WO2023273607A1 - 天线模组及电子设备 - Google Patents

天线模组及电子设备 Download PDF

Info

Publication number
WO2023273607A1
WO2023273607A1 PCT/CN2022/091426 CN2022091426W WO2023273607A1 WO 2023273607 A1 WO2023273607 A1 WO 2023273607A1 CN 2022091426 W CN2022091426 W CN 2022091426W WO 2023273607 A1 WO2023273607 A1 WO 2023273607A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
circuit
electrically connected
capacitor
antenna module
Prior art date
Application number
PCT/CN2022/091426
Other languages
English (en)
French (fr)
Inventor
赵嘉城
吴小浦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023273607A1 publication Critical patent/WO2023273607A1/zh
Priority to US18/503,144 priority Critical patent/US20240113416A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the technical field of communications, and in particular to an antenna module and electronic equipment.
  • the present application provides an antenna module and electronic equipment that improve the coverage of electromagnetic wave signals.
  • an antenna module including:
  • the radiator includes a first radiator and a second radiator, the first radiator has a first ground terminal, a first coupling terminal, and is located between the first ground terminal and the first coupling terminal and arranged at intervals.
  • the first feeding point and the second feeding point, the second radiator has a second coupling end, a second grounding end, and a third feeding point between the second coupling end and the second grounding end
  • the first feeding system is electrically connected to the first feeding point, and the first feeding system is used to stimulate the radiator to send and receive the first electromagnetic wave signal, and the first electromagnetic wave signal includes GPS signal, first frequency band at least one of the mobile communication signals;
  • a second feeding system electrically connected to the second feeding point is used to encourage the radiator to send and receive a second electromagnetic wave signal, the second electromagnetic wave signal includes a Wi-Fi signal;
  • the third feeding system is electrically connected to the third feeding point, and the third feeding system is used to stimulate the radiator to send and receive a third electromagnetic wave signal, and the third electromagnetic wave signal includes a mobile communication signal in the second frequency band , wherein the minimum frequency of the second frequency band is greater than the maximum frequency of the first frequency band.
  • an electronic device provided by the present application includes the above-mentioned antenna module.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in the first embodiment of the present application.
  • Fig. 2 is a partially exploded schematic diagram of an electronic device shown in Fig. 1;
  • Fig. 3 is a schematic diagram of an equivalent circuit of the antenna module provided by the first embodiment of the present application.
  • Fig. 4 is a schematic diagram of an equivalent circuit for sending and receiving first electromagnetic wave signals by the first feeding system provided in the first embodiment of the present application;
  • Fig. 5 is an S-parameter curve diagram of sending and receiving a first electromagnetic wave signal by the first feeding system shown in Fig. 4;
  • Fig. 6 is an equivalent circuit diagram in which a first regulating circuit is provided on the first radiator provided in the first embodiment of the present application;
  • Fig. 7 is a schematic structural diagram of the parallel formation of the first adjustment circuit and the first matching circuit provided by the first embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a first matching circuit provided in the first embodiment of the present application.
  • Fig. 9 is a schematic diagram of the structure of the string formed by the first adjustment circuit and the first matching circuit provided by the first embodiment of the present application;
  • Fig. 10 is an S-parameter curve diagram of adjusting the first electromagnetic wave signal by the first adjustment circuit provided by the first embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of the first filtering circuit provided by the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a second filter circuit provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a third filtering circuit provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a fourth filter circuit provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a fifth filter circuit provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a sixth filter circuit provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a seventh filter circuit provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of an eighth filtering circuit provided by an embodiment of the present application.
  • Fig. 19 is a schematic structural diagram of a first bandpass circuit provided in the antenna module shown in Fig. 3;
  • Fig. 20 is an equivalent circuit diagram of the third feeding system sending and receiving the third electromagnetic wave signal in the antenna module shown in Fig. 19;
  • Fig. 21 is an S-parameter curve diagram of the third electromagnetic wave signal sent and received by the third feeding system shown in Fig. 20;
  • FIG. 22 is a schematic structural diagram of a third matching circuit provided by an embodiment of the present application.
  • Fig. 23 is a schematic structural diagram of a second bandpass circuit provided in the antenna module shown in Fig. 3;
  • Fig. 24 is a schematic structural diagram of the first matching circuit provided in the first embodiment of the present application provided with a first bandpass circuit;
  • Fig. 25 is a schematic diagram of an equivalent circuit of the second feeding system shown in Fig. 23 for transmitting and receiving a second electromagnetic wave signal;
  • Fig. 26 is an S-parameter curve diagram of the second electromagnetic wave signal sent and received by the second feeding system shown in Fig. 25;
  • Fig. 27 is a schematic structural diagram of a second matching circuit provided in the first embodiment of the present application.
  • Fig. 28 is an S-parameter curve diagram of the first feeding system receiving and sending the first electromagnetic wave signal, the second feeding system sending and receiving the second electromagnetic wave signal, and the third feeding system sending and receiving the third electromagnetic wave signal provided by the first embodiment of the present application;
  • Fig. 29 is an isolation curve diagram of the first signal source, the second signal source and the third signal source provided by the first embodiment of the present application;
  • FIG. 30 is a schematic diagram of an equivalent circuit of the antenna module provided in the second embodiment of the present application.
  • FIG. 31 is a schematic diagram of an equivalent circuit of the antenna module shown in FIG. 30 provided with a fourth matching circuit
  • Fig. 32 is a schematic diagram of an equivalent circuit of the third feeding system in the antenna module shown in Fig. 31 for sending and receiving a third electromagnetic wave signal;
  • Fig. 33 is an S parameter curve diagram of the third feeding system sending and receiving the third electromagnetic wave signal in the antenna module shown in Fig. 32;
  • Fig. 34 is a schematic circuit diagram of the third matching circuit and the fourth matching circuit of the first kind shown in Fig. 32;
  • Fig. 35 is a schematic circuit diagram of the second type of third matching circuit and fourth matching circuit shown in Fig. 32;
  • Fig. 36 is a schematic circuit diagram of a third matching circuit and a fourth matching circuit of the third type shown in Fig. 32;
  • Fig. 37 is an S-parameter curve diagram of the first power feeding system transmitting and receiving the first electromagnetic wave signal, the second power feeding system transmitting and receiving the second electromagnetic wave signal, and the third power feeding system transmitting and receiving the third electromagnetic wave signal provided by the second embodiment of the present application;
  • Fig. 38 is an isolation curve diagram of the first signal source, the second signal source and the third signal source provided by the second embodiment of the present application;
  • Fig. 39 is an efficiency curve diagram provided by an embodiment of the present application without a third radiator and with a third radiator;
  • Fig. 40 is a schematic diagram of an equivalent circuit of the antenna module provided by the third embodiment of the present application.
  • Fig. 41 is an equivalent circuit diagram of the third feeding system sending and receiving the third electromagnetic wave signal in the antenna module shown in Fig. 40;
  • Fig. 42 is an S parameter curve diagram of the third feeding system sending and receiving the third electromagnetic wave signal in the antenna module shown in Fig. 41;
  • Fig. 43 is a schematic structural diagram of the first type of third bandpass circuit in the antenna module shown in Fig. 40;
  • Fig. 44 is an S-parameter curve diagram of the first power feeding system transmitting and receiving the first electromagnetic wave signal, the second power feeding system transmitting and receiving the second electromagnetic wave signal, and the third power feeding system transmitting and receiving the third electromagnetic wave signal provided by the third embodiment of the present application;
  • Fig. 45 is a schematic structural diagram of the first second matching circuit provided with a third bandpass circuit in the antenna module shown in Fig. 40;
  • Fig. 46 is a schematic structural diagram of a second matching circuit provided with a third bandpass circuit in the antenna module shown in Fig. 40;
  • Fig. 47 is an S-parameter curve diagram of the first power feeding system transmitting and receiving the first electromagnetic wave signal, the second power feeding system transmitting and receiving the second electromagnetic wave signal, and the third power feeding system transmitting and receiving the third electromagnetic wave signal provided by the third embodiment of the present application;
  • Fig. 48 is an isolation curve diagram of the first signal source, the second signal source and the third signal source provided by the third embodiment of the present application;
  • Fig. 49 is an efficiency curve diagram without a third bandpass circuit and with a third bandpass circuit provided by the embodiment of the present application;
  • FIG. 50 is a schematic structural diagram of the first radiator, the second radiator, and the third radiator provided in an electronic device according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an electronic device 1000 provided in an embodiment of the present application.
  • the electronic device 1000 includes an antenna module 100 .
  • the antenna module 100 is used to send and receive electromagnetic wave signals to realize the communication function of the electronic device 1000 .
  • the present application does not specifically limit the position of the antenna module 100 on the electronic device 1000, and FIG. 1 is only an example.
  • the electronic device 1000 also includes a display screen 200 and a casing 300 that are closed and connected to each other.
  • the antenna module 100 can be disposed inside the casing 300 of the electronic device 1000 , or partially integrated with the casing 300 , or partially disposed outside the casing 300 .
  • the radiator of the antenna module 100 in FIG. 1 is integrated with the casing 300 .
  • the antenna module 100 can also be arranged on the retractable component of the electronic device 1000. In other words, at least part of the antenna module 100 can extend out of the electronic device 1000 along with the The retractable component is retracted into the electronic device 1000; or, the overall length of the antenna module 100 is extended as the stretchable component of the electronic device 1000 is extended.
  • the electronic equipment 1000 includes but is not limited to telephones, televisions, tablet computers, mobile phones, cameras, personal computers, notebook computers, vehicle equipment, earphones, watches, wearable equipment, base stations, vehicle radar, customer premise equipment (Customer Premise Equipment, CPE ) and other devices capable of sending and receiving electromagnetic wave signals.
  • the electronic device 1000 is taken as an example of a mobile phone, and for other devices, reference may be made to the specific description in this application.
  • the X-axis direction, the Y-axis direction and the Z-axis direction are perpendicular to each other.
  • the direction indicated by the arrow is the forward direction.
  • the casing 300 includes a frame 310 and a rear cover 320 .
  • a middle plate 330 is formed in the frame 310 by injection molding, and a plurality of installation slots for installing various electronic devices are formed on the middle plate 330 .
  • the middle board 330 together with the frame 310 forms the middle frame 340 of the electronic device 1000 .
  • the middle frame 340 and the rear cover 320 are closed, a receiving space is formed on both sides of the middle frame 340 .
  • One side (such as the rear side) of the frame 310 surrounds the periphery of the rear cover 320
  • the other side (such as the front side) of the frame 310 surrounds the periphery of the display screen 200 .
  • the electronic device 1000 also includes a battery, a camera, a microphone, a receiver, a loudspeaker, a face recognition module, a fingerprint recognition module, etc., which can realize the basic functions of the mobile phone, and will not be described in this embodiment. .
  • the antenna module 100 provided by the present application will be specifically described below with reference to the accompanying drawings.
  • the antenna module 100 provided by the present application includes but is not limited to the following embodiments.
  • the antenna module 100 at least includes a radiator 10 , a first feeding system 20 , a second feeding system 30 and a third feeding system 40 .
  • the radiator 10 at least includes a first radiator 11 and a second radiator 12 .
  • the first radiator 11 has a first ground terminal 111 and a first coupling terminal 112 , and a first feeding point A1 and a first feeding point A1 located between the first ground terminal 111 and the first coupling terminal 112 and arranged at intervals. Second feed point A2. Wherein, the first feeding point A1 is located between the second feeding point A2 and the first ground terminal 111 .
  • the first radiator 11 shown in FIG. 3 is only an example, and cannot limit the shape of the first radiator 11 provided in this application.
  • the first grounding end 111 and the first coupling end 112 are opposite ends of the first radiator 11 in the form of a straight line. In other embodiments, the first radiator 11 is bent, and the first ground terminal 111 and the first coupling terminal 112 may not face each other along a straight line, but the first ground terminal 111 and the first coupling terminal 112 are the first radiator 11 at both ends.
  • the second radiator 12 has a second coupling end 121 and a second grounding end 122 , and a third feeding point A3 located between the second coupling end 121 and the second grounding end 122 .
  • a coupling gap 113 exists between the second coupling end 121 and the first coupling end 112 .
  • the first radiator 11 and the second radiator 12 can generate capacitive coupling through the coupling gap 113 .
  • the second radiator 12 shown in FIG. 3 is only an example, and cannot limit the shape of the second radiator 12 provided in this application.
  • the second coupling end 121 and the second free end 122 are two ends of the second radiator 12 .
  • the first radiator 11 and the second radiator 12 may be arranged in a straight line or substantially in a straight line (that is, there is a small tolerance in the design process).
  • the first radiator 11 and the second radiator 12 may also be arranged staggered in the extension direction to form an avoidance space and the like.
  • the first coupling end 112 is opposite to the second coupling end 121 and arranged at intervals.
  • the coupling slot 113 is a gap between the first radiator 11 and the second radiator 12 , for example, the width of the coupling slot 113 may be 0.5-2 mm, but not limited to this size.
  • the first radiator 11 and the second radiator 12 can be regarded as two parts formed by separating the radiator 10 by the coupling gap 113 .
  • the first radiator 11 and the second radiator 12 are capacitively coupled through the coupling gap 113 .
  • capacitively coupling means that an electric field is generated between the first radiator 11 and the second radiator 12, the signal of the first radiator 11 can be transmitted to the second radiator 12 through the electric field, and the signal of the second radiator 12 Signals can be transmitted to the first radiator 11 through the electric field, so that the first radiator 11 and the second radiator 12 can realize electrical signal conduction even when they are not in direct contact or direct connection.
  • first radiator 11 and the second radiator 12 include but are not limited to strips, sheets shape, rod shape, coating, film, etc.
  • the application does not limit the extension tracks of the first radiator 11 and the second radiator 12, so the first radiator 11 and the second radiator 12 can be straight line, curve, multi-segment bending and other trajectory extension.
  • the above-mentioned radiator 10 may be a line with uniform width on the extension track, or may be a strip with unequal width such as gradually changing width or having widened areas.
  • the material of the radiator 10 is a conductive material
  • specific materials include but are not limited to metals such as copper, gold, and silver, or alloys formed of copper, gold, and silver, or alloys formed of copper, gold, silver, and other materials. Alloys; graphene, or conductive materials formed by combining graphene with other materials; oxide conductive materials such as tin oxide and indium oxide; carbon nanotubes and polymers to form hybrid materials, etc.
  • Both the first ground terminal 111 and the second ground terminal 122 are electrically connected to the reference ground GND.
  • the reference ground GND described in this application is a reference ground system.
  • the reference ground system may be one structure, or multiple independent but electrically connected structures.
  • the first ground terminal 111 and the second ground terminal 122 are respectively electrically connected to different positions of a reference ground GND structure, or two structures that are electrically connected to each other and physically independent from each other, and the electrical connection methods include but not It is limited to direct welding, or indirect electrical connection through coaxial lines, microstrip lines, conductive shrapnel, conductive glue, etc.
  • the reference ground GND provided in this application can be set inside the antenna module 100, or outside the antenna module 100 (such as inside the electronic device 1000, or inside the electronic device of the electronic device 1000).
  • the antenna module 100 itself has Reference ground GND.
  • Specific forms of the reference ground GND include, but are not limited to, metal conductive plates, metal conductive layers formed inside flexible circuit boards, and rigid circuit boards.
  • the antenna module 100 itself does not have a reference ground GND, and the first ground terminal 111 and the second ground terminal 122 of the antenna module 100 are electrically connected to the reference ground of the electronic device 1000 through a direct electrical connection or an indirect electrical connection through a conductive member. Or the reference ground of the electronic devices in the electronic device 1000 .
  • the antenna module 100 is installed in the electronic device 1000, the electronic device 1000 is a mobile phone, and the reference ground of the electronic device 1000 is the magnesium-aluminum metal alloy plate of the middle board 330 of the mobile phone.
  • the first ground terminal 111 and the second ground terminal 122 of the antenna module 100 are electrically connected to the magnesium-aluminum metal alloy plate.
  • Other structures of the subsequent antenna module 100 are electrically connected to the reference ground GND, and reference can be made to any one of the implementations described above that are electrically connected to the reference ground GND.
  • the first feeding system 20 is electrically connected to the first feeding point A1 of the first radiator 11 .
  • the first feeding system 20 is used to excite the radiator 10 to send and receive the first electromagnetic wave signal.
  • the first electromagnetic wave signal includes at least one of a GPS signal, a mobile communication signal in the first frequency band, and the like.
  • the first electromagnetic wave signal includes a GPS frequency band, such as a GPS-L5 frequency band; or, the first electromagnetic wave signal includes a mobile communication signal in a first frequency band, wherein the first frequency band includes but is not limited to a low frequency (LB) frequency band; or,
  • An electromagnetic wave signal includes a mobile communication signal of the first frequency band and a GPS frequency band.
  • the first feeding system 20 includes a first matching circuit M1 and a first signal source 21 .
  • one end of the first signal source 21 is electrically connected to one end of the first matching circuit M1
  • the other end of the first matching circuit M1 is electrically connected to the first feeding point A1 of the first radiator 11 .
  • the first signal source 21 includes, but is not limited to, a radio frequency transceiver chip or a power feeding part electrically connected to the radio frequency transceiver chip.
  • the first matching circuit M1 may include capacitive devices, inductive devices, and the like.
  • the first matching circuit M1 further includes a switching device. The specific structure and function of the first matching circuit M1 will be described in detail later.
  • the second feeding system 30 is electrically connected to the second feeding point A2 of the first radiator 11 .
  • the second feeding system 30 is used to excite the radiator 10 to send and receive the second electromagnetic wave signal.
  • the second electromagnetic wave signal includes a Wi-Fi signal.
  • the first feed system 20 and the second feed system 30 are feed systems with different functions (or different communication protocols).
  • the first feeding system 20 includes a GPS chip and a mobile communication chip (such as a cellular baseband chip).
  • the second feeding system 30 includes a Wi-Fi chip to control the sending and receiving of Wi-Fi signals.
  • the second feeding system 30 has a filter circuit for passing Wi-Fi signals.
  • both the first feeding system 20 and the second feeding system 30 are electrically connected to the first radiator 11 .
  • the first radiator 11 contributes to both the sending and receiving of the first electromagnetic wave signal and the sending and receiving of the second electromagnetic wave signal.
  • the structure of the second feeding system 30 is similar to that of the first feeding system 20 .
  • the second feeding system 30 includes a second matching circuit M2 and a second signal source 31 . Wherein, one end of the second signal source 31 is electrically connected to one end of the second matching circuit M2 , and the other end of the second matching circuit M2 is electrically connected to the second feeding point A2 of the first radiator 11 .
  • the second signal source 31 includes, but is not limited to, a radio frequency transceiver chip or a power feeding part electrically connected to the radio frequency transceiver chip.
  • the second matching circuit M2 may include capacitive devices, inductive devices, and the like.
  • the second matching circuit M2 further includes a switching device. The specific structure and function of the second matching circuit M2 will be described in detail later.
  • the third feeding system 40 is electrically connected to the third feeding point A3 of the second radiator 12 .
  • the third feeding system 40 is used to excite the radiator 10 to send and receive the third electromagnetic wave signal.
  • the third electromagnetic wave signal includes a mobile communication signal of the second frequency band (the mobile communication signal may be a cellular mobile network signal).
  • the minimum frequency of the second frequency band is greater than the maximum frequency of the first frequency band.
  • the range of the first frequency band is (K1-K2)
  • the range of the second frequency band is (K3-K4), wherein the value of K3 is greater than the value of K2.
  • both the first feeding system 20 and the third feeding system 40 have mobile communication chips to control the sending and receiving of mobile communication signals.
  • the filter circuit of the third feed system 40 is different from the filter circuit of the first feed system 20, for example, the filter circuit of the first feed system 20 is used for mobile communication signals passing through the first frequency band.
  • the filtering circuit of the third feeding system 40 is used for mobile communication signals passing through the third frequency band. Therefore, the first feeding system 20 and the third feeding system 40 control the radiator 10 to send and receive the first electromagnetic wave signal and the third electromagnetic wave signal with different frequency bands, so as to realize the coverage of different frequency bands for mobile communication signals and increase the overall coverage of mobile communication signals. frequency band coverage.
  • the third feeding system 40 includes a third matching circuit M3 and a third signal source 41 .
  • one end of the third signal source 41 is electrically connected to one end of the third matching circuit M3
  • the other end of the third matching circuit M3 is electrically connected to the third feeding point A3 of the second radiator 12 .
  • the third signal source 41 includes, but is not limited to, a radio frequency transceiver chip or a power feeding part electrically connected to the radio frequency transceiver chip.
  • the third matching circuit M3 may include capacitive devices, inductive devices, and the like.
  • the third matching circuit M3 further includes a switching device. The specific structure and function of the third matching circuit M3 will be described in detail later.
  • the frequency band of the electromagnetic wave signal corresponds to the length of the radiator one by one.
  • the mobile communication signal of the first frequency band, the mobile communication signal of the second frequency band, the GPS signal and the Wi-Fi signal mentioned above in this application it is necessary to set at least Four radiators, the effective electrical lengths of the four radiators correspond to the frequency bands of the four signals mentioned above, and when these four radiators are all installed in electronic devices with limited internal space (such as mobile phones), they will occupy A huge space, for example, a low-frequency antenna needs to occupy more than half of the space of the mobile phone frame, so it is not conducive to the integration of electronic equipment to send and receive GPS signals, Wi-Fi signals, and mobile communication signals of different frequency bands.
  • the first radiator 11 and the second radiator 12 are capacitively coupled, the first feeding system 20 and the second feeding system 30 are both electrically connected to the first radiator 11, and the third feeding system 40 is electrically connected to the second radiator.
  • Two radiators 12, to realize that the first feed system 20, the second feed system 30 and the third feed system 40 all reuse the first radiator 11, and the second feed system 30 and the third feed system 40 Multiplexing the first radiator 11 and the second radiator 12, on the one hand, through the common-aperture technology of multiple different feeding systems, the utilization rate of the antenna space is improved, the space occupied by the antenna module 100 is small, and the antenna module 100 is in the electronic
  • the stack size on the device 1000 is small; on the other hand, it can realize the coverage of mobile communication signals in the first frequency band, mobile communication signals in the second frequency band, GPS signals and Wi-Fi signals, and at the same time reduce radiation as much as possible
  • the number and size of the body 10 are conducive to integration in the electronic device 1000 with extremely limited space.
  • the first radiator 11 and the second radiator 12 are reused in the second feed system 30 and the third feed system 40 In the process, multi-mode simultaneous operation is realized, and the bandwidth of the antenna is widened, thereby improving the coverage of the antenna module 100 in the full frequency band of Wi-Fi signals and mobile communication signals.
  • the antenna module 100 can simultaneously support the sending and receiving of the first electromagnetic wave signal, the second electromagnetic wave signal and the third electromagnetic wave signal.
  • the frequency band is not specifically limited.
  • the first electromagnetic wave signal includes but is not limited to at least one of GPS-L5 frequency band, mobile communication signal with frequency less than 1000 MHz, and the like.
  • the second electromagnetic wave signal includes, but is not limited to, at least one of Wi-Fi 5G (eg, 5150-5850MHz), Wi-Fi 6E (eg, 5.925GHz-7.125GHz) signals, and the like.
  • the third electromagnetic wave signal includes, but is not limited to, a mobile communication signal with a frequency greater than or equal to 1000 MHz and less than or equal to 6000 MHz.
  • the mobile communication signal in the first electromagnetic wave signal and the third electromagnetic wave signal includes at least one of 4G mobile communication signal and/or 5G mobile communication signal.
  • the antenna module 100 can only load 4G mobile communication signals, or only load 5G mobile communication signals, or can also load 4G mobile communication signals and 5G mobile communication signals at the same time, that is, realize the integration of 4G wireless access network and 5G-NR. Dual connectivity (LTE NR Double Connect, ENDC).
  • the antenna module 100 independently loads 4G mobile communication signals or 5G mobile communication signals
  • the frequency band transmitted and received by the antenna module 100 includes multiple carriers (carriers are radio waves with specific frequencies) aggregated, that is, Carrier Aggregation (Carrier Aggregation) is realized. , CA), to increase the transmission bandwidth, increase the throughput, and increase the signal transmission rate.
  • the 4G mobile communication signal or 5G mobile communication signal with a frequency less than 1000MHz is defined as the LB frequency band (that is, the abbreviation of Low Band, which is interpreted as low frequency in Chinese), and the 4G mobile communication signal with a frequency greater than or equal to 1000MHz and less than or equal to 3000MHz is defined
  • the 5G mobile communication signal is the MHB frequency band (that is, the abbreviation of Middle High Band, which is interpreted as medium and high frequency in Chinese)
  • the 4G mobile communication signal or the 5G mobile communication signal with a frequency greater than 3000MHz and less than or equal to 6000MHz is defined as the UHB frequency band (ie Ultra High Band The abbreviation of the Chinese interpretation of ultra-high frequency).
  • the first frequency band and the second frequency band there is no specific limitation on the first frequency band and the second frequency band.
  • the first frequency band is the LB frequency band
  • the second frequency band is the MHB+UHB frequency band.
  • the MHB+UHB frequency band mentioned in this application is a combined frequency band formed by the MHB frequency band and the UHB frequency band, that is, greater than or equal to 1000 MHz and less than or equal to 6000 MHz.
  • both the first frequency band and the second frequency band are LB frequency bands, or both the first frequency band and the second frequency band are MHB frequency bands, or both the first frequency band and the second frequency band are UHB frequency bands, or the first frequency band is the LB frequency band, and the second frequency band is the MHB frequency band, or the first frequency band is the LB frequency band, and the second frequency band is the UHB frequency band, or the first frequency band is the MHB frequency band, and the second frequency band is the UHB frequency band.
  • the present application designs the mobile communication signal of the first frequency band to be the LB frequency band, and the mobile communication signal of the second frequency band is the MHB+UHB frequency band, so that the first feeding system 20 and the third feeding system 40 can excite the radiator 10.
  • the coverage of the antenna module 100 in different frequency bands is improved, and the adjustable frequency band movement is set in combination with the first feed system 20 and the third feed system 40
  • the adjustment circuit (including a switch selection circuit or a variable capacitor) adjusts the position of the first frequency band in the LB frequency band, and adjusts the position of the second frequency band in the MHB+UHB frequency band, so that the frequency band that the antenna module 100 can cover increases. , to improve the full-band coverage of the low-frequency band, mid-high frequency band and ultra-high frequency band of mobile communication signals.
  • the antenna principles of the first feeding system 20 , the second feeding system 30 and the third feeding system 40 in operation will be described below with reference to the accompanying drawings.
  • the following embodiments take the first electromagnetic wave signal in the LB frequency band, the second electromagnetic wave signal in the WiFi 5G/6E frequency band, and the third electromagnetic wave signal in the MHB+UHB frequency band as examples.
  • FIG. 4 is a schematic diagram of the antenna of the first feeding system 20 in operation.
  • the first feeding system 20 excites the first radiator 11 to generate at least one resonance mode.
  • the frequency band supported by this resonance mode is located in the LB frequency band.
  • the current corresponding to the resonant mode n generated by the first radiator 11 excited by the first feeding system 20 is mainly distributed between the first ground terminal 111 and the first coupled terminal 112 of the first radiator 11 . It can also be expressed as, the current density generated by the excitation signal of the first feeding system 20 on the radiator 10 is mainly distributed between the first ground terminal 111 and the first coupling terminal 112 of the first radiator 11 .
  • the current corresponding to the resonance mode generated by the radiator 10 excited by the first feeding system 20 is mainly distributed between the first ground terminal 111 and the first coupling terminal 112 of the first radiator 11, which means that a relatively strong current Distributed between the first ground terminal 111 and the first coupling terminal 112 of the first radiator 11, it does not rule out that the excitation signal of the first feeding system 20 is A small amount of current generated by excitation on the first radiator 11 is distributed to the second radiator 12 .
  • the present application does not limit the direction of the resonant current.
  • the resonant mode is characterized by the fact that the antenna module 100 has a higher efficiency of transmitting and receiving electromagnetic waves at and near the resonant frequency.
  • the resonant frequency is the resonant frequency of the resonant mode, and the resonant frequency and its vicinity form a frequency band supported or covered by the resonant mode.
  • the absolute value of the return loss value is greater than or equal to 5dB (for example only, and cannot be used as the application for the limitation of the return loss value of higher efficiency) as having a higher The reference value of the electromagnetic wave transceiving efficiency.
  • a set of frequencies whose absolute value of the return loss value in a resonance mode is greater than or equal to 5 dB is taken as the frequency band supported by the resonance mode.
  • the first feeding system 20 excites the first radiator 11 to generate a resonance mode that is a 1/4 wavelength mode in which the resonance current mainly works from the first ground terminal 111 to the first coupled terminal 112 of the first radiator 11 .
  • the 1/4 wavelength mode can be understood as the effective electrical length from the first ground end 111 to the first coupled end 112 of the first radiator 11 is about the medium wavelength corresponding to the center frequency of the resonant mode ( 1/4 times the wavelength in the medium), this description is an explanation for easy understanding of the term, but it cannot be used as a limitation of the length from the first ground end 111 to the first coupling end 112 of the first radiator 11 .
  • the resonance mode generated by the first radiator 11 excited by the first feeding system 20 can also be a high-order mode in which the resonance current mainly works on the first radiator 11, such as the 1/2 wavelength mode. mode, 3/4 wavelength mode, etc.
  • the antenna module 100 further includes a first adjustment circuit T1.
  • One end of the first adjusting circuit T1 is electrically connected to the first radiator 11 , and the other end of the first adjusting circuit T1 is electrically connected to the reference ground GND.
  • the first adjusting circuit T1 is used for adjusting the frequency band of the first electromagnetic wave signal.
  • the present application does not specifically describe the position where the first regulating circuit T1 is electrically connected to the first radiator 11 .
  • a first adjustment point B1 for electrically connecting the first adjustment circuit T1 is defined between the first ground end 111 and the first coupling end 112 of the first radiator 11 .
  • the first adjustment point B1 is close to the current intensity point on the first radiator 11 .
  • the distance between the first regulation point B1 and the first ground terminal 111 is greater than the distance between the first regulation point B1 and the first coupling terminal 112 .
  • the first adjusting circuit T1 In order for the first adjusting circuit T1 to adjust the position of the frequency band supported by the first radiator 11 within a certain range.
  • the first adjustment circuit T1 includes at least one of a variable capacitor and a plurality of switch selection circuits.
  • the switch selection circuit includes at least one of a combination of a switch and an inductor, a combination of a switch and a capacitor, and a combination of a switch, an inductor, and a capacitor.
  • the first adjustment circuit T1 realizes switching between different frequency bands by controlling the on-off of the switch or adjusting the variable capacitance to switch different impedances to ground.
  • the first regulating circuit T1 includes a SPDT switch 51 , a first lumped element 52 electrically connected to the reference ground GND, and a second lumped element 53 electrically connected to the reference ground GND.
  • both the first lumped element 52 and the second lumped element 53 include an inductor, or a capacitor, or a combination of an inductor and a capacitor.
  • the combination of the above-mentioned inductance and capacitance of the lumped elements may be the combination of FIG. 11 to FIG. 18 .
  • the first lumped element 52 and the second lumped element 53 have different impedances to the ground for the first electromagnetic wave signal (ie, LB frequency band).
  • the SPDT switch 51 and the two lumped elements 52, 53 are only for illustration, and the present application is not limited to two lumped elements and the SPDT switch, and may be two independent switches; in addition, the lumped The number of elements may be three, four, etc.
  • the antenna module 100 further includes a controller (not shown), and the controller is electrically connected to the first regulating circuit T1.
  • the controller controls the switch of the first regulating circuit T1 to switch to electrically connect different lumped elements, so as to realize different impedances for the first electromagnetic wave signal (ie, LB frequency band) to ground, and then realize the different impedances for the first electromagnetic wave signal (ie, LB frequency band) ) position adjustment of the frequency band.
  • the frequency band of the first electromagnetic wave signal (that is, the LB frequency band) shifts more toward the high frequency end; when the switched capacitance value is larger, the frequency band of the first electromagnetic wave signal (that is, the LB frequency band) The more the band is shifted towards the lower frequency end.
  • the first adjustment point B1 is the first feed point A1
  • one end of the first adjustment circuit T1 is electrically connected to the first feed point A1, so as to reduce the electrical connection point on the first radiator 11,
  • the number of electrical connectors such as elastic pieces can be reduced.
  • the first adjusting circuit T1 is a part of the first matching circuit M1 (referring to FIG. 8 in conjunction), so that the first adjusting circuit T1 can be manufactured during the preparation of the first matching circuit M1, relatively Independent setting of the first adjusting circuit T1 can reduce the number of electrical connection points on the first radiator 11, realize the centralized setting of the circuit, and realize the function multiplexing of the first adjusting circuit T1 in the first matching circuit M1, for example Certain capacitances or inductances in the first adjusting circuit T1 can also be used for frequency selection or tuning in the first matching circuit M1.
  • the first adjusting circuit T1 can be used as a serial circuit or a parallel circuit of the first matching circuit M1.
  • FIG. 8 is a schematic diagram of the first adjustment circuit T1 serving as a parallel circuit of the first matching circuit M1 .
  • the first regulating circuit T1 includes four switches (SW1-SW4) and four regulating branches (P1-P4), and each switch is electrically connected to one regulating branch.
  • the first adjustment branch P1 , the second adjustment branch P2 and the third adjustment branch P3 are all inductors electrically connected to the reference ground GND, wherein the inductance values in different adjustment branches are different.
  • the fourth regulating branch P4 is a capacitor electrically connected to the reference ground GND.
  • the first matching circuit M1 further includes a first tuning circuit 22 .
  • One end of the first tuning circuit 22 is electrically connected to the first feeding point A1 , and the other end of the first tuning circuit 22 is electrically connected to the first signal source 21 .
  • the first tuning circuit 22 is used for tuning the resonant frequency point and frequency band width of the first electromagnetic wave signal.
  • the first tuning circuit 22 includes a second capacitor C2 (the first capacitor C1 will be described later), a third capacitor C3, a fourth capacitor C4, a fifth capacitor C5, and a second inductor L2 ( The first inductance L1 and the third inductance L3 will be described later.
  • One end of the second capacitor C2 is electrically connected to the first feeding point A1, the other end of the second capacitor C2 is electrically connected to one end of the third capacitor C3, and the other end of the third capacitor C3 is electrically connected to one end of the fourth capacitor C4, the second One end of the inductor L2 and one end of the third inductor L3, the other end of the fourth capacitor C4 is electrically connected to the reference ground GND, the other end of the second inductor L2 is electrically connected to the reference ground GND, and the other end of the third inductor L3 is electrically connected to the first A signal source 21 and one end of the fifth capacitor C5, the other end of the fifth capacitor C5 is electrically connected to the reference ground GND.
  • the above is only an example of the first tuning circuit 22 , and the resonant elements in the first tuning circuit 22 can also refer to the combination of the resonant elements in FIG. 11 to FIG. 18 .
  • the first matching circuit M1 also includes a circuit having a band-stop characteristic for the second electromagnetic wave signal and the third electromagnetic wave signal (MHB+UHB frequency band), so as to filter the second electromagnetic wave signal and the third electromagnetic wave signal (MHB+UHB frequency band) , and has no effect on the first electromagnetic wave signal, so that the first feeding system 20 excites the first radiator 11 to send and receive the first electromagnetic wave signal.
  • FIG. 9 is a schematic diagram of a parallel circuit where the first adjustment circuit T1 is used as the first matching circuit M1 .
  • the first adjustment circuit T1 is part of the first matching circuit M1.
  • the first regulating circuit T1 includes four switches, wherein the three switches are respectively electrically connected to the three regulating branches, and the fourth switch connects the above three switches in series with the capacitor in the first matching circuit M1.
  • the three adjustment branches are grounding inductances with three different inductance values.
  • FIG. 10 is a schematic diagram of switching between different frequency bands of the first electromagnetic wave signal by the first adjustment circuit T1 .
  • frequency bands B5, B8, and B28 are used for illustration.
  • frequency bands B5, B8, and B28 are only examples of the first electromagnetic wave signal that can be shifted toward the high-frequency end or toward the low-frequency end in the low-frequency range, and It is not limited that the first electromagnetic wave signal is a B5 frequency band, or a B8 frequency band, or a B28 frequency band.
  • the first electromagnetic wave signal may also be adjusted to cover the B20 frequency band. It can be seen from FIG. 10 that by setting the first adjusting circuit T1, the first electromagnetic wave signal can be shifted toward the high frequency end or toward the low frequency end in the low frequency range.
  • the first adjustment circuit T1 By setting the first adjustment circuit T1 on the first radiator 11, the first adjustment circuit T1 can switch the first electromagnetic wave signal in different frequency bands, so as to improve the coverage in the low frequency band, and then make the antenna module
  • the antenna module 100 and the electronic device 1000 where the antenna module 100 is located can be used worldwide and support mobile communication signals of different operators.
  • the first matching circuit M1 When the first adjusting circuit T1 is provided in the first matching circuit M1, other parts of the first matching circuit M1 may also include the above-mentioned variable capacitors, multiple switch selection circuits, etc. to realize switching.
  • the first matching circuit M1 does not include the above-mentioned first adjusting circuit T1, the first matching circuit M1 may include the above-mentioned variable capacitor, multiple switch selection circuits, etc. to realize switching.
  • the second matching circuit M2 and the third matching circuit M3 may also use the above-mentioned variable capacitance, multiple switch selection circuits, etc. to realize switching.
  • the matching circuit provided in the present application (for example, at least one of the first matching circuit M1, the second matching circuit M2, and the third matching circuit M3) has a frequency selection filter circuit electrically connected to the reference ground GND, so as to realize the antenna module 100 broadband matching, and high isolation.
  • the frequency selection filter circuit is composed of one resonant device or multiple resonant devices, wherein the resonant device is a capacitor or an inductance.
  • the present application does not limit the number of resonant devices. Two of the multiple resonant devices can be combined in series or in parallel to form different resonant circuits. The following examples are given for several combinations of two resonant devices, three resonant devices, and four resonant devices in conjunction with the accompanying drawings.
  • the frequency-selective filter circuit of the first matching circuit M1 can adjust the number of resonant devices and the electrical connection mode according to actual needs.
  • the frequency selection filter circuit of the first matching circuit M1 includes a bandpass circuit formed by an inductor L00 connected in series with a capacitor C00 .
  • the frequency selection filter circuit of the first matching circuit M1 includes a band stop circuit formed by parallel connection of an inductor L00 and a capacitor C00 .
  • the frequency selection filter circuit of the first matching circuit M1 includes a bandpass or bandstop circuit formed by an inductor L00 , a capacitor C01 and a capacitor C02 .
  • the inductor L00 is connected in parallel with the capacitor C01 , and the capacitor C02 is electrically connected to a node where the inductor L00 is electrically connected to the capacitor C01 .
  • the frequency selection filter circuit of the first matching circuit M1 includes a bandpass or bandstop circuit formed by a capacitor C00 , an inductor L01 and an inductor L02 .
  • the capacitor C00 is connected in parallel with the inductor L01
  • the inductor L02 is electrically connected to the node where the capacitor C00 is electrically connected to the inductor L01 .
  • the frequency selection filter circuit of the first matching circuit M1 includes a bandpass or bandstop circuit formed by an inductor L00 , a capacitor C01 and a capacitor C02 .
  • the inductor L00 is connected in series with the capacitor C01, and one end of the capacitor C02 is electrically connected to the first end of the inductor L00 not connected to the capacitor C01, and the other end of the capacitor C02 is electrically connected to one end of the capacitor C01 not connected to the inductor L00.
  • the frequency selection filter circuit of the first matching circuit M1 includes a bandpass or bandstop circuit formed by a capacitor C00 , an inductor L01 and an inductor L02 .
  • the capacitor C00 is connected in series with the inductor L01 , one end of the inductor L02 is electrically connected to one end of the capacitor C00 not connected to the inductor L01 , and the other end of the inductor L02 is electrically connected to one end of the inductor L01 not connected to the capacitor C00 .
  • the frequency selection filter circuit of the first matching circuit M1 includes a capacitor C01 , a capacitor C02 , an inductor L01 and an inductor L02 .
  • the capacitor C01 is connected in parallel with the inductor L01
  • the capacitor C02 is connected in parallel with the inductor L02
  • one end of the whole formed by the parallel connection of the capacitor C02 and the inductor L02 is electrically connected to one end of the whole formed by the parallel connection of the capacitor C01 and the inductor L01 .
  • the frequency selection filter circuit of the first matching circuit M1 includes a capacitor C01, a capacitor C02, an inductor L01 and an inductor L02.
  • the capacitor C01 and the inductor L01 are connected in series to form the first unit 101, and the capacitor C02 and the inductor L02 are connected in series to form the second unit. 102, and the first unit 101 and the second unit 102 are connected in parallel.
  • the first radiator 11 also has a first connection point B2.
  • the first connection point B2 is located on the first feed point A1, or the first connection point B2 is located between the first feed point A1 and the second feed point A2.
  • the antenna module 100 further includes a first bandpass circuit 23 .
  • One end of the first bandpass circuit 23 is electrically connected to the first connection point B2, and the other end of the first bandpass circuit 23 is electrically connected to the reference ground GND.
  • the first bandpass circuit 23 is used to conduct the third electromagnetic wave signal (MHB+UHB frequency band) to the reference ground GND, and the first bandpass circuit 23 realizes low impedance from the MHB+UHB frequency band to the ground.
  • the low impedance for a certain frequency band mentioned in this application means that the impedance is close to zero, or equivalent to the effect of a short circuit, that is, the frequency band is in a conduction state.
  • the first bandpass circuit 23 has a low impedance to the ground for the MHB+UHB frequency band, which means that the first bandpass circuit 23 conducts the signal of the MHB+UHB frequency band on the first radiator 11 to the reference ground GND, so that the MHB+UHB Signals in the frequency band will no longer or less go to the ground through the first ground terminal 111 .
  • the first bandpass circuit 23 is a part of the first matching circuit M1 (refer to FIG. 24 in conjunction).
  • the first connection point B2 is the first feeding point A1.
  • One end of the first bandpass circuit 23 is electrically connected to the first feeding point A1, and the other end is electrically connected to the reference ground GND.
  • the first bandpass circuit 23 conducts the third electromagnetic wave signal (MHB+UHB frequency band) to the reference ground GND to form an equivalent antenna form diagram as shown in FIG. 20 .
  • the first bandpass circuit 23 may also be electrically connected to the first feeding point A1 in parallel with the first matching circuit M1 .
  • FIG. 20 is a schematic diagram of the antenna of the third feeding system 40 in operation.
  • the third feeding system 40 excites the first radiator 11 and the second radiator 12 to generate at least three resonance modes.
  • the frequency bands supported by the at least three resonance modes are in the MHB+UHB frequency band, as shown in FIG. 21 for example.
  • the radiator 10 (including the first radiator 11 and the second radiator 12 ) supports the first resonance mode a, the second resonance mode b and the third resonance mode c under the excitation of the third feeding system 40 .
  • the current of the first resonant mode a is at least distributed between the second coupling end 121 and the second grounding end 122 .
  • the current corresponding to the first resonance mode a generated by the radiator 10 excited by the third feeding system 40 (referred to as the first resonance current in this application) is mainly distributed from the second coupling end 121 to the second coupling end 121 of the second radiator 12 .
  • the present application does not specifically limit the direction of the resonant current.
  • the first resonant current is mainly distributed between the second coupling end 121 of the second radiator 12 and the second grounding end 122, which means that the stronger current is distributed in the second coupling end 121 of the second radiator 12 Between the second ground terminal 122 , a small amount of first resonance current is distributed in the first radiator 11 due to the coupling effect between the first radiator 11 and the second radiator 12 .
  • the first resonance mode a includes the 1/4 wavelength mode of the second radiator 12 .
  • the first resonant mode a includes a 1/4 wavelength mode in which the first resonant current mainly operates from the second coupling end 121 to the second grounding end 122 of the second radiator 12 .
  • the 1/4 wavelength mode can be understood as the effective electrical length from the second coupled end 121 to the second ground end 122 of the second radiator 12 is about the medium wavelength corresponding to the central frequency of the resonant mode ( 1/4 times of the wavelength in the medium), this description is an easy-to-understand interpretation of the term, but it cannot be used as a limitation on the length of the second radiator 12 .
  • the resonance mode generated by the radiator 10 excited by the third feeding system 40 can also be a high-order mode in which the first resonance current mainly works on the second radiator 12, such as the 1/2 wavelength mode. mode, 3/4 wavelength mode, etc.
  • the current of the second resonant mode b is at least distributed between the first connection point B2 and the first coupling end 112 and between the second coupling end 121 and the third feeding point A3.
  • the current corresponding to the second resonant mode b generated by the radiator 10 excited by the third feeding system 40 (referred to as the second resonant current in this application) is mainly distributed between the first connection point B2 and the first coupling end 112 and Between the second coupling end 121 and the third feeding point A3, the present application does not specifically limit the direction of the resonant current.
  • the second resonant current is mainly distributed between the first connection point B2 and the first coupling end 112 and between the second coupling end 121 and the third feeding point A3, which means that the stronger current is distributed in the first Between the connection point B2 and the first coupling end 112 and between the second coupling end 121 and the third feeding point A3, it does not exclude that a small amount of second resonant current is distributed on other parts of the first radiator 11 and the second Other parts on the radiator 12.
  • the second resonance mode b includes a 1/4 wavelength mode between the first connection point B2 of the first radiator 11 and the first coupling end 112 .
  • the second resonance mode b includes a 1/4 wavelength mode in which the second resonance current mainly operates from the first connection point B2 of the first radiator 11 to the first coupling end 112 .
  • the 1/4 wavelength mode can be understood as the effective electrical length from the first connection point B2 of the first radiator 11 to the first coupling end 112 is about the medium wavelength corresponding to the center frequency of the resonant mode ( 1/4 times the wavelength in the medium), this description is an explanation for easy understanding of the term, but it cannot be used as a limitation of the length from the first connection point B2 of the first radiator 11 to the first coupling end 112 .
  • the resonance mode generated by the radiator 10 excited by the third feeding system 40 can also be a higher-order mode in which the second resonance current mainly works on the radiator 10, such as the 1/2 wavelength mode, 3/4 wavelength mode and so on.
  • the current of the third resonant mode c is at least distributed between the second coupling end 121 of the second radiator 12 and the third feeding point A3.
  • the current corresponding to the third resonance mode c generated by the radiator 10 excited by the third feeding system 40 (referred to as the third resonance current in this application) is mainly distributed from the second coupling end 121 to the third resonance mode of the second radiator 12 .
  • the present application does not specifically limit the direction of the resonant current.
  • the third resonant current is mainly distributed between the second coupling end 121 of the second radiator 12 and the third feeding point A3, which means that the stronger current is distributed at the second coupling end of the second radiator 12 121 to the third feeding point A3, it is not ruled out that due to the coupling effect of the first radiator 11 and the second radiator 12, a small amount of third resonant current is distributed in the first radiator 11 and the second radiator 12 other locations.
  • the third resonance mode c includes a 1/4 wavelength mode between the second coupling end 121 of the second radiator 12 and the third feeding point A3.
  • the third resonance mode c includes a 1/4 wavelength mode in which the third resonance current mainly works from the second coupling end 121 of the second radiator 12 to the third feeding point A3.
  • the 1/4 wavelength mode can be understood as the effective electrical length from the second coupling end 121 of the second radiator 12 to the third feeding point A3 is approximately the medium wavelength corresponding to the center frequency of the resonant mode 1/4 times of (wavelength in the medium), this description is an explanation for easy understanding of the term, but it cannot be used as a limitation of the length from the second coupling end 121 of the second radiator 12 to the third feeding point A3.
  • the resonance mode generated by the radiator 10 excited by the third feeding system 40 can also be a higher-order mode in which the third resonance current mainly works on the radiator 10, such as the 1/2 wavelength mode, 3/4 wavelength mode and so on.
  • the feeding system 20 transmits and receives the first electromagnetic wave signal; through the above-mentioned current path planning for the third electromagnetic wave signal (MHB+UHB frequency band), the third feeding system 40 excites the first radiator 11 and the second radiator 12
  • the above-mentioned first resonance mode a, second resonance mode b, and third resonance mode c are generated.
  • the third feeding system 40 multiplexes the mutually coupled first radiator 11 and second radiator 12 to generate the above three resonance modes, for example, it can be clearly seen from the second resonance mode b that the second resonance current is Both the first radiator 11 and the second radiator 12 form a current distribution (or current density distribution), and the above-mentioned three resonance modes are all located in the MHB+UHB frequency band, so that the third electromagnetic wave signal is in the MHB+UHB frequency band A relatively wide bandwidth is formed, and the coverage of the antenna module 100 for the MHB+UHB frequency band is improved.
  • the sequence of the wavelength modes of the first resonant mode a, the second resonant mode b, and the third resonant mode c is determined according to the length of the radiator 10 where each resonant current mainly works. From the wavelength modes of the first resonant mode a, the second resonant mode b, and the third resonant mode c, it can be seen that the first resonant mode a, the second resonant mode b, and the third resonant mode c are all 1/4 wavelength modes mode, where the 1/4 wavelength mode is also called the fundamental mode, and the fundamental mode is a high-efficiency mode that can achieve high efficiency and wide coverage in the MHB+UHB frequency band.
  • the third matching circuit M3 is used for tuning the center frequency and bandwidth of the third electromagnetic wave signal (MHB+UHB frequency band).
  • the structure of the third matching circuit M3 provided by the present application will be illustrated below with reference to the accompanying drawings.
  • the third matching circuit M3 includes an eleventh inductance L11, a twelfth inductance L12, a thirteenth inductance L13, a thirteenth capacitor C13, a fourteenth capacitor C14, a fifteenth capacitor C15 and a sixteenth capacitor Capacitor C16, one end of the eleventh inductance L11 is electrically connected to the third feeding point A3, the other end of the eleventh inductance L11 is electrically connected to one end of the twelfth inductance L12, one end of the thirteenth capacitor C13 and the fourteenth capacitor C14 One end of the twelfth inductance L12, the other end of the thirteenth capacitor C13 are electrically connected to the reference ground, the other end of the fourteenth capacitor C14 is electrically connected to one end of the fifteenth capacitor C15, and the other end of the fifteenth capacitor C15 The other end is electrically connected to one end of the thirteenth inductance L13 and one end of the third signal source 41, the other end of the eleventh inductance
  • the third matching circuit M3 By designing the above-mentioned third matching circuit M3, to tune the center frequency and bandwidth of the third electromagnetic wave signal (MHB+UHB frequency band), to achieve the first resonant mode a, the second resonant mode b, and the third resonant mode c The resonant frequency and bandwidth are tuned to promote the wide coverage of the antenna module 100 in the MHB+UHB frequency band.
  • the antenna module 100 further includes a second adjustment circuit T2 with one end electrically connected to the reference ground GND, and the other end of the second adjustment circuit T2 is electrically connected to the second radiator 12 or to the third matching circuit M3 .
  • the second adjusting circuit T2 is used for adjusting the frequency band of the third electromagnetic wave signal (MHB+UHB frequency band).
  • the function of the second regulating circuit T2 is similar to that of the first regulating circuit T1.
  • the structure of the second regulating circuit T2 is also similar to that of the first regulating circuit T1, including at least one of a variable capacitor and a plurality of switch selection circuits. Wherein, for the switch selection circuit, reference may be made to the description in the first regulation circuit T1 , which will not be repeated here.
  • the adjustment principle of the second adjustment circuit T2 for the third electromagnetic wave signal (MHB+UHB frequency band) is the same as the adjustment principle of the first adjustment circuit T1 for the first electromagnetic wave signal.
  • the second adjustment circuit T2 The third electromagnetic wave signal (MHB+UHB frequency band) is switched in different frequency bands to improve the coverage in the MHB+UHB frequency band, so that the antenna module 100 can support many application frequency bands of the MHB+UHB frequency band, and thus support The frequency bands used in different places, the antenna module 100 and the electronic device 1000 where the antenna module 100 is located can be used worldwide and support mobile communication signals of different operators.
  • the first radiator 11 also has a second connection point B3.
  • the second connection point B3 is located on the first feed point A1, or the second connection point B3 is located between the first feed point A1 and the second feed point A2.
  • the second connection point B3 and the first connection point B2 may be the same point or two different points.
  • the antenna module 100 further includes a second bandpass circuit 24 .
  • One end of the second bandpass circuit 24 is electrically connected to the second connection point B3, and the other end of the second bandpass circuit 24 is electrically connected to the reference ground GND.
  • the second bandpass circuit 24 is used to conduct the second electromagnetic wave signal (such as Wi-Fi 5G and/or Wi-Fi 6E signal) to the reference ground GND, so as to realize the second electromagnetic wave signal (such as Wi-Fi 5G and/or Wi-Fi 6E signal) to low impedance to ground.
  • the second bandpass circuit 24 has a low impedance to the ground for the Wi-Fi 5G and/or Wi-Fi 6E frequency band, which means that the second bandpass circuit 24 connects the Wi-Fi 5G and/or Wi-Fi on the first radiator 11 to the ground.
  • the signal of the Fi 6E frequency band is connected to the reference ground GND, so that the signal of the Wi-Fi 5G and/or Wi-Fi 6E frequency band will no longer or less go to the ground through the first ground terminal 111 .
  • the first bandpass circuit 23 and the second bandpass circuit 24 may be the same circuit or two independent circuits. Even if the first connection point B2 and the second connection point B3 are the same point, the first bandpass circuit 23 and the second bandpass circuit 24 can also be two mutually independent circuits.
  • At least one of the first bandpass circuit 23 and the second bandpass circuit 24 includes a first capacitor C1 and a first inductor L1 .
  • One end of the first capacitor C1 is electrically connected to the first feeding point A1
  • the other end of the first capacitor C1 is electrically connected to one end of the first inductor L1
  • the other end of the first inductor L1 is electrically connected to the reference ground GND.
  • the first bandpass circuit 23 and/or the second bandpass circuit 24 may also be a combination of three resonant elements, such as the structures shown in FIGS. 13 to 16 .
  • the first bandpass circuit 23 and/or the second bandpass circuit 24 may also be a combination of 4 or 5 or more resonant elements.
  • the resonance element is a capacitor or an inductor.
  • the first connection point B2 and the second connection point B3 are the same point.
  • the first band-pass circuit 23 and the second band-pass circuit 24 are the same circuit, and this circuit also has a low impedance to the reference ground GND for the Wi-Fi 5G+Wi-Fi 6E frequency band+MHB+UHB frequency band.
  • the first bandpass circuit 23 and the second bandpass circuit 24 are the same circuit, and the circuit is the first capacitor C1 and the first inductor L1.
  • One end of the first capacitor C1 is electrically connected to the first feeding point A1
  • the other end of the first capacitor C1 is electrically connected to one end of the first inductor L1
  • the other end of the first inductor L1 is electrically connected to the reference ground GND.
  • the first band-pass circuit 23 and the second band-pass circuit 24 are used as an example for illustration, and details will not be described later.
  • first bandpass circuit 23 and the second bandpass circuit 24 are two different circuits, and the first connection point B2 and the second connection point B3 are different points or the same point.
  • At least one of the first bandpass circuit 23 and the second bandpass circuit 24 is a part of the first matching circuit M1. Specifically include the following situations: one is that the first bandpass circuit 23 is a part of the first matching circuit M1, and the second bandpass circuit 24 is connected to the first radiator 11 in parallel with the first matching circuit M1; The pass circuit 24 is a part of the first matching circuit M1, and the first band pass circuit 23 and the first matching circuit M1 are connected in parallel to the first radiator 11; the third is that the first band pass circuit 23 and the second band pass circuit 24 are different The circuits are both part of the first matching circuit M1; fourth, the first bandpass circuit 23 and the second bandpass circuit 24 are the same circuit and are part of the first matching circuit M1.
  • the second bandpass circuit 24 is a part of the first matching circuit M1.
  • the second connection point B3 is the first feeding point A1.
  • One end of the second bandpass circuit 24 is electrically connected to the first feeding point A1, and the other end is electrically connected to the reference ground GND.
  • the second bandpass circuit 24 conducts the second electromagnetic wave signal to the reference ground GND to form an equivalent antenna diagram as shown in FIG. 25 .
  • FIG. 25 is a schematic diagram of the antenna of the second feeding system 30 in operation.
  • the second feeding system 30 excites the first radiator 11 and the second radiator 12 to generate at least two resonance modes.
  • the frequency bands supported by the at least two resonance modes support the second electromagnetic wave signal.
  • the second electromagnetic wave signal is Wi-Fi 5G and/or Wi-Fi 6E frequency band as an example, as shown in FIG. 26 .
  • the second feeding system 30 excites the first radiator 11 and the second radiator 12 to generate at least two resonance modes covering the Wi-Fi 5G frequency band (for example, 5150-5850MHz); or, the second feeding system 30 excites the first The radiator 11 and the second radiator 12 generate at least two resonant modes covering the Wi-Fi 6E frequency band (for example, 5.925GHz ⁇ 7.125GHz); or, the second feeding system 30 excites the first radiator 11 and the second radiator 12 At least two resonance modes are generated to jointly cover Wi-Fi 5G and Wi-Fi 6E frequency bands (for example, 5150-5850MHz, and 5.925GHz-7.125GHz).
  • the radiator 10 (including the first radiator 11 and the second radiator 12 ) supports the fourth resonant mode d and the fifth resonant mode e under the excitation of the second feeding system 30 .
  • the current of the fourth resonant mode d is at least distributed between the second feeding point A2 of the first radiator 11 and the first coupling end 112 .
  • the current corresponding to the fourth resonant mode d generated by the second feeding system 30 exciting the radiator 10 (referred to as the fourth resonant current in this application) is mainly distributed from the second feeding point A2 to the first radiator 11 of the first radiator 11. Between a coupled end 112, the present application does not specifically limit the direction of the resonant current.
  • the fourth resonant current is mainly distributed between the second feeding point A2 of the first radiator 11 and the first coupling end 112, which means that the stronger current is distributed in the second feeding point of the first radiator 11 Between point A2 and the first coupling end 112, it does not exclude that due to the coupling effect between the first radiator 11 and the second radiator 12, a small amount of fourth resonant current is distributed in other positions of the first radiator 11 or the second radiator. body 12.
  • the fourth resonance mode d includes a 1/4 wavelength mode between the second feeding point A2 of the first radiator 11 and the first coupling end 112 .
  • the fourth resonant mode d includes a 1/4 wavelength mode in which the fourth resonant current mainly works from the second feeding point A2 of the first radiator 11 to the first coupling end 112 .
  • the 1/4 wavelength mode can be understood as the effective electrical length from the second feeding point A2 of the first radiator 11 to the first coupling end 112 is about the medium wavelength corresponding to the center frequency of the resonant mode 1/4 times of (the wavelength in the medium), this description is an explanation for the easy understanding of the term, but it cannot be used as a limitation of the length from the second feeding point A2 of the first radiator 11 to the first coupling end 112 .
  • the resonance mode generated by the radiator 10 excited by the second feeding system 30 can also be a higher-order mode in which the fourth resonance current mainly works on the first radiator 11 and the second radiator 12, For example, 1/2 wavelength mode, 3/4 wavelength mode and so on.
  • the current of the fifth resonance mode e is at least distributed between the second feeding point A2 and the second ground terminal 122 .
  • the current corresponding to the fifth resonance mode e generated by the second feeding system 30 exciting the radiator 10 (referred to as the fifth resonance current in this application) is mainly distributed from the second coupling end 121 to the second Between the ground terminals 122, the present application does not specifically limit the direction of the resonant current.
  • the fifth resonant current is mainly distributed between the second coupling end 121 of the second radiator 12 and the second grounding end 122, which means that the stronger current is distributed in the second coupling end 121 of the second radiator 12 Between the second ground terminal 122 , a small amount of first resonance current is distributed in the first radiator 11 due to the coupling effect between the first radiator 11 and the second radiator 12 .
  • the fifth resonance mode e includes the 3/4 wavelength mode of the second radiator 12 .
  • the fifth resonance mode e includes a 3/4 wavelength mode in which the fifth resonance current mainly operates from the second coupling end 121 to the second grounding end 122 of the second radiator 12 .
  • the 3/4 wavelength mode can be understood as the effective electrical length from the second coupled end 121 to the second ground end 122 of the second radiator 12 is about the medium wavelength corresponding to the center frequency of the resonant mode ( 3/4 times the wavelength in the medium), this description is an easy-to-understand interpretation of the term, but it cannot be used as a limitation on the length of the second radiator 12 .
  • the resonant mode generated by the second feeding system 30 to excite the radiator 10 can also be other high-order modes in which the fifth resonant current mainly works on the second radiator 12, such as 1/2 wavelength modal etc.
  • the first matching circuit M1 can Realize the above-mentioned current path planning for the second electromagnetic wave signal (WiFi 5G, 6E frequency band), so that the second feeding system 30 excites the first radiator 11 and the second radiator 12 to generate the above-mentioned fourth resonance mode d and Fifth resonance mode e.
  • the second feeding system 30 multiplexes the mutually coupled first radiator 11 and the second radiator 12 to generate the above two resonance modes.
  • the fifth resonance current is Current distribution (or current density distribution) is formed on the first radiator 11 and the second radiator 12, and the above two resonance modes cover Wi-Fi 5G and/or Wi-Fi 6E frequency bands, so the antenna
  • the module 100 forms a relatively wide bandwidth in the Wi-Fi 5G and/or Wi-Fi 6E frequency band, and improves the coverage of the antenna module 100 for the Wi-Fi 5G and/or Wi-Fi 6E frequency band.
  • the sequence of the wavelength modes of the fourth resonant mode d and the fifth resonant mode e is based on the frequency change of each mode. It can be seen from the wavelength modes of the fourth resonant mode d and the fifth resonant mode e that the fourth Resonant mode d and fifth resonant mode e both work in high-efficiency mode, which can achieve high efficiency and wide coverage in Wi-Fi 5G and/or Wi-Fi 6E frequency bands.
  • the first matching circuit M1 can realize the above-mentioned second electromagnetic wave signal (WiFi 5G, 6E frequency band), the current path planning of the third electromagnetic wave signal, so that the third feeding system 40 excites the first radiator 11 and the second radiator 12 to generate the above-mentioned first resonance mode a and the second resonance mode b and the third resonant mode c, the second feeding system 30 excites the first radiator 11 and the second radiator 12 to generate the above-mentioned fourth resonant mode d and the fifth resonant mode e, realizing the MHB+UHB frequency band, Wi- High efficiency and wide coverage of Fi 5G and/or Wi-Fi 6E frequency bands; in addition, the bandpass circuit also guides the second electromagnetic wave signal (WiFi 5G, 6E frequency band) and the third electromagnetic wave signal (MHB+UHB frequency band) to the reference ground GND, in this
  • the second matching circuit M2 includes a first band-stop circuit 32 , a second band-stop circuit 33 and a second tuning circuit 34 sequentially connected between the second feeding point A2 and the second signal source 31 .
  • the first band rejection circuit 32 is used to filter the first electromagnetic wave signal, that is, the first band rejection circuit 32 is a band rejection circuit of LB to filter the electromagnetic wave signal in the LB frequency band.
  • the second band rejection circuit 33 is used to filter the third electromagnetic wave signal, that is, the second band rejection circuit 33 is a band rejection circuit of the MHB+UHB frequency band to filter the electromagnetic wave signal of the MHB+UHB frequency band.
  • the first band stop circuit 32 is used to not affect the first radiator 11 to generate the above-mentioned resonant mode under the excitation of the first feeding system 20, so as to form the above-mentioned current distribution, and further support the transmission and reception of the LB frequency band.
  • the second band stop circuit 33 is used to not affect the first resonant mode a, the second resonant mode b and the third resonant mode c generated by the third electromagnetic wave signal, so that the radiator 10 forms the first resonant mode a, the second resonant mode
  • the current distribution corresponding to the mode b and the third resonant mode c further supports the transmission and reception of the MHB+UHB frequency band.
  • the first band stop circuit 32 includes a sixth capacitor C6 , a seventh capacitor C7 and a fourth inductor L4 .
  • One end of the sixth capacitor C6 and one end of the fourth inductor L4 are both electrically connected to the second feeding point A2, the other end of the sixth capacitor C6 is electrically connected to one end of the seventh capacitor C7, and the other end of the fourth inductor L4 is electrically connected to the seventh capacitor C7.
  • the other end of the capacitor C7 and one end of the second band-stop circuit 33 realizes filtering of the first electromagnetic wave signal.
  • the first band stop circuit 32 may also be composed of two resonant elements, three resonant elements, four resonant elements, five resonant elements, and the like.
  • the resonant element is an inductor or a capacitor.
  • the second band stop circuit 33 includes an eighth capacitor C8 , a ninth capacitor C9 and a fifth inductor L5 .
  • One end of the eighth capacitor C8 and one end of the fifth inductor L5 are both electrically connected to the first band-stop circuit 32 .
  • one end of the eighth capacitor C8 and one end of the fifth inductor L5 are electrically connected to the other end of the fourth inductor L4.
  • the other end of the eighth capacitor C8 is electrically connected to one end of the ninth capacitor C9
  • the other end of the fifth inductor L5 is electrically connected to the other end of the ninth capacitor C9 and one end of the second tuning circuit 34 .
  • the above-mentioned second band blocking circuit 33 realizes filtering the second electromagnetic wave signal (WiFi 5G, 6E frequency band).
  • the first band stop circuit 32 may also be composed of two resonant elements, three resonant elements, four resonant elements, five resonant elements, and the like.
  • the resonant element is an inductor or a capacitor.
  • the above is a specific example of the first band-stop circuit 32 and a specific example of the second band-stop circuit 33 .
  • the specific example of the above-mentioned first band-stop circuit 32 can be matched with the second band-stop circuit 33 of other structures, and the above-mentioned specific example of the second band-stop circuit 33 can also be matched with the first band-stop circuit 32 of other structures.
  • the second tuning circuit 34 is used to tune the resonant frequency and bandwidth of the second electromagnetic wave signal (WiFi 5G, 6E frequency band).
  • the second tuning circuit 34 includes a sixth inductor L6 , a seventh inductor L7 and a tenth capacitor C10 .
  • One end of the sixth inductance L6 is electrically connected to the other end of the second band-stop circuit 33, the other end of the sixth inductance L6 is electrically connected to one end of the seventh inductance L7 and one end of the tenth capacitor C10, and the other end of the seventh inductance L7 is electrically connected to Referring to the ground GND, the other end of the tenth capacitor C10 is electrically connected to the second signal source 31 .
  • the current corresponding to the first feeding system 20 and the current of the third feeding system 40 are prevented from being grounded through the second matching circuit M2 , but let the current of the first feed system 20 drop to the ground through the first ground terminal 111, by setting the first band-pass circuit 23 and the second band-pass circuit 24 in the first matching circuit M1, so that the third feed system
  • the current of 40 is grounded at the first feed point A1 through the first band-pass circuit 23, and the current of the second feed system 30 is grounded at the first feed point A1 through the second band-pass circuit 24.
  • the above-mentioned covered LB frequency band is generated , and the first resonant mode a, the second resonant mode b and the third resonant mode c covering the MHB+UHB frequency band, and the fourth resonant mode d covering the Wi-Fi 5G and/or Wi-Fi 6E frequency band and Fifth resonance mode e.
  • the joint tuning of the first matching circuit M1, the second matching circuit M2, the third matching circuit M3, the first adjustment circuit T1 and the second adjustment circuit T2 can realize the LB frequency band + MHB frequency band + UHB frequency band + Wi-Fi 5G frequency band +
  • the multi-band wide coverage of the Wi-Fi 6E frequency band can not only guarantee the CA/ENDC of LB+MHB+UHB, but also maintain the resident status of Wi-Fi 5G and/or Wi-Fi 6E frequency band.
  • the LB+MHB+UHB frequency band mentioned in this application is a combined frequency band formed by the LB frequency band, the MHB frequency band and the UHB frequency band, that is, greater than 0 MHz and less than or equal to 6000 MHz.
  • FIG. 28 is an S-parameter curve diagram of the antenna module 100 in one state.
  • S1,1 is an S-parameter curve covering the LB frequency band (that is, the first electromagnetic wave signal).
  • S2,2 is an S-parameter curve covering the MHB+UHB frequency band (that is, the third electromagnetic wave signal).
  • S3,3 is the S-parameter curve covering the Wi-Fi 5G and/or Wi-Fi 6E frequency band (ie, the second electromagnetic wave signal).
  • S1,1, S2,2 and S3,3 it can be seen that the antenna module 100 provided by this application has good coverage in the LB frequency band + MHB frequency band + UHB frequency band + Wi-Fi 5G frequency band + Wi-Fi 6E frequency band breadth.
  • FIG. 29 is an S-parameter curve diagram of the antenna module 100 in one state.
  • S21, S31, and S23 are isolation curves between two different signal sources. It can be seen from Figure 29 that the S parameters between two adjacent signal sources are all below -15dB, indicating that there is a good isolation between two adjacent signal sources.
  • the antenna module 100 provided in this application is provided with a first feeding system 20, a second feeding system 30 and a third feeding system 40 on the mutually coupled first radiator 11 and second radiator 12, wherein,
  • the excitation current of the first feed system 20 forms a high-efficiency fundamental mode on the first radiator 11 to send and receive the first electromagnetic wave signal; by designing the first matching circuit M1, it is set to conduct the third electromagnetic wave signal (MHB +UHB frequency band) the first band-pass circuit 23, and the second band-pass circuit 24 that conducts the second electromagnetic wave signal (WiFi 5G, 6E frequency band) is set, wherein, the first band-pass circuit 23 and the second band-pass circuit 24 It can be the same circuit, so that the excitation current of the second feed system 30 and the excitation current of the third feed system 40 are all grounded through the first feed point A1 to form a specific current path to excite the first radiator 11 and
  • the second radiator 12 generates the first resonance mode a, the second resonance mode b, and the third resonance mode c that support the third electromagnetic wave signal
  • Regulating circuit T2 to achieve multi-band wide coverage in LB frequency band + MHB frequency band + UHB frequency band + Wi-Fi 5G frequency band + Wi-Fi 6E frequency band.
  • the common aperture technology is adopted to improve the antenna space utilization rate and effectively save the internal space of the mobile phone , which is conducive to better stacking of the whole machine; through multiple radiators 10, multi-mode simultaneous operation is realized, the bandwidth of the antenna is widened, and high isolation of each frequency band is realized by applying different matching circuit forms.
  • the above is the antenna module 100 provided in the first embodiment of the present application.
  • the antenna module 100 includes a first radiator 11 and a second radiator 12 coupled to each other, and electrically connects the first radiator 11 and the second radiator 12. of the three feed systems.
  • the antenna module 100 provided by the second embodiment of the present application will be illustrated below with reference to the accompanying drawings.
  • the antenna module 100 provided in this embodiment is based on the antenna module 100 provided in the first embodiment, and the antenna module 100 further includes a third radiator 13 .
  • the third radiator 13 is electrically connected to the third matching circuit M3.
  • the third radiator 13 is used for transmitting and receiving the fourth electromagnetic wave signal under the excitation of the third feeding system 40 .
  • the fourth electromagnetic wave signal is located within the UHB frequency range.
  • the fourth electromagnetic wave signal includes the N78 frequency band.
  • the effective electrical length of the third radiator 13 corresponds to the UHB frequency band, so that the third radiator 13 can generate at least one mode in the UHB frequency band, and then combined with the third feeding system 40 to excite the first radiator 11, A mode generated by the second radiator 12 in the UHB frequency band, so that the antenna module 100 generates at least two modes in the UHB frequency band, and the at least two modes have a certain distance to form wide coverage in the UHB frequency band, Improve the coverage of the antenna module 100 in the UHB frequency band.
  • the antenna form of the third radiator 13 may be the same as or different from the antenna forms of the first radiator 11 and the second radiator 12 .
  • the first radiator 11 and the second radiator 12 are metal frame 310 antennas, and the third radiator 13 can be arranged in the casing 300, on the one hand, it is convenient to be close to the third signal source 41 and reduce the feeding path , and also avoid mutual interference with the installation position of the second radiator 12.
  • the frequency band supported by the third radiator 13 is relatively high, the size of the third radiator 13 is relatively reduced, so the third radiator 13 is set The space occupied in the casing 300 is relatively small.
  • the third radiator 13 is a radiator of a flexible circuit board, or a radiator directly formed by laser, or a radiator of printing, and the like.
  • the third radiator 13 of the antenna module 100 is integrated into the flexible circuit board, or directly formed in the casing 300 by laser, or directly formed in the casing 300 by printing, so that the third radiator 13 is close to the first Three-feed system 40 .
  • the above design makes the thickness of the third radiator 13 relatively small, light and thin, forming a flexible and bendable form, so as to be installed in a narrow space or a curved space in the housing 300 and improve the device compactness in the electronic device 1000 .
  • the antenna module 100 further includes a fourth matching circuit M4.
  • One end of the fourth matching circuit M4 is electrically connected between the third matching circuit M3 and the third signal source 41 , and the other end of the fourth matching circuit M4 is electrically connected to the third radiator 13 .
  • the fourth matching circuit M4 is used for tuning the resonant frequency and bandwidth of the fourth electromagnetic wave signal.
  • FIG. 32 the equivalent antenna form of the third signal source 41 obtained when the second radiator 12 and the third radiator 13 are excited by the third feeding system 40 is shown in FIG. 32 .
  • the third signal source 41 excites the third radiator 13 to generate the tenth resonant mode j through the fourth matching circuit M4 and the third matching circuit M3 (the sixth resonant mode to the ninth resonant mode will be described later).
  • the tenth resonance mode j includes the 1/4 wavelength mode of the third radiator 13.
  • the first resonant mode a, the second resonant mode b, the third resonant mode c and the tenth resonant mode j form four resonant modes, so as to realize the full frequency coverage of the antenna module 100 in the MHB frequency band+UHB frequency band.
  • the present application does not specifically limit the structure of the fourth matching circuit M4.
  • the following examples illustrate several implementations.
  • the specific structure of the fourth matching circuit M4 includes but is not limited to the following implementations.
  • the fourth matching circuit M4 includes a seventeenth capacitor C17.
  • One end of the seventeenth capacitor C17 is electrically connected to the third signal source 41 , and the other end of the seventeenth capacitor C17 is electrically connected to the third radiator 13 .
  • the fourth matching circuit M4 includes a seventeenth capacitor C17 and an eighteenth capacitor C18.
  • One end of the seventeenth capacitor C17 is electrically connected to the third signal source 41, the other end of the seventeenth capacitor C17 is electrically connected to the third radiator 13 and one end of the eighteenth capacitor C18, and the other end of the eighteenth capacitor C18 is electrically connected to the reference Ground GND.
  • the fourth matching circuit M4 includes a seventeenth capacitor C17 and a fourteenth inductor L14.
  • One end of the seventeenth capacitor C17 is electrically connected to the third signal source 41, the other end of the seventeenth capacitor C17 is electrically connected to the third radiator 13 and one end of the fourteenth inductance L14, and the other end of the fourteenth inductance L14 is electrically connected to the reference Ground GND.
  • the fourth matching circuit M4 provided in the above embodiments can all realize the tuning of the resonant frequency and bandwidth of the fourth electromagnetic wave signal.
  • other resonant elements can also be added, and the resonant elements include capacitance or inductance. .
  • FIG. 37 is an S-parameter curve diagram of the antenna module 100 provided in the present application in one state.
  • S1,1 is the S-parameter curve covering the LB frequency band.
  • S2,2 is the S-parameter curve of the MHB+UHB frequency band.
  • S3,3 is the S-parameter curve covering Wi-Fi 5G and/or Wi-Fi 6E frequency bands. According to S1,1, S2,2 and S3,3, it can be seen that the antenna module 100 provided by this application has good coverage in the LB frequency band + MHB frequency band + UHB frequency band + Wi-Fi 5G frequency band + Wi-Fi 6E frequency band breadth.
  • FIG. 38 is an isolation curve of the antenna module 100 provided in the present application in one state.
  • S21, S31, and S23 are isolation curves between two different signal sources. It can be seen from the figure that the S parameters between two adjacent signal sources are all below -15dB, indicating that there is a good isolation between two adjacent signal sources.
  • FIG. 39 is an efficiency diagram of the antenna module 100 provided by the embodiment of the present application.
  • S01 and S02 are the efficiency curves with and without the third radiator 13 respectively.
  • the efficiency at the first point of the curve S01 and the second point of the curve S02 is about 3.95 GHz
  • the efficiency of the antenna module 100 with the third radiator 13 at about 3.95 GHz is greater than that of the antenna without the third radiator 13
  • the efficiency of the module 100 is around 3.95GHz.
  • the efficiency of the antenna module 100 with the third radiator 13 in the 3300-4100 MHz frequency band is greater than the efficiency of the antenna module 100 without the third radiator 13 in the 3300-4100 MHz frequency band. In other words, after the third radiator 13 is provided, the bandwidth increases, and the efficiency in the 3300-4100 MHz frequency band increases.
  • the present application also provides other implementation manners for realizing full frequency band coverage of the MHB frequency band+UHB frequency band, especially improving the coverage of the UHB frequency band.
  • the antenna module 100 provided by the third embodiment of the present application will be illustrated below with reference to the accompanying drawings.
  • the antenna module 100 provided in this embodiment is substantially the same as the antenna module 100 provided in the first embodiment, the main difference is that the second matching circuit M2 in the embodiment of the present application also includes a third band Pass circuit 35.
  • One end of the third bandpass circuit 35 is electrically connected to the second feeding point A2 or between the first bandstop circuit 32 and the second bandstop circuit 33 .
  • the other end of the third bandpass circuit 35 is electrically connected to the reference ground GND.
  • the third electromagnetic wave signal includes a mobile communication signal in a third frequency band.
  • the third frequency band belongs to the UHB frequency band.
  • the third frequency band includes the N78 frequency band.
  • the third band pass circuit 35 is used for conducting the mobile communication signal of the third frequency band to the reference ground GND.
  • the third bandpass circuit 35 realizes low impedance to the ground for mobile communication signals in the third frequency band, so as to obtain a corresponding equivalent antenna form as shown in FIG. 41 .
  • the third bandpass circuit 35 realizes the low impedance to the ground of the N78 frequency band, and realizes the broadband coverage requirement (3300-4100MHz) of the N78 frequency band.
  • the radiator 10 supports the sixth resonant mode f, the seventh resonant mode g, the eighth resonant mode h and the sixth resonant mode f under the excitation of the third feeding system 40.
  • the current of the sixth resonant mode f is at least distributed between the second coupling end 121 and the second grounding end 122 of the second radiator 12 .
  • the current corresponding to the sixth resonance mode f generated by the radiator 10 excited by the third feeding system 40 (referred to as the sixth resonance current in this application) is mainly distributed from the second coupling end 121 to the second coupling end 121 of the second radiator 12 .
  • the present application does not specifically limit the direction of the resonant current.
  • the sixth resonant current is mainly distributed between the second coupling end 121 of the second radiator 12 and the second grounding end 122, which means that the stronger current is distributed in the second coupling end 121 of the second radiator 12 Between the second ground terminal 122 , a small amount of first resonance current is distributed in the first radiator 11 due to the coupling effect between the first radiator 11 and the second radiator 12 .
  • the sixth resonance mode f includes the 1/4 wavelength mode of the second radiator 12 .
  • the sixth resonance mode f includes a 1/4 wavelength mode in which the sixth resonance current mainly operates from the second coupling end 121 to the second grounding end 122 of the second radiator 12 .
  • the 1/4 wavelength mode can be understood as the effective electrical length from the second coupled end 121 to the second ground end 122 of the second radiator 12 is about the medium wavelength corresponding to the central frequency of the resonant mode ( 1/4 times of the wavelength in the medium), this description is an easy-to-understand interpretation of the term, but it cannot be used as a limitation on the length of the second radiator 12 .
  • the resonant mode generated by the radiator 10 excited by the third feeding system 40 can also be a high-order mode in which the sixth resonant current mainly works on the second radiator 12, such as the 1/2 wavelength mode. mode, 3/4 wavelength mode, etc.
  • the current of the seventh resonant mode g is at least distributed between the first connection point B2 and the first coupling end 112 and between the second coupling end 121 and the third feeding point A3.
  • the current corresponding to the seventh resonant mode g generated by the radiator 10 excited by the third feeding system 40 (referred to as the seventh resonant current in this application) is mainly distributed between the first connection point B2 and the first coupling end 112 and Between the second coupling end 121 and the third feeding point A3, the present application does not specifically limit the direction of the resonant current.
  • the seventh resonant current is mainly distributed between the first connection point B2 and the first coupling end 112 and between the second coupling end 121 and the third feeding point A3, which means that the stronger current is distributed in the first Between the connection point B2 and the first coupling end 112 and between the second coupling end 121 and the third feeding point A3, it does not exclude that a small amount of seventh resonant current is distributed on other parts of the first radiator 11 and the second Other parts on the radiator 12.
  • the seventh resonance mode g includes a 1/4 wavelength mode between the first connection point B2 of the first radiator 11 and the first coupling end 112 .
  • the seventh resonant mode g includes a 1/4 wavelength mode in which the seventh resonant current mainly operates from the first connection point B2 of the first radiator 11 to the first coupling end 112 .
  • the 1/4 wavelength mode can be understood as the effective electrical length from the first connection point B2 of the first radiator 11 to the first coupling end 112 is about the medium wavelength corresponding to the center frequency of the resonant mode ( 1/4 times the wavelength in the medium), this description is an explanation for easy understanding of the term, but it cannot be used as a limitation of the length from the first connection point B2 of the first radiator 11 to the first coupling end 112 .
  • the resonance mode generated by the radiator 10 excited by the third feeding system 40 can also be a higher-order mode in which the seventh resonance current mainly works on the radiator 10, such as the 1/2 wavelength mode, 3/4 wavelength mode and so on.
  • the current of the eighth resonance mode h is at least distributed between the second coupling end 121 and the third feeding point A3.
  • the current corresponding to the eighth resonance mode h generated by the radiator 10 excited by the third feeding system 40 (referred to as the eighth resonance current in this application) is mainly distributed from the second coupling end 121 to the third coupling end 121 of the second radiator 12 .
  • the present application does not specifically limit the direction of the resonant current.
  • the eighth resonant current is mainly distributed between the second coupling end 121 of the second radiator 12 and the third feeding point A3, which means that the stronger current is distributed at the second coupling end of the second radiator 12 121 to the third feeding point A3, it is not ruled out that due to the coupling effect of the first radiator 11 and the second radiator 12, a small amount of eighth resonant current is distributed in the first radiator 11 and the second radiator 12 other locations.
  • the eighth resonance mode h includes a 1/4 wavelength mode between the second coupling end 121 of the second radiator 12 and the third feeding point A3.
  • the eighth resonance mode h includes a 1/4 wavelength mode in which the eighth resonance current mainly works from the second coupling end 121 of the second radiator 12 to the third feeding point A3.
  • the 1/4 wavelength mode can be understood as the effective electrical length from the second coupling end 121 of the second radiator 12 to the third feeding point A3 is approximately the medium wavelength corresponding to the center frequency of the resonant mode 1/4 times of (wavelength in the medium), this description is an explanation for easy understanding of the term, but it cannot be used as a limitation of the length from the second coupling end 121 of the second radiator 12 to the third feeding point A3.
  • the resonance mode generated by the radiator 10 excited by the third feeding system 40 can also be a high-order mode in which the eighth resonance current mainly works on the radiator 10, such as the 1/2 wavelength mode, 3/4 wavelength mode and so on.
  • the current of the ninth resonant mode i is distributed at least from the second feeding point A2 to the first coupling end 112 and between the second coupling end 121 and the third feeding point A3.
  • the current corresponding to the ninth resonant mode i generated by the radiator 10 excited by the third feeding system 40 (referred to as the ninth resonant current in this application) is mainly distributed from the second feeding point A2 to the first coupling end 112 and the second feeding point A2.
  • the present application does not specifically limit the direction of the resonant current.
  • the ninth resonant current is mainly distributed between the second feeding point A2 to the first coupling end 112 and between the second coupling end 121 and the third feeding point A3, which means that the stronger current is distributed in the second feeding point Between the electric point A2 and the first coupling end 112 and between the second coupling end 121 and the third feeding point A3, it is not excluded that a small amount of ninth resonant current is distributed in other positions of the first radiator 11 and the second radiator 12 other locations.
  • the ninth resonance mode i includes a 1/4 wavelength mode between the second feeding point A2 of the first radiator 11 and the first coupling end 112 .
  • the ninth resonant mode i includes a 1/4 wavelength mode in which the ninth resonant current mainly works from the second feeding point A2 of the first radiator 11 to the first coupling end 112 .
  • the 1/4 wavelength mode can be understood as the effective electrical length from the second feeding point A2 of the first radiator 11 to the first coupling end 112 is about the medium wavelength corresponding to the center frequency of the resonant mode 1/4 times of (the wavelength in the medium), this description is an explanation for the easy understanding of the term, but it cannot be used as a limitation of the length from the second feeding point A2 of the first radiator 11 to the first coupling end 112 .
  • the resonance mode generated by the radiator 10 excited by the third feeding system 40 can also be a high-order mode in which the ninth resonance current mainly works on the radiator 10, such as the 1/2 wavelength mode, 3/4 wavelength mode and so on.
  • the third band-pass circuit 35 By setting the third band-pass circuit 35 to be electrically connected to the second feed point A2, and setting the third band-pass circuit 35 to conduct the mobile communication signal of the third frequency band to the reference ground GND, and setting the first band-pass circuit 23 in combination with the above It is electrically connected to the first feed point A1, and the first bandpass circuit 23 is set to conduct the mobile communication signal of the third frequency band to the reference ground GND, so that the mobile communication signal of the third frequency band can pass through the first feed point A1 , the first bandpass circuit 23 to the reference ground GND, can also go to the reference ground GND through the second feed point A2, the third bandpass circuit 35, increase the return path; through the above-mentioned for the third electromagnetic wave signal (MHB+UHB frequency band ) current path planning, so that the third feeding system 40 excites the first radiator 11 and the second radiator 12 to generate the above-mentioned sixth resonance mode f, seventh resonance mode g, eighth resonance mode h and ninth resonance mode i, the third feeding system
  • the third bandpass circuit 35 constitutes the band-stop characteristic of the mobile communication signal of the third frequency band, so as to filter the mobile communication signal of the third frequency band , to support the second signal source 31 to send and receive the second electromagnetic wave signal (WiFi 5G, 6E frequency band).
  • the sequence of the wavelength modes of the sixth resonant mode f, the seventh resonant mode g, the eighth resonant mode h and the ninth resonant mode i is determined according to the length of the radiator 10 where each resonant current mainly works.
  • the sixth resonant mode f, the seventh resonant mode g, the eighth resonant mode h and the ninth resonant mode i is a 1/4 wavelength mode, wherein the 1/4 wavelength mode is also called the fundamental mode, and the fundamental mode is a high-efficiency mode, which can achieve high efficiency and wide coverage in the MHB+UHB frequency band.
  • the third bandpass circuit 35 includes one or more resonant elements, which are capacitors or inductors. For the combination of resonant elements, refer to the combination in Fig. 11 to Fig. 18 .
  • the specific structure of the third bandpass circuit 35 will be illustrated below with reference to the accompanying drawings. Of course, the specific structure of the third bandpass circuit 35 includes but not limited to the following embodiments.
  • the third bandpass circuit 35 includes an eleventh capacitor C11 , an eighth inductor L8 and a ninth inductor L9 .
  • One end of the eleventh capacitor C11 and one end of the ninth inductor L9 are both electrically connected to the second feeding point A2.
  • the other end of the eleventh capacitor C11 is electrically connected to one end of the eighth inductor L8.
  • the other end of the eighth inductor L8 and the ninth inductor L9 are both electrically connected to the reference ground GND.
  • the third bandpass circuit 35 is electrically connected to the second feeding point A2 or electrically connected to the first bandstop circuit 32 and the second bandstop circuit 33 between.
  • the third bandpass circuit 35 includes a twelfth capacitor C12 and a tenth inductor L10.
  • One end of the twelfth capacitor C12 is electrically connected to the second feeding point A2.
  • the other end of the twelfth capacitor C12 is electrically connected to the tenth inductor L10.
  • the other end of the tenth inductor L10 is electrically connected to the reference ground GND.
  • the third bandpass circuit 35 may also be composed of two resonant elements, three resonant elements, four resonant elements, five resonant elements, and the like.
  • the resonant element is an inductor or a capacitor.
  • the multiple functions of LB+MHB+UHB+WIFI 5G+Wi-Fi 6E can be realized.
  • the wide coverage of the frequency band can not only guarantee the CA/ENDC of LB+MHB+UHB, but also maintain the resident status of WIFI 5G+Wi-Fi 6E, and also realize the coverage of UHB-N78 dual-band wide frequency band (3300 ⁇ 4100MHz).
  • FIG. 47 is an S-parameter curve diagram of the antenna module 100 in one of the states provided by the embodiment of the present application.
  • S1,1 is the S-parameter curve covering the LB frequency band.
  • S2,2 is the S-parameter curve of the MHB+UHB frequency band.
  • S3,3 is the S-parameter curve covering Wi-Fi 5G and/or Wi-Fi 6E frequency bands. According to S1,1, S2,2 and S3,3, it can be seen that the antenna module 100 provided by this application has good coverage in the LB frequency band + MHB frequency band + UHB frequency band + Wi-Fi 5G frequency band + Wi-Fi 6E frequency band breadth.
  • FIG. 48 is an isolation curve diagram of the antenna module 100 in one of the states provided by the embodiment of the present application.
  • S21, S31, and S23 are isolation curves between two different signal sources. It can be seen from the figure that the S parameters between two adjacent signal sources are all below -15dB, indicating that there is a good isolation between two adjacent signal sources.
  • FIG. 49 is an efficiency diagram of the antenna module 100 provided by the embodiment of the present application.
  • S03 and S04 are respectively the efficiency curves with the third bandpass circuit 35 and without the third bandpass circuit 35 .
  • the antenna module 100 provided with the third bandpass circuit 35 has two resonances, and the bandwidth is increased.
  • the efficiency at the first point of the curve S03 and the second point of the curve S04 is about 4GHz, and the efficiency of the antenna module 100 with the third bandpass circuit 35 at about 4GHz is greater than that of the antenna without the third bandpass circuit 35
  • the efficiency of the module 100 is around 4GHz.
  • the efficiency of the antenna module 100 with the third bandpass circuit 35 in the 3300-4100 MHz frequency band is greater than the efficiency of the antenna module 100 without the third bandpass circuit 35 in the 3300-4100 MHz frequency band.
  • the bandwidth increases, and the efficiency in the 3300-4100 MHz frequency band increases.
  • the antenna module 100 provided in the embodiment of the present application is provided with a first feeding system 20 , a second feeding system 30 and a third feeding system 40 on the mutually coupled first radiator 11 and second radiator 12 , Among them, the excitation current of the first feeding system 20 forms a high-efficiency fundamental mode on the first radiator 11 to send and receive the first electromagnetic wave signal; by designing the first matching circuit M1, it is set to conduct the third electromagnetic wave signal (MHB+UHB frequency band) the first band-pass circuit 23, and the second band-pass circuit 24 that conducts the second electromagnetic wave signal (WiFi 5G, 6E frequency band) is set, wherein, the first band-pass circuit 23 and the second band-pass circuit
  • the circuit 24 can be the same circuit, and the second matching circuit M2 is designed to conduct the mobile communication signal of the third frequency band, so that the excitation current of the second feeding system 30 goes to the ground through the first feeding point A1, and the second The excitation current of the three-feed system 40 goes to the ground through the first feed point A1 and the second feed point
  • the third radiator 13 and the fourth matching circuit M4 can be electrically connected to the third feeding system 40 .
  • An electronic device 1000 provided in this application includes the antenna module 100 described in any one of the foregoing implementation manners.
  • the above-mentioned antenna module 100 is disposed in the electronic device 1000 , and the electronic device 1000 is taken as a mobile phone as an example.
  • the present application does not limit the specific position where the radiator 10 of the antenna module 100 is installed in the electronic device 1000 .
  • the radiator 10 of the antenna module 100 is integrated in the housing 300 , or is disposed on the surface of the housing 300 , or is disposed in a space surrounded by the housing 300 .
  • the first feeding system 20 , the second feeding system 30 and the third feeding system 40 are disposed on the circuit board of the electronic device 1000 .
  • the molding manner of the radiator 10 in the electronic device 1000 includes but not limited to the following embodiments.
  • the radiator 10 is integrated with the frame 310 of the casing 300 .
  • the casing 300 of the electronic device 1000 has a conductive frame 310 (eg, a metal frame 310 ).
  • At least part of the first radiator 11 and at least part of the second radiator 12 of the antenna module 100 are integrated with the conductive frame 310 .
  • the frame 310 is made of metal.
  • the radiator 10 and the frame 310 are integrated into one body.
  • the coupling gap 113 between the radiators 10 is filled with insulating material.
  • the radiator 10 can also be integrated with the rear cover 320 . In other words, the radiator 10 is integrated as a part of the casing 300 .
  • the radiator 10 is formed on the surface of the frame 310 (for example, the inner surface or the outer surface of the frame 310 ).
  • the basic form of the radiator 10 includes but is not limited to the chip radiator 10 formed on the inner surface of the frame 310 by laser direct structuring (Laser Direct Structuring, LDS), printing direct structuring (Print Direct Structuring, PDS) and other processes.
  • the material of the frame 310 can be a non-conductive material (non-shielding material for electromagnetic wave signals, or a wave-transparent structure).
  • the radiator 10 can also be disposed on the surface of the rear cover 320 .
  • the radiator 10 is disposed on a flexible circuit board, a rigid circuit board or other carrier boards.
  • the radiator 10 can be integrated on a flexible circuit board, and the flexible circuit board can be pasted on the inner surface of the middle frame 340 through glue or the like.
  • the material of the part of the frame 310 corresponding to the radiator 10 can be non-conductive material.
  • the radiator 10 can also be disposed on the inner surface of the rear cover 320 .
  • the first radiator 11 is integrated with the metal frame 310
  • the second radiator 12 is integrated with the metal frame 310 .
  • the third radiator 13 of the antenna module 100 is located in the casing 300 .
  • the third radiator 13 of the antenna module 100 is a flexible circuit board radiator, or a laser direct forming radiator, or a printed radiator, and the like.
  • the third radiator 13 of the antenna module 100 is integrated into the flexible circuit board, or directly formed in the casing 300 by laser, or directly formed in the casing 300 by printing, so that the third radiator 13 is close to the first Three-feed system 40 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请提供的一种天线模组及电子设备,辐射体包括第一辐射体及第二辐射体,第一辐射体与第二辐射体具有耦合缝隙。第一辐射体的第一接地端,第二辐射体的第二接地端皆电连接参考地。第一馈电系统用于激励辐射体收发第一电磁波信号。第一电磁波信号包括GPS信号、第一频段的移动通信信号中的至少一者。第二馈电系统用于激励辐射体收发第二电磁波信号。第二电磁波信号包括Wi-Fi信号。第三馈电系统用于激励辐射体收发第三电磁波信号。第三电磁波信号包括第二频段的移动通信信号,其中,第二频段的最小频率大于第一频段的最大频率。本申请提供了一种提高对于电磁波信号的覆盖率的天线模组及电子设备。

Description

天线模组及电子设备
本申请要求于2021年06月30日提交中国专利局、申请号为202110743205.9,申请名称为“天线模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线模组及电子设备。
背景技术
随着通信技术的发展,具有通信功能电子设备的普及度越来越高,且对于上网速度的要求越来越高。因此,如何提高对于电磁波信号的覆盖率,成为需要解决的技术问题。
发明内容
本申请提供了一种提高对于电磁波信号的覆盖率的天线模组及电子设备。
第一方面,本申请提供了一种天线模组,包括:
辐射体,包括第一辐射体及第二辐射体,所述第一辐射体具有第一接地端、第一耦合端以及位于所述第一接地端与所述第一耦合端之间且间隔设置的第一馈电点、第二馈电点,所述第二辐射体具有第二耦合端、第二接地端以及位于所述第二耦合端与所述第二接地端之间的第三馈电点,所述第一耦合端与所述第二耦合端之间具有耦合缝隙,所述第一接地端和所述第二接地端皆电连接参考地;
第一馈电系统,电连接所述第一馈电点,所述第一馈电系统用于激励所述辐射体收发第一电磁波信号,所述第一电磁波信号包括GPS信号、第一频段的移动通信信号中的至少一者;
第二馈电系统,电连接所述第二馈电点,所述第二馈电系统用于激励所述辐射体收发第二电磁波信号,所述第二电磁波信号包括Wi-Fi信号;及
第三馈电系统,电连接所述第三馈电点,所述第三馈电系统用于激励所述辐射体收发第三电磁波信号,所述第三电磁波信号包括第二频段的移动通信信号,其中,所述第二频段的最小频率大于所述第一频段的最大频率。
第二方面,本申请提供的一种电子设备,包括所述的天线模组。
附图说明
图1是本申请第一种实施例提供的一种电子设备的结构示意图;
图2是图1所示的一种电子设备的局部分解示意图;
图3是本申请第一种实施例提供的天线模组的等效电路示意图;
图4是本申请第一种实施例提供的第一馈电系统收发第一电磁波信号的等效电路示意图;
图5是图4所示的第一馈电系统收发第一电磁波信号的S参数曲线图;
图6是本申请第一种实施例提供的第一辐射体上设有第一调节电路的等效电路图;
图7是本申请第一种实施例提供的第一调节电路与第一匹配电路形成并位的结构示意图;
图8是本申请第一种实施例提供的一种第一匹配电路的结构示意图;
图9是本申请第一种实施例提供的第一调节电路与第一匹配电路形成串位的结构示意图;
图10是本申请第一种实施例提供的第一调节电路通过调节第一电磁波信号的S参数曲线图;
图11是本申请实施例提供的第一种滤波电路的结构示意图;
图12是本申请实施例提供的第二种滤波电路的结构示意图;
图13是本申请实施例提供的第三种滤波电路的结构示意图;
图14是本申请实施例提供的第四种滤波电路的结构示意图;
图15是本申请实施例提供的第五种滤波电路的结构示意图;
图16是本申请实施例提供的第六种滤波电路的结构示意图;
图17是本申请实施例提供的第七种滤波电路的结构示意图;
图18是本申请实施例提供的第八种滤波电路的结构示意图;
图19是图3所示的天线模组中设有第一带通电路的结构示意图;
图20是图19所示的天线模组中第三馈电系统收发第三电磁波信号的等效电路图;
图21是图20所示的第三馈电系统收发第三电磁波信号的S参数曲线图;
图22是本申请实施例提供的一种第三匹配电路的结构示意图;
图23是图3所示的天线模组中设有第二带通电路的结构示意图;
图24是本申请第一种实施例提供的第一匹配电路设有第一带通电路的结构示意图;
图25是图23所示的第二馈电系统收发第二电磁波信号的等效电路示意图;
图26是图25所示的第二馈电系统收发第二电磁波信号的S参数曲线图;
图27是本申请第一种实施例提供的一种第二匹配电路的结构示意图;
图28是本申请第一种实施例提供的第一馈电系统收发第一电磁波信号、第二馈电系统收发第二电磁波信号及第三馈电系统收发第三电磁波信号的S参数曲线图;
图29是本申请第一种实施例提供的第一信号源、第二信号源及第三信号源的隔离度曲线图;
图30是本申请第二种实施例提供的天线模组的等效电路示意图;
图31是图30所示的天线模组设有第四匹配电路的等效电路示意图;
图32是图31所示的天线模组中第三馈电系统收发第三电磁波信号的等效电路示意图;
图33是图32所示的天线模组中第三馈电系统收发第三电磁波信号的S参数曲线图;
图34是图32所示的第一种第三匹配电路和第四匹配电路的电路示意图;
图35是图32所示的第二种第三匹配电路和第四匹配电路的电路示意图;
图36是图32所示的第三种第三匹配电路和第四匹配电路的电路示意图;
图37是本申请第二种实施例提供的第一馈电系统收发第一电磁波信号、第二馈电系统收发第二电磁波信号及第三馈电系统收发第三电磁波信号的S参数曲线图;
图38是本申请第二种实施例提供的第一信号源、第二信号源及第三信号源的隔离度曲线图;
图39是本申请实施例提供的未设置第三辐射体与设有第三辐射体的效率曲线图;
图40是本申请第三种实施例提供的天线模组的等效电路示意图;
图41是图40所示的天线模组中第三馈电系统收发第三电磁波信号的等效电路图;
图42是图41所示的天线模组中第三馈电系统收发第三电磁波信号的S参数曲线图;
图43是图40所示的天线模组中的第一种第三带通电路的结构示意图;
图44是本申请第三种实施例提供的第一馈电系统收发第一电磁波信号、第二馈电系统收发第二电磁波信号及第三馈电系统收发第三电磁波信号的S参数曲线图;
图45是图40所示的天线模组中的第一种设有第三带通电路的第二匹配电路的结构示意图;
图46是图40所示的天线模组中的第二种设有第三带通电路的第二匹配电路的结构示意图;
图47是本申请第三种实施例提供的第一馈电系统收发第一电磁波信号、第二馈电系统收发第二电磁波信号及第三馈电系统收发第三电磁波信号的S参数曲线图;
图48是本申请第三种实施例提供的第一信号源、第二信号源及第三信号源的隔离度曲线图;
图49是本申请实施例提供的未设置第三带通电路与设有第三带通电路的效率曲线图;
图50是本申请实施例提供的第一辐射体、第二辐射体、第三辐射体设于电子设备内的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。此外,在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参照图1,图1为本申请实施例提供的一种电子设备1000的结构示意图。电子设备1000包括天线模组100。天线模组100用于收发电磁波信号,以实现电子设备1000的通信功能。本申请对于天线模组100在电子设备1000上的位置不做具体的限定,图1只是一种示例。电子设备1000还包括相互盖合连接的显示屏200及壳体300。天线模组100可设于电子设备1000的壳体300内部、或部分与壳体300集成为一体、或部分设于壳体300外。图1中天线模组100的辐射体与壳体300集成为一体。当然,天线模组100还可以设于电子设备1000的可伸缩组件上,换言之,天线模组100的至少部分还能够随着电子设备1000的可伸缩组件伸出电子设备1000之外,及随着可伸缩组件缩回至电子设备1000内;或者,天线模组100的整体长度随着电子设备1000的可伸缩组件的伸长而伸长。
电子设备1000包括不限于为电话、电视、平板电脑、手机、照相机、个人计算机、笔记本电脑、车载设备、耳机、手表、可穿戴设备、基站、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备。本申请中以电子设备1000为手机为例,其他的设备可参考本申请中的具体描述。
为了便于描述,以电子设备1000处于图1中的视角为参照,电子设备1000的宽度方向定义为X轴方向,电子设备1000的长度方向定义为Y轴方向,电子设备1000的厚度方向定义为Z轴方向。X轴方向、Y轴方向及Z轴方向两两垂直。其中,箭头所指示的方向为正向。
请参阅图2,壳体300包括边框310及后盖320。边框310内通过注塑形成中板330,中板330上形成多个用于安装各种电子器件的安装槽。中板330与边框310一起成为电子设备1000的中框340。显示屏200、中框340及后盖320盖合后在中框340的两侧皆形成收容空间。边框310的一侧(例如后侧)围接于后盖320的周沿,边框310的另一侧(例如前侧)围接于显示屏200的周沿。电子设备1000还包括设于收容空间内的电池、摄像头、麦克风、受话器、扬声器、人脸识别模组、指纹识别模组等等能够实现手机的基本功能的器件,在本实施例中不再赘述。
以下结合附图对于本申请提供的天线模组100进行具体的说明,当然,本申请提供的天线模组100包括但不限于以下的实施方式。
请参阅图3,天线模组100至少包括辐射体10、第一馈电系统20、第二馈电系统30及第三馈电系统40。
辐射体10至少包括第一辐射体11及第二辐射体12。
请参阅图3,第一辐射体11具有第一接地端111和第一耦合端112,以及位于第一接地端111和第一耦合端112之间且间隔设置的第一馈电点A1、第二馈电点A2。其中,第一馈电点A1位于第二馈电点A2与第一接地端111之间。图3所示的第一辐射体11仅仅为一种示例,并不能对本申请提供的第一辐射体11的形状造成限定。第一接地端111与第一耦合端112为呈直线条形的第一辐射体11的相对两端。在其他实施方式中,第一辐射体11呈弯折状,第一接地端111和第一耦合端112可不沿直线方向相对,但第一接地端111和第一耦合端112为第一辐射体11的两个末端。
请参阅图3,第二辐射体12具有第二耦合端121和第二接地端122,以及位于第二耦合端121和第二 接地端122之间的第三馈电点A3。第二耦合端121与第一耦合端112之间存在耦合缝隙113。第一辐射体11与第二辐射体12能够通过耦合缝隙113产生容性耦合。图3所示的第二辐射体12仅仅为一种示例,并不能对本申请提供的第二辐射体12的形状造成限定。第二耦合端121及第二自由端122为第二辐射体12的两个末端。可选的,第一辐射体11与第二辐射体12可沿直线排列或大致沿直线排列(即在设计过程中具有较小的公差)。当然,在其他实施方式中,第一辐射体11与第二辐射体12还可在延伸方向上错开设置,以形成避让空间等。
请参阅图3,第一耦合端112与第二耦合端121相对且间隔设置。耦合缝隙113为第一辐射体11与第二辐射体12之间的断缝,例如,耦合缝隙113的宽度可以为0.5~2mm,但不限于此尺寸。第一辐射体11和第二辐射体12可看作为辐射体10被耦合缝隙113隔断而形成的两个部分。
第一辐射体11与第二辐射体12通过耦合缝隙113容性耦合。其中,“容性耦合”是指,第一辐射体11与第二辐射体12之间产生电场,第一辐射体11的信号能够通过电场传递至第二辐射体12,第二辐射体12的信号能够通过电场传递至第一辐射体11,以使第一辐射体11与第二辐射体12即使在不直接接触或不直接连接的状态下也能够实现电信号导通。
可以理解的,本申请对于第一辐射体11、第二辐射体12的形状、构造不做具体的限定,第一辐射体11、第二辐射体12的形状皆包括但不限于条状、片状、杆状、涂层、薄膜等。当第一辐射体11及第二辐射体12皆呈条状时,本申请对于第一辐射体11、第二辐射体12的延伸轨迹不做限定,故第一辐射体11、第二辐射体12皆可呈直线、曲线、多段弯折等轨迹延伸。上述的辐射体10在延伸轨迹上可为宽度均匀的线条,也可以为宽度渐变、设有加宽区域等宽度不等的条形。
可选的,辐射体10的材质为导电材质,具体材质包括但不限于为铜、金、银等金属,或铜、金、银相互形成的合金,或铜、金、银与其他材料形成的合金;石墨烯、或由石墨烯与其他材料结合形成的导电材料;氧化锡铟等氧化物导电材料;碳纳米管及聚合物形成混合材料等等。
第一接地端111和第二接地端122皆电连接参考地GND。本申请所述的参考地GND为参考地系统。参考地系统可以为一个结构,也可以是多个相互独立但相互电连接所述结构。第一接地端111和第二接地端122分别电连接于一个参考地GND结构的不同位置,或两个相互电连接且从物理结构上为相互独立的两个结构,其电连接方式包括但不限于直接焊接、或通过同轴线、微带线、导电弹片、导电胶等方式间接电连接。
本申请提供的参考地GND可设于天线模组100内,或设于天线模组100外(例如电子设备1000内、或电子设备1000的电子器件内)可选的,天线模组100自身具有参考地GND。该参考地GND的具体形式包括但不限于金属导电板件、成型于柔性电路板内部、硬质电路板中的金属导电层等。当天线模组100设于电子设备1000内时,天线模组100的参考地GND电连接至电子设备1000的参考地。再可选的,天线模组100本身不具有参考地GND,天线模组100的第一接地端111和第二接地端122通过直接电连接或通过导电件间接电连接至电子设备1000的参考地或电子设备1000内的电子器件的参考地。本实施例中,天线模组100设于电子设备1000,电子设备1000为手机,电子设备1000的参考地为手机中板330的镁铝金属合金板。天线模组100的第一接地端111和第二接地端122电连接至镁铝金属合金板。后续天线模组100的其他结构电连接参考地GND,可参考上述的任意一种电连接至参考地GND的实施方式。
第一馈电系统20的一端电连接第一辐射体11的第一馈电点A1。第一馈电系统20用于激励辐射体10收发第一电磁波信号。第一电磁波信号包括GPS信号、第一频段的移动通信信号等中的至少一者。换言之,第一电磁波信号包括GPS频段,例如GPS-L5频段;或者,第一电磁波信号包括第一频段的移动通信信号,其中,第一频段包括但不限于为低频(LB)频段;或者,第一电磁波信号包括第一频段的移动通信信号和GPS频段。可选的,第一馈电系统20包括第一匹配电路M1及第一信号源21。其中,第一信号源21的一端电连接第一匹配电路M1的一端,第一匹配电路M1的另一端电连接第一辐射体11的第一馈电点A1。第一信号源21包括但不限于为射频收发芯片或电连接射频收发芯片的馈电部。第一匹配电路M1可包括电容器件、电感器件等。可选的,第一匹配电路M1还包括开关器件。第一匹配电路M1的具体结构和功能在后续进行具体的说明。
第二馈电系统30电连接第一辐射体11的第二馈电点A2。第二馈电系统30用于激励辐射体10收发第二电磁波信号。第二电磁波信号包括Wi-Fi信号。第一馈电系统20与第二馈电系统30为不同功能(或者说不同通信协议)的馈电系统。举例而言,第一馈电系统20包括GPS芯片及移动通信芯片(例如蜂窝基带芯片)。第二馈电系统30包括Wi-Fi芯片,以控制Wi-Fi信号的收发。第二馈电系统30具有滤波电路,用于通过Wi-Fi信号。
可选的,第一馈电系统20和第二馈电系统30皆电连接第一辐射体11。换言之,第一辐射体11为第一电磁波信号的收发和第二电磁波信号的收发皆做出贡献。第二馈电系统30与第一馈电系统20的结构相似。可选的,第二馈电系统30包括第二匹配电路M2及第二信号源31。其中,第二信号源31的一端电连接第二匹配电路M2的一端,第二匹配电路M2的另一端电连接第一辐射体11的第二馈电点A2。第二信号源31包括但不限于为射频收发芯片或电连接射频收发芯片的馈电部。第二匹配电路M2可包括电容器件、电感器件等。可选的,第二匹配电路M2还包括开关器件。第二匹配电路M2的具体结构和功能在后续进行具体的说明。
第三馈电系统40电连接第二辐射体12的第三馈电点A3。第三馈电系统40用于激励辐射体10收发第三电磁波信号。第三电磁波信号包括第二频段的移动通信信号(移动通信信号可以为蜂窝移动网络信号)。其中,第二频段的最小频率大于第一频段的最大频率。示例性的,第一频段范围为(K1~K2),第二频段范围为(K3~K4),其中,K3的值大于K2的值。
可选的,第一馈电系统20和第三馈电系统40皆具有移动通信芯片,以控制移动通信信号的收发。其 中,第三馈电系统40的滤波电路与第一馈电系统20的滤波电路不同,例如,第一馈电系统20的滤波电路用于通过第一频段的移动通信信号。第三馈电系统40的滤波电路用于通过第三频段的移动通信信号。故第一馈电系统20和第三馈电系统40控制辐射体10收发频段不同的第一电磁波信号和第三电磁波信号,以实现对于移动通信信号的不同频段的覆盖,增加对于移动通信信号全频段的覆盖率。
可选的,第三馈电系统40包括第三匹配电路M3及第三信号源41。其中,第三信号源41的一端电连接第三匹配电路M3的一端,第三匹配电路M3的另一端电连接第二辐射体12的第三馈电点A3。第三信号源41包括但不限于为射频收发芯片或电连接射频收发芯片的馈电部。第三匹配电路M3可包括电容器件、电感器件等。可选的,第三匹配电路M3还包括开关器件。第三匹配电路M3的具体结构和功能在后续进行具体的说明。
一般地,电磁波信号的频段与辐射体的长度一一对应,要实现本申请上述的第一频段的移动通信信号、第二频段的移动通信信号、GPS信号及Wi-Fi信号,则需要设置至少四个辐射体,四个辐射体的有效电长度分别与上述的四个信号的频段一一对应,而这四个辐射体皆设于内部空间有限的电子设备(例如手机)内时将占据着极大的空间,例如一个低频天线就需要占据手机边框的一大半的空间,如此,不利于电子设备内集成收发GPS信号、Wi-Fi信号、不同频段的移动通信信号的功能。
本申请通过设置第一辐射体11与第二辐射体12容性耦合、第一馈电系统20与第二馈电系统30皆电连接第一辐射体11、第三馈电系统40电连接第二辐射体12,以实现第一馈电系统20、第二馈电系统30及第三馈电系统40皆复用第一辐射体11,以及第二馈电系统30、第三馈电系统40复用第一辐射体11和第二辐射体12,一方面通过多个不同的馈电系统的共口径技术,提高天线空间利用率,天线模组100占据的空间小,天线模组100在电子设备1000上的堆叠尺寸小;另一方面能够实现对于第一频段的移动通信信号、第二频段的移动通信信号、GPS信号及Wi-Fi信号的覆盖的同时,还能够尽可能的减小辐射体10的数量和尺寸,利于集成于空间极其有限的电子设备1000中,再一方面,在第二馈电系统30、第三馈电系统40复用第一辐射体11和第二辐射体12的过程中,实现多模态同时工作,展宽的天线的带宽,进而提高天线模组100在Wi-Fi信号、移动通信信号全频段的覆盖率。
本申请提供的天线模组100可同时支持第一电磁波信号、第二电磁波信号及第三电磁波信号的收发,其中,本申请对于第一电磁波信号、第二电磁波信号及第三电磁波信号的具体的频段不做具体的限定。具体的,第一电磁波信号包括但不限于为GPS-L5频段、频率小于1000MHz的移动通信信号等中的至少一者。第二电磁波信号包括但不限于为Wi-Fi 5G(例如5150-5850MHz)、Wi-Fi 6E(例如5.925GHz~7.125GHz)信号等中的至少一者。第三电磁波信号包括但不限于为频率大于或等于1000MHz且小于或等于6000MHz的移动通信信号。其中,第一电磁波信号和第三电磁波信号中的移动通信信号包括4G移动通信信号和/或5G移动通信信号中的至少一者。
当然,天线模组100可只加载4G移动通信信号,或只加载5G移动通信信号,或还可以为同时加载4G移动通信信号与5G移动通信信号,即实现4G无线接入网与5G-NR的双连接(LTE NR Double Connect,ENDC)。当天线模组100单独加载4G移动通信信号或5G移动通信信号时,天线模组100所收发的频段包括多个载波(载波即特定频率的无线电波)聚合而成,即实现载波聚合(Carrier Aggregation,CA),以增加传输带宽,提升吞吐量,提升信号传输速率。
本申请中,定义频率小于1000MHz的4G移动通信信号或5G移动通信信号为LB频段(即Low Band的缩写,中文解释为低频),定义频率大于或等于1000MHz且小于或等于3000MHz的4G移动通信信号或5G移动通信信号为MHB频段(即Middle High Band的缩写,中文解释为中高频),定义频率大于3000MHz且小于或等于6000MHz的4G移动通信信号或5G移动通信信号为UHB频段(即Ultra High Band的缩写,中文解释为超高频)。
本申请中对于第一频段和第二频段不做具体的限定,本实施方式中,第一频段为LB频段,第二频段为MHB+UHB频段。其中,本申请所述的MHB+UHB频段为MHB频段和UHB频段形成的组合频段,即大于或等于1000MHz且小于或等于6000MHz。当然,在其他实施方式中,第一频段和第二频段皆为LB频段、或者第一频段和第二频段皆为MHB频段、或者第一频段和第二频段皆为UHB频段、或者第一频段为LB频段,且第二频段为MHB频段,或者第一频段为LB频段,且第二频段为UHB频段,或者第一频段为MHB频段,且第二频段为UHB频段。
本申请通过设计第一频段的移动通信信号为LB频段,及第二频段的移动通信信号为MHB+UHB频段,如此,第一馈电系统20和第三馈电系统40激励辐射体10可实现对于移动通信信号的低频段、中高频段及超高频段的覆盖,提高天线模组100在不同频段的覆盖,后续结合第一馈电系统20和第三馈电系统40中设置可调节频段移动的调节电路(包括开关选择电路或可变电容)对第一频段在LB频段的位置进行调节,对第二频段在MHB+UHB频段的位置进行调节,以使天线模组100可覆盖的频段增加,以提高移动通信信号的低频段、中高频段及超高频段的全频段覆盖率。
以下结合附图对于第一馈电系统20、第二馈电系统30及第三馈电系统40在工作时的天线原理进行举例说明。以下实施方式以第一电磁波信号为LB频段,第二电磁波信号为WiFi 5G/6E频段,第三电磁波信号为MHB+UHB频段为例进行举例。
以下结合附图对于第一馈电系统20在工作时的天线原理进行举例说明。
请参阅图4,图4是第一馈电系统20在工作时的天线原理图。第一馈电系统20激励第一辐射体11产生至少一个谐振模式。该谐振模式所支持的频段位于LB频段。
请参阅图5,第一馈电系统20激励第一辐射体11产生的谐振模式n对应的电流主要分布于第一辐射体11的第一接地端111至第一耦合端112之间。也可表述为,第一馈电系统20的激励信号在辐射体10上激励产生的电流密度主要分布于第一辐射体11的第一接地端111至第一耦合端112之间。需要说明的是,第一馈电系统20激励辐射体10产生的谐振模式对应的电流主要分布第一辐射体11的第一接地端111至第 一耦合端112之间是指,较强的电流分布于第一辐射体11的第一接地端111至第一耦合端112之间,并不排除由于第一辐射体11与第二辐射体12的耦合作用,第一馈电系统20的激励信号在第一辐射体11上激励产生的少量电流分布于第二辐射体12。本申请对于谐振电流的方向不做限定。
其中,谐振模式表征为天线模组100在谐振频率处及谐振频率附近具有较高的电磁波收发效率。该谐振频率为谐振模式的谐振频率,该谐振频率及其附近形成该谐振模式所支持或所覆盖的频段。可选的,在回波损耗曲线中,取回波损耗值的绝对值大于或等于5dB(仅仅为举例,并不能作为本申请对于较高的效率的回波损耗值的限制)为具有较高的电磁波收发效率的参考值。取一个谐振模式中回波损耗值的绝对值大于或等于5dB的频率的集合为该谐振模式所支持的频段。
可选的,第一馈电系统20激励第一辐射体11产生的谐振模式为谐振电流主要工作在第一辐射体11的第一接地端111至第一耦合端112的1/4波长模态。从一种便于理解角度说明,1/4波长模态可理解为第一辐射体11的第一接地端111至第一耦合端112的有效电长度约为谐振模式的中心频率对应的介质波长(在介质中的波长)的1/4倍,此描述为对于术语便于理解的解释,但不能作为第一辐射体11的第一接地端111至第一耦合端112的长度的限定。当然,在其他实施方式中,第一馈电系统20激励第一辐射体11产生的谐振模式还可以为谐振电流主要工作在第一辐射体11上的高次模态,例如1/2波长模态、3/4波长模态等等。
可选的,请参阅图6,天线模组100还包括第一调节电路T1。第一调节电路T1的一端电连接于第一辐射体11,第一调节电路T1的另一端电连接参考地GND。第一调节电路T1用于调节第一电磁波信号的频段。本申请对于第一调节电路T1电连接于第一辐射体11的位置不做具体的说明。可选的,定义第一辐射体11的第一接地端111与第一耦合端112之间具有用于电连接所述第一调节电路T1的第一调节点B1。
可选的,第一调节点B1靠近于第一辐射体11上的电流强点。例如,第一调节点B1与第一接地端111之间的距离大于第一调节点B1与第一耦合端112之间的距离。以便于第一调节电路T1对第一辐射体11所支持的频段的位置在一定范围内进行调节。
具体的,第一调节电路T1包括可变电容、多个开关选择电路中的至少一者。其中,开关选择电路包括开关与电感的组合,开关与电容的组合,开关与电感、电容的组合中的至少一者。第一调节电路T1通过控制开关的通断或调节可变电容切换不同的到地阻抗实现不同频段间的切换。
请参阅图7,第一调节电路T1包括单刀双掷开关51、电连接参考地GND的第一集总元件52及电连接参考地GND的第二集总元件53。其中,第一集总元件52、第二集总元件53皆包括电感、或电容、或电感与电容的组合等。上述的集总元件的电感、电容的组合可以是图11至图18的组合。
第一集总元件52与第二集总元件53对于第一电磁波信号(即LB频段)具有不同的到地阻抗。当然,单刀双掷开关51与两个集总元件52、53仅仅为举例说明,本申请并不限定为两个集总元件和单刀双掷开关,可以为两个独立的开关;此外,集总元件的数量可以为三个、四个等。
天线模组100还包括控制器(未图示),控制器电连接第一调节电路T1。控制器通过控制第一调节电路T1的开关切换至电连接不同的集总元件,以实现对于第一电磁波信号(即LB频段)的不同阻抗到地,进而实现对于第一电磁波信号(即LB频段)的频段的位置调节。例如,当切换的电感值越小时,第一电磁波信号(即LB频段)的频段朝向高频端偏移的越多;当切换的电容值越大时,第一电磁波信号(即LB频段)的频段朝向低频端偏移的越多。
当然,在其他实施方式,第一调节点B1为第一馈电点A1,第一调节电路T1的一端电连接第一馈电点A1,以减小第一辐射体11上的电连接点,在实际产品中,可减少电连接件例如弹片的数量。
进一步地,请参阅图4,第一调节电路T1为第一匹配电路M1的一部分(结合参考图8),如此,第一调节电路T1可在第一匹配电路M1的制备过程中制得,相对于第一调节电路T1独立设置,可减少第一辐射体11上的电连接点数量,实现电路的集中设置,还可以实现第一调节电路T1在第一匹配电路M1中的功能复用,例如第一调节电路T1中的某些电容或电感也可以用于第一匹配电路M1中的选频或调谐。第一调节电路T1可作为第一匹配电路M1的串位电路或并位电路。
请参阅图8,图8为第一调节电路T1作为第一匹配电路M1的并位电路的示意图。
第一调节电路T1的一端电连接于第一馈电点A1,第一调节电路T1的其他端电连接参考地GND。举例而言,第一调节电路T1包括四个开关(SW1-SW4)及四个调节支路(P1~P4),每个开关电连接一个调节支路。其中,第一个调节支路P1、第二调节支路P2及第三个调节支路P3皆为电连接参考地GND的电感,其中,不同的调节支路中的电感值不同。第四个调节支路P4为电连接参考地GND的电容。以上仅仅为第一调节电路T1的一种举例,其中,每个调节支路还可以参考图11至图18中的谐振元件的组合。
请参阅8,第一匹配电路M1还包括第一调谐电路22。第一调谐电路22的一端电连接第一馈电点A1,第一调谐电路22的另一端电连接于第一信号源21。第一调谐电路22用于调谐第一电磁波信号的谐振频点和频段宽度。
举例而言,请参阅8,第一调谐电路22包括第二电容C2(第一电容C1在后续进行介绍说明)、第三电容C3、第四电容C4、第五电容C5、第二电感L2(第一电感L1在后续进行介绍说明)及第三电感L3。第二电容C2的一端电连接第一馈电点A1,第二电容C2的另一端电连接于第三电容C3的一端,第三电容C3的另一端电连接第四电容C4的一端、第二电感L2的一端及第三电感L3的一端,第四电容C4的另一端电连接至参考地GND,第二电感L2的另一端电连接至参考地GND,第三电感L3的另一端电连接第一信号源21和第五电容C5的一端,第五电容C5的另一端电连接至参考地GND。以上仅仅为第一调谐电路22的一种举例,其中,第一调谐电路22中的谐振元件还可以参考图11至图18中的谐振元件的组合。
进一步地,第一匹配电路M1还包括对第二电磁波信号和第三电磁波信号(MHB+UHB频段)具有带阻特性的电路,实现过滤第二电磁波信号和第三电磁波信号(MHB+UHB频段)的作用,同时对第一电磁波信号没有影响,以使第一馈电系统20激励第一辐射体11收发第一电磁波信号。
请参阅图9,图9为第一调节电路T1作为第一匹配电路M1的并位电路示意图。第一调节电路T1是第一匹配电路M1的一部分。第一调节电路T1包括四个开关,其中,三个开关分别电连接三个调节支路,第四个开关将上述的三个开关皆与第一匹配电路M1中的电容串联。三个调节支路为三个不同的电感值的接地电感,通过切换四个开关,以形成不同的电容和电感的组合(即LC谐振电路),以形成对第一电磁波信号(即LB频段)不同的到地阻抗,实现第一电磁波信号(即LB频段)朝向低频端偏移或朝向高频端偏移。
请参阅图10,图10为第一调节电路T1对第一电磁波信号的不同频段的切换示意图。图10中以B5、B8、B28频段进行举例说明,当然,B5、B8、B28频段仅仅为对第一电磁波信号可在低频范围内朝向高频端偏移或朝向低频端偏移的举例,并不限定第一电磁波信号为B5频段、或B8频段、或B28频段。当然,本申请实施例还可以将第一电磁波信号调节至覆盖B20频段。由图10可知,通过设置第一调节电路T1可实现对于第一电磁波信号在低频范围内朝向高频端偏移或朝向低频端偏移。
通过在第一辐射体11上设置第一调节电路T1,以使第一调节电路T1对第一电磁波信号在不同的频段内进行切换,以提高对于低频段内的覆盖率,进而使得天线模组100可支持低频段的很多应用频段,进而支持不同地方的使用频段,天线模组100及天线模组100所在的电子设备1000可在全球内使用且支持不同运营商的移动通信信号。
当第一匹配电路M1内设有第一调节电路T1时,第一匹配电路M1的其他部分还可以包括上述的可变电容、多个开关选择电路等实现切换。当第一匹配电路M1不包括上述的第一调节电路T1时,第一匹配电路M1可包括上述的可变电容、多个开关选择电路等实现切换。第二匹配电路M2、第三匹配电路M3中也可以使用上述的可变电容、多个开关选择电路等实现切换。
本申请提供的匹配电路(例如第一匹配电路M1、第二匹配电路M2、第三匹配电路M3中的至少一者)具有电连接至参考地GND的选频滤波电路,以实现天线模组100的宽带匹配,与高隔离度。该选频滤波电路由一个谐振器件或多个谐振器件构成,其中,谐振器件为电容或电感。本申请对于谐振器件的数量不做限定。多个谐振器件中两两可通过串联或并联组合形成不同的谐振电路。以下结合附图对于两个谐振器件、三个谐振器件、四个谐振器件的几种组合进行举例,需要说明的是,以下的举例不能限定选频滤波电路为以下的谐振电路。以第一匹配电路M1的选频滤波电路为例进行说明,第二匹配电路M2、第三匹配电路M3的选频滤波电路可根据实际需要进行调整谐振器件的数量和电连接方式。
请参阅图11,第一匹配电路M1的选频滤波电路包括电感L00与电容C00串联形成的带通电路。
请参阅图12,第一匹配电路M1的选频滤波电路包括电感L00与电容C00并联形成的带阻电路。
请参阅图13,第一匹配电路M1的选频滤波电路包括电感L00、电容C01及电容C02形成的带通或带阻电路。电感L00与电容C01并联,且电容C02电连接电感L00与电容C01电连接的节点。
请参阅图14,第一匹配电路M1的选频滤波电路包括电容C00、电感L01及电感L02形成的带通或带阻电路。电容C00与电感L01并联,且电感L02电连接电容C00与电感L01电连接的节点。
请参阅图15,第一匹配电路M1的选频滤波电路包括电感L00、电容C01及电容C02形成的带通或带阻电路。电感L00与电容C01串联,且电容C02的一端电连接电感L00未连接电容C01的第一端,电容C02的另一端电连接电容C01未连接电感L00的一端。
请参阅图16,第一匹配电路M1的选频滤波电路包括电容C00、电感L01及电感L02形成的带通或带阻电路。电容C00与电感L01串联,电感L02的一端电连接电容C00未连接电感L01的一端,电感L02的另一端电连接电感L01未连接电容C00的一端。
请参阅图17,第一匹配电路M1的选频滤波电路包括电容C01、电容C02、电感L01及电感L02。电容C01与电感L01并联,电容C02与电感L02并联,且电容C02与电感L02并联形成的整体的一端电连接电容C01与电感L01并联形成的整体的一端。
请参阅图18,第一匹配电路M1的选频滤波电路包括电容C01、电容C02、电感L01及电感L02,电容C01与电感L01串联形成第一单元101,电容C02与电感L02串联形成第二单元102,且第一单元101与第二单元102并联。
以下结合附图对于第三馈电系统40在工作时的天线原理进行举例说明。
请参阅图19,第一辐射体11还具有第一连接点B2。第一连接点B2位于第一馈电点A1上,或第一连接点B2位于第一馈电点A1与第二馈电点A2之间。
请参阅图19,天线模组100还包括第一带通电路23。第一带通电路23的一端电连接于第一连接点B2,第一带通电路23的另一端电连接参考地GND。第一带通电路23用于将第三电磁波信号(MHB+UHB频段)导通至参考地GND,第一带通电路23实现对MHB+UHB频段到地的低阻抗。本申请所述的对某一频段呈低阻抗是指阻抗接近于零,或者说相当于短路的效果,即对该频段呈导通状态。第一带通电路23对MHB+UHB频段呈低阻抗到地,是指第一带通电路23将第一辐射体11上的MHB+UHB频段的信号导通至参考地GND,从而MHB+UHB频段的信号将不再或较少地经第一接地端111到地。
进一步地,第一带通电路23为第一匹配电路M1的一部分(结合参考图24)。第一连接点B2为第一馈电点A1。第一带通电路23的一端电连接第一馈电点A1,另一端电连接参考地GND。第一带通电路23将第三电磁波信号(MHB+UHB频段)导通至参考地GND,以形成如图20所示的等效天线形式图。当然,在其他实施方式中,第一带通电路23还可以与第一匹配电路M1并列电连接于第一馈电点A1。
请参阅图20,图20是第三馈电系统40在工作时的天线原理图。第三馈电系统40激励第一辐射体11及第二辐射体12产生至少三个谐振模式。所述的至少三个谐振模式所支持的频段位于MHB+UHB频段,例如图21所示。
请参阅图21,辐射体10(包括第一辐射体11和第二辐射体12)在第三馈电系统40的激励下支持第一谐振模式a、第二谐振模式b及第三谐振模式c。
其中,第一谐振模式a的电流至少分布于第二耦合端121至第二接地端122之间。具体的,第三馈电系统40激励辐射体10产生的第一谐振模式a对应的电流(本申请称为第一谐振电流)主要分布于第二辐射体12的第二耦合端121至第二接地端122之间,本申请对于谐振电流的方向不做具体的限定。需要说明的是,第一谐振电流主要分布第二辐射体12的第二耦合端121至第二接地端122之间是指,较强的电流分布于第二辐射体12的第二耦合端121至第二接地端122之间,并不排除由于第一辐射体11与第二辐射体12的耦合作用,少量的第一谐振电流分布于第一辐射体11。
第一谐振模式a包括第二辐射体12的1/4波长模态。具体的,第一谐振模式a包括第一谐振电流主要工作在第二辐射体12的第二耦合端121至第二接地端122的1/4波长模态。从一种便于理解角度说明,1/4波长模态可理解为第二辐射体12的第二耦合端121至第二接地端122的有效电长度约为谐振模式的中心频率对应的介质波长(在介质中的波长)的1/4倍,此描述为对于术语便于理解的解释,但不能作为第二辐射体12的长度的限定。当然,在其他实施方式中,第三馈电系统40激励辐射体10产生的谐振模式还可以为第一谐振电流主要工作在第二辐射体12上的高次模态,例如1/2波长模态、3/4波长模态等等。
其中,第二谐振模式b的电流至少分布于第一连接点B2至第一耦合端112之间以及第二耦合端121至第三馈电点A3之间。具体的,第三馈电系统40激励辐射体10产生的第二谐振模式b对应的电流(本申请称为第二谐振电流)主要分布于第一连接点B2至第一耦合端112之间以及第二耦合端121至第三馈电点A3之间,本申请对于谐振电流的方向不做具体的限定。需要说明的是,第二谐振电流主要分布第一连接点B2至第一耦合端112之间以及第二耦合端121至第三馈电点A3之间是指,较强的电流分布于第一连接点B2至第一耦合端112之间以及第二耦合端121至第三馈电点A3之间,并不排除少量的第二谐振电流分布于第一辐射体11上的其他部分以及第二辐射体12上的其他部分。
第二谐振模式b包括第一辐射体11的第一连接点B2至第一耦合端112之间的1/4波长模态。具体的,第二谐振模式b包括第二谐振电流主要工作在第一辐射体11的第一连接点B2至第一耦合端112的1/4波长模态。从一种便于理解角度说明,1/4波长模态可理解为第一辐射体11的第一连接点B2至第一耦合端112的有效电长度约为谐振模式的中心频率对应的介质波长(在介质中的波长)的1/4倍,此描述为对于术语便于理解的解释,但不能作为第一辐射体11的第一连接点B2至第一耦合端112的长度的限定。当然,在其他实施方式中,第三馈电系统40激励辐射体10产生的谐振模式还可以为第二谐振电流主要工作在辐射体10上的高次模态,例如1/2波长模态、3/4波长模态等等。
其中,第三谐振模式c的电流至少分布于第二辐射体12的第二耦合端121至第三馈电点A3之间。具体的,第三馈电系统40激励辐射体10产生的第三谐振模式c对应的电流(本申请称为第三谐振电流)主要分布于第二辐射体12的第二耦合端121至第三馈电点A3之间,本申请对于谐振电流的方向不做具体的限定。需要说明的是,第三谐振电流主要分布第二辐射体12的第二耦合端121至第三馈电点A3之间是指,较强的电流分布于第二辐射体12的第二耦合端121至第三馈电点A3之间,并不排除由于第一辐射体11与第二辐射体12的耦合作用,少量的第三谐振电流分布于第一辐射体11及第二辐射体12的其他位置。
第三谐振模式c包括第二辐射体12的第二耦合端121至第三馈电点A3之间的1/4波长模态。具体的,第三谐振模式c包括第三谐振电流主要工作在第二辐射体12的第二耦合端121至第三馈电点A3的1/4波长模态。从一种便于理解角度说明,1/4波长模态可理解为第二辐射体12的第二耦合端121至第三馈电点A3的有效电长度约为谐振模式的中心频率对应的介质波长(在介质中的波长)的1/4倍,此描述为对于术语便于理解的解释,但不能作为第二辐射体12的第二耦合端121至第三馈电点A3的长度的限定。当然,在其他实施方式中,第三馈电系统40激励辐射体10产生的谐振模式还可以为第三谐振电流主要工作在辐射体10上的高次模态,例如1/2波长模态、3/4波长模态等等。
通过设置第一带通电路23电连接于第一馈电点A1或电连接于第一馈电点A1与第二馈电点A2之间,并设置第一带通电路23对第三电磁波信号(MHB+UHB频段)导通至参考地GND,以使第三电磁波信号(MHB+UHB频段)在第一馈电点A1处经第一带通电路23回地,而不会影响到第一馈电系统20对于第一电磁波信号的收发;通过上述对于第三电磁波信号(MHB+UHB频段)的电流路径规划,以使第三馈电系统40激励第一辐射体11及第二辐射体12产生上述的第一谐振模式a、第二谐振模式b及第三谐振模式c。第三馈电系统40复用相互耦合的第一辐射体11和第二辐射体12以产生上述的三种谐振模式,例如从第二谐振模式b可以很明显地看出,第二谐振电流在第一辐射体11和第二辐射体12上皆形成电流分布(或者说是电流密度分布),且上述的三种谐振模式皆位于MHB+UHB频段,如此,第三电磁波信号在MHB+UHB频段形成相对较宽的带宽,提升天线模组100对于MHB+UHB频段的覆盖率。
第一谐振模式a、第二谐振模式b、第三谐振模式c的波长模态的先后顺序是根据各谐振电流主要工作的辐射体10长度而确定。通过第一谐振模式a、第二谐振模式b、第三谐振模式c的波长模态可以看出,第一谐振模式a、第二谐振模式b、第三谐振模式c皆为1/4波长模态,其中,1/4波长模态也称为基模,基模是高效率模态,可实现在MHB+UHB频段的高效率且广覆盖。
第三匹配电路M3用于调谐第三电磁波信号(MHB+UHB频段)的中心频率及频宽。以下结合附图对于本申请提供的第三匹配电路M3的结构进行举例说明。
请参阅图22,第三匹配电路M3包括第十一电感L11、第十二电感L12、第十三电感L13、第十三电容C13、第十四电容C14、第十五电容C15及第十六电容C16,第十一电感L11的一端电连接第三馈电点A3,第十一电感L11的另一端电连接第十二电感L12的一端、第十三电容C13的一端及第十四电容C14的一端,第十二电感L12的另一端、第十三电容C13的另一端皆电连接参考地,第十四电容C14的另一端电连接第十五电容C15的一端,第十五电容C15的另一端电连接第十三电感L13的一端及第三信号源41的一端,第十三电感L13的另一端电连接第十六电容C16的一端,第十六电容C16的另一端电连接参考地。通过设计上述的第三匹配电路M3,以调谐第三电磁波信号(MHB+UHB频段)的中心频率及频宽,以实现对于第一谐振模式a、第二谐振模式b、第三谐振模式c的谐振频率及频宽进行调谐,促进天线模组 100在MHB+UHB频段的广覆盖。
进一步地,请参阅图20,天线模组100还包括一端电连接参考地GND的第二调节电路T2,第二调节电路T2的另一端电连接第二辐射体12或电连接第三匹配电路M3。第二调节电路T2用于调节第三电磁波信号(MHB+UHB频段)的频段。第二调节电路T2与第一调节电路T1的功能相似。而且,第二调节电路T2的结构与第一调节电路T1的结构也相似,包括可变电容、多个开关选择电路中的至少一者。其中,开关选择电路可参考第一调节电路T1中的描述,在此不再赘述。
第二调节电路T2对于第三电磁波信号(MHB+UHB频段)的调节原理与第一调节电路T1对于第一电磁波信号的调节原理相同,通过设置第二调节电路T2,以使第二调节电路T2对第三电磁波信号(MHB+UHB频段)在不同的频段内进行切换,以提高对于MHB+UHB频段内的覆盖率,进而使得天线模组100可支持MHB+UHB频段的很多应用频段,进而支持不同地方的使用频段,天线模组100及天线模组100所在的电子设备1000可在全球内使用且支持不同运营商的移动通信信号。
以下结合附图对于第二馈电系统30在工作时的天线原理进行举例说明。
请参阅图23,第一辐射体11还具有第二连接点B3。第二连接点B3位于第一馈电点A1上,或第二连接点B3位于第一馈电点A1与第二馈电点A2之间。其中,结合到第三馈电系统40的工作原理中,第二连接点B3与第一连接点B2可以为相同的点或不同的两个点。
请参阅图23,天线模组100还包括第二带通电路24。第二带通电路24的一端电连接于第二连接点B3,第二带通电路24的另一端电连接参考地GND。第二带通电路24用于将第二电磁波信号(例如Wi-Fi5G和/或Wi-Fi 6E信号)导通至参考地GND,以实现对第二电磁波信号(例如Wi-Fi 5G和/或Wi-Fi 6E信号)到地的低阻抗。第二带通电路24对Wi-Fi 5G和/或Wi-Fi 6E频段呈低阻抗到地,是指第二带通电路24将第一辐射体11上的Wi-Fi 5G和/或Wi-Fi 6E频段的信号导通至参考地GND,从而Wi-Fi 5G和/或Wi-Fi6E频段的信号将不再或较少地经第一接地端111到地。
可选的,第一带通电路23与第二带通电路24可以为同一个电路或两个相互独立的电路。即使第一连接点B2与第二连接点B3为相同的点,第一带通电路23与第二带通电路24也可以为两个相互独立的电路。
具体的,请参阅图24,第一带通电路23与第二带通电路24中的至少一者包括第一电容C1和第一电感L1。第一电容C1的一端电连接第一馈电点A1,第一电容C1的另一端电连接第一电感L1的一端,第一电感L1的另一端电连接参考地GND。当然,在其他实施方式中,第一带通电路23和/或第二带通电路24还可以为3个谐振元件的组合,例如图13至图16的结构。第一带通电路23和/或第二带通电路24还可以为4个或5个或更多的谐振元件的组合。其中,谐振元件为电容或电感。
本实施方式中,第一连接点B2与第二连接点B3为同一点。第一带通电路23与第二带通电路24为同一个电路,该电路同时对Wi-Fi 5G+Wi-Fi 6E频段+MHB+UHB频段具有低阻抗到参考地GND的作用。例如,第一带通电路23与第二带通电路24为同一个电路,且该电路为第一电容C1和第一电感L1。第一电容C1的一端电连接第一馈电点A1,第一电容C1的另一端电连接第一电感L1的一端,第一电感L1的另一端电连接参考地GND。本申请以下的实施方式中以第一带通电路23与第二带通电路24为同一个电路进行举例说明,后续不再赘述。
当然,在其他实施方式中,第一带通电路23与第二带通电路24为不同的两个电路,且第一连接点B2与第二连接点B3为不同点或相同的点。
第一带通电路23、第二带通电路24中的至少一者为第一匹配电路M1的一部分。具体包括以下的几种情形:一是第一带通电路23为第一匹配电路M1的一部分,第二带通电路24与第一匹配电路M1并列连接第一辐射体11;二是第二带通电路24为第一匹配电路M1的一部分,第一带通电路23与第一匹配电路M1并列连接第一辐射体11;三是第一带通电路23、第二带通电路24为不同的电路且皆为第一匹配电路M1的一部分;四是第一带通电路23、第二带通电路24为同一个电路且为第一匹配电路M1的一部分。
本实施方式中,第二带通电路24为第一匹配电路M1的一部分。第二连接点B3为第一馈电点A1。第二带通电路24的一端电连接第一馈电点A1,另一端电连接参考地GND。第二带通电路24将第二电磁波信号导通至参考地GND,以形成如图25所示的等效天线形式图。
请参阅图25,图25是第二馈电系统30在工作时的天线原理图。第二馈电系统30激励第一辐射体11及第二辐射体12产生至少两个谐振模式。所述的至少两个谐振模式所支持的频段支持第二电磁波信号,本实施例以第二电磁波信号为Wi-Fi 5G和/或Wi-Fi 6E频段为例进行说明,例如图26所示。换言之,第二馈电系统30激励第一辐射体11及第二辐射体12产生至少两个谐振模式覆盖Wi-Fi 5G频段(例如5150-5850MHz);或者,第二馈电系统30激励第一辐射体11及第二辐射体12产生至少两个谐振模式覆盖Wi-Fi 6E频段(例如5.925GHz~7.125GHz);或者,第二馈电系统30激励第一辐射体11及第二辐射体12产生至少两个谐振模式共同覆盖Wi-Fi 5G和Wi-Fi 6E频段(例如5150-5850MHz、及5.925GHz~7.125GHz)。
请参阅图26,辐射体10(包括第一辐射体11和第二辐射体12)在第二馈电系统30的激励下支持第四谐振模式d及第五谐振模式e。
其中,第四谐振模式d的电流至少分布于第一辐射体11的第二馈电点A2至第一耦合端112之间。具体的,第二馈电系统30激励辐射体10产生的第四谐振模式d对应的电流(本申请称为第四谐振电流)主要分布于第一辐射体11的第二馈电点A2至第一耦合端112之间,本申请对于谐振电流的方向不做具体的限定。需要说明的是,第四谐振电流主要分布第一辐射体11的第二馈电点A2至第一耦合端112之间是指,较强的电流分布于第一辐射体11的第二馈电点A2至第一耦合端112之间,并不排除由于第一辐射体11与第二辐射体12的耦合作用,少量的第四谐振电流分布于第一辐射体11的其他位置或第二辐射体12上。
第四谐振模式d包括第一辐射体11的第二馈电点A2至第一耦合端112之间的1/4波长模态。第四谐振模式d包括第四谐振电流主要工作在第一辐射体11的第二馈电点A2至第一耦合端112的1/4波长模态。从一种便于理解角度说明,1/4波长模态可理解为第一辐射体11的第二馈电点A2至第一耦合端112的有 效电长度约为谐振模式的中心频率对应的介质波长(在介质中的波长)的1/4倍,此描述为对于术语便于理解的解释,但不能作为第一辐射体11的第二馈电点A2至第一耦合端112的长度的限定。当然,在其他实施方式中,第二馈电系统30激励辐射体10产生的谐振模式还可以为第四谐振电流主要工作在第一辐射体11、第二辐射体12上的高次模态,例如1/2波长模态、3/4波长模态等等。
其中,第五谐振模式e的电流至少分布于第二馈电点A2至第二接地端122之间。具体的,第二馈电系统30激励辐射体10产生的第五谐振模式e对应的电流(本申请称为第五谐振电流)主要分布于第二辐射体12的第二耦合端121至第二接地端122之间,本申请对于谐振电流的方向不做具体的限定。需要说明的是,第五谐振电流主要分布第二辐射体12的第二耦合端121至第二接地端122之间是指,较强的电流分布于第二辐射体12的第二耦合端121至第二接地端122之间,并不排除由于第一辐射体11与第二辐射体12的耦合作用,少量的第一谐振电流分布于第一辐射体11。
第五谐振模式e包括第二辐射体12的3/4波长模态。具体的,第五谐振模式e包括第五谐振电流主要工作在第二辐射体12的第二耦合端121至第二接地端122的3/4波长模态。从一种便于理解角度说明,3/4波长模态可理解为第二辐射体12的第二耦合端121至第二接地端122的有效电长度约为谐振模式的中心频率对应的介质波长(在介质中的波长)的3/4倍,此描述为对于术语便于理解的解释,但不能作为第二辐射体12的长度的限定。当然,在其他实施方式中,第二馈电系统30激励辐射体10产生的谐振模式还可以为第五谐振电流主要工作在第二辐射体12上的其他高次模态,例如1/2波长模态等等。
通过设置第二带通电路24电连接于第一馈电点A1,并设置第二带通电路24对第二电磁波信号(WiFi5G、6E频段)导通至参考地GND,以使第二电磁波信号(WiFi 5G、6E频段)在第一馈电点A1处经第二带通电路24回地,而不会影响到第一馈电系统20对于第一电磁波信号的收发;第一匹配电路M1能够实现对于通过上述对于第二电磁波信号(WiFi 5G、6E频段)的电流路径规划,以使第二馈电系统30激励第一辐射体11及第二辐射体12产生上述的第四谐振模式d及第五谐振模式e。第二馈电系统30复用相互耦合的第一辐射体11和第二辐射体12以产生上述的两种谐振模式,例如从第五谐振模式e可以很明显地看出,第五谐振电流在第一辐射体11和第二辐射体12上皆形成电流分布(或者说是电流密度分布),且上述的两种谐振模式皆覆盖Wi-Fi 5G和/或Wi-Fi 6E频段,如此,天线模组100在Wi-Fi 5G和/或Wi-Fi 6E频段形成相对较宽的带宽,提升天线模组100对于Wi-Fi 5G和/或Wi-Fi 6E频段的覆盖率。
第四谐振模式d及第五谐振模式e的波长模态的先后顺序是根据各模态所在的频率变化,通过第四谐振模式d及第五谐振模式e的波长模态可以看出,第四谐振模式d及第五谐振模式e皆工作在高效率模态,可实现在Wi-Fi 5G和/或Wi-Fi 6E频段的高效率且广覆盖。
进一步地,通过设置第一带通电路23与第二带通电路24为同一个电路,并为第一匹配电路M1的一部分,以使第一匹配电路M1能够实现对于通过上述对于第二电磁波信号(WiFi 5G、6E频段)、第三电磁波信号的电流路径规划,以使第三馈电系统40激励第一辐射体11及第二辐射体12产生上述的第一谐振模式a、第二谐振模式b及第三谐振模式c,第二馈电系统30激励第一辐射体11及第二辐射体12产生上述的第四谐振模式d及第五谐振模式e,实现对于MHB+UHB频段、Wi-Fi 5G和/或Wi-Fi 6E频段的高效率且广覆盖;此外,带通电路还将第二电磁波信号(WiFi 5G、6E频段)和第三电磁波信号(MHB+UHB频段)皆导向参考地GND,如此,使得第二电磁波信号(WiFi 5G、6E频段)和第三电磁波信号(MHB+UHB频段)对于第一电磁波信号(LB频段)的收发无影响。
以下结合具体的实施方式对于第二匹配电路M2的具体结构进行举例说明。
请参阅图27,第二匹配电路M2包括依次连接在第二馈电点A2与第二信号源31之间的第一带阻电路32、第二带阻电路33及第二调谐电路34。第一带阻电路32用于过滤第一电磁波信号,即第一带阻电路32为LB的带阻电路,以过滤LB频段的电磁波信号。第二带阻电路33用于过滤第三电磁波信号,即第二带阻电路33为MHB+UHB频段的带阻电路,以过滤MHB+UHB频段的电磁波信号。第一带阻电路32用于不影响第一辐射体11在第一馈电系统20的激励下产生如上述的谐振模式,以形成如上述的电流分布,进而支持LB频段的收发。第二带阻电路33用于不影响第三电磁波信号产生的第一谐振模式a、第二谐振模式b及第三谐振模式c,以使辐射体10形成如第一谐振模式a、第二谐振模式b及第三谐振模式c对应的电流分布,进而支持MHB+UHB频段的收发。
举例而言,请参阅图27,第一带阻电路32包括第六电容C6、第七电容C7及第四电感L4。第六电容C6的一端及第四电感L4的一端皆电连接第二馈电点A2,第六电容C6的另一端电连接第七电容C7的一端,第四电感L4的另一端电连接第七电容C7的另一端及第二带阻电路33的一端。上述的第一带阻电路32实现对于过滤第一电磁波信号。当然,在其他实施方式中,第一带阻电路32还可以由两个谐振元件、三个谐振元件、四个谐振元件及五个谐振元件等组成。其中,谐振元件为电感或电容。
举例而言,请参阅图27,第二带阻电路33包括第八电容C8、第九电容C9及第五电感L5。第八电容C8的一端及第五电感L5的一端皆电连接第一带阻电路32。具体的,第八电容C8的一端及第五电感L5的一端电连接于第四电感L4的另一端。第八电容C8的另一端电连接第九电容C9的一端,第五电感L5的另一端电连接第九电容C9的另一端及第二调谐电路34的一端。上述的第二带阻电路33实现对于过滤第二电磁波信号(WiFi 5G、6E频段)。当然,在其他实施方式中,第一带阻电路32还可以由两个谐振元件、三个谐振元件、四个谐振元件及五个谐振元件等组成。其中,谐振元件为电感或电容。
以上为第一带阻电路32的一种具体举例和第二带阻电路33的一种具体举例。当然,上述的第一带阻电路32的具体举例可搭配其他结构的第二带阻电路33,上述的第二带阻电路33的具体举例也可搭配其他结构的第一带阻电路32。
第二调谐电路34用于调谐第二电磁波信号(WiFi 5G、6E频段)的谐振频率和频宽。
举例而言,请参阅图27,第二调谐电路34包括第六电感L6、第七电感L7及第十电容C10。第六电感L6的一端电连接第二带阻电路33的另一端,第六电感L6的另一端电连接第七电感L7的一端及第十电 容C10的一端,第七电感L7的另一端电连接参考地GND,第十电容C10的另一端电连接第二信号源31。
通过在第二匹配电路M2中设置第一带阻电路32和第二带阻电路33,以防止对应第一馈电系统20的电流、第三馈电系统40的电流通过第二匹配电路M2下地,而是让第一馈电系统20的电流经第一接地端111下地,通过在第一匹配电路M1中设置第一带通电路23和第二带通电路24,以使第三馈电系统40的电流在第一馈电点A1经第一带通电路23下地,第二馈电系统30的电流在第一馈电点A1经第二带通电路24下地,如此,产生上述覆盖LB频段的谐振模式,以及覆盖MHB+UHB频段的第一谐振模式a、第二谐振模式b及第三谐振模式c,以及覆盖Wi-Fi 5G和/或Wi-Fi 6E频段的第四谐振模式d及第五谐振模式e。第一匹配电路M1、第二匹配电路M2、第三匹配电路M3、第一调节电路T1和第二调节电路T2的联合调谐可以实现对LB频段+MHB频段+UHB频段+Wi-Fi 5G频段+Wi-Fi 6E频段的多频段广覆盖,既能保证LB+MHB+UHB的CA/ENDC,还能维持Wi-Fi 5G和/或Wi-Fi 6E频段常驻状态。其中,本申请所述的LB+MHB+UHB频段为LB频段、MHB频段和UHB频段形成的组合频段,即大于0MHz且小于或等于6000MHz。
请参阅图28,图28为天线模组100在其中一种状态下的S参数曲线图。其中,S1,1为覆盖LB频段(即第一电磁波信号)的S参数曲线。S2,2为覆盖MHB+UHB频段(即第三电磁波信号)的S参数曲线。S3,3为覆盖Wi-Fi 5G和/或Wi-Fi 6E频段(即第二电磁波信号)的S参数曲线。根据S1,1、S2,2及S3,3可以看出,本申请提供的天线模组100在LB频段+MHB频段+UHB频段+Wi-Fi 5G频段+Wi-Fi 6E频段具有较好的覆盖广度。
请参阅图29,图29为天线模组100在其中一种状态下的S参数曲线图。S21、S31、S23为不同的信号源两两之间的隔离度曲线。从图29中可以看出,相邻的两个信号源之间的S参数皆位于-15dB以下,说明两两相邻的信号源之间有很好的隔离度。
本申请提供的天线模组100,通过在相互耦合的第一辐射体11、第二辐射体12上设置第一馈电系统20、第二馈电系统30及第三馈电系统40,其中,第一馈电系统20的激励电流在第一辐射体11上形成高效率的基模态,以收发第一电磁波信号;通过对第一匹配电路M1进行设计,设置导通第三电磁波信号(MHB+UHB频段)的第一带通电路23,以及设置导通第二电磁波信号(WiFi 5G、6E频段)的第二带通电路24,其中,第一带通电路23和第二带通电路24可为同一个电路,以使第二馈电系统30的激励电流、第三馈电系统40的激励电流皆经第一馈电点A1下地,形成特定的电流路径,激发第一辐射体11和第二辐射体12产生支持第三电磁波信号(MHB+UHB频段)的第一谐振模式a、第二谐振模式b、第三谐振模式c,同时还激发第一辐射体11和第二辐射体12产生支持第二电磁波信号(WiFi 5G、6E频段)的第四谐振模式d、第五谐振模式e,在结合分别在第一匹配电路M1和第三匹配电路M3上设置第一调节电路T1和第二调节电路T2,以实现在LB频段+MHB频段+UHB频段+Wi-Fi 5G频段+Wi-Fi 6E频段的多频段广覆盖,采用共口径技术,提高天线空间利用率,有效节省手机内部空间,有利于整机更好的堆叠;通过多个辐射体10,实现多模态同时工作,展宽天线带宽,通过应用不同匹配电路形式,实现各频段高隔离度。
以上为本申请第一种实施例提供的天线模组100,天线模组100包括相互耦合的第一辐射体11和第二辐射体12,及电连接第一辐射体11、第二辐射体12的三个馈电系统。
一般的天线技术中,对于移动通信信号的UHB频段开发利用较少,例如体现在在3000MHz~5000MHz内产生一个模态,如此,难以覆盖一些UHB频段。例如,难以覆盖对于N78宽频要求(3300~4100MHz)。
以下结合附图对本申请第二种实施例提供的天线模组100进行举例说明。
请参阅图30,本实施例提供的天线模组100在第一种实施例提供的天线模组100的基础上,天线模组100还包括第三辐射体13。第三辐射体13电连接第三匹配电路M3。第三辐射体13用于在第三馈电系统40的激励下收发第四电磁波信号。其中,第四电磁波信号位于UHB频段范围内。例如,第四电磁波信号包括N78频段。具体的,第三辐射体13的有效电长度与UHB频段相对应,以使第三辐射体13能够在UHB频段产生至少一个模态,再结合第三馈电系统40激励第一辐射体11、第二辐射体12在UHB频段产生的一个模态,以使天线模组100在UHB频段产生至少两个模态,这至少两个模态具有一定的间距,以在UHB频段内形成广覆盖,提升天线模组100在UHB频段的覆盖度。结合到整个天线模组100,通过增加第三辐射体13,与第二辐射体12共馈电,无需增加新的信号源,且能够进一步地提供对于MHB频段+UHB频段的覆盖度,按照上述的设计思路,可实现对于MHB频段+UHB频段的全频段覆盖。
对于第三辐射体13的天线形式而言,第三辐射体13的天线形式可与第一辐射体11、第二辐射体12的天线形式相同或不同。举例而言,第一辐射体11与第二辐射体12为金属边框310天线,而第三辐射体13可设于壳体300内,一方面便于靠近第三信号源41,减小馈电路径,也避免与第二辐射体12的安装位置相互干涉,另一方面由于第三辐射体13所支持的频段相对较高,第三辐射体13的尺寸相对减小,故第三辐射体13设于壳体300内所占据的空间相对较小。进一步地,第三辐射体13为柔性电路板辐射体、或激光直接成型辐射体、或印刷辐射体等。换言之,天线模组100的第三辐射体13集成于柔性电路板、或通过激光直接成型于壳体300内、或通过印刷直接成型于壳体300内,以使第三辐射体13靠近于第三馈电系统40。以上设计使第三辐射体13的厚度相对较小,轻薄,形成柔性可弯折的形式,以便于设于壳体300内的狭小空间或曲面空间内,提高电子设备1000内的器件紧凑性。
进一步地,请参阅图31,天线模组100还包括第四匹配电路M4。第四匹配电路M4的一端电连接于第三匹配电路M3与第三信号源41之间,第四匹配电路M4的另一端电连接第三辐射体13。第四匹配电路M4用于调谐第四电磁波信号的谐振频率和频宽。
请参阅图32,第二辐射体12和第三辐射体13在第三馈电系统40的激励下得到的第三信号源41工作的等效天线形式如图32所示。
请参阅图33,第三信号源41经第四匹配电路M4及第三匹配电路M3激励第三辐射体13产生第十谐振模式j(第六谐振模式至第九谐振模式在后续进行说明)。其中,第十谐振模式j包括第三辐射体13的 1/4波长模态。第一谐振模式a、第二谐振模式b、第三谐振模式c与第十谐振模式j形成四个谐振模式,以实现天线模组100在MHB频段+UHB频段的全频段覆盖。
本申请对于第四匹配电路M4的结构不做具体的限定,以下通过几种实施方式进行举例说明,当然,第四匹配电路M4的具体结构包括但不限于以下的实施方式。
一种可选的实施方式中,请参阅图34,第四匹配电路M4包括第十七电容C17。第十七电容C17的一端电连接第三信号源41,第十七电容C17的另一端电连接第三辐射体13。
另一种可选的实施方式中,请参阅图35,第四匹配电路M4包括第十七电容C17及第十八电容C18。第十七电容C17的一端电连接第三信号源41,第十七电容C17的另一端电连接第三辐射体13和第十八电容C18的一端,第十八电容C18的另一端电连接参考地GND。
再一种可选的实施方式中,请参阅图36,第四匹配电路M4包括第十七电容C17及第十四电感L14。第十七电容C17的一端电连接第三信号源41,第十七电容C17的另一端电连接第三辐射体13和第十四电感L14的一端,第十四电感L14的另一端电连接参考地GND。
以上的实施方式提供的第四匹配电路M4皆能够实现对于第四电磁波信号的谐振频率和频宽的调谐,当然,在其他实施方式中,还可以增加其他的谐振元件,谐振元件包括电容或电感。
请参阅图37,图37为本申请提供的天线模组100在其中一种状态下的S参数曲线图。S1,1为覆盖LB频段的S参数曲线。S2,2为MHB+UHB频段的S参数曲线。S3,3为覆盖Wi-Fi 5G和/或Wi-Fi 6E频段的S参数曲线。根据S1,1、S2,2及S3,3可以看出,本申请提供的天线模组100在LB频段+MHB频段+UHB频段+Wi-Fi 5G频段+Wi-Fi 6E频段具有较好的覆盖广度。
请参阅图38,图38为本申请提供的天线模组100在其中一种状态下的隔离度曲线。S21、S31、S23为不同的信号源两两之间的隔离度曲线。从图中可以看出,相邻的两个信号源之间的S参数皆位于-15dB以下,说明两两相邻的信号源之间有很好的隔离度。
请参阅图39,图39是本申请实施例提供的天线模组100的效率图。S01和S02分别是设置第三辐射体13和未设置第三辐射体13的效率曲线。在曲线S01的第1点和曲线S02的第2点处为3.95GHz左右的效率,设有第三辐射体13的天线模组100在3.95GHz左右的效率大于未设置第三辐射体13的天线模组100在3.95GHz左右的效率。而且,设有第三辐射体13的天线模组100在3300~4100MHz频段的效率大于未设置第三辐射体13的天线模组100在3300~4100MHz频段的效率。换言之,设置第三辐射体13后的带宽增加,在3300~4100MHz频段的效率增加。
当然,本申请还提供了实现对于MHB频段+UHB频段的全频段覆盖的其他实施方式,特别是提高对于UHB频段的覆盖度。以下结合附图对本申请第三种实施例提供的天线模组100进行举例说明。
请参阅图40,本实施例提供的天线模组100与第一种实施例提供的天线模组100大致相同,主要的不同在于,本申请实施例中的第二匹配电路M2还包括第三带通电路35。第三带通电路35的一端电连接于第二馈电点A2或第一带阻电路32与第二带阻电路33之间。第三带通电路35的另一端电连接参考地GND。
第三电磁波信号包括第三频段的移动通信信号。具体的,第三频段属于UHB频段。例如,第三频段包括N78频段。第三带通电路35用于将第三频段的移动通信信号导通至参考地GND。第三带通电路35对于第三频段的移动通信信号实现低阻抗到地,从而得到相应的等效天线形式如图41所示。当第三频段为N78频段时,第三带通电路35实现对N78频段低阻抗到地,实现对N78频段宽频覆盖要求(3300~4100MHz)。
请参阅图42及图43,基于图41所示的天线形式,辐射体10在第三馈电系统40的激励下支持第六谐振模式f、第七谐振模式g、第八谐振模式h及第九谐振模式i。
其中,第六谐振模式f的电流至少分布于第二辐射体12的第二耦合端121至第二接地端122之间。具体的,第三馈电系统40激励辐射体10产生的第六谐振模式f对应的电流(本申请称为第六谐振电流)主要分布于第二辐射体12的第二耦合端121至第二接地端122之间,本申请对于谐振电流的方向不做具体的限定。需要说明的是,第六谐振电流主要分布第二辐射体12的第二耦合端121至第二接地端122之间是指,较强的电流分布于第二辐射体12的第二耦合端121至第二接地端122之间,并不排除由于第一辐射体11与第二辐射体12的耦合作用,少量的第一谐振电流分布于第一辐射体11。
第六谐振模式f包括第二辐射体12的1/4波长模态。具体的,第六谐振模式f包括第六谐振电流主要工作在第二辐射体12的第二耦合端121至第二接地端122的1/4波长模态。从一种便于理解角度说明,1/4波长模态可理解为第二辐射体12的第二耦合端121至第二接地端122的有效电长度约为谐振模式的中心频率对应的介质波长(在介质中的波长)的1/4倍,此描述为对于术语便于理解的解释,但不能作为第二辐射体12的长度的限定。当然,在其他实施方式中,第三馈电系统40激励辐射体10产生的谐振模式还可以为第六谐振电流主要工作在第二辐射体12上的高次模态,例如1/2波长模态、3/4波长模态等等。
其中,第七谐振模式g的电流至少分布于第一连接点B2至第一耦合端112之间以及第二耦合端121至第三馈电点A3之间。具体的,第三馈电系统40激励辐射体10产生的第七谐振模式g对应的电流(本申请称为第七谐振电流)主要分布于第一连接点B2至第一耦合端112之间以及第二耦合端121至第三馈电点A3之间,本申请对于谐振电流的方向不做具体的限定。需要说明的是,第七谐振电流主要分布第一连接点B2至第一耦合端112之间以及第二耦合端121至第三馈电点A3之间是指,较强的电流分布于第一连接点B2至第一耦合端112之间以及第二耦合端121至第三馈电点A3之间,并不排除少量的第七谐振电流分布于第一辐射体11上的其他部分以及第二辐射体12上的其他部分。
第七谐振模式g包括第一辐射体11的第一连接点B2至第一耦合端112之间的1/4波长模态。具体的,第七谐振模式g包括第七谐振电流主要工作在第一辐射体11的第一连接点B2至第一耦合端112的1/4波长模态。从一种便于理解角度说明,1/4波长模态可理解为第一辐射体11的第一连接点B2至第一耦合端112的有效电长度约为谐振模式的中心频率对应的介质波长(在介质中的波长)的1/4倍,此描述为对于 术语便于理解的解释,但不能作为第一辐射体11的第一连接点B2至第一耦合端112的长度的限定。当然,在其他实施方式中,第三馈电系统40激励辐射体10产生的谐振模式还可以为第七谐振电流主要工作在辐射体10上的高次模态,例如1/2波长模态、3/4波长模态等等。
其中,第八谐振模式h的电流至少分布于第二耦合端121至第三馈电点A3之间。具体的,第三馈电系统40激励辐射体10产生的第八谐振模式h对应的电流(本申请称为第八谐振电流)主要分布于第二辐射体12的第二耦合端121至第三馈电点A3之间,本申请对于谐振电流的方向不做具体的限定。需要说明的是,第八谐振电流主要分布第二辐射体12的第二耦合端121至第三馈电点A3之间是指,较强的电流分布于第二辐射体12的第二耦合端121至第三馈电点A3之间,并不排除由于第一辐射体11与第二辐射体12的耦合作用,少量的第八谐振电流分布于第一辐射体11及第二辐射体12的其他位置。
第八谐振模式h包括第二辐射体12的第二耦合端121至第三馈电点A3之间的1/4波长模态。具体的,第八谐振模式h包括第八谐振电流主要工作在第二辐射体12的第二耦合端121至第三馈电点A3的1/4波长模态。从一种便于理解角度说明,1/4波长模态可理解为第二辐射体12的第二耦合端121至第三馈电点A3的有效电长度约为谐振模式的中心频率对应的介质波长(在介质中的波长)的1/4倍,此描述为对于术语便于理解的解释,但不能作为第二辐射体12的第二耦合端121至第三馈电点A3的长度的限定。当然,在其他实施方式中,第三馈电系统40激励辐射体10产生的谐振模式还可以为第八谐振电流主要工作在辐射体10上的高次模态,例如1/2波长模态、3/4波长模态等等。
其中,第九谐振模式i的电流至少分布于第二馈电点A2至第一耦合端112以及第二耦合端121与第三馈电点A3之间。具体的,第三馈电系统40激励辐射体10产生的第九谐振模式i对应的电流(本申请称为第九谐振电流)主要分布于第二馈电点A2至第一耦合端112以及第二耦合端121与第三馈电点A3之间,本申请对于谐振电流的方向不做具体的限定。需要说明的是,第九谐振电流主要分布第二馈电点A2至第一耦合端112以及第二耦合端121与第三馈电点A3之间是指,较强的电流分布于第二馈电点A2至第一耦合端112以及第二耦合端121与第三馈电点A3之间,并不排除少量的第九谐振电流分布于第一辐射体11的其他位置及第二辐射体12的其他位置。
第九谐振模式i包括第一辐射体11的第二馈电点A2至第一耦合端112之间的1/4波长模态。具体的,第九谐振模式i包括第九谐振电流主要工作在第一辐射体11的第二馈电点A2至第一耦合端112的1/4波长模态。从一种便于理解角度说明,1/4波长模态可理解为第一辐射体11的第二馈电点A2至第一耦合端112的有效电长度约为谐振模式的中心频率对应的介质波长(在介质中的波长)的1/4倍,此描述为对于术语便于理解的解释,但不能作为第一辐射体11的第二馈电点A2至第一耦合端112的长度的限定。当然,在其他实施方式中,第三馈电系统40激励辐射体10产生的谐振模式还可以为第九谐振电流主要工作在辐射体10上的高次模态,例如1/2波长模态、3/4波长模态等等。
通过设置第三带通电路35电连接于第二馈电点A2,并设置第三带通电路35对第三频段的移动通信信号导通至参考地GND,结合上述设置第一带通电路23电连接于第一馈电点A1,并设置第一带通电路23对第三频段的移动通信信号导通至参考地GND,以实现第三频段的移动通信信号可以经第一馈电点A1、第一带通电路23到参考地GND,还可以经第二馈电点A2、第三带通电路35到参考地GND,增加回地路径;通过上述对于第三电磁波信号(MHB+UHB频段)的电流路径规划,以使第三馈电系统40激励第一辐射体11及第二辐射体12产生上述的第六谐振模式f、第七谐振模式g、第八谐振模式h及第九谐振模式i,第三馈电系统40复用相互耦合的第一辐射体11和第二辐射体12以产生上述的三种谐振模式,例如从第七谐振模式g、第九谐振模式i可以很明显地看出,谐振电流在第一辐射体11和第二辐射体12上皆形成电流分布(或者说是电流密度分布),且上述的四种谐振模式皆位于MHB+UHB频段,实现在MHB+UHB频段的全覆盖,其中,两个模态位于UHB频段,以提升天线模组100对于UHB频段的覆盖率,实现对N78频段宽频覆盖要求(3300~4100MHz)。
对于第二信号源31收发第二电磁波信号(WiFi 5G、6E频段)而言,第三带通电路35构成第三频段的移动通信信号的带阻特性,以将过滤第三频段的移动通信信号,以支持第二信号源31收发第二电磁波信号(WiFi 5G、6E频段)。
第六谐振模式f、第七谐振模式g、第八谐振模式h及第九谐振模式i的波长模态的先后顺序是根据各谐振电流主要工作的辐射体10长度而确定。通过第六谐振模式f、第七谐振模式g、第八谐振模式h及第九谐振模式i的波长模态可以看出,第六谐振模式f、第七谐振模式g、第八谐振模式h及第九谐振模式i皆为1/4波长模态,其中,1/4波长模态也称为基模,基模是高效率模态,可实现在MHB+UHB频段的高效率且广覆盖。
第三带通电路35包括一个或多个谐振元件,该谐振元件为电容或电感。谐振元件的组合可参考图11至图18中的组合。以下结合附图对于第三带通电路35的具体结构进行举例说明,当然,第三带通电路35的具体结构包括但不限于以下的实施方式。
在一种可选的实施方式中,请参阅图44,第三带通电路35包括第十一电容C11、第八电感L8及第九电感L9。第十一电容C11的一端和第九电感L9的一端皆电连接于第二馈电点A2。第十一电容C11的另一端电连接第八电感L8的一端。第八电感L8的另一端和第九电感L9的另一端皆电连接至参考地GND。
在另一种可选的实施方式中,请参阅图45及图46,第三带通电路35电连接第二馈电点A2或电连接于第一带阻电路32与第二带阻电路33之间。第三带通电路35包括第十二电容C12及第十电感L10。第十二电容C12的一端电连接第二馈电点A2。第十二电容C12的另一端电连接第十电感L10。第十电感L10的另一端电连接至参考地GND。
当然,在其他实施方式中,第三带通电路35还可以由两个谐振元件、三个谐振元件、四个谐振元件及五个谐振元件等组成。其中,谐振元件为电感或电容。
通过第一匹配电路M1、第二匹配电路M2、第三匹配电路M3、第一调节电路T1、第二调节电路T2 的联合调谐可以实现LB+MHB+UHB+WIFI 5G+Wi-Fi 6E的多频段广覆盖,既能保证LB+MHB+UHB的CA/ENDC,同时维持WIFI 5G+Wi-Fi 6E的常驻状态,还能实现UHB-N78双波宽频段(3300~4100MHz)覆盖。
请参阅图47,图47为本申请实施例提供的天线模组100在其中一种状态下的S参数曲线图。S1,1为覆盖LB频段的S参数曲线。S2,2为MHB+UHB频段的S参数曲线。S3,3为覆盖Wi-Fi 5G和/或Wi-Fi 6E频段的S参数曲线。根据S1,1、S2,2及S3,3可以看出,本申请提供的天线模组100在LB频段+MHB频段+UHB频段+Wi-Fi 5G频段+Wi-Fi 6E频段具有较好的覆盖广度。
请参阅图48,图48为本申请实施例提供的天线模组100在其中一种状态下的隔离度曲线图。S21、S31、S23为不同的信号源两两之间的隔离度曲线。从图中可以看出,相邻的两个信号源之间的S参数皆位于-15dB以下,说明两两相邻的信号源之间有很好的隔离度。
请参阅图49,图49是本申请实施例提供的天线模组100的效率图。S03和S04分别是设置第三带通电路35和未设置第三带通电路35的效率曲线。设置第三带通电路35的天线模组100具有两个谐振,带宽增加。在曲线S03的第1点和曲线S04的第2点处为4GHz左右的效率,设有第三带通电路35的天线模组100在4GHz左右的效率大于未设置第三带通电路35的天线模组100在4GHz左右的效率。而且,设有第三带通电路35的天线模组100在3300~4100MHz频段的效率大于未设置第三带通电路35的天线模组100在3300~4100MHz频段的效率。换言之,设置第三带通电路35后的带宽增加,在3300~4100MHz频段的效率增加。
本申请实施例提供的天线模组100,通过在相互耦合的第一辐射体11、第二辐射体12上设置第一馈电系统20、第二馈电系统30及第三馈电系统40,其中,第一馈电系统20的激励电流在第一辐射体11上形成高效率的基模态,以收发第一电磁波信号;通过对第一匹配电路M1进行设计,设置导通第三电磁波信号(MHB+UHB频段)的第一带通电路23,以及设置导通第二电磁波信号(WiFi 5G、6E频段)的第二带通电路24,其中,第一带通电路23和第二带通电路24可为同一个电路,及对第二匹配电路M2进行设计,设置导通第三频段的移动通信信号,以使第二馈电系统30的激励电流经第一馈电点A1下地,第三馈电系统40的激励电流经第一馈电点A1和第二馈电点A2下地,形成特定的电流路径,激发第一辐射体11和第二辐射体12产生支持第二电磁波信号(WiFi 5G、6E频段)的第四谐振模式d、第五谐振模式e,同时还激发第一辐射体11和第二辐射体12产生支持第三电磁波信号的第六谐振模式f、第七谐振模式g、第八谐振模式h及第九谐振模式i,在结合分别在第一匹配电路M1和第三匹配电路M3上设置第一调节电路T1和第二调节电路T2,以实现在LB频段+MHB频段+UHB频段+Wi-Fi 5G频段+Wi-Fi 6E频段的多频段广覆盖,能在UHB-N78频段产生多个模态实现宽频覆盖要求(3300~4100MHz);采用共口径技术,提高天线空间利用率,有效节省手机内部空间,有利于整机更好的堆叠;通过多个辐射体10,实现多模态同时工作,展宽天线带宽,通过应用不同匹配电路形式,实现各频段高隔离度。
本实施例中,可在第三馈电系统40上电连接第三辐射体13及第四匹配电路M4。具体的设置方式可以参考第二种实施例提供的天线模组100中对于第三辐射体13及第四匹配电路M4的描述,在此不再赘述。
本申请提供的一种电子设备1000,包括上述的任意一种实施方式所述的天线模组100。在上述的天线模组100设于电子设备1000中,以电子设备1000为手机为例。本申请对于天线模组100的辐射体10安装于电子设备1000内的具体位置不做限定。所述天线模组100的辐射体10集成于所述壳体300、或设于所述壳体300表面、或设于所述壳体300所包围的空间内。第一馈电系统20、第二馈电系统30及第三馈电系统40设于电子设备1000的电路板上。
辐射体10在电子设备1000内的成型方式包括但不限于以下的实施方式。
在一种可选的实施方式中,辐射体10的至少部分与壳体300的边框310集成为一体。具体的,电子设备1000的壳体300具有导电边框310(例如金属边框310)。天线模组100的第一辐射体11的至少部分、第二辐射体12的至少部分与导电边框310集成为一体。例如,边框310的材质为金属材质。辐射体10与边框310皆集成为一体。辐射体10之间的耦合缝隙113填充绝缘材质。当然,在其他实施方式中,辐射体10还可与后盖320集成为一体。换言之,辐射体10集成为壳体300的一部分。
在另一种可选的实施方式中,辐射体10成型于边框310的表面(例如边框310的内表面或外表面)。具体的,辐射体10的基本形式包括但不限于贴片辐射体10、通过激光直接成型(Laser Direct Structuring,LDS)、印刷直接成型(Print Direct Structuring,PDS)等工艺成型在边框310的内表面上,此实施方式中,边框310的材质可为非导电材质(对于电磁波信号为非屏蔽材质、或设置透波结构)。当然,辐射体10还可以设于后盖320的表面。
在再一种可选的实施方式中,辐射体10设于柔性电路板、硬质电路板或其他的承载板。辐射体10可集成于柔性电路板上,并将柔性电路板通过粘胶等贴设于中框340的内表面,此实施方式中,辐射体10所对应的部分边框310的材质可为非导电材质。当然,辐射体10还可设于后盖320的内表面。
本实施例中,请参阅图50,第一辐射体11与金属边框310集成为一体,第二辐射体12与金属边框310集成为一体。通过设置第一辐射体11、第二辐射体12与边框310的空间复用,减小占据空间。天线模组100的第三辐射体13位于壳体300内。天线模组100的第三辐射体13为柔性电路板辐射体、或激光直接成型辐射体、或印刷辐射体等。换言之,天线模组100的第三辐射体13集成于柔性电路板、或通过激光直接成型于壳体300内、或通过印刷直接成型于壳体300内,以使第三辐射体13靠近于第三馈电系统40。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (30)

  1. 一种天线模组,包括:
    辐射体,包括第一辐射体及第二辐射体,所述第一辐射体具有第一接地端、第一耦合端以及位于所述第一接地端与所述第一耦合端之间且间隔设置的第一馈电点、第二馈电点,其中,所述第一馈电点位于所述第二馈电点与所述第一接地端之间,所述第二辐射体具有第二耦合端、第二接地端以及位于所述第二耦合端与所述第二接地端之间的第三馈电点,所述第一耦合端与所述第二耦合端之间具有耦合缝隙,所述第一接地端和所述第二接地端皆电连接参考地;
    第一馈电系统,电连接所述第一馈电点,所述第一馈电系统用于激励所述辐射体收发第一电磁波信号,所述第一电磁波信号包括GPS信号、第一频段的移动通信信号中的至少一者;
    第二馈电系统,电连接所述第二馈电点,所述第二馈电系统用于激励所述辐射体收发第二电磁波信号,所述第二电磁波信号包括Wi-Fi信号;及
    第三馈电系统,电连接所述第三馈电点,所述第三馈电系统用于激励所述辐射体收发第三电磁波信号,所述第三电磁波信号包括第二频段的移动通信信号,其中,所述第二频段的最小频率大于所述第一频段的最大频率。
  2. 如权利要求1所述的天线模组,所述第一辐射体还具有第一连接点,所述第一连接点位于所述第一馈电点上,或所述第一连接点位于所述第一馈电点与所述第二馈电点之间;
    所述天线模组还包括第一带通电路,所述第一带通电路的一端电连接于所述第一连接点,所述第一带通电路的另一端电连接所述参考地,所述第一带通电路用于将所述第三电磁波信号导通至所述参考地。
  3. 如权利要求2所述的天线模组,所述辐射体在所述第三馈电系统的激励下支持第一谐振模式、第二谐振模式及第三谐振模式,其中,所述第一谐振模式的电流至少分布于所述第二耦合端至所述第二接地端之间;所述第二谐振模式的电流至少分布于所述第一连接点至所述第一耦合端之间以及所述第二耦合端至所述第三馈电点之间;所述第三谐振模式的电流至少分布于所述第二耦合端至所述第三馈电点之间。
  4. 如权利要求3所述的天线模组,所述第一谐振模式包括所述第二辐射体的1/4波长模态;所述第二谐振模式包括所述第一辐射体的所述第一连接点至所述第一耦合端之间的1/4波长模态;所述第三谐振模式包括所述第二辐射体的所述第二耦合端至所述第三馈电点之间的1/4波长模态。
  5. 如权利要求2所述的天线模组,所述第一辐射体还具有第二连接点,所述第二连接点位于所述第一馈电点上,或所述第二连接点位于所述第一馈电点与所述第二馈电点之间;
    所述天线模组还包括第二带通电路,所述第二带通电路的一端电连接于所述第二连接点,所述第二带通电路的另一端电连接所述参考地,所述第二带通电路用于将所述第二电磁波信号导通至所述参考地。
  6. 如权利要求5所述的天线模组,所述辐射体在所述第二馈电系统的激励下支持第四谐振模式及第五谐振模式,其中,所述第四谐振模式的电流至少分布于所述第二馈电点至所述第一耦合端之间;所述第五谐振模式的电流至少分布于所述第二馈电点至所述第二接地端之间。
  7. 如权利要求6所述的天线模组,所述第四谐振模式包括所述第一辐射体的所述第二馈电点至所述第一耦合端之间的1/4波长模态;所述第五谐振模式包括所述第二辐射体的3/4波长模态。
  8. 如权利要求5所述的天线模组,所述第一连接点与所述第二连接点为同一点,所述第一带通电路与所述第二带通电路为同一个电路。
  9. 如权利要求5所述的天线模组,所述第一带通电路与所述第二带通电路中的至少一者包括第一电容和第一电感,所述第一电容的一端电连接所述第一馈电点,所述第一电容的另一端电连接所述第一电感的一端,所述第一电感的另一端电连接所述参考地。
  10. 如权利要求5所述的天线模组,所述第一馈电系统包括第一匹配电路及电连接所述第一匹配电路一端的第一信号源,所述第一匹配电路的另一端电连接于所述第一馈电点,所述第一带通电路、所述第二带通电路中的至少一者为所述第一匹配电路的一部分。
  11. 如权利要求10所述的天线模组,所述天线模组还包括第一调节电路,所述第一调节电路的一端电连接于所述第一辐射体,所述第一调节电路的另一端电连接所述参考地,所述第一调节电路包括可变电容、多个开关选择电路中的至少一者,其中,所述开关选择电路包括开关与电感的组合,开关与电容的组合,开关与电感、电容的组合中的至少一者;所述第一调节电路用于调节所述第一电磁波信号的频段。
  12. 如权利要求11所述的天线模组,所述第一调节电路的一端电连接所述第一馈电点,所述第一调节电路为所述第一匹配电路的一部分。
  13. 如权利要求10所述的天线模组,所述第一匹配电路还包括第一调谐电路,所述第一调谐电路的一端电连接所述第一馈电点,所述第一调谐电路的另一端电连接于所述第一信号源,所述第一调谐电路用于调谐所述第一电磁波信号。
  14. 如权利要求13所述的天线模组,所述第一调谐电路包括第二电容、第三电容、第四电容、第五电容、第二电感及第三电感,所述第二电容的一端电连接所述第一馈电点,所述第二电容的另一端电连接于所述第三电容的一端,所述第三电容的另一端电连接所述第四电容的一端、所述第二电感的一端及所述第三电感的一端,所述第四电容的另一端电连接至所述参考地,所述第二电感的另一端电连接至所述参考地,所述第三电感的另一端电连接所述第一信号源和所述第五电容的一端,所述第五电容的另一端电连接至所述参考地。
  15. 如权利要求1~14任意一项所述的天线模组,所述第二馈电系统包括第二匹配电路及电连接所述第二匹配电路一端的第二信号源,所述第二匹配电路的另一端电连接于所述第二馈电点,所述第二匹配电路还包括依次连接在所述第二馈电点与所述第二信号源之间的第一带阻电路、第二带阻电路及第二调谐电路,所述第一带阻电路用于过滤所述第一电磁波信号,所述第二带阻电路用于过滤所述第三电磁波信号, 所述第二调谐电路用于调谐所述第二电磁波信号。
  16. 如权利要求15所述的天线模组,所述第一带阻电路包括第六电容、第七电容及第四电感,所述第六电容的一端及所述第四电感的一端皆电连接所述第二馈电点,所述第六电容的另一端电连接所述第七电容的一端,所述第四电感的另一端电连接所述第七电容的另一端及所述第二带阻电路的一端;和/或,
    所述第二带阻电路包括第八电容、第九电容及第五电感,所述第八电容的一端及所述第五电感的一端皆电连接所述第一带阻电路,所述第八电容的另一端电连接所述第九电容的一端,所述第五电感的另一端电连接所述第九电容的另一端及所述第二调谐电路的一端;和/或,
    所述第二调谐电路包括第六电感、第七电感及第十电容,所述第六电感的一端电连接所述第二带阻电路的另一端,所述第六电感的另一端电连接所述第七电感的一端及所述第十电容的一端,所述第七电感的另一端电连接所述参考地,所述第十电容的另一端电连接所述第二信号源。
  17. 如权利要求15所述的天线模组,所述第三电磁波信号包括第三频段的移动通信信号,所述第三频段位于UHB频段范围内;
    所述第二匹配电路还包括第三带通电路,所述第三带通电路的一端电连接于所述第二馈电点或电连接于所述第一带阻电路与所述第二带阻电路之间,所述第三带通电路的另一端电连接所述参考地,所述第三带通电路用于将所述第三频段的移动通信信号导通至所述参考地。
  18. 如权利要求17所述的天线模组,所述第三频段包括N78频段。
  19. 如权利要求17所述的天线模组,所述辐射体在所述第三馈电系统的激励下支持第六谐振模式、第七谐振模式、第八谐振模式及第九谐振模式,其中,所述第六谐振模式的电流至少分布于所述第二耦合端至所述第二接地端之间;所述第七谐振模式的电流至少分布于所述第一连接点至所述第一耦合端之间以及所述第二耦合端至所述第三馈电点之间;所述第八谐振模式的电流至少分布于所述第二耦合端至所述第三馈电点之间;所述第九谐振模式的电流至少分布于所述第二馈电点至所述第一耦合端以及所述第二耦合端与所述第三馈电点之间。
  20. 如权利要求19所述的天线模组,所述第六谐振模式包括所述第二辐射体的1/4波长模态;所述第七谐振模式包括所述第一辐射体的所述第一连接点至所述第一耦合端之间的1/4波长模态;所述第八谐振模式包括所述第二辐射体的所述第二耦合端至所述第三馈电点之间的1/4波长模态;所述第九谐振模式包括所述第一辐射体的所述第二馈电点至所述第一耦合端之间的1/4波长模态。
  21. 如权利要求17所述的天线模组,所述第三带通电路包括第十一电容、第八电感及第九电感,所述第十一电容的一端和所述第九电感的一端皆电连接于所述第二馈电点,所述第十一电容的另一端电连接所述第八电感的一端,所述第八电感的另一端和所述第九电感的另一端皆电连接至所述参考地;或,
    所述第三带通电路包括第十二电容及第十电感,所述第十二电容的一端电连接所述第二馈电点,所述第十二电容的另一端电连接所述第十电感,所述第十电感的另一端电连接至所述参考地。
  22. 如权利要求1~14、16~21任意一项所述的天线模组,所述第三馈电系统包括第三匹配电路及电连接所述第三匹配电路的一端的第三信号源,所述第三匹配电路的另一端电连接于所述第三馈电点。
  23. 如权利要求22所述的天线模组,所述第三匹配电路包括第十一电感、第十二电感、第十三电感、第十三电容、第十四电容、第十五电容及第十六电容,所述第十一电感的一端电连接所述第三馈电点,所述第十一电感的另一端电连接所述第十二电感的一端、所述第十三电容的一端及所述第十四电容的一端,所述第十二电感的另一端、所述第十三电容的另一端皆电连接所述参考地,所述第十四电容的另一端电连接所述第十五电容的一端,所述第十五电容的另一端电连接所述第十三电感的一端及所述第三信号源的一端,所述第十三电感的另一端电连接所述第十六电容的一端,所述第十六电容的另一端电连接所述参考地。
  24. 如权利要求22所述的天线模组,所述天线模组还包括一端电连接所述参考地的第二调节电路,所述第二调节电路的另一端电连接所述第二辐射体或电连接所述第三匹配电路,所述第二调节电路用于调节所述第三电磁波信号的频段。
  25. 如权利要求22所述的天线模组,所述天线模组还包括第三辐射体,所述第三辐射体电连接所述第三匹配电路;所述第三辐射体为柔性电路板辐射体、激光直接成型辐射体、或印刷辐射体;所述第三辐射体用于在所述第三馈电系统的激励下收发第四电磁波信号,所述第四电磁波信号包括UHB频段。
  26. 如权利要求25所述的天线模组,所述天线模组还包括第四匹配电路,所述第四匹配电路的一端电连接于所述第三匹配电路与所述第三信号源之间,所述第四匹配电路的另一端连接所述第三辐射体。
  27. 如权利要求26所述的天线模组,所述第四匹配电路包括第十七电容,所述第十七电容的一端电连接所述第三信号源,所述第十七电容的另一端电连接所述第三辐射体;或,
    所述第四匹配电路包括第十七电容及第十八电容,所述第十七电容的一端电连接所述第三信号源,所述第十七电容的另一端电连接所述第三辐射体和所述第十八电容的一端,所述第十八电容的另一端电连接所述参考地;或,
    所述第四匹配电路包括第十七电容及第十四电感,所述第十七电容的一端电连接所述第三信号源,所述第十七电容的另一端电连接所述第三辐射体和所述第十四电感的一端,所述第十四电感的另一端电连接所述参考地。
  28. 如权利要求1~14、16~21任意一项所述的天线模组,所述第一电磁波信号包括GPS-L5信号、频率小于1000MHz的移动通信信号中的至少一者;所述第二电磁波信号包括Wi-Fi 5G和/或Wi-Fi 6E信号;所述第三电磁波信号包括频率大于或等于1000MHz且小于或等于6000MHz的移动通信信号,所述移动通信信号包括4G移动通信信号和/或5G移动通信信号中的至少一者。
  29. 一种电子设备,包括如权利要求1~28任意一项所述的天线模组。
  30. 如权利要求29所述的电子设备,所述电子设备还包括壳体,所述壳体具有导电边框,所述天线模组的第一辐射体的至少部分、第二辐射体的至少部分与所述导电边框集成为一体。
PCT/CN2022/091426 2021-06-30 2022-05-07 天线模组及电子设备 WO2023273607A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/503,144 US20240113416A1 (en) 2021-06-30 2023-11-06 Antenna module and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110743205.9 2021-06-30
CN202110743205.9A CN115548638A (zh) 2021-06-30 2021-06-30 天线模组及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/503,144 Continuation US20240113416A1 (en) 2021-06-30 2023-11-06 Antenna module and electronic device

Publications (1)

Publication Number Publication Date
WO2023273607A1 true WO2023273607A1 (zh) 2023-01-05

Family

ID=84692474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091426 WO2023273607A1 (zh) 2021-06-30 2022-05-07 天线模组及电子设备

Country Status (3)

Country Link
US (1) US20240113416A1 (zh)
CN (1) CN115548638A (zh)
WO (1) WO2023273607A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116722341B (zh) * 2020-06-04 2024-06-04 华为技术有限公司 一种电子设备
CN117878596A (zh) * 2024-01-24 2024-04-12 荣耀终端有限公司 多频天线系统及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870629A (zh) * 2016-05-23 2016-08-17 广东欧珀移动通信有限公司 一种终端天线及智能终端
CN109428955A (zh) * 2017-08-30 2019-03-05 Lg电子株式会社 移动终端
CN110247160A (zh) * 2019-04-30 2019-09-17 华为技术有限公司 一种天线组件及移动终端
CN112490626A (zh) * 2020-11-30 2021-03-12 维沃移动通信有限公司 天线结构和电子设备
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870629A (zh) * 2016-05-23 2016-08-17 广东欧珀移动通信有限公司 一种终端天线及智能终端
CN109428955A (zh) * 2017-08-30 2019-03-05 Lg电子株式会社 移动终端
CN110247160A (zh) * 2019-04-30 2019-09-17 华为技术有限公司 一种天线组件及移动终端
CN112490626A (zh) * 2020-11-30 2021-03-12 维沃移动通信有限公司 天线结构和电子设备
CN113013593A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件和电子设备

Also Published As

Publication number Publication date
CN115548638A (zh) 2022-12-30
US20240113416A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
EP3896790B1 (en) Antenna structure and communication terminal
WO2022142824A1 (zh) 天线系统及电子设备
KR102455333B1 (ko) 안테나 시스템 및 단말 기기
WO2022206237A1 (zh) 天线组件及电子设备
WO2023142785A1 (zh) 天线组件及电子设备
WO2022142822A1 (zh) 天线组件和电子设备
CN109672019B (zh) 一种终端mimo天线装置及实现天线信号传输方法
WO2023273607A1 (zh) 天线模组及电子设备
WO2020173294A1 (zh) 共体天线及电子设备
EP3300170B1 (en) Antenna and user equipment
WO2023273604A1 (zh) 天线模组及电子设备
WO2022247502A1 (zh) 天线组件及电子设备
CN105917527A (zh) 多频段天线和通信终端
CN103872430A (zh) 电子设备、天线、和用于形成天线的方法
WO2023124646A1 (zh) 天线组件及电子设备
WO2024045766A1 (zh) 一种天线组件及电子设备
CN113437480A (zh) 一种多频天线装置及移动终端
WO2022237346A1 (zh) 天线组件及电子设备
CN209896263U (zh) 一种基于复合左右手传输线的多频段天线
WO2022166444A1 (zh) 一种天线及终端设备
US20240014556A1 (en) Antenna assembly and electronic device
WO2023045630A1 (zh) 天线组件及电子设备
CN110212316B (zh) 一种基于复合左右手传输线的多频段天线
CN102157794B (zh) 谐振产生的三频段天线
WO2022183892A1 (zh) 天线组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831434

Country of ref document: EP

Kind code of ref document: A1