WO2022247652A1 - 一种终端天线及终端电子设备 - Google Patents

一种终端天线及终端电子设备 Download PDF

Info

Publication number
WO2022247652A1
WO2022247652A1 PCT/CN2022/092521 CN2022092521W WO2022247652A1 WO 2022247652 A1 WO2022247652 A1 WO 2022247652A1 CN 2022092521 W CN2022092521 W CN 2022092521W WO 2022247652 A1 WO2022247652 A1 WO 2022247652A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
frequency
low
mid
high frequency
Prior art date
Application number
PCT/CN2022/092521
Other languages
English (en)
French (fr)
Inventor
王毅
赵重峰
魏鲲鹏
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to US18/008,907 priority Critical patent/US20230238717A1/en
Priority to EP22810379.2A priority patent/EP4152517A4/en
Publication of WO2022247652A1 publication Critical patent/WO2022247652A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the technical field of communications, and in particular to a terminal antenna and terminal electronic equipment.
  • NSA dual low-band non-independent networking in mobile communication systems refers to the joint work of 4G low-band and 5G low-band (simultaneous transmission and reception), and the conventional design requires at least two independent Antennas, but the size of low-frequency antennas is too large, and mobile electronic devices such as mobile phones often do not have enough space to accommodate them; and because the development trend of mobile terminals such as mobile phones is high screen-to-body ratio, the space layout of antennas is greatly reduced. Therefore, how to arrange antennas in a limited space to ensure antenna performance and coverage has become a major problem in antenna design.
  • the present application provides a terminal antenna and terminal electronic equipment, in which more antennas are arranged in a limited space to satisfy the coverage bandwidth of low-frequency antennas.
  • the present application provides a terminal antenna, which includes a first radiator, a second radiator, a third radiator, a first adjustment circuit and a second adjustment circuit; the third radiator, the first radiator and the The second radiator is a terminal frame antenna radiator, and the three are separated by gaps, and the first radiator, the second radiator and the third radiator are respectively connected to a first feed source for transmitting signals , a second feed source and a third feed source, the third radiator includes a low-frequency radiator constituting a low-frequency antenna and a mid-high frequency radiator constituting a mid-high frequency antenna, between the low-frequency radiator and the mid-high frequency radiator through the first gap interval; the low-frequency radiator and the mid-high frequency radiator are self-grounded;
  • the first adjustment circuit connects the third feed source with the low-frequency radiator on the side adjacent to the first gap, and the second adjustment circuit connects the third feed source with the mid-high frequency radiator located at the The end of the first slot; the resonance of the low-frequency radiator produces the resonance of the low-frequency 1/4 ⁇ mode and the 3/4 ⁇ mode of the mid-high frequency, and the resonance of the mid-high frequency radiator produces the resonance of the left-hand antenna mode; the first adjustment The straight-line distance from one end of the circuit connected to the third feed source to the other end of the first adjustment circuit connected to the low-frequency radiator is a first distance, and the second adjustment circuit is connected to the third feed source.
  • the straight-line distance from one end to the second adjusting circuit and the other end of the mid-high frequency radiator is a second distance, and the dimensions of the first distance and the second distance are both smaller than the low-frequency band generated by the third radiator 1/16 ⁇ ;
  • the low-frequency radiator of the third radiator, the first radiator and the second radiator jointly form a dual low-frequency antenna pattern of 5G NSA; wherein, the low-frequency radiator and the mid-high frequency radiator work simultaneously, and
  • the first adjustment circuit is used to adjust the resonance frequency of the mid-high frequency 3/4 ⁇ mode generated by the low-frequency radiator to be lower than the resonance frequency of the left-hand antenna mode
  • the second adjustment circuit is used to adjust the resonance frequency of the left-hand antenna mode.
  • the resonant frequency of the antenna mode is adjusted to be greater than the resonant frequency of the mid-high frequency 3/4 ⁇ mode generated by the resonance of the low-frequency radiator.
  • the straight-line distance from one end of the first adjustment circuit connected to the third feed source to the other end of the first adjustment circuit connected to the low-frequency radiator is a first distance
  • the second adjustment circuit is connected to the first
  • the linear distance from one end of the three-feed connection to the other end of the second adjustment circuit and the mid-high frequency radiator is the second distance
  • the dimensions of the first distance and the second distance are smaller than the third
  • the radiator produces 1/16 ⁇ of the low frequency band.
  • the third radiator includes a low-frequency radiator constituting a low-frequency antenna and a mid-high frequency radiator constituting a mid-high frequency antenna to achieve simultaneous operation of low-frequency and mid-high frequencies.
  • the mid-high frequency radiator at the bottom of the low-frequency antenna of the third radiator is distributed In the ENDC state, the low-frequency state and the mid-high frequency antenna state can exist at the same time without affecting the dual-card characteristics.
  • the third feed source is respectively connected to the first adjustment circuit and the second adjustment circuit through a radio frequency signal microstrip line, and transmits RF signal.
  • the first adjustment circuit includes an inductor connected in series with the third feed source and the low-frequency radiator
  • the second adjustment circuit includes an inductor connected in series with the third feed source and the mid-high frequency radiator. capacitors in series.
  • the first adjustment circuit includes a distributed inductance connected in series with the third feed source
  • the second adjustment circuit includes a distributed capacitance connected in series with the third feed source
  • the first adjusting circuit includes a first matching circuit that connects the third feed source and the low-frequency radiator in series
  • the second adjusting circuit includes connecting the third feed source and the mid-high frequency radiator in series.
  • the first matching circuit and/or the second matching circuit are L-type, ⁇ -type matching circuits or a combination of ⁇ -type and L-type matching circuits.
  • the resonant frequency of the mid-high frequency 3/4 ⁇ mode generated by the low-frequency radiator can be adjusted to be lower than the resonant frequency of the left-handed antenna mode through the first adjusting circuit and the second adjusting circuit. Further, the low-frequency radiator and the high-frequency radiator work simultaneously.
  • the mid-high frequency radiator includes a mid-high frequency branch and a parasitic branch, the mid-high frequency branch and the parasitic branch are separated by a second gap, and the mid-high frequency branch is located between the low frequency radiator and the parasitic branch.
  • the mid-high frequency branch and the parasitic branch are respectively grounded, the mid-high frequency branch resonates to generate the resonance of the 1/4 ⁇ mode, the parasitic branch resonates to generate the resonance of the parasitic mode, and the mid-high frequency branch and the parasitic
  • the stubs provide medium and high frequency radiation for the terminal antenna.
  • the resonant frequency of the left-handed antenna mode generated by the mid-high frequency stub is 1.7 GHz; the resonance of the 1/4 ⁇ mode generated by the mid-high frequency stub and the parasitic mode resonance of the parasitic stub together cover 1.9 GHz to 2.7 GHz GHz frequency.
  • the resonance frequency covered by the 1/4 ⁇ mode resonance of the low-frequency radiator is 0.5GHz-1GHz; the resonance frequency of the mid-high frequency 3/4 ⁇ mode resonance coverage of the low-frequency radiator is 1.5-1.6GHz.
  • the terminal antenna in this embodiment can cover a wider range of low frequency bands and requires reduced bandwidth.
  • the grounding point of the mid-high frequency stub and/or the parasitic stub may also be connected with a tuning element, and the tuning element is used to adjust the type of each antenna mode of the third radiator and its operation. band.
  • the second radiator when the first radiator resonates to generate a low-frequency working frequency band covering 5G, the second radiator resonates to generate a low-frequency working frequency band covering 4G, and the first radiator resonates to generate a low-frequency working frequency band covering 4G At this time, the second radiator resonates to generate a low-frequency working frequency band covering 5G, and the third radiator resonates to generate a low-frequency working frequency band covering 5G and a low-frequency working frequency band of 4G.
  • the terminal antenna further includes a fourth radiator and a fourth feed connected to the fourth radiator, the fourth radiator and the third radiator are located at the second radiator Relative to the positions at both ends, the fourth radiator and the second radiator share the same ground, and a tuner is also connected to the fourth radiator, and the fourth radiator is adjusted by the tuner to achieve high
  • the fourth radiator of the low-frequency antenna mode and the fourth radiator of the high-frequency antenna mode generate the same left-handed antenna mode.
  • the fourth radiator includes mid-to-high frequency radiation branches and mid-to-high frequency parasitic branches separated by a gap, one end of the mid-to-high frequency radiation branch close to the gap is connected to the fourth feed source, and the other end is connected to the fourth feed source.
  • the second radiator has a common ground, and the tuner is connected to the position between the two ends of the mid-high frequency radiation branch; when the fourth radiator is used as a high-frequency antenna, the mid-high frequency radiation branch produces a left-handed antenna mode resonance, the mid-high frequency parasitic branches of the fourth radiator are coupled through the slot to form a parasitic resonance.
  • the fourth radiator resonates to generate a low-frequency working frequency band covering 4G or 5G.
  • a wider range of resonant frequencies is achieved by arranging the fourth radiator and the second radiator to share the ground.
  • tune the fourth radiator state to a low frequency state through antenna switch tuning; this can reduce the bandwidth required by the third radiator and the fourth radiator by about 28% to 50%; at the same time, it can To meet the needs of the remaining dual low-frequency ENDC combinations newly added in the future.
  • the present application provides an electronic device, which includes a middle frame, a frame arranged around the periphery of the middle frame, a main board, and the terminal antenna, part of the frame is the antenna, and the terminal further includes a first side portion and a second side portion.
  • the bottom adjacent to one side, the mid-high frequency radiator of the third radiator is located at the bottom, the low-frequency radiator is located at the first side, the first radiator, the second radiator, the first radiator
  • the grounding points of the three radiators are set on the middle frame, and the third feeding source is set on the main board.
  • the terminal antenna when the terminal antenna further includes a fourth radiator and a fourth feed, part of the frame is the fourth radiator, the terminal also includes a top, and the fourth radiator is located at the The top, the second radiator is located on the first side and the top and shares the ground with the fourth radiator, and the fourth feed and tuner are arranged on the main board.
  • the third radiator realizes the performance of low frequency and medium and high frequency working at the same time, and there are three radiators to realize the double low frequency resonant frequency of 5G NSA, and the low frequency radiator 31 shares a feed source with the medium and high frequency radiator There is no need to add a new feed source and connection structure in space, and it can reduce the required coverage bandwidth of the antenna while ensuring the dual low-frequency resonance frequency range in a limited space.
  • Fig. 1 is a schematic diagram of the electronic equipment provided by this application.
  • Fig. 2 is a schematic diagram of the terminal antenna of the present application, which is used in the electronic equipment shown in Fig. 1, wherein the connection positions of the first regulating circuit and the second regulating circuit and the third feed source and the low-frequency radiator and the mid-high frequency radiator are structural
  • the schematic diagram does not represent the actual circuit diagram
  • Fig. 2a is an enlarged view of the partial structure of the terminal antenna shown in Fig. 2;
  • FIG. 2b is a schematic circuit diagram of an implementation manner of a first adjustment circuit and a second adjustment circuit of the terminal antenna shown in FIG. 2;
  • Fig. 2c is a schematic circuit diagram of an implementation manner of the first adjustment circuit and the second adjustment circuit of the terminal antenna shown in Fig. 2;
  • FIG. 3 is a simulation diagram of S parameters when the low-frequency radiator and the high-frequency radiator of the terminal antenna shown in FIG. 2 are working;
  • Fig. 4 is a schematic diagram of the current trend of the low-frequency 1/4 ⁇ mode generated by the resonance of the low-frequency radiator of the terminal antenna shown in Fig. 2;
  • Fig. 5 is a schematic diagram of the current direction of the mid-high frequency 3/4 ⁇ mode generated by the resonance of the low-frequency radiator of the terminal antenna shown in Fig. 2;
  • Fig. 6 is a schematic diagram of the current trend of the left-handed antenna mode generated by the resonance of the mid-high frequency radiator of the terminal antenna shown in Fig. 2;
  • Fig. 7 is a schematic diagram of the current direction of the 1/4 ⁇ mode generated by the mid-high frequency stub resonance of the terminal antenna shown in Fig. 2;
  • Fig. 8 is a schematic diagram of a current trend of a parasitic mode generated by a parasitic stub resonance of the terminal antenna shown in Fig. 2;
  • FIG. 9 is a schematic diagram of another embodiment of the terminal antenna shown in FIG. 2;
  • FIG. 10 is a schematic diagram of an embodiment of a terminal antenna of the present application, which is used in the electronic device shown in FIG. 1;
  • FIG. 11 is a diagram of the current direction of the left-handed antenna mode generated by the mid-high frequency radiation stub resonance when the fourth radiator of the terminal antenna shown in FIG. 2 is used as the mid-high frequency antenna;
  • FIG. 12 is a current diagram of the spurious mode generated by the mid-high frequency parasitic stub resonance when the fourth radiator of the terminal antenna shown in FIG. 2 is used as the mid-high frequency antenna;
  • Fig. 13 is a current diagram when the fourth radiator of the terminal antenna shown in Fig. 2 is used as a low-frequency antenna radiator;
  • FIG. 14 is a diagram of the current flow between the fourth radiator of the terminal antenna shown in FIG. 2 and the second radiator when it is used as a low-frequency antenna radiator.
  • the present application provides a terminal antenna and terminal electronic equipment including the terminal antenna.
  • the radiator of the terminal antenna can implement dual low-frequency antenna modes and work simultaneously with the mid-high frequency antenna mode, so as to reduce the occupied space of related components such as antennas and achieve low-frequency coverage bandwidth.
  • the electronic devices include mobile phones, tablets, smart watches and other electronic devices.
  • the terminal antenna of this embodiment is used as an example for a mobile phone for illustration, and the terminal antenna can realize the low frequency band of 4G and the low frequency band of 5G to realize dual connectivity under EN-DC (EUTRA-NR Dual Connectivity)) Low frequency combination needs.
  • EN-DC EUTRA-NR Dual Connectivity
  • the mobile phone 100 includes a middle frame 101 , a frame 102 disposed around the periphery of the middle frame 101 , and a motherboard 103 mounted on the middle frame.
  • the frame 102 is a narrow frame structure.
  • the frame 102 is a metal frame.
  • Part of the frame 102 is the antenna, the mobile phone 100 also includes a first side 105, a second side 106, a top 107 and a bottom 108, the first side 105 and the second side 106 correspond to the mobile phone 100 On opposite sides, the top 107 and the bottom 108 correspond to the top and bottom of the mobile phone 100 .
  • the terminal antenna includes a first radiator 10, a second radiator 20, a third radiator 30, a first adjustment circuit B, and a second adjustment circuit C; the third radiator 30, the The first radiator 10 and the second radiator 20 are radiators of the frame antenna of the mobile phone, and there are gaps S between them.
  • the first radiator 10 is connected with a first feed 11 for transmitting signals
  • the second radiator 20 is connected with a second feed 21 for transmitting signals
  • the third radiator is connected with a third feed for transmitting signals a.
  • the first radiator 10 , the second radiator 20 and the third radiator 30 are part of the frame 102 of the mobile phone.
  • the slit is defined on the frame 102 .
  • the third radiator 30 includes a low-frequency radiator 31 constituting a low-frequency antenna and a mid-high frequency radiator 33 constituting a mid-high frequency antenna, the low-frequency radiator 31 and the mid-high frequency radiator 33 are separated by a first gap 32 ;
  • the low-frequency radiator 31 and the mid-high frequency radiator 33 are self-grounded.
  • the first radiator 10 , the second radiator 20 and the third radiator 30 are strip-shaped metal sheets.
  • the mid-high frequency radiator 33 of the third radiator 30 is located at the bottom 108, the low-frequency radiator 31 is located at the first side 105, and the connection between the bottom 108 and the first side 105 is at the bottom 108.
  • the corner of the mobile phone, the first slot 32 is located at the bottom 108 and the corner.
  • the first radiator 10 is located at the second side portion 106 and extends to the bottom 108 to be separated from the mid-high frequency radiator 33 through a gap.
  • the second radiator 20 is located at the first side 105 and is spaced apart from the low frequency radiator 31 of the third radiator 30 .
  • the grounding points of the first radiator 10 , the second radiator 20 and the third radiator 30 are set on the middle frame 101 , and the third feed source A is set on the main board 103 .
  • the first adjusting circuit B is connected to the third feed source A and the side of the low-frequency radiator 31 adjacent to the first slot 32
  • the second adjusting circuit C is connected to the third feed source A and the The mid-high frequency radiator 33 is located at the end of one side of the first slot 32 .
  • the main board 103 is provided with a radio frequency front end (not shown in the figure), and the third feed source A, the first regulation circuit B and the second regulation circuit C are connected in series to the radio frequency front end.
  • the third feed source A is respectively electrically connected to the first regulating circuit B and the second regulating circuit C through two radio frequency signal microstrip lines, providing the first regulating circuit B and the
  • the second regulating circuit C transmits radio frequency signals, and the radio frequency signals are electrically connected to the main board of the mobile phone through a cable, the overall structure is compact, and the space of the mobile phone is saved.
  • the resonance of the low-frequency radiator 31 produces the resonance of the low-frequency 1/4 ⁇ mode and the resonance of the mid-high frequency 3/4 ⁇ mode
  • the resonance of the mid-high frequency radiator 33 produces the resonance of the left-handed antenna mode; wherein, the In the left-hand antenna, a capacitor is set between the feed source and the radiator to form a composite left-hand transmission line structure.
  • the low-frequency radiator 31 of the third radiator 30, the first radiator 10, and the second radiator 20 form a dual low-frequency antenna of a 5G non-standalone (NSA) network Mode, as the low-frequency antenna of the mobile phone, while the mid-high frequency radiator 33 is used as the mid-high frequency antenna of the mobile phone. It is not excluded that other antennas, such as high-frequency antennas, are also provided on the mobile phone.
  • the first adjustment circuit B is used to adjust the resonance frequency of the mid-high frequency 3/4 ⁇ mode generated by the resonance of the low-frequency radiator 31 to be smaller than the resonance frequency of the left-hand antenna mode of the mid-high frequency antenna.
  • the second adjustment circuit C It is used to adjust the resonance frequency of the left-hand antenna mode to be greater than the resonance frequency of the mid-high frequency 3/4 ⁇ mode generated by the resonance of the frequency radiator 31, which can be understood as lowering the resonance of the mid-high frequency 3/4 ⁇ mode to make it
  • the frequency band covered is smaller than the resonant frequency band of the left-hand antenna mode.
  • the linear distance from one end of the first regulating circuit B connected to the third feed source A to the other end of the first regulating circuit B connected to the low-frequency radiator 31 is the first distance L2
  • the straight-line distance from one end of the second regulating circuit C connected to the third feed source A to the other end of the second regulating circuit C and the mid-high frequency radiator 33 is a second distance L1
  • the first Both the distance L1 and the second distance L2 are smaller than 1/16 ⁇ of the low-frequency band generated by the third radiator 30, thereby ensuring the adjustment performance of the first regulating circuit B and the second regulating circuit C, and ensuring the low-frequency
  • the resonant frequency of the mid-high frequency 3/4 ⁇ mode generated by the radiator is lower than the resonant frequency of the left-hand antenna mode.
  • the third radiator is used as the low-frequency radiator and the mid-high frequency radiator at the same time, and the mid-high frequency 3/4 ⁇ mode generated by the low-frequency radiator 31 is adjusted through the first adjustment circuit B and the second adjustment circuit C.
  • Resonance so that its tuning is lower than the resonance coverage frequency of the left-handed antenna mode of the mid-high frequency radiator 33 before the resonance of the left-hand antenna mode of the mid-high frequency radiator 33, and then the low-frequency radiator 31 and the mid-high frequency radiator 33 share the feed source and work at the same time, and the resonance of the low-frequency radiator 31 and the resonance of the middle and high-frequency radiator achieve feed integration.
  • the low-frequency radiator 31 When receiving the low-frequency signal transmitted by the third feed source, the low-frequency radiator 31 realizes low-frequency Resonance does not affect the medium and high frequency radiator 33 receiving high frequency signals and realizing high frequency resonance at this time.
  • the mobile phone of the present application is provided with three radiators to realize the coverage of double low-frequency resonance frequencies.
  • the low-frequency radiator 31 and the mid-high frequency radiator 33 share a feed source without adding a new feed source and connection structure in a limited space.
  • the dual low-frequency resonant frequency coverage can reduce the required coverage bandwidth of the antenna at the same time.
  • the mobile phone with the antenna of this embodiment saves space and realizes the performance of low-frequency and medium-high-frequency simultaneous operation of the third radiator, so that the mobile phone needs less antenna space, so that more antennas can be arranged in a limited space. antenna, and improve the overall performance of the phone.
  • the first adjusting circuit B includes an inductor connected in series with the third feed source A
  • the second adjusting circuit C includes a capacitor connected in series with the third feed source A.
  • the first adjusting circuit B includes a capacitor connected in series with the third feed source A
  • the second adjusting circuit C includes an inductor connected in series with the third feed source A.
  • the first adjusting circuit B includes distributed inductance connected in series with the third feed source
  • the second adjusting circuit C includes distributed capacitance connected in series with the third feed source.
  • the first adjusting circuit B includes distributed capacitance connected in series with the third feed source
  • the second adjusting circuit C includes distributed inductance connected in series with the third feed source.
  • the first adjusting circuit B includes an inductor H connected in series with the third feed source A
  • the second adjusting circuit C includes a capacitor connected in series with the third feed source A. C1.
  • the inductance H is greater than 6.8nH
  • the capacitance C1 is less than 2pf.
  • the third feed source A, the inductance H, and the mid-high frequency radiator 33 are connected in series, and the third feed source A, the second adjustment circuit C, and the low-frequency radiator 31 are connected in series, so as to adjust the mid-high frequency generated by the resonance of the low-frequency radiator 31
  • the resonant frequency of the 3/4 ⁇ mode is smaller than the resonant frequency of the left-handed antenna mode of the mid-high frequency antenna.
  • the first adjusting circuit B includes a first matching circuit B1 that connects the third feed source A and the low-frequency radiator 31 in series
  • the second adjusting circuit C includes a series-connected The third feed source A and the second matching circuit C2 of the mid-high frequency radiator 33
  • the first matching circuit and/or the second matching circuit is an L-type, ⁇ -type matching circuit or a combination of ⁇ -type and L-type matching circuits; in this embodiment, the first matching circuit B1 is an L-type matching circuit circuit, the second matching circuit C2 is a ⁇ -type matching circuit.
  • any matching in the first matching circuit B1 and the second matching circuit C2 may be an inductance or a capacitance.
  • the first matching circuit B1 and the inductor H jointly adjust the resonance frequency of the mid-high frequency 3/4 ⁇ mode generated by the resonance of the low-frequency radiator 31 to be lower than the resonance frequency of the left-handed antenna mode of the mid-high frequency antenna.
  • the second matching circuit C2 and the capacitor C1 jointly adjust the resonant frequency of the left-handed antenna mode to be higher than the resonant frequency of the mid-high frequency 3/4 ⁇ mode generated by the resonance of the frequency radiator 31 .
  • the mid-high frequency radiator 33 of this embodiment includes a mid-high frequency branch 331 and a parasitic branch 333, the mid-high frequency branch 331 and the parasitic branch 333 are separated by a second gap 332, and the mid-high frequency
  • the branch 331 is located between the low-frequency radiator 31 and the parasitic branch 333; the mid-high frequency branch 331 and the parasitic branch 333 are respectively grounded, and the mid-high frequency branch 331 resonates to generate a resonance of 1/4 ⁇ mode, and the parasitic The stubs 333 generate resonances in spurious modes.
  • the grounding point of the mid-high frequency branch 331 is located at the end of the mid-high frequency branch 331 away from the second gap 332
  • the grounding point of the parasitic branch 333 is located at the end of the parasitic branch 333 away from the second gap 332 .
  • the mid-high frequency branch 331 is working, it is coupled to the parasitic branch 333 through the second gap 332 to generate parasitic resonance.
  • the second gap 332 is equivalent to an equivalent capacitance, and the parasitic branch 333 will also A certain induced electromotive force is generated, that is, the parasitic branch 333 generates a certain frequency band of parasitic resonance.
  • the mid-high frequency radiator can also generate other required working frequency bands.
  • the first radiator 10 resonates to generate a low-frequency working frequency band covering 5G
  • the second radiator 20 resonates to generate a low-frequency working frequency band covering 4G
  • the third radiator 30 resonates to generate a low-frequency working frequency band covering 5G Working frequency band and 4G low frequency working frequency band.
  • the third radiator 30 can resonate to produce five working frequency bands
  • the first radiator 10 can resonate to produce one working frequency band
  • the second radiator 20 can resonate to produce one working frequency band.
  • the frequency range of the low-frequency working frequency band generated by the resonance of the first radiator 10 is 703-803 MHz, and the required bandwidth is 100 MHz;
  • the frequency range of the low-frequency working frequency band generated by the resonance of the second radiator 20 is 791-862 MHz, and the required bandwidth is 71 MHz;
  • the third radiator 30 resonates to generate a receiving frequency covering the low-frequency receiving frequency band of 5G and the low-frequency receiving frequency band of 4G in the range of 758-821 MHz, and the required bandwidth is 63 MHz.
  • the operating frequency bands generated by the first radiator 10, the second radiator 20, and the third radiator 30 can be adjusted and exchanged according to actual applications, such as the second radiator 20
  • the resonance generates a low-frequency working frequency band covering 5G
  • the first radiator 10 resonates to generate a low-frequency working frequency band covering 4G.
  • the first radiator 10 , the second radiator 20 and the third radiator 30 generate other working frequency bands. This embodiment is just an example.
  • Fig. 3 is a simulation diagram of S parameters when the low-frequency radiator and high-frequency radiator of the terminal antenna shown in Fig. Parameter value, the unit is dB.
  • the low-frequency radiator 31 produces a resonance frequency of 1/4 ⁇ mode resonance coverage of 0.5GHz-1GHz; the low-frequency radiator 31 produces a resonance frequency of 1.6GHz of a 3/4 ⁇ mode high-frequency resonance coverage, which is passed through the first A modulation circuit B and a second modulation circuit C modulate the high-frequency frequency of the 3/4 ⁇ mode generated by the low-frequency radiator 31 to 1.6 GHz.
  • the resonant frequency of the left-hand antenna mode of the mid-high frequency radiator 33 is 1.7 GHz.
  • the mid-high frequency stub 331 generates the resonance of the left-handed antenna mode, and the resonance frequency of the 1/4 ⁇ mode generated by the mid-high frequency stub 331 is 2.7 GHz, and the resonance frequency of the parasitic stub 333 is 2 GHz.
  • the resonant frequency of the parasitic branch 33 can be adjusted to be greater than 2.7G.
  • the resonance frequency of the mid-high frequency branch 331 and the parasitic branch 333 is 1.9-2.7GHz.
  • Fig. 4 is the current trend diagram of the low-frequency 1/4 ⁇ mode generated by the resonance of the low-frequency radiator 31, and Fig. 5 is the 3/4 ⁇ mode of the mid-high frequency generated by the resonance of the low-frequency radiator
  • Fig. 6 is a schematic diagram of the current direction of the left-handed antenna mode generated by the resonance of the mid-high frequency radiator
  • Fig. 7 is a diagram of the current direction of the 1/4 lambda mode generated by the resonance of the mid-high frequency branch 331
  • Fig. 8 is the resonance of the parasitic branch 333 Schematic diagram of the current flow of the generated parasitic mode.
  • the third radiator 30 resonates to produce five operating frequency bands, which are the five frequency bands shown in Figure 4 to Figure 8 respectively; 1/4 ⁇ mode, its current distribution is shown in the direction of the arrow in FIG. 4 , and the current direction is the direction in which the low-frequency radiator 31 flows from the end far away from the first slot 32 to the first regulating circuit B.
  • the low-frequency radiator 31 resonates to generate a medium-high frequency 3/4 ⁇ mode, and its current trend is shown in the direction of the arrow in FIG. 5 .
  • the third frequency band is the left-handed antenna mode of the medium-high frequency antenna, and its current trend is shown in Figure 6.
  • the current flows from the second slot 332 and the third feed source A to the medium-high frequency branch 331 through the second adjustment circuit grounding point.
  • the fourth frequency band is the 1/4 ⁇ mode generated by the resonance of the middle and high frequency stub 331, and its current trend is shown in Figure 7.
  • the current flows from the second gap 332 to the second regulation circuit C to the third feeder Source A.
  • the fifth frequency band is the mode generated by the resonance of the parasitic branch 333 , the current trend of which is shown in FIG. 8 , and the current flows from the second gap 332 to the grounding point of the parasitic branch 333 .
  • the low-frequency radiator 31 of the third radiator 30, the first radiator 10, and the second radiator 20 form a dual low-frequency antenna mode, and the low-frequency state It can exist at the same time as the medium and high frequency antenna mode without affecting the dual card characteristics; at the same time, the required coverage bandwidth of the low frequency antenna mode can be reduced by 15% to 30%.
  • FIG. 9 is an enlarged schematic diagram of an embodiment of the mobile phone antenna 100 shown in FIG.
  • the tuning element 35 is used to adjust the type of each antenna mode of the third radiator 30 and its working frequency band.
  • the grounding points of the mid-high frequency branch 331 and the parasitic branch 333 are connected with a tuning element E, and the tuning element E is used to adjust the operation of the mid-high frequency radiator 33 of the third radiator 30 band.
  • Any of the above embodiments of the present application is applicable to a mobile phone with an antenna headroom less than 1mm, which can save space and cost while ensuring antenna performance and meeting coverage bandwidth requirements.
  • the antenna further includes a fourth radiator 50 and a fourth feed D connected to the fourth radiator 50, part of the frame 102 is the fourth radiator 50 .
  • the fourth radiator 50 and the third radiator 30 are located at opposite ends of the second radiator 20, and the fourth radiator 50 and the second radiator 20 share the same ground;
  • the four radiators 50 are also connected with a tuner 52, and the fourth radiator 50 is adjusted by the tuner 52 to realize mode switching between the high-frequency antenna and the low-frequency antenna, and the fourth radiator 50 in the low-frequency antenna mode is connected to the The fourth radiator 50 of the high-frequency antenna mode produces the same left-hand antenna mode with different resonant frequencies.
  • the fourth radiator 50 includes a mid-high frequency radiation branch 53 and a mid-high frequency parasitic branch 54 separated by a gap 51, and one end of the mid-high frequency radiation branch 53 close to the gap is connected to the fourth feed source D, the other end shares the ground with the second radiator 20, that is, connects the ground point 21 of the second radiator, and the tuner 52 connects the position between the two ends of the mid-high frequency radiation branch 53; the mid-high frequency parasitic branch 54 is grounded at one end away from the slot 51.
  • the fourth radiator 50 is used as a high-frequency antenna, the mid-high frequency radiation branch produces left-handed antenna mode resonance, and the mid-high frequency parasitic branch 54 of the fourth radiator 50 passes through the The gap coupling described above forms a parasitic resonance.
  • the gap 51 is equivalent to an equivalent capacitance, and the mid-high frequency parasitic branch 54 will also generate a certain induced electromotive force through capacitive coupling , that is, the mid-high frequency parasitic branch 54 generates a certain frequency band of parasitic resonance.
  • the fourth radiator resonates to generate a low-frequency working frequency band and a mid-high frequency working frequency band covering 5G, which can be understood as the low-frequency antenna and the mid-high frequency radiator share a radiator.
  • the fourth radiator is located at the top 107
  • the second radiator 20 is located at the first side 105 and the top 107 and shares the ground with the fourth radiator 107
  • the fourth feed D and
  • the tuner 52 is disposed on the motherboard 103 .
  • the fourth feed source D is electrically connected to the RF front-end of the main board 101.
  • the tuner 52 adjusts the ground position of the radio frequency signal to change the fourth radiator 50 antenna working modes to achieve low-frequency antenna performance.
  • Fig. 11 is a current trend diagram of the left-handed antenna mode generated by the resonance of the mid-high frequency radiation branch 53 when the fourth radiator 50 is used as a mid-high frequency antenna
  • Fig. 12 is a diagram of the left-hand antenna mode of the fourth radiator
  • the mid-high frequency parasitic branch 54 resonates to generate a current trend diagram of a mid-frequency parasitic mode.
  • Fig. 13 is a diagram of the current trend of the fourth radiator 50 as a low-frequency antenna radiator
  • Fig. 14 is a diagram of the current trend of the fourth radiator 50 and the second radiator when it is used as a low-frequency antenna radiator.
  • the medium-high frequency radiation branch 53 When the fourth radiator 50 is used as a medium-high frequency antenna, the medium-high frequency radiation branch 53 resonates to generate a current in the left-handed antenna mode, and its current distribution is shown in the direction of the arrow in Figure 11. The current is from the fourth feed source D to the ground point 21, At the same time, the current of the second radiator 20 flows to the ground point 56 .
  • the medium-high frequency parasitic branch 54 When the fourth radiator 50 is used as a medium-high frequency antenna, the medium-high frequency parasitic branch 54 resonates to generate a medium-high frequency parasitic mode, and its current direction is shown in the direction of the arrow in FIG. The grounding point of the parasitic stub 54.
  • the fourth radiator 50 When the fourth radiator 50 is used as a low-frequency antenna radiator, it resonates to generate the working frequency band of the left-handed antenna mode, and its current trend is shown in FIG. 13 .
  • the current is from the fourth feed source D to the ground point 21 .
  • the second radiator 20 works simultaneously with the fourth radiator 50 as a low-frequency antenna radiator, different operating radiation frequency bands of the left-handed antenna mode are produced, and its current trend is shown in Figure 14.
  • the current of the fourth radiator 50 passes through the The fourth feed source is connected to the ground point 21 , and the current of the second radiator is connected to the ground point 21 by the feed source connected by the second radiator.
  • the frequency range of the low-frequency working frequency band generated by the resonance of the fourth radiator 50 is 791-821 MHz, and the required antenna bandwidth is 30 MHz; the frequency range of the working frequency band of the second radiator 20 is 703-803 MHz, so The required antenna bandwidth is 100MHz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供一种终端天线,其包括缝隙间隔的第一辐射体、第二辐射体、第三辐射体以及第一调节电路和第二调节电路;第三辐射体包括间隔的低频辐射体和中高频辐射体;第一调节电路连接第三馈源与低频辐射体且连接的直线距离为第一距离,第二调节电路连接第三馈源和中高频辐射体且连接的直线距离为第二距离;低频辐射体、第一辐射体及第二辐射体共同形成双低频天线模式;第一调节电路用于将低频辐射体产生的中高频的3/4λ模式的谐振频率调节至小于左手天线模式谐振频率,第二调节电路用于将左手天线模式谐振频率调节至大于低频辐射体谐振产生的中高频的3/4λ模式谐振频率;第一距离和第二距离的尺寸均小于第三辐射体产生低频频段的1/16λ。

Description

一种终端天线及终端电子设备
本申请要求于2021年5月28日提交中国专利局、申请号为202110594251.7、申请名称为“一种终端天线及终端电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种终端天线及终端电子设备。
背景技术
移动通信系统中NSA双低频段非独立组网指的是4G低频段与5G低频段共同工作(同时发射和接收),而且常规设计中4G低频段与5G低频段都分别需要至少两个独立的天线,但是低频段天线尺寸太大,手机等移动电子设备往往没有足够空间容纳;而且由于手机等移动终端要的发展趋势为高屏占比,使得天线空间布局的大幅减少。因此,如何在有限的空间内如何布局天线以可保证天线性能及覆盖范围,成了天线设计的一大难题。
发明内容
本申请提供一种终端天线及终端电子设备,在有限的空间内布局更多的天线,以内满足低频天线覆盖带宽。
本申请提供一种终端天线,其包括第一辐射体、第二辐射体、第三辐射体、第一调节电路以及第二调节电路;所述第三辐射体、所述第一辐射体及所述第二辐射体为终端边框天线辐射体,且三者之间之间通过缝隙间隔,所述第一辐射体、第二辐射体及第三辐射体分别连接有用于传输信号的第一馈源、第二馈源及第三馈源,所述第三辐射体包括构成低频天线的低频辐射体和构成中高频天线的中高频辐射体,所述低频辐射体和所述中高频辐射体之间通过第一缝隙间隔;所述低频辐射体和中高频辐射体自接地设置;
所述第一调节电路连接所述第三馈源与所述低频辐射体邻近所述第一缝隙的一侧,所述第二调节电路连接所述第三馈源和中高频辐射体位于所述第一缝隙的端部;所述低频辐射体谐振产生低频的1/4λ模式和中高频的3/4λ模式的谐振,所述中高频辐射体谐振产生左手天线模式的谐振;所述第一调节电路与所述第三馈源连接的一端到所述第一调节电路与所述低频辐射体连接另一端的直线距离为第一距离,所述第二调节电路与所述第三馈源连接的一端到所述第二调节电路与所述中高频辐射体的另一端的直线距离为第二距离,所述第一距离和所述第二距离的尺寸均小于所述第三辐射体产生低频频段的1/16λ;
所述第三辐射体的低频辐射体、所述第一辐射体及所述第二辐射体共同形成5G NSA的双低频天线模式;其中,所述低频辐射体和中高频辐射体同时工作,且所述第一调节电路用于将所述低频辐射体产生的中高频的3/4λ模式的谐振频率调节至小于所述左手天线模式的谐振频率,所述第二调节电路用于将所述左手天线模式的谐振频率调节至大于所述低频辐射体谐振产生的中高频的3/4λ模式的谐振频率。
所述第一调节电路与所述第三馈源连接的一端到所述第一调节电路与所述低频辐射体 连接另一端的直线距离为第一距离,所述第二调节电路与所述第三馈源连接的一端到所述第二调节电路与所述中高频辐射体的另一端的直线距离为第二距离,所述第一距离和所述第二距离的尺寸均小于所述第三辐射体产生低频频段的1/16λ。所述第三辐射体包括构成低频天线的低频辐射体和构成中高频天线的中高频辐射体,实现低频和中高频同时工作的性能,第三辐射体的低频天线底部的中高频辐射体采用分布式馈电合入,ENDC态时,低频态与中高频天线态可同时存在,不影响双卡特性。
一种实施例中,所述第三馈源通过射频信号微带线分别与所述第一调节电路与所述第二调节电路连接,为所述第一调节电路与所述第二调节电路传输射频信号。
一种实施例中,所述第一调节电路包括与所述第三馈源及所述低频辐射体串联的电感,所述第二调节电路包括与所述第三馈源及所述中高频辐射体串联的电容。
一种实施例中,所述第一调节电路包括与所述第三馈源串联的分布电感,所述第二调节电路包括与所述第三馈源串联的分布电容。
一种实施例中,所述第一调节电路包括串联所述第三馈源和所述低频辐射体的第一匹配电路,所述第二调节电路包括串联所述第三馈源和所述中高频辐射体的第二匹配电路。所述第一匹配电路和/或所述第二匹配电路为L型、π型匹配电路或者为π型和L型匹配电路的组合。通过所述第一调节电路和第二调节电路可以实现将所述低频辐射体产生的中高频的3/4λ模式的谐振频率调节至小于所述左手天线模式的谐振频率。进而实现所述低频辐射体和高频辐射体同时工作。
一种实施例中,所述中高频辐射体包括中高频枝节和寄生枝节,所述中高频枝节和寄生枝节之间通过第二缝隙间隔,且所述中高频枝节位于所述低频辐射体和寄生枝节之间;所述中高频枝节和所述寄生枝节各自接地设置,所述中高频枝节谐振产生1/4λ模式的谐振,所述寄生枝节谐振产生寄生模式的谐振,所述中高频枝节和寄生枝节为终端天线提供中高频辐射。
一种实施例中,所述中高频枝节产生左手天线模式的谐振频率为1.7GHz;所述中高频枝节产生的1/4λ模式的谐振和所述寄生枝节的寄生模式谐振共同覆盖1.9GHz~2.7GHz频率。
一种实施例中,所述低频辐射体产生1/4λ模式谐振覆盖的谐振频率为0.5GHz-1GHz;所述低频辐射体产生中高频的3/4λ模式谐振覆盖的谐振频率1.5-1.6GHz。本实施例的终端天线可以覆盖个更大范围的低频段且需要带宽减少。
一种实施例中,所述中高频枝节和/或所述寄生枝节的接地点还可以连接有调谐元件,所述调谐元件用于调节所述第三辐射体的各个天线模式的类型及其工作频段。
一种实施例中,所述第一辐射体谐振产生覆盖5G的低频工作频段时所述第二辐射体谐振产生覆盖4G的低频工作频段,所述第一辐射体谐振产生覆盖4G的低频工作频段时所述第二辐射体谐振产生覆盖5G的低频工作频段,所述第三辐射体谐振产生覆盖5G的低频工作频段和4G的低频工作频段。
一种实施例中,所述终端天线还包括第四辐射体和连接所述第四辐射体的第四馈源,所述第四辐射体和所述第三辐射体位于所述第二辐射体相对两端位置,所述第四个辐射体和所述第二辐射体共地,所述第四个辐射体上还连接有调谐器,通过所述调谐器调节所述 第四辐射体实现高频天线和低频天线的模式切换,低频天线模式的所述第四辐射体与高频天线模式的第四辐射体产生相同的左手天线模式。
一种实施例中,所述第四辐射体包括通过缝隙间隔的中高频辐射枝节和中高频寄生枝节,所述中高频辐射枝节靠近所述缝隙的一端连接所述第四馈源,另一端和所述第二辐射体共地,所述调谐器连接所述中高频辐射枝节两端之间的位置;所述第四辐射体作为高频天线时,所述中高频辐射枝节产生左手天线模式的谐振,所述第四辐射体的中高频寄生枝节通过所述缝隙耦合形成寄生谐振。一种实施例中,所述第四辐射体谐振产生覆盖4G或者5G的低频工作频段。本实施例中,在有限空间内,通过设置第四个辐射体与第二辐射体共地,实现更大范围的谐振频率。在ENDC态的时候,通过天线开关调谐把第四个辐射体状态调谐到低频态;这样可以使第三辐射体和第四辐射体所需覆盖的带宽可减少28%~50%左右;同时可满足未来新增加的其余双低频ENDC组合需求。
本申请提供一种电子设备,其包括中框及围绕中框周缘设置的边框、主板和所述的终端天线,部分所述边框为所述天线,所述终端还包括第一侧部和与第一侧部相邻的底部,所述第三辐射体的中高频辐射体位于所述底部,所述低频辐射体位于所述第一侧部,所述第一辐射体、第二辐射体、第三辐射体的接地点设于所述中框,所述第三馈源设于所述主板上。
一种实施例中,所述终端天线还包括第四辐射体和第四馈源时,部分所述边框为所述第四辐射体,所述终端还包括顶部,所述第四辐射体位于所述顶部,所述第二辐射体位于所述第一侧部和顶部并与所述第四辐射体共地,所述第四馈源和调谐器设于所述主板上。
本申请的终端天线中,第三辐射体实现低频和中高频同时工作的性能,并设有三个辐射体来实现5G NSA的双低频谐振频率,低频辐射体31与中高频辐射体共用一个馈源不需要空间新增馈源和连接结构,在有限空间内保证双低频谐振频率范围的同时可减少天线所需覆盖带宽。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1本申请提供的电子设备的示意图;
图2是本申请的终端天线的示意图,其用于图1所示的电子设备,其中第一调节电路和第二调节电路与第三馈源和低频辐射体及中高频辐射体连接位置为结构简图,不代表实际电路图;
图2a是图2所示的终端天线部分结构放大图;
图2b为图2所示的终端天线的第一调节电路和第二调节电路一种实施方式的电路示意图;
图2c是图2所示的终端天线的第一调节电路和第二调节电路的一种实施方式电路示意图;
图3是图2所示终端天线的低频辐射体和高频辐射体工作时的S参数仿真图;
图4是图2所示终端天线的低频辐射体谐振产生低频的1/4λ模式的电流走向示意图;
图5是图2所示终端天线的低频辐射体谐振产生中高频的3/4λ模式的电流走向示意图;
图6是图2所示终端天线的中高频辐射体谐振产生的左手天线模式的电流走向示意图;
图7是图2所示终端天线的中高频枝节谐振产生的1/4λ模式的电流走向示意图;
图8是图2所示终端天线的寄生枝节谐振产生寄生模式的电流走向示意图;
图9为图2所示终端天线另一实施例的示意图;
图10是本申请的终端天线的一实施例的示意图,其用于图1所示的电子设备;
图11为图2所示的终端天线的第四辐射体作为中高频天线时,中高频辐射枝节谐振产生左手天线模式的电流走向图;
图12为图2所示的终端天线的第四辐射体作为中高频天线时,中高频寄生枝节谐振产生中寄生模式的电流走向图;
图13为图2所示的终端天线的第四辐射体作为低频天线辐射体时的电流走向图;
图14为图2所示的终端天线的第四辐射体作为低频天线辐射体时与第二辐射体的电流走向图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请提供一种终端天线以及包括所述终端天线的终端电子设备。所述终端天线的辐射体能够实现双低频天线模式并与中高频天线模式同时工作,以减少天线等相关元件的占用空间并可实现低频覆盖带宽。所述电子设备包括手机、平板、智能手表等电子设备。
请参阅图1,本实施例的终端天线以用于手机为例进行说明,所述终端天线可以实现4G的低频段与5G的低频段来实现EN-DC(EUTRA-NR Dual Connectivity))下双低频组合需求。
请一并参阅图2,所述手机100包括中框101及围绕中框101周缘设置的边框102以及装于所述中框的主板103。所述边框102为窄边框结构。所述边框102为金属边框。部分所述边框102为所述天线,所述手机100还包括第一侧部105、第二侧部106、顶部107和底部108,第一侧部105和第二侧部106对应所述手机100相对两侧,所述顶部107和底部108对应所述手机100的顶部和底部。
一并参阅图2a,所述终端天线包括第一辐射体10、第二辐射体20、第三辐射体30、第一调节电路B以及第二调节电路C;所述第三辐射体30、所述第一辐射体10及所述第二辐射体20为手机边框天线的辐射体,且三者之间之间通过缝隙S间隔。所述第一辐射体10连接有用于传输信号的第一馈源11,第二辐射体20连接有用于传输信号的第二馈源21,第三辐射体连接有用于传输信号的第三馈源A。所述第一辐射体10、第二辐射体20、第三辐射体30为所述手机的部分边框102。所述缝隙设于所述边框102上。所述第三辐射体30包括构成低频天线的低频辐射体31和构成中高频天线的中高频辐射体33,所述低频辐射体31和所述中高频辐射体33之间通过第一缝隙32间隔;所述低频辐射体31和中高频辐射体33自接地设置。具体的,所述第一辐射体10、第二辐射体20及第三辐射体30为条形金属片体。所述第三辐射体30的中高频辐射体33位于所述底部108,所述低频辐射体31位于所述第一侧部105,所述底部108与所述第一侧部105连接位为所述手机的转角, 所述第一缝隙32位于所述底部108和转角位置。所述第一辐射体10位于第二侧部106并延伸至底部108与所述中高频辐射体33通过缝隙间隔。所述第二辐射体20位于所述第一侧部105与所述第三辐射体30的低频辐射体31间隔设置。所述第一辐射体10、第二辐射体20及第三辐射体30的接地点设于所述中框101上,所述第三馈源A设于所述主板103上。
所述第一调节电路B连接所述第三馈源A与所述低频辐射体31邻近所述第一缝隙32的一侧,所述第二调节电路C连接所述第三馈源A和所述中高频辐射体33位于所述第一缝隙32一侧的端部。所述主板上103设有射频前端(图未示),所述第三馈源A、所述第一调节电路B及所述第二调节电路C串联于所述射频前端。具体的,所述第三馈源A通过两个射频信号微带线分别电连接所述第一调节电路B与所述第二调节电路C,为所述所述第一调节电路B与所述第二调节电路C传输射频信号,而且射频信号通过一个线缆与手机的主板电连接,整体结构紧凑,节省手机空间。天线工作时,所述低频辐射体31谐振产生低频的1/4λ模式的谐振和中高频的3/4λ模式的谐振,所述中高频辐射体33谐振产生左手天线模式的谐振;其中,所述左手天线为馈源和辐射体之间设置电容构成复合左手传输线结构。
本实施例中,所述第三辐射体30的低频辐射体31、所述第一辐射体10、所述第二辐射体20形成5G非独立组网(Non-Standalone,NSA)的双低频天线模式,作为手机的低频天线,同时所述中高频辐射体33作为所述手机的中高频天线,所述手机上不排除还设有其他天线,如高频天线。所述第一调节电路B用于将低频辐射体31谐振产生的中高频的3/4λ模式的谐振频率调节至小于所述中高频天线的左手天线模式的谐振频率,所述第二调节电路C用于将所述左手天线模式的谐振频率调节至大于所述频辐射体31谐振产生的中高频3/4λ模式的谐振频率,既可以理解为将中高频3/4λ模式的谐振调低使其覆盖频段小于所述左手天线模式的谐振频段。所述第三辐射体30的低频辐射体31、所述第一辐射体10、所述第二辐射体20以双低频天线模式工作时,所述低频辐射体31和中高频辐射体33同时工作,分别实现各自的覆盖带宽。
本实施例中,所述第一调节电路B与所述第三馈源A连接的一端到所述第一调节电路B与所述低频辐射体31连接另一端的直线距离为第一距离L2,所述第二调节电路C与所述第三馈源A连接的一端到所述第二调节电路C与所述中高频辐射体33的另一端的直线距离为第二距离L1,所述第一距离L1和所述第二距离L2的尺寸均小于所述第三辐射体30产生低频频段的1/16λ,进而保证所述第一调节电路B与第二调节电路C调节性能,保证所述低频辐射体产生的中高频的3/4λ模式的谐振频率小于所述左手天线模式谐振频率。
本申请将第三辐射体同时作为低频辐射体和中高频辐射体,通过所述第一调节电路B和第二调节电路C调节低频辐射体31在工作过程中产生的中高频的3/4λ模式的谐振,使其调谐在中高频辐射体33的左手天线模式的谐振之前低于中高频辐射体33的左手天线模式的谐振覆盖频率,进而使所述低频辐射体31与所述中高频辐射体33共用馈源并在同时工作的状态,且低频辐射体31的谐振与所述中高频辐射体的谐振达到馈电合入,在接收第三馈源传输的低频信号时低频辐射体31实现低频谐振,不影响此时中高频辐射体33接收高频信号并实现高频谐振。同时,本申请的手机设有三个辐射体来实现双低频谐振频率的 覆盖,低频辐射体31与中高频辐射体33共用一个馈源不需要空间新增馈源和连接结构,在有限空间内保证双低频谐振频率覆盖范围的同时可减少天线所需覆盖带宽。具有本实施例的天线的手机由于所述第三辐射体节省了空间并实现低频和中高频同时工作的性能,使得手机需要的设置天线空间也较小,从而能够在有限的空间内布局更多的天线,并提升手机整体性能。
一种实施例中,所述第一调节电路B包括与所述第三馈源A串联的电感,所述第二调节电路C包括与所述第三馈源A串联的电容。当然一些实施例中,所述第一调节电路B包括与所述第三馈源A串联的电容,所述第二调节电路C包括与所述第三馈源A串联的电感。
一种实施例中,所述第一调节电路B包括与所述第三馈源串联的分布电感,所述第二调节电路C包括与所述第三馈源串联的分布电容。当然一些实施例中,所述第一调节电路B包括与所述第三馈源串联的分布电容,所述第二调节电路C包括与所述第三馈源串联的分布电感。
请参阅图2b,本实施例中,所述第一调节电路B包括与所述第三馈源A串联的电感H,所述第二调节电路C包括与所述第三馈源A串联的电容C1。所述电感H大于6.8nH,所述电容C1小于2pf。所述第三馈源A、电感H及中高频辐射体33串联,所述第三馈源A、第二调节电路C及低频辐射体31串联,以实现调节低频辐射体31谐振产生的中高频的3/4λ模式的谐振频率小于所述中高频天线的左手天线模式的谐振频率。
请参阅图2c,一种实施例中,所述第一调节电路B包括串联所述第三馈源A和所述低频辐射体31的第一匹配电路B1,所述第二调节电路C包括串联所述第三馈源A和所述中高频辐射体33的第二匹配电路C2。所述第一匹配电路和/或所述第二匹配电路为L型、π型匹配电路或者为π型和L型匹配电路的组合;本实施例中,所述第一匹配电路B1为L匹配电路,所述第二匹配电路C2为π型匹配电路。根据调试需求,所述第一匹配电路B1和第二匹配电路C2中任一个匹配均可为电感或者电容。第一匹配电路B1及电感H共同实现低频辐射体31谐振产生的中高频的3/4λ模式的谐振频率调节至小于所述中高频天线的左手天线模式的谐振频率。第二匹配电路C2及电容C1共同实现将所述左手天线模式的谐振频率调节至大于所述频辐射体31谐振产生的中高频3/4λ模式的谐振频率。
本实施例中,本实施例的所述中高频辐射体33包括中高频枝节331和寄生枝节333,所述中高频枝节331和寄生枝节333之间通过第二缝隙332间隔,且所述中高频枝节331位于所述低频辐射体31和寄生枝节333之间;所述中高频枝节331和所述寄生枝节333各自接地设置,所述中高频枝节331谐振产生1/4λ模式的谐振,所述寄生枝节333产生寄生模式的谐振。其中,所述中高频枝节331的接地点位于所述中高频枝节331远离第二缝隙332的一端,所述寄生枝节333接地点位于所述寄生枝节333远离所述第二缝隙332的一端。所述中高频枝节331工作时通过所述第二缝隙332耦合至寄生枝节333产生寄生谐振,实际上所述第二缝隙332相当于一个等效电容,通过电容耦合使得所述寄生枝节333也会产生一定的感应电动势,即所述寄生枝节333产生一定频段的寄生谐振。在其它实施方式中,通过调整馈源的位置第二缝隙332第二缝隙332的位置,所述中高频辐射体也能够产生其它需要的工作频段。
本实施例中,所述第一辐射体10谐振产生覆盖5G的低频工作频段,所述第二辐射体 20谐振产生覆盖4G的低频工作频段,所述第三辐射体30谐振产生覆盖5G的低频工作频段和4G的低频工作频段。实际上,所述第三辐射体30谐振可以产生五个工作频段,所述第一辐射体10谐振产生一个工作频段,所述第二辐射体20谐振产生一个工作频段。所述第一辐射体10谐振产生低频工作频段的频率范围为703~803MHz,所需带宽为100MHz;所述第二辐射体20谐振产生低频工作频段的频率范围为791~862MHz,所需带宽为71MHz;所述第三辐射体30谐振产生覆盖5G的低频接收频段和4G的低频接收频段的接收频率范围为758~821MHz,所需带宽为63MHz。在其他实施方式中,所述第一辐射体10、所述第二辐射体20及所述第三辐射体30产生的工作频段可以根据实际应用进行调试互换,比如所述第二辐射体20谐振产生覆盖5G的低频工作频段,所述第一辐射体10谐振产生覆盖4G的低频工作频段。或者,所述第一辐射体10、所述第二辐射体20及所述第三辐射体30产生其他工作频段。本实施例只是列举一个例子。
具体的请参阅图3,图3为本申请图2所示终端天线的低频辐射体和高频辐射体工作时的S参数仿真图,其中,横坐标为频率,单位为GHz;纵坐标为S参数值,单位为dB。所述低频辐射体31产生1/4λ模式谐振覆盖的谐振频率为0.5GHz-1GHz;所述低频辐射体31产生3/4λ模式的高频谐振覆盖的谐振频率1.6GHz,其是通过所述第一调解电路B和第二调节电路C将所述低频辐射体31产生3/4λ模式的高频频率调制1.6GHz。中高频辐射体33的左手天线模式的谐振频率为1.7GHz。进一步的,所述中高频枝节331产生所述左手天线模式的谐振,且所述中高频枝节331产生的1/4λ模式谐振频率为2.7GHz,所述寄生枝节333谐振产生的谐振频率为2GHz。所述所述寄生枝节33的谐振频率可以调节在大于2.7G,本实施例的中高频枝节331和寄生枝节333谐振产生1.9-2.7GHz的频率。
具体的,请参阅图4-图8,图4为所述低频辐射体31谐振产生低频的1/4λ模式的电流走向图,图5为所述低频辐射体谐振产生中高频的3/4λ模式的电流走向示意图。图6为所述中高频辐射体谐振产生的左手天线模式的电流走向示意图,图7为所述中高频枝节331谐振产生的1/4λ模式的电流走向图,图8为所述寄生枝节333谐振产生的寄生模式的电流走向示意图。需要说明的是,图4-图8图中画出第一调节电路和第二调节电路电路示意简图,具体体现出第一调节电路和第二调节电路及连接走线,不同于图2的结构简图。所述第三辐射体30谐振产生五个工作频段分别为图4至图8所示的五个频段;第一个频段为所述低频辐射体31接收第三馈源A的低频信号谐振产生低频的1/4λ模式,其电流分布如图4中箭头方向所示,电流方向为所述低频辐射体31由远离所述第一缝隙32的一端流向所述第一调节电路B的方向。第二个频段为所述低频辐射体31谐振产生中高频的3/4λ模式,其的电流走向如图5箭头方向所示。第三个频段为中高频天线的左手天线模式,其电流走向如图6所示,电流由所述第二缝隙332和所述第三馈源A经第二调节电路至所述中高频枝节331接地点。第四个频段为所述中高频枝节331谐振产生的1/4λ模式,其电流走向如图7所示,电流由所述第二缝隙332流向所述第二调节电路C至所述第三馈源A。第五个频段为所述寄生枝节333谐振产生的模式,其电流走向如图8所示,电流由所述第二缝隙332流向所述寄生枝节333的接地点。
通过所述第一调节电路和第二调节电路调节低频辐射体31在工作过程中产生3/4λ模式的高频谐振,将其从2.4G调节至1.6G,调谐在中高频辐射体33的左手天线模式的谐振 之前,进而使所述低频辐射体31与所述中高频辐射体33共用馈源并在同时工作的状态下谐振达到馈电合入。本实施例中,所述天线在ENDC工作状态时,所述第三辐射体30的低频辐射体31、所述第一辐射体10、所述第二辐射体20形成双低频天线模式,低频态与中高频天线态可同时存在,不影响双卡特性;同时低频天线模式所需覆盖带宽可减少15%~30%。
一种实施例中,请参阅图9,图9为图2所示手机天线100的一实施例的结构示意放大图,所述中高频枝节331和/或所述寄生枝节333的接地点还连接有调谐元件35,所述调谐元件35用于调节所述第三辐射体30的各个天线模式的类型及其工作频段。本实施例中,所述中高频枝节331和所述寄生枝节333的接地点均连接有调谐元件E,所述调谐元件E用于调节所述第三辐射体30的中高频辐射体33的工作频段。本申请以上任何实施例适用于天线净空小于1mm的手机,可以节省空间和成本同时保证天线性能及满足覆盖带宽需求。
请参阅图10,本申请另一实施例中,在上述实施例基础上,所述天线还包括第四辐射体50和连接所述第四辐射体50的第四馈源D,部分所述边框102为所述第四辐射体50。所述第四辐射体50和所述第三辐射体30位于所述第二辐射体20相对两端位置,所述第四个辐射体50和所述第二辐射体20共地;所述第四个辐射体50上还连接有调谐器52,通过所述调谐器52调节所述第四辐射体50实现高频天线和低频天线的模式切换,低频天线模式的所述第四辐射体50与高频天线模式的第四辐射体50产生相同的左手天线模式且谐振频率不同。
本实施例中,所述第四辐射体50包括通过缝隙51间隔的中高频辐射枝节53和中高频寄生枝节54,所述中高频辐射枝节53靠近所述缝隙的一端连接所述第四馈源D,另一端和所述第二辐射体20共地,即连接第二辐射体的接地点21,所述调谐器52连接所述中高频辐射枝节53两端之间的位置;中高频寄生枝节54远离所述缝隙51的一端接地,所述第四辐射体50作为高频天线时,所述中高频辐射枝节产生左手天线模式谐振,所述第四辐射体50的中高频寄生枝节54通过所述缝隙耦合形成寄生谐振。由于所述中高频辐射枝节53和中高频寄生枝节54之间具有一个缝隙51,所述缝隙51相当于一个等效电容,通过电容耦合使得所述中高频寄生枝节54也会产生一定的感应电动势,即所述中高频寄生枝节54产生一定频段的寄生谐振。
本实施例中,所述第四辐射体谐振产生覆盖5G的低频工作频段和中高频工作频段,既可以理解为低频天线与中高频辐射体共用一个辐射体。所述第四辐射体位于所述顶部107,所述第二辐射体20位于所述第一侧部105和顶部107并与所述第四辐射体107共地,所述第四馈源D和调谐器52设于所述主板103上。所述第四馈源D电连接在所述主板101的射频前端上,在所述第四辐射体作为低频天线时,所述调谐器52调整射频信号的接地位置来改变所述第四辐射体50的天线工作模式,实现低频天线性能。
具体的,请参阅图11-图14,图11为所述第四辐射体50作为中高频天线时,所述中高频辐射枝节53谐振产生左手天线模式的电流走向图,图12为所述第四辐射体50作为中高频天线时,中高频寄生枝节54谐振产生中寄生模式的电流走向图。图13为所述第四辐射体50作为低频天线辐射体时的电流走向图,图14为所述第四辐射体50作为低频天线辐 射体时与所述第二辐射体的电流走向图。所述第四辐射体50作为中高频天线时,中高频辐射枝节53谐振产生左手天线模式的电流,其电流分布如图11中箭头方向所示,电流由第四馈源D至接地点21,同时所述第二辐射体20的电流流向所述接地点56。所述第四辐射体50作为中高频天线时,中高频寄生枝节54谐振产生具有中高频段的中寄生模式,其的电流走向如图12箭头方向所示,经所述缝隙51至所述中高频寄生枝节54的接地点。所述第四辐射体50作为低频天线辐射体时,谐振产生左手天线模式的工作频段,其电流走向如图13所示,电流由第四馈源D至接地点21。第二辐射体20与作为低频天线辐射体的第四辐射体50同时工作时,产生左手天线模式的不同工作辐射频段,其电流走向如图14所示,第四辐射体50的电流经所述第四馈源至所述接地点21,所述第二辐射体的电流由第二辐射体连接的馈源至所述接地点21。本实施例中,所述第四辐射体50的谐振产生的低频工作频段的频率范围为791~821MHz,所需天线带宽为30MHz;第二辐射体20工作频段的频率范围为703~803MHz,所需天线带宽为100MHz。
以上,仅为本申请的部分实施例和实施方式,本申请的保护范围不局限于此,任何熟知本领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种终端天线,其特征在于,包括第一辐射体、第二辐射体、第三辐射体、第一调节电路以及第二调节电路;所述第三辐射体、所述第一辐射体及所述第二辐射体为终端边框天线辐射体,且三者之间通过缝隙间隔,所述第一辐射体、第二辐射体及第三辐射体分别连接有用于传输信号的第一馈源、第二馈源及第三馈源,
    所述第三辐射体包括构成低频天线的低频辐射体和构成中高频天线的中高频辐射体,所述低频辐射体和所述中高频辐射体之间通过第一缝隙间隔;所述低频辐射体和中高频辐射体自接地设置;
    所述第一调节电路连接所述第三馈源与所述低频辐射体邻近所述第一缝隙的一侧,所述第二调节电路连接所述第三馈源和中高频辐射体位于所述第一缝隙的端部;所述低频辐射体谐振产生低频的1/4λ模式和中高频的3/4λ模式的谐振,所述中高频辐射体谐振产生左手天线模式的谐振;所述第一调节电路与所述第三馈源连接的一端到所述第一调节电路与所述低频辐射体连接另一端的直线距离为第一距离,所述第二调节电路与所述第三馈源连接的一端到所述第二调节电路与所述中高频辐射体的另一端的直线距离为第二距离,所述第一距离和所述第二距离的尺寸均小于所述第三辐射体产生低频频段的1/16λ;
    所述第三辐射体的低频辐射体、所述第一辐射体及所述第二辐射体共同形成5G NSA的双低频天线模式;其中,所述低频辐射体和中高频辐射体同时工作,所述第一调节电路用于将所述低频辐射体产生的中高频的3/4λ模式的谐振频率调节至小于所述左手天线模式谐振频率,所述第二调节电路用于将所述左手天线模式的谐振频率调节至大于所述低频辐射体谐振产生的中高频的3/4λ模式的谐振频率。
  2. 根据权利要求1所述的终端天线,其特征在于,所述第三馈源通过射频信号微带线分别与所述第一调节电路与所述第二调节电路连接,为所述第一调节电路与所述第二调节电路传输射频信号。
  3. 根据权利要求1所述的终端天线,其特征在于,所述第一调节电路包括与所述第三馈源及所述低频辐射体串联的电感,所述第二调节电路包括与所述第三馈源及所述中高频辐射体串联的电容。
  4. 根据权利要求1所述的终端天线,其特征在于,所述第一调节电路包括与所述第三馈源串联的分布电感,所述第二调节电路包括与所述第三馈源串联的分布电容。
  5. 根据权利要求3或4所述的天线,其特征在于,所述第一调节电路包括串联所述第三馈源和所述低频辐射体的第一匹配电路,所述第二调节电路包括串联所述第三馈源和所述中高频辐射体的第二匹配电路,所述第一匹配电路和/或所述第二匹配电路为L型、π型匹配电路或者为π型和L型匹配电路的组合。
  6. 根据权利要求1所述的终端天线,其特征在于,所述中高频辐射体包括中高频枝节和寄生枝节,所述中高频枝节和寄生枝节之间通过第二缝隙间隔,且所述中高频枝节位于所述低频辐射体和寄生枝节之间;所述中高频枝节和所述寄生枝节各自接地设置,所述中高频枝节谐振产生1/4λ模式的谐振,所述寄生枝节谐振产生寄生模式的谐振。
  7. 根据权利要求4所述的天线,其特征在于,所述中高频枝节产生左手天线模式的谐 振频率为1.7GHz;所述中高频枝节产生的1/4λ模式的谐振和所述寄生枝节的寄生模式谐振共同覆盖1.9GHz~2.7GHz频率。
  8. 根据权利要求5所述的终端天线,其特征在于,所述低频辐射体产生1/4λ模式谐振覆盖的谐振频率为0.5GHz-1GHz;所述低频辐射体产生中高频的3/4λ模式谐振覆盖的谐振频率1.5-1.6GHz。
  9. 根据权利要求4所述的终端天线,其特征在于,所述中高频枝节和/或所述寄生枝节的接地点还可以连接有调谐元件,所述调谐元件用于调节所述第三辐射体的各个天线模式的类型及其工作频段。
  10. 根据权利要求1-7任一项所述的终端天线,其特征在于,所述第一辐射体谐振产生覆盖5G的低频工作频段时所述第二辐射体谐振产生覆盖4G的低频工作频段,所述第一辐射体谐振产生覆盖4G的低频工作频段时所述第二辐射体谐振产生覆盖5G的低频工作频段,所述第三辐射体谐振产生覆盖5G的低频工作频段和4G的低频工作频段。
  11. 根据权利要求1-7任一项所述的终端天线,其特征在于,所述终端天线还包括第四辐射体和连接所述第四辐射体的第四馈源,所述第四辐射体和所述第三辐射体位于所述第二辐射体相对两端位置,所述第四个辐射体和所述第二辐射体共地,所述第四个辐射体上还连接有调谐器,通过所述调谐器调节所述第四辐射体实现高频天线和低频天线的模式切换,低频天线模式的所述第四辐射体与高频天线模式的第四辐射体产生相同的左手天线模式。
  12. 根据权利要求9所述的天线,其特征在于,所述第四辐射体包括通过缝隙间隔的中高频辐射枝节和中高频寄生枝节,所述中高频辐射枝节靠近所述缝隙的一端连接所述第四馈源,所述中高频辐射枝节的另一端和所述第二辐射体共地,所述调谐器连接所述中高频辐射枝节两端之间的位置;所述第四辐射体作为高频天线时,所述中高频辐射枝节产生左手天线模式的谐振,所述第四辐射体的中高频寄生枝节通过所述缝隙耦合形成寄生谐振。
  13. 根据权利要求9所述的天线,其特征在于,所述第四辐射体谐振产生覆盖4G或者5G的低频工作频段。
  14. 一种电子设备,其特征在于,包括中框及围绕中框周缘设置的边框、主板和如权利要求1-13任一项所述的终端天线,部分所述边框为所述天线,所述终端还包括第一侧部和与第一侧部相邻的底部,所述第三辐射体的中高频辐射体位于所述底部,所述低频辐射体位于所述第一侧部,所述第一辐射体、第二辐射体、第三辐射体的接地点设于所述中框,所述第三馈源设于所述主板上。
  15. 根据权利要求14所述的电子设备,其特征在于,所述终端天线还包括第四辐射体和第四馈源时,部分所述边框为所述第四辐射体,所述终端还包括顶部,所述第四辐射体位于所述顶部,所述第二辐射体位于所述第一侧部和顶部并与所述第四辐射体共地,所述第四馈源和调谐器设于所述主板上。
PCT/CN2022/092521 2021-05-28 2022-05-12 一种终端天线及终端电子设备 WO2022247652A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/008,907 US20230238717A1 (en) 2021-05-28 2022-05-12 Terminal antenna and terminal electronic device
EP22810379.2A EP4152517A4 (en) 2021-05-28 2022-05-12 TERMINAL ANTENNA AND ELECTRONIC TERMINAL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110594251.7A CN113922048B (zh) 2021-05-28 2021-05-28 一种终端天线及终端电子设备
CN202110594251.7 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022247652A1 true WO2022247652A1 (zh) 2022-12-01

Family

ID=79232792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092521 WO2022247652A1 (zh) 2021-05-28 2022-05-12 一种终端天线及终端电子设备

Country Status (4)

Country Link
US (1) US20230238717A1 (zh)
EP (1) EP4152517A4 (zh)
CN (1) CN113922048B (zh)
WO (1) WO2022247652A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922048B (zh) * 2021-05-28 2022-09-30 荣耀终端有限公司 一种终端天线及终端电子设备
CN114497988B (zh) * 2022-01-20 2024-10-11 Oppo广东移动通信有限公司 一种电子设备
CN115954654B (zh) * 2022-01-24 2023-12-22 荣耀终端有限公司 一种终端天线和电子设备
CN117673697A (zh) * 2022-08-25 2024-03-08 Oppo广东移动通信有限公司 电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644381B2 (en) * 2017-08-05 2020-05-05 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN111725608A (zh) * 2019-03-18 2020-09-29 Oppo广东移动通信有限公司 天线组件以及电子设备
CN112531331A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 一种天线及终端设备
CN112736454A (zh) * 2020-12-25 2021-04-30 RealMe重庆移动通信有限公司 天线组件及电子设备
CN112768959A (zh) * 2020-12-29 2021-05-07 Oppo广东移动通信有限公司 天线组件和电子设备
CN113922048A (zh) * 2021-05-28 2022-01-11 荣耀终端有限公司 一种终端天线及终端电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014112A (en) * 1998-08-06 2000-01-11 The United States Of America As Represented By The Secretary Of The Army Simplified stacked dipole antenna
CN105609969A (zh) * 2016-02-22 2016-05-25 深圳市金立通信设备有限公司 通信终端
CN108346863B (zh) * 2018-01-29 2021-02-09 维沃移动通信有限公司 一种天线和移动终端
CN109687151B (zh) * 2018-12-26 2021-12-14 维沃移动通信有限公司 一种天线结构及移动终端
CN114824836A (zh) * 2019-02-27 2022-07-29 华为技术有限公司 共体天线及电子设备
CN111628298B (zh) * 2019-02-27 2022-03-11 华为技术有限公司 共体天线及电子设备
CN211829200U (zh) * 2020-05-25 2020-10-30 Oppo广东移动通信有限公司 天线装置及电子装置
CN212277399U (zh) * 2020-09-30 2021-01-01 Oppo广东移动通信有限公司 天线组件和电子设备
CN112736459B (zh) * 2020-12-24 2023-12-15 维沃移动通信有限公司 双天线系统、射频架构和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644381B2 (en) * 2017-08-05 2020-05-05 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN111725608A (zh) * 2019-03-18 2020-09-29 Oppo广东移动通信有限公司 天线组件以及电子设备
CN112531331A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 一种天线及终端设备
CN112736454A (zh) * 2020-12-25 2021-04-30 RealMe重庆移动通信有限公司 天线组件及电子设备
CN112768959A (zh) * 2020-12-29 2021-05-07 Oppo广东移动通信有限公司 天线组件和电子设备
CN113922048A (zh) * 2021-05-28 2022-01-11 荣耀终端有限公司 一种终端天线及终端电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4152517A4

Also Published As

Publication number Publication date
US20230238717A1 (en) 2023-07-27
EP4152517A4 (en) 2023-12-20
CN113922048B (zh) 2022-09-30
EP4152517A1 (en) 2023-03-22
CN113922048A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2022247652A1 (zh) 一种终端天线及终端电子设备
EP1506594B1 (en) Antenna arrangement and module including the arrangement
EP3767742B1 (en) Antenna device and mobile terminal
CN111628298A (zh) 共体天线及电子设备
CN109672019B (zh) 一种终端mimo天线装置及实现天线信号传输方法
US9748661B2 (en) Antenna for achieving effects of MIMO antenna
CN101336497A (zh) 四波段耦合元件天线结构
CN106299637B (zh) 天线及用户设备
EP1368855A1 (en) Antenna arrangement
TWI484768B (zh) 無線通訊裝置及訊號饋入方法
CN114447583B (zh) 天线及电子设备
CN110829026B (zh) 一种隔离式地辐射天线及mimo天线系统
CN110649373A (zh) 一种天线结构及终端
WO2013175903A1 (ja) アンテナ装置及びmimo無線装置
CN110635229A (zh) 天线结构
WO2023273607A1 (zh) 天线模组及电子设备
WO2023273604A1 (zh) 天线模组及电子设备
CN112838371A (zh) 一种天线复用系统和终端
CN115133269A (zh) 天线组件及电子设备
CN218997060U (zh) 一种终端电子设备
CN113270728B (zh) 一种用于多天线系统的可调谐去耦网络
CN114069227B (zh) 多频段天线
WO2023120075A1 (ja) アンテナモジュール
CN115117597B (zh) 天线结构及终端设备
US20240347903A1 (en) Antenna Structure and Electronic Device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022810379

Country of ref document: EP

Effective date: 20221214

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE