WO2018148973A1 - 一种支持多进多出技术的通信设备 - Google Patents

一种支持多进多出技术的通信设备 Download PDF

Info

Publication number
WO2018148973A1
WO2018148973A1 PCT/CN2017/074166 CN2017074166W WO2018148973A1 WO 2018148973 A1 WO2018148973 A1 WO 2018148973A1 CN 2017074166 W CN2017074166 W CN 2017074166W WO 2018148973 A1 WO2018148973 A1 WO 2018148973A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
communication device
mimo
circuit
main antenna
Prior art date
Application number
PCT/CN2017/074166
Other languages
English (en)
French (fr)
Inventor
魏鲲鹏
王家明
李守亮
杨小丽
周大为
唐奇
于亚芳
侯猛
刘惠翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/074166 priority Critical patent/WO2018148973A1/zh
Priority to CN201780004645.4A priority patent/CN108780941B/zh
Publication of WO2018148973A1 publication Critical patent/WO2018148973A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communications device supporting multiple input and multiple output technologies.
  • the sender's communication device converts the voice into a radio wave.
  • the base station in the vicinity of the communication device transmits the radio wave to the base station near the receiver through the wireless network, and then finally transmits it to the communication device of the receiver, and transmits the voice to the user of the receiver.
  • the function of the antenna in the communication device is to transmit and receive radio waves transmitted between the communication device and the base station.
  • radio waves are electromagnetic waves, and different electromagnetic waves have different wavelengths.
  • conventional mobile devices usually transmit and receive electromagnetic waves with frequencies ranging from 800 MHz to 2100 MHz. The longer the wavelength, the lower the frequency.
  • the wavelength corresponding to 900 MHz is about 330 mm
  • the wavelength corresponding to 2000 MHz is about 150 mm. That is, the wavelength is inversely proportional to the frequency.
  • One frequency band includes a specific frequency range, and the frequency band is named by the intermediate value of the frequency range.
  • the frequency range of 824 MHz to 894 MHz is named as the 850 MHz frequency band.
  • a transmission sub-band and a reception sub-band are further subdivided in each frequency band.
  • the size of the antenna is closely related to the wavelength of the electromagnetic wave transmitted and received by the antenna. Those skilled in the art usually set the length of the antenna to one half or one quarter of the wavelength of the electromagnetic wave.
  • the electromagnetic wave in the 850 MHz band is taken as an example, and the ideal minimum antenna length is 9 cm. The longer the wavelength, the larger the required antenna length.
  • Multi-antenna technology as a key means to improve the communication speed that communication devices can support, currently faces many problems and challenges.
  • Embodiments of the present invention provide a communication device supporting multiple input and multiple output technologies, which aims to solve the problem of multiple antenna layout in such a device.
  • an embodiment of the present invention provides a communication device supporting multiple input and multiple output MIMO technologies, where the communication device includes a primary antenna and a MIMO antenna, and one end of the primary antenna and one end of the MIMO antenna are first disposed a slot; the primary antenna is connected to the first feed at a first point, the primary antenna is configured to transmit at least a signal of a first working frequency band; and an isolation circuit is disposed between the primary antenna and the MIMO antenna, the isolation a circuit for reducing coupling between the primary antenna and the MIMO antenna; the MIMO antenna and a second optional feed circuit are coupled at a second point, the second optional feed circuit being selectively feedable Switching between an electrical state and a non-feeding state, the second optional feeding circuit comprising a second feed, the MIMO antenna for transmitting a signal of the first operating frequency band; and when the second optional feeding The electrical circuit is in a feeding state, The MIMO antenna and the primary antenna are simultaneously used to transmit signals in the first working frequency band; when the second optional feeding circuit is in a slot,
  • the MIMO antenna is multiplexed as a part of the main antenna, thereby improving the performance of the main antenna.
  • the communication device may further include: a right border and a left border that are oppositely disposed, and an upper border and a lower border that are oppositely disposed, the right border includes a first ground border, and the left border includes a first a second grounding frame, the first slot is located at the upper frame, the other end of the main antenna is located at the right frame, and a second slot is disposed between the other end of the main antenna and the first ground frame.
  • the other end of the MIMO antenna is located at the left frame, and a third slot is disposed between the other end of the MIMO antenna and the second ground frame.
  • the frame design of the antenna and the communication terminal is skillfully combined to better meet the user's preference.
  • the communication device may further include: the main antenna includes a first portion and a second portion, one end of the first portion is one end of the main antenna, and the other end of the first portion A fourth slot is disposed between one end of the second portion, and the other end of the second portion is the other end of the main antenna.
  • the second portion acts as a complementary resonant structure for the first portion.
  • the resonant frequency of the antenna can be further increased when the frequency bands supported by the primary antenna and the MIMO antenna are insufficient.
  • the fourth slot is located at the upper frame.
  • the isolation circuit includes: the isolation circuit includes one end of the main antenna grounded, or the isolation circuit includes one end of the antenna grounded, or the isolation circuit includes: one end of the main antenna is connected in series After the inductor is grounded, the inductance value is less than 2nH, and one end of the main antenna is connected in series with a capacitor, and the capacitance value is greater than 2pF.
  • the isolation circuit includes: one end of the MIMO antenna connected to the inductor and grounded.
  • the signal of the first working frequency band includes an intermediate frequency signal and a high frequency signal
  • the frequency of the intermediate frequency signal includes 1700 MHz-2200 MHz
  • the frequency of the high frequency signal includes 2300 MHz-2700 MHz
  • the main The antenna can also be used to transmit low frequency signals, the frequencies of which include 700 MHz to 960 MHz.
  • FIG. 1 is a schematic diagram of an external structure of a communication device supporting multiple input and multiple output technologies according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of internal components of a communication device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an application scenario according to an embodiment of the present disclosure.
  • FIG. 4 is a partial schematic diagram of a communication device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 6 is a partial schematic diagram of a communication device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of multiple isolation circuits according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an optional feeding circuit of a MIMO antenna according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of various complementary resonant structures according to an embodiment of the present invention.
  • FIG. 11 is a partial schematic diagram of a communication device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of simulation results of transmission parameters provided according to the embodiment of FIG. 11;
  • FIG. 1 is a schematic diagram of an external structure of a communication device supporting multiple input and multiple output technologies according to an embodiment of the present invention.
  • the communication device according to the embodiment of the present invention includes a mobile phone, a tablet computer, a laptop computer, a router, a home gateway, a set top box, an in-vehicle device, and the like.
  • the term "communication device” as a term may be replaced by terms such as terminal products, electronic devices, communication products, handheld terminals, portable terminals, and the like.
  • the communication device 100 has a cube-like shape including a front case 120, a side frame 130, and a back cover (not shown).
  • the side frame 130 can be divided into an upper frame, a lower frame, a left frame, and a right frame.
  • the frames are connected to each other, and a certain arc or chamfer can be formed at the connection.
  • the button, the card cover, the speaker opening, the USB hole, the earphone hole, the microphone port, and the like may be disposed on the side frame.
  • the USB hole 150 disposed on the lower frame is schematically shown.
  • a screen, a button area, a speaker opening, and the like may be disposed on the surface of the front case 120.
  • a speaker opening 140 disposed at a position near the upper frame of the front case surface is schematically shown.
  • FIG. 2 is a schematic diagram of the internal composition of a communication device 100 according to an embodiment of the present invention.
  • the communication device 100 includes an application processor 201, a baseband processor 202, a radio frequency communication circuit 203, and an antenna 204.
  • the application processor 201, the baseband processor 202, the radio frequency communication circuit 203 and the antenna 204 are connected by a circuit.
  • the application processor 201 controls the communication device 100 as a whole, including controlling display of the display unit, controlling input of the input unit, controlling use of the audio and video processing module, controlling signals transmitted by the baseband processor, and the like.
  • the baseband processor 202 modulates the signal input from the application processor, transmits the signal to the radio frequency communication circuit 203, and then radiates to the free space through the antenna 204, or passes the signal received by the antenna 204 through the radio frequency communication circuit 203, and then demodulates the signal. Transfer to the application processor 201.
  • the radio frequency communication circuit 203 can be used to support wireless communication in a plurality of radio frequency communication bands.
  • the radio frequency communication band includes a Long Term Evolution (LTE) band, for example, 704 MHz-716 MHz, 1700 MHz-1755 MHz, 1850 MHz-1900 MHz, Global System for Mobile Communications (GSM) band, for example, 824 MHz- 849 MHz, Wideband Code Division Multiple Access (WCDMA) band, for example, 1920 MHz-1980 MHz.
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communications
  • WCDMA Wideband Code Division Multiple Access
  • the radio frequency communication circuit 203 may include a signal generation circuit, a modulation or demodulation circuit, a power amplification circuit, a filter circuit, a duplex circuit, a balun circuit, a matching circuit, and the like.
  • the radio frequency communication circuit 203 may be a circuit composed of components such as capacitors, inductors, switches, etc., and these components may be connected by series, parallel, or the like.
  • the radio frequency communication circuit 203 includes a processor having processing capability, or the radio frequency communication circuit 203 is connected to a processor having such processing capability, and the processor can call a preset code to execute a preset algorithm.
  • the radio frequency communication circuit 203 controls the on/off of the switch, the magnitude of the capacitance value or the inductance value, and the like in the circuit according to an algorithm preset by the processor.
  • the antenna 204 is disposed within the communication device 100, or the antenna 204 may be formed in part or in whole by a portion of the side frame 130 of the communication device 100.
  • the communication device shown in the figure is only an example of implementation, and does not constitute a limitation of the communication device, and may include more or less components than those illustrated, or combine some components, or Different parts are arranged.
  • FIG. 3 shows a possible application scenario provided by an embodiment of the present invention.
  • This application scenario due to the objective situation of the gradual evolution of communication technology, or different considerations for the selection of communication standards in various regions, in some regions, support is first adopted.
  • the communication standard of MIMO technology under which the base station and the communication terminal need to support multi-antenna technology.
  • communication standards that do not support MIMO technology are still adopted, under which the base station and the communication terminal do not need to support multi-antenna technology.
  • different communication needs are created in different regions. For a communication terminal that needs to work in multiple regions, it is important to support both MIMO technology and non-MIMO technology.
  • the MIMO frequency band required by the operator is less than the frequency band supported by the communication device supporting the full Netcom. Therefore, in the communication device, in addition to designing the MIMO antenna, a primary antenna or a diversity antenna needs to be set to meet the communication device support. The needs of Netcom. This is a huge challenge for antenna engineers.
  • FIG. 4 is a schematic diagram of a communication device according to an embodiment of the present invention.
  • the communication device 100 includes a primary antenna 401 and a MIMO antenna 402. A first end E1 of the primary antenna 401 and an end E2 of the MIMO antenna are first. Gap
  • the main antenna 401 is connected to the first feed S1 at a first point P1, and the main antenna 401 is used for transmitting at least a signal of a first working frequency band;
  • An isolation circuit B is disposed between the main antenna 401 and the MIMO antenna 402, and the isolation circuit B is configured to reduce coupling between the main antenna 401 and the MIMO antenna 402.
  • the MIMO antenna 402 and the second optional feed circuit 403 are connected at a second point P2, and the second selectable feed circuit 403 is selectively switchable between a feed state and a non-feed state,
  • the second optional feed circuit includes a second feed S2, and the MIMO antenna 402 is also used to transmit signals of the first working frequency band;
  • the MIMO antenna 402 and the main antenna 401 simultaneously support the first working frequency band;
  • the MIMO antenna 402 acts as a parasitic structure of the main antenna 401.
  • the communication terminal provided by the embodiment of the invention can not only support the requirement of multi-antenna operation in the MIMO technology, but also multiplex the MIMO antenna as part of the main antenna in the non-multi-antenna mode, thereby improving the performance of the main antenna.
  • the communication terminal 100 includes a right border 501 and a left border 502, and an opposite upper border 503 and a lower border 504.
  • the right border 501 includes a first ground border. 505, the left frame 502 includes a second ground frame 506, the first slot is located in the upper frame 503, the other end E3 of the main antenna 401 is located in the right frame 501, and the other end of the main antenna 401
  • a second slot 507 is disposed between the E3 and the first ground frame 505.
  • the other end E4 of the MIMO antenna 402 is located at the left frame 502, and the other end E4 of the MIMO antenna 402 and the second ground frame 506 are located.
  • a third slit 508 is provided therebetween.
  • the right frame 501 and the upper frame 503 are connected by a right angle, or the right frame 501 and the upper frame 503 are connected by a round chamfer; the left frame 502 and the upper frame 503 are at right angles. Connected, or the left bezel 502 and the upper bezel 503 are connected by a round chamfer.
  • the main antenna 401 and the first tunable circuit 601 are connected at a position between the first point E1 and the other end E3 of the main antenna.
  • the first tunable circuit 601 is configured to change an operating frequency of the main antenna 401.
  • the first adjustable circuit 601 includes a first switch.
  • the first tunable circuit can also include a tunable capacitor, a tunable inductor, or a combination thereof.
  • the isolation circuit B disposed between the main antenna 401 and the MIMO antenna 402 may adopt different schemes.
  • the isolation circuit B includes one end E1 of the main antenna 401 being grounded (part (a) in FIG. 7); one end E2 of the MIMO antenna 402 is grounded (a in FIG. 7) Part)); one end E1 of the main antenna 401 is connected in series with an inductor and grounded (part (b) in FIG. 7), the inductance value is less than 2nH; the MIMO One end E2 of the antenna 402 is connected in series with an inductor (ground portion (b) in FIG.
  • the isolation circuit B includes a combination of the above various circuits to form an LC filter circuit or the like ((part (d) or (e) of FIG. 7).
  • the above The capacitors can all be replaced by adjustable capacitors, and the above inductors can be replaced by adjustable inductors.
  • switches and the like can also be included in the isolation circuit B.
  • the isolation between the main antenna and the MIMO antenna can reach 10 dB or more.
  • an embodiment of the present invention provides a method of how the second selectable feed circuit 403 switches between a fed state and a non-fed state.
  • the second optional feed circuit 403 further includes a switch 801. The switch 801 and the second feed S2 are connected in parallel. When the switch 801 is turned off, the second selectable feed circuit 403 is in a feed state. When the switch 801 is closed, the second selectable feed circuit 403 is in a non-feed state.
  • the second optional feed circuit 403 further includes a circuit composed of an inductor and/or a capacitor. The circuit is connected in series or in parallel with the second feed S2 for impedance matching and frequency adjustment.
  • the main antenna 401 includes a first portion 901 and a second portion 902, one end of the first portion 901 is an end E1 of the main antenna 401, and the first portion 901 A fourth slot 903 is disposed between the other end E5 and the one end E6 of the second portion 902, and the other end of the second portion 902 is the other end E3 of the main antenna.
  • the second portion 902 serves as a complementary resonant structure of the first portion 901.
  • the fourth slot 903 is located at the upper frame 503.
  • the second portion 902 is bent toward the inside of the communication device at the other end of the second portion 902, and is extended to form a bent structure, and the communication device The ground plane GND inside is connected.
  • the second portion 902 is connected to the ground plane GND in the communication device after the other end of the second portion 902 is connected to the inductor L1.
  • the second portion 902 is connected at one end E6 of the second portion 902 to a ground plane GND in the communication device through a ground trace, the ground trace including a spring piece.
  • the second portion 902 is connected to the ground plane GND in the communication device through an inductor L2 at one end E6 of the second portion 902, and the inductance includes a fixed inductance value or may be Adjusted inductance.
  • the main antenna has an isolation structure, so that the radiator of the isolation structure attachment cannot form an effective resonance, so the resonance is compensated by adding a supplementary resonance structure.
  • the main antenna of the embodiment of the present invention can support low frequency (700 MHz-960 MHz), intermediate frequency (1700 MHz-2200 MHz) and high.
  • the MIMO antenna supports the intermediate frequency (1700MHz-2200MHz) and high frequency (2300MHz-2700MHz) frequency bands.
  • one end E1 of the main antenna 401 is connected in series with an inductor, and the matching circuit of the first feed S1 includes a circuit combination as shown in the figure;
  • the source S1 and the main antenna are further provided with a metal device, such as a USB interface, etc., a gap is formed between the first portion and the second portion of the main antenna, and the end of the second portion is formed into a bent structure, Internal grounding of the communication device.
  • One end E2 of the MIMO antenna is directly grounded, the matching circuit of the second feed S1 includes a circuit combination as shown, and the second optional feed circuit 403 employs the structure of FIG.
  • FIG. 12 is a schematic diagram of transmission parameter simulation using the antenna provided in FIG.
  • the isolation between the main antenna 401 and the MIMO antenna 402 is basically above 10dB, which fully satisfies the operator's requirements for MIMO transmission.
  • the digital interval should be understood to include the first number and the mantissa.
  • 700 MHz-960 MHz refers to including 700 MHz and 960 MHz and all frequencies in their interval
  • 800 MHz to 2100MHz refers to all frequencies including 800MHz and 2100MHz and their range.
  • ground may be replaced by the words “antenna grounding portion”, “antenna ground”, and “ground plane”, and they are all used to mean substantially the same meaning.
  • the antenna ground portion is connected to a ground of the radio frequency transceiver circuit, and the antenna ground portion has a size larger than an operating wavelength of the antenna.
  • the antenna grounding portion may be mainly disposed on a surface of the printed circuit board of the communication device, and the printed circuit board is provided with a spring foot, a screw, a spring piece, a conductive cloth, a conductive foam or a conductive adhesive.
  • An electrical connection device for establishing a connection between the RF circuit and the antenna, or for establishing a connection between the antenna ground and the antenna.
  • air, plastic, ceramic or other dielectric materials may be filled between the antenna and the antenna ground.
  • connection means that the electrical signal passing through A is physically determined to be related to the electrical signal passing through B. This includes direct connection of A and B through wires, shrapnel, etc. Connected, or indirectly connected by another component C, also includes the correlation between A and B through electromagnetic induction through their respective electrical signals.
  • the frequency mentioned in the embodiment of the present invention can be understood as a resonant frequency.
  • a frequency within the range of 7-13% of the resonant frequency can be understood as the operating bandwidth of the antenna.
  • the antenna has a resonant frequency of 1800 MHz and an operating bandwidth of 10% of the resonant frequency.
  • the antenna operates from 1620 MHz to 1980 MHz.
  • capacitors and inductors mentioned in the above embodiments may be lumped capacitors and lumped inductors, capacitors and inductors, or distributed capacitors and distributed inductors.
  • the embodiments of the present invention are not limited thereto.

Landscapes

  • Transceivers (AREA)

Abstract

本发明实施例提供了一种支持多进多出技术的通信设备,该通信设备包括主天线和MIMO天线,该主天线的一端和该MIMO天线的一端间设置有第一缝隙;该主天线与第一馈源在第一点连接,该主天线至少用于传输第一工作频段的信号;该主天线与该MIMO天线间设置有隔离电路,该隔离电路用于降低该主天线和该MIMO天线间的耦合;该MIMO天线和第二可选馈电电路在第二点连接,该第二可选馈电电路可选择性地在馈电状态和非馈电状态之间切换,该第二可选馈电电路包括第二馈源,该MIMO天线用于传输该第一工作频段的信号;当该第二可选馈电电路为馈电状态,该MIMO天线和该主天线同时用于传输该第一工作频段的信号;当该第二可选馈电电路为非馈电状态,该MIMO天线作为该主天线的寄生结构。

Description

一种支持多进多出技术的通信设备 技术领域
本发明涉及通信技术领域,特别涉及一种支持多进多出技术的通信设备。
背景技术
在移动通信中,通常包括三个重要的组件,通信设备,基站和无线网络。以打电话为例,当用户使用通信设备说话时,发送方的通信设备将语音转化为无线电波。在该通信设备附近的基站接收所述无线电波后将该无线电波通过无线网络传递到接收方附近的基站,然后最终传递到接收方的通信设备,并以语音的方式传递给接收方的用户。在这个过程中,通信设备中的天线的功能是发送和接收该通信设备和基站之间传送的无线电波。
其中,无线电波是一种电磁波,不同的电磁波波长不同,例如,传统移动设备通常收发的电磁波频率在800MHz到2100MHz之间。而波长越长,频率越低,例如,900MHz对应的波长大约为330毫米,而2000MHz对应的波长约为150毫米。即,波长和频率成反比。有专门的国际组织将频率资源划分为不同的频段,一个频段包括一个特定的频率范围,并由该频率范围的中间值命名这个频段,例如,824MHz到894MHz的频率范围被命名为850MHz频段。在每个频段中又细分有发送子频段和接收子频段。
天线的尺寸和天线收发的电磁波波长有着密切的关系,本领域技术人员通常将天线的长度设置为收发电磁波波长的一半或者四分之一,以850MHz频段的电磁波为例,理想的最小天线长度为9厘米。而波长越长,需要的天线长度也越大。
随着无线通信技术的不断发展和移动宽带业务的需求增长,据预测到2020年,各大运营商的业务将为目前业务量的100倍。基于此,需要进一步提高通信设备可支持的通信速率,以适应未来用户业务需求。多天线技术作为提高通信设备可支持的通信速率的关键手段,目前还面临着许多问题和挑战。
发明内容
本发明实施例提供一种支持多进多出技术的通信设备,旨在解决这种设备中多天线布局的问题。
一方面,本发明实施例提供一种支持多进多出MIMO技术的通信设备,所述通信设备包括主天线和MIMO天线,所述主天线的一端和所述MIMO天线的一端间设置有第一缝隙;所述主天线与第一馈源在第一点连接,所述主天线至少用于传输第一工作频段的信号;所述主天线与所述MIMO天线间设置有隔离电路,所述隔离电路用于降低所述主天线和所述MIMO天线间的耦合;所述MIMO天线和第二可选馈电电路在第二点连接,所述第二可选馈电电路可选择性地在馈电状态和非馈电状态之间切换,所述第二可选馈电电路包括第二馈源,所述MIMO天线用于传输所述第一工作频段的信号;当所述第二可选馈电电路为馈电状态, 所述MIMO天线和所述主天线同时用于传输所述第一工作频段的信号;当所述第二可选馈电电路为非馈电状态,所述MIMO天线作为所述主天线的寄生结构。
通过这种方式实现了MIMO场景和非MIMO场景下天线的共用,并且在非MIMO场景下,将MIMO天线复用为主天线的一部分,从而提高主天线的性能。
在一个可能的实现方式中,上述通信设备还可以包括:相对设置的右边框和左边框,以及相对设置的上边框和下边框,所述右边框包括第一接地边框,所述左边框包括第二接地边框,所述第一缝隙位于所述上边框,所述主天线的另一端位于所述右边框,所述主天线的另一端和所述第一接地边框间设置有第二缝隙,所述MIMO天线的另一端位于所述左边框,所述MIMO天线的另一端和所述第二接地边框间设置有第三缝隙。
通过上述方式,天线和通信终端的边框设计巧妙地结合,更符合用户的喜好。
在一个可能的实现方式中,上述通信设备还可以包括:所述主天线包括第一部分和第二部分,所述第一部分的一端为所述主天线的一端,所述第一部分的另一端和所述第二部分的一端间设置有第四缝隙,所述第二部分的另一端为所述主天线的另一端。其中,所述第二部分作为所述第一部分的补充谐振结构。
通过上述方式,可以在主天线和MIMO天线支持的频段不足时,进一步增加天线的谐振频率。
在一个可能的实现方式中,所述第四缝隙位于所述上边框。
其中,所述隔离电路包括:所述隔离电路包括所述主天线的一端接地,或,所述隔离电路包括所述天线的一端接地,或,所述隔离电路包括:所述主天线的一端串联电感后接地,所述电感值小于2nH,所述主天线的一端串联电容后接地,所述电容值大于2pF,或,所述隔离电路包括:所述MIMO天线的一端串联电感后接地。
在一个可能的实现方式中,所述第一工作频段的信号包括中频信号和高频信号,所述中频信号的频率包括1700MHz-2200MHz,所述高频信号的频率包括2300MHz-2700MHz,所述主天线还可以用于传输低频信号,所述低频信号的频率包括700MHz-960MHz。
附图说明
图1为本发明实施例提供的一种支持多进多出技术的通信设备外部结构示意图;
图2为本发明实施例提供的通信设备内部组成示意图;
图3为本发明实施例提供的应用场景示意图;
图4为本发明实施例提供的通信设备局部示意图;
图5为本发明实施例提供的通信设备结构示意图;
图6为本发明实施例提供的通信设备局部示意图;
图7为本发明实施例提供的多种隔离电路示意图;
图8为本发明实施例提供的MIMO天线可选馈电电路示意图;
图9为本发明实施例提供的通信设备结构示意图;
图10为本发明实施例提供的多种补充谐振结构示意图;
图11为本发明实施例提供的通信设备局部示意图;
图12为根据图11的实施例提供的传输参数仿真结果示意图;
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
请参考图1,为本发明实施例提供的一种支持多进多出技术的通信设备外部结构示意图。本发明实施例涉及的通信设备包括手机、平板电脑、膝上型电脑、路由器、家庭网关、机顶盒、车载设备等。全文中作为术语出现的“通信设备”,可以用终端产品、电子设备、通信产品、手持终端、便携终端等术语替换。
示例性地,该通信设备100具有类似立方体的形状,包括前壳120,侧边框130和背盖(图中未示出)。该侧边框130可以分为上边框、下边框、左边框、右边框,这些边框相互连接,在连接处可以形成一定的弧度或倒角。
按键、卡托盖、扬声器开口、USB孔、耳机孔、麦克口等可以设置在侧边框上,在图1中,示意性的给出了设置在下边框上的USB孔150。
屏幕、按键区、扬声器开口等可以设置在前壳120的表面,在图1中,示意性的给出了在前壳表面靠近上边框的位置设置的扬声器开口140。
请参考图2,为本发明实施例提供的通信设备100内部组成示意图。所述通信设备100包括应用处理器201,基带处理器202,射频通信电路203和天线204。所述应用处理器201,基带处理器202,射频通信电路203和天线204间通过电路连接。
其中,所述应用处理器201整体上控制所述通信设备100,包括控制显示单元的显示,控制输入单元的输入,控制音视频处理模块的使用,控制基带处理器传入的信号等。
其中,基带处理器202对从应用处理器输入的信号进行调制,传输到射频通信电路203后通过天线204向自由空间辐射,或者将天线204接收到的信号通过射频通信电路203后,解调后传输给应用处理器201。
其中,所述射频通信电路203可用于支持多个射频通信频带中的无线通信。所述射频通信频带包括长期演进(Long Term Evolution,LTE)频带,例如,704MHz-716MHz,1700MHz-1755MHz,1850MHz-1900MHz、全球移动通信系统(Global System for Mobile Communications,GSM)频带,例如,824MHz-849MHz、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)频带,例如,1920MHz-1980MHz等。
所述射频通信电路203可包括信号生成电路、调制或解调电路、功率放大电路、滤波电路、双工电路、巴伦电路、匹配电路等。所述射频通信电路203可以是由电容器、电感器、开关等元件构成的电路,这些元件可以通过串联、并联等方式连接。所述射频通信电路203包括具有处理能力的处理器,或者该射频通信电路203与具有这样处理能力的处理器连接,处理器可以调用预设的代码,执行预设的算法。射频通信电路203根据处理器预设的算法来控制电路中的开关通断、电容值或电感值的大小等。
所述天线204设置在通信设备100内,或者该天线204也可以部分或全部由该通信设备100侧边框130的一部分形成。本领域技术人员可以理解,图中示出的通信设备只做实现方式的举例,并不构成对通信设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图3示出了本发明实施例提供的一种可能的应用场景。在该应用场景中,由于通信技术逐步演进的客观情况,或者是各地区选用通信标准的不同考虑,在有些地区,先采用了支持 MIMO技术的通信标准,在该通信标准下,基站和通信终端都需要支持多天线技术。而在另一些地区,依然采用不支持MIMO技术的通信标准,在该通信标准下,基站和通信终端不需要支持多天线技术。因此,就造成了各地区不同的通信需求。而对一台需要在多个地区工作的通信终端而言,同时支持MIMO技术和非MIMO技术就变得十分重要。
另外,运营商要求的MIMO频段少于支持全网通的通信设备所需要支持的频段,所以,在通信设备中,除了设计MIMO天线,还需要设置主天线、或分集天线等,以满足通信设备支持全网通的需要。这对天线工程师而言,是一个巨大的挑战。
图4示出了本发明实施例提供的通信设备示意图,所述通信设备100包括主天线401和MIMO天线402,所述主天线401的一端E1和所述MIMO天线的一端E2间设置有第一缝隙;
所述主天线401与第一馈源S1在第一点P1连接,所述主天线401至少用于传输第一工作频段的信号;
所述主天线401与所述MIMO天线402间设置有隔离电路B,所述隔离电路B用于降低所述主天线401和所述MIMO天线402间的耦合;
所述MIMO天线402和第二可选馈电电路403在第二点P2连接,所述第二可选馈电电路403可选择性地在馈电状态和非馈电状态之间切换,所述第二可选馈电电路包括第二馈源S2,所述MIMO天线402也用于传输所述第一工作频段的信号;
当所述第二可选馈电电路403为馈电状态,所述MIMO天线402和所述主天线401同时支持所述第一工作频段;
当所述第二可选馈电电路403为非馈电状态,所述MIMO天线402作为所述主天线401的寄生结构。
采用本发明实施例提供的通信终端,既可以支持MIMO技术中多天线工作的需要,又可以在非多天线模式下,将MIMO天线复用为主天线的一部分,从而提高主天线的性能。
结合图4和图5,可选的,所述通信终端100包括相对设置的右边框501和左边框502,以及相对设置的上边框503和下边框504,所述右边框501包括第一接地边框505,所述左边框502包括第二接地边框506,所述第一缝隙位于所述上边框503,所述主天线401的另一端E3位于所述右边框501,所述主天线401的另一端E3和所述第一接地边框505间设置有第二缝隙507,所述MIMO天线402的另一端E4位于所述左边框502,所述MIMO天线402的另一端E4和所述第二接地边框506间设置有第三缝隙508。
可选的,所述右边框501和所述上边框503通过直角连接,或者所述右边框501和所述上边框503通过圆倒角连接;所述左边框502和所述上边框503通过直角连接,或者所述左边框502和所述上边框503通过圆倒角连接。
为了增加所述主天线401的谐振频率,结合图4~图6,所述主天线401与第一可调电路601在所述第一点E1和所述主天线另一端E3间的位置连接,所述第一可调电路601用于改变所述主天线401的工作频率。可选的,所述第一可调电路601包括第一开关。第一可调电路还可以包括可调电容、可调电感或其组合。
在本发明实施例中,所述主天线401和所述MIMO天线402间设置的隔离电路B可以采用不同的方案。参考图7,可选的,所述隔离电路B包括所述主天线401的一端E1接地(图7中的(a)部分);所述MIMO天线402的一端E2接地(图7中的(a)部分);所述主天线401的一端E1串联电感后接地(图7中的(b)部分),所述电感值小于2nH;所述MIMO 天线402的一端E2串联电感后接地(图7中的(b)部分),所述电感值小于2nH;所述主天线401的一端E1串联电容后接地(图7中的(c)部分),所述电容值大于2pF;或者,所述隔离电路B包括上述各种电路的组合,以形成LC滤波电路等((图7中的(d)部分或(e)部分)。可选的,上述电容均可以采用可调电容来替换,上述电感均可以采用可调电感来替换。另外,在所述隔离电路B中还可以包括开关等。
采用上述方式的隔离电路,主天线与MIMO天线的隔离度可以达到10dB以上。
参考图8,本发明实施例给出了第二可选馈电电路403如何在馈电状态和非馈电状态间切换的一种方法。其中,所述第二可选馈电电路403还包括开关801,所述开关801和第二馈源S2并联,当开关801断开时,所述第二可选馈电电路403为馈电状态;当开关801闭合时,所述第二可选馈电电路403为非馈电状态。可选的,所述第二可选馈电电路403还包括由电感和/或电容组成的电路。所述电路与第二馈源S2串联或并联,用于起到阻抗匹配,调整频率的作用。
为了进一步增加主天线的谐振频率,参考图9,所述主天线401包括第一部分901和第二部分902,所述第一部分901的一端为所述主天线401的一端E1,所述第一部分901的另一端E5和所述第二部分902的一端E6间设置有第四缝隙903,所述第二部分902的另一端为所述主天线的另一端E3。其中,所述第二部分902作为所述第一部分901的补充谐振结构。
结合图5,图9和图10,可选的,所述第四缝隙903位于所述上边框503。
可选的,参考图10中的(a)部分,所述第二部分902在所述第二部分902的另一端向所述通信设备内部弯曲,延伸后形成弯折结构,与所述通信设备内的接地面GND连接。
参考图10中的(b)部分,所述第二部分902在所述第二部分902的另一端连接电感L1后与所述通信设备内的接地面GND连接。参考图10中的(c)部分,所述第二部分902在所述第二部分902的一端E6通过接地走线与所述通信设备内的接地面GND连接,所述接地走线包括弹片。参考图10中的(d)部分,所述第二部分902在所述第二部分902的一端E6通过电感L2与所述通信设备内的接地面GND连接,所述电感包括电感值固定或可调的电感。
采用本发明实施例提供的通信终端,主天线由于增加了隔离结构的原因,使得隔离结构附件的辐射体无法形成有效的谐振,所以通过增加补充谐振结构,弥补这部分谐振。在有限的通信终端空间内,例如,通信终端上边框的长度小于9cm,净空小于7mm的情况下,本发明实施例的主天线可以支持低频(700MHz-960MHz),中频(1700MHz-2200MHz)和高频(2300MHz-2700MHz)的频段,MIMO天线支持中频(1700MHz-2200MHz)和高频(2300MHz-2700MHz)的频段。下面以一个具体的例子来说明本发明实施例中天线工作的原理。参见图11,在本发明实施例中,在所述主天线401的一端E1串联电感后接地,所述第一馈源S1的匹配电路包括如图所示的电路组合;在所述第一馈源S1和所述主天线的附近还设置有金属器件,例如USB接口等,所述主天线的第一部分和第二部分间设置有缝隙,所述第二部分的末端形成弯折结构后,在通信设备的内部接地。所述MIMO天线的一端E2直接接地,所述第二馈源S1的匹配电路包括如图所示的电路组合,所述第二可选馈电电路403采用图8中的结构。图12为采用图11所提供的天线的传输参数仿真示意图,其中,在主天线401(即:图12中的ant1)和MIMO天线402(即图中的ant2)共同支持的频段,即1500MHz–3200MHz的范围内,主天线401和MIMO天线402之间的隔离度基本都在10dB以上,完全满足了运营商对MIMO传输的要求。需要说明的是,在本发明各实施例中,如果没有特别说明,“大 于”应理解为包括“大于等于”;“小于”应理解为包括“小于等于”;“以上”、“以下”均应理解为包括本数。
需要说明的是,在本发明各实施例中,如果没有特别说明,数字区间应理解为包含首数和尾数,例如,700MHz-960MHz是指包括700MHz和960MHz以及它们区间内的所有频率、800MHz到2100MHz是指包括800MHz和2100MHz以及它们区间内的所有频率。
需要说明的是,在本发明各实施例中,“地”可以用“天线接地部”“天线地”、“地平面”等词替代,它们均用于表示基本相同的含义。其中,所述天线接地部和射频收发电路的地线相连接,并且,天线接地部具有比天线工作波长更大的尺寸。可选的,所述天线接地部可以主要布置在在所述通信设备的印刷电路板表面,在所述印刷电路板上海设置有弹脚、螺钉、弹片、导电布、导电泡棉或者导电胶等电连接器件,用于建立射频电路和所述天线间的连接,或者用于建立所述天线接地部和所述天线间的连接。另外,在天线和天线接地部可以之间填充空气、塑料、陶瓷或其他电介质材料。
需要说明的是,本发明各实施例提到A和B“连接”,是指通过A的电信号与通过B的电信号发生物理上的确定关联,这包括A与B通过导线、弹片等直接连接,或者通过另一个部件C间接相连,也包括A与B之间通过电磁感应使经过各自的电信号发生关联。
需要说明的是,本发明实施例中提到的频率可以理解为谐振频率。对于本领域普通技术人员而言,谐振频率7-13%范围内的频率可以理解为天线的工作带宽。例如,天线的谐振频率为1800MHz,工作带宽为谐振频率的10%,则天线的工作范围为1620MHz-1980MHz。
需要说明的是,上述实施例中提到的电容和电感可以为集总电容和集总电感,也可以为电容器和电感器,或者为分布电容和分布电感。本发明实施例对此并不限制。
需要说明的是,当本发明各实施例提及“第一”、“第二”、“第三”等序数词时,除非根据上下文其确实表达顺序之意,应当理解为仅仅是起区分之用。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种支持多进多出MIMO技术的通信设备,其特征在于,所述通信设备包括主天线和MIMO天线,所述主天线的一端和所述MIMO天线的一端间设置有第一缝隙;
    所述主天线与第一馈源在第一点连接,所述主天线至少用于传输第一工作频段的信号;
    所述主天线与所述MIMO天线间设置有隔离电路,所述隔离电路用于降低所述主天线和所述MIMO天线间的耦合;
    所述MIMO天线和第二可选馈电电路在第二点连接,所述第二可选馈电电路可选择性地在馈电状态和非馈电状态之间切换,所述第二可选馈电电路包括第二馈源,所述MIMO天线用于传输所述第一工作频段的信号;
    当所述第二可选馈电电路为馈电状态,所述MIMO天线和所述主天线同时用于传输所述第一工作频段的信号;
    当所述第二可选馈电电路为非馈电状态,所述MIMO天线作为所述主天线的寄生结构。
  2. 根据权利要求1所述的通信设备,其特征在于,所述通信终端包括相对设置的右边框和左边框,以及相对设置的上边框和下边框,所述右边框包括第一接地边框,所述左边框包括第二接地边框,所述第一缝隙位于所述上边框,所述主天线的另一端位于所述右边框,所述主天线的另一端和所述第一接地边框间设置有第二缝隙,所述MIMO天线的另一端位于所述左边框,所述MIMO天线的另一端和所述第二接地边框间设置有第三缝隙。
  3. 根据权利要求1所述的通信设备,其特征在于,所述主天线包括第一部分和第二部分,所述第一部分的一端为所述主天线的一端,所述第一部分的另一端和所述第二部分的一端间设置有第四缝隙,所述第二部分的另一端为所述主天线的另一端,其中,所述第二部分作为所述第一部分的补充谐振结构。
  4. 根据权利要求3所述的通信设备,其特征在于,所述第四缝隙位于所述上边框。
  5. 根据权利要求1所述的通信设备,其特征在于,所述隔离电路包括:所述隔离电路包括所述主天线的一端接地。
  6. 根据权利要求1所述的通信设备,其特征在于,所述隔离电路包括:所述隔离电路包括所述MIMO天线的一端接地。
  7. 根据权利要求1所述的通信设备,其特征在于,所述隔离电路包括:所述主天线的一端串联电感后接地,所述电感值小于2nH,所述主天线的一端串联电容后接地,所述电容值大于2pF。
  8. 根据权利要求1所述的通信设备,其特征在于,所述隔离电路包括:所述MIMO天线的一端串联电感后接地。
  9. 根据权利要求1所述的通信设备,其特征在于,所述第一工作频段的信号包括中频信号和高频信号,所述中频信号的频率包括1700MHz-2200MHz,所述高频信号的频率包括2300MHz-2700MHz,所述主天线还可以用于传输低频信号,所述低频信号的频率包括700MHz-960MHz。
PCT/CN2017/074166 2017-02-20 2017-02-20 一种支持多进多出技术的通信设备 WO2018148973A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/074166 WO2018148973A1 (zh) 2017-02-20 2017-02-20 一种支持多进多出技术的通信设备
CN201780004645.4A CN108780941B (zh) 2017-02-20 2017-02-20 一种支持多进多出技术的通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/074166 WO2018148973A1 (zh) 2017-02-20 2017-02-20 一种支持多进多出技术的通信设备

Publications (1)

Publication Number Publication Date
WO2018148973A1 true WO2018148973A1 (zh) 2018-08-23

Family

ID=63169647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074166 WO2018148973A1 (zh) 2017-02-20 2017-02-20 一种支持多进多出技术的通信设备

Country Status (2)

Country Link
CN (1) CN108780941B (zh)
WO (1) WO2018148973A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668604A (zh) * 2019-03-08 2020-09-15 Oppo广东移动通信有限公司 天线组件及电子设备
WO2021036994A1 (zh) * 2019-08-30 2021-03-04 Oppo广东移动通信有限公司 天线装置及电子设备
CN114389013A (zh) * 2022-01-17 2022-04-22 Oppo广东移动通信有限公司 天线装置及电子设备
WO2022257668A1 (zh) * 2021-06-10 2022-12-15 荣耀终端有限公司 一种天线结构及终端设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276806B (zh) * 2020-02-14 2023-01-24 维沃移动通信有限公司 一种天线和电子设备
CN111244617A (zh) * 2020-03-27 2020-06-05 维沃移动通信有限公司 一种天线结构及电子设备
CN112821035B (zh) * 2020-12-31 2023-03-28 维沃移动通信有限公司 电子设备
CN113644436A (zh) * 2021-08-18 2021-11-12 维沃移动通信有限公司 天线系统和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394348A (zh) * 2011-07-08 2012-03-28 上海安费诺永亿通讯电子有限公司 一种适用于lte标准的多频段手机mimo天线结构
CN102856644A (zh) * 2012-04-13 2013-01-02 上海安费诺永亿通讯电子有限公司 一种开关控制的lte mimo手机天线结构
US20140141731A1 (en) * 2012-11-21 2014-05-22 Motorola Mobility Llc Antenna arrangement for 3g/4g svlte and mimo to enable thin narrow boardered display phones
US8766867B2 (en) * 2010-12-16 2014-07-01 Sony Corporation Compact antenna for multiple input multiple output communications including isolated antenna elements
CN104022354A (zh) * 2014-06-18 2014-09-03 广东工业大学 窄间距的低sar高隔离的mimo天线
CN105917524A (zh) * 2014-01-20 2016-08-31 旭硝子株式会社 天线指向性控制系统以及具备天线指向性控制系统的无线装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100063414A (ko) * 2008-12-03 2010-06-11 삼성전자주식회사 다중 대역 안테나 장치
CN106340725A (zh) * 2015-07-08 2017-01-18 三星电机株式会社 具有利用外廓导体的多频带天线的电子设备
CN108448250B (zh) * 2015-07-23 2021-02-09 Oppo广东移动通信有限公司 天线系统及应用该天线系统的通信终端
KR102306080B1 (ko) * 2015-08-13 2021-09-30 삼성전자주식회사 안테나 장치 및 안테나 장치를 포함하는 전자 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766867B2 (en) * 2010-12-16 2014-07-01 Sony Corporation Compact antenna for multiple input multiple output communications including isolated antenna elements
CN102394348A (zh) * 2011-07-08 2012-03-28 上海安费诺永亿通讯电子有限公司 一种适用于lte标准的多频段手机mimo天线结构
CN102856644A (zh) * 2012-04-13 2013-01-02 上海安费诺永亿通讯电子有限公司 一种开关控制的lte mimo手机天线结构
US20140141731A1 (en) * 2012-11-21 2014-05-22 Motorola Mobility Llc Antenna arrangement for 3g/4g svlte and mimo to enable thin narrow boardered display phones
CN105917524A (zh) * 2014-01-20 2016-08-31 旭硝子株式会社 天线指向性控制系统以及具备天线指向性控制系统的无线装置
CN104022354A (zh) * 2014-06-18 2014-09-03 广东工业大学 窄间距的低sar高隔离的mimo天线

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668604A (zh) * 2019-03-08 2020-09-15 Oppo广东移动通信有限公司 天线组件及电子设备
WO2021036994A1 (zh) * 2019-08-30 2021-03-04 Oppo广东移动通信有限公司 天线装置及电子设备
US11848506B2 (en) 2019-08-30 2023-12-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Antenna apparatus and electronic device
WO2022257668A1 (zh) * 2021-06-10 2022-12-15 荣耀终端有限公司 一种天线结构及终端设备
CN114389013A (zh) * 2022-01-17 2022-04-22 Oppo广东移动通信有限公司 天线装置及电子设备
WO2023134337A1 (zh) * 2022-01-17 2023-07-20 Oppo广东移动通信有限公司 天线装置及电子设备

Also Published As

Publication number Publication date
CN108780941A (zh) 2018-11-09
CN108780941B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
WO2018148973A1 (zh) 一种支持多进多出技术的通信设备
US9711841B2 (en) Apparatus for tuning multi-band frame antenna
CN102893452B (zh) 具有包括各自滤波器的分离天线分支的双端口天线
US11038257B2 (en) Antenna structure and communications terminal
KR101205196B1 (ko) 슬롯화된 다중 대역 안테나
US10623027B2 (en) Multiway switch, radio frequency system, and communication device
US10419040B1 (en) Multiway switch, radio frequency system, and communication device
US8947318B2 (en) Antenna apparatus
US10847888B2 (en) Planar end fire antenna for wideband low form factor applications
US9020447B2 (en) Electronic devices, methods, and computer program products for making a change to an antenna element based on a power level of a transmission power amplifier
CN202759016U (zh) 可调谐耦合馈电天线系统
CN103390796A (zh) 一种手机终端天线
CN109672019B (zh) 一种终端mimo天线装置及实现天线信号传输方法
CN101479880A (zh) 多频带多模式紧凑天线系统
WO2022142822A1 (zh) 天线组件和电子设备
EP2727181A1 (en) Multiple input multiple output (mimo) antennas having polarization and angle diversity and related wireless communications devices
CN104518278A (zh) 天线及终端
CN109167601B (zh) 移动设备
CN104183926A (zh) 一种缝隙天线和智能终端
CN102437427A (zh) 一种天线装置及终端设备
CN204905420U (zh) 一种手机天线装置
US8884831B2 (en) Antenna apparatus including multiple antenna portions on one antenna element associated with multiple feed points
US20120176276A1 (en) Antenna apparatus including multiple antenna portions on one antenna element associated with multiple feed points
CN105048064B (zh) 一种手机天线装置
US8576127B1 (en) UWB MIMO broadband antenna system for handheld radio

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897042

Country of ref document: EP

Kind code of ref document: A1