WO2019205600A1 - 薄膜封装结构、薄膜封装方法及显示面板 - Google Patents
薄膜封装结构、薄膜封装方法及显示面板 Download PDFInfo
- Publication number
- WO2019205600A1 WO2019205600A1 PCT/CN2018/116272 CN2018116272W WO2019205600A1 WO 2019205600 A1 WO2019205600 A1 WO 2019205600A1 CN 2018116272 W CN2018116272 W CN 2018116272W WO 2019205600 A1 WO2019205600 A1 WO 2019205600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inorganic
- layer
- encapsulation layer
- sealing structure
- organic
- Prior art date
Links
- 238000005538 encapsulation Methods 0.000 title claims abstract description 163
- 239000010409 thin film Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000007789 sealing Methods 0.000 claims abstract description 68
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 34
- 229910045601 alloy Inorganic materials 0.000 claims description 21
- 239000000956 alloy Substances 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 230000002787 reinforcement Effects 0.000 claims description 3
- 239000010408 film Substances 0.000 description 12
- 239000000758 substrate Substances 0.000 description 8
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 229910052797 bismuth Inorganic materials 0.000 description 6
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 229910052793 cadmium Inorganic materials 0.000 description 5
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/871—Self-supporting sealing arrangements
- H10K59/8722—Peripheral sealing arrangements, e.g. adhesives, sealants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
- H10K59/8731—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
Definitions
- the present application relates to the field of display technologies, and in particular, to a thin film packaging structure, a thin film packaging method, and a display panel.
- the thin film encapsulation structure of an OLED (Organic Light-Emitting Diode, OLED) device has a thin film layer and a large stress in the inorganic encapsulation layer, so that the inorganic encapsulation layer of the film encapsulation structure is prone to cracks, and water and oxygen are easy. Intrusion from these cracks into the interior of the OLED causes damage to the OLED device. Therefore, the package reliability of the current thin film package structure is difficult to improve.
- OLED Organic Light-Emitting Diode
- a thin film encapsulation structure a thin film encapsulation method, and a display panel are provided.
- a thin film encapsulation structure comprising:
- An organic encapsulation layer disposed between two adjacent inorganic encapsulation layers
- the sealing structure is reinforced and disposed around the organic encapsulating layer.
- a thin film encapsulation method comprising the following steps:
- a reinforced sealing structure is formed around the organic encapsulation layer.
- a display panel, the film package structure comprises:
- An organic encapsulation layer disposed between two adjacent inorganic encapsulation layers
- the sealing structure is reinforced and disposed around the organic encapsulating layer. .
- FIG. 1 is a structural view of a thin film package structure of an embodiment
- FIG. 2 is a structural view of a thin film package structure of another embodiment
- FIG. 3 is a flow chart of a thin film encapsulation method of an embodiment
- FIG. 4 is a flow chart of a thin film encapsulation method of another embodiment
- FIG. 5 is a flow chart of a thin film encapsulation method according to still another embodiment.
- a thin film encapsulation structure 100 of an embodiment includes at least two inorganic encapsulation layers, an organic encapsulation layer 120 , and a reinforced sealing structure 140 .
- the organic encapsulation layer 120 is disposed between two adjacent inorganic encapsulation layers.
- the reinforced sealing structure 140 is disposed around the organic encapsulation layer 120.
- the two inorganic encapsulation layers adjacent to the organic encapsulation layer 120 are the first inorganic encapsulation layer 110 and the second inorganic encapsulation layer 130, respectively.
- the overall encapsulation strength is improved by providing the reinforced sealing structure 140, and the reinforced sealing structure 140 is disposed around the organic encapsulation layer 120, thereby preventing the inorganic encapsulation layer from being damaged by the damage of the organic encapsulation layer 120.
- the problem of oxygen intrusion innovatively introduces the reinforced sealing structure 140 on the original package structure, thereby improving the reliability of the package.
- the reinforced sealing structure 140 is disposed circumferentially around the organic encapsulation layer 120.
- the reinforcing sealing structure 140 can prevent the crack from continuing to extend toward the centrally located organic encapsulating layer 120, thereby not only reducing cracking of the inorganic encapsulating layer and preventing crack propagation, thereby enhancing the strength of the inorganic encapsulating layer.
- the package reliability of the organic encapsulation layer 120 is also effectively ensured.
- the reinforcing sealing structure 140 is disposed in the inorganic encapsulating layer. Further, the reinforcing sealing structure 140 is disposed in the inorganic encapsulating layer and disposed adjacent to the outer edge of the inorganic encapsulating layer. Such an arrangement not only avoids the reinforcement of the sealing structure 140 from contacting the organic encapsulation layer 120, but also reduces the package bezel and increases the display area.
- the first inorganic encapsulation layer 110 can be used to cover the OLED layer 220 of the OLED device 200 to be packaged.
- the second inorganic encapsulation layer 130 and the first inorganic encapsulation layer 110 together cover the organic encapsulation layer 120 .
- the first inorganic encapsulation layer 110 and the second inorganic encapsulation layer 130 are in contact with each other at the outer edge.
- the reinforcing sealing structure 140 is disposed at the outer edge of the mutual contact and penetrates at least one of the first inorganic encapsulating layer 110 and the second inorganic encapsulating layer 130.
- the strong sealing structure 140 is added on the basis of the inorganic encapsulating layer covering the organic encapsulating layer 120, and the packaging reliability of the organic encapsulating layer 120 is greatly improved.
- the second inorganic encapsulation layer 130 is coated on the organic encapsulation layer 120 and co-coated with the first inorganic encapsulation layer 110 .
- the reinforcing sealing structure 140 penetrates at least the second inorganic encapsulating layer 130.
- the reinforcing sealing structure 140 penetrates through the first inorganic encapsulating layer 110 and the second inorganic encapsulating layer 130 at the same time.
- the reinforcing sealing structure 140 is disposed in the inorganic encapsulating layer by forming a groove or a through hole surrounding the organic encapsulating layer 120 at a corresponding position of the inorganic encapsulating layer, and the reinforcing sealing structure 140 is disposed in the groove or the through hole. Inside the hole.
- the reinforcing sealing structure 140 is disposed in the above-mentioned groove or through hole and is flush with the surface of the inorganic encapsulating layer where the groove or the through hole is located.
- the reinforced sealing structure 140 may also be disposed not in the inorganic encapsulation layer but directly around the outer edge of the inorganic encapsulation layer.
- the reinforcing sealing structure 140 is disposed directly around the outer edge of the inorganic encapsulating layer, thereby avoiding the stress of the inorganic encapsulating layer, thereby reducing the packaging failure of the thin film encapsulation structure 100, thereby improving package reliability.
- the organic encapsulating layer 120 is coated by the reinforcing sealing structure 140 and the inorganic encapsulating layer, so the first inorganic encapsulating layer 110 and the organic encapsulating layer
- the 120 and the second inorganic encapsulating layer 130 may be stacked to prevent the second inorganic encapsulating layer 130 and the first inorganic encapsulating layer 110 from being coated with the organic encapsulating layer 120 .
- the thickness of the reinforcing sealing structure 140 is greater than the thickness of the organic encapsulating layer 120.
- the thin film encapsulation structure 100 in yet another embodiment differs in that the position of the sealing structure 140 is reinforced.
- the reinforced sealing structure 140 is located above and/or below the organic encapsulation layer 120. Further, the reinforcing sealing structure 140 is disposed around the upper and lower surfaces of the organic encapsulation layer 120. The upper and lower surfaces are both surfaces adjacent to the first inorganic encapsulation layer 110 and the second inorganic encapsulation layer 130. Further, the reinforcing sealing structure 140 may be disposed in the inorganic encapsulation layer. Specifically, the reinforcing sealing structure 140 is partially disposed in the first inorganic encapsulating layer 110 and the other portion is disposed in the second inorganic encapsulating layer 130.
- the width of the reinforced sealing structure 140 is greater than the width of the organic encapsulation layer 120. This width refers to the dimension along the length direction of the substrate 210.
- the reinforced sealing structure 140 is disposed around the upper and lower surfaces of the organic encapsulation layer 120 and at least a portion of the circumference.
- the reinforcing sealing structure 140 is disposed around the upper surface and the lower surface of the organic encapsulating layer 120 and a portion of the peripheral edge connecting the upper and lower surfaces.
- the reinforced sealing structure 140 can be disposed around the upper and lower surfaces of the organic encapsulation layer 120 and all of the peripheral edges connecting the upper and lower surfaces. That is, the reinforcing sealing structure 140 can be disposed around the circumferential direction and the upper and lower surfaces of the organic encapsulating layer 120 at the same time.
- the reinforcing sealing structure 140 is evenly distributed around the organic encapsulating layer 120. In this way, the force of the reinforcing sealing structure 140 is uniform everywhere, thereby avoiding the problem that the inorganic packaging layer is easily damaged due to stress concentration at the individual positions where the unevenness is disposed, thereby improving the package reliability.
- the material of the reinforced sealing structure 140 is an alloy or a metal.
- the material of the reinforcing sealing structure 140 is a metal of bismuth, lead, tin and cadmium or an alloy formed by at least two of bismuth, lead, tin and cadmium.
- the metal is an alloy formed of at least two of bismuth, lead, tin and cadmium.
- Such alloys not only have a lower melting point but also have good optical transmission properties.
- the material of the reinforcing sealing structure 140 is an alloy having a melting point of 80 to 100 ° C.
- the low melting point alloy is used to avoid the influence of the alloy having a too high melting point or the temperature of the metal being too molten to affect the performance of the inorganic encapsulating layer.
- the metal may be one of the first alloy, the second alloy, and the third alloy.
- the first alloy consists of 52% by mass of bismuth, 40% of lead and 8% of cadmium, and its melting point is 92 ° C;
- the second alloy consists of 53% by mass of bismuth, 32% of lead and 15% of tin.
- the composition has a melting point of 96 ° C;
- the third alloy consists of 50% by mass of bismuth, 27% of lead, 13% of tin and 10% of cadmium, and has a melting point of 70 ° C.
- the reinforced sealing structure 140 is formed by solidification of a molten liquid metal or liquid alloy.
- the molten liquid metal or liquid alloy has good fluidity, can be well filled into the grooves or through holes of the inorganic encapsulation layer, or formed on the outer edge of the inorganic encapsulation layer, and forms a dense package structure with the inorganic encapsulation layer. Thereby, the reliability of the thin film encapsulation structure 100 and the service life of the OLED device 200 are greatly improved.
- the thin film encapsulation structure 100 further includes a third inorganic encapsulation layer 150.
- the third inorganic encapsulation layer 150 is disposed between the OLED layer 220 and the first inorganic encapsulation layer 110.
- the third inorganic encapsulation layer 150 is disposed on the OLED layer 220
- the first inorganic encapsulation layer 110 is disposed on the third inorganic encapsulation layer 150 .
- the first inorganic encapsulating layer 110 and the second inorganic encapsulating layer 130 are silicon nitride films.
- the third inorganic encapsulating layer 150 is a silicon dioxide film or an aluminum oxide film.
- the third inorganic encapsulation layer 150 has a thin deposition thickness and a good water-oxygen barrier property. Therefore, when the first inorganic encapsulation layer 110 and the second inorganic encapsulation layer 130 are silicon nitride films, a third layer is disposed.
- the inorganic encapsulation layer 150 can greatly improve the water and oxygen barrier properties of the inorganic encapsulation layer.
- the edge of the first inorganic encapsulation layer 110 is used to be disposed on the substrate 210 of the OLED device 200.
- the organic encapsulation layer 120 is an acrylate film. It can be understood that the material of the organic encapsulation layer 120 is not limited thereto.
- the first inorganic encapsulating layer 110 has a thickness of 1 ⁇ m to 1.5 ⁇ m
- the second inorganic encapsulating layer 130 has a thickness of 1 ⁇ m to 1.5 ⁇ m
- the third inorganic encapsulating layer 150 has a thickness of 25 nm to 35 nm.
- the thickness of the first inorganic encapsulating layer 110 is 1.2 ⁇ m
- the thickness of the second inorganic encapsulating layer 130 is 1.2 ⁇ m
- the thickness of the third inorganic encapsulating layer 150 is 30 nm.
- the present application further provides a thin film encapsulation method for implementing the above-described thin film encapsulation structure 100 of an embodiment.
- FIG. 3 is a schematic flow chart of a method according to an embodiment of the present application. It should be understood that although the steps in the flowchart of FIG. 3 are sequentially displayed in accordance with the indication of the arrows, the steps are not necessarily performed in the order indicated by the arrows. Except as explicitly stated herein, the execution of these steps is not strictly limited, and may be performed in other sequences. Moreover, at least some of the steps in FIG. 3 may include a plurality of sub-steps or stages, which are not necessarily performed at the same time, but may be executed at different times, and the order of execution thereof is not necessarily This may be performed in sequence, but may be performed alternately or alternately with other steps or at least a portion of the sub-steps or stages of the other steps.
- the method includes the following steps S302 to S308.
- Step S302 forming a first inorganic encapsulation layer 110.
- step S1 includes the steps of: firstly coating a third inorganic encapsulation layer 150 on the OLED layer 220 of the OLED device 200 to be packaged, and then overlying the third inorganic encapsulation layer 150.
- An inorganic encapsulation layer 110 is overlaid on the OLED layer 220 of the OLED device 200 to be packaged, and the edge of the substrate 210 is exposed, so that the first inorganic encapsulation layer 110 is formed on the exposed substrate 210. The edge of the third inorganic encapsulation layer 150 is covered.
- the first inorganic encapsulation layer 110 and the third inorganic encapsulation layer 150 may each be formed by a chemical vapor deposition method.
- the first inorganic encapsulation layer 110 is a silicon nitride film
- the third inorganic encapsulation layer 150 is a silicon dioxide film or an aluminum oxide film.
- Step S304 forming an organic encapsulation layer 120 on the first inorganic encapsulation layer 110.
- the organic encapsulation layer 120 may be formed using inkjet printing.
- the organic encapsulation layer 120 is an acrylate film.
- Step S306 forming a second inorganic encapsulation layer 130 on the organic encapsulation layer 120.
- the second inorganic encapsulation layer 130 may be formed by a chemical vapor deposition method.
- the second inorganic encapsulation layer 130 is a silicon nitride film.
- Step S308 forming a reinforced sealing structure 140 around the organic encapsulation layer 120.
- step S308 may include the following steps:
- S308A a groove or a through hole surrounding the organic encapsulation layer 120 is formed in the inorganic encapsulation layer, and a liquid metal or a liquid alloy is filled in the groove or the through hole, and the liquid metal or the liquid alloy is solidified to form the reinforcing sealing structure 140.
- step S308 can also include the following steps:
- a reinforcing sealing structure 140 with a machine encapsulation layer 120 is disposed directly on the outer edge of the inorganic encapsulation layer.
- the thin film encapsulation method is easy to operate, and the formed thin film encapsulation structure 100 has good package reliability.
- the present application further provides a display panel 10 of an embodiment, including an OLED device 200 and the above-described thin film encapsulation structure 100 .
- the OLED device 200 includes a substrate 210 and an OLED layer 220 disposed on the substrate 210.
- the first inorganic encapsulation layer 110 is overlaid on the OLED layer 220 of the OLED device 200.
- the OLED layer is an organic light emitting layer.
- the substrate is a TFT (Thin Film Transistor) array substrate.
- the display panel 10 adopts the above-mentioned thin film encapsulation structure 100, and has improved package reliability and improved service life.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
一种薄膜封装结构、薄膜封装方法及显示面板,该薄膜封装结构(100)包括层叠设置的至少两层无机封装层(110,130)、有机封装层(120)及加强密封结构(140)。有机封装层(120)设置在相邻两层无机封装层(110,130)之间。加强密封结构(140)环绕所述有机封装层(120)设置。。
Description
本申请要求于2018年4月25日提交中国专利局,申请号为201810379438.3,发明名称为“薄膜封装结构、薄膜封装方法及显示面板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及显示技术领域,特别是涉及一种薄膜封装结构、薄膜封装方法及显示面板。
目前OLED(有机发光二极管,Organic Light-Emitting Diode,OLED)器件的薄膜封装结构,其无机封装层的膜层较薄且应力大,因此薄膜封装结构的无机封装层四周容易出现裂缝,水氧容易从这些裂缝侵入OLED内部,对OLED器件造成损伤。因此目前的薄膜封装结构的封装可靠性难以提升。
发明内容
根据本申请的各种实施例,提供一种薄膜封装结构、薄膜封装方法及显示面板。
一种薄膜封装结构,包括:
层叠设置的至少两层无机封装层;
有机封装层,设置在相邻两层无机封装层之间;及
加强密封结构,环绕所述有机封装层设置。
一种薄膜封装方法,包括以下步骤:
形成第一无机封装层;
在所述第一无机封装层上形成有机封装层;
在所述有机封装层上形成第二无机封装层;
环绕所述有机封装层形成加强密封结构。
一种显示面板,薄膜封装结构包括:
层叠设置的至少两层无机封装层;
有机封装层,设置在相邻两层无机封装层之间;及
加强密封结构,环绕所述有机封装层设置。。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
图1为一实施方式的薄膜封装结构的结构图;
图2为另一实施方式的薄膜封装结构的结构图;
图3为一实施方式的薄膜封装方法的流程图;
图4为另一实施方式的薄膜封装方法的流程图;
图5为再一实施方式的薄膜封装方法的流程图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请参阅图1,一实施方式的薄膜封装结构100,包括层叠设置的至少两层无机封装层、有机封装层120及加强密封结构140。有机封装层120设置在相邻两层无机封装层之间。加强密封结构140环绕有机封装层120设置。
具体地,与有机封装层120相邻的两层无机封装层分别为第一无机封装层110及第二无机封装层130。
利用该薄膜封装结构100,通过设置加强密封结构140提高了整体的封装强度,且将加强密封结构140环绕有机封装层120设置,避免了无机封装层因出现损伤而致使有机封装层120易受水氧入侵的问题。该薄膜封装结构 100在原有封装结构上,创新性地引入了加强密封结构140,提高了封装的可靠性。
在其中一个实施例中,加强密封结构140环绕有机封装层120的周向设置。当无机封装层出现些微的裂纹时,加强密封结构140可阻止裂缝继续向位于中部的有机封装层120延伸,如此不仅可减少无机封装层的裂缝产生及阻止裂缝延伸,从而加强无机封装层的强度,而且还有效地保证了有机封装层120的封装可靠性。
具体地,加强密封结构140设置于无机封装层内。进一步地,加强密封结构140设于无机封装层内且靠近无机封装层的外侧边缘设置。如此设置不仅避免加强密封结构140与有机封装层120接触,而且还减小了封装边框,增大了显示区域。
在本实施例中,第一无机封装层110可用于覆设于待封装的OLED器件200的OLED层220上。
进一步地,第二无机封装层130与第一无机封装层110共同包覆有机封装层120。第一无机封装层110与第二无机封装层130在外侧边缘处相互接触。加强密封结构140设置于该相互接触的外侧边缘处且贯穿第一无机封装层110与第二无机封装层130中的至少一层。如此在无机封装层包覆有机封装层120的基础上增加强密封结构140,大大提高了有机封装层120的封装可靠性。
进一步地,在本实施例中,第二无机封装层130覆设于有机封装层120上且与第一无机封装层110共同包覆有机封装层120。加强密封结构140至少贯穿第二无机封装层130。优选地,在本实施例中,加强密封结构140同时贯穿第一无机封装层110与第二无机封装层130。
可理解,加强密封结构140设置于无机封装层内可通过如下方法形成:在无机封装层相应的位置设置环绕有机封装层120的凹槽或通孔,加强密封结构140设置于该凹槽或通孔内。
进一步地,加强密封结构140设于上述凹槽或通孔内,且与该凹槽或通 孔所处的无机封装层的表面保持齐平。
在其他实施例中,加强密封结构140也可不设于无机封装层内,而直接环绕无机封装层的外侧边缘设置。如此将加强密封结构140直接环绕无机封装层的外侧边缘设置,可避免无机封装层受到应力冲击,进而减少薄膜封装结构100的封装失效问题,从而提高封装可靠性。可理解,此时由于加强密封结构140直接环绕无机封装层的外侧边缘设置,从而通过加强密封结构140和无机封装层共同将有机封装层120包覆,因此第一无机封装层110、有机封装层120及第二无机封装层130可层叠设置而无需使第二无机封装层130与第一无机封装层110共同包覆有机封装层120。
进一步地,加强密封结构140的厚度大于有机封装层120的厚度。如此在加强密封结构140环设于有机封装层120的基础上,增加了水氧侵入有机封装层120的难度,进一步提高封装的可靠性。
请参阅图2,又一实施例中的薄膜封装结构100不同之处在于加强密封结构140的位置。加强密封结构140位于有机封装层120的上方和/或下方。进一步地,加强密封结构140环绕有机封装层120的上下表面设置。该上下表面为与第一无机封装层110和第二无机封装层130相邻的两表面。进一步地,加强密封结构140可设于无机封装层内。具体地,加强密封结构140部分设于第一无机封装层110内,另一部分设于第二无机封装层130内。优选地,加强密封结构140的宽度大于有机封装层120的宽度。该宽度是指沿基板210的长度方向的尺寸。
具体地,加强密封结构140环绕有机封装层120的上表面和下表面及至少部分周缘设置。在本实施例中,加强密封结构140环绕有机封装层120的上表面和下表面及连接上下表面的部分周缘设置。在其他实施例中,加强密封结构140可环绕有机封装层120的上表面和下表面及连接上下表面的全部周缘设置。也就是说,加强密封结构140可同时环绕有机封装层120的周向及上下表面设置。
进一步地,加强密封结构140环绕有机封装层120均匀布设。如此使得 加强密封结构140各处受力均匀,进而避免布设不均的个别位置因应力集中而致使无机封装层易受损的问题,从而提高了封装可靠性。
在其中一个实施例中,加强密封结构140的材料为合金或金属。优选地,加强密封结构140的材料为铋、铅、锡及镉中的一种金属或铋、铅、锡及镉中的至少两种形成的合金。
优选地,金属为铋、铅、锡及镉中的至少两种形成的合金。此类合金不仅熔点较低且具有良好的光学透过性能。
进一步地,加强密封结构140的材料为熔点在80~100℃的合金。采用低熔点合金,避免因熔点太高的合金或金属熔融后温度太高而影响无机封装层的性能。
更优选地,金属可为第一合金、第二合金及第三合金中的一种。其中,第一合金由质量含量52%的铋、40%的铅及8%的镉组成,其熔点为92℃;第二合金由质量含量53%的铋、32%的铅及15%的锡组成,其熔点为96℃;第三合金由质量含量50%的铋、27%的铅、13%的锡及10%的镉组成,其熔点为70℃。
进一步地,加强密封结构140由熔融的液态金属或液态合金固化形成。熔融的液态金属或液态合金具有良好的流动性,可以很好地填充到无机封装层的凹槽或通孔内,或在无机封装层的外侧边缘形成,并与无机封装层形成致密的封装结构,从而大大提升薄膜封装结构100的可靠性及OLED器件200的使用寿命。
在其中一个实施例中,上述薄膜封装结构100还包括第三无机封装层150。第三无机封装层150用于设于OLED层220与第一无机封装层110之间。且第三无机封装层150用于覆设于OLED层220上,第一无机封装层110覆设于第三无机封装层150上。
具体地,第一无机封装层110和第二无机封装层130为氮化硅薄膜。第三无机封装层150为二氧化硅薄膜或三氧化二铝薄膜。该第三无机封装层150的沉积厚度较薄,且其水氧阻隔性较好,因此在第一无机封装层110和第二 无机封装层130为氮化硅薄膜时再设置一层上述第三无机封装层150,可大大提高无机封装层的水氧阻隔性。
具体地,第一无机封装层110的边缘用于设于OLED器件200的基板210上。
进一步地,在本实施例中,有机封装层120为丙烯酸酯薄膜。可理解,有机封装层120的材料不限于此。
具体地,第一无机封装层110的厚度为1μm~1.5μm,第二无机封装层130的厚度为1μm~1.5μm,第三无机封装层150的厚度为25nm~35nm。
更具体地,第一无机封装层110的厚度为1.2μm,第二无机封装层130的厚度为1.2μm,第三无机封装层150的厚度为30nm。
相应地,本申请还提供了一实施方式的实现上述薄膜封装结构100的薄膜封装方法。
图3为本申请一个实施例的方法的流程示意图,应该理解的是,虽然图3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
具体而言,该方法包括以下步骤S302~S308。
步骤S302:形成第一无机封装层110。
进一步地,在其中一个实施例中,步骤S1包括以下步骤:先在待封装的OLED器件200的OLED层220上覆设第三无机封装层150,再在第三无机封装层150上覆设第一无机封装层110。具体地,在待封装的OLED器件200的OLED层220上覆设第三无机封装层150,并使基板210的边缘露出,以 使第一无机封装层110形成在该露出的基板210上并包覆第三无机封装层150的边缘。
具体地,第一无机封装层110和第三无机封装层150均可通过化学气相沉积方法形成。
具体地,第一无机封装层110为氮化硅薄膜,第三无机封装层150为二氧化硅薄膜或三氧化二铝薄膜。
步骤S304:在第一无机封装层110上形成有机封装层120。
具体地,有机封装层120可采用喷墨打印形成。具体地,有机封装层120为丙烯酸酯薄膜。
步骤S306:在有机封装层120上形成第二无机封装层130。
具体地,第二无机封装层130可通过化学气相沉积方法形成。具体地,第二无机封装层130为氮化硅薄膜。
步骤S308:环绕有机封装层120形成加强密封结构140。
具体地,如图4所示,步骤S308可包括以下步骤:
S308A:在无机封装层开设环绕有机封装层120的凹槽或通孔,在凹槽或通孔内填充液态金属或液态合金,液态金属或液态合金固化形成加强密封结构140。
可理解,如图5所示,步骤S308也可包括以下步骤:
S308B:直接在无机封装层的外侧边缘设置环设有机封装层120的加强密封结构140。
该薄膜封装方法操作简便,形成的薄膜封装结构100的封装可靠性好。
继续参阅图1或图2,本申请还提供了一实施方式的显示面板10,包括OLED器件200及上述薄膜封装结构100。OLED器件200包括基板210及设于基板210上的OLED层220,第一无机封装层110覆设于OLED器件200的OLED层220上。
具体地,OLED层即为有机发光层。具体地,基板为TFT(Thin Film Transistor,薄膜晶体管)阵列基板。
该显示面板10采用上述薄膜封装结构100,封装可靠性提高,使用寿命提高。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (19)
- 一种薄膜封装结构,包括:层叠设置的至少两层无机封装层;有机封装层,设置在相邻两层无机封装层之间;以及加强密封结构,环绕所述有机封装层设置。
- 如权利要求1所述的薄膜封装结构,其中所述加强密封结构环绕所述有机封装层的周向设置。
- 如权利要求2所述的薄膜封装结构,其中所述加强密封结构设置在所述无机封装层内且靠近所述无机封装层的外侧边缘设置。
- 如权利要求3所述的薄膜封装结构,其中相邻的两层无机封装层的外围区域相贴合以共同包覆所述有机封装层,所述加强密封结构设置在所述外围区域内且贯穿所述相邻的两层无机封装层中的至少一层。
- 如权利要求2所述的薄膜封装结构,其中所述加强密封结构环绕所述无机封装层的外侧边缘设置。
- 如权利要求1~5任一项所述的薄膜封装结构,其中所述加强密封结构的厚度大于所述有机封装层的厚度。
- 如权利要求1~5任一项所述的薄膜封装结构,其中所述加强密封结构位于所述无机封装层内,且位于所述有机封装层上方或下方。
- 如权利要求1~5任一项所述的薄膜封装结构,其中所述加强密封结构的材料为合金或金属。
- 一种薄膜封装方法,包括以下步骤:形成第一无机封装层;在所述第一无机封装层上形成有机封装层;在所述有机封装层上形成第二无机封装层;以及环绕所述有机封装层形成加强密封结构。
- 如权利要求9所述的方法,其中所述的环绕所述有机封装层形成加强密封结构包括:在所述第一无机封装层和所述第二无机封装层开设环绕所述有机封装层的凹槽或通孔,在所述凹槽或所述通孔内填充液态金属或液态合金,所述液态金属或液态合金固化形成所述加强密封结构。
- 如权利要求9所述的方法,其中所述的环绕所述有机封装层形成加强密封结构包括:直接在所述第一无机封装层和所述第二无机封装层的外侧边缘设置环设所述有机封装层的所述加强密封结构。
- 一种显示面板,其薄膜封装结构包括:层叠设置的至少两层无机封装层;有机封装层,设置在相邻两层无机封装层之间;以及加强密封结构,环绕所述有机封装层设置。
- 如权利要求12所述的显示面板,其中所述加强密封结构环绕所述有机封装层的周向设置。
- 如权利要求13所述的显示面板,其中所述加强密封结构设置在所述无机封装层内且靠近所述无机封装层的外侧边缘设置。
- 如权利要求14所述的显示面板,其中相邻的两层无机封装层的外围区域相贴合以共同包覆所述有机封装层,所述加强密封结构设置在所述外围区域内且贯穿所述相邻的两层无机封装层中的至少一层。
- 如权利要求12所述的显示面板,其中所述加强密封结构环绕所述无机封装层的外侧边缘设置。
- 如权利要求12~16任一项所述的显示面板,其中所述加强密封结构的厚度大于所述有机封装层的厚度。
- 如权利要求12~16任一项所述的显示面板,其中所述加强密封结构位于所述无机封装层内,且位于所述有机封装层上方或下方。
- 如权利要求12~16任一项所述的显示面板,其中所述加强密封结构的材料为合金或金属。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/342,994 US20210367201A1 (en) | 2018-04-25 | 2018-11-19 | Thin film packaging structure, thin film packaging method and display panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810379438.3A CN108493356B (zh) | 2018-04-25 | 2018-04-25 | 薄膜封装结构、薄膜封装方法及显示面板 |
CN201810379438.3 | 2018-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019205600A1 true WO2019205600A1 (zh) | 2019-10-31 |
Family
ID=63313979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/116272 WO2019205600A1 (zh) | 2018-04-25 | 2018-11-19 | 薄膜封装结构、薄膜封装方法及显示面板 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210367201A1 (zh) |
CN (1) | CN108493356B (zh) |
WO (1) | WO2019205600A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220250973A1 (en) * | 2021-02-07 | 2022-08-11 | Mianyang Boe Optoelectronics Technology Co., Ltd. | Flexible displaying substrate and fabricating method thereof, and displaying device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108493356B (zh) * | 2018-04-25 | 2019-07-02 | 云谷(固安)科技有限公司 | 薄膜封装结构、薄膜封装方法及显示面板 |
CN109713155B (zh) * | 2018-11-30 | 2021-07-13 | 云谷(固安)科技有限公司 | 封装薄膜、显示面板及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170104176A1 (en) * | 2013-09-18 | 2017-04-13 | Innolux Corporation | Method for packaging display panel |
CN106784398A (zh) * | 2016-12-15 | 2017-05-31 | 武汉华星光电技术有限公司 | Oled封装方法与oled封装结构 |
CN107565059A (zh) * | 2017-10-09 | 2018-01-09 | 深圳市华星光电半导体显示技术有限公司 | Qled器件的封装方法及封装结构 |
CN107623085A (zh) * | 2017-10-16 | 2018-01-23 | 深圳市华星光电半导体显示技术有限公司 | Oled面板的封装方法及封装结构 |
CN108493356A (zh) * | 2018-04-25 | 2018-09-04 | 云谷(固安)科技有限公司 | 薄膜封装结构、薄膜封装方法及显示面板 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201110859Y (zh) * | 2007-09-20 | 2008-09-03 | 昆山维信诺显示技术有限公司 | 一种湿敏电子器件 |
CN103325960B (zh) * | 2012-03-23 | 2016-03-16 | 昆山工研院新型平板显示技术中心有限公司 | 有机光电子器件的薄膜封装方法 |
TW201513332A (zh) * | 2013-09-24 | 2015-04-01 | Wintek Corp | 有機發光封裝結構及其製造方法 |
CN106783926B (zh) * | 2016-12-28 | 2020-05-05 | 上海天马有机发光显示技术有限公司 | 一种显示面板及其装置 |
CN106653820B (zh) * | 2017-03-08 | 2019-04-05 | 京东方科技集团股份有限公司 | 一种柔性显示面板及制作方法、柔性显示装置 |
CN108198953B (zh) * | 2018-02-13 | 2019-09-10 | 武汉华星光电半导体显示技术有限公司 | Oled封装方法与oled封装结构 |
-
2018
- 2018-04-25 CN CN201810379438.3A patent/CN108493356B/zh active Active
- 2018-11-19 US US16/342,994 patent/US20210367201A1/en not_active Abandoned
- 2018-11-19 WO PCT/CN2018/116272 patent/WO2019205600A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170104176A1 (en) * | 2013-09-18 | 2017-04-13 | Innolux Corporation | Method for packaging display panel |
CN106784398A (zh) * | 2016-12-15 | 2017-05-31 | 武汉华星光电技术有限公司 | Oled封装方法与oled封装结构 |
CN107565059A (zh) * | 2017-10-09 | 2018-01-09 | 深圳市华星光电半导体显示技术有限公司 | Qled器件的封装方法及封装结构 |
CN107623085A (zh) * | 2017-10-16 | 2018-01-23 | 深圳市华星光电半导体显示技术有限公司 | Oled面板的封装方法及封装结构 |
CN108493356A (zh) * | 2018-04-25 | 2018-09-04 | 云谷(固安)科技有限公司 | 薄膜封装结构、薄膜封装方法及显示面板 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220250973A1 (en) * | 2021-02-07 | 2022-08-11 | Mianyang Boe Optoelectronics Technology Co., Ltd. | Flexible displaying substrate and fabricating method thereof, and displaying device |
Also Published As
Publication number | Publication date |
---|---|
CN108493356B (zh) | 2019-07-02 |
CN108493356A (zh) | 2018-09-04 |
US20210367201A1 (en) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109728196B (zh) | 显示面板、其制作方法和显示装置 | |
CN109065552B (zh) | Oled显示装置 | |
WO2019205600A1 (zh) | 薄膜封装结构、薄膜封装方法及显示面板 | |
WO2021189536A1 (zh) | Oled显示面板及其制备方法、oled显示装置 | |
US9013099B2 (en) | Organic electroluminescent apparatus | |
KR20210123389A (ko) | 디스플레이 패널, 그 제조 방법 및 디스플레이 장치 | |
TWI641127B (zh) | 有機發光顯示設備及其製造方法 | |
US10418590B2 (en) | OLED flexible display panel and method for manufacturing the same | |
US8841666B2 (en) | Display device | |
US11316131B2 (en) | OLED display panel having multi-groove retaining walls | |
WO2020187262A1 (zh) | 有机发光显示面板及其制备方法、显示装置 | |
WO2018214962A1 (zh) | 有机发光二极管显示面板封装结构及其制作方法、显示装置 | |
WO2015149458A1 (zh) | 柔性显示装置及其封装方法 | |
WO2020238473A1 (zh) | 显示面板、显示面板的制作方法和显示装置 | |
WO2016199739A1 (ja) | El表示装置及びel表示装置の製造方法 | |
WO2020029390A1 (zh) | 显示面板及其制造方法 | |
US20210036260A1 (en) | Encapsulation structure of organic light emitting diode display panel and manufacturing method thereof | |
US9583730B2 (en) | Display device including a sealing member and method of manufacturing the same | |
WO2019201132A1 (zh) | 封装结构、显示装置 | |
WO2019205910A1 (zh) | 显示面板的封装方法、显示装置及其制作方法 | |
WO2019127677A1 (zh) | 一种oled薄膜封装结构及封装方法 | |
WO2022017027A1 (zh) | 可拉伸显示面板及其制作方法 | |
CN107331790A (zh) | 一种oled显示面板及其封装方法、oled显示装置 | |
US20210083225A1 (en) | Display panel and manufacturing method thereof | |
CN110391346B (zh) | 一种显示面板及其制备方法、显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18916786 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18916786 Country of ref document: EP Kind code of ref document: A1 |