WO2019213851A1 - 天线装置和移动终端 - Google Patents

天线装置和移动终端 Download PDF

Info

Publication number
WO2019213851A1
WO2019213851A1 PCT/CN2018/086083 CN2018086083W WO2019213851A1 WO 2019213851 A1 WO2019213851 A1 WO 2019213851A1 CN 2018086083 W CN2018086083 W CN 2018086083W WO 2019213851 A1 WO2019213851 A1 WO 2019213851A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
port
segment
frequency signal
capacitor
Prior art date
Application number
PCT/CN2018/086083
Other languages
English (en)
French (fr)
Inventor
张志华
李建铭
余冬
王汉阳
赖彦成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880057722.7A priority Critical patent/CN111052501B/zh
Priority to EP18918061.5A priority patent/EP3767742B1/en
Priority to US17/053,678 priority patent/US11688930B2/en
Priority to PCT/CN2018/086083 priority patent/WO2019213851A1/zh
Publication of WO2019213851A1 publication Critical patent/WO2019213851A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an antenna device and a mobile terminal.
  • the antenna design in mobile terminals needs to cover multiple operating frequency bands.
  • it can be divided into low frequency 700 ⁇ 960MHz, intermediate frequency 1710 ⁇ 2170MHz, and high frequency 2300 ⁇ 2700MHz or higher.
  • Other bands From the antenna design architecture, it can be divided into a single feed to cover the low, medium and high frequency bands respectively, that is, different frequency bands are made in different antennas.
  • This design occupies a large amount of space inside the mobile terminal, and needs to be set between the antennas. Isolation structure.
  • the RF circuit at the back end of the antenna uses the frequency dividing circuit for the medium and high frequency.
  • the frequency is split, due to the design limitation of the circuit device itself, the device will bring high device loss (greater than 3dB) in the high frequency section, so the high frequency performance will be affected.
  • the embodiment of the present application provides an antenna device, which realizes coverage of multiple frequency bands, and ensures stable transmission of an intermediate frequency signal and a high frequency signal, and has good isolation and low loss.
  • an embodiment of the present application provides an antenna device, including a first feeding portion, a second feeding portion, a filter matching network, and a radiator, where the filter matching network includes a first port, a second port, and a third a port; the first feed portion is electrically connected to the first port, the second feed portion is electrically connected to the second port, the radiator is electrically connected to the third port, the first feed
  • the input portion is configured to feed a low intermediate frequency signal
  • the second feed portion is configured to feed a high frequency signal, the highest frequency value of the low intermediate frequency signal is 2170 MHz, and the lowest frequency value of the high frequency signal is 2300 MHz, the low
  • the intermediate frequency signal and the high frequency signal are input to the filter matching network through the first feed portion and the second feed portion, respectively, the filter matching network is used to improve the low intermediate frequency signal and the high frequency Signal isolation.
  • a filter component is required to divide the intermediate frequency and the high frequency signal, and the filter component is usually disposed in the RF circuit at the rear end of the antenna.
  • the function of the filter component causes a very large loss to the 2300 MHz signal, resulting in loss of the high frequency signal. Affect the performance of the antenna.
  • the low intermediate frequency signal and the high frequency signal are respectively fed through the first feeding portion and the second feeding portion, that is, the low intermediate frequency signal and the high frequency are respectively applied to the first feeding portion and the second feeding portion by means of feeding and feeding.
  • the signal is disassembled, and the filter component is not required to be divided in the RF circuit of the back end to divide the intermediate frequency and the high frequency signal, so as to ensure the stability of the signal at the lowest frequency value of the high frequency signal and the highest frequency value of the low intermediate frequency signal. It can reduce the loss of 2300MHz signal, thereby increasing the profit of high frequency signal. And through the filter matching network, there is good isolation between the low intermediate frequency signal and the high frequency signal.
  • the filter matching network includes a first filter circuit and a second filter circuit, the first filter circuit is electrically connected between the first port and the third port, and the second a filter circuit electrically connected between the second port and the third port, a first filter circuit for passing the low intermediate frequency signal and blocking the high frequency signal, the second filter circuit for passing through the The high frequency signal is described and the low intermediate frequency signal is blocked.
  • the first filter circuit and the second filter circuit are arranged to realize selection and isolation of the low intermediate frequency signal and the high frequency signal, and the function of preventing crosstalk, so that the low intermediate frequency signal and the high frequency signal have good isolation.
  • the filter matching network further includes a first matching circuit and a second matching circuit, the first matching circuit being electrically connected between the first port and the first filter circuit for the low intermediate frequency signal Impedance matching is performed; the second matching circuit is electrically connected between the second port and the second filter circuit for impedance matching of the high frequency signal.
  • the first matching circuit and the second matching circuit respectively perform impedance matching on signals of different frequency bands, so that the antenna generates sufficient efficiency bandwidth to cover different operating frequency bands.
  • the first filter circuit includes a first inductor, a second inductor, and a first capacitor, and the first inductor is electrically connected between the first matching circuit and the first port and the ground.
  • the second inductor and the first capacitor are sequentially connected in series and electrically connected between the first inductor and one end of the first matching circuit, and the second inductor is electrically connected to the first end of the second capacitor to the first Three ports.
  • the second inductor and the first capacitor form a band rejection filter for the high frequency signal
  • the first inductor and the first capacitor form a band pass filter for the low intermediate frequency signal, so that the first filter circuit blocks the high frequency signal by the low intermediate frequency signal
  • the filtering effect is good, and the two components are composed of the first inductor, the second inductor and the first capacitor, and the structure is simple.
  • the second filter circuit includes a third inductor, a fourth inductor, and a second capacitor, and the third inductor is electrically connected between the second matching circuit and the ground of the second port, the first The fourth inductor and the second capacitor are connected in parallel, and one end is electrically connected to one end of the third inductor away from the ground, and the other end is electrically connected to the third port.
  • the fourth inductor and the second capacitor form a band rejection filter for the intermediate frequency
  • the third inductor forms a band rejection filter for the low frequency such that the second filter blocks the low intermediate frequency signal by the high frequency signal.
  • the first matching circuit includes a fifth inductor, a sixth inductor, a seventh inductor, a third capacitor, and a fourth capacitor, and the fifth inductor and the sixth inductor are connected in series at the second port and the ground
  • the third capacitor is connected between one end of the sixth inductor remote from the ground and the ground
  • the seventh inductor and the fourth capacitor are connected in series at one end of the third capacitor away from the ground and the first
  • the second matching circuit includes a fifth capacitor and a sixth capacitor, the fifth capacitor is electrically connected between the second port and the ground, and the sixth capacitor is connected to the The fifth capacitor is between the end away from the ground and the end of the third inductor remote from the ground.
  • Impedance matching of the RF signals of the first feed portion and the second feed portion through the first matching circuit and the second matching circuit allows the antenna to generate a better bandwidth to cover the desired operating frequency band.
  • the first filter circuit includes a first inductor and a second inductor, and the first inductor and the second inductor are connected in series at the first matching circuit away from the first port and the ground The second end of the second inductor is electrically connected to the third port.
  • a band rejection filter that blocks the high frequency and passes the low frequency signal is formed, thereby isolating the low frequency and medium high frequency signals to achieve good isolation.
  • the second filter circuit includes a third inductor and a first capacitor.
  • the third inductor is electrically connected between the second matching circuit and the ground of the second port, and the first capacitor is electrically connected. Between an end of the third inductor remote from the ground and the third port.
  • a band rejection filter that blocks the low frequency and passes through the medium and high frequency signals is formed.
  • the first matching circuit includes a fourth inductor and a second capacitor.
  • the fourth inductor and the second capacitor are sequentially connected in series between the first port and the ground, and the second capacitor is away from the ground end.
  • Impedance matching of the RF signals of the first feed portion and the second feed portion through the first matching circuit and the second matching circuit allows the antenna to generate a better bandwidth to cover the desired operating frequency band.
  • the antenna device further includes a third feeding portion and a fourth port
  • the filter matching circuit further includes a third filtering circuit and a third matching circuit
  • the third feeding portion is electrically connected to the fourth port
  • the third matching circuit and the third filtering circuit are sequentially connected in series between the fourth port and the third port
  • the third feeding portion is configured to feed a low frequency signal, the low frequency signal and the low
  • the intermediate frequency signals do not overlap, the highest frequency value of the low frequency signal is 960 MHz, and the lowest frequency value of the low intermediate frequency signal is 1700 MHz.
  • the third filter circuit By dividing the electromagnetic wave signal into low frequency, low intermediate frequency and high frequency signals, the third filter circuit is set, which can pass the low frequency signal and block the low intermediate frequency and high frequency signals, and combine the first filter circuit to pass the low intermediate frequency signal to block the low frequency and The high frequency signal and the second filter circuit block the low frequency and low intermediate frequency signals through the high frequency signal, so that the low frequency and high frequency multi-frequency signal radiation can be generated on the radiator, and the low frequency, the low intermediate frequency and the high frequency have good isolation.
  • the third matching circuit is set, and the first matching circuit and the second matching circuit are used to perform impedance matching on signals of different frequency bands, so that low, low medium and high frequency signals have good bandwidth and meet the needs of wireless communication.
  • the antenna device further includes a main board and a frame of the mobile terminal, the mobile terminal includes two opposite long sides and two short sides, and the frame includes a first frame of the short side and the long side a second frame, the radiator is disposed on the first frame, and the first feeding portion and the second feeding portion are disposed on the main board.
  • the radiator By properly arranging the radiator on the mobile terminal, that is, the radiator is disposed on the first frame, the effect of reducing the required clearance area of the antenna can be achieved.
  • the first frame is provided with a first gap and a second gap, so that the first frame is divided into a first segment, a second segment and a third segment, and the first segment and the third segment
  • the segments are respectively located at two sides of the second segment, the first segment and the third segment respectively extend to the second frame, and the filter matching network is electrically connected to the second segment, so that The second segment constitutes the radiator.
  • the antenna can constitute a monopole antenna or an IFA antenna.
  • the second segment is further connected with a first grounding segment
  • the first motherboard is further provided with a first grounding point
  • the first grounding segment is connected to the first grounding point.
  • the second segment is further connected with an extension segment, one end of the extension segment is connected to one end of the second segment away from the first ground segment, and the other end is connected to the filter matching network, the extension segment
  • the second segment and the ground segment form a loop antenna.
  • the second main grounding point is further disposed on the main board, the extended grounding section is further connected to the second grounding section, and the second grounding section is connected to the second grounding point.
  • the second grounding segment is a single-pole multi-throw switch structure, and the single-pole multi-throw switch selectively opens and closes to adjust the resonant frequency of the low-frequency signal and widen the operating frequency band of the low-frequency signal.
  • the second grounding section is a switch structure, and the resonant frequency of the low frequency signal is adjusted by opening and closing of the switch to widen the operating frequency band of the low frequency signal.
  • a third gap and a fourth gap are formed on the second frame of the two opposite long sides, so that opposite ends of the first segment respectively correspond to the first gap and the third gap.
  • the opposite ends of the third segment respectively correspond to the second gap and the fourth gap, and the first segment and the third segment constitute a parasitic antenna of the second segment.
  • the current flowing on the second segment By setting the first segment and the third segment to form the parasitic antenna of the second segment, the current flowing on the second segment generates a coupling current on the first segment and the third segment, thereby generating electromagnetic waves on the first segment and the third segment. radiation.
  • the third board is further disposed on the main board, and one end of the first section corresponding to the third gap is connected to the third ground point.
  • the first segment is grounded such that the parasitic antenna formed by the first segment forms a complete current loop.
  • a fourth grounding point is further disposed on the main board, and one end of the first segment corresponding to the first gap is connected to the fourth grounding point.
  • both ends of the first segment are grounded, so that the parasitic antenna formed in the first segment is a loop antenna, forming a complete current loop.
  • the embodiment of the present application further provides a mobile terminal, comprising: the main board and the antenna device according to any one of the first aspects, wherein the main board is configured to feed an electromagnetic wave signal to the antenna device.
  • FIG. 1 is a schematic structural diagram of an antenna apparatus according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram showing the circuit structure of an antenna apparatus according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram showing the circuit structure of an antenna apparatus according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an antenna apparatus according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram showing the return loss (S11) test result of the antenna device of the present application.
  • FIG. 6 is a schematic structural diagram of a mobile terminal according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an antenna apparatus disposed on a mobile terminal according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram showing simulation results of return loss and antenna efficiency of the antenna device of FIG. 7.
  • FIG. 8 is a schematic diagram showing simulation results of return loss and antenna efficiency of the antenna device of FIG. 7.
  • FIG. 9 is a schematic structural diagram of an antenna apparatus disposed on a mobile terminal according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an antenna apparatus disposed on a mobile terminal according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an antenna apparatus disposed on a mobile terminal according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a switch structure of a second ground segment according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a switch structure of a second ground segment according to an embodiment of the present application.
  • S21 return loss
  • FIG. 15 is a schematic diagram of simulation results of antenna efficiency according to an embodiment of the present application.
  • the embodiment of the present application provides a mobile terminal, including a main board and an antenna device provided by the embodiment of the present application, where the main board is used to feed an electromagnetic wave signal to the antenna device.
  • the mobile terminal can be a handheld/wearable device such as a smart phone, a tablet computer, a notebook computer or a smart watch, and can realize multi-frequency wireless communication.
  • an embodiment of the present application provides an antenna device, including a first feeding portion 21 , a second feeding portion 22 , a filter matching network 30 , and a radiator 10 .
  • the filter matching network 30 includes a first port P1. , the second port P2, the third port P3.
  • the first feeding portion 21 is electrically connected to the first port P1, the second feeding portion 22 is electrically connected to the second port P2, and the radiator 10 is electrically connected to the third port P3.
  • the first feeding portion 21 is configured to feed a low intermediate frequency signal
  • the second feeding portion 22 is configured to feed a high frequency signal
  • the highest frequency value of the low intermediate frequency signal is 2170 MHz
  • the lowest frequency of the high frequency signal The value is 2300 MHz.
  • the frequency range of the low intermediate frequency signal is 700 MHz to 960 MHz (ie, 2G communication frequency band), the middle frequency band is 1710 MHz to 2170 MHz (ie, 3G communication frequency band), and the frequency range of the high frequency signal is 2300 MHz. 2700MHz (that is, 4G communication band).
  • the low intermediate frequency signal and the high frequency signal are input to the filter matching network 30 through the first feeding portion 21 and the second feeding portion 22, respectively, and the filter matching network 30 is used to improve the low The isolation of the intermediate frequency signal and the high frequency signal.
  • a filter component is required to divide the intermediate frequency and the high frequency signal, and the filter component is usually disposed in the RF circuit at the rear end of the antenna.
  • the function of the filter component causes a very large loss to the 2300 MHz signal, resulting in loss of the high frequency signal. Affect the performance of the antenna.
  • the low-IF signal and the high-frequency signal are respectively fed through the first feeding portion 21 and the second feeding portion 22, that is, the low-IF frequency is adopted at the first feeding portion 21 and the second feeding portion 22 by means of the feeding.
  • the signal and the high-frequency signal are disassembled, and the filter component is not required to be divided in the RF circuit of the back end to divide the intermediate frequency and the high-frequency signal, so as to ensure the lowest frequency value of the high-frequency signal and the highest frequency value of the low-IF signal.
  • the stability of the signal can reduce the loss of the 2300MHz signal, thereby increasing the profit of the high frequency signal.
  • the filter matching network there is good isolation between the low intermediate frequency signal and the high frequency signal.
  • the filter matching network 30 needs to perform signal selection on the low intermediate frequency signal and the high frequency signal.
  • the filter matching network 30 includes the first filtering circuit 36 and the a second filter circuit 37, the first filter circuit 36 is electrically connected between the first port P1 and the third port P3, and the second filter circuit 37 is electrically connected to the second port P2 and the Between the third port P3, the first filter circuit 36 is configured to pass the low intermediate frequency signal and block the high frequency signal, and the second filter circuit 37 is configured to pass the high frequency signal and block the low IF signal.
  • the first filter circuit 36 and the second filter circuit 37 comprise a plurality of electronic devices, and the plurality of electronic devices are combined, and the selection and isolation of the low intermediate frequency signal and the high frequency signal are realized through appropriate selection and layout to prevent crosstalk.
  • the function is such that at the third port P3, the low intermediate frequency signal and the high frequency signal have good isolation.
  • the filter matching network 30 is further provided with an impedance matching structure.
  • the filter matching network 30 further includes a first matching circuit 31 and a second matching circuit 32.
  • the first matching circuit 31 is electrically connected between the first port P1 and the first filter circuit 36 for impedance matching of the low intermediate frequency signal;
  • the second matching circuit 32 is electrically connected to the first The two ports P2 and the second filter circuit 37 are used for impedance matching of the high frequency signals.
  • the first matching circuit 31 and the second matching circuit 32 may also be integrated in the first filter circuit 36 and the second filter circuit 37.
  • the first matching circuit 31 and the second matching circuit 32 comprise a plurality of electronic devices, and the plurality of electronic devices are combined, and the impedance matching of the low intermediate frequency signal and the high frequency signal is achieved through appropriate selection and layout, so that the antenna generates enough The efficiency bandwidth covers different operating bands.
  • the antenna device of this embodiment functions as a transmitting antenna.
  • the input impedance of the first feeding portion 21 and the second feeding portion 22 can be non-50 ohm.
  • the output impedance of the third port P3 can be obtained by filtering and impedance matching of the filter matching network 30. When it is 50 ohms, the design difficulty of the first feeding portion 21 and the second feeding portion 22 can be reduced, and the applicable range of the antenna device can be broadened.
  • the antenna device of the embodiment is used as the receiving antenna, and the input impedance of the electromagnetic wave signal received by the radiator 10 can also be non-50 ohm.
  • the filtering and matching of the filter matching network 30 can make the first port P1 and the second port P2
  • the output impedance is 50 ohm, and then two different electromagnetic wave signals are transmitted to the corresponding signal processing device (not shown).
  • the signal processing device can also be configured as the first feeding portion 21 and the second feeding portion 22, and the signal processing device The demodulation of the signal is completed to realize the function of the antenna to receive the complex electromagnetic wave signal.
  • the filter matching network provided by the antenna device of this embodiment is different from the conventional duplexer.
  • the impedance of the input and the two outputs of the general duplexer are both 50 ohms, as received by the antenna.
  • a matching circuit must be added between the duplexer and the antenna.
  • the filter matching network can be first passed.
  • the first filter circuit 36 and the second filter circuit 37 of 30 are split into two signals, and after the impedance matching of the first matching circuit 31 and the second matching circuit 32, two signals having an output impedance of 50 ohms are realized.
  • the first filter circuit 36 includes a first inductor 351 , a second inductor 352 , and a first capacitor 353 , and the first inductor 351 is electrically connected to the first matching circuit 31 .
  • the second inductor 352 and the first capacitor 353 are sequentially connected in series and electrically connected to the first inductor 351 near the end of the first matching circuit 31 and the ground.
  • the second inductor 352 is electrically connected to the third port P3 from one end of the first capacitor 353.
  • the second filter circuit 37 includes a third inductor 354, a fourth inductor 355, and a second capacitor 356.
  • the third inductor 354 is electrically connected to the second matching circuit 32 away from the end of the second port P2 and the ground.
  • the fourth inductor 355 and the second capacitor 356 are connected in parallel, and one end is electrically connected to one end of the third inductor 354 away from the ground, and the other end is electrically connected to the third port P3.
  • the second inductor 352 and the first capacitor 351 form a band rejection filter for the high frequency signal
  • the first inductor 351 and the first capacitor 353 form a band pass filter for the low intermediate frequency signal, so that the first filter circuit 36 passes the low intermediate frequency signal.
  • the high-frequency signal is blocked, and the signal selection effect is good.
  • the three components of the first inductor 351, the second inductor 352, and the first capacitor 353 can form two filters, and the structure is simple.
  • the fourth inductor 355 and the second capacitor 356 form a band rejection filter for the intermediate frequency
  • the third inductor 354 forms a band rejection filter for the low frequency such that the second filter 37 blocks the low intermediate frequency signal by the high frequency signal.
  • the first matching circuit 31 includes a fifth inductor 311, a sixth inductor 312, a seventh inductor 314, a third capacitor 313, and a fourth capacitor 315, and the fifth inductor 311 and the sixth inductor 312 are connected in series Between the second port P2 and the ground, the third capacitor 313 is connected between one end of the sixth inductor 312 away from the ground and the ground, and the seventh inductor 314 and the fourth capacitor 315 are connected in series.
  • the third matching circuit 32 includes a fifth capacitor 321 and a sixth capacitor 322, and the fifth capacitor 321 is electrically connected to the third capacitor 313.
  • the second matching circuit 32 is electrically connected to the first capacitor 351.
  • the sixth capacitor 322 is connected between an end of the fifth capacitor 321 away from the ground and an end of the third inductor 354 away from the ground.
  • the first matching circuit 31 and the second matching circuit 32 perform impedance matching on the RF signals (ie, the low intermediate frequency signal and the high frequency signal) fed by the first feeding portion 21 and the second feeding portion 22, so that the antenna can be better generated.
  • the efficiency bandwidth is to cover the required operating band.
  • the first inductor 351 is 3.2 nH
  • the second inductor 352 is 5.6 nH
  • the first capacitor 353 is 0.6 pF
  • the third inductor 354 is 1.6 nH
  • the fourth inductor 355 is 4.9 nH
  • the second capacitor is 4.9 nH.
  • 356 is 1.6 pF
  • fifth inductor 311 is 2.5 nH
  • sixth inductor 312 is 3.5 nH
  • third capacitor 313 is 4 pF
  • seventh inductor 314 is 6 nH
  • fourth capacitor 315 is 3 pF
  • fifth capacitor 321 is 2 pF.
  • the six capacitor 322 is 2.2 pF.
  • the antenna device of the embodiment can generate a frequency band with a low bandwidth of a low intermediate frequency signal, and the frequency range is a low frequency band of 700 MHz to 960 MHz (ie, a 2G communication frequency band), and a medium frequency band of 1710 MHz to 2170 MHz (ie, a 3G communication frequency band).
  • the frequency range of the signal ranges from 2300MHz to 2700MHz (ie, 4G communication band), which realizes multi-frequency performance, has good isolation, and improves high-frequency gain.
  • the first filter circuit 36 includes a first inductor 351 and a second inductor 352, and the first inductor 351 and the second inductor 352 are connected in series in the first match.
  • the circuit 31 is remote from the end of the first port P1 and the ground, and the end of the second inductor 352 remote from the ground is electrically connected to the third port P3.
  • the second filter circuit 37 includes a third inductor 353 and a first capacitor 354.
  • the third inductor 353 is electrically connected between the end of the second matching circuit 32 away from the second port P2 and the ground.
  • a capacitor 354 is electrically connected between one end of the third inductor 353 remote from the ground and the third port P3.
  • the band rejection filter of the low intermediate frequency signal is formed by the third inductor 353 and the first capacitor 354 to form a blocking low intermediate frequency, and the high pass
  • the band-stop filter of the frequency signal is used to select signals for low-IF signals and high-frequency signals to achieve good isolation.
  • the first matching circuit 31 includes a fourth inductor 311 and a second capacitor 312.
  • the fourth inductor 311 and the second capacitor 312 are sequentially connected in series between the first port P1 and the ground, and the second capacitor An end of the 312 remote from the ground is electrically connected to an end of the first inductor 351 away from the second inductor 352.
  • the second matching circuit 32 includes a fifth inductor 321 and a third capacitor 322, and the fifth inductor 321 and the The third capacitor 322 is sequentially connected in series between the second port P2 and one end of the third inductor 353 away from the ground.
  • the first matching circuit 31 and the second matching circuit 32 perform impedance matching on the RF signals (ie, the low frequency signal and the medium high frequency signal) fed by the first feeding portion 21 and the second feeding portion 22, so that the antenna can be better generated. Efficiency bandwidth to cover the required operating band.
  • the first inductor 351 is 12nH
  • the second inductor 352 is 16nH
  • the third inductor 353 is 4nH
  • the first capacitor 354 is 1pF
  • the fourth inductor 311 is 16nH
  • the second capacitor 312 is 2.7pF.
  • the fifth inductor 321 is 3.8 nH and the third capacitor 322 is 0.6 pF.
  • the antenna device of the embodiment can generate an operating frequency band with a frequency band of low intermediate frequency signals ranging from 700 MHz to 960 MHz, and a frequency band of high frequency signals ranging from 2300 MHz to 2700 MHz, achieving multi-frequency performance and good isolation. Degree, and increase the benefits of high frequency.
  • the antenna device further includes a third feeding portion 23 and a fourth port P4, and the filter matching circuit 35 further includes a third filtering circuit 38 and a third matching circuit 33,
  • the third feeding portion 23 is electrically connected to the fourth port P4, and the third matching circuit 33 and the third filtering circuit 38 are sequentially connected in series between the fourth port P4 and the third port P3.
  • the third feeding portion 23 is configured to feed a low frequency signal, the low frequency signal does not overlap with the low intermediate frequency signal, the highest frequency value of the low frequency signal is 960 MHz, and the lowest frequency value of the low intermediate frequency signal is 1700 MHz.
  • the frequency range of the low frequency signal may be 700 to 960 MHz, and the frequency range of the low intermediate frequency signal may be 1700 to 2170 MHz.
  • the third filter circuit 38 is set to pass the low frequency signal and block the low intermediate frequency and high frequency signals, and the first filter circuit 36 is combined with the low intermediate frequency signal to block The low frequency and high frequency signals, and the second filter circuit 37, through the high frequency signal, block the low frequency and low intermediate frequency signals, so that the low frequency and high frequency multi-frequency signal radiation can be generated on the radiator 10, and between the low frequency, the low intermediate frequency and the high frequency.
  • the third matching circuit 33 is provided, and the first matching circuit 31 and the second matching circuit 32 are combined to perform impedance matching on signals of different frequency bands, so that low, low, medium and high frequency signals have good bandwidth and satisfy The need for wireless communication.
  • the radiator 10 may be a loop antenna, a monopole antenna, an IFA (inverted-Antenna) antenna or a slot antenna, as shown in FIG. 1 , and FIG. 4 shows a loop antenna.
  • a monopole antenna A monopole antenna.
  • the electromagnetic wave can generate a resonant frequency covering the low frequency, the intermediate frequency and the high frequency on the radiator 10, so that the antenna device of the present application can generate an operation covering a sufficient efficiency bandwidth. frequency.
  • the antenna device further includes a main board 20 and a frame 5 of the mobile terminal, where the mobile terminal includes two opposite sides and two short sides, respectively.
  • a first frame 51 including the short side and a second frame 52 of the long side the radiator 10 is disposed on the first frame 51, the first feeding portion 21 and the second feeding portion 22 is disposed on the main board 20.
  • the frame 5 is made of a metal material, and the radiator 10 can be a first frame 51 or a structure connected to the first frame 51.
  • the frame 5 can also be a non-metal material, and the metal structure of the radiator 10 is attached to the first frame 51.
  • the antenna can have multi-frequency radiation performance, high gain and isolation, and on the basis of
  • the radiator 10 is arranged on the terminal, that is, the radiator 10 is disposed on the first frame 51, and the effect of reducing the clearance area of the antenna can be achieved.
  • the inside of the first frame 51 and the metal edge of the main board 20 (or the screen) The clearance distance d between the edge of the metal plate of the assembly, which is closer to one of the first bezels 51, can be further reduced, achieving a clearance distance d of less than 2 mm, so that the antenna of the present embodiment can be applied to a mobile terminal of a narrow bezel.
  • the first frame 51 is provided with a first gap 102 and a second gap 103 , so that the first frame 51 is divided into the first segment 11 , a second segment 12 and a third segment 13, the first segment 11 and the third segment 13 are respectively located at two sides of the second segment 12, and the first segment 11 and the third segment 13 are respectively
  • the second frame 52 extends, and the filter matching network 30 is electrically connected to the second segment 12 such that the second segment 12 constitutes the radiator 10.
  • the antenna can constitute a monopole antenna or an IFA antenna.
  • the second segment 12 is further connected to the first ground segment 14
  • the motherboard 20 is further provided with a first grounding point 24
  • the first ground segment 14 is connected to the The first ground point 24 is described.
  • the second segment 12 is further connected with an extension 122 , and one end of the extension segment 122 is connected to one end of the second segment 12 away from the first ground segment 14 .
  • One end is coupled to the filter matching network 30, and the extension 122, the second segment 12, and the ground segment 14 form a loop antenna.
  • the radiator 10 By setting the radiator 10 as the structure of the loop antenna, the loop antenna has better antenna performance under the small clearance area than other types of antennas, and can further compress the size of the required clearance area, and the clearance distance d can be compressed to 1.5. About mm, to meet the communication needs of large screen mobile terminals, such as full screen mobile phones.
  • the loop antenna structure may also be provided with different specific structures as needed.
  • the first feed portion 21, the second feed portion 22, and the first ground point 24 are both disposed at the normal of the midpoint of the second segment 12.
  • the feed-in position and the grounding position are defined as the left-feed structure on the left side of the normal A, and the feeding position and the grounding position are respectively located on both sides of the normal A and the symmetrical setting is the feed-in, the feeding position and The grounding position is located on the right side of the normal A and is a right-feeding structure.
  • Each embodiment of the present application may adopt a left feed structure, a medium feed structure or a right feed structure.
  • the left feed structure is adopted, so that the medium and high frequency signals have better antenna performance.
  • a first connection section 121 may be provided, and the first connection section 121 is connected to the second section 12 and the extension section. Between 122, the extending direction of the extending section 122 is parallel to the extending direction of the second section 12, so that the radiator 10 forms a ring in which the extending section 122, the first connecting section 121, the second section 12 and the first grounding section 14 are sequentially connected. structure.
  • the radiator 10 of FIG. 7 is configured as a loop antenna structure of a left feed structure, and the signal of the first frequency band fed by the first feeding portion 21 is a low frequency signal, and the second frequency band of the second frequency feeding portion 22 is fed by the second feeding portion 22 .
  • the signal is a medium-high frequency signal, and the antenna device is simulated to obtain the antenna return loss curve (solid line) and the system efficiency curve (dashed line). It can be seen that resonance occurs in the low frequency, intermediate frequency and high frequency parts, and the coverage is wide.
  • the bandwidth, the antenna efficiency is at a higher level at the resonance point position (at the labels 1, 2, 3, 4 in the figure), and the antenna isolation is good (less than 20 dB) near the resonance point position, so that the application of the present application is known.
  • the performance of the antenna meets the requirements.
  • the embodiment is substantially the same as the embodiment shown in FIG. 7 , except that the motherboard 20 is further provided with a second grounding point 25 , and the extending section 122 is further connected with a second connection. In the section 15, the second grounding section 15 is connected to the second grounding point 25.
  • the second grounding section 15 is a single-pole multi-throw switch structure, and the single-pole multi-throwing switch selectively opens and closes to adjust the resonant frequency of the low-frequency signal, and widens the operating frequency band of the low-frequency signal.
  • the second grounding segment 15 is a 3SPST switch structure, including a connecting end 151 connected to the extending portion 122.
  • the first switch 152 is connected to the connecting portion 151 at one end and the first device 153 at the other end.
  • the second switch 154 has one end connected to the connection end 151 and the other end connected to the second device 155.
  • the third switch 156 has one end connected to the connection segment 151 and the other end connected to the third device 157, the first device 153, the second device 155 and the The three devices 157 are respectively connected to the second ground point 25 to be grounded.
  • the first device 153, the second device 155, and the third device 157 can be inductors or capacitors.
  • FIG. 9 is substantially the same as the embodiment shown in FIG. 7 , except that the second gap 52 and the fourth gap 104 are opened on the second frame 52 of the two opposite long sides, so that the first The opposite ends of the segment 11 respectively correspond to the first gap 101 and the third gap 103, and the opposite ends of the third segment 13 respectively correspond to the second gap 102 and the fourth gap 104,
  • the first segment 11 and the third segment 13 constitute the parasitic antenna of the second segment 12.
  • the current flowing on the second segment 12 generates a coupling current on the first segment 11 and the third segment 13, thereby forming the first segment 11 and Electromagnetic wave radiation is also generated in the third segment 13, and the first segment 11 and the third segment 13 are not designed with a grounding structure. In this way, the radiation aperture can be increased, and the second segment 12 is generated at the middle and high frequencies to generate additional resonance to increase the bandwidth of the antenna. .
  • FIG. 10 in an embodiment, it is substantially the same as the embodiment shown in FIG. 9. The difference is that the motherboard 20 is further provided with a third grounding point 26, and the first segment 11 corresponds to the first One end of the triple gap 103 is connected to the third ground point 26.
  • the parasitic antenna formed in the first segment forms a complete current loop.
  • One end of the first segment 11 corresponding to the third gap 103 may be connected to the second connecting segment 111 and the third ground segment 112 in sequence to be grounded.
  • the extending direction of the second connecting segment 111 may be parallel to the second segment 12, so that the mobile terminal can be used. Spatial structure design.
  • FIG. 11 in an embodiment, it is basically the same as the embodiment shown in FIG. 10, except that the motherboard 10 is further provided with a fourth grounding point 27, and the first segment 11 corresponds to the first One end of a gap 101 is connected to the fourth ground point 27.
  • the parasitic antenna formed in the first segment is a loop antenna, forming a complete current loop.
  • the first segment 11 corresponds to one end of the first gap 101 and can be connected to the fourth ground segment 113 to be grounded.
  • the first grounding section 14, the third grounding section 112, and the fourth grounding section 113 may be configured as a spring structure.
  • the antenna device shown in FIG. 11 is simulated.
  • the first switch 152 of the second grounding segment 15 is closed.
  • the first device 153 is an inductance with an inductance value of 50 nH, and the first feeding portion 21 feeds Into the low intermediate frequency signal, the second feeding portion 22 feeds the high frequency signal, and the filtering matching network 30 adopts the structure shown in FIG. 2, which can be obtained that the low frequency resonance is the loop antenna 0.5 ⁇ , and the intermediate frequency resonance is the loop antenna 1.0 ⁇ .
  • the resonance generated by the loop antenna 1.5 ⁇ and the parasitic antenna of the first segment 11 is, in order, the resonance generated by the parasitic antenna, the resonance generated by the matching circuit, and the resonance of the loop antenna 2.0 ⁇ .
  • the worst antenna isolation is around 11 dB around 2.2 GHz, which can meet the needs of multi-frequency communication.
  • the low frequency -5 dB efficiency bandwidth can reach 70 MHz, and the intermediate frequency and high frequency -4 dB efficiency bandwidth cover almost the frequency band required by the medium and high frequency. Therefore, the antenna device of the present application can satisfy the multi-frequency. Communication needs.

Abstract

本申请涉及移动终端及天线装置,包括第一、第二馈入部、滤波匹配网路和辐射体,滤波匹配网路包括第一、第二、第三端口;第一馈入部电连接至第一端口,第二馈入部电连接至第二端口,辐射体电连接至第三端口;第一馈入部用于馈入低中频信号,第二馈入部用于馈入高频信号,低中频信号的最高频率值为2170MHz,高频信号的最低频率值为2300MHz,低中频信号和高频信号分别通过第一馈入部和第二馈入部输入滤波匹配网路,滤波匹配网路用于改善低中频信号和高频信号的隔离度。本申请能够保证高频信号最低频率值及低中频信号的最高频率值处的信号的稳定性,减少2300MHz信号的损耗。

Description

天线装置和移动终端 技术领域
本申请涉及通信技术领域,具体涉及一种天线装置和移动终端。
背景技术
随着科技的发展,移动终端(以手机为例)中的天线设计需要涵盖多个操作频段,简单来说可以分为低频700~960MHz,中频1710~2170MHz,及高频2300~2700MHz或更高的其他频段。从天线设计架构来说大概可以分为单一馈入分别涵盖低、中、高频频段,即将不同的频段制作在不同的天线内,此种设计占用移动终端内部大量空间,且天线之间需要设置隔离结构。
有人尝试将低频和中高频设计在同一个天线架构中,但是一直存在如下技术问题:对于中高频段而言,由于2170MHz和2300MHz频段很接近,天线后端的射频电路在使用分频电路进行中高频频率拆分时,由于电路器件本身的设计限制,器件在高频区段会带来高的器件损耗(大于3dB),因此对于高频性能会受到影响。
发明内容
为解决上述技术问题,本申请实施例提供一种天线装置,实现多频段的涵盖,同时保证中频信号和高频信号的稳定传输,且具有较好的隔离度、低损耗。
第一方面,本申请实施例提供一种天线装置,包括第一馈入部、第二馈入部、滤波匹配网路和辐射体,所述滤波匹配网路包括第一端口、第二端口和第三端口;所述第一馈入部电连接至所述第一端口,所述第二馈入部电连接至所述第二端口,所述辐射体电连接至所述第三端口,所述第一馈入部用于馈入低中频信号,所述第二馈入部用于馈入高频信号,所述低中频信号的最高频率值为2170MHz,所述高频信号的最低频率值为2300MHz,所述低中频信号和所述高频信号分别通过所述第一馈入部和所述第二馈入部输入所述滤波匹配网路,所述滤波匹配网路用于改善所述低中频信号和所述高频信号的隔离度。
现有技术中需要使用滤波器件对中频和高频信号进行分频,滤波器件通常设置在天线后端的射频电路中,滤波器件的作用对2300MHz信号造成非常大的损耗,导致高频信号的损耗,影响天线的性能。而本申请实施例通过第一馈入部和第二馈入部分别馈入低中频信号和高频信号,即通过分馈的方式在第一馈入部和第二馈入部处将低中频信号和高频信号拆开,而不需再在后端的射频电路中设置滤波器件对中频和高频信号进行分频,这样可以保证高频信号最低频率值及低中频信号的最高频率值处的信号的稳定性,可以减少2300MHz信号的损耗,从而提升高频信号的收益。并通过滤波匹配网路使得低中频信号和高频信号之间具有良好的隔离度。
一种实施例中,所述滤波匹配网路包括第一滤波电路和第二滤波电路,所述第一滤波电路电连接在所述第一端口和所述第三端口之间,所述第二滤波电路电连接在所述第二端口和所述第三端口之间,第一滤波电路用于通过所述低中频信号,并阻挡所述高频信号,所述第二滤波电路用于通过所述高频信号,并阻挡所述低中频信号。
设置第一滤波电路和第二滤波电路,实现对低中频信号和高频信号的选择和隔离,防止串扰的功能,使得低中频信号和高频信号具有良好的隔离度。
所述滤波匹配网路还包括第一匹配电路和第二匹配电路,所述第一匹配电路电连接在所述第一端口和所述第一滤波电路之间,用于对所述低中频信号进行阻抗匹配;所述第二匹配电路电连接在所述第二端口和所述第二滤波电路之间,用于对所述高频信号进行阻抗匹配。通过第一匹配电路和第二匹配电路分别对不同频段的信号进行阻抗匹配,使得天线产生足够的效率带宽来涵盖不同的操作频段。
其中,所述第一滤波电路包括第一电感、第二电感和第一电容,所述第一电感电连接在所述第一匹配电路远离所述第一端口一端和地之间,所述第二电感和所述第一电容依次串联且电连接在所述第一电感靠近所述第一匹配电路一端和地之间,所述第二电感远离所述第一电容一端电连接至所述第三端口。
第二电感和第一电容形成对高频信号的带阻滤波器,第一电感和第一电容形成对低中频信号的带通滤波器,使得第一滤波电路通过低中频信号而阻挡高频信号,滤波效果良好,而且,通过第一电感、第二电感和第一电容三个器件组成两个滤波器,结构简单。
其中,所述第二滤波电路包括第三电感、第四电感和第二电容,所述第三电感电连接在所述第二匹配电路远离所述第二端口一端和地之间,所述第四电感和所述第二电容并联,并且一端电连接至所述第三电感远离地的一端,另一端电连接至所述第三端口。
第四电感和第二电容形成对中频的带阻滤波器,第三电感形成对低频的带阻滤波器,使得第二滤波器通过高频信号而阻挡低中频信号。
其中,所述第一匹配电路包括第五电感、第六电感、第七电感、第三电容和第四电容,所述第五电感和所述第六电感串联在所述第二端口和地之间,所述第三电容连接在所述第六电感远离地的一端和地之间,所述第七电感和所述第四电容串联在所述第三电容远离地的一端和所述第一电感远离地的一端之间;所述第二匹配电路包括第五电容和第六电容,所述第五电容电连接在所述第二端口和地之间,所述第六电容连接在所述第五电容远离地的一端和所述第三电感远离地的一端之间。
透过第一匹配电路和第二匹配电路对第一馈入部和第二馈入部的射频信号进行阻抗匹配,可以让天线产生更好的带宽以涵盖所需的操作频段。
一种实施方式中,所述第一滤波电路包括第一电感和第二电感,所述第一电感和所述第二电感串联在所述第一匹配电路远离所述第一端口一端和地之间,所述第二电感远离地的一端与所述第三端口之间电连接。
通过第一电感和第二电感的设置,形成阻挡中高频,而通过低频信号的带阻滤波器,从而隔离低频和中高频信号,实现良好的隔离度。
其中,所述第二滤波电路包括第三电感和第一电容,所述第三电感电连接在所述第二匹配电路远离所述第二端口一端和地之间,所述第一电容电连接在所述第三电感远离地的一端和所述第三端口之间。
通过第三电感和第一电容的设置,形成阻挡低频,而通过中高频信号的带阻滤波器。
其中,所述第一匹配电路包括第四电感和第二电容,所述第四电感和所述第二电容依次串联在所述第一端口和地之间,所述第二电容远离地的一端电连接至所述第一电感远离 所述第二电感的一端;所述第二匹配电路包括第五电感和第三电容,所述第五电感和所述第三电容依次串联在所述第二端口和所述第三电感远离地的一端之间。
透过第一匹配电路和第二匹配电路对第一馈入部和第二馈入部的射频信号进行阻抗匹配,可以让天线产生更好的带宽以涵盖所需的操作频段。
其中,所述天线装置还包括第三馈入部和第四端口,所述滤波匹配电路还包括第三滤波电路和第三匹配电路,所述第三馈入部电连接至所述第四端口,所述第三匹配电路和所述第三滤波电路依次串联在所述第四端口和所述第三端口之间,所述第三馈入部用于馈入低频信号,所述低频信号与所述低中频信号不重叠,所述低频信号的最高频率值为960MHz,所述低中频信号的最低频率值为1700MHz。
通过将电磁波信号分为低频、低中频和高频信号馈入,设置第三滤波电路,可通过低频信号,并阻挡低中频和高频信号,结合第一滤波电路通过低中频信号,阻挡低频和高频信号,以及第二滤波电路通过高频信号,阻挡低频和低中频信号,可使辐射体上产生低中高频的多频信号辐射,且低频、低中频和高频之间具有良好的隔离度,设置第三匹配电路,结合第一匹配电路和第二匹配电路对不同频段的信号进行阻抗匹配,使得低、低中、高频信号均具有良好的带宽,满足无线通信的需要。
其中,所述天线装置还包括移动终端的主板和边框,所述移动终端包括各分别相对的两长边和两短边,所述边框包括所述短边的第一边框和所述长边的第二边框,所述辐射体设置于所述第一边框上,所述第一馈入部和所述第二馈入部设于所述主板上。
通过在移动终端上合理布置辐射体,即将辐射体设于第一边框上,可实现天线所需净空区域缩小的效果。
其中,所述第一边框上开设有第一间隙和第二间隙,以使所述第一边框被分割为第一段、第二段和第三段,所述第一段和所述第三段分别位于所述第二段的两侧,所述第一段和所述第三段分别向所述第二边框延伸,所述滤波匹配网路电连接至所述第二段,以使所述第二段构成所述辐射体。
通过将第一边框分隔为3段,并使用第二段作为辐射体,使得天线可构成单极天线或IFA天线。
其中,所述第二段还连接有第一接地段,所述主板上还设有第一接地点,所述第一接地段连接至所述第一接地点。通过设置第一接地端并接地,使得天线可构成完整的电流回路。
其中,所述第二段还连接有延伸段,所述延伸段一端连接至所述第二段远离所述第一接地段的一端,另一端连接至所述滤波匹配网路,所述延伸段、所述第二段和所述接地段构成环天线。通过将辐射体设置为环天线的结构,利用环天线辐射性能更好的特性,可进一步压缩需所净空区域的大小。
其中,所述主板上还设有第二接地点,所述延伸段还连接有第二接地段,所述第二接地段连接至所述第二接地点。
其中,所述第二接地段为单刀多掷开关结构,所述单刀多掷开关选择性的开闭以调节低频信号的谐振频率,拓宽低频信号的操作频段。
第二接地段为开关结构,通过开关的开闭调节低频信号的谐振频率,拓宽低频信号的 操作频段。
其中,两相对的长边的所述第二边框上开设有第三间隙和第四间隙,以使所述第一段相对的两端分别对应所述第一间隙和所述第三间隙,所述第三段相对的两端分别对应所述第二间隙和所述第四间隙,所述第一段和所述第三段构成所述第二段的寄生天线。
通过设置第一段和第三段形成第二段的寄生天线,第二段上流动的电流在第一段和第三段上产生耦合电流,从而在第一段和第三段上也产生电磁波辐射。
其中,所述主板上还设有第三接地点,所述第一段之对应所述第三间隙的一端连接至所述第三接地点。
通过设置第三接地点,将第一段接地,使得第一段形成的寄生天线形成完整的电流回路。
其中,所述主板上还设有第四接地点,所述第一段之对应所述第一间隙的一端连接至所述第四接地点。
通过设置第四接地点,将第一段的两端均接地,使得第一段形成的寄生天线为环天线,形成完整的电流回路。
第二方面,本申请实施例还提供一种移动终端,包括主板和第一方面中任一项所述的天线装置,所述主板用于为所述天线装置馈入电磁波信号。
附图说明
图1是本申请一种实施例的天线装置的结构示意图。
图2是本申请一种实施例的天线装置的电路结构示意图。
图3是本申请一种实施例的天线装置的电路结构示意图。
图4是本申请一种实施例的天线装置的结构示意图。
图5是本申请的天线装置的回波损耗(S11)测试结果示意图。
图6是本申请一种实施例的移动终端的结构示意图。
图7是本申请一种实施例的天线装置在移动终端上设置的结构示意图。
图8是图7的天线装置的回波损耗和天线效率仿真结果示意图。
图9是本申请一种实施例的天线装置在移动终端上设置的结构示意图。
图10是本申请一种实施例的天线装置在移动终端上设置的结构示意图。
图11是本申请一种实施例的天线装置在移动终端上设置的结构示意图。
图12是本申请一种实施例的第二接地段的开关结构示意图。
图13是本申请一种实施例的第二接地段的开关结构示意图。
图14是本申请一种实施例的返回损失(S21)仿真结果示意图。
图15是本申请一种实施例的天线效率仿真结果示意图。
具体实施例
本申请实施例提供一种移动终端,包括主板和本申请实施例所提供的天线装置,所述主板用于为所述天线装置馈入电磁波信号。该移动终端可为智能手机、平板计算机、笔记本计算机或智能手表等手持式/穿戴式设备,能实现多频的无线通信。
请参考图1,本申请实施例提供一种天线装置,包括第一馈入部21、第二馈入部22、滤波匹配网路30和辐射体10,所述滤波匹配网路30包括第一端口P1、第二端口P2、第三端口P3。所述第一馈入部21电连接至所述第一端口P1,所述第二馈入部22电连接至所述第二端口P2,所述辐射体10电连接至所述第三端口P3。所述第一馈入部21用于馈入低中频信号,所述第二馈入部22用于馈入高频信号,所述低中频信号的最高频率值为2170MHz,所述高频信号的最低频率值为2300MHz,例如,所述低中频信号的频段范围为低频段700MHz~960MHz(即2G通信频段),中频段1710MHz~2170MHz(即3G通信频段),所述高频信号的频段范围为2300MHz~2700MHz(即4G通信频段)。所述低中频信号和所述高频信号分别通过所述第一馈入部21和所述第二馈入部22输入所述滤波匹配网路30,所述滤波匹配网路30用于改善所述低中频信号和所述高频信号的隔离度。
现有技术中需要使用滤波器件对中频和高频信号进行分频,滤波器件通常设置在天线后端的射频电路中,滤波器件的作用对2300MHz信号造成非常大的损耗,导致高频信号的损耗,影响天线的性能。而本申请实施例通过第一馈入部21和第二馈入部22分别馈入低中频信号和高频信号,即通过分馈的方式在第一馈入部21和第二馈入部处22将低中频信号和高频信号拆开,而不需再在后端的射频电路中设置滤波器件对中频和高频信号进行分频,这样可以保证高频信号最低频率值及低中频信号的最高频率值处的信号的稳定性,可以减少2300MHz信号的损耗,从而提升高频信号的收益。并通过滤波匹配网路使得低中频信号和高频信号之间具有良好的隔离度。
为了使得滤波匹配网路30具有良好的隔离度,滤波匹配网路30需要对低中频信号和高频信号进行信号选择,具体而言,所述滤波匹配网路30包括第一滤波电路36和第二滤波电路37,所述第一滤波电路36电连接在所述第一端口P1和所述第三端口P3之间,所述第二滤波电路37电连接在所述第二端口P2和所述第三端口P3之间,第一滤波电路36用于通过所述低中频信号,并阻挡所述高频信号,所述第二滤波电路37用于通过所述高频信号,并阻挡所述低中频信号。
第一滤波电路36和第二滤波电路37内包括多个电子器件,将多个电子器件组合,经过合适的选型和布局,实现对低中频信号和高频信号的选择和隔离,防止串扰的功能,使得在第三端口P3处,低中频信号和高频信号具有良好的隔离度。
而为了获得覆盖足够操作频段的效率带宽,滤波匹配网路30还设置有阻抗匹配结构,具体而言,所述滤波匹配网路30还包括第一匹配电路31和第二匹配电路32,所述第一匹配电路31电连接在所述第一端口P1和所述第一滤波电路36之间,用于对所述低中频信号进行阻抗匹配;所述第二匹配电路32电连接在所述第二端口P2和所述第二滤波电路37之间,用于对所述高频信号进行阻抗匹配。所述第一匹配电路31和所述第二匹配电路32也可集成于所述第一滤波电路36和所述第二滤波电路37内。
第一匹配电路31和第二匹配电路32内包括多个电子器件,将多个电子器件组合,经过合适的选型和布局,实现对低中频信号和高频信号的阻抗匹配,使得天线产生足够的效率带宽来涵盖不同的操作频段。
本实施例的天线装置作为发射天线,第一馈入部21和第二馈入部22的输入阻抗可为非50ohm,通过滤波匹配网路30的滤波和阻抗匹配,可使第三端口P3的输出阻抗为50ohm, 可降低第一馈入部21和第二馈入部22的设计难度,拓宽了天线装置的适用范围。
本实施例的天线装置作为接收天线,辐射体10接收到的电磁波信号的输入阻抗也可为非50ohm,通过滤波匹配网路30的滤波和匹配,可使第一端口P1和第二端口P2的输出阻抗为50ohm,再将两路不同的电磁波信号传递至对应的信号处理器件(未图示),当然,信号处理器件也可设置为第一馈入部21和第二馈入部22,信号处理器件完成对信号的解调,实现天线对复杂电磁波信号接收的功能。
由上述说明可知,本实施例的天线装置设置的滤波匹配网路与传统的双工器是不同的,一般的双工器的输入端和两个输出端的阻抗都是50ohm,如天线接收到的信号的输入阻抗是非50ohm时,必须要在双工器和天线之间增设匹配电路,而本实施例中,辐射体10上接收到输入阻抗为非50ohm的信号时,可先通过滤波匹配网路30的第一滤波电路36和第二滤波电路37拆分为两路信号,在经过第一匹配电路31和第二匹配电路32的阻抗匹配,实现输出阻抗为50ohm的两路信号。
请参考图2,一种实施例中,所述第一滤波电路36包括第一电感351、第二电感352和第一电容353,所述第一电感351电连接在所述第一匹配电路31远离所述第一端口P1一端和地之间,所述第二电感352和所述第一电容353依次串联且电连接在所述第一电感351靠近所述第一匹配电路31一端和地之间,所述第二电感352远离所述第一电容353一端电连接至所述第三端口P3。所述第二滤波电路37包括第三电感354、第四电感355和第二电容356,所述第三电感354电连接在所述第二匹配电路32远离所述第二端口P2一端和地之间,所述第四电感355和所述第二电容356并联,并且一端电连接至所述第三电感354远离地的一端,另一端电连接至所述第三端口P3。
第二电感352和第一电容351形成对高频信号的带阻滤波器,第一电感351和第一电容353形成对低中频信号的带通滤波器,使得第一滤波电路36通过低中频信号而阻挡高频信号,信号选择效果良好,而且,通过第一电感351、第二电感352和第一电容353三个器件即可组成两个滤波器,结构简单。
第四电感355和第二电容356形成对中频的带阻滤波器,第三电感354形成对低频的带阻滤波器,使得第二滤波器37通过高频信号而阻挡低中频信号。
所述第一匹配电路31包括第五电感311、第六电感312、第七电感314、第三电容313和第四电容315,所述第五电感311和所述第六电感312串联在所述第二端口P2和地之间,所述第三电容313连接在所述第六电感312远离地的一端和地之间,所述第七电感314和所述第四电容315串联在所述第三电容313远离地的一端和所述第一电感351远离地的一端之间;所述第二匹配电路32包括第五电容321和第六电容322,所述第五电容321电连接在所述第二端口P2和地之间,所述第六电容322连接在所述第五电容321远离地的一端和所述第三电感354远离地的一端之间。透过第一匹配电路31和第二匹配电路32对第一馈入部21和第二馈入部22馈入的射频信号(即低中频信号和高频信号)进行阻抗匹配,可以让天线产生更好的效率带宽以涵盖所需的操作频段。
本实施例不限制上述各个器件的具体型号和参数,但为充分理解本申请的实施,下面给出一种具体的器件选型,但应理解,各个器件还可有其他选择。
结合图2中所示,第一电感351为3.2nH、第二电感352为5.6nH、第一电容353为0.6pF、 第三电感354为1.6nH、第四电感355为4.9nH、第二电容356为1.6pF、第五电感311为2.5nH、第六电感312为3.5nH、第三电容313为4pF、第七电感314为6nH、第四电容315为3pF、第五电容321为2pF、第六电容322为2.2pF。
通过上述设置,本实施例的天线装置能产生效率带宽为低中频信号的频段范围为低频段700MHz~960MHz(即2G通信频段),中频段1710MHz~2170MHz(即3G通信频段),所述高频信号的频段范围为2300MHz~2700MHz(即4G通信频段)的操作频段,实现多频性能,且具有良好的隔离度,并提升高频的收益。
请参考图3,另一种实施例中,所述第一滤波电路36包括第一电感351和第二电感352,所述第一电感351和所述第二电感352串联在所述第一匹配电路31远离所述第一端口P1一端和地之间,所述第二电感352远离地的一端与所述第三端口P3之间电连接。所述第二滤波电路37包括第三电感353和第一电容354,所述第三电感353电连接在所述第二匹配电路32远离所述第二端口P2一端和地之间,所述第一电容354电连接在所述第三电感353远离地的一端和所述第三端口P3之间。
通过第一电感351和第二电感352的设置,形成阻挡高频,而通过低中频信号的带阻滤波器,通过第三电感353和第一电容354的设置,形成阻挡低中频,而通过高频信号的带阻滤波器,从而对低中频信号和高频信号进行信号选择,实现良好的隔离度。
所述第一匹配电路31包括第四电感311和第二电容312,所述第四电感311和所述第二电容312依次串联在所述第一端口P1和地之间,所述第二电容312远离地的一端电连接至所述第一电感351远离所述第二电感352的一端;所述第二匹配电路32包括第五电感321和第三电容322,所述第五电感321和所述第三电容322依次串联在所述第二端口P2和所述第三电感353远离地的一端之间。透过第一匹配电路31和第二匹配电路32对第一馈入部21和第二馈入部22馈入的射频信号(即低频信号和中高频信号)进行阻抗匹配,可以让天线产生更好的效率带宽以涵盖所需的操作频段。
本实施例不限制上述各个器件的具体型号和参数,但为充分理解本申请的实施,下面给出一种具体的器件选型,但应理解,各个器件还可有其他选择。
结合图3中所示,第一电感351为12nH、第二电感352为16nH、第三电感353为4nH、第一电容354为1pF、第四电感311为16nH、第二电容312为2.7pF、第五电感321为3.8nH、第三电容322为0.6pF。
通过上述设置,本实施例的天线装置能产生效率带宽为低中频信号的频段范围为700MHz~960MHz,高频信号的频段范围为2300MHz~2700MHz的操作频段,实现多频性能,且具有良好的隔离度,并提升高频的收益。
请参考图4,一种实施例中,所述天线装置还包括第三馈入部23和第四端口P4,所述滤波匹配电路35还包括第三滤波电路38和第三匹配电路33,所述第三馈入部23电连接至所述第四端口P4,所述第三匹配电路33和所述第三滤波电路38依次串联在所述第四端口P4和所述第三端口P3之间,所述第三馈入部23用于馈入低频信号,所述低频信号与所述低中频信号不重叠,所述低频信号的最高频率值为960MHz,所述低中频信号的最低频率值为1700MHz。
本实施例中,低频信号的频率范围可以为700~960MHz,低中频信号的频率范围可以 为1700~2170MHz。通过将电磁波信号分为低频、低中频和高频信号馈入,设置第三滤波电路38,可通过低频信号,并阻挡低中频和高频信号,结合第一滤波电路36通过低中频信号,阻挡低频和高频信号,以及第二滤波电路37通过高频信号,阻挡低频和低中频信号,可使辐射体10上产生低中高频的多频信号辐射,且低频、低中频和高频之间具有良好的隔离度,设置第三匹配电路33,结合第一匹配电路31和第二匹配电路32对不同频段的信号进行阻抗匹配,使得低、低中、高频信号均具有良好的带宽,满足无线通信的需要。
上述各实施例中,辐射体10可采用环天线、单极天线、IFA(倒F形天线,inverted-Antenna)天线或槽天线,如图1示出了一种环天线,而图4示出了一种单极天线。
请参考图5,通过天线的回波损耗(S11)示意图可知,电磁波在辐射体10上可产生覆盖低频、中频和高频的谐振频率,使得本申请的天线装置能产生涵盖足够效率带宽的操作频率。
请参考图6和图7,一种实施例中,所述天线装置还包括移动终端的主板20和边框5,所述移动终端包括各分别相对的两长边和两短边,所述边框5包括所述短边的第一边框51和所述长边的第二边框52,所述辐射体10设置于所述第一边框51上,所述第一馈入部21和所述第二馈入部22设于所述主板20上。
边框5为金属材质,辐射体10可为第一边框51或与第一边框51连接的结构,边框5也可为非金属材质,辐射体10的金属结构贴在第一边框51上。
由前述描述可知,通过设置第一馈入部21、第二馈入部22及滤波匹配网路30,可使得天线具有多频辐射性能、较高的收益以及隔离度,在此基础上,通过在移动终端上合理布置辐射体10,即将辐射体10设于第一边框51上,可实现天线所需净空区域缩小的效果,请参考图7,第一边框51内侧与主板20的金属边缘(或屏幕组件的金属板边缘,两者取更靠近第一边框51的一个)之间的净空距离d可进一步缩小,实现净空距离d小于2mm,使得本实施例的天线可应用于窄边框的移动终端。
请继续参考图6和图7,一种实施例中,所述第一边框51上开设有第一间隙102和第二间隙103,以使所述第一边框51被分割为第一段11、第二段12和第三段13,所述第一段11和所述第三段13分别位于所述第二段12的两侧,所述第一段11和所述第三段13分别向所述第二边框52延伸,所述滤波匹配网路30电连接至所述第二段12,以使所述第二段12构成所述辐射体10。通过将第一边框51分隔为3段,并使用第二段12作为辐射体10,使得天线可构成单极天线或IFA天线。
请参考图7,一种实施例中,所述第二段12还连接有第一接地段14,所述主板20上还设有第一接地点24,所述第一接地段14连接至所述第一接地点24。通过设置第一接地段14并接地,使得天线可构成完整的电流回路。
请参考图7,一种实施例中,所述第二段12还连接有延伸段122,所述延伸段122一端连接至所述第二段12远离所述第一接地段14的一端,另一端连接至所述滤波匹配网路30,所述延伸段122、所述第二段12和所述接地段14构成环天线。通过将辐射体10设置为环天线的结构,利用环天线在小净空区域下相较其他类型天线会有更好的天线性能,可进一步压缩需所净空区域的大小,净空距离d可压缩至1.5mm左右,满足大屏占比移动终端,例如全面屏手机的通信需求。
环天线结构还可根据需要设置不同的具体结构,如图7所示的,第一馈入部21、第二馈入部22和第一接地点24均设置于第二段12的中点的法线A的左侧,定义馈入位置和接地位置均位于法线A左侧的为左馈结构,馈入位置和接地位置分别位于法线A两侧且对称设置的为中馈,馈入位置和接地位置均位于法线A右侧的为右馈结构。本申请的各个实施例均可采用左馈结构、中馈结构或右馈结构,优选的,采用左馈结构,可使得中高频信号具有较好的天线性能。为使延伸段122和第二段12之间具有一合适的距离,以提高辐射体10内的净空面积,可设置第一连接段121,第一连接段121连接在第二段12和延伸段122之间,延伸段122的延伸方向与第二段12的延伸方向平行,从而使得辐射体10形成延伸段122、第一连接段121、第二段12和第一接地段14依次连接的环形结构。
请参考图8,设置图7的辐射体10为左馈结构的环天线结构,第一馈入部21馈入的第一频段的信号为低频信号,第二馈入部22馈入的第二频段的信号为中高频信号,对天线装置进行模拟仿真,得到天线返回损失曲线(实线)和系统效率曲线(虚线),可以看到在低频、中频和高频部分均产生了谐振,且覆盖较宽的带宽,天线效率在谐振点位置(图中标号1、2、3、4处)处于较高水平,天线隔离度在谐振点位置附近都是很好的(小于20dB),从而可知本申请的天线的性能满足要求。
请参考图11,一种实施例中,与图7所示实施例基本相同,不同的是,所述主板20上还设有第二接地点25,所述延伸段122还连接有第二接地段15,所述第二接地段15连接至所述第二接地点25。
第二接地段15为单刀多掷开关结构,单刀多掷开关选择性的开闭调节低频信号的谐振频率,拓宽低频信号的操作频段。请参考图12,一种实施例中,第二接地段15为3SPST开关结构,包括与延伸段122连接的连接端151,第一开关152一端连接至连接段151,另一端连接第一器件153,第二开关154一端连接至连接端151,另一端连接第二器件155,第三开关156一端连接至连接段151,另一端连接第三器件157,第一器件153、第二器件155和第三器件157分别连接至第二接地点25而接地。第一器件153、第二器件155和第三器件157可为电感或电容。通过第一开关152、第二开关154和第三开关156的开闭,可以对低频信号进行调谐,使得低频信号的带宽更宽。
请参考图9,与图7所示实施例基本相同,不同的是,两相对的长边的所述第二边框52上开设有第三间隙103和第四间隙104,以使所述第一段11相对的两端分别对应所述第一间隙101和所述第三间隙103,所述第三段13相对的两端分别对应所述第二间隙102和所述第四间隙104,所述第一段11和所述第三段13构成所述第二段12的寄生天线。
通过设置第一段11和第三段13形成第二段12的寄生天线,第二段12上流动的电流在第一段11和第三段13上产生耦合电流,从而在第一段11和第三段13上也产生电磁波辐射,第一段11和第三段13没有设计接地结构,如此设置,可加大辐射口径,在中高频帮助第二段12产生额外的谐振来增加天线的带宽。
请参考图10,一种实施例中,与图9所示实施例基本相同,不同的是,所述主板20上还设有第三接地点26,所述第一段11之对应所述第三间隙103的一端连接至所述第三接地点26。
通过将第一段11对应第三间隙103一端接地,使得第一段形成的寄生天线形成完整的 电流回路。第一段11对应第三间隙103的一端可依次连接第二连接段111和第三接地段112而接地,第二连接段111的延伸方向可与第二段12平行,如此可利于移动终端内的空间结构设计。
请参考图11,一种实施例中,与图10所示实施例基本相同,不同的是,所述主板10上还设有第四接地点27,所述第一段11之对应所述第一间隙101的一端连接至所述第四接地点27。
通过将第一段11两端均接地,使得第一段形成的寄生天线为环天线,形成完整的电流回路。第一段11对应第一间隙101一端可连接第四接地段113而接地。
本申请中,第一接地段14、第三接地段112和第四接地段113均可设置为弹片结构。
请参考图14,对图11所示天线装置进行模拟仿真,结合图13,设置第二接地段15的第一开关152闭合,第一器件153为电感值50nH的电感,第一馈入部21馈入低中频信号,第二馈入部22馈入高频信号,滤波匹配网路30采用图2所示结构,可以得出:低频的谐振为环天线0.5λ,中频的谐振依次为环天线1.0λ、环天线1.5λ以及第一段11的寄生天线产生的谐振,高频的谐振依次为寄生天线产生的谐振、匹配电路产生的谐振和环天线2.0λ的谐振。在天线隔离度方面,在2.2GHz附近,最差的天线隔离度为11dB左右,可满足多频通信需要。参考图15,天线系统效率方面,低频的-5dB效率带宽可达70MHz,中频和高频的-4dB效率带宽几乎覆盖中高频所需的频段,由此可知,本申请的天线装置能满足多频通信需求。
以上对本申请实施例所提供的一种天线装置及移动终端进行了详细介绍,本文中应用了具体个例对本申请的原理及实施例进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施例及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种天线装置,其特征在于,包括:
    第一馈入部、第二馈入部、滤波匹配网路和辐射体,所述滤波匹配网路包括第一端口、第二端口和第三端口;
    所述第一馈入部电连接至所述第一端口,所述第二馈入部电连接至所述第二端口,所述辐射体电连接至所述第三端口;
    所述第一馈入部用于馈入低中频信号,所述第二馈入部用于馈入高频信号,所述低中频信号的最高频率值为2170MHz,所述高频信号的最低频率值为2300MHz,所述低中频信号和所述高频信号分别通过所述第一馈入部和所述第二馈入部输入所述滤波匹配网路,所述滤波匹配网路用于改善所述低中频信号和所述高频信号的隔离度。
  2. 如权利要求1所述的天线装置,其特征在于,所述滤波匹配网路包括第一滤波电路和第二滤波电路,所述第一滤波电路电连接在所述第一端口和所述第三端口之间,所述第二滤波电路电连接在所述第二端口和所述第三端口之间,第一滤波电路用于通过所述低中频信号,并阻挡所述高频信号,所述第二滤波电路用于通过所述高频信号,并阻挡所述低中频信号。
  3. 如权利要求2所述的天线装置,其特征在于,所述滤波匹配网路还包括第一匹配电路和第二匹配电路,所述第一匹配电路电连接在所述第一端口和所述第一滤波电路之间,用于对所述低中频信号进行阻抗匹配;所述第二匹配电路电连接在所述第二端口和所述第二滤波电路之间,用于对所述高频信号进行阻抗匹配。
  4. 如权利要求3所述的天线装置,其特征在于,所述第一滤波电路包括第一电感、第二电感和第一电容,所述第一电感电连接在所述第一匹配电路远离所述第一端口一端和地之间,所述第二电感和所述第一电容依次串联且电连接在所述第一电感靠近所述第一匹配电路一端和地之间,所述第二电感远离所述第一电容一端电连接至所述第三端口。
  5. 如权利要求4所述的天线装置,其特征在于,所述第二滤波电路包括第三电感、第四电感和第二电容,所述第三电感电连接在所述第二匹配电路远离所述第二端口一端和地之间,所述第四电感和所述第二电容并联,并且一端电连接至所述第三电感远离地的一端,另一端电连接至所述第三端口。
  6. 如权利要求5所述的天线装置,其特征在于,所述第一匹配电路包括第五电感、第六电感、第七电感、第三电容和第四电容,所述第五电感和所述第六电感串联在所述第二端口和地之间,所述第三电容连接在所述第六电感远离地的一端和地之间,所述第七电感和所述第四电容串联在所述第三电容远离地的一端和所述第一电感远离地的一端之间;所述第二匹配电路包括第五电容和第六电容,所述第五电容电连接在所述第二端口和地之间,所述第六电容连接在所述第五电容远离地的一端和所述第三电感远离地的一端之间。
  7. 如权利要求3所述的天线装置,其特征在于,所述第一滤波电路包括第一电感和第二电感,所述第一电感和所述第二电感串联在所述第一匹配电路远离所述第一端口一端和地之间,所述第二电感远离地的一端与所述第三端口之间电连接。
  8. 如权利要求7所述的天线装置,其特征在于,所述第二滤波电路包括第三电感和第 一电容,所述第三电感电连接在所述第二匹配电路远离所述第二端口一端和地之间,所述第一电容电连接在所述第三电感远离地的一端和所述第三端口之间。
  9. 如权利要求8所述的天线装置,其特征在于,所述第一匹配电路包括第四电感和第二电容,所述第四电感和所述第二电容依次串联在所述第一端口和地之间,所述第二电容远离地的一端电连接至所述第一电感远离所述第二电感的一端;所述第二匹配电路包括第五电感和第三电容,所述第五电感和所述第三电容依次串联在所述第二端口和所述第三电感远离地的一端之间。
  10. 如权利要求3所述的天线装置,其特征在于,所述天线装置还包括第三馈入部和第四端口,所述滤波匹配电路还包括第三滤波电路和第三匹配电路,所述第三馈入部电连接至所述第四端口,所述第三匹配电路和所述第三滤波电路依次串联在所述第四端口和所述第三端口之间,所述第三馈入部用于馈入低频信号,所述低频信号与所述低中频信号不重叠,所述低频信号的最高频率值为960MHz,所述低中频信号的最低频率值为1700MHz。
  11. 如权利要求1至10任一所述的天线装置,其特征在于,所述天线装置还包括移动终端的主板和边框,所述移动终端包括各分别相对的两长边和两短边,所述边框包括所述短边的第一边框和所述长边的第二边框,所述辐射体设置于所述第一边框上,所述第一馈入部和所述第二馈入部设于所述主板上。
  12. 如权利要求11所述的天线装置,其特征在于,所述第一边框上开设有第一间隙和第二间隙,以使所述第一边框被分割为第一段、第二段和第三段,所述第一段和所述第三段分别位于所述第二段的两侧,所述第一段和所述第三段分别向所述第二边框延伸,所述滤波匹配网路电连接至所述第二段,以使所述第二段构成所述辐射体。
  13. 如权利要求12所述的天线装置,其特征在于,所述第二段还连接有第一接地段,所述主板上还设有第一接地点,所述第一接地段连接至所述第一接地点。
  14. 如权利要求13所述的天线装置,其特征在于,所述第二段还连接有延伸段,所述延伸段一端连接至所述第二段远离所述第一接地段的一端,另一端连接至所述滤波匹配网路,所述延伸段、所述第二段和所述接地段构成环天线。
  15. 如权利要求14所述的天线装置,其特征在于,所述主板上还设有第二接地点,所述延伸段还连接有第二接地段,所述第二接地段连接至所述第二接地点。
  16. 如权利要求15所述的天线装置,其特征在于,所述第二接地段为单刀多掷开关结构,所述单刀多掷开关选择性的开闭以调节低频信号的谐振频率,拓宽低频信号的操作频段。
  17. 如权利要求12所述的天线装置,其特征在于,两相对的长边的所述第二边框上开设有第三间隙和第四间隙,以使所述第一段相对的两端分别对应所述第一间隙和所述第三间隙,所述第三段相对的两端分别对应所述第二间隙和所述第四间隙,所述第一段和所述第三段构成所述第二段的寄生天线。
  18. 如权利要求17所述的天线装置,其特征在于,所述主板上还设有第三接地点,所述第一段之对应所述第三间隙的一端连接至所述第三接地点。
  19. 如权利要求18所述的天线装置,其特征在于,所述主板上还设有第四接地点,所述第一段之对应所述第一间隙的一端连接至所述第四接地点。
  20. 一种移动终端,其特征在于,包括主板和如权利要求1至19任一项所述的天线装置,所述主板用于为所述天线装置馈入电磁波信号。
PCT/CN2018/086083 2018-05-08 2018-05-08 天线装置和移动终端 WO2019213851A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880057722.7A CN111052501B (zh) 2018-05-08 2018-05-08 天线装置和移动终端
EP18918061.5A EP3767742B1 (en) 2018-05-08 2018-05-08 Antenna device and mobile terminal
US17/053,678 US11688930B2 (en) 2018-05-08 2018-05-08 Antenna apparatus and mobile terminal
PCT/CN2018/086083 WO2019213851A1 (zh) 2018-05-08 2018-05-08 天线装置和移动终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086083 WO2019213851A1 (zh) 2018-05-08 2018-05-08 天线装置和移动终端

Publications (1)

Publication Number Publication Date
WO2019213851A1 true WO2019213851A1 (zh) 2019-11-14

Family

ID=68467701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086083 WO2019213851A1 (zh) 2018-05-08 2018-05-08 天线装置和移动终端

Country Status (4)

Country Link
US (1) US11688930B2 (zh)
EP (1) EP3767742B1 (zh)
CN (1) CN111052501B (zh)
WO (1) WO2019213851A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993568A (zh) * 2019-12-02 2021-06-18 北京小米移动软件有限公司 电子设备
CN113410622A (zh) * 2021-07-01 2021-09-17 深圳市锐尔觅移动通信有限公司 天线辐射体、天线装置及电子设备
CN114069227A (zh) * 2020-07-29 2022-02-18 成都鼎桥通信技术有限公司 多频段天线
CN115117599A (zh) * 2021-03-19 2022-09-27 北京小米移动软件有限公司 天线结构和电子设备
WO2024061280A1 (zh) * 2022-09-23 2024-03-28 维沃移动通信有限公司 天线模组和电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780270B1 (en) * 2018-05-15 2023-10-25 Huawei Technologies Co., Ltd. Antenna system and terminal device
EP3821499A4 (en) * 2018-07-13 2022-04-20 Fitbit, Inc. INTEGRATED ECG ELECTRODE AND ANTENNA RADIATOR
CN111883930B (zh) * 2020-07-29 2022-10-18 Oppo广东移动通信有限公司 一种多频天线及移动终端
CN215581117U (zh) * 2021-09-27 2022-01-18 深圳飞骧科技股份有限公司 天线双讯器电路及功率放大器发射模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270619A (ja) * 1996-04-02 1997-10-14 Yokowo Co Ltd デュープレクサ付きアンテナ装置
US20070241985A1 (en) * 2006-04-13 2007-10-18 Kabushiki Kaisha Toshiba Unbalanced power feeding antenna device for making radio communications
CN104218306A (zh) * 2013-06-03 2014-12-17 联想(北京)有限公司 天线装置和用于设置天线的方法
CN105789881A (zh) * 2014-12-25 2016-07-20 比亚迪股份有限公司 移动终端
CN105940550A (zh) * 2014-03-03 2016-09-14 苹果公司 具有共享天线结构和平衡-不平衡转换器的电子设备
WO2016162685A1 (en) * 2015-04-07 2016-10-13 Smart Antenna Technologies Ltd. Reconfigurable 4-port multi-band multi-function antenna with a grounded dipole antenna component

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0793289A1 (en) * 1996-02-27 1997-09-03 Hitachi Metals, Ltd. Multilayered frequency separator
WO1999041843A2 (en) * 1998-02-17 1999-08-19 Koninklijke Philips Electronics N.V. Transmitting/receiving station having impedance-matched receiving means for transponder answer signals
EP0959567A1 (en) * 1998-05-19 1999-11-24 Robert Bosch Gmbh Diplexer for mobile phone
US7049906B2 (en) * 2003-05-29 2006-05-23 Sony Ericsson Mobile Communications Ab Quad band antenna interface modules including matching network ports
TWI231106B (en) * 2003-12-10 2005-04-11 Kinpo Elect Inc Wireless transmitting/receiving circulator circuit
JP4242307B2 (ja) * 2004-02-26 2009-03-25 アルプス電気株式会社 ダイプレクサ
ATE434291T1 (de) * 2004-03-30 2009-07-15 Tdk Corp Diplexer- und anpass-schaltung
GB0426443D0 (en) * 2004-12-02 2005-01-05 Koninkl Philips Electronics Nv Distributed diplexer
US7606184B2 (en) * 2005-01-04 2009-10-20 Tdk Corporation Multiplexers employing bandpass-filter architectures
US7796957B2 (en) * 2005-03-10 2010-09-14 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Impedance transformation in a duplexer using a transmission line
US20070173210A1 (en) * 2006-01-26 2007-07-26 Lg Innotek Co., Ltd Signal processing apparatus
KR101404535B1 (ko) * 2006-07-03 2014-06-10 히타치 긴조쿠 가부시키가이샤 분기 회로, 고주파 회로 및 고주파 모듈
US7917096B2 (en) * 2007-03-30 2011-03-29 Sony Ericsson Mobile Communications Ab Antenna interface circuits including multiple impedance matching networks that are respectively associated with multiple frequency bands and electronic devices incorporating the same
US10033097B2 (en) * 2008-03-05 2018-07-24 Ethertronics, Inc. Integrated antenna beam steering system
US8175541B2 (en) * 2009-02-06 2012-05-08 Rfaxis, Inc. Radio frequency transceiver front end circuit
KR101572534B1 (ko) * 2009-06-18 2015-11-30 삼성전자주식회사 Rf 프론트 앤드 모듈 및 이를 이용한 멀티밴드 통신 모듈
US9054589B2 (en) * 2010-05-28 2015-06-09 Rockwell Automation Technologies, Inc. Method and apparatus for detecting power converter capacitor degradation using negative sequence currents
JP6000969B2 (ja) * 2010-12-10 2016-10-05 ペレグリン セミコンダクター コーポレイション 共振器回路及び共振器の調整のための方法、システム、及び装置
JP5429409B2 (ja) * 2011-01-20 2014-02-26 株式会社村田製作所 周波数安定化回路、アンテナ装置および通信端末装置
CN105553438B (zh) * 2011-05-09 2019-02-12 株式会社村田制作所 通信终端装置
US9306266B2 (en) 2012-09-21 2016-04-05 Aalto University Foundation Multi-band antenna for wireless communication
WO2015064138A1 (ja) * 2013-10-31 2015-05-07 株式会社村田製作所 インピーダンス変換回路および通信端末装置
KR102193434B1 (ko) 2013-12-26 2020-12-21 삼성전자주식회사 안테나 장치 및 이를 구비하는 무선 통신용 전자 장치
CN104752833A (zh) * 2013-12-31 2015-07-01 深圳富泰宏精密工业有限公司 天线组件及具有该天线组件的无线通信装置
CN104795636A (zh) * 2014-01-22 2015-07-22 联想(北京)有限公司 天线装置、电子设备和用于设置天线装置的方法
US10122081B2 (en) * 2014-03-13 2018-11-06 Google Technology Holdings LLC Hand grip sensor for external chassis antenna
US9819077B1 (en) * 2014-03-18 2017-11-14 Ethertronics, Inc. Multi-feed antenna optimized for non-50 Ohm operation
CN105745785B (zh) * 2014-07-31 2019-05-28 华为技术有限公司 移动终端
KR102226173B1 (ko) * 2014-09-02 2021-03-10 삼성전자주식회사 외부 금속 프레임을 이용한 안테나 및 이를 구비한 전자 장치
GB2529884B (en) * 2014-09-05 2017-09-13 Smart Antenna Tech Ltd Reconfigurable multi-band antenna with independent control
US10121718B2 (en) * 2014-11-03 2018-11-06 Qorvo Us, Inc. Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer
KR102264255B1 (ko) * 2014-12-10 2021-06-14 엘지이노텍 주식회사 Rf 모듈
US10622702B2 (en) * 2014-12-26 2020-04-14 Byd Company Limited Mobile terminal and antenna of mobile terminal
JP6168243B2 (ja) * 2015-03-25 2017-07-26 株式会社村田製作所 移相器、インピーダンス整合回路、合分波器および通信端末装置
WO2016194470A1 (ja) * 2015-06-01 2016-12-08 株式会社村田製作所 フロントエンド回路、アンテナ回路および通信装置
CN106299637B (zh) * 2015-06-24 2020-05-15 中兴通讯股份有限公司 天线及用户设备
KR102476765B1 (ko) * 2015-12-15 2022-12-13 삼성전자주식회사 안테나를 구비한 전자 장치
US10256527B2 (en) * 2016-01-11 2019-04-09 Lg Electronics Inc. Mobile terminal
KR102429230B1 (ko) * 2016-02-20 2022-08-05 삼성전자주식회사 안테나 장치 및 안테나 장치를 포함하는 전자 장치
CN105977614B (zh) * 2016-05-30 2020-02-07 北京小米移动软件有限公司 通信天线、通信天线的控制方法、装置及终端
US10218051B2 (en) * 2016-07-21 2019-02-26 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
US10511081B2 (en) * 2016-07-21 2019-12-17 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
US10944151B2 (en) * 2017-02-24 2021-03-09 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN107919523A (zh) 2017-10-31 2018-04-17 维沃移动通信有限公司 一种天线装置及移动终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270619A (ja) * 1996-04-02 1997-10-14 Yokowo Co Ltd デュープレクサ付きアンテナ装置
US20070241985A1 (en) * 2006-04-13 2007-10-18 Kabushiki Kaisha Toshiba Unbalanced power feeding antenna device for making radio communications
CN104218306A (zh) * 2013-06-03 2014-12-17 联想(北京)有限公司 天线装置和用于设置天线的方法
CN105940550A (zh) * 2014-03-03 2016-09-14 苹果公司 具有共享天线结构和平衡-不平衡转换器的电子设备
CN105789881A (zh) * 2014-12-25 2016-07-20 比亚迪股份有限公司 移动终端
WO2016162685A1 (en) * 2015-04-07 2016-10-13 Smart Antenna Technologies Ltd. Reconfigurable 4-port multi-band multi-function antenna with a grounded dipole antenna component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767742A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993568A (zh) * 2019-12-02 2021-06-18 北京小米移动软件有限公司 电子设备
CN112993568B (zh) * 2019-12-02 2022-08-26 北京小米移动软件有限公司 电子设备
CN114069227A (zh) * 2020-07-29 2022-02-18 成都鼎桥通信技术有限公司 多频段天线
CN114069227B (zh) * 2020-07-29 2024-02-13 成都鼎桥通信技术有限公司 多频段天线
CN115117599A (zh) * 2021-03-19 2022-09-27 北京小米移动软件有限公司 天线结构和电子设备
CN115117599B (zh) * 2021-03-19 2023-11-28 北京小米移动软件有限公司 天线结构和电子设备
CN113410622A (zh) * 2021-07-01 2021-09-17 深圳市锐尔觅移动通信有限公司 天线辐射体、天线装置及电子设备
WO2024061280A1 (zh) * 2022-09-23 2024-03-28 维沃移动通信有限公司 天线模组和电子设备

Also Published As

Publication number Publication date
US20210075089A1 (en) 2021-03-11
CN111052501A (zh) 2020-04-21
EP3767742A4 (en) 2021-01-27
US11688930B2 (en) 2023-06-27
CN111052501B (zh) 2021-10-22
EP3767742B1 (en) 2023-11-22
EP3767742A1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2019213851A1 (zh) 天线装置和移动终端
WO2020135046A1 (zh) 天线结构及通信终端
EP2092641B1 (en) An apparatus for enabling two elements to share a common feed
CN113013594B (zh) 天线组件和电子设备
JP5708897B2 (ja) アンテナ装置および電子機器
US6759991B2 (en) Antenna arrangement
EP3300170B1 (en) Antenna and user equipment
CN106941212B (zh) 天线装置及电子设备
WO2020024659A1 (zh) 天线系统及移动终端
US20230344152A1 (en) Antenna assembly and electronic device
EP3120413B1 (en) Tunable antenna systems, devices, and methods
CN104466361B (zh) 一种手机及其天线
WO2013175903A1 (ja) アンテナ装置及びmimo無線装置
WO2022247652A1 (zh) 一种终端天线及终端电子设备
WO2024045766A1 (zh) 一种天线组件及电子设备
EP3709441B1 (en) Multi-frequency antenna and mobile terminal
CN110911842A (zh) 一种具有共辐射体天线的终端
CN107078387A (zh) 一种多频天线及终端设备
EP2221914A1 (en) An antenna, an antenna system and a portable radio communication device comprising such an antenna system
CN209929482U (zh) 一种终端超宽带滤波天线装置
CN109273854B (zh) 电子设备
CN113497345A (zh) 天线结构和电子设备
CN113725574A (zh) 一种通信设备及滤波器
CN116073134A (zh) 一种宽度不对称的单槽缝隙天线及电子设备
CN114846696A (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018918061

Country of ref document: EP

Effective date: 20201015

NENP Non-entry into the national phase

Ref country code: DE