching module M5 , and a button portion may be arranged on the middle frame between the second ground terminal 211 and the third ground terminal 311 .
  • first matching module M1 to fifth matching module M6 can be provided with devices in any one of the implementation manners in FIG. 9A to FIG. 9H , and can also include adjustable devices such as switch circuits and variable capacitors.
  • FIG. 28 is a graph of S parameters of the first antenna unit 10 to the fourth antenna unit 40 . It can be seen from Figure 27 that the antenna assembly 100 can well cover low frequency + (GPS-L1) + (WIFI 2.4G) + (LTE/NR-MHB + UHB) + N77/N78 + Wi-Fi 5G/Wi- Fi 6E frequency band, and has a good impedance bandwidth.
  • GPS-L1 low frequency +
  • WIFI 2.4G WIFI 2.4G
  • LTE/NR-MHB + UHB N77/N78 + Wi-Fi 5G/Wi- Fi 6E frequency band
  • the antenna assembly 100 can also perform proximity detection of a subject to be measured while implementing antenna signal transmission and reception.
  • the subject to be tested includes, but is not limited to, a human head, a human hand, and the like.
  • the radiator is made of a conductive material, and the radiator can also serve as a sensing electrode for proximity signals while serving as an antenna signal receiving and receiving port.
  • the antenna assembly 100 provided in this application integrates the dual functions of transmitting and receiving electromagnetic wave signals and proximity sensing and is small in size. When the antenna assembly 100 is applied to the electronic device 1000 , while ensuring that the electronic device 1000 has a communication function and a proximity detection function, the overall volume of the electronic device 1000 can be reduced.
  • the antenna assembly 100 further includes a DC blocking assembly 70 , a filtering assembly 50 , a detection assembly 80 and a controller (not shown).
  • connection manner of the direct blocking component 70 and the filter component 50 will be described below with reference to the antenna component 100 provided in the third embodiment.
  • the common body radiator 32 is used as a sensing electrode for sensing the approach of the subject to be measured.
  • the DC blocking component 70 is electrically connected between the second feeding point B and the second matching module M2, between the second ground terminal 111 and the second reference ground GND2 (when the second ground terminal 211 When the fourth matching module M4 is arranged between the second reference ground GND2, the DC blocking component 70 is arranged between the second ground terminal 211 and the fourth matching module M4), the third ground terminal 311 and the fifth Between the reference ground GND5 (when the fifth matching module M5 is provided between the third ground terminal 311 and the fifth reference ground GND5, the DC blocking component 70 is provided between the third ground terminal 311 and the fifth matching module M5), And between the third feeding point C and the third matching module M3.
  • the DC blocking component 70 is used to block the DC current generated by the second matching module M2, the second reference ground GND2, the fifth reference ground GND5, and the third matching module M3, so as to support the human body detection function and improve the safety of the human body when it is close to the antenna assembly 100. Detection accuracy.
  • One end of the filter assembly 50 is electrically connected to a side of the DC blocking assembly 70 close to the common radiator 32 or to any position of the common radiator 32 .
  • the filter assembly 50 is used to block the radio frequency signal transmitted and received by the common body radiator 32 and the induction signal generated by the common body radiator 32 when the subject to be measured approaches, so that the radio frequency signal transmitted and received by the second radiator 21 The detection accuracy of the sensing signal detected by the detection component 80 will not be affected.
  • the DC blocking component 70 includes a first sub-isolator 71 , a second sub-isolator 72 , a third sub-isolator 73 and a fourth sub-isolator 74 .
  • the first sub-isolator 71 is electrically connected between the second ground terminal 211 and the second reference ground GND2 (specifically, the second ground terminal 211 and the fourth matching module M4 ).
  • the second sub-isolator 72 is electrically connected between the second feeding point B and the second matching module M2.
  • the third sub-isolator 73 is electrically connected between the third ground terminal 311 and the fifth reference ground GND5 (specifically, the third ground terminal 311 and the fifth matching module M5 ).
  • the fourth sub-isolator 74 is electrically connected between the third feeding point C and the third matching module M3.
  • the direct blocking component 70 By setting the direct blocking component 70 , the induction signal generated when the subject under test is close to the common radiator 32 will not affect the transmission and reception of the antenna signal by the antenna component 100 .
  • the first sub-isolator 71 , the second sub-isolator 72 , the third sub-isolator 73 and the fourth sub-isolator 74 are all capacitive devices.
  • the first sub-isolator 71, the second sub-isolator 72, the third sub-isolator 73 and the fourth sub-isolator 74 are all capacitors, the first sub-isolator 71, the second sub-isolator 72, the The third sub-isolator 73 and the fourth sub-isolator 74 have a small impedance to the ground to the radio frequency signal supported by the antenna assembly 100, for example, the first sub-isolator 71, the second sub-isolator 72, the third sub-isolator 73 and The value of the fourth sub-isolator 74 includes but is not limited to 47pF or 22pF.
  • the first sub-isolator 71 has an isolation effect on the DC current of the fourth matching circuit M4, the second sub-isolator 72 has an isolation effect on the DC current of the second matching circuit M2, and the third sub-isolator 73 has an isolation effect on the fifth matching module M5. It has an isolation function, and the fourth sub-isolator 74 has an isolation function for the third matching module M3 to support the human body detection function and improve the detection accuracy when the human body is close to the antenna assembly 100 .
  • the DC blocking component 70 makes the common body radiator 32 in a "floating" state relative to the DC current.
  • the filter assembly 50 is electrically connected between the first sub-isolator 71 and the second ground terminal 112; or, is electrically connected between the second sub-isolator 72 and the second feeding point B; or , electrically connected between the third sub-isolator 73 and the third ground terminal 311; or, electrically connected between the fourth sub-isolator 74 and the third feeding point C; or, electrically connected to the common radiator 32 any position.
  • the filtering component 50 includes or is an inductive device.
  • filter component 50 is an inductor.
  • the filter component 50 presents a large impedance to the radio frequency signal supported by the antenna component 100 , and the inductance value is, for example, 82nH.
  • the DC blocking component 70 and the filtering component 50 realize that the induction signal and the radio frequency signal can act simultaneously without interfering with each other.
  • the detection component 80 is electrically connected to the other end of the filter component 50, and the detection component 80 is used to detect the magnitude of the induction signal generated by the radiator.
  • the detection component 80 is a device for detecting a current signal, a voltage signal or an inductance signal, such as a miniature galvanometer, a miniature current transformer, a current comparator, a voltage comparator, and the like.
  • the human body skin surface and the common body radiator 32 can be equivalent to two electrode plates of a capacitor respectively.
  • the common body radiator 32 can sense the change of the electric charge brought by the head of the human body.
  • the filter assembly 50 is electrically connected to the common radiator 32 . The above-mentioned change in the amount of charge forms an induction signal, which is transmitted to the detection assembly 80 through the filter assembly 50 .
  • C ⁇ S/4 ⁇ kd, wherein, d is the distance between the human body (head or hand) and the radiator, so when the capacitance increases, that is, when the intensity of the induction signal detected by the detection component 80 increases, It indicates that the human body is approaching; when the capacitance decreases, that is, the intensity of the induction signal detected by the detection component 80 decreases, it indicates that the human body is moving away.
  • the detection component 80 detects the change of the above-mentioned induction signal to determine whether the head of the human body is close to the common body radiator 32 of the antenna component 100 , so as to intelligently reduce the specific absorption rate of the electromagnetic wave by the head of the human body.
  • the DC blocking component 70 can also be used as a part of the matching module, for example, the second sub-isolator 72 is a capacitor, and the second sub-isolator 72 is used to block the induction signal and conduct the radio frequency signal while also It can be used as a part of the second matching module M2 to tune the impedance matching between the signal source 21 and the second feeding point B, so as to reduce the loss of the radio frequency signal fed into the common body radiator 32 and improve the common body radiator 32 transmit and receive signal conversion efficiency; it is also used to adjust the frequency offset of the resonant mode generated on the common body radiator 32, etc., realizing the multi-purpose of the device, reducing the number of devices and the occupied space, and improving the integration of the device.
  • the second sub-isolator 72 is a capacitor, and the second sub-isolator 72 is used to block the induction signal and conduct the radio frequency signal while also It can be used as a part of the second matching module M2 to tune the impedance matching between the signal source 21 and the second feeding point
  • the second sub-isolator 72 does not need to be provided.
  • the first sub-isolator 71 does not need to be provided.
  • the part of the fifth matching module M5 electrically connected to the third ground terminal 311 is a capacitor, the third sub-isolator 73 does not need to be provided.
  • the part of the third matching module M3 electrically connected to the second feeding point B is a capacitor, the fourth sub-isolator 74 does not need to be provided.
  • the antenna assembly 100 and the electronic device 1000 provided in this application use the common body radiator 32 on the antenna assembly 100 as an induction electrode for detecting the proximity of the human body to be tested, and through the direct blocking assembly 70 and the filter assembly 50, the induction signal and The separation of radio frequency signals realizes the dual functions of the communication performance of the antenna assembly 100 and sensing the subject to be tested, increases the functions of the antenna assembly 100, improves device utilization, and reduces the overall volume of the electronic device 1000.
  • This embodiment can increase the proximity sensing area on the one hand, on the other hand, since the common body radiator 32 is arranged on the first side frame 2103, the top frame 2101 and the corners 2106 on the first side frame 2103 and the top frame 2101, the The common body radiator 32 is used as a sensing electrode, which can detect the proximity of the subject to be measured on the front and rear of the electronic device 1000 , on the facing side of the first side frame 2103 , and on the facing side of the top frame 2101 , increasing the SAR detection range.
  • the second radiator 21 serves as a sensing electrode for detecting the approach of the subject to be detected.
  • the DC blocking component 70 is electrically connected between the first ground terminal 111 of the first radiator 11 and the first reference ground GND1 , and between the first matching module M1 and the first feeding point A. Referring to FIG.
  • the first connection method of the DC blocking component 70 and the filtering component 50 please refer to the first connection method of the DC blocking component 70 and the filtering component 50 , which will not be repeated here.
  • One end of the filter component 50 is electrically connected to a side of the DC blocking component 70 close to the first radiator 11 (for example, between the DC blocking component 70 and the first ground terminal 111 ) or to any position of the first radiator 11 .
  • the DC blocking component 70 is used to block the first reference ground GND1 and the DC current generated by the first matching module M1, and the filter component 50 is used to block the radio frequency signal transmitted and received by the first radiator 11 and the Describe the induction signal generated by the first radiator 11 when the subject to be measured approaches; in this embodiment, the first radiator 11 is an induction electrode, and the first radiator 11 is in a suspended state relative to the direct current.
  • the fourth radiator 41 is used as a sensing electrode for detecting the approach of the subject to be detected.
  • the DC blocking component 70 is electrically connected between the fourth ground terminal 411 and the sixth reference ground GND6, between the sixth matching module M6 and the fourth feeding point D, and the filtering component 50 One end of the DC blocking component 70 is electrically connected to the side close to the third radiator 31 or electrically connected to the third radiator 31; the DC blocking component 70 is used to block the sixth reference ground GND6, the sixth matching module For the DC current generated by M6, the filtering component 50 is used to block the radio frequency signal sent and received by the third radiator 31 and the induction signal generated when the subject to be measured approaches through the fourth radiator 41 .
  • one of the first approach detection implementation, the second approach detection implementation, and the third approach detection implementation can be selected for implementation, two of them can be selected for implementation, and one of them can be selected. All three are implemented.
  • the following describes an embodiment in which the first proximity detection and the third proximity detection are implemented simultaneously.
  • the DC blocking assembly 70 further includes a fifth sub-DC blocker 75 and a sixth sub-DC blocker 76 .
  • the fifth sub-DC blocker 75 is electrically connected between the fourth feeding point D and the sixth matching module M6, and the sixth sub-DC blocker 76 is electrically connected between the fourth ground terminal 411 and the sixth reference ground GND6 , so that both the common body radiator 32 and the fourth radiator 41 can serve as sensing electrodes for sensing the approach of the subject to be measured.
  • the filter assembly 50 includes a first sub-filter 51 and a second sub-filter 52 .
  • the first sub-filter 51 is electrically connected between the first sub-isolator 71 and the second feeding point B, or between the second sub-isolator 72 and the second ground terminal 211, the third sub-isolator 73 and Between the third ground terminals 311 , or between the fourth sub-isolator 74 and the third feeding point C, or anywhere on the common body radiator 32 .
  • the second sub-filter 52 is electrically connected between the fifth sub-DC blocker 75 and the fourth feeding point D, between the sixth sub-DC blocker 76 and the fourth ground terminal 411, or any position of the fourth radiator 41 .
  • the first sub-isolator 71 , the second sub-isolator 72 and the third sub-isolator 73 are all isolation capacitors, and the first sub-filter 51 and the second sub-filter 52 are all isolation inductors.
  • the detection component 80 is electrically connected to the first sub-filter 51 and the second sub-filter 52 .
  • the two channels of the detection component 80 are electrically connected to the first sub-filter 51 and the second sub-filter 52 respectively.
  • both the common body radiator 32 and the fourth radiator 41 can serve as detection electrodes for sensing the approach of the subject to be measured.
  • the detection component 80 includes a first sub-detector and a second sub-detector.
  • the first sub-detector is electrically connected to the other end of the first sub-filter 51
  • the second sub-detector is electrically connected to the other end of the second sub-filter 52 .
  • the sensing signals detected by the common body radiator 32 and the fourth radiator 41 are respectively detected by two mutually independent sub-detectors.
  • This embodiment can be used for the common body radiator 32 and the fourth radiator 41 respectively
  • the radiator of the antenna assembly 100 can detect the approach of the human body from different sides of the electronic device 1000 , thereby improving the detection range while occupying a small space.
  • the detection component 80 can directly sense the induction signal through the first sub-filter 51; when the human body is close to the fourth radiator 41, the fourth radiation The charge on the body 41 changes, and the detection component 80 can directly sense the induction signal through the second sub-filter 52 .
  • the detection component 80 detects the proximity of the human body by detecting the sensing signal. In this case, all radiators can be used as sensing electrodes, so that the sensing area is larger, and the utilization rate of the radiator can be improved. Only one detection component 80 is needed, which can save antennas. Component count and space savings of assembly 100.
  • the controller is electrically connected to the detection component 80 .
  • the detection component 80 receives the sensing signal and converts it into an electrical signal and transmits it to the controller.
  • the controller is used to detect the distance between the subject to be measured and the radiator according to the size of the induction signal, and then judge whether the human body is close to the radiator, and adjust the second when the distance between the subject to be measured and the radiator is less than or equal to the preset distance value.
  • a power feeding module 13 (or adjusting the power of the third feeding module 33 , or adjusting the fourth feeding module 43 ).
  • the controller can adjust the power of the antenna assembly 100 according to different scenarios, so as to intelligently reduce the specific absorption rate of the human body for electromagnetic wave signals.
  • the controller may reduce the power of the antenna assembly 100 to reduce the specific absorption rate of the electromagnetic wave radiated by the antenna assembly 100 .
  • the controller can turn off the The covered antenna assembly 100, and the unblocked antenna assembly 100 in other positions are opened, so that when the human hand covers the antenna assembly 100, the communication quality of the electronic device 1000 can be ensured by intelligently switching the antenna assembly 100; in the electronic device 1000
  • the controller can control the power of the antenna assembly 100 to increase to compensate for the problem of reduced efficiency caused by hands covering the radiator.
  • the controller also controls other application programs on the electronic device 1000 according to the detection result of the detection component 80.
  • the screen brightness of the electronic device 1000 is turned off, so as to save the electric energy of the electronic device 1000 during a call; the controller also detects that the human body is far away and the electronic device 1000 is in a call state according to the detection result of the detection component 80, and controls the screen brightness of the display screen 300 to light up.
  • the first implementation manner of proximity detection, the second implementation manner of proximity detection, and the third implementation manner of proximity detection may be implemented together.
  • a layer of insulating film can be provided on the surface of the radiator. Since the surface of the human skin has charges, the gap between the surface of the human skin and the radiator A capacitive structure is formed, and then the signal change caused by the approach of the human skin surface is sensed through the radiator.
  • multiple antenna assemblies 100 may be provided in the electronic device 1000, and these antenna assemblies 100 are the antenna assemblies 100 listed in any one of the above-mentioned embodiments, and multiple antenna assemblies 100 can be implemented in different occlusion scenarios Intelligent switching work, so as to achieve high antenna transmission and reception efficiency under any situation such as hand-held occlusion, and after the radiators of multiple antenna assemblies 100 are integrated with the detection function, different user scenarios (such as one-handed holding , two-handed holding, carry-on state, call state, etc.), can realize the detection of 6 surfaces in the specific absorption rate (SAR) standard.
  • SAR specific absorption rate
  • connection section between the second ground terminal 121 and the third ground terminal 311 .
  • At least one connection point (such as the first connection point 511 in FIG. 31 and the second connection point 512 in FIG. 52 ) is provided on the connection section.
  • the antenna assembly 100 further includes at least one seventh matching module M7, one end of the seventh matching module M7 is electrically connected to the connection point (the first connection point 511), and the other end of the seventh matching module M7 is electrically connected to the seventh reference ground GND7 .
  • the seventh matching module M7 can effectively filter out the radio frequency signals of the first antenna unit 10 and the second antenna unit 20 to prevent the radio frequency signals from interfering with the third antenna unit 30 and the fourth antenna unit 40 .
  • the seventh matching module M7 includes a ground circuit that is in a bandpass state or a small impedance state for the frequency bands supported by the first antenna unit 10 and the second antenna unit 20, so that the first antenna unit 10 and the second antenna unit The isolation between 20 and the third antenna unit 30 and the fourth antenna unit 40 is better.
  • the seventh matching module M7 can also effectively filter out the radio frequency signals of the third antenna unit 30 and the fourth antenna unit 40 to prevent the radio frequency signals from interfering with the first antenna unit 10 and the second antenna unit 20 .
  • the seventh matching module M7 includes a ground circuit in a band-pass state or a small impedance state for the frequency bands supported by the third antenna unit 30 and the fourth antenna unit 40, so that the first antenna unit 10 and the second antenna unit The isolation between 20 and the third antenna unit 30 and the fourth antenna unit 40 is better.
  • the seventh matching module M7 can filter out some low-efficiency operating modes in the antenna assembly 100, for example, the current flows from the second reference ground GND2 to the second ground terminal 211, the third ground terminal 311, and returns to the fifth reference ground.
  • the working mode of GND5 is used to reduce the influence of these low-efficiency working modes on the resonant mode of the antenna assembly 100 .
  • connection point (the first connection point 511 ) can be located close to the second ground terminal 121 or the third ground terminal 311 , so that a button can be arranged between the second ground terminal 221 and the third ground terminal 311 .
  • the seventh matching module M7 is opposite to the connection point.
  • the connection point can be set at any position between the second ground terminal 221 and the third ground terminal 311, including but not limited to the second ground terminal 221 and the third ground terminal 311. The middle position between the terminal 121 and the third ground terminal 311 .
  • connection points for example, two connection points (first connection point 511 and second connection point 512 ) are close to the second ground terminal 121 and the third ground terminal 311 respectively.
  • Both the seventh matching module M7 and the eighth matching module M8 can increase the isolation between the first antenna unit 10, the second antenna unit 20, the third antenna unit 30, and the fourth antenna unit 40, and filter out the Some low-efficiency working modes improve the transceiving efficiency of each resonant mode of the antenna assembly 100 .
  • the antenna assembly 100 provided by this application can realize a four-antenna common-aperture design. While increasing the bandwidth and number of frequency bands of the transmitting and receiving frequency bands, it can also reduce the stacking space of the antenna assembly 100.
  • the radiator of the antenna assembly 100 is integrated into the human body.
  • the detection function can intelligently detect the approach of the human body, thereby reducing the specific absorption rate, or detecting the state of being held and the application state of the electronic device 1000.
  • the electronic device 1000 has higher signal transceiving efficiency even when the electronic device 1000 is used in a landscape orientation.

Landscapes

  • Support Of Aerials (AREA)

Abstract

一种天线组件和电子设备。该天线组件(100)中第一辐射体11具有第一接地端(111)、第一耦合端(112)和第一馈电点(A),第二辐射体(21)具有第二耦合端(212)、第二接地端(211)和第二馈电点(B),第二耦合端(212)与第一耦合端(112)之间存在第一耦合缝隙(140),第一匹配模块(M1)电连接于第一馈电点(A)与第一馈电模块(13)之间,第一接地端(111)电连接至第一参考地(GND1);第二匹配模块(M2)电连接至第二馈电点(B)与第二馈电模块(23)之间,第二接地端(211)电连接至第二参考地(GND2);该第一辐射体(11)在第一馈电模块(13)激励下支持低频频段的第一谐振模式。

Description

天线组件及电子设备 技术领域
本申请涉及但不限于通信技术领域,尤其涉及一种天线组件及电子设备。
背景技术
随着通信技术的发展,具有通信功能电子设备的普及度越来越高,且对于上网速度的要求越来越高。因此,如何提高电子设备的数据传输速率,提高电子设备的通信质量,成为需要解决的技术问题。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种天线组件和电子设备,可以解决如何电子设备的数据传输速率的问题。
本申请实施例提供了一种天线组件,包括第一辐射体、第二辐射体、第一匹配模块、第一馈电模块、第二匹配模块及第二馈电模块,所述第一辐射体具有第一接地端和第一耦合端,以及位于所述第一接地端和所述第一耦合端之间的第一馈电点,所述第二辐射体具有第二耦合端和第二接地端,以及位于所述第二耦合端和所述第二接地端之间的第二馈电点,所述第二耦合端与所述第一耦合端之间存在第一耦合缝隙,所述第一匹配模块电连接于所述第一馈电点与所述第一馈电模块之间,所述第一接地端电连接至第一参考地;所述第二匹配模块电连接至所述第二馈电点与所述第二馈电模块之间,所述第二接地端电连接至第二参考地;
所述第一辐射体在第一馈电模块激励下支持第一谐振模式,其中所述第一谐振模式支持低频频段。
一种电子设备,所述电子设备包括壳体及上文所述的天线组件,所述天线组件的辐射体集成于所述壳体、或设于所述壳体表面、或设于所述壳体所包围的空间内。
上述技术方案中的至少一个技术方案具有如下优点或有益效果:
本申请提供的天线组件及电子设备,通过设计第一辐射体与第二辐射体容性耦合,第一辐射体和第二辐射体为共口径辐射体,以及设计所述第一辐射体在第一馈电模块激励下支持第一谐振模式,其中所述第一谐振模式支持预设的低频频段,使得第一辐射体和第二辐射体相互复用,在产生多种谐振模式的同时,可以增加对低频频段的支持,提高天线组件所支持的频段数量或带宽,提高数据传输速率和通信质量,还便于天线组件支持不同协议标准的信号,避免将不同协议标准的信号通过一个辐射体收发而产生的射频链路损耗。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
附图用来提供对本申请实施例技术方案的理解,并且构成说明书的一部分,与本申请实施例的实施例一起用于解释本申请实施例的技术方案,并不构成对本申请实施例技术方案的限制。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1所示的电子设备的结构分解示意图;
图3是图2所示的电子设备中的第一种天线组件的结构示意图;
图4是图3所示的第一天线单元的S参数曲线示意图;
图5是图3所示的天线组件中第一谐振电流密度分布示意图;
图6是图3所示的第二天线单元的S参数曲线示意图;
图7A是图3所示的天线组件中第二谐振电流密度分布示意图;
图7B是图3所示的天线组件中第三谐振电流密度分布示意图;
图7C是图3所示的天线组件中第四谐振电流密度分布示意图;
图7D是图3所示的天线组件中第五谐振电流密度分布示意图;
图8是图3中第一匹配模块的结构示意图;
图9A是本申请实施例提供的第一种第一子支路的结构示意图;
图9B是本申请实施例提供的第二种第一子支路的结构示意图;
图9C是本申请实施例提供的第三种第一子支路的结构示意图;
图9D是本申请实施例提供的第四种第一子支路的结构示意图;
图9E是本申请实施例提供的第五种第一子支路的结构示意图;
图9F是本申请实施例提供的第六种第一子支路的结构示意图;
图9G是本申请实施例提供的第七种第一子支路的结构示意图;
图9H是本申请实施例提供的第八种第一子支路的结构示意图;
图10是图3中第二匹配模块的结构示意图;
图11是图3所示的第一种天线组件设有可调支路的结构示意图;
图12是图10中第二匹配模块的另一结构示意图;;
图13是图3所示的第一种天线组件安装于电子设备的结构示意图一;
图14是图13的横屏设置的结构示意图;
图15是图3所示的第一种天线组件安装于电子设备的结构示意图二;
图16是图3所示的第一种天线组件安装于电子设备的结构示意图三;
图17是本申请实施例提供的第二种天线组件安装于电子设备的结构示意图一;
图18是本申请实施例提供的第二种天线组件的结构示意图;
图19是图17所示的第二种天线组件安装于电子设备的结构示意图二;
图20是图19所示的第二种天线组件的改进结构示意图;
图21是图19所示的第二种天线组件集成接近检测的结构示意图;
图22是本申请实施例提供的第三种天线组件的结构示意图;
图23是图22中的天线组件的第三天线单元的S参数曲线示意图;
图24A是图23所示的天线组件中第六谐振模式的电流密度分布示意图;
图24B是图23所示的天线组件中第七谐振模式的电流密度分布示意图;
图24C是图23所示的天线组件中第八谐振模式的电流密度分布示意图;
图25是图23中的天线组件的第四天线单元的S参数曲线示意图;
图26A是图23所示的天线组件中第十谐振模式的电流密度分布示意图;
图26B是图23所示的天线组件中第十一谐振模式的电流密度分布示意图;
图26C是图23所示的天线组件中第十二谐振模式的电流密度分布示意图;
图27是图23所示的天线组件中安装于电子设备的结构示意图;
图28是图23所示的天线组件的S参数曲线图;
图29A是本申请实施例提供的第三种天线组件的共体辐射体作为接近感应电极的结构示意图;
图29B是本申请实施例提供的第三种天线组件的第二辐射体作为接近感应电极的结构示意图;
图29C是本申请实施例提供的第三种天线组件的第四辐射体作为接近感应电极的结构示意图;
图29D是本申请实施例提供的第三种天线组件的共体辐射体和第四辐射体作为接近感应电极的结构示意图;
图30是本申请实施例提供的第三种天线组件中加入第七匹配模块的结构示意图;
图31是本申请实施例提供的第三种天线组件中加入第七匹配模块和第八匹配模块的结构示意图。
详述
为使本申请实施例的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请实施例的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请实施例中的实施例及实施例中的特征可以相互任意组合。
请参照图1,图1为本申请实施例提供的一种电子设备的结构示意图。电子设备1000包括天线组件100。天线组件100用于收发电磁波信号,以实现电子设备1000的通信功能。本申请对于天线组件100在电子设备1000内的位置不做限定。电子设备1000还包括相互盖合连接的显示屏300及壳体200。
天线组件100可设于电子设备1000的壳体200内部、或部分与壳体200集成为一体、或部分设于壳体200外。图1中天线组件100的辐射体与壳体200集成为一体。当然,天线组件100可以设于电子设备1000的可伸缩组件上,换言之,天线组件100的至少部分还能够随着电子设备1000的可伸缩组件伸出电子设备1000之外,及随着可伸缩组件缩回至电子设备1000内;或者,天线组件100的整体长度随着电子设备1000的可伸缩组件的伸长而伸长。
电子设备1000包括不限于为电话、电视、平板电脑、手机、照相机、个人计算机、笔记本电脑、车载设备、耳机、手表、可穿戴设备、基站、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备。本申请中以电子设备1000为手机为例,其他的设备可参考本申请中的具体描述。
为了便于描述,以电子设备1000处于图1中的视角为参照,电子设备1000的宽度方向定义为X轴方向,电子设备1000的长度方向定义为Y轴方向,电子设备1000的厚度方向定义为Z轴方向。X轴方向、Y轴方向及Z轴方向两两垂直。其中,箭头所指示的方向为正向。
请参阅图2,壳体200包括边框210及后盖220。边框210内通过注塑形成中板410,中板410上形成多个用于安装各种电子器件的安装槽。中板410与边框210一起成为电子设备1000的中框420。显示屏300、中框420及后盖220盖合后在中框420的两侧皆形成收容空间。边框210的一侧(例如后侧)围接于后盖220的周沿,边框210的另一侧(例如前侧)围接于显示屏300的周沿。
电子设备1000还包括设于收容空间内的电池、摄像头、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组等等能够实现手机的基本功能的器件,在本实施例中不再赘述。
以下结合附图对于本申请提供的天线组件100进行说明,当然,本申请提供的天线组件100包括但不限于以下的实施方式。
请参阅图3,天线组件100至少包括第一辐射体11、第二辐射体21、第一匹配模块M1、第一馈电模块13、第二匹配模块M2及第二馈电模块23。其中,为了便于从功能上划分天线组件100的不同部分以便于后续的描述,定义第一辐射体11、第二辐射体21、第一匹配模块M1及第一馈电模块13为第一天线单元10,定义第一辐射体11、第二辐射体21、第二匹配模块M2及第二馈电模块23为第二天线单元20。
请参阅图3,第一辐射体11具有第一接地端111和第一耦合端112,以及位于第一接地端111和第一耦合端112之间的第一馈电点A。本实施例中,第一接地端111与第一耦合端112为呈直线条形的第一辐射体11的相对两端。在其他实施方式中,第一辐射体11呈弯折状,第一接地端111和第一耦合端112可不沿直线方向相对,但第一接地端111和第一耦合端112为第一辐射体11的两个末端。
请参阅图3,第二辐射体21具有第二耦合端212和第二接地端211,以及位于第二耦合端212和第二接地端211之间的第二馈电点B。第二耦合端212与第一耦合端112之间存在第一耦合缝隙140。第一辐射体11与第二辐射体21能够通过第一耦合缝隙140产生容性耦合。本实施例中,第二耦合端212及第二接地端211为第二辐射体21的两个末端。可选的,第一辐射体11与第二辐射体21可沿直线排列或大致沿直线排列(即在设计过程中具有较小的公差)。
当然,在其他实施方式中,第一辐射体11与第二辐射体21还可在延伸方向上错开设置,以形成避让空间等。
请参阅图3,第一耦合端112与第二耦合端212相对且间隔设置。第一耦合缝隙140为第一辐射体11与第二辐射体21之间的断缝,例如,第一耦合缝隙140的宽度可以为0.5至2mm,但不限于此尺寸。第一辐射体11和第二辐射体21可看作为辐射体被第一耦合缝隙140隔断而形成的两个 部分。
第一辐射体11与第二辐射体21通过第一耦合缝隙140进行容性耦合。其中,“容性耦合”是指,第一辐射体11与第二辐射体21之间产生电场,第一辐射体11的信号能够通过电场传递至第二辐射体21,第二辐射体21的信号能够通过电场传递至第一辐射体11,以使第一辐射体11与第二辐射体21即使在不直接接触或不直接连接的状态下也能够实现电信号导通。
可以理解的,本申请对于第一辐射体11、第二辐射体21的形状、构造不做限定,第一辐射体11、第二辐射体21的形状皆包括但不限于条状、片状、杆状、涂层、薄膜等。当第一辐射体11、第二辐射体21呈条状时,本申请对于第一辐射体11、第二辐射体21的延伸轨迹不做限定,故第一辐射体11、第二辐射体21皆可呈直线、曲线、多段弯折等轨迹延伸。上述的辐射体在延伸轨迹上可为宽度均匀的线条,可以为宽度渐变、设有加宽区域等宽度不等的条形。
请参阅图3,第一匹配模块M1电连接于第一馈电点A与第一馈电模块13之间。第一馈电模块13为用于发送射频信号的射频收发芯片或电连接用于发送射频信号的射频收发芯片的馈电部。第一匹配模块M1可包含开关器件、电容器件、电感器件、电阻器件等中的至少一者。
请参阅图3,第一接地端111电连接至第一参考地GND1,其电连接方式包括但不限于直接焊接、或通过同轴线、微带线、导电弹片、导电胶等方式间接电连接。本申请对于第一馈电点A在第一辐射体11上的位置不做限定。
请参阅图3,第二天线单元20包括第一辐射体11、第二辐射体21、第二匹配模块M2及第二馈电模块23。
请参阅图3,第二匹配模块M2电连接于第二馈电点B与第二馈电模块23之间。第二馈电模块23为用于发送射频信号的射频收发芯片或电连接用于发送射频信号的射频收发芯片的馈电部。第二匹配模块M2包含开关器件、电容器件、电感器件、电阻器件等中的至少一者。
请参阅图3,第二接地端211电连接至第二参考地GND2,其电连接方式包括但不限于直接焊接、或通过同轴线、微带线、导电弹片、导电胶等方式间接电连接。本申请对于第二馈电点A在第二辐射体21上的具体位置不做限定。
第一参考地GND1和第二参考地GND2包括但不限于以下几种实施方式。可选的,天线组件100自身具有参考地。该参考地的具体形式包括但不限于金属导电板件、成型于柔性电路板内部、硬质电路板中的金属导电层等。其中,第一参考地GND1和第二参考地GND2可为天线组件100中的一体成型的一个参考地,可以为天线组件100中的两个相互独立但相互连接的参考地。当天线组件100设于电子设备1000内时,天线组件100的参考地电连接至电子设备1000的参考地。再可选的,天线组件100本身不具有参考地,天线组件100的第一接地端111和第二接地端211通过直接电连接或通过导电件间接电连接至电子设备1000的参考地或电子设备1000内的电子器件的参考地。本申请中,天线组件100设于电子设备1000,以中板410上的金属合金作为参考地GND。即第一参考地GND1和第二参考地GND2为中板410的一部分或电连接至中板410,后续的第三参考地GND3至第七参考地GND7皆为参考地GND的一部分。
所述第一辐射体11在第一馈电模块13激励下支持第一谐振模式,其中所述第一谐振模式支持低频频段。
其中,低频频段为小于1Ghz的频段,其中该第一谐振模式所支持的频段可以为低频的全频段,或者,低频频段中的一个或多个的子频段。
一些示例性实施例中,增加第一辐射体11的有效电长度,以使得第一辐射体11在第一馈电模块13激励下支持低频频段。一些示例性实施例中,第一辐射体11的有效电长度为第一馈电模块13提供的电流频率在介质中的波长的1/8至1/4倍,其中,波长是指电磁波在所处环境中的介质中的波长。由于1/8至1/4波长模式为效率相对较高的谐振模式,因此,采用1/8至1/4倍波长的有效电长度,可以利于产生谐振模式,使电流谐振于第一辐射体11上的1/8至1/4波长模式。
由于第一辐射体11与第二辐射体21容性耦合,第二馈电模块23产生的电流也能够谐振于第一辐射体11和第二辐射体21中至少一个,第一辐射体11和第二辐射体21既能够作为第一天线单元10的辐射体,还能够作为第二天线单元20的辐射体,相较于第二馈电模块23单独谐振于第二辐射体21上,本申请实施例提供的天线组件100中的第一天线单元10和第二天线单元20实现了 共口径辐射,能够产生更多的谐振模式。从另一角度上说,本申请实施例提供的天线组件100,在支持到所需频段(或者在支持到所需谐振模式数量)的同时,充分复用了辐射体,减小的第一辐射体11和第二辐射体21的堆叠长度。
一些示例性实施例中,通过第二馈电模块23在第一辐射体11或第二辐射体21谐振,使得天线组件在第二馈电模块激励下支持多个谐振模式。
一些示例性实施例中,第二馈电模块23提供的电流谐振于第二辐射体21上,产生谐振模式;此外,由于第一辐射体11与第二辐射体21容性耦合,第二馈电模块23提供的电流还经第一耦合缝隙140传送至第一辐射体11上,以在第一辐射体11上产生谐振模式,增加第二天线单元10所支持的谐振模式数量。
一般地,电子设备(如,手机)所使用的馈电模块提供的电流频率均在高频频段,通过设计第一馈电模块21提供的电流频率为预设的低频频段,可以有效地与常规的电子设备中的馈电模块所产生的频率产生差别,使得天线组件100整体所覆盖的频段宽度和频段数量得到增加。
一些示例性实施例中,第一辐射体11的有效电长度约为第二馈电模块23提供的电流频率在介质中的波长的1/8至1/4倍,其中,波长是指电磁波在所处环境中的介质中的波长。可以利于产生谐振模式,使电流谐振于第二辐射体21上的1/8至1/4波长模式,其中,1/8至1/4波长模式为效率相对较高的谐振模式,故能够增加第二天线单元20所支持的谐振模式的数量及对于所支持的频段的收发效率,实现第二天线单元20在第一辐射体11和第二辐射体21上皆产生谐振模式。相较于第二天线单元20的电流仅仅谐振于第二辐射体11上,增加了第二天线单元20所支持的谐振模式的数量并产生较高的信号转换效率,进而增加天线组件100所支持的谐振模式的数量。
天线组件100所支持的谐振模式的数量增加,天线组件100所覆盖的频段宽度、频段数量增加。一些示例性实施例中,第一方面,当天线组件100的多种谐振模式所支持的频段皆连续时,此天线组件100所支持的频带宽度较宽,能够形成超宽带,该超宽带为低频、1G、1.5G或2G等等,以实现超宽带覆盖,提升下载带宽,提升吞吐量下载速度,提升用户的上网体验;第二方面,当天线组件100的多种谐振模式所支持的频段不连续时,此天线组件100所支持的频段数量增加,实现多频段的覆盖,例如天线组件100所支持的频段可同时覆盖低频、4G/5G中高频(例如1000MHz至3000MHz)和4G/5G超高频(例如3000MHz至10000MHz)、同时支持两个不同频段的中高频、同时支持4G/5G中高频和WiFi频段(例如WiFi5G、5.925GHz至7.125GHz等)等等。其中,多种谐振模式所支持的频段连续是指多种谐振模式所支持的相邻的两个频段至少部分重合。多种谐振模式所支持的频段不连续是指多种谐振模式所支持的相邻的两个频段之间无重合。
当天线组件100用于覆盖两种不同通信协议的信号(例如移动通信4G/5G信号和WiFi信号)时,第一天线单元10所能够支持的谐振模式相对较多,所覆盖的频段宽度相对较宽及所支持的频段数量相对较多,能够使第一天线单元10支持其中一种需要更多谐振模式支持的通信协议信号(例如移动通信N77频段或N78频段的信号),而第二天线单元20既可以支持另一种通信协议信号(例如,4G/5G信号)。如此,避免一个天线单元支持两种不同的通信协议信号时需要设置合路器等器件而导致射频链路上的损耗增加。
本申请提供的天线组件100及电子设备1000,通过设计第一辐射体11与第二辐射体21容性耦合,第一辐射体11和第二辐射体21作为第一天线单元10、第二天线单元20的共口径辐射体,并设计第一辐射体11的长度与第二馈电模块23提供的激励电流的谐振频率的1/8至1/4波长相对应,使第二馈电模块23传送的电流谐振于第二辐射体21的同时,还能够通过第一耦合缝隙140谐振于第一辐射体11上的1/8至1/4波长模式,故能够增加第二天线单元20所支持的谐振模式的数量及对于所支持的频段的收发效率,进而增加第二天线单元20所支持的频段数量或带宽,提高数据传输速率和通信质量,还便于第二天线单元20支持同一协议标准的信号,避免将不同协议标准的信号通过一个辐射体收发而产生的射频链路损耗,提高天线单元100的结构简洁性及减小射频链路损耗。
请参阅图4,第一天线单元10支持第一谐振模式a,图4是第一天线单元10的S参数曲线图;其中,第一谐振模式a的谐振频率为0.7468GHz。
其中,谐振模式表征为天线组件100在谐振频率处及谐振频率附近具有较高的电磁波收发效率。该谐振频率为谐振模式的谐振频率,该谐振频率及其附近形成该谐振模式所支持或所覆盖的频段。可选的,在回波损耗曲线中,取回波损耗值的绝对值大于或等于5dB(仅仅为举例,并不能作为本申请 对于较高的效率的回波损耗值的限制)为具有较高的电磁波收发效率的参考值。取一个谐振模式中回波损耗值的绝对值大于或等于5dB的频率的集合为该谐振模式所支持的频段。
一些示例性实施例中,请结合参阅图4及图5,第一谐振模式a为第一馈电模块13提供的激励电流(即第一谐振电流)谐振于第一辐射体11上的1/8至1/4波长模式。
一些示例性实施例中,通过设计第一辐射体11的长度约为第一馈电模块13发送至第一辐射体11的激励电流在介质中的波长的1/8至1/4倍,以在第一辐射体11上激励起第一谐振模式a,在第一谐振模式a所支持的频段具有较高的辐射效率。
一般地,通过设计第一辐射体11的长度约为第一馈电模块13发送至第一辐射体11的激励电流在介质中的波长的1/4倍,在第一谐振频点f1(第一谐振模式a的谐振频率)易激励起较高的辐射效率。通过在第一谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第一辐射体11上,容性加载皆可使得第一谐振模式a的谐振频率朝向低频偏移,不再遵循原本的需要在第一辐射体11的长度约为1/4波长处产生较高效率的谐振,而是可以在第一辐射体11的长度对应1/8至1/4波长的范围内,能够产生较高效率的谐振,故在原来的第一谐振频点f1形成谐振的同时还能够使所对应的第一辐射体11的长度缩短,例如,减小至第一谐振频点f1对应的波长的1/8倍等,减小第一辐射体11的尺寸,减小天线组件100的堆叠长度。
请参阅图6,所述第二天线单元20支持第二谐振模式b、第三谐振模式c、第四谐振模式d和第五谐振模式e。其中,第二谐振模式b的谐振频率为1.88GHz,第三谐振模式c的谐振频率为2.6323GHz,第四谐振模式d的谐振频率为3.5707GHz,第五谐振模式e的谐振频率为3.822GHz。
可选的,第二辐射体11在第二馈电模块13的激励下至少支持第二谐振模式b、第三谐振模式c、第四谐振模式d和第五谐振模式e。
请参阅图7A,第二谐振模式b的第二谐振电流密度主要分布于第二接地端211与第二耦合端212之间,从第二接地端211流向第二耦合端212,或者从第二耦合端212流向第二接地端211。可以理解的,上述为第二谐振模式b的主要的电流密度分布,在第一辐射体11上也具有少量的电流密度分布。
一些示例性实施例中,请结合参阅图6及图7A,第二谐振模式b为第二馈电模块23提供的激励电流(即第二谐振电流)谐振于第二辐射体11上的1/8至1/4波长模式。
一些示例性实施例中,通过设计第二辐射体21的长度约为第二馈电模块23发送至第二辐射体21的激励电流在介质中的波长的1/8至1/4倍,以在第二辐射体21上激励起第二谐振模式b,在第二谐振模式b所支持的频段具有较高的辐射效率。
一般地,通过设计第二辐射体21的长度约为第二馈电模块23发送至第二辐射体21的激励电流在介质中的波长的1/4倍,在第二谐振频点f2(第二谐振模式b的谐振频率)易激励起较高的辐射效率。通过在第二谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第二辐射体21上,容性加载皆可使得第二谐振模式b的谐振频率朝向低频偏移,不再遵循原本的需要在第二辐射体21的长度约为1/4波长处产生较高效率的谐振,而是可以在第二辐射体21的长度对应1/8至1/4波长的范围内,能够产生较高效率的谐振,故在原来的第二谐振频点f2形成谐振的同时还能够使所对应的第二辐射体21的长度缩短,例如,减小至第二谐振频点f2对应的波长的1/8倍等,减小第二辐射体21的尺寸,减小天线组件100的堆叠长度。
可选的,请参阅图7B,第三谐振模式c的第三谐振电流密度主要分布于第一馈电点A与第一耦合端112之间。从第二馈电点B流向第二耦合端212,经第一耦合缝隙140后再从第一耦合端112流向第一馈电点A。可以理解的,上述为第三谐振模式c的主要的电流密度分布,在第一接地端111与第一馈电点A之间也具有少量的电流密度分布。
请结合参阅图6及图7B,第三谐振模式c为第二馈电模块13提供的激励电流(第三谐振电流)谐振于第一辐射体21上的1/4波长模式。一些示例性实施例中,由于第一馈电模块13所提供的电流频率小于第二馈电模块23所提供的电流频率,且所述第一辐射体11的长度为第一馈电模块13的激励电流在介质中的波长的1/8至1/4倍,因此,第一辐射体11的长度大于第二馈电模块23的激励电流在介质中的波长的1/8至1/4倍,因此,第一辐射体11能够支持第二馈电模块23在第一辐射体11上激励起第三谐振模式c。
其中,第一匹配模块M1还包括至少一个电连接至第三参考地的支路R,其中所述控制支路R在天线组件100工作于第三谐振模式时选通。其中,该支路在下文中关于第一匹配模块M1的部分再进行详细说明。
一般地,通过设计第一辐射体11的长度约为第二馈电模块23发送的激励电流在介质中的波长的1/8至1/4倍,此时,在第三谐振频点f3(第三谐振模式c的谐振频率处)易激励起较高的辐射效率。通过在第三谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第一辐射体11上,容性加载皆可使得第三谐振模式c的谐振频率朝向低频偏移,不再遵循原本的需要在第一辐射体11的长度约为1/4波长处产生较高效率的谐振,而是可以在第一辐射体11的长度对应1/8至1/4波长的范围内,能够产生较高效率的谐振,故在原来的第三谐振频点f3形成谐振的同时还能够使所对应的第一辐射体11的长度缩短,例如,减小至第三谐振频点f3对应的波长的1/8倍等,减小第一辐射体11的尺寸,减小天线组件100的堆叠长度。
请一并参阅图6及图7C,第四谐振模式d为第二馈电模块13提供的激励电流(第四谐振电流)谐振于第二馈电点B至第二耦合端212的1/4波长模式。一些示例性实施例中,通过设计第二馈电点B至第二耦合端212的长度约为第二馈电模块23发送至第二辐射体21的激励电流在介质中的波长的1/8至1/4倍,以在第二馈电点B至第二耦合端212上激励起第三谐振模式c。
请参阅图7D,所述第一辐射体11具有位于所述第一馈电点A和第一耦合端112之间的接地点;所述天线组件还包括滤波电路S,其中所述滤波电路S的一端连接至所述接地点,所述滤波电路S的另一端连接至地;
所述天线组件100用于支持第五谐振模式,其中所述第五谐振模式为所述第二馈电模块23的激励电流谐振于所述接地点至所述第一耦合端112之间的1/4波长模式;
所述滤波电路S用于导通所述第五谐振模式所支持的频段以及阻断所述第五谐振模式所支持的频段之外的其他频段。
一些示例性实施例中,所述滤波电路S包括第一滤波支路和第二滤波支路中至少一个,其中:所述第一滤波支路包括串联的第一电感与第一电容;所述第二滤波支路包括第二电容、第二电感、及第三电感,所述第二电容与所述第二电感串联,所述第三电感的一端连接至所述第二电容未连接第二电感的一端,所述第三电感的另一端连接至所述第二电感未连接所述第二电容的一端。
请一并参阅图6及图7D,第五谐振模式e为第二馈电模块23提供的激励电流(第五谐振电流)谐振于接地点至第一耦合端112之间的1/4波长模式。一些示例性实施例中,通过设计接地点至所述第一耦合端112的长度约为第二馈电模块23发送至第一辐射体11的激励电流在介质中的波长的1/4倍,以在接地点至第一耦合端112上激励起第五谐振模式e。
一般地,通过设计第二馈电点B至第二耦合端212的长度约为第二馈电模块13发送的激励电流在介质中的波长的1/4倍,此时,在第五谐振频点f5处(第五谐振模式e的谐振频率)易激励起较高的辐射效率。通过在第五谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第一辐射体11上,容性加载皆可使得第五谐振模式e的谐振频率朝向低频偏移,不再遵循原本的需要在第二馈电点B至第二耦合端212的长度约为1/4波长处产生较高效率的谐振,而是可以在第一辐射体11的接地点至第一耦合端112的长度对应1/4波长的范围内,能够产生较高效率的谐振,故在原来的第五谐振频点f5形成谐振的同时还能够使所对应的第二馈电点B至第二耦合端212的长度缩短,例如,减小至第五谐振频点f5对应的波长的1/8倍等,减小第二馈电点B至第二耦合端212的尺寸,减小天线组件100的堆叠长度。
一些示例性实施例中,通过在第一辐射体11上设置接地点,增加了第二馈电模块23在第一辐射体11上激励产生的谐振模式的数量,有效地提高第二天线单元20所覆盖的频段数量、频段宽度等,提高天线组件100传输数据速率。
通过对于第一辐射体11的长度、第一馈电点A与第一耦合端112之间的长度以及第二辐射体21的长度进行设计,以使第二馈电模块23能在第一辐射体11及第二辐射体21上皆激励起谐振模式,提高第二天线单元20所能够支持的谐振模式的数量,有效地提高第二天线单元10所覆盖的频段数量和频段宽度等,提高天线组件100传输数据速率。
可选的,第二谐振模式b、第三谐振模式c、第四谐振模式b或第五谐振模式e所支持的频段包 括GPS频段、或LTE 4G频段、或NR 5G频段、或Wi-Fi 2.4G频段、或Wi-Fi 5G频段、或Wi-Fi 6E频段、或LTE 4G频段与NR 5G频段形成的组合频段等。一个谐振模式所支持的频段可以是单独的LTE 4G频段、或单独的NR 5G频段、或单独的Wi-Fi频段、或LTE 4G频段与NR 5G频段形成的组合频段等。
本申请中,第二谐振模式b的谐振频率的大小、第三谐振模式c的谐振频率的大小、第四谐振模式d以及第五谐振模式e的谐振频率的大小不做限定。本实施例中,第二谐振模式b的谐振频率、第三谐振模式c的谐振频率、第四谐振模式d以及第五谐振模式e的谐振频率依次增加。
本实施例中,第二谐振模式b所支持的频段包括GPS频段、LTE-4G MHB频段、NR-5G MHB频段中的至少一者,例如,GPS-L1频段、B3频段、B1频段、N3频段、N1频段中的至少一者。举例而言,第二谐振模式b的谐振频率为1.7698GHz。第三谐振模式c所支持的频段包括Wi-Fi 2.4G频段、LTE-4G MHB频段、NR-5G MHB频段等中的至少一者,例如,Wi-Fi 2.4G频段、B7频段、B41频段、B38频段、N7频段、N41频段等。举例而言,第三谐振模式c的谐振频率为2.6185GHz。所支持的频段包括LTE-4G UHB频段、NR-5G UHB频段等中的至少一者,例如,N78频段、B42频段、B43频段等中的至少一者。第四谐振模式d所支持的频段包括NR-5G UHB频段。举例而言,第四谐振模式d的谐振频率为3.5983GHz。其中,MHB是指中高频段(1000MHz至3000MHz)。UHB是指超高频段(3000MHz至10000MHz)。第五谐振模式e支持的频段为N77频段和N78频段中的至少一个。其中,每个谐振模式所覆盖的频段可以为某一频段中部分频段或全部频段,例如,可以对LTE 4G频段的全覆盖,或者,对LTE 4G频段的部分覆盖。
需要说明的是,以上从波长模式的角度说明第一谐振模式a至第五谐振模式e是一种比较好理解的解释,说明了各模式主要特征表象,易于区分。但各模式工作时,第一天线单元10、第二天线单元20并不是独立的,而是存在相互耦合,电流也会通过耦合流向对方。
可以理解的,在第二天线单元20中,第一辐射体11类似于第二辐射体21的寄生辐射体。第三谐振模式c和第五谐振模式e为第二馈电模块23激励寄生辐射体(第一辐射体11)而产生的谐振模式。
通过对第一辐射体11的长度、第一馈电点A至第一耦合端111之间的长度进行设计,以使第二馈电模块23能在第一辐射体11上的第一馈电点A至第一耦合端112之间以及接地点至第一耦合端112之间皆激励起谐振模式,提高第二天线单元20所能够支持的谐振模式的数量,有效地提高第二天线单元20所覆盖的频段数量、频段宽度等,提高天线组件100传输数据速率。
本实施方式中,第一匹配模块M1设于第一馈电点A与第一馈电模块13之间,用于对第一馈电模块13馈入的信号进行选频,例如,第一匹配模块M1从第一馈电模块13所发射的射频信号中选择小于1GHz的频段传送第一馈电点A。此外,第一匹配模块M1还能够对于第一天线单元10所支持的谐振模式进行调谐,以使天线组件100在所需支持的频段处进行谐振,及隔离第二天线单元20的谐振信号,增加第一天线单元10与第二天线单元20之间的隔离度。
以下结合附图对于第一匹配模块M1进行说明。
请参阅图8,第一匹配模块M1包括如下至少一个支路,其中:
至少一个并联至地的第一支路14;
至少一个串联于第一馈电点A与第一馈电模块13之间的第二支路15。
其中,第一支路14、第二支路15皆包括电容、电感中的至少一者。
请参阅图8,至少一个所述第一支路14包括第一子支路,所述第一子支路的一端电连接于所述第一馈电模块13,所述第一子支路的另一端电连接至第三参考地GND3,所述第一子支路包括电容、电感中的至少一者。本实施方式中,第一子支路为电感,记为L13。
其中,该第一支路14在天线组件工作于第二谐振模式时处于通路状态。
第二支路15包括但不限于单电容支路、单电感支路以及以下实施方式所列举的选频滤波电路中的至少一者。
请参阅图9A,第二支路15包括电感L0与电容C0串联形成的带通电路。
请参阅图9B,第二支路15包括电感L0与电容C0并联形成的带阻电路。
请参阅图9C,第二支路15包括电感L0、第一电容C1、及第二电容C2形成的带通或带阻电路。电感L0与第一电容C1并联,且第二电容C2电连接电感L0与第一电容C1电连接的节点。
请参阅图9D,第二支路15包括电容C0、第一电感L1、及第二电感L2形成的带通或带阻电路。电容C0与第一电感L1并联,且第二电感L2电连接电容C0与第一电感L1电连接的节点。
请参阅图9E,第二支路15包括电感L0、第一电容C1、及第二电容C2形成的带通或带阻电路。电感L0与第一电容C1串联,且第二电容C2的一端电连接电感L0未连接第一电容C1的第一端,第二电容C2的另一端电连接第一电容C1未连接电感L0的一端。
请参阅图9F,第二支路15包括电容C0、第一电感L1、及第二电感L2形成的带通或带阻电路。电容C0与第一电感L1串联,第二电感L2的一端电连接电容C0未连接第一电感L1的一端,第二电感L2的另一端电连接第一电感L1未连接电容C0的一端。
请参阅图9G,第二支路15包括第一电容C1、第二电容C2、第一电感L1、及第二电感L2。第一电容C1与第一电感L1并联,第二电容C2与第二电感L2并联,且第二电容C2与第二电感L2并联形成的整体的一端电连接第一电容C1与第一电感L1并联形成的整体的一端。
请参阅图9H,第二支路15包括第一电容C1、第二电容C2、第一电感L1、及第二电感L2,第一电容C1与第一电感L1串联形成第一单元101,第二电容C2与第二电感L2串联形成第二单元102,且第一单元101与第二单元102并联。
第二支路15包括但不限于单电容接地支路、单电感接地支路、图9A至图9H任意一种实施方式所列举的接地支路中的至少一者。
举例而言,请参阅图8,至少一个所述第二支路15包括第二子支路151及第三子支路152。所述第二子支路151的一端电连接所述第一馈电点A,所述第二子支路151的另一端电连接所述第三子支路152的一端,所述第二子支路151包括并联的电感和电容,记为C11和L11。
所述第三子支路152的另一端电连接所述第一馈电模块13,所述第三子支路152包括电容、或电感、或并联的电感及电容。本实施方式中,第二子支路152为电感,记为L12。
以上仅仅为第一匹配模块M1的一种实施方式举例,在其他实施方式中,可以在第二子支路151与第一馈电点A之间增加支路。
其中,第二子支路151(L11、C11)和第三子支路152(L12)用于第二天线单元所支持的谐振模式对应的频段。举例而言,L21=13nH,C21=0.3pF,L22=2.7nH,上述的第二子支路151和第三子支路152对于第一谐振模式所支持的谐振模式对应的频段呈低阻抗或带通,以导通第一谐振模式所a支持的频段,还能够有效地过滤掉除第一谐振模式a所支持频段之外的其他频段,进而减小第一天线单元10所支持的频段信号对于第二天线单元20的影响。第一子支路L13对第一谐振模式a所支持的频段起到调谐作用,并对第一谐振模式a所支持的频段起到隔离作用,以减少第一天线单元10所支持的信号对于第二天线单元20的影响。
在本实施例中,所述第二匹配模块M2用于导通所支持的频段(例如WiFi 5G频段),及阻隔除所支持频段之外的其他频段(如,第二谐振模式b、第三谐振模式c、第四谐振模式d及第五谐振模式e所支持的频段),增加第一天线单元10和第二天线单元20之间的隔离度,及调谐所支持的谐振模式的谐振频率。
以下结合附图对于第二匹配模块M2进行说明。
所述第二匹配模块M2包括如下至少一个支路,其中:
至少一个并联至地的第三支路16;
至少一个串联于所述第二馈电点B与所述第二馈电模块23之间的第四支路17。
所述第三支路16、所述第四支路17皆包括电容、电感中的至少一者。
第三支路16包括但不限于单电容支路、单电感支路以及图9A至图9H所列举的选频滤波电路中的至少一者。
第四支路17包括但不限于单电容支路、单电感支路以及图9A至图9H所列举的选频滤波电路中 的至少一者。
第二匹配模块M2用于调谐第二谐振模式b的谐振频率、第三谐振模式c的谐振频率、第四谐振模式d的谐振频率、及第五谐振模式e的谐振频率中的至少一者。举例而言,天线组件100应用于支持GPS-L1+LTE/NR-MHB+WiFi-2.4GHz+N78频段时,通过设置第二匹配模块M2的结构及设计各个器件的值,以使第二谐振模式b可支持GPS-L1,第三谐振模式c可支持LTE/NR-MHB,第四谐振模式d可支持WiFi-2.4GHz频段,第五谐振模式e可支持N78频段。
举例而言,请参阅图10,至少一个第三支路16包括第四子支路161、第五子支路162、第六子支路163。第四子支路161的一端电连接第二馈电点B,第四子支路161另一端电连接至第三参考地GND3,第四子支路161包括单独的电容支路、或电容及电感的串联支路。本实施方式中,第四子支路161为单独的电容支路,记为C21。
本实施方式中,请参阅图10,第五子支路162的一端电连接第二馈电点B,第五子支路162的另一端电连接至第四参考地GND4,第二子支路142包括电感、或电感及电容。本实施方式中,第五子支路162为单独的电感支路,记为L21,在其他实施方式中,第五子支路162可以为电感及电容的串联支路。
请参阅图10,第六子支路163的另一端电连接至所述第四参考地GND4。所述第六子支路163包括电容、或电容及电感。本实施方式中,第六子支路163为单独的电容支路,记为C23。在其他实施方式中,第六子支路163可以为电感与电容的串联支路。
请参阅图10,至少一个第四支路17包括第七子支路171及第八子支路182。
请参阅图10,第七子支路171的一端电连接于第二馈电点B。第七子支路171的另一端电连接第六子支路163远离第四参考地GND4的一端,第七子支路171包括电容、或电容及电感。本实施方式中,第七子支路171为电容,记为C22。在其他实施方式中,第四子支路151还包括为电容与电感的串联支路。
请参阅图10,第八子支路172的一端电连接第七子支路171的另一端,第八子支路172的另一端电连接第二馈电模块23。第八子支路172包括电感。本实施方式中,第五子支路172为电感,记为L22。
以上仅仅为第二匹配模块M2的一种实施方式举例,在其他实施方式中,可以在第四子支路161与第二馈电点B之间增加支路,或者在第四子支路171与第二馈电点B之间增加支路。
其中,结合参考图6及图10,第四子支路161(C11)还能隔离第一天线单元10中的低频频段,以防止对第二天线单元20产生干扰,提高第一天线单元10和第二天线单元20的隔离度。第四子支路161、第六子支路163及第八子支路172用于第四谐振模式d。第五子支路162和第七子支路171用于调谐第二谐振模式b。一些示例性实施例中,第四子支路161(C11)用于第四谐振模式d的谐振点,以使第四谐振模式覆盖所支持的频段,此外,第六子支路163(C23)及第五子支路172(L22)皆能够调谐第四谐振模式d。举例而言,C11=1pF,L11=4.3nH,C12=1pF,C13=0.5pF,L12=3.3nH,以使第二谐振模式b能够高效地支持LTE/NR-MHB,第三谐振模式c高效地支持WIFI 2.4G,第四谐振模式d高效地支持N41频段,第五谐振模式e高效地支持N78频段。
请结合参阅图11,第二匹配模块M2还包括至少一个电连接至第四参考地GND4的可调支路T。本申请对于可调支路T的位置不做限定,该可调支路T可为第四子支路161、或第五子支路162、或第六子支路163、或新增在第二馈电点B与第四子支路161之间、或新增在第四子支路161与第五子支路162之间、或新增在第六子支路163与第四子支路144之间等。可调支路T用于调谐第三谐振模式c的谐振频率。一些示例性实施例中,可调支路T用于调节第二谐振模式b的谐振频点的位置和第四谐振模式d的谐振频点的位置,以使扩展第二谐振模式b和第四谐振模式d支持所需的频段范围,例如,设有可调支路T的第二匹配模块M2将第二谐振模式b的谐振频率从1.77GHz移动至1.92GHz,将第四谐振模式d的谐振频率从3.6GHz移动至3.7GHz,如此,实现了天线组件100所能够支持的频段范围。
本申请对于可调支路T的具体结构不做限定。可选的,可调支路T包括开关电路、可调电容中的至少一者。其中,开关电路包括但不限于为多个开关+电容的支路、开关+电阻的多个支路、开关+电感的多个支路、开关+电感+电容的多个支路等。
举例而言,请结合参阅图11,可调支路T为第四支路17的一部分。一些示例性实施例中,可调支路T包括开关及多个并联设置的不同电感值的电感器件。
请结合参阅图12,L211的电感值为4.3nH,L212的电感值为3nH。该开关包括但不限于“单刀多掷”或“多刀多掷”开关。当开关导通L211至第二匹配模块M2中时,第二谐振模式b的谐振频率为1.77GHz,第三谐振模式c的谐振频率为3.6GHz;当开关导通L112至第二匹配模块M2中时,第二谐振模式b的谐振频率为1.92GHz,第三谐振模式c的谐振频率为3.7GHz。
在第二匹配模块M2设有可调支路T的情况下,本实施方式还通过对第二馈电点B的位置进行设计等方式,使可调支路T在对第二谐振模式b和第四谐振模式d进行调谐的同时,但是不会影响到或较少的影响到第三谐振模式c、第五谐振模式e,从而确保第二匹配模块M2能够调谐第二谐振模式b和第四谐振模式d,以增加天线组件100可支持的LTE 4G/NR 5G频段范围、提升各个频段的性能的同时,可以确保天线组件100保持能够支持WiFi 2.4G、WiFi 5G、WiFi 6E信号。
根据上述对于第二谐振模式b、第三谐振模式c、第四谐振模式d和第五谐振模式e在第一辐射体11和第二辐射体21上的谐振的波长模式分析,可知,第二馈电点B处的调谐对于第三谐振模式c、第五谐振模式e的谐振影响相对较小,对于第二谐振模式b和第四谐振模式d的谐振影响相对较大。
对于第二谐振模式b而言,第二辐射体21的电流密度分布从第二耦合端212至第二接地端211为先增加后减小再增加(例如图11中的虚线处),其中,第二辐射体21的电流强点位于从第二耦合端212至第二接地端211的长度的1/3左右。第二馈电点B与第二接地端211之间的长度为第二辐射体11长度的(1/3至1)倍。可选的,第二馈电点B位于第二辐射体21的电流强点的位置或电流强点附近。
通过设置第二馈电点B位于第二辐射体21的电流强点的位置或电流强点附近。第二馈电点A与第二接地端211之间的长度为第二辐射体21长度的(1/3至1)倍。第二馈电点B与第二耦合端212之间的长度为第二辐射体21长度的1/3倍附近,以使第二馈电点B位于电流较强的位置。当第二馈电点B位于电流较强的位置时,第二匹配模块M2中设置可调支路T,该可调支路T对于第四谐振模式d的影响相对较小。当第一馈电点A位于第一辐射体11的电流强点的位置或电流强点附近,并将可调支路T中的L111切换至L112,从图中可以看出第四谐振模式d和第五谐振模式e的谐振点的位置不变,如此,实现了增加天线组件100可支持的LTE 4G/NR 5G频段范围的同时,可以确保天线组件100保持能够支持WiFi信号,以使天线组件100始终能够支持LTE 4G/NR 5G及WiFi信号。
本实施方式中,第二匹配模块M2设于第二馈电点B与第二馈电模块23之间,用于对第二馈电模块23馈入的信号进行选频,例如,第二匹配模块M2从第二馈电模块23所发射的射频信号中选择1GHz至4.5GHz的频段传送第二馈电点B。此外,第二匹配模块M2还能够对于第二天线单元20所支持的谐振模式进行调谐,以使天线组件100在所需支持的频段处进行谐振;及隔离第一天线单元10的谐振信号,增加第一天线单元10与第二天线单元20之间的隔离度。
以下结合附图对于第二匹配模块M2进行说明。
从图4和图6所示的第一天线单元10和第二天线单元20之间的隔离曲线,可以看出,0至7GHz所对应的隔离度的值位于-25以下,而显示在图示中的隔离度的值也位于-15以下,说明第一天线单元10和第二天线单元20之间具有较高的隔离度。通过上述第一匹配模块M1和第二匹配模块M2的设计,以使第一天线单元10和第二天线单元20具有较高的隔离度,利于提高第一天线单元10、第二天线单元20各自收发天线信号的效率。从图4可以看出,在第一匹配模块M1中设置可调支路T之后,第一天线单元10和第二天线单元20之间仍具有较高的隔离度。
以上为第一种实施方式提供的天线组件100,该天线组件100中包括相耦合的第一天线单元10和第二天线单元20,实现了低频/LTE 4G/NR 5G/WiFi信号共口径设计;天线组件100同时支持多种谐振模式,通过载波聚合技术实现了超带宽设计,同时,天线组件100可支持LTE 4G/NR 5G的双连接技术;其中,本申请通过对第一辐射体11长度、第一馈电点A的位置以及第二辐射体21的长度进行合理的设计,以使第一天线单元10单独支持低频频段,第二天线单元支持LTE 4G/NR 5G中高频及超高频、WiFi 2.4G频段,无需设置合路器等器件,以减少第二天线单元20的损耗,提高天线组件100的辐射效率。
在上述的天线组件100设于电子设备1000中,以电子设备1000为手机为例。本申请对于天线组件100的辐射体安装于电子设备1000内的具体位置不做限定。所述天线组件100的辐射体集成于所述壳体200、或设于所述壳体200表面、或设于所述壳体200所包围的空间内。
请参阅图13,电子设备1000包括设于壳体200内的参考地GND、电路板500(请参阅图2)等。参考地GND包括但不限于为中板410中的合金。参考地GND包括上述的第一参考地GND1至第七参考地GND7。
第一馈电模块13、第二馈电模块23、第一匹配模块M1、第二匹配模块M2皆设于电路板500上。
第一辐射体11、第二辐射体21可集成于壳体200、或设于壳体200表面、或设于壳体200所包围的空间内。
可选的,第一辐射体11、第二辐射体21的至少部分与壳体200的边框210集成为一体。例如,边框210的材质为金属材质。第一辐射体11、第二辐射体21与边框210皆集成为一体。第一辐射体11、第二辐射体21之间的第一耦合缝隙140填充绝缘材质。当然,在其他实施方式中,第一辐射体11、第二辐射体21还可与后盖220集成为一体。换言之,第一辐射体11、第二辐射体21集成为壳体200的一部分。
可选的,第一辐射体11、第二辐射体21成型于边框210的表面(例如边框210的内表面或外表面)。一些示例性实施例中,第一辐射体11、第二辐射体21的基本形式包括但不限于贴片辐射体、通过激光直接成型(Laser Direct Structuring,LDS)、印刷直接成型(Print Direct Structuring,PDS)等工艺成型在边框210的内表面上,此实施方式中,边框210的材质可为非导电材质(对于电磁波信号为非屏蔽材质、或设置透波结构)。当然,第一辐射体11、第二辐射体21可以设于后盖220的表面。
可选的,第一辐射体11、第二辐射体21设于柔性电路板、硬质电路板或其他的承载板。第一辐射体11、第二辐射体21可集成于柔性电路板上,并将柔性电路板通过粘胶等贴设于中框420的内表面,此实施方式中,边框210的材质可为非导电材质。当然,第一辐射体11、第二辐射体21还可设于后盖220的内表面。
以上为一个天线组件100用于待测主体接近检测和天线信号传输的具体结构、以及天线组件100中的各个器件在电子设备1000的安装位置。当然,本申请中,天线组件100的数量为一个或多个。
本申请对于天线组件100在电子设备1000内的具体所在侧不进行限定。参考地GND呈矩形板状。参考地GND包括依次连接的多个侧边。相邻的两个侧边之间的连接处为拐角处。
至少一个天线组件100采用如下至少一个设置方式,其中:
至少一个天线组件100的第一辐射体11、第二辐射体21与两个相交的侧边及拐角处相对设置;
至少一个天线组件100的第一辐射体11、第二辐射体21全部与一个侧边相对设置。
具体通过以下实施方式进行举例说明。
请参阅图13,参考地GND包括相对设置的第一侧边61和第二侧边62,以及连接于第一侧边61和第二侧边62之间的第三侧边63和第四侧边64。相邻的两个侧边之间的连接处为拐角处65。其中,第一侧边61为参考地GND的顶边(以用户竖屏手持并使用电子设备1000的状态为参考),第二侧边62为参考地GND的底边。
请参阅图13,边框210包括多个首尾相连的侧边框。边框210的多个侧边框中,相邻的两个侧边框相交,例如相邻的两个侧边框通过圆弧倒角过渡连接。多个侧边框包括相对设置的顶边框2101和底边框2102,及连接于顶边框2101与底边框2102之间的第一侧边框2103和第二侧边框2104。其中,顶边框2101为操作者手持电子设备1000朝向电子设备1000的正面使用时远离地面的边,底边框2102为朝向地面的边。相邻的两个侧边框之间的连接处为拐角部2106。其中,顶边框2101和底边框2102平行且相等。第一侧边框2103和第二侧边框2104平行且相等。第一侧边框2103的长度大于顶边框2101的长度。其中,顶边框2101与第一侧边61相对设置,底边框2102与第二侧边62相对设置,第一侧边框2103与第三侧边63相对设置,第二侧边框2104与第四侧边64相对设置。
所述天线组件100设于所述顶边框2101、所述第一侧边框2103、所述第二侧边框2104及所述 底边框2102中的至少一者。
在一实施方式中,请参阅图13,天线组件100的数量为一个。天线组件100的第一辐射体11、第二辐射体21与第一侧边框2103集成为一体。其中,第一耦合缝隙140靠近于或位于第一侧边框2103的中间位置。
请参阅图14,图14中两侧的虚线框为手指的握持区。当用户横屏握持电子设备1000(例如横屏玩游戏、看视频等)时,用户的双手的握持位置相对远离第一侧边框2103的中间位置,如此,使得第一耦合缝隙140远离用户的手持位置。当用户的手指越靠近天线组件100的电场强点(第一耦合缝隙140处),对于天线组件100的干扰影响越大。因此,通过将天线组件100设于第一侧边框2103,并使得第一耦合缝隙140远离用户横屏握持电子设备1000的手持位置,以使用户在横屏握持电子设备1000玩游戏等场景时,第一耦合缝隙140避开用户的手指,使其不被遮挡。可选的,第一耦合缝隙140的位置与顶边框2101或底边框2102之间的距离为40mm以上,以使第一天线单元10和第二天线单元20仍具有较高的辐射效率,进而提高用户对于电子设备1000的使用体验。
当然,在其他实施方式中,请参阅图15,天线组件100的数量为多个,例如,两个天线组件100分别位于第一侧边框2103和第二侧边框2104。这两个天线组件100的结构、所支持的频段可以相同或不同。当这两个天线组件100皆具有耦合缝隙时,将这两个天线组件100的耦合缝隙分别设于或靠近第一侧边框2103、第二侧边框2104的中间位置,以减少用户横屏握持时对于天线组件100的遮挡,减少对于天线组件100的效率的影响。同时,两个天线组件100可以相互切换,实现电子设备1000能够在更多频段进行通讯或更宽的带宽下进行通讯,提高电子设备1000的通讯质量。
当然,在其他实施方式中,请参阅图16,天线组件100的第一辐射体11、第二辐射体21可以集成于顶边框210靠近拐角处,或者电子设备1000上的其他任意位置。
由上述的实施方式可知,本申请实现了电子设备1000在横屏模式下具有较高的辐射性能,且能够实现LTE 4G/NR 5G/WiFi同时存在。
以下结合附图对于本申请提供的第二种实施方式提供的天线组件100进行说明。本实施方式提供的天线组件100包括第一种实施方式提供的天线组件100,主要不同在于,请参阅图17及图18,本实施方式提供的天线组件100还包括第三辐射体31、第三馈电模块33及第三匹配模块M3。为了便于对天线组件100的不同部分进行功能划分以便于后续的描述,定义第三辐射体31、第三馈电模块33及第三匹配模块M3为第三天线单元30。第三辐射体31包括第三接地端311和第一自由端312,以及设于第三接地端311与第一自由端312之间的第三馈电点C。第三接地端311与第一接地端111相间隔设置或通过导电体连接。第三接地端311电连接至第五参考地GND5。第三馈电模块33电连接第三馈电点C。第三匹配模块M3电连接于第三馈电点C与第三馈电模块33之间。
可选的,请参阅图17及图18,第一辐射体11和第二辐射体12设于第一侧边框2103,以在电子设备1000被横屏使用时,第一耦合缝隙140远离用户的手部,从而增加在横屏使用电子设备1000时的辐射效率。第三辐射体31设于第一侧边框2103和顶边框2101之间的拐角部2106,由于拐角部2106具有相对较好的净空区域,且拐角部2106更容易激励起较高的参考地电流,以提高第三天线单元30的辐射效率。本申请对于第三天线单元30所覆盖的频段不做限定。可选的,第三天线单元30可覆盖(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)。第三天线单元30的结构和尺寸可参考第二天线单元20的结构和尺寸。
可选的,请参阅图19,在第二接地端211与第三接地端311之间增加导电体将第二辐射体21与第三辐射体31连接起来。当第一辐射体11、第二辐射体21及第三辐射体31皆集成于边框210上时,第二辐射体21与第三辐射体31之间可不做切断,即将边框210的一部分作为第二辐射体21,将边框210的另一部分作为第三辐射体31。换言之,第二辐射体21与第三辐射体31形成共体辐射体32。
可选的,请参阅图20,天线组件100还包括第四匹配模块M4。第四匹配模块M4的一端电连接于第二接地端211,第四匹配模块M4的另一端电连接至第二参考地GND2。其中,第四匹配模块M4对第一天线单元10、第二天线单元20中需要在第二接地端211回地的谐振模式(例如第二谐振模式b)所支持频段呈低阻抗状态,例如,第四匹配模块M4为电感,以使需要在第二接地端211回地的谐振模式的谐振电流回地。
可选的,请参阅图20,天线组件100还包括第五匹配模块M5。第五匹配模块M5的一端电连接于第三接地端311,第五匹配模块M5的另一端电连接至第五参考地GND5。第五匹配模块M5对第三天线单元30中需要回地的谐振模式所支持频段呈低阻抗状态,例如,第五匹配模块M5为电感,以使第三天线单元30中需要在第三接地端311回地的谐振模式的谐振电流回地。
本实施方式中,天线组件100包括第四匹配模块M4和第五匹配模块M5,在其他实施方式中,天线组件100可仅包括第四匹配模块M4或仅包括第五匹配模块M5。
请参阅图21,定义第二辐射体21和第三辐射体31电连接之后为共体辐射体32。当共体辐射体32还作为检测待测主体(例如,人体的头部、手部等)接近的感应电极时,第四匹配模块M4包括直接电连接第二接地端211的容性器件或在第四匹配模块M4与第二接地端211之间设置容性器件;第五匹配模块M5包括直接电连接第三接地端311的容性器件或在第五匹配模块M5与第三接地端311之间设置容性器件;第二匹配模块M2包括直接电连接第二馈电点B的容性器件或在第二馈电点B与第二匹配模块M2之间设置容性器件;第三匹配模块M3包括直接电连接第三馈电点C的容性器件或在第三馈电点C与第三匹配模块M3之间设置容性器件;其中,容性器件例如电容、或包括电容的电路等,容性器件使得共体辐射体32相对于直流电流呈“悬浮状态”,以隔离待测主体靠近时产生的感应信号影响到天线信号。
可选的,第四匹配模块M4、第五匹配模块M5包括开关选择电路,例如,并联设置的电感支路和电容支路。当共体辐射体32需要检测人体靠近时,则控制开关导通电容与第二接地端211;当共体辐射体32不需要检测人体靠近时,则控制开关导通电感与第二接地端211。
可选的,第四匹配模块M4、第五匹配模块M5还包括电容和电感的支路。其中,电容电连接于第二接地端211与电感之间,电容使得共体辐射体32相对于直流电流呈“悬浮状态”,而电容和电感的支路对于需要从第二接地端211、第三接地端311回地的谐振模式所对应的频段呈低阻态。
请参阅图21,第四匹配模块M4、第五匹配模块M5用于隔直匹配,从而共体辐射体32可以作为SAR(比吸收率)检测部分。可选的,在第二匹配模块M2、第三匹配模块M3、第四匹配模块M4、第五匹配模块M5前分别加入隔直电容C31/C32/C33/C34(电容值例如为22pF,对天线信号基本无影响),如果第一匹配模块M1、第二匹配模块M2、第四匹配模块M4、第五匹配模块M5中本身就有隔直电容,则不需要额外加C31/C32/C33/C34。此时,共体辐射体32对于感应信号来说是悬浮的,接近传感器需要有悬浮的金属体,来感应人体靠近带来的电容变化,从而达到检测的目的。在C33前加入检测电路,检测电路中加入电感L隔离较高频率(例如电感为82nH),使天线基本不受影响。检测电路可以放在C31/C32/C34前,或天线辐射体的任意位置。通过在天线辐射体上的人体检测,判断人体靠近状态,从而达到智能降SAR的目的。
以上为共体辐射体32作为感应电极的实施方式,在其他实施方式中,第一辐射体11也能够作为感应电极,在后续以第三实施方式提供的天线组件100为例进行具体说明。
以下结合附图对于本申请提供的第三实施方式提供的天线组件100的具体结构进行举例说明。
可选的,请参阅图22,天线组件100还包括第四辐射体41、第四馈电模块43及第六匹配模块M6。为了便于对天线组件100的不同部分进行功能划分以便于后续的描述,定义第四辐射体41、第四馈电模块43及第六匹配模块M6为第四天线单元40。第四辐射体41包括第四接地端411和第二自由端412,以及设于第四接地端411与第二自由端412之间的第四馈电点D。第二自由端412与第一自由端312之间为第二耦合缝隙150。第三辐射体31与第四辐射体41通过第二耦合缝隙150耦合。第四接地端411电连接至第六参考地GND6。第四馈电模块43电连接第四馈电点D。第六匹配模块M6电连接于第四馈电点D与第四馈电模块43之间。
本实施方式中,第三辐射体31与第四辐射体41相互耦合,以使第四馈电模块43发送的激励电流不仅能够在第四辐射体41上形成谐振,还能够在第三辐射体31上形成谐振,及第三馈电模块33发送的激励电流不仅能够在第三辐射体31上形成谐振,还能够在第四辐射体41上形成谐振,以增加第三天线单元30和第四天线单元40所产生的谐振模式,进而增加第三天线单元30和第四天线单元40所支持的带宽、频段数量。
可选的,第三辐射体31和第四辐射体41可共同作为第三天线单元30的辐射体,第三辐射体31和第四辐射体41还可共同作为第四天线单元40的辐射体,以使第三天线单元30和第四天线单 元40形成共口径天线,以实现辐射体的复用,在增加谐振模式的数量的同时减小第三天线单元30和第四天线单元40的辐射体的堆叠尺寸。
可选的,第一辐射体11与第三辐射体31之间电连接。第一天线单元10、第二天线单元20、第三天线单元30及第四天线单元40形成共口径天线。
本实施方式提供的天线组件100中,第一天线单元10和第二天线单元20上的谐振模式、谐振电流参考第一种实施方式提供的天线组件100,在此不再赘述。
以下结合附图说明第三天线单元30、第四天线单元40的谐振模式和谐振电流。
请参阅图23,第三天线单元30用于支持第六谐振模式f、第七谐振模式g及第八谐振模式h。
请参阅图24A,第六谐振模式f的第六谐振电流密度主要分布于第三接地端311与第一自由端312之间,从第三接地端311流向第一自由端312,或者从第一自由端312流向第三接地端311。可以理解的,上述为第六谐振模式g的主要的电流密度分布,在第四辐射体41上也具有少量的电流密度分布。
其中,第六谐振模式f为第三馈电模块33的激励电流谐振于第三辐射体31上的1/8至1/4波长模式。一些示例性实施例中,通过设计第三辐射体31的长度约为第三馈电模块33发送至第三辐射体31的激励电流在介质中的波长的1/8至1/4倍,以在第三辐射体31上激励起第六谐振模式f,在第六谐振模式f所支持的频段具有较高的辐射效率。
一般地,通过设计第三辐射体31的长度约为第三馈电模块33发送至第三辐射体31的激励电流在介质中的波长的1/4倍,在第六谐振频点(第六谐振模式f的谐振频率)易激励起较高的辐射效率。通过在第六谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第三辐射体31上,容性加载皆可使得第六谐振模式f的谐振频率朝向低频偏移,不再遵循原本的需要在第三辐射体31的长度约为1/4波长处产生较高效率的谐振,而是可以在第三辐射体31的长度对应1/8至1/4波长的范围内,能够产生较高效率的谐振,故在原来的第六谐振模式的频点形成谐振的同时还能够使所对应的第三辐射体31的长度缩短,例如,减小至第六谐振频点对应的波长的1/8倍等,减小第三辐射体31的尺寸,减小天线组件100的堆叠长度。
请参阅图24B,第七谐振模式g的第七谐振电流密度主要分布于第三馈电点C至第一自由端312之间,从第三馈电点C流向第一自由端312,或者,从第一自由端312流向第二馈电点B。可以理解的,上述为第七谐振模式g的主要的电流密度分布,在第三接地端311至第三馈电点C、第四辐射体41上也具有少量的电流密度分布。
第七谐振模式g为第三馈电模块33的激励电流谐振于第三馈电点C至第一自由端312的1/8至1/4波长模式。一些示例性实施例中,通过设计第三馈电点C至第一自由端312的长度约为第三馈电模块33发送至第三馈电点C至第一自由端312的激励电流在介质中的波长的1/8至1/4倍,以在第三馈电点C至第一自由端312上激励起第七谐振模式g,在第七谐振模式g所支持的频段具有较高的辐射效率。
一般地,通过设计第三馈电点C至第一自由端312的长度约为第三馈电模块33发送至第三馈电点C至第一自由端312的激励电流在介质中的波长的1/4倍,在第七谐振频点(第七谐振模式g的谐振频率)易激励起较高的辐射效率。通过在第七谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第三馈电点C至第一自由端312上,容性加载皆可使得第七谐振模式g的谐振频率朝向低频偏移,不再遵循原本的需要在第三馈电点C至第一自由端312的长度约为1/4波长处产生较高效率的谐振,而是可以在第三馈电点C至第一自由端312的长度对应1/8至1/4波长的范围内,能够产生较高效率的谐振,故在原来的第七谐振频点形成谐振的同时还能够使所对应的第三馈电点C至第一自由端312的长度缩短,例如,减小至第七谐振频点对应的波长的1/8倍等,减小第三辐射体31的尺寸,减小天线组件100的堆叠长度。
请参阅图24C,第八谐振模式h的第八谐振电流密度主要分布于第三馈电点C至第四接地端411之间,其中,第三馈电点C至第一自由端312之间的电流,及第二自由端412流向第四接地端411之间的电流方向相同。从第三馈电点C流向第一自由端312,经第二耦合缝隙150后经第二自由端412流向第四接地端411,或者,从第四接地端411流向第二自由端412,经第二耦合缝隙150后流向第三馈电点C。可以理解的,上述为第八谐振模式h的主要的电流密度分布,在第三接地端311 至第三馈电点C上也具有少量的电流密度分布。
第八谐振模式h为第三馈电模块33的激励电流谐振于第三馈电点C至第一自由端312的1/8至1/4波长模式,及谐振于第二自由端412至第第四接地端411的1/8至1/4波长模式。
一般地,通过设计第三馈电点C至第一自由端312的长度约为第三馈电模块33发送至第三馈电点C至第一自由端312的激励电流在介质中的波长的1/4倍,及通过设计第二自由端412至第四接地端411的长度约为第三馈电模块33发送至第二自由端412至第四接地端411的激励电流在介质中的波长的1/4倍,在第八谐振频点(第八谐振模式h的谐振频率)易激励起较高的辐射效率。通过在第三馈电点C至第一自由端312的路径上设置接地的容性的匹配电路,及在第二自由端412至第四接地端411的路径上设置接地的容性的匹配电路,容性加载皆可使得第八谐振模式h的谐振频率朝向低频偏移,不再遵循原本的需要在第三馈电点C至第一自由端312的长度约为1/4波长处、第二自由端412至第四接地端411的长度约为1/4波长处产生较高效率的谐振,而是可以在第三馈电点C至第一自由端312的长度对应1/8至1/4波长的范围内,及第二自由端412至第四接地端411的长度对应1/8至1/4波长的范围内,能够产生较高效率的谐振,故在原来的第八谐振频点形成谐振的同时还能够使所对应的第三馈电点C至第一自由端312的长度缩短及使得第四辐射体41的长度缩短,例如,减小至第八谐振频点对应的波长的1/8倍等,减小第三辐射体31、第四辐射体41的尺寸,减小天线组件100的堆叠长度。
请参阅图25,第四天线单元40用于支持第九谐振模式i、第十谐振模式j、第十一谐振模式k、和第十二谐振模式p。
第九谐振模式i为第三馈电模块33的激励电流谐振于第三馈电点C至第一自由端312的1/8至1/4波长模式,及谐振于第二自由端412至第四接地端411的1/8至1/4波长模式。第九谐振模式j的第九谐振电流密度分布可参考第八谐振模式h的电流密度分布,请参阅图24C,在此不再赘述。
请参阅图26A,第十谐振模式j的第十谐振电流密度主要分布于第三馈电点C至第四接地端411之间,其中,第三馈电点C至第一自由端312之间的电流方向,及第二自由端412流向第四接地端411之间的电流方向相反。第十谐振电流的一部分从第三馈电点C流向第一自由端312,第十谐振电流的另一部分从第四接地端411流向第二自由端412,或者,第十谐振电流的一部分从第一自由端312流向第三馈电点C,第十谐振电流的另一部分从第二自由端412流向第四接地端411。可以理解的,上述为第十谐振模式j的主要的电流密度分布,在第三接地端311至第三馈电点C上也具有少量的电流密度分布。
第十谐振模式j为第三馈电模块33的激励电流谐振于第三馈电点C至第一自由端312的1/8至1/4波长模式,及谐振于第二自由端412至第四接地端411的1/8至1/4波长模式。
一般地,通过设计第三馈电点C至第一自由端312的长度约为第三馈电模块33发送至第三馈电点C至第一自由端312的激励电流在介质中的波长的1/4倍,及通过设计第二自由端412至第四接地端411的长度约为第三馈电模块33发送至第二自由端412至第四接地端411的激励电流在介质中的波长的1/4倍,在第十谐振频点(第十谐振模式j的谐振频率)易激励起较高的辐射效率。通过在第三馈电点C至第一自由端312的路径上设置接地的容性的匹配电路,及在第二自由端412至第四接地端411的路径上设置接地的容性的匹配电路,容性加载皆可使得第十谐振模式j的谐振频率朝向低频偏移,不再遵循原本的需要在第三馈电点C至第一自由端312的长度约为1/4波长处、第二自由端412至第四接地端411的长度约为1/4波长处产生较高效率的谐振,而是可以在第三馈电点C至第一自由端312的长度对应1/8至1/4波长的范围内,及第二自由端412至第四接地端411的长度对应1/8至1/4波长的范围内,能够产生较高效率的谐振,故在原来的第十谐振频点形成谐振的同时还能够使所对应的第三馈电点C至第一自由端312的长度缩短及使得第四辐射体41的长度缩短,例如,减小至第十谐振频点对应的波长的1/8倍等,减小第三辐射体31、第四辐射体41的尺寸,减小天线组件100的堆叠长度。
请参阅图26B,第十一谐振模式k的第十一谐振电流密度主要分布于第四馈电点D至第二自由端412之间,从第四馈电点D流向第二自由端412,或者从第二自由端412流向第四馈电点D。可以理解的,上述为第十一谐振模式k的主要的电流密度分布,在第四接地端411与第四馈电点D之间、第三辐射体31上也具有少量的电流密度分布。
一些示例性实施例中,第十一谐振模式k为第四馈电模块43的激励电流(第十一谐振电流)谐振于第四馈电点D至第二自由端412的1/8至1/4波长模式。一些示例性实施例中,通过设计第四馈电点D至第二自由端412的长度约为第四馈电模块43发送至第四辐射体41的激励电流在介质中的波长的1/8至1/4倍,以在第四馈电点D至第二自由端412上激励起第十一谐振模式k。
一般地,通过设计第四馈电点D至第二自由端412的长度约为第四馈电模块43发送的激励电流在介质中的波长的1/4倍,此时,在第十一谐振频点处(即第十一谐振模式k的谐振频率)易激励起较高的辐射效率。通过在第十一谐振电流的路径上设置接地的容性的匹配电路,以实现容性耦合馈入第四辐射体41上,容性加载皆可使得第十一谐振模式k的谐振频率朝向低频偏移,不再遵循原本的需要在第四馈电点D至第二自由端412的长度约为1/4波长处产生较高效率的谐振,而是可以在第四馈电点D至第二自由端412的长度对应1/8至1/4波长的范围内,能够产生较高效率的谐振,故在原来的第十一谐振频点f11形成谐振的同时还能够使所对应的第四馈电点D至第四接地端412的长度缩短,例如,减小至第十一谐振频点f11对应的波长的1/8倍等,减小第四馈电点D至第二自由端412的尺寸,减小天线组件100的堆叠长度。
请参阅图26C,第十二谐振模式l的第十二谐振电流密度主要分布于第三接地端311至第一自由端312之间,从第三接地端311流向第一自由端312,或者从第一自由端312流向第三接地端311。可以理解的,上述为第十二谐振模式l的主要的电流密度分布,在第二自由端412与第四接地端411之间也具有少量的电流密度分布。
第十二谐振模式l为第四馈电模块43的激励电流谐振于第三辐射体31的3/4波长模式。一些示例性实施例中,通过设计第三辐射体31的长度约为第四馈电模块43发送至第三辐射体31的激励电流在介质中的波长的3/4倍,以在第三辐射体31上激励起第十二谐振模式l。
需要说明的是,以上从波长模式的角度说明第七谐振模式g至第十二谐振模式l是一种比较好理解的解释,说明了各模式主要特征表象,易于区分。但各模式工作时,第三天线单元30、第四天线单元40并不是独立的,而是存在相互耦合,电流也会通过耦合流向对方。
第三辐射体31在所述第三馈电模块33的激励下(即所述第三天线单元30)支持的频段包括GPS频段、Wi-Fi 2.4G频段、LTE-4G MHB频段、NR-5G MHB频段、LTE-4G UHB频段、NR-5G UHB频段。举例而言,第七谐振模式g、第八谐振模式h、第九谐振模式i的谐振频率分别为1.5766GHz、2.4667GHz、2.9773GHz。第三天线单元30覆盖(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)。在其他实施方式中,第三天线单元30覆盖(GPS-L1)+(WIFI2.4G)+(LTE/NR-MHB+UHB)+N77/N78。
第四辐射体31在所述第四馈电模块43的激励下(即所述第四天线单元40)支持的频段覆盖N77频段、N78频段、Wi-Fi 5G频段、Wi-Fi 6E频段。举例而言,第九谐振模式i、第十谐振模式j、第十一谐振模式k、第十二谐振模式l的谐振频率分别为2.998GHz、3.6742GHz、5.5096GHz、6.5722GHz。第四天线单元40覆盖N77/N78+Wi-Fi 5G频段、Wi-Fi 6E频。当然,在其他实施方式中,第四天线单元40覆盖Wi-Fi 5G频段、Wi-Fi 6E频。
本实施方式提供的天线组件100在电子设备1000中的分布包括但不限于以下的实施方式,第一辐射体11和第二辐射体12皆设于第一侧边框2103,第一耦合缝隙140位于第一侧边框2103靠中间位置。第三辐射体31的一部分设于第一侧边框2103,另一部分设于顶边框2101,第四辐射体41设于顶边框2101,第二耦合缝隙150设于顶边框2101。
当用户横屏使用电子设备1000时,第一耦合缝隙140避开了手部所握持的位置,以使第一天线单元10和第二天线单元20的辐射效率较高,进而收发低频+(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+Wi-Fi 5G/Wi-Fi 6E频段,提高横屏使用体验。当用户竖屏使用电子设备1000时,第二耦合缝隙150避开了手部所握持的位置,以使第三天线单元30和第四天线单元40的辐射效率较高,进而收发(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+Wi-Fi 5G/Wi-Fi 6E频段,提高竖屏使用体验。由上可知,本实施方式提供的天线组件100满足在横屏和竖屏下皆能够高效地覆盖(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+Wi-Fi 5G/Wi-Fi 6E频段。
可选的,所述电子设备1000还包括至少一个按键部(未图示);其中至少一个所述按键部采用如下至少一个设置方式,包括:
至少一个所述按键部位于第一接地端111与第一馈电点A之间;
至少一个所述按键部位于第二接地端211与第三接地端311之间。
请参阅图27,参考地GND为中板410的合金件,在将天线组件100设于电子设备1000中时,天线组件100上的各个器件之间具有一定的间隔,可在该间隔内设置电子设备1000内的其他器件,例如,第一参考地GND1与第一馈电模块13之间的间隔可设置按键电路板430,第一辐射体11可设置按键部。按键部包括但不限于电源键、音量键、静音键等等。此外,在第四匹配模块M4与第五匹配模块M5之间的间隔也可设置按键电路板430,第二接地端211与第三接地端311之间的中框上可设置按键部。通过在天线组件100的器件之间的间隔内设置电子设备1000内的其他器件,以增加天线组件100设于电子设备1000内时的结构紧凑性,利于整机堆叠。
可以理解的,上述的第一匹配模块M1至第五匹配模块M6内皆可以设置图9A至图9H中任意一实施方式的器件,也可包括开关电路、可变电容等可调器件。
请参阅图28,图28是第一天线单元10至第四天线单元40的S参数曲线图。从图27可以看出,天线组件100能够很好的覆盖低频+(GPS-L1)+(WIFI 2.4G)+(LTE/NR-MHB+UHB)+N77/N78+Wi-Fi 5G/Wi-Fi 6E频段,且具有良好的阻抗带宽。
以下结合附图对于以上任意一种实施方式提供的天线组件100的功能进行介绍,例如,天线组件100在实现天线信号收发的同时还能够进行待测主体的接近检测。待测主体包括但不限于人体头部、人体手部等。可以理解的,辐射体为导电材质,辐射体在作为天线信号收发端口的同时还能够作为接近信号的感应电极。本申请提供的天线组件100集成了收发电磁波信号及接近感应的双重功能且体积小。当天线组件100应用于电子设备1000时,确保电子设备1000具有通信功能及接近检测功能的同时还能够使得电子设备1000的整体体积小。
一些示例性实施例中,请参阅图29A,天线组件100还包括隔直组件70、过滤组件50、检测组件80及控制器(未图示)。
以下结合第三种实施方式提供的天线组件100,对隔直组件70、过滤组件50的连接方式进行举例说明。
请参阅图29A,第一种接近检测的实施方式中,共体辐射体32作为用于感应待测主体靠近时的感应电极。隔直组件70电连接于所述第二馈电点B与所述第二匹配模块M2之间、所述第二接地端111与所述第二参考地GND2之间(当第二接地端211与第二参考地GND2之间设有第四匹配模块M4时,隔直组件70设于第二接地端211与第四匹配模块M4之间)、所述第三接地端311与所述第五参考地GND5之间(当第三接地端311与第五参考地GND5之间设有第五匹配模块M5时,隔直组件70设于第三接地端311与第五匹配模块M5之间)、及所述第三馈电点C与所述第三匹配模块M3之间。隔直组件70用于阻隔第二匹配模块M2、第二参考地GND2、第五参考地GND5、第三匹配模块M3所产生的直流电流,以支持人体检测功能,提高人体靠近天线组件100时的检测准确性。
所述过滤组件50的一端电连接所述隔直组件70靠近于所述共体辐射体32的一侧或电连接所述共体辐射体32的任意位置。所述过滤组件50用于阻隔所述共体辐射体32收发的射频信号及通过所述共体辐射体32在待测主体靠近时产生的感应信号,以使第二辐射体21收发的射频信号不会影响到检测组件80检测感应信号的检测准确性。
一些示例性实施例中,请参阅图29A,隔直组件70包括第一子隔离器71、第二子隔离器72、第三子隔离器73及第四子隔离器74。第一子隔离器71电连接于第二接地端211与第二参考地GND2(具体为第二接地端211与第四匹配模块M4)之间。第二子隔离器72电连接于第二馈电点B与第二匹配模块M2之间。第三子隔离器73电连接于第三接地端311与第五参考地GND5(具体为第三接地端311与第五匹配模块M5)之间。第四子隔离器74电连接于第三馈电点C与第三匹配模块M3之间。
通过设置隔直组件70,以使待测主体靠近共体辐射体32时所产生的感应信号不会影响到天线组件100对于天线信号的收发。一些示例性实施例中,第一子隔离器71、第二子隔离器72、第三子隔离器73及第四子隔离器74皆为容性器件。举例而言,第一子隔离器71、第二子隔离器72、第三子隔离器73及第四子隔离器74皆为电容器,第一子隔离器71、第二子隔离器72、第三子隔离器73及第四子隔离器74对天线组件100所支持的射频信号呈小阻抗到地,例如,第一子隔离器71、第 二子隔离器72、第三子隔离器73及第四子隔离器74的值包括但不限于为47pF或22PF等。第一子隔离器71对第四匹配电路M4的直流电流具有隔离作用,第二子隔离器72对第二匹配电路M2的直流电流具有隔离作用,第三子隔离器73对第五匹配模块M5具有隔离作用,第四子隔离器74对第三匹配模块M3具有隔离作用,以支持人体检测功能,提高人体靠近天线组件100时的检测准确性。换言之,隔直组件70使得共体辐射体32相对于直流电流呈“悬浮”状态。
一些示例性实施例中,过滤组件50电连接于第一子隔离器71与第二接地端112之间;或,电连接于第二子隔离器72与第二馈电点B之间;或,电连接于第三子隔离器73与第三接地端311之间;或,电连接于第四子隔离器74与第三馈电点C之间;或,电连接于共体辐射体32的任意位置。过滤组件50包括电感器件或为电感器件。例如,过滤组件50为电感。过滤组件50对于天线组件100所支持的射频信号呈大阻抗,电感值例如82nH。
以上隔直组件70和过滤组件50实现了感应信号及射频信号可同时作用且互不干扰。
检测组件80电连接过滤组件50的另一端,检测组件80用于检测辐射体产生的感应信号的大小。可选的,检测组件80为用于检测电流信号、电压信号或电感信号的器件,例如微型检流计、微型电流互感器、电流比较器、电压比较器等等。
人体皮肤表面靠近共体辐射体32时,人体皮肤表面与共体辐射体32可分别等效为电容器的两个电极板。当人体的头部靠近时,共体辐射体32可感应人体的头部带来的电荷量的变化。过滤组件50电连接共体辐射体32。上述的电荷量变化形成感应信号,该感应信号经过滤组件50传输至检测组件80。根据电容计算公式,C=εS/4πkd,其中,d是人体(头部或者手部)与辐射体之间距离,所以当电容增加,即检测组件80所检测到的感应信号的强度增加时,说明人体在靠近;当电容减小,即检测组件80所检测到的感应信号的强度减小时,说明人体在远离。检测组件80通过检测上述的感应信号的变化,以判断人体的头部是否靠近于天线组件100的共体辐射体32,从而智能降低人体头部对电磁波的比吸收率。
可选的,隔直组件70的至少部分还能够作为匹配模块的一部分,例如第二子隔离器72为电容器,第二子隔离器72用于阻隔感应信号,及导通射频信号的同时,还能够作为第二匹配模块M2的一部分,用以调谐信号源21与第二馈电点B之间的阻抗匹配,以减小馈入共体辐射体32的射频信号的损耗,提高共体辐射体32收发的信号转换效率;还用于调节共体辐射体32上产生的谐振模式的频偏等等,实现了器件的一物多用,减少器件数量和占据的空间,提高器件的集成度。
当第二匹配模块M2电连接第二馈电点B的部分为电容器,则无需再设置第二子隔离器72。同样地,当第四匹配模块M4电连接于第二接地端211的部分为电容器,则无需再设置第一子隔离器71。当第五匹配模块M5电连接于第三接地端311的部分为电容器,则无需再设置第三子隔离器73。当第三匹配模块M3电连接于第二馈电点B的部分为电容器,则无需再设置第四子隔离器74。
本申请提供的天线组件100及电子设备1000,通过复用天线组件100上的共体辐射体32为检测人体等待测主体靠近的感应电极,并通过隔直组件70、过滤组件50对感应信号和射频信号进行分隔,实现了天线组件100的通信性能和感应待测主体的双重作用,增加天线组件100的功能,提高器件利用率,减小电子设备1000的整体体积。
本实施方式一方面可以增加接近感应面积,另一方面,由于共体辐射体32设于第一侧边框2103、顶边框2101上及第一侧边框2103及顶边框2101上的拐角部2106,将共体辐射体32作为感应电极,可检测到电子设备1000的前、后、第一侧边框2103的朝向侧、顶边框2101的朝向侧的待测主体的接近感应,增加SAR检测范围。
第二种接近检测的实施方式中,请参阅图29B,第二辐射体21作为检测待测主体靠近的感应电极。
隔直组件70电连接于第一辐射体11的第一接地端111与第一参考地GND1之间、所述第一匹配模块M1与所述第一馈电点A之间。隔直组件70的具体结构和隔离感应信号、导通射频信号的原理可参考第一种隔直组件70、过滤组件50的连接方式,在此不再赘述。过滤组件50的一端电连接隔直组件70靠近第一辐射体11的一侧(例如隔直组件70与第一接地端111之间)或电连接第一辐射体11的任意位置。所述隔直组件70用于阻隔第一参考地GND1、所述第一匹配模块M1所产生的直流电流,所述过滤组件50用于阻隔所述第一辐射体11收发的射频信号及通过所述第一辐射体 11在待测主体靠近时产生的感应信号;本实施方式中,第一辐射体11为感应电极,第一辐射体11相对于直流电流呈悬浮状态。
第三种接近检测的实施方式中,请参阅图29C,第四辐射体41作为检测待测主体靠近的感应电极。隔直组件70电连接于所述第四接地端411与所述第六参考地GND6之间、所述第六匹配模块M6与所述第四馈电点D之间,所述过滤组件50的一端电连接所述隔直组件70靠近所述第三辐射体31的一侧或电连接所述第三辐射体31;所述隔直组件70用于阻隔第六参考地GND6、第六匹配模块M6所产生的直流电流,所述过滤组件50用于阻隔所述第三辐射体31收发的射频信号及通过所述第四辐射体41在待测主体靠近时产生的感应信号。
可以理解的,第一种接近检测的实施方式、第二种接近检测的实施方式、第三种接近检测的实施方式可以选择其中一者进行实施,可以选择其中两者进行实施,可以选择其中的三者进行实施。
以下对于第一种接近检测和第三种接近检测同时实施的实施方式进行说明。
请参阅图29D,在第一种接近检测的基础上,隔直组件70还包括第五子隔直器75及第六子隔直器76。其中,第五子隔直器75电连接于第四馈电点D与第六匹配模块M6之间,第六子隔直器76电连接于第四接地端411与第六参考地GND6之间,以使共体辐射体32、第四辐射体41皆能够作为感应待测主体接近的感应电极。
请参阅图29D,过滤组件50包括第一子过滤器51及第二子过滤器52。其中,第一子过滤器51电连接于第一子隔离器71与第二馈电点B之间、或第二子隔离器72与第二接地端211之间、第三子隔离器73与第三接地端311之间、或第四子隔离器74与第三馈电点C之间、或共体辐射体32的任意位置。第二子过滤器52电连接第五子隔直器75与第四馈电点D之间、第六子隔直器76与第四接地端411之间、或第四辐射体41的任意位置。
一些示例性实施例中,第一子隔离器71、第二子隔离器72及第三子隔离器73皆为隔离电容,第一子过滤器51及第二子过滤器52皆为隔离电感。
请参阅图29D,检测组件80电连接第一子过滤器51及第二子过滤器52。一些示例性实施例中,检测组件80的两个通道分别电连接第一子过滤器51及第二子过滤器52。本实施方式中,共体辐射体32、第四辐射体41皆能够作为感应待测主体靠近的检测电极。
在其他实施方式中,检测组件80包括第一子检测器及第二子检测器。第一子检测器电连接第一子过滤器51的另一端,第二子检测器电连接第二子过滤器52的另一端。换言之,通过两个相互独立的子检测器分别检测共体辐射体32、第四辐射体41所检测到的感应信号,此实施方式可使用于共体辐射体32、第四辐射体41分别位于电子设备1000的不同侧时,通过一个天线组件100的辐射体即可检测电子设备1000来自不同侧的人体接近,进而实现在占据较小的空间的情况下提高检测范围。
当人体靠近共体辐射体32时,共体辐射体32上的电荷变化,检测组件80通过第一子过滤器51直接可以感应到感应信号;当人体靠近第四辐射体41时,第四辐射体41上的电荷变化,检测组件80通过第二子过滤器52直接可以感应到感应信号。检测组件80通过检测感应信号以检测人体接近,此情况下能够将所有辐射体皆作为感应电极,以使感应面积较大,可提高辐射体的利用率,只需一个检测组件80,可节省天线组件100的器件数量及节省空间。
控制器电连接检测组件80。检测组件80接收感应信号并转化成电信号并传输至控制器。控制器用于根据感应信号的大小检测待测主体与辐射体之间的距离,进而判断人体是否接近辐射体,并在待测主体与辐射体之间的距离小于或等于预设距离值时调节第一馈电模块13(或者调节第三馈电模块33、调节第四馈电模块43)的功率。一些示例性实施例中,控制器根据不同的场景可以对天线组件100的功率进行调节,以实现智能减小人体对于电磁波信号的比吸收率。
举例而言,当人体头部靠近天线组件100的辐射体时,控制器可降低天线组件100的功率,以降低天线组件100所辐射电磁波的比吸收率。当人体手部在辐射方向上遮挡天线组件100的辐射体时,在电子设备1000内还设有其他备用天线组件100(即能够覆盖相同频段的天线组件100)的情况下,控制器可关闭被遮挡的天线组件100,及开启其他位置未被遮挡的天线组件100,如此,在人体手部遮挡天线组件100时,通过智能切换天线组件100,可确保电子设备1000的通信质量;在电子设备1000内未设置其他备用的天线组件100的情况下,控制器可控制天线组件100的功率增加, 以补偿手部遮挡辐射体后导致的效率降低的问题。
当然,控制器还根据检测组件80的检测结果控制电子设备1000上的其他应用程序,例如,控制器根据检测组件80的检测结果检测到人体靠近及电子设备1000处于通话状态,来控制显示屏300的屏幕亮度关闭,以节省电子设备1000在通话时的电能;控制器还根据检测组件80的检测结果检测到人体远离及电子设备1000处于通话状态,来控制显示屏300的屏幕亮度点亮。
当然,在其他实施方式中,第一种接近检测的实施方式、第二种接近检测的实施方式、第三种接近检测的实施方式可以一起实施。
可选的,当辐射体用于人体接近检测,且辐射体与边框210集成为一体时,可在辐射体表面设置一层绝缘膜,由于人体皮肤表面具有电荷,人体皮肤表面与辐射体之间形成电容结构,进而通过辐射体感应人体皮肤表面接近带来的信号变化。
可选的,电子设备1000中可设置多个天线组件100,这些天线组件100为上述所述的任意一项实施方式所列举的天线组件100,多个天线组件100能够在不同的遮挡场景下实现智能切换工作,以实现在任意手持遮挡等情况下皆能够具有较高的天线收发效率,并且,多个天线组件100的辐射体集成检测功能后,可以检测不同的用户场景(例如单手握持、双手握持、随身携带状态、通话状态等等),可以实现比吸收率(SAR)标准中6个面的检测。
可选的,请参阅图30,所述第二接地端121与所述第三接地端311之间为连接段。连接段上设有至少一个连接点(例如图31中的第一连接点511和图52中的第二连接点512)。天线组件100还包括至少一个第七匹配模块M7,第七匹配模块M7的一端电连接所述连接点(第一连接点511),第七匹配模块M7的另一端电连接至第七参考地GND7。第七匹配模块M7能够有效地滤除第一天线单元10和第二天线单元20的射频信号,以避免该射频信号干扰至第三天线单元30和第四天线单元40。可选的,第七匹配模块M7包括对于第一天线单元10、第二天线单元20所支持的频段呈带通状态或小阻抗状态的接地电路,以使第一天线单元10、第二天线单元20与第三天线单元30、第四天线单元40之间的隔离度更好。此外,第七匹配模块M7还能够有效地滤除第三天线单元30和第四天线单元40的射频信号,以避免该射频信号干扰至第一天线单元10和第二天线单元20。可选的,第七匹配模块M7包括对于第三天线单元30、第四天线单元40所支持的频段呈带通状态或小阻抗状态的接地电路,以使第一天线单元10、第二天线单元20与第三天线单元30、第四天线单元40之间的隔离度更好。
此外,第七匹配模块M7可以滤除天线组件100中一些效率较低的工作模式,例如,电流从第二参考地GND2流向第二接地端211、第三接地端311、回流至第五参考地GND5的工作模式,以减小这些低效率的工作模式对于天线组件100的谐振模式的影响。
可选的,连接点(第一连接点511)的位置可靠近于第二接地端121或第三接地端311,以使第二接地端221和第三接地端311之间还能够设置按键。第七匹配模块M7与连接点相对。当然,在第二接地端221与第三接地端311之间无需设置按键时,连接点可以设于第二接地端221与第三接地端311之间的任意位置,包括但不限于第二接地端121与第三接地端311的中间位置。
可选的,请参阅图31,连接点的数量为多个,例如两个连接点(第一连接点511和第二连接512)分别靠近第二接地端121和第三接地端311。电连接所述连接点(第一连接点511和第二连接512)的匹配模块的数量为两个,分别记为第七匹配模块M7和第八匹配模块M8。第七匹配模块M7和第八匹配模块M8皆能够增加第一天线单元10、第二天线单元20与第三天线单元30、第四天线单元40之间的隔离度,并滤除天线组件100中一些效率较低的工作模式,提高天线组件100各个谐振模式的收发效率。本申请提供的天线组件100可实现四天线共口径设计,在增加收发频段的带宽和频段数量的同时,还能够减小天线组件100的堆叠空间,此外,在天线组件100的辐射体集成人体接近检测功能,能够智能检测人体靠近,进而减小比吸收率,或检测出电子设备1000的被握持状态、所处应用状态等,此外,通过对天线组件100在电子设备1000上的合理布局,以使电子设备1000在横屏使用状态下皆具有较高的信号收发效率。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (21)

  1. 一种天线组件,包括第一辐射体、第二辐射体、第一匹配模块、第一馈电模块、第二匹配模块及第二馈电模块,所述第一辐射体具有第一接地端和第一耦合端,以及位于所述第一接地端和所述第一耦合端之间的第一馈电点,所述第二辐射体具有第二耦合端和第二接地端,以及位于所述第二耦合端和所述第二接地端之间的第二馈电点,所述第二耦合端与所述第一耦合端之间存在第一耦合缝隙,所述第一匹配模块电连接于所述第一馈电点与所述第一馈电模块之间,所述第一接地端电连接至第一参考地;所述第二匹配模块电连接至所述第二馈电点与所述第二馈电模块之间,所述第二接地端电连接至第二参考地;
    所述第一辐射体在第一馈电模块激励下支持第一谐振模式,其中所述第一谐振模式支持低频频段。
  2. 如权利要求1所述的天线组件,其中:
    所述第一谐振模式为所述第一馈电模块的激励电流谐振于所述第一接地端至所述第一耦合端的1/8至1/4波长模式。
  3. 如权利要求1所述的天线组件,其中:
    通过所述第二馈电模块的激励电流谐振于所述第一辐射体或第二辐射体,所述天线组件支持多个谐振模式。
  4. 如权利要求3所述的天线组件,其中:
    所述天线组件在所述第二馈电模块激励下支持第二谐振模式、第三谐振模式和第四谐振模式中的至少一个,其中:
    所述第二谐振模式为所述第二馈电模块的激励电流谐振于所述第二接地端至所述第二耦合端的1/8至1/4波长模式;
    所述第三谐振模式为所述第二馈电模块的激励电流谐振于所述第一馈电点至所述第一耦合端的1/4波长模式;
    所述第四谐振模式为所述第二馈电模块的激励电流谐振于所述第二馈电点至所述第二耦合端的的1/4波长模式。
  5. 如权利要求4所述的天线组件,其中:
    所述第一匹配模块还包括至少一个电连接至第三参考地的支路,用于在天线组件工作于第三谐振模式时选通。
  6. 如权利要求4所述的天线组件,其中,所述第二谐振模式的谐振频率、所述第三谐振模式的谐振频率及所述第四谐振模式的谐振频率依次增加;其中:
    所述第二谐振模式所支持的频段包括GPS频段、LTE-4G MHB频段、NR-5GMHB频段中的至少一者;
    所述第三谐振模式所支持的频段包括Wi-Fi 2.4G频段、LTE-4G MHB频段、NR-5G MHB频段中的至少一者;
    所述第四谐振模式所支持的频段包括LTE-4G UHB频段、NR-5G UHB频段中的至少一者。
  7. 如权利要求4所述的天线组件,其中:
    所述第一辐射体具有位于所述第二馈电点和第二耦合端之间的接地点;所述天线组件还包括滤波电路,其中所述滤波电路的一端连接至所述接地点,所述滤波电路的另一端连接至地;
    所述天线组件在所述第二馈电模块激励下支持第五谐振模式,其中所述第五谐振模式为所述第二馈电模块的激励电流谐振于所述接地点至所述第一耦合端的1/4波长模式;
    所述滤波电路用于导通所述第五谐振模式所支持的频段以及阻断所述第五谐振模式所支持的频段之外的其他频段。
  8. 如权利要求7所述的天线组件,其中,所述滤波电路包括第一滤波支路和第二滤波支路中至少一个,其中:
    所述第一滤波支路包括串联的第一电感与第一电容;
    所述第二滤波支路包括第二电容、第二电感、及第三电感,所述第二电容与所述第二电感串联,所述第三电感的一端连接至所述第二电容未连接第二电感的一端,所述第三电感的另一端连接至所述第二电感未连接所述第二电容的一端。
  9. 如权利要求8所述的天线组件,其中,所述第四谐振模式所支持的谐振频率大于所述第三谐振模式所支持的谐振频率。
  10. 如权利要求1所述的天线组件,其中,所述第一匹配模块包括如下至少一个支路:
    至少一个并联至地的第一支路;
    至少一个串联于第一馈电点与第一馈电模块之间的第二支路;
    其中,至少一个所述第一支路包括第一子支路,至少一个所述第二支路包括第二子支路及第三子支路;
    所述第一子支路的一端电连接于所述第一馈电模块,所述第一子支路的另一端电连接至第三参考地,所述第一子支路包括电容、电感中的至少一者;
    所述第二子支路的一端电连接所述第一馈电点,所述第二子支路的另一端电连接所述第三子支路的一端,所述第二子支路包括并联的电感和电容;
    所述第三子支路的另一端电连接所述第一馈电模块,所述第三子支路包括电容、或电感、或并联的电感及电容。
  11. 如权利要求1所述的天线组件,其中,所述第二匹配模块包括包括如下至少一个支路,其中:
    至少一个并联至地的第三支路;
    至少一个串联于所述第二馈电点与所述第二馈电模块之间的第四支路;
    所述第三支路、所述第四支路皆包括电容、电感中的至少一者,其中,至少一个所述第三支路包括第四子支路、第五子支路和第六子支路中的至少一个,至少一个所述第四支路包括第七子支路和第八子支路;
    所述第四子支路的一端电连接第二馈电点,所述第四子支路另一端电连接至第三参考地,所述第四子支路包括单独的电容支路、或电容及电感的串联支路;
    所述第五子支路的一端电连接第二馈电点,所述第五子支路的另一端电连接至第四参考地,所述第五子支路包括电感、或电感及电容;
    所述第六子支路的另一端电连接至所述第四参考地,所述第六子支路包括电容、或电容及电感;
    所述第七子支路的一端电连接于第二馈电点,所述第七子支路的另一端电连接第六子支路远离第四参考地的一端,所述第八子支路包括电容、或电容及电感;
    所述第八子支路的一端电连接第七子支路的另一端,所述第八子支路的另一端电连接第二馈电模块,所述第八子支路包括电感。
  12. 如权利要求1所述的天线组件,其中,所述天线组件还包括第三辐射体、第三馈电模块及第三匹配模块,所述第三辐射体包括第三接地端和第一自由端,以及设于所述第三接地端与所述第一自由端之间的第三馈电点,所述第三接地端与所述第二接地端相间隔设置或通过导电体连接,所述第三接地端电连接至第五参考地;所述第三馈电模块电连接所述第三馈电点,所述第三匹配模块电连接于所述第三馈电点与所述第三馈电模块之间。
  13. 如权利要求12所述的天线组件,其中,所述天线组件还包括第四匹配模块和第五匹配模块中至少一个;其中:
    所述第四匹配模块的一端电连接于所述第二接地端,所述第四匹配模块的另一端电连接至所述第二参考地;
    所述第五匹配模块的一端电连接于所述第三接地端,所述第五匹配模块的另一端电连接至所述第五参考地。
  14. 如权利要求12所述的天线组件,其中,所述天线组件还包括第四辐射体、第四馈电模块及第六匹配模块,所述第四辐射体包括第四接地端和第二自由端,以及设于所述第四接地端与所述第二自 由端之间的第四馈电点,所述第二自由端与所述第一自由端之间为第二耦合缝隙,所述第四接地端电连接至第六参考地;所述第四馈电模块电连接所述第四馈电点,所述第六匹配模块电连接于所述第四馈电点与所述第四馈电模块之间。
  15. 如权利要求14所述的天线组件,其中:
    所述天线组件在第三馈电模块激励下支持第六谐振模式、第七谐振模式及第八谐振模式中至少一个,其中:
    所述第六谐振模式为所述第三馈电模块的激励电流谐振于所述第三辐射体上的1/8至1/4波长模式;
    所述第七谐振模式为所述第三馈电模块的激励电流谐振于所述第三馈电点至所述第一自由端的1/8至1/4波长模式;
    所述第八谐振模式为所述第三馈电模块的激励电流谐振于所述第三馈电点至所述第一自由端的1/8至1/4波长模式,及谐振于所述第二自由端至所述第四接地端的1/8至1/4波长模式;
    所述天线组件在第四馈电模块激励下支持第九谐振模式、第十谐振模式、第十一谐振模式及第十二谐振模式中至少一个,其中:
    所述第九谐振模式为所述第三馈电模块的激励电流谐振于所述第三馈电点至所述第一自由端的1/8至1/4波长模式,及谐振于所述第一自由端至所述第四接地端的1/8至1/4波长模式;
    所述第十谐振模式为所述第四馈电模块的激励电流谐振于所述第一自由端至所述第四接地端的1/8至1/4波长模式;
    所述第十一谐振模式为所述第四馈电模块的激励电流谐振于所述第四馈电点至所述第二自由端的1/8至1/4波长模式;
    所述第十二谐振模式为所述第四馈电模块的激励电流谐振于所述第三接地端至所述第一自由端的3/4波长模式。
  16. 如权利要求15所述的天线组件,其特征在于,所述第三辐射体在所述第三馈电模块的激励下支持的频段包括GPS频段、Wi-Fi 2.4G频段、LTE-4G MHB频段、NR-5G MHB频段、LTE-4G UHB频段、NR-5G UHB频段;所述第四辐射体在所述第四馈电模块的激励下支持的频段覆盖N77频段、N78频段、Wi-Fi 5G频段、Wi-Fi 6E频段。
  17. 如权利要求14所述的天线组件,其特征在于,所述第二辐射体连接所述第三辐射体,形成共体辐射体;所述天线组件还包括隔直组件、过滤组件及检测组件;
    所述隔直组件、过滤组件及检测组件采用以下任一种或多种方式设置:
    所述隔直组件连接至所述第二馈电点与所述第二匹配模块之间、所述第二接地端与所述第二参考地之间、所述第三接地端与所述第五参考地之间、及所述第三馈电点与所述第三匹配模块之间;所述过滤组件的一端电连接所述隔直组件靠近于所述共体辐射体的一侧或电连接所述共体辐射体,所述隔直组件用于隔离所述第二匹配模块、所述第二参考地、所述第五参考地及所述第三匹配模块所产生的直流电流,所述过滤组件用于阻隔所述共体辐射体收发的射频信号及通过所述共体辐射体在待测主体靠近时产生的感应信号;所述隔直组件电连接于所述第一接地端与所述第一参考地之间、所述第一匹配模块与所述第一馈电点之间,所述过滤组件的一端电连接所述隔直组件靠近所述第一辐射体的一侧或电连接所述第一辐射体;所述隔直组件用于隔离所述第一参考地、所述第一匹配模块所产生的直流电流,所述过滤组件用于阻隔所述第一辐射体收发的射频信号及通过所述第一辐射体在待测主体靠近时产生的感应信号;
    所述隔直组件电连接于所述第四接地端与所述第六参考地之间、所述第六匹配模块与所述第四馈电点之间,所述过滤组件的一端电连接所述隔直组件靠近所述第三辐射体的一侧或电连接所述第三辐射体;所述隔直组件用于隔离所述第六参考地、所述第六匹配模块所产生的直流电流,所述过滤组件用于阻隔所述第三辐射体收发的射频信号及通过所述第三辐射体在待测主体靠近时产生的感应信号;
    其中,所述检测组件电连接于所述过滤组件的另一端,所述检测组件用于检测所述感应信号的大小。
  18. 如权利要求14所述的天线组件,其中,所述第二接地端与所述第三接地端之间为连接段,所述天线组件还包括至少一个第七匹配模块,所述第七匹配模块的一端电连接所述连接段,所述第七匹配模块的另一端接地。
  19. 一种电子设备,所述电子设备包括壳体及如权利要求1至18任意一项至少一个所述的天线组件,所述天线组件的辐射体集成于所述壳体、或设于所述壳体表面、或设于所述壳体所包围的空间内。
  20. 如权利要求19所述的电子设备,其中,所述壳体包括相对设置的顶边框及底边框,以及连接在所述顶边框和所述底边框之间的第一侧边框、第二侧边框,所述天线组件设于所述顶边框、所述第一侧边框、所述第二侧边框及所述底边框中的至少一者。
  21. 如权利要求20所述的电子设备,其中,所述天线组件的第一辐射体、第二辐射体设于所述第一侧边框,所述天线组件的第三辐射体的一部分设于所述第一侧边框,所述天线组件的第三辐射体的另一部分设于所述顶边框,所述天线组件的第四辐射体设于所述顶边框,所述第一辐射体与所述第二辐射体之间的第一耦合缝隙位于所述第一侧边框,所述第二耦合缝隙位于所述顶边框;
    所述电子设备还包括至少一个按键部,其中至少一个所述按键部采用如下至少一种方式设置:
    至少一个所述按键部位于第一接地端与第一馈电点之间;
    至少一个所述按键部位于第二接地端与所述第三辐射体的第三接地端之间。
PCT/CN2022/140480 2022-01-30 2022-12-20 天线组件及电子设备 WO2023142785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210113870.4A CN114552181A (zh) 2022-01-30 2022-01-30 天线组件及电子设备
CN202210113870.4 2022-01-30

Publications (1)

Publication Number Publication Date
WO2023142785A1 true WO2023142785A1 (zh) 2023-08-03

Family

ID=81672737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140480 WO2023142785A1 (zh) 2022-01-30 2022-12-20 天线组件及电子设备

Country Status (2)

Country Link
CN (1) CN114552181A (zh)
WO (1) WO2023142785A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552181A (zh) * 2022-01-30 2022-05-27 Oppo广东移动通信有限公司 天线组件及电子设备
CN117335143A (zh) * 2022-06-23 2024-01-02 华为技术有限公司 一种电子设备
WO2024039395A1 (en) * 2022-08-16 2024-02-22 Google Llc Wireless network device operable in the 6 ghz band
CN118399075A (zh) * 2022-08-23 2024-07-26 华为技术有限公司 一种天线系统及电子设备
CN117673753A (zh) * 2022-08-29 2024-03-08 Oppo广东移动通信有限公司 天线组件及电子设备
CN115313037A (zh) * 2022-08-31 2022-11-08 Oppo广东移动通信有限公司 一种天线组件及电子设备
CN117913510A (zh) * 2022-10-10 2024-04-19 Oppo广东移动通信有限公司 天线组件、中框组件以及电子设备
CN117913507A (zh) * 2022-10-10 2024-04-19 Oppo广东移动通信有限公司 天线组件、中框组件以及电子设备
CN118040289A (zh) * 2022-11-04 2024-05-14 荣耀终端有限公司 一种终端天线和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180261907A1 (en) * 2015-11-27 2018-09-13 Lg Electronics Inc. Mobile terminal
CN112751204A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件及电子设备
CN112928456A (zh) * 2021-03-30 2021-06-08 Oppo广东移动通信有限公司 天线组件及电子设备
CN113013594A (zh) * 2021-02-26 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN113991288A (zh) * 2021-10-20 2022-01-28 Oppo广东移动通信有限公司 天线组件、中框组件以及电子装置
CN114552181A (zh) * 2022-01-30 2022-05-27 Oppo广东移动通信有限公司 天线组件及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998973B (zh) * 2017-10-09 2022-03-08 华为技术有限公司 天线装置及移动终端
CN109687111B (zh) * 2018-12-29 2021-03-12 维沃移动通信有限公司 一种天线结构及通信终端
CN114824754B (zh) * 2019-10-31 2023-08-22 华为技术有限公司 移动终端
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112928453B (zh) * 2021-01-28 2023-07-28 Oppo广东移动通信有限公司 天线组件及电子设备
CN113013593B (zh) * 2021-02-24 2023-06-27 Oppo广东移动通信有限公司 天线组件和电子设备
CN115411501A (zh) * 2021-05-26 2022-11-29 Oppo广东移动通信有限公司 天线组件及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180261907A1 (en) * 2015-11-27 2018-09-13 Lg Electronics Inc. Mobile terminal
CN112751204A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件及电子设备
CN113013594A (zh) * 2021-02-26 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN112928456A (zh) * 2021-03-30 2021-06-08 Oppo广东移动通信有限公司 天线组件及电子设备
CN113991288A (zh) * 2021-10-20 2022-01-28 Oppo广东移动通信有限公司 天线组件、中框组件以及电子装置
CN114552181A (zh) * 2022-01-30 2022-05-27 Oppo广东移动通信有限公司 天线组件及电子设备

Also Published As

Publication number Publication date
CN114552181A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023142785A1 (zh) 天线组件及电子设备
WO2022160920A1 (zh) 天线组件及电子设备
WO2022142824A1 (zh) 天线系统及电子设备
WO2022142828A1 (zh) 电子设备
WO2022247502A1 (zh) 天线组件及电子设备
WO2022068827A1 (zh) 天线组件和电子设备
CN104701618B (zh) 具有混合倒f缝隙天线的电子设备
CN104064865B (zh) 具有基于隙缝的寄生部件的可调谐天线
CN112768959B (zh) 天线组件和电子设备
WO2022142822A1 (zh) 天线组件和电子设备
WO2020173294A1 (zh) 共体天线及电子设备
CN112751213B (zh) 天线组件及电子设备
WO2022237346A1 (zh) 天线组件及电子设备
US20240113416A1 (en) Antenna module and electronic device
WO2023273604A1 (zh) 天线模组及电子设备
US20240014556A1 (en) Antenna assembly and electronic device
WO2023045630A1 (zh) 天线组件及电子设备
CN115036676B (zh) 天线组件及电子设备
WO2024060819A1 (zh) 天线组件及电子设备
CN117673753A (zh) 天线组件及电子设备
WO2015085492A1 (zh) 一种天线、天线装置、终端以及调整天线工作频段的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE