WO2019206055A1 - 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器 - Google Patents

一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器 Download PDF

Info

Publication number
WO2019206055A1
WO2019206055A1 PCT/CN2019/083582 CN2019083582W WO2019206055A1 WO 2019206055 A1 WO2019206055 A1 WO 2019206055A1 CN 2019083582 W CN2019083582 W CN 2019083582W WO 2019206055 A1 WO2019206055 A1 WO 2019206055A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping
piston
shock absorber
orifice
damper
Prior art date
Application number
PCT/CN2019/083582
Other languages
English (en)
French (fr)
Inventor
许伟
Original Assignee
Xu Wei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xu Wei filed Critical Xu Wei
Publication of WO2019206055A1 publication Critical patent/WO2019206055A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/06Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
    • F16F9/068Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid where the throttling of a gas flow provides damping action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3214Constructional features of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/36Special sealings, including sealings or guides for piston-rods
    • F16F9/368Sealings in pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/43Filling or drainage arrangements, e.g. for supply of gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/48Arrangements for providing different damping effects at different parts of the stroke
    • F16F9/486Arrangements for providing different damping effects at different parts of the stroke comprising a pin or stem co-operating with an aperture, e.g. a cylinder-mounted stem co-operating with a hollow piston rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity

Definitions

  • the present invention relates to a damper mechanism and a damper, and more particularly to a damper damper mechanism and a hydraulic-pneumatic combined damper damper using the same.
  • shock absorbers are widely used, and are commonly used in shock absorbing structures of motorcycles, tricycles, automobiles, and the like, and other fields that require shock absorption to reduce shock and vibration.
  • shock absorbers There are many types of shock absorbers, which can be roughly divided into spring type shock absorbers, spring-air damping type shock absorbers, hydraulic damping type shock absorbers, oil-gas combined front fork shock absorbers and nitrogen-filled hydraulic pressure. Shock absorbers, etc.
  • the existing spring type shock absorber can withstand large loads, but there is a self-oscillation phenomenon, which is easy to transmit low-frequency vibration and affects comfort; the existing spring-air damping type shock absorber is also less effective.
  • the oil-gas combined front fork shock absorber has excellent shock absorption effect and strong adaptability. It is one of the structures adopted by the world's advanced motorcycle technology in the world.
  • the nitrogen-filled hydraulic shock absorber utilizes the advantages of nitrogen damping. The weak point of the damping oil damping makes the damping effect better.
  • damping oil is required to achieve damping damping.
  • Most of the piston damping structures of such shock absorbers adopt a one-way valve damping structure, such as Chinese Patent No. ZL201310349666.3, and the authorization announcement date is December 28, 2016.
  • the invention name is: piston valve of shock absorber, the application
  • the present invention relates to a piston valve of a damper which can simultaneously exhibit a damping force variable effect and a pressure-based damping force variable effect in a frequency domain based on vibration or impact transmitted to the damper while the vehicle is running.
  • the valve body adopts a leaf valve structure, that is, the corresponding leaf valve is respectively opened during the pressing and rebounding of the shock absorber to realize the damping medium flow and realize the damping effect.
  • the existing damping damping mechanism generally has the impact feeling of the shock absorber under the moment of pressure, which is mainly caused by the fact that the hydraulic oil cannot flow quickly when the shock absorber is pressed down, resulting in a shock absorber.
  • the shock absorption comfort of the moment is greatly reduced; or, the shock absorber is pressed without momentary impact, causing the shock absorber to directly hit the bottom; or, the damping effect of the shock absorber is not obvious.
  • the object of the present invention is to overcome the deficiencies of the damping structure of the prior damper, such as strong under-pressure impact and poor rebound damping effect, and provide a damper damping mechanism and a hydraulic-pressure combined damping damper using the same.
  • part of the damping medium in the instant of the shock absorber pressing, part of the damping medium generates the downward pressure damping from the small hole to the large hole, and the partial damping medium flows from the gap between the damping piston and the handle tube, effectively solving the problem.
  • the damping medium can not flow quickly at the moment of pressing, the impact of the impact is generated; during the rebound of the shock absorber, the damping medium flows from the large hole to the small hole, so that the pressure inside the piston sealing ring increases, which causes the piston sealing ring to The external expansion seals the gap between the damping piston and the stem tube, and after the cavity pressure inside the piston sealing ring is reduced, the piston sealing ring is retracted and restored, thereby improving the rebound damping effect, especially in an environment where the road conditions are continuously bumpy.
  • the shock absorber has a long moving stroke and requires a higher frequency reciprocating motion, and the damping damping effect is more prominent.
  • a serrated notch is provided on the end surface of the piston sealing ring near the rod cavity, and part of the damping is also performed during the pressing of the shock absorber.
  • the medium flows into the serrated notch from the outer side groove of the piston ring, and then flows out from the large hole, which ensures the rapid flow of the damping medium when the shock absorber is pressed down, further reducing the impact resistance of the shock absorber under the moment of pressing.
  • the hydraulic-pneumatic combined damping damper has a sealed air pressure chamber formed by the sealing and sealing between the stem tube and the sleeve, which prevents the shock absorber from pressing down the bottom, and realizes the hydraulic-pneumatic combination shock absorption effect.
  • a shock absorber damping mechanism of the present invention comprises a handle tube, a piston rod and a damping piston disposed on the piston rod, wherein the damping piston is located in the handle tube, and the handle tube is divided into a rodless chamber and a rod chamber.
  • the damping piston and the handle tube are matched to each other such that a gap for the flow of the damping medium is left between the outer side wall of the damping piston and the inner side wall of the handle tube;
  • the damping piston comprises a piston ring and a piston sealing ring, the piston
  • the sealing ring is installed in the sealing ring mounting cavity of the piston ring, and the inner diameter of the piston sealing ring is larger than the inner diameter of the sealing ring mounting cavity, so that a cavity is formed between the piston sealing ring and the sealing ring mounting cavity, and the piston sealing ring can Expanding and retracting radially along the radial direction of the damping medium in the cavity;
  • the piston ring is provided with a first damping hole connecting the rodless cavity and the cavity, and the connecting rod cavity and the cavity
  • the second damping hole has a smaller aperture than the aperture of the second damping hole.
  • a groove corresponding to the sealing ring mounting cavity is further disposed on the outer side wall of the piston ring adjacent to the rodless cavity side, and the piston sealing ring is provided with a serrated notch on a side end surface adjacent to the rod cavity.
  • first damping hole and the second damping hole have an opening direction toward an inner wall of the handle tube.
  • the damping piston is mounted on one end of the piston rod through two upper and lower pressure rings, and the upper and lower pressure rings respectively cover part of the openings of the first damping hole and the second damping hole to change the first damping.
  • the opening direction of the hole and the second orifice is such that the damping medium in the first orifice and the second orifice flows in the direction of the inner wall of the stem tube.
  • the positions of the first orifice and the second orifice are offset from each other.
  • cross-sectional shape of the piston seal is rectangular.
  • a hydraulic-pneumatic combined damping damper using the damper damping mechanism of the present invention comprising a sleeve, a stem tube, a piston rod and a damping piston disposed on the piston rod, wherein the handle tube is disposed on the sleeve
  • the inside of the tube, and the guide tube and the sleeve are sealingly matched to form a sealed air pressure chamber, and one end of the piston rod passing through the handle tube is fixed to the bottom of the sleeve by a lifting bolt, and the rodless cavity of the handle tube
  • the end of the piston rod connected to the bottom of the sleeve is further provided with a composite gasket, which is made of a composite elastic material on the outer side of the metal gasket, and the inner wall of the composite gasket is tight
  • a composite gasket which is made of a composite elastic material on the outer side of the metal gasket, and the inner wall of the composite gasket is tight
  • the rod wall of the piston rod is attached, the outer side of the composite gasket is closely attached to the inner wall of the sleeve, and the end surface of the elastic material on the side of the composite gasket near the air pressure chamber has a boss which is in close contact with the piston rod wall and the inner wall of the sleeve.
  • the sleeve is further provided with an air reservoir connected to the air pressure chamber, and a gas pressure damping adjustment rod is further disposed on the connecting passage of the air reservoir and the air pressure chamber.
  • the air reservoir is further connected with an air pump, the air pump is connected to the motor, the motor is electrically connected to the control system, and the control system and the pressure sensor for detecting the pressure in the air pressure chamber
  • the electrical connection is used to control the motor to perform a corresponding action according to the pressure signal detected by the pressure sensor, thereby adjusting the air pressure in the air reservoir.
  • a damper damping mechanism of the present invention and a hydraulic-pneumatic combined damper damper using the same wherein a damping piston and a shank tube are clearance-fitted to leave an outer side wall of the damper piston and an inner side wall of the shank tube There is a gap for the flow of the damping medium, a cavity is formed between the piston sealing ring and the sealing ring mounting cavity, and the piston sealing ring can expand and retract in the radial direction under the pressure of the damping medium in the cavity; In the instant of pressing down, part of the damping medium generates downward pressure damping from the small hole to the large hole, and part of the damping medium flows from the gap between the damping piston and the handle tube, which effectively solves the problem that the damping medium cannot flow quickly under the moment of pressing.
  • a hydraulic-pneumatic combined damping damper wherein the guide tube and the sleeve are guided and sealed to form a sealed air chamber, and the gas in the sleeve is compressed to effectively prevent the shock absorber from colliding under the bottom.
  • the hydraulic-pneumatic combination shock absorption effect is realized; and the end of the piston rod connected to the bottom of the sleeve also has a composite sealing gasket for sealing the air pressure chamber, thereby ensuring the sealing performance of the air pressure chamber;
  • a hydraulic-pneumatic combined damping damper wherein the casing is further provided with an air storage cylinder connected to the air pressure chamber, and a gas pressure damping adjusting rod is further disposed on the connecting passage of the air storage cylinder and the air pressure chamber.
  • the air pressure damping adjustment function of the air pressure chamber is realized, which satisfies the use requirements of different shock absorption effects;
  • a hydraulic-pneumatic combined damping damper wherein an air pump is connected to the air reservoir, the air pump is connected to the motor, the motor is electrically connected to the control system, and the control system is used for detecting the pressure in the air pressure chamber.
  • the pressure sensor is electrically connected, and is used for controlling the motor to perform corresponding actions according to the pressure signal detected by the pressure sensor, thereby adjusting the air pressure in the air reservoir; and automatically controlling the air pressure chamber by using the sensor and the control system to realize automatic adjustment of the air pressure damping.
  • Figure 1 is a schematic structural view of a damper damping mechanism of the present invention (down state);
  • FIG. 2 is a schematic structural view (rebound state) of a damper damping mechanism of the present invention
  • Figure 3 is a schematic structural view of a damping piston in the present invention.
  • Figure 4 is a schematic structural view of a piston ring in the present invention.
  • Figure 5 is a schematic structural view of a piston seal ring in the present invention.
  • Figure 6 is a schematic view showing the structure of a hydraulic-pneumatic combined damping damper according to the present invention.
  • a damper damping mechanism of the present embodiment includes a handle tube 1 , a piston rod 2 and a damping piston 3 disposed on the piston rod 2 .
  • the damping piston 3 is located in the handle tube 1 .
  • the handle tube 1 is divided into a rodless chamber and a rod chamber, and the damping piston 3 is in clearance fit with the handle tube 1 such that a gap 4 for the flow of the damping medium is left between the outer side wall of the damping piston 3 and the inner side wall of the handle tube 1
  • a gap 4 for the flow of the damping medium is left between the outer side wall of the damping piston 3 and the inner side wall of the handle tube 1
  • the damping piston 3 includes a piston ring 3-1 and a piston sealing ring 3-2.
  • the piston sealing ring 3-2 is installed in the sealing ring mounting cavity of the piston ring 3-1, and the inner diameter of the piston sealing ring 3-2 is larger than the sealing ring mounting.
  • the inner diameter of the cavity forms a cavity 3-1-1 between the piston sealing ring 3-2 and the sealing ring mounting cavity, and the piston sealing ring 3-2 can be under the pressure of the damping medium in the cavity 3-1-1.
  • Expanding and retracting along the radial direction thereof; the piston ring 3-1 is provided with a first orifice 31-2 connecting the rodless chamber and the cavity 3-1-1, and a rod cavity and the cavity
  • the second damping hole 3-1-3 of 3-1-1, the aperture of the first damping hole 3-1-2 is smaller than the aperture of the second damping hole 3-1-3.
  • a shock absorber damping mechanism of this embodiment has the following specific working process:
  • a part of the damping medium in the rodless chamber flows from the first orifice 03-1 through the cavity 3-1-1 to the second orifice 3-1. -3, forming a damping effect from the small hole to the large hole, and at the same time, due to the gap 4 between the damping piston 3 and the handle tube 1, a part of the damping medium in the rodless cavity flows from the gap 4 to the rod cavity, and is pressed down At the moment, the damping medium can flow quickly, which effectively solves the problem that the damping medium cannot be quickly flowed at the moment of pressing down.
  • the outer side wall of the piston ring 3-1 near the rodless cavity side is further provided with a groove 3-1-4 which communicates with the sealing ring mounting cavity.
  • the end face of the piston seal 3-2 near the rod cavity is provided with a serrated notch 3-2-1 (as shown in Figures 3 and 5), thus During the pressing of the tube 1, the partial gap between the damping piston 3 and the stem tube 1 is increased by the groove 3-1-4, so that the damping medium flowing in from the position of the groove 3-1-4 passes through the sawtooth notch 3-2. -1 flows into the cavity 3-1-1, and flows from the second orifice 03-1 to the rod cavity.
  • the damping medium in the rod cavity flows into the cavity 3-1-1 from the second orifice 03-1, and passes through the cavity 3-1.
  • -1 flows into the rodless chamber after flowing into the first orifice 31-2, and the pressure in the cavity 3-1-1 is forced to increase due to the damping medium flowing from the large hole to the small hole.
  • the damping medium compresses the piston sealing ring 3-2 to expand outward along the radial direction thereof, and the piston sealing ring 3-2 is in close contact with the inner wall of the handle tube 1, and there is a gap 4 between the blocking damping piston 3 and the handle tube 1 so that there is The damping medium in the rod cavity can only flow through the damping hole to the rodless cavity.
  • the piston sealing ring 3-2 When the damping medium pressure in the cavity 3-1-1 is reduced, the piston sealing ring 3-2 is retracted and restored, and the rebound damping of the shock absorber is improved. effect. Since the piston sealing ring 3-2 is expanded and retracted by the damping medium pressure in the cavity 3-1-1, when the damper has a long moving stroke and requires a higher frequency reciprocating motion, The elastic damping effect is more prominent, especially in the continuous bumpy environment of the road, which can exert its rebound damping effect.
  • the opening direction of the first damping hole 3-1-2 and the second damping hole 3-1-3 is directed toward the inner wall of the handle tube 1, during the pressing and rebounding of the shock absorber,
  • the damping medium in a damping hole 3-1-2 and the second damping hole 3-1-3 can spray the flow toward the inner wall of the handle tube 1 to generate an injection damping effect, which further improves the damping effect of the shock absorber.
  • the above-mentioned damping piston 3 is mounted on one end of the piston rod 2 through the upper and lower pressure rings 5, and the upper and lower pressure rings 5 respectively cover the first damping hole 3-1-2.
  • the positions of the first damping hole 3-1-2 and the second damping hole 3-1-3 are preferably shifted from each other, which increases the resistance of the damping medium flowing in the damping hole.
  • the buffer damping effect generated by the orifice is improved.
  • the number of the first damping holes 3-1-2 is smaller than the number of the second damping holes 3-1-3.
  • two first damping holes 3-1-2 are provided in FIG. Damping hole 3-1-3.
  • the cross-sectional shape of the piston seal ring 3-2 is preferably rectangular, and it is better to expand outward under pressure, and the use effect is better.
  • the present embodiment discloses a hydraulic-pneumatic combined damping damper that uses the damper damping mechanism described in Embodiment 1 above, which includes a sleeve 8 , a stem tube 1 , a piston rod 2 , and The specific structure of the damper piston 3, the shank tube 1 and the damper piston 3 disposed on the piston rod 2 is the same as that of the first embodiment.
  • the shank tube 1 is disposed in the sleeve 8, and the guide tube 1 and the sleeve 8 are guided and sealed.
  • a guiding seal assembly 9 is provided at the opening position of the sleeve 8 to ensure the air pressure chamber is sealed; one end of the piston rod 2 passing through the handle tube 1 is fixed to the bottom of the sleeve 8 by the lifting bolt 11, the piston The rod 2 and the end of the handle tube 1 are also matched by the guide seal; the rodless chamber of the handle tube 1 is provided with a damping spring 6, and the damping spring 6 is used to provide a partial resilience of the handle tube 1 to cause the shock absorber to rebound; A buffer spring 7 is provided in the rod cavity of the tube 1, and the buffer spring 7 is a short spring for preventing the damping piston 3 from directly colliding with the bottom of the handle tube 1.
  • the buffer spring 7 is in a free state for most of the time, only the shock absorber In the case of a large rebound, it will be compressed and buffered;
  • oil or oil mixture within the handle tube 1 as the damper oil
  • oil height greater than the maximum movement stroke of the damping piston 3 within the handle tube 1 is preferably, full hydraulic damping mechanism damping effect.
  • the end of the piston rod 2 connected to the bottom of the sleeve 8 is further provided with a composite gasket 10, which is made of a metal gasket.
  • the inner composite wall of the composite gasket 10 is closely attached to the rod wall of the piston rod 2, the outer side of the composite gasket 10 is closely attached to the inner wall of the sleeve 8, and the elastic of the composite gasket 10 is close to the side of the air chamber.
  • the end face of the material further has a boss which is in close contact with the rod wall of the piston rod 2 and the inner wall of the sleeve 8, so that the pressure in the air pressure chamber presses the elastic boss of the composite gasket 10 outward, thereby improving the composite gasket 10
  • the sealing performance ensures that there is no air leakage in the air pressure chamber.
  • the casing 8 of the present embodiment is further provided with an air reservoir 13 that communicates with the air pressure chamber, and a gas pressure damping adjustment rod 12 is further disposed on the connecting passage of the air reservoir 13 and the air pressure chamber.
  • the air reservoir 13 can automatically replenish a part of the gas leaked in the shock absorber.
  • the gas in the air reservoir 13 can enter the air pressure chamber to realize automatic inflation of the air pressure chamber.
  • the air pressure damping between the air reservoir 13 and the air pressure chamber can be adjusted by the air pressure damping adjustment rod 12, which greatly improves the overall shock absorption effect of the shock absorber, and satisfies the use requirements of different shock absorption effects.
  • an air pump 14 is further connected to the air reservoir 13, and the air pump 14 is connected to the motor 15.
  • the air pump 14 and the motor 15 can be integrated, and the motor 15 is electrically connected to the control system 16, and the control system 16
  • the pressure sensor 17 for detecting the pressure in the air pressure chamber is electrically connected to control the motor 15 to perform a corresponding action according to the pressure signal detected by the pressure sensor 17, and the motor 15 drives the air pump 14 to operate, thereby adjusting the air pressure in the air reservoir 13,
  • the sensor and control system 16 is used to control the automatic filling of the air pressure chamber, and the automatic adjustment of the air pressure damping is realized, which is especially suitable for automobile use.
  • damping mechanism of the invention and the hydraulic-pneumatic combined damping damper using the same, the damping piston and the handle tube are matched with each other, so that the damping between the outer side wall of the damping piston and the inner side wall of the shank tube is provided for damping a gap between the flow of the medium, a cavity formed between the piston seal ring and the seal ring mounting cavity, and the piston seal ring can expand and retract radially along the radial pressure of the damping medium in the cavity;
  • part of the damping medium is damped by the small hole flowing to the large hole, and part of the damping medium flows from the gap between the damping piston and the handle tube, and part of the damping medium flows into the sawtooth notch from the outer side groove of the piston ring.
  • the hydraulic-pneumatic combined damping damper has a sealed air-tight cavity formed between the stem tube and the sleeve to prevent the shock absorber from colliding with the bottom, thereby realizing the hydraulic-pneumatic combination shock absorption effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器,在下压瞬间中,部分阻尼介质由小孔(3-1-2)流向大孔(3-1-3)产生下压阻尼,部分阻尼介质由阻尼活塞(3)与柄管(1)之间的间隙流动,部分阻尼介质由活塞环(3-1)的外侧壁凹槽(3-1-4)经锯齿缺口(3-2-1)流入大孔(3-1-3),有效解决了减震器下压瞬间产生冲击感问题;在回弹过程中,活塞密封圈(3-2)向外膨胀封堵阻尼活塞(3)与柄管(1)之间的间隙,提高了回弹阻尼效果,尤其在路况连续颠簸的环境中,减震器运动行程又长,又需要更高频率的往复运动,阻尼效果越加突出;液压-气压组合阻尼减震器,其柄管(1)与套管(8)之间导向密封配合形成密封的气压腔,防止了减震器下压碰底,实现了液压-气压组合减震效果。

Description

一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器 技术领域
本发明涉及一种阻尼机构及减震器,更具体地说,涉及一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器。
背景技术
目前,减震器的使用非常广泛,普遍用于摩托车、三轮车、汽车等车辆的减震结构中,以及其他需要用到减震的领域中,起到降低冲击和震动的作用。减震器的种类也较多,大致可分为弹簧式减震器、弹簧-空气阻尼式减震器、液力阻尼式减震器、油-气组合式前叉减震器和充氮气液压减震器等。现有的弹簧式减震器可以承受较大的载荷,但存在自振现象,容易传递低频振动,影响舒适性;现有的弹簧-空气阻尼式减震器的减震效果也不太理想,原因在于空气的阻尼力有限,一般只用于速度不高的轻便摩托车作后减震器;液力阻尼式减震器为目前摩托车使用最为普遍的减震器,减震效果较好;油-气组合式前叉减震器的减震效果优异,适应性强,是当今世界摩托车技术先进国家竞技型车采用的结构之一;充氮气液压减震器,利用氮气阻尼的优点弥补了减震油阻尼的弱点,使减震效果更好。
对于液力阻尼式减震器、油-气组合式前叉减震器和充氮气液压减震器都需要用到减震油实现阻尼减震作用。此类减震器的活塞阻尼结构大多采用单向阀阻尼结构,如中国专利号ZL201310349666.3,授权公告日为2016年12月28日,发明创造名称为:减震器的活塞阀,该申请案涉及一种减震器的活塞阀,其在车辆行驶时能够同时体现基于向减震器传达的振动或冲击的频域的阻尼力可变效果和基于压力的阻尼力可变效果。其阀体采用了叶片阀结构,即在减震器下压和回弹过程中分别打开对应的叶片阀来实现阻尼介质流动,实现阻尼效果。但是,目前现有的阻尼减震机构普遍存在减震器下压瞬间的冲击感,这种现象主要是因为在减震器下压瞬间,液压油无法快速流动而造成的,导致减震器下压瞬间的减震舒适性大打折扣;或者,减震器下压瞬间无冲击感,导致减震器直接碰底;或者,减震器回弹阻尼效果不明显。基于该问题,有必要对现有的阻尼减震机构进行进一步改进,以克服减震器下压冲击感强,下压碰底和回弹阻尼效果差的问题。
技术问题
本发明的目的在于克服现有减震器的阻尼结构存在下压冲击感强、回弹阻尼效果欠佳等不足,提供一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器,采用本发明的技术方案,在减震器下压瞬间中,部分阻尼介质由小孔流向大孔产生下压阻尼,同时部分阻尼介质由阻尼活塞与柄管之间的间隙流动,有效解决了因阻尼介质在下压瞬间无法快速流动而产生冲击感的问题;在减震器回弹过程中,阻尼介质由大孔流向小孔,使得活塞密封圈内侧空腔压力增大而促使活塞密封圈向外膨胀封堵阻尼活塞与柄管之间的间隙,并在活塞密封圈内侧空腔压力减小后,活塞密封圈回缩复原,提高了回弹阻尼效果,尤其在路况连续颠簸的环境中,减震器运动行程又长,又需要更高频率的往复运动,阻尼减震效果越加突出。另外,由于活塞环靠近无杆腔一侧的外侧壁上设有凹槽,活塞密封圈靠近有杆腔的一侧端面上设有锯齿缺口,在减震器下压过程中,还有部分阻尼介质由活塞环的外侧壁凹槽流入锯齿缺口内,进而由大孔流出,保证了减震器下压瞬间阻尼介质快速流动,进一步降低了减震器下压瞬间的冲击阻力。并且,液压-气压组合阻尼减震器,其柄管与套管之间导向密封配合形成密封的气压腔,防止了减震器下压碰底,实现了液压-气压组合减震效果。
技术解决方案
本发明的一种减震器阻尼机构,包括柄管、活塞杆和设于活塞杆上的阻尼活塞,所述的阻尼活塞位于柄管内,将柄管分为无杆腔和有杆腔,所述的阻尼活塞与柄管间隙配合,使阻尼活塞的外侧壁与柄管的内侧壁之间留有供阻尼介质流动的间隙;所述的阻尼活塞包括活塞环和活塞密封圈,所述的活塞密封圈安装于活塞环的密封圈安装腔内,且活塞密封圈的内径大于密封圈安装腔的内径,使活塞密封圈与密封圈安装腔之间形成有空腔,所述的活塞密封圈能够在空腔内阻尼介质的压力作用下沿其径向膨胀和回缩;所述的活塞环上设有连通无杆腔和上述空腔的第一阻尼孔、以及连通有杆腔和上述空腔的第二阻尼孔,所述的第一阻尼孔的孔径小于第二阻尼孔的孔径。
更进一步地,所述的活塞环靠近无杆腔一侧的外侧壁上还设有连通密封圈安装腔的凹槽,所述的活塞密封圈靠近有杆腔的一侧端面上设有锯齿缺口。
更进一步地,所述的第一阻尼孔和第二阻尼孔的开口方向朝向柄管的内壁。
更进一步地,所述的阻尼活塞通过上下两个压圈安装于活塞杆的一端端部,且上下两个压圈分别盖住第一阻尼孔和第二阻尼孔的部分开口来改变第一阻尼孔和第二阻尼孔的开口方向,以使第一阻尼孔和第二阻尼孔中的阻尼介质向柄管的内壁方向流动。
更进一步地,所述的第一阻尼孔和第二阻尼孔的位置相互错开。
更进一步地,所述的活塞密封圈的截面形状为矩形。
本发明的一种应用上述的减震器阻尼机构的液压-气压组合阻尼减震器,包括套管、柄管、活塞杆和设于活塞杆上的阻尼活塞,所述的柄管设于套管内,且柄管与套管之间导向密封配合形成密封的气压腔,所述的活塞杆穿出柄管的一端通过吊紧螺栓固定于套管的底部,所述的柄管的无杆腔内设有阻尼弹簧,柄管的有杆腔内设有缓冲弹簧,且柄管内充满减震油或油气混合物。
更进一步地,所述的活塞杆与套管底部相连接的一端还设有复合密封垫,该复合密封垫由金属垫片外侧复合弹性材料制成,所述的复合密封垫的内孔壁紧贴活塞杆的杆壁,复合密封垫的外侧紧贴套管的内壁,且复合密封垫靠近气压腔一侧的弹性材料端面上还具有贴紧活塞杆杆壁和紧贴套管内壁的凸台。
更进一步地,所述的套管上还设有连通气压腔的储气筒,且在储气筒与气压腔的连接通路上还设有气压阻尼调节杆。
更进一步地,所述的储气筒上还连接有气泵,所述的气泵与电机相连接,所述的电机与控制系统电连接,所述的控制系统与用于检测气压腔内压力的压力传感器电连接,用于根据压力传感器检测得到的压力信号控制电机执行相应的动作,进而调节储气筒内的气压。
有益效果
(1)本发明的一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器,其阻尼活塞与柄管间隙配合,使阻尼活塞的外侧壁与柄管的内侧壁之间留有供阻尼介质流动的间隙,活塞密封圈与密封圈安装腔之间形成有空腔,且活塞密封圈能够在空腔内阻尼介质的压力作用下沿其径向膨胀和回缩;在减震器下压瞬间中,部分阻尼介质由小孔流向大孔产生下压阻尼,同时部分阻尼介质由阻尼活塞与柄管之间的间隙流动,有效解决了因阻尼介质在下压瞬间无法快速流动而产生冲击感的问题;在减震器回弹过程中,阻尼介质由大孔流向小孔,使得活塞密封圈内侧空腔压力增大而促使活塞密封圈向外膨胀封堵阻尼活塞与柄管之间的间隙,并在活塞密封圈内侧空腔压力减小后,活塞密封圈回缩复原,提高了回弹阻尼效果,尤其在路况连续颠簸的环境中,减震器运动行程又长,又需要更高频率的往复运动,阻尼减震效果越加突出;
(2)本发明的一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器,其活塞环靠近无杆腔一侧的外侧壁上设有连通密封圈安装腔的凹槽,活塞密封圈靠近有杆腔的一侧端面上设有锯齿缺口,在减震器下压过程中,还有部分阻尼介质由活塞环的外侧壁凹槽流入锯齿缺口内,进而由大孔流出,保证了减震器下压瞬间阻尼介质快速流动,进一步降低了减震器下压瞬间的冲击阻力,大幅提高了减震器的阻尼效果;
(3)本发明的一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器,其第一阻尼孔和第二阻尼孔的开口方向朝向柄管的内壁,在减震器下压和回弹过程中,第一阻尼孔和第二阻尼孔中的阻尼介质能够向柄管的内壁方向喷射流动,产生喷射阻尼作用,进一步提高了减震器的阻尼效果;
(4)本发明的一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器,其第一阻尼孔和第二阻尼孔的位置相互错开,增加了阻尼介质在阻尼孔中流动的阻力,提高了阻尼孔产生的缓冲阻尼效果;
(5)本发明的一种液压-气压组合阻尼减震器,其柄管与套管之间导向密封配合形成密封的气压腔,由于套管内的气体压缩,有效防止减震器下压碰底,实现了液压-气压组合减震效果;并且,活塞杆与套管底部相连接的一端还具有密封气压腔的复合密封垫,保证了气压腔的密封性能;
(6)本发明的一种液压-气压组合阻尼减震器,其套管上还设有连通气压腔的储气筒,且在储气筒与气压腔的连接通路上还设有气压阻尼调节杆,实现了气压腔的气压阻尼调节作用,满足了不同减震效果的使用要求;
(7)本发明的一种液压-气压组合阻尼减震器,其储气筒上还连接有气泵,气泵与电机相连接,电机与控制系统电连接,控制系统与用于检测气压腔内压力的压力传感器电连接,用于根据压力传感器检测得到的压力信号控制电机执行相应的动作,进而调节储气筒内的气压;利用传感器和控制系统控制气压腔自动补气,实现了气压阻尼的自动调节。
附图说明
图1为本发明的一种减震器阻尼机构的结构示意图(下压状态);
图2为本发明的一种减震器阻尼机构的结构示意图(回弹状态);
图3为本发明中的阻尼活塞的结构示意图;
图4为本发明中的活塞环的结构示意图;
图5为本发明中的活塞密封圈的结构示意图;
图6为本发明的一种液压-气压组合阻尼减震器的结构示意图。
示意图中的标号说明:
1、柄管;2、活塞杆;3、阻尼活塞;3-1、活塞环;3-1-1、空腔;3-1-2、第一阻尼孔;3- 1-3、第二阻尼孔;3-1-4、凹槽;3-2、活塞密封圈;3-2-1、锯齿缺口;4、间隙;5、压圈;6、阻尼 弹簧;7、缓冲弹簧;8、套管;9、导向密封组件;10、复合密封垫;11、吊紧螺栓;12、气压阻尼调 节杆;13、储气桶;14、气泵;15、电机;16、控制系统;17、压力传感器。
本发明的实施方式
实施例1
结合图1和图2所示,本实施例的一种减震器阻尼机构,包括柄管1、活塞杆2和设于活塞杆2上的阻尼活塞3,阻尼活塞3位于柄管1内,将柄管1分为无杆腔和有杆腔,阻尼活塞3与柄管1间隙配合,使阻尼活塞3的外侧壁与柄管1的内侧壁之间留有供阻尼介质流动的间隙4,在柄管1下压时,部分阻尼介质由阻尼孔流动而产生阻尼作用,同时部分阻尼介质由阻尼活塞3与柄管1之间的间隙4流动,有效解决了因阻尼介质在下压瞬间无法快速流动而产生冲击感的问题。阻尼活塞3包括活塞环3-1和活塞密封圈3-2,活塞密封圈3-2安装于活塞环3-1的密封圈安装腔内,且活塞密封圈3-2的内径大于密封圈安装腔的内径,使活塞密封圈3-2与密封圈安装腔之间形成有空腔3-1-1,活塞密封圈3-2能够在空腔3-1-1内阻尼介质的压力作用下沿其径向膨胀和回缩;活塞环3-1上设有连通无杆腔和上述空腔3-1-1的第一阻尼孔3-1-2、以及连通有杆腔和上述空腔3-1-1的第二阻尼孔3-1-3,第一阻尼孔3-1-2的孔径小于第二阻尼孔3-1-3的孔径。本实施例的一种减震器阻尼机构,其具体工作过程如下:
参见图1箭头示意所示,柄管1下压过程中,无杆腔内的阻尼介质一部分由第一阻尼孔3-1-2经过空腔3-1-1流向第二阻尼孔3-1-3,形成由小孔向大孔流动的阻尼作用,同时,由于阻尼活塞3与柄管1之间存在间隙4,一部分无杆腔内的阻尼介质由间隙4流向有杆腔流动,在下压的瞬间,即可有阻尼介质快速流动,有效解决了因阻尼介质在下压瞬间无法快速流动而产生冲击感的问题。为了进一步降低减震器下压瞬间的冲击阻力,在本实施例中,活塞环3-1靠近无杆腔一侧的外侧壁上还设有连通密封圈安装腔的凹槽3-1-4(如图3和图4所示),活塞密封圈3-2靠近有杆腔的一侧端面上设有锯齿缺口3-2-1(如图3和图5所示),这样,在柄管1下压过程中,通过凹槽3-1-4增加了阻尼活塞3与柄管1之间的局部间隙,使得由凹槽3-1-4位置流入的阻尼介质经过锯齿缺口3-2-1流入空腔3-1-1内,并由第二阻尼孔3-1-3流向有杆腔,因此,在减震器下压过程中,还有部分阻尼介质由活塞环3-1的外侧壁凹槽3-1-4流入锯齿缺口3-2-1内,进而由大孔流出,保证了减震器下压瞬间阻尼介质快速流动,进一步降低了减震器下压瞬间的冲击阻力,减轻了下压瞬间的冲击感,在车辆中使用能够提高行驶舒适性。
参见图2箭头示意所示,柄管1回弹过程中,有杆腔内的阻尼介质由第二阻尼孔3-1-3流入空腔3-1-1内,并经过空腔3-1-1流入第一阻尼孔3-1-2后流入无杆腔,由于阻尼介质由大孔流向小孔,迫使空腔3-1-1内压力增大,空腔3-1-1内的阻尼介质压迫活塞密封圈3-2沿其径向向外膨胀,并使活塞密封圈3-2贴紧柄管1的内壁,封堵阻尼活塞3与柄管1之间存在间隙4,使得有杆腔内的阻尼介质仅能通过阻尼孔流向无杆腔,当空腔3-1-1内的阻尼介质压力降低后,活塞密封圈3-2回缩复原,提高了减震器的回弹阻尼效果。由于活塞密封圈3-2是利用空腔3-1-1内的阻尼介质压力实现膨胀与回缩的,因此,当减震器运动行程又长,又需要更高频率的往复运动时,回弹阻尼减震效果越加突出,尤其在路况连续颠簸的环境中更能发挥其回弹阻尼效果。
另外,在本实施例中,第一阻尼孔3-1-2和第二阻尼孔3-1-3的开口方向朝向柄管1的内壁,在减震器下压和回弹过程中,第一阻尼孔3-1-2和第二阻尼孔3-1-3中的阻尼介质能够向柄管1的内壁方向喷射流动,产生喷射阻尼作用,进一步提高了减震器的阻尼效果。具体地,如图3所示,上述的阻尼活塞3通过上下两个压圈5安装于活塞杆2的一端端部,且上下两个压圈5分别盖住第一阻尼孔3-1-2和第二阻尼孔3-1-3的部分开口来改变第一阻尼孔3-1-2和第二阻尼孔3-1-3的开口方向,以使第一阻尼孔3-1-2和第二阻尼孔3-1-3中的阻尼介质向柄管1的内壁方向流动;并且,在第一阻尼孔3-1-2和第二阻尼孔3-1-3的开口位置最好设置向外侧延伸的缺槽。采用上述结构,第一阻尼孔3-1-2和第二阻尼孔3-1-3加工制作方便,阻尼活塞3安装简单方便。参见图4所示,在本实施例中,第一阻尼孔3-1-2和第二阻尼孔3-1-3的位置相互错开较佳,增加了阻尼介质在阻尼孔中流动的阻力,提高了阻尼孔产生的缓冲阻尼效果。上述的第一阻尼孔3-1-2的数量少于第二阻尼孔3-1-3的数量较佳,例如图4中设置两个第一阻尼孔3-1-2,四个第二阻尼孔3-1-3。此外,在本实施例中,活塞密封圈3-2的截面形状优选为矩形,能够更好地在压力作用下向外侧膨胀,使用效果更好。
实施例2
结合图6所示,本实施例公开了一种应用上述实施例1所述的减震器阻尼机构的液压-气压组合阻尼减震器,其包括套管8、柄管1、活塞杆2和设于活塞杆2上的阻尼活塞3,柄管1与阻尼活塞3的具体结构与实施例1相同,柄管1设于套管8内,且柄管1与套管8之间导向密封配合形成密封的气压腔,具体可在套管8的开口位置设置导向密封组件9来保证气压腔密封;活塞杆2穿出柄管1的一端通过吊紧螺栓11固定于套管8的底部,活塞杆2与柄管1的端部也通过导向密封件配合;柄管1的无杆腔内设有阻尼弹簧6,利用阻尼弹簧6提供柄管1部分回弹力,促使减震器回弹;柄管1的有杆腔内设有缓冲弹簧7,该缓冲弹簧7为用于防止阻尼活塞3与柄管1底部直接碰撞的短弹簧,缓冲弹簧7大部分情况下处于自由状态,只有减震器在大幅度回弹时才会被压缩,起到缓冲作用;柄管1内充满减震油或油气混合物,在柄管1内为减震油时,油液高度大于阻尼活塞3在柄管1内的最大运动行程较佳,充分发挥阻尼机构的液压阻尼作用。为了防止套管8底部漏气,更有利于气体压缩,在本实施例中,活塞杆2与套管8底部相连接的一端还设有复合密封垫10,该复合密封垫10由金属垫片外侧复合弹性材料制成,复合密封垫10的内孔壁紧贴活塞杆2的杆壁,复合密封垫10的外侧紧贴套管8的内壁,且复合密封垫10靠近气压腔一侧的弹性材料端面上还具有贴紧活塞杆2杆壁和紧贴套管8内壁的凸台,这样,气压腔内的压力将复合密封垫10的弹性凸台向外挤压,提高了复合密封垫10的密封性能,保证了气压腔内不漏气。
接续图6所示,本实施例中的套管8上还设有连通气压腔的储气筒13,且在储气筒13与气压腔的连接通路上还设有气压阻尼调节杆12。储气筒13可自动补充减震器内泄露的部分气体,在压力较高的情况下,储气筒13内的气体可进入气压腔内,实现气压腔的自动充气。储气筒13与气压腔之间的气压阻尼作用可通过气压阻尼调节杆12进行调节,大大提高了减震器的整体减震效果,满足了不同减震效果的使用要求。进一步地,在本实施例中,储气筒13上还连接有气泵14,气泵14与电机15相连接,气泵14与电机15可采用一体式结构,电机15与控制系统16电连接,控制系统16与用于检测气压腔内压力的压力传感器17电连接,用于根据压力传感器17检测得到的压力信号控制电机15执行相应的动作,电机15带动气泵14工作,进而调节储气筒13内的气压,利用传感器和控制系统16控制气压腔自动补气,实现了气压阻尼的自动调节,尤其适用于汽车使用。
本发明的一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器,其阻尼活塞与柄管间隙配合,使阻尼活塞的外侧壁与柄管的内侧壁之间留有供阻尼介质流动的间隙,活塞密封圈与密封圈安装腔之间形成有空腔,且活塞密封圈能够在空腔内阻尼介质的压力作用下沿其径向膨胀和回缩;在减震器下压瞬间中,部分阻尼介质由小孔流向大孔产生下压阻尼,同时部分阻尼介质由阻尼活塞与柄管之间的间隙流动,还有部分阻尼介质由活塞环的外侧壁凹槽流入锯齿缺口内,进而由大孔流出,有效解决了因阻尼介质在下压瞬间无法快速流动而产生冲击感的问题,同时由于套管内的气体压缩,使减震器下压无法碰底;在减震器回弹过程中,阻尼介质由大孔流向小孔,使得活塞密封圈内侧空腔压力增大而促使活塞密封圈向外膨胀封堵阻尼活塞与柄管之间的间隙,并在活塞密封圈内侧空腔压力减小后,活塞密封圈回缩复原,提高了回弹阻尼效果,尤其在路况连续颠簸的环境中,减震器运动行程又长,又需要更高频率的往复运动,阻尼减震效果越加突出。液压-气压组合阻尼减震器,其柄管与套管之间导向密封配合形成密封的气压腔,防止了减震器下压碰底,实现了液压-气压组合减震效果。
以上示意性地对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性地设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (10)

  1. 一种减震器阻尼机构,包括柄管(1)、活塞杆(2)和设于活塞杆(2)上的阻尼活塞(3),所述的阻尼活塞(3)位于柄管(1)内,将柄管(1)分为无杆腔和有杆腔,其特征在于:所述的阻尼活塞(3)与柄管(1)间隙配合,使阻尼活塞(3)的外侧壁与柄管(1)的内侧壁之间留有供阻尼介质流动的间隙(4);所述的阻尼活塞(3)包括活塞环(3-1)和活塞密封圈(3-2),所述的活塞密封圈(3-2)安装于活塞环(3-1)的密封圈安装腔内,且活塞密封圈(3-2)的内径大于密封圈安装腔的内径,使活塞密封圈(3-2)与密封圈安装腔之间形成有空腔(3-1-1),所述的活塞密封圈(3-2)能够在空腔(3-1-1)内阻尼介质的压力作用下沿其径向膨胀和回缩;所述的活塞环(3-1)上设有连通无杆腔和上述空腔(3-1-1)的第一阻尼孔(3-1-2)、以及连通有杆腔和上述空腔(3-1-1)的第二阻尼孔(3-1-3),所述的第一阻尼孔(3-1-2)的孔径小于第二阻尼孔(3-1-3)的孔径。
  2. 根据权利要求1所述的一种减震器阻尼机构,其特征在于:所述的活塞环(3-1)靠近无杆腔一侧的外侧壁上还设有连通密封圈安装腔的凹槽(3-1-4),所述的活塞密封圈(3-2)靠近有杆腔的一侧端面上设有锯齿缺口(3-2-1)。
  3. 根据权利要求1或2所述的一种减震器阻尼机构,其特征在于:所述的第一阻尼孔(3-1-2)和第二阻尼孔(3-1-3)的开口方向朝向柄管(1)的内壁。
  4. 根据权利要求3所述的一种减震器阻尼机构,其特征在于:所述的阻尼活塞(3)通过上下两个压圈(5)安装于活塞杆(2)的一端端部,且上下两个压圈(5)分别盖住第一阻尼孔(3-1-2)和第二阻尼孔(3-1-3)的部分开口来改变第一阻尼孔(3-1-2)和第二阻尼孔(3-1-3)的开口方向,以使第一阻尼孔(3-1-2)和第二阻尼孔(3-1-3)中的阻尼介质向柄管(1)的内壁方向流动。
  5. 根据权利要求3所述的一种减震器阻尼机构,其特征在于:所述的第一阻尼孔(3-1-2)和第二阻尼孔(3-1-3)的位置相互错开。
  6. 根据权利要求3所述的一种减震器阻尼机构,其特征在于:所述的活塞密封圈(3-2)的截面形状为矩形。
  7. 一种应用权利要求1至6任意一项所述的减震器阻尼机构的液压-气压组合阻尼减震器,包括套管(8)、柄管(1)、活塞杆(2)和设于活塞杆(2)上的阻尼活塞(3),所述的柄管(1)设于套管(8)内,且柄管(1)与套管(8)之间导向密封配合形成密封的气压腔,所述的活塞杆(2)穿出柄管(1)的一端通过吊紧螺栓(11)固定于套管(8)的底部,所述的柄管(1)的无杆腔内设有阻尼弹簧(6),柄管(1)的有杆腔内设有缓冲弹簧(7),且柄管(1)内充满减震油或油气混合物。
  8. 根据权利要求7所述的一种液压-气压组合阻尼减震器,其特征在于:所述的活塞杆(2)与套管(8)底部相连接的一端还设有复合密封垫(10),该复合密封垫(10)由金属垫片外侧复合弹性材料制成,所述的复合密封垫(10)的内孔壁紧贴活塞杆(2)的杆壁,复合密封垫(10)的外侧紧贴套管(8)的内壁,且复合密封垫(10)靠近气压腔一侧的弹性材料端面上还具有贴紧活塞杆(2)杆壁和紧贴套管(8)内壁的凸台。
  9. 根据权利要求7或8所述的一种液压-气压组合阻尼减震器,其特征在于:所述的套管(8)上还设有连通气压腔的储气筒(13),且在储气筒(13)与气压腔的连接通路上还设有气压阻尼调节杆(12)。
  10. 根据权利要求9所述的一种液压-气压组合阻尼减震器,其特征在于:所述的储气筒(13)上还连接有气泵(14),所述的气泵(14)与电机(15)相连接,所述的电机(15)与控制系统(16)电连接,所述的控制系统(16)与用于检测气压腔内压力的压力传感器(17)电连接,用于根据压力传感器(17)检测得到的压力信号控制电机(15)执行相应的动作,进而调节储气筒(13)内的气压。
PCT/CN2019/083582 2018-04-26 2019-04-21 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器 WO2019206055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810386485.0A CN108488293A (zh) 2018-04-26 2018-04-26 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器
CN201810386485.0 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019206055A1 true WO2019206055A1 (zh) 2019-10-31

Family

ID=63313320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083582 WO2019206055A1 (zh) 2018-04-26 2019-04-21 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器

Country Status (2)

Country Link
CN (1) CN108488293A (zh)
WO (1) WO2019206055A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108488293A (zh) * 2018-04-26 2018-09-04 常州市达文电动车辆配件厂 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器
CN109458431B (zh) * 2018-10-12 2021-06-15 深圳市德瑞茵精密科技有限公司 一种可变小孔孔径阻尼装置
CN109436571B (zh) * 2018-12-25 2020-05-22 诸大淼 一种倾斜过程中降低冲击力的包装箱
US10989268B2 (en) * 2019-07-12 2021-04-27 Tenneco Automotive Operating Company Inc. Damper with hydraulic end stop
CN110319145A (zh) * 2019-08-12 2019-10-11 常州市一上电动车辆配件有限公司 一种阻尼效果良好的液压减震器及其液压阻尼系统
DE102019215561A1 (de) * 2019-10-10 2021-04-15 Zf Friedrichshafen Ag Drosselstelle für einen Schwingungsdämpfer
CN112722915A (zh) * 2021-01-06 2021-04-30 浙江满德新材料有限公司 一种高平滑烟用接装纸复卷装置及生产工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172849U (ja) * 1983-05-07 1984-11-19 株式会社昭和製作所 緩衝装置
CN2374380Y (zh) * 1999-05-28 2000-04-19 胡建新 汽车多功能控制减震器
CN102022470A (zh) * 2009-09-10 2011-04-20 萱场工业株式会社 流体压减振器
US20120247893A1 (en) * 2008-04-25 2012-10-04 Trek Bicycle Corp. Bicycle shock assemblies
CN106917841A (zh) * 2015-12-24 2017-07-04 株式会社昭和 压力缓冲装置
CN108488293A (zh) * 2018-04-26 2018-09-04 常州市达文电动车辆配件厂 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器
CN208311350U (zh) * 2018-04-26 2019-01-01 常州市达文电动车辆配件厂 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285001A (ja) * 1995-04-18 1996-11-01 Mitsui Toatsu Chem Inc ショックアブソーバー用クッションシールリング
JP4924926B2 (ja) * 2006-05-23 2012-04-25 繁夫 尾野 引出し用エアーダンパー
CN104930105A (zh) * 2014-03-19 2015-09-23 黄庆盛 一种液压阻尼器
CN203756840U (zh) * 2014-03-19 2014-08-06 黄庆盛 一种液压阻尼器
CN104632977B (zh) * 2015-01-30 2017-08-15 常州市达文电动车辆配件厂 一种气压阻尼机构及应用该机构的气压阻尼减震器
TWM506903U (zh) * 2015-02-17 2015-08-11 Ming Hong Internat Dev Co Ltd 阻尼器
CN205298375U (zh) * 2015-12-31 2016-06-08 许伟 一种气弹簧阻尼减震器
CN205978248U (zh) * 2016-08-24 2017-02-22 常州市达文电动车辆配件厂 一种液压阻尼减震器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172849U (ja) * 1983-05-07 1984-11-19 株式会社昭和製作所 緩衝装置
CN2374380Y (zh) * 1999-05-28 2000-04-19 胡建新 汽车多功能控制减震器
US20120247893A1 (en) * 2008-04-25 2012-10-04 Trek Bicycle Corp. Bicycle shock assemblies
CN102022470A (zh) * 2009-09-10 2011-04-20 萱场工业株式会社 流体压减振器
CN106917841A (zh) * 2015-12-24 2017-07-04 株式会社昭和 压力缓冲装置
CN108488293A (zh) * 2018-04-26 2018-09-04 常州市达文电动车辆配件厂 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器
CN208311350U (zh) * 2018-04-26 2019-01-01 常州市达文电动车辆配件厂 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器

Also Published As

Publication number Publication date
CN108488293A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2019206055A1 (zh) 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器
CA2627817C (en) Single cylinder type hydraulic shock absorber for vehicle
CN107314077B (zh) 一种内外双线圈的双筒式磁流变减振器
CN113513555B (zh) 一种耐用汽车双筒减震器
US20150054247A1 (en) Shock absorber gas spring seal
CN208311350U (zh) 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器
CN107642575B (zh) 一种汽车双筒式减振器
CN104500636A (zh) 感测变频减振器
CN217207477U (zh) 一种摩托车气动悬挂结构
CN103912712B (zh) 液控气动阀
CN107989947B (zh) 一种多活塞阻尼可调式减震器机构
CN106438814A (zh) 一种气囊减震器
KR100782009B1 (ko) 유압식 쇽업소버
CN210661182U (zh) 一种电子复合减振器
CN109764077B (zh) 阻尼可调式减震器
CN207750427U (zh) 一种耐磨损型汽车减振器
CN213270822U (zh) 一种双油封的单筒减振器
CN208442195U (zh) 一种工作平稳的车用双筒式减振器
CN219139693U (zh) 一种油液减震器阀系闭合机构
CN217207487U (zh) 汽车减振器
CN210510084U (zh) 高速散热单筒盘式减振器
CN216589729U (zh) 一种高灵敏防内泄减振器
KR20020045772A (ko) 쇽 업소버의 스토퍼 장치
CN218207594U (zh) 一种油气分离的双筒式减振油压减振器
CN211550370U (zh) 高拔脱力耐冲击活塞

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791527

Country of ref document: EP

Kind code of ref document: A1