WO2019202678A1 - 部品認識装置、部品実装機および部品認識方法 - Google Patents

部品認識装置、部品実装機および部品認識方法 Download PDF

Info

Publication number
WO2019202678A1
WO2019202678A1 PCT/JP2018/015965 JP2018015965W WO2019202678A1 WO 2019202678 A1 WO2019202678 A1 WO 2019202678A1 JP 2018015965 W JP2018015965 W JP 2018015965W WO 2019202678 A1 WO2019202678 A1 WO 2019202678A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
head unit
position information
unit
imaging range
Prior art date
Application number
PCT/JP2018/015965
Other languages
English (en)
French (fr)
Inventor
鈴木 守
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2020514840A priority Critical patent/JP6920548B2/ja
Priority to PCT/JP2018/015965 priority patent/WO2019202678A1/ja
Publication of WO2019202678A1 publication Critical patent/WO2019202678A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • This invention relates to a technology for recognizing a part by imaging the part with a camera.
  • a component mounter that mounts a component supplied from a component supply unit on a substrate carried by a substrate transport unit that transports the substrate in the transport direction by a head is known.
  • component recognition for recognizing a component sucked by the head is appropriately executed. This component recognition is performed by imaging a component that passes through the imaging range of the camera as the head moves.
  • Patent Document 2 it is necessary to perform an operation for converting a line image captured by the line sensor in accordance with the inclination angle of the line sensor. Therefore, there has been a problem that the amount of calculation required for component recognition increases.
  • the present invention has been made in view of the above problems, and enables the recognition of a component moving in either the first direction or the second direction to be executed while reducing the amount of calculation required for component recognition.
  • the purpose is to provide technology.
  • the first position indicating the position of the head unit in the first direction output from the first encoder provided in the first motor that drives the head unit holding the component in the first direction.
  • Position information, and second position information indicating the position of the head unit in the second direction which is output from a second encoder provided in a second motor that drives the head unit in a second direction orthogonal to the first direction;
  • a position information selection unit that selects one of them as position information, a camera that captures the imaging range with an area sensor, and causes the camera to perform imaging at a timing according to the position information selected by the position information selection unit
  • a control unit that images a part that passes through the imaging range, and the position information selection unit passes through the imaging range as the head unit moves in parallel to the first direction. If that is selected as the position information of the first position information, when the head unit is passed through the imaging range by moving in parallel in the second direction is selected as the location information of the second position information.
  • the first position indicating the position of the head unit in the first direction output from the first encoder provided in the first motor that drives the head unit holding the component in the first direction.
  • Position information, and second position information indicating the position of the head unit in the second direction which is output from a second encoder provided in a second motor that drives the head unit in a second direction orthogonal to the first direction;
  • the first position information is selected as the position information when the head unit moves in parallel with the first direction and passes through the imaging range. Tsu bets are in the case of passing through the imaging range by moving in parallel in the second direction the second position information is selected as the position information.
  • a camera that captures an image of a component passing through the imaging range by an area sensor is used. Specifically, a part that passes through the imaging range is imaged by causing the camera to perform imaging at a timing according to position information indicating the position of the head unit.
  • position information indicating the position of the head unit is selected according to the moving direction of the head unit. Imaging is performed at a timing according to the position information. Therefore, even when the component moves in either the first direction or the second direction, the component can be appropriately imaged according to the moving direction.
  • the component recognition it is sufficient for the component recognition to cause the camera to perform imaging at a timing corresponding to the position information selected from the first position information and the second position information, and no special calculation is required. As a result, it is possible to reduce the amount of calculation required for component recognition while enabling recognition of components moving in either the first direction or the second direction.
  • the head unit picks up the component supplied from the component supply unit and then mounts the component on the substrate positioned in the second direction of the component supply unit, and the control unit moves the head unit from the component supply unit to the substrate.
  • the component recognition device may be configured so that the camera captures an image of a component that passes through the imaging range in the middle. With such a configuration, it is possible to accurately recognize the parts before being mounted on the board.
  • control unit sets the normal mode in which the camera performs imaging at a timing at which the position of the head unit and the position of the camera have a predetermined relationship in the second direction, and the position of the head unit and the position of the camera from the predetermined relationship.
  • An offset mode in which the camera performs imaging at a timing deviating in two directions can be selectively executed, and at least a part of the components held by the head unit that satisfies a predetermined relationship with the camera is in the second direction of the imaging range.
  • the component recognition apparatus may be configured such that the offset mode is executed when the camera is positioned outside the camera so that the camera performs imaging in a state where all of the components held by the head unit are within the imaging range. .
  • the head unit can hold components with each of a plurality of nozzles arranged circumferentially around a predetermined arrangement center, and the predetermined relationship is determined by the arrangement of the head unit and the optical axis of the camera.
  • the component recognition device may be configured such that the positional relationship matches the.
  • the head unit has one or more nozzle rows composed of a plurality of nozzles arranged in the first direction, each of the plurality of nozzles can hold a component, and the control unit
  • the control unit When all of the components held by the head unit can be placed between two virtual straight lines that coincide with both ends in one direction and are parallel to the second direction, While moving the head unit parallel to the second direction while being placed between two imaginary straight lines, the part that passes through the imaging range is imaged by the camera, while being held by the head unit between the two imaginary straight lines.
  • the part recognition apparatus may be configured to cause the camera to image a part that passes through the imaging range while moving the head unit in parallel in the first direction.
  • the head unit when parts are gathered and adsorbed to a part of the nozzles of the head unit, the head unit is moved in the second direction while the parts are placed between two virtual straight lines.
  • the component recognition can be executed while the head unit is brought close to the substrate from the component supply unit. Therefore, it is possible to quickly mount components by the head unit.
  • a component mounter includes a component supply unit that supplies a component, a substrate transport unit that carries a substrate in, and a head unit that mounts the component supplied by the component supply unit on the substrate carried in by the substrate carry-in unit. And the above component recognition apparatus. Therefore, it is possible to reduce the amount of calculation required for component recognition while enabling recognition of components moving in either the first direction or the second direction.
  • the partial top view which shows typically the component mounting machine which concerns on this invention.
  • the block diagram which shows the electrical constitution with which the component mounting machine of FIG. 1 is provided.
  • the figure which shows typically an example of a structure of the component recognition camera with which the component mounting machine of FIG. 1 is provided.
  • the flowchart which shows the 1st example of the component recognition performed by a component recognition apparatus.
  • the flowchart which shows an example of the normal mode performed by the components recognition of FIG.
  • the flowchart which shows an example of the offset mode performed by the components recognition of FIG.
  • the flowchart which shows an example of the division
  • the top view which shows typically the operation
  • the flowchart which shows the 2nd example of the components recognition performed by a components recognition apparatus.
  • 10 is a flowchart illustrating an example of a Y mode executed in component recognition in FIG. 9.
  • 10 is a flowchart illustrating an example of an X mode executed in component recognition in FIG. 9.
  • the top view which shows typically the operation
  • FIG. 1 is a partial plan view schematically showing a component mounter according to the present invention
  • FIG. 2 is a block diagram showing an electrical configuration of the component mounter shown in FIG.
  • XYZ orthogonal coordinates with the Z direction as the vertical direction are shown as appropriate.
  • the component mounter 1 includes a controller 100 that comprehensively controls the entire apparatus.
  • the controller 100 is a computer having an arithmetic processing unit 110, which is a processor composed of a CPU (Central Processing Unit) and a RAM (Random Access Memory), and a storage unit 120 composed of an HDD (Hard Disk Drive).
  • arithmetic processing unit 110 which is a processor composed of a CPU (Central Processing Unit) and a RAM (Random Access Memory)
  • HDD Hard Disk Drive
  • controller 100 includes a drive control unit 130 that controls the drive system of the component mounter 1 and an imaging control unit 140 that controls the imaging system of the component mounter 1.
  • controller 100 and the component recognition camera 5 described later in detail constitute the component recognition device 9 according to the present invention.
  • the arithmetic processing unit 110 controls the drive control unit 130 and the imaging control unit 140 according to the mounting program stored in the storage unit 120, thereby executing component mounting specified by the mounting program. At this time, the arithmetic processing unit 110 controls component mounting based on the image IM captured by the component recognition camera 5 by the imaging control unit 140.
  • the component mounter 1 is provided with a display / operation unit 150, and the arithmetic processing unit 110 displays the status of the component mounter 1 on the display / operation unit 150 or inputs it to the display / operation unit 150. Or accepting instructions from a designated worker.
  • the component mounter 1 includes a pair of conveyors 12 and 12 provided on a base 11. And the component mounting machine 1 mounts components on the board
  • the completed board B is carried out from the mounting processing position to the downstream side in the X direction by the conveyor 12.
  • a pair of Y-axis rails 21 and 21 parallel to the Y direction orthogonal to the X direction, a Y-axis ball screw 22 parallel to the Y direction, and a Y-axis motor My that rotationally drives the Y-axis ball screw 22 (Servo motor) is provided, and an X-axis rail 23 parallel to the X-direction is fixed to a nut of the Y-axis ball screw 22 in a state supported by the pair of Y-axis rails 21 and 21 so as to be movable in the Y-direction.
  • An X-axis ball screw 24 parallel to the X direction and an X-axis motor Mx (servo motor) that rotationally drives the X-axis ball screw 24 are attached to the X-axis rail 23, and the head unit 20 is attached to the X-axis rail 23. It is fixed to the nut of the X-axis ball screw 24 while being supported so as to be movable in the X direction.
  • the drive control unit 130 of FIG. 2 includes a servo amplifier 131 that controls the X-axis motor Mx and the Y-axis motor My.
  • the servo amplifier 131 rotates the Y-axis ball screw 22 by the Y-axis motor My to move the head unit 20 in parallel in the Y direction, or rotates the X-axis ball screw 24 by the X-axis motor Mx to move the head unit 20 to X. Move parallel to the direction.
  • an X-axis encoder Ex that outputs the rotational position of the X-axis motor Mx as the position of the head unit 20 in the X direction (X coordinate Px) is provided.
  • a Y-axis encoder Ey that outputs the rotational position of the Y-axis motor My as the position (Y coordinate Py) of the head unit 20 in the Y direction. Then, the X coordinate Px of the head unit 20 output from the X axis encoder Ex and the Y coordinate Py of the head unit 20 output from the Y axis encoder Ey are respectively input to the servo amplifier 131. Therefore, the drive control unit 130 can execute servo control for the position of the head unit 20 using the servo amplifier 131.
  • two component supply units 3 are arranged in the X direction on each side of the pair of conveyors 12, 12 in the Y direction.
  • a plurality of tape feeders 31 are detachably mounted side by side in the X direction on each component supply unit 3.
  • the tape feeder 31 extends in the Y direction, and has a component supply location 32 at the tip on the head unit 20 side in the Y direction.
  • a tape containing small piece parts such as an integrated circuit, a transistor, and a capacitor at predetermined intervals is loaded in the tape feeder 31.
  • Each tape feeder 31 intermittently feeds the tape toward the head unit 20 in the Y direction.
  • the components in the tape are sent out in the Y direction (feed direction), and are sequentially supplied to the component supply locations 32 of each tape feeder 31.
  • the head unit 20 has a so-called rotary type mounting head 4. That is, the mounting head 4 has a plurality (eight) nozzles 41 arranged circumferentially at equal angular intervals around the rotation axis R4, and the plurality of nozzles 41 can rotate around the rotation axis R4. is there. Then, the mounting head 4 sucks and mounts the components by the nozzles 41. Specifically, the mounting head 4 moves above the tape feeder 31 and sucks (picks up) the component supplied to the component supply location 32 by the tape feeder 31 by the nozzle 41. The mounting head 4 moves above the substrate B at the mounting processing position and mounts the component on the substrate B while holding the component.
  • a component recognition camera 5 attached to the base 11 facing upward in the component mounter 1 is disposed between the component supply unit 3 and the conveyor 12 in the Y direction.
  • the component recognition camera 5 captures an image of the component adsorbed by the nozzle 41 of the mounting head 4 positioned above from below while keeping the component in its imaging range F (field of view). Then, the imaging control unit 140 recognizes the component sucked by the nozzle 41 based on the image IM captured by the component recognition camera 5, and determines whether the sucked state of the component is good or bad.
  • FIG. 3 is a diagram schematically showing an example of the configuration of a component recognition camera provided in the component mounter of FIG.
  • the component recognition camera 5 includes a light irradiating unit 51 that irradiates light within the imaging range F, an imaging unit 55 that captures the component irradiated with light from the light irradiating unit 51 from below, and a light irradiating unit 51. And a housing 59 that supports the imaging unit 55.
  • a concave portion 591 is formed in the upper portion of the housing 59, and a slit 592 that opens in the Z direction is provided in the bottom portion of the concave portion 591.
  • An internal space 593 is provided below the slit 592 in the housing 59.
  • the light irradiation unit 51 includes a main illumination 511, a side illumination 512, and a coaxial illumination 513.
  • Each of the main illumination 511, the side illumination 512, and the coaxial illumination 513 has a configuration in which a plurality of LEDs (Light (Emitting Diode) are two-dimensionally arranged.
  • the main illumination 511 is disposed on the lower side of the inner wall of the recess 591 to irradiate light to the component from obliquely below, and the side illumination 512 is disposed on the upper side of the main illumination 511 on the inner wall of the recess 591, The part is irradiated with light.
  • the coaxial illumination 513 is disposed on the inner wall of the internal space 593 and irradiates the component with light from below through the beam splitter 57. That is, the beam splitter 57 is arranged in the internal space 593 of the housing 59, and the light emitted from the coaxial illumination 513 is reflected by the beam splitter 57 and then passes through the slit 592 and is irradiated to the component.
  • the imaging unit 55 is disposed in the internal space 593 of the housing 59 and faces the slit 592 from below.
  • a beam splitter 57 is disposed between the slit 592 and the imaging unit 55, and the imaging unit 55 is reflected by the component illuminated by the light irradiation unit 51 and then passes through the slit 592 and the beam splitter 57.
  • the imaging unit 55 is a COMS (Complementary MOS) image sensor or a CCD (Charge-Coupled). Device) has an area sensor 551 composed of a solid-state image sensor such as an image sensor, and a lens 552 arranged so that its optical axis O5 is parallel to the Z direction. Then, the lens 552 forms an image of the light reflected by the component within the imaging range F on the area sensor 551, whereby the component image IM is captured by the area sensor 551.
  • COMS Complementary MOS
  • CCD Charge-Coupled
  • the imaging control unit 140 that controls the component recognition camera 5 includes a switching unit 141 and an image reading board 142 as shown in FIG.
  • the switching unit 141 is provided to select a position coordinate to be transferred to the image reading board 142 from the X coordinate Px and the Y coordinate Py of the head unit 20 received from the servo amplifier 131. That is, when the head unit 20 picks up the component from the component supply location 32 and moves upward on the substrate B, the component recognition is executed by imaging the component while passing the component in the imaging range F. The At this time, the direction in which the component is moved in the imaging range F is one of the X direction and the Y direction. Therefore, the switching unit 141 selectively outputs one of the X coordinate Px and the Y coordinate Py according to the moving direction of the component as position information P20 to the image reading board 142.
  • the image reading board 142 outputs the imaging trigger Tr to the component recognition camera 5 at a timing according to the position of the head unit 20 indicated by the position information P20. Then, the component recognition camera 5 captures an image of the component that has reached the imaging range F by performing imaging in response to reception of the imaging trigger Tr. The component image IM captured by the component recognition camera 5 is transferred to the image reading board 142 of the imaging control unit 140, and the imaging control unit 140 recognizes the component sucked by the head unit 20 based on the component image IM. To do. Next, this part recognition will be described in detail.
  • FIG. 4 is a flowchart showing a first example of component recognition executed by the component recognition apparatus
  • FIG. 5 is a flowchart showing an example of a normal mode executed in the component recognition of FIG. 4
  • FIG. 7 is a flowchart showing an example of an offset mode executed in parts recognition
  • FIG. 7 is a flowchart showing an example of a division mode executed in parts recognition in FIG. 4
  • FIG. 8 is an operation executed in accordance with the flowchart in FIG. It is a top view which shows typically.
  • the mounting head 4 of the head unit 20 is arranged so that the long direction of the component C is parallel to the Y direction. Does adsorption.
  • the suction mode of the component C is not limited to this example.
  • the component C which is a rectangle by planar view is illustrated, the point that the shape of the component C is not restricted to this is the same.
  • step S101 in FIG. 4 the arithmetic processing unit 110 determines whether all of the parts C sucked by the head unit 20 can be imaged at a time in the normal mode.
  • this normal mode as shown in the column “Normal position” in FIG. 8, the component recognition camera is in a state where the rotation axis R4 of the mounting head 4 of the head unit 20 and the optical axis O5 of the component recognition camera 5 coincide. 5 images the component C adsorbed by the mounting head 4.
  • step S101 when the arithmetic processing unit 110 determines that all of the components C attracted to the mounting head 4 are within the imaging range F, the arithmetic processing unit 110 determines that all components C can be imaged in the normal mode (YES).
  • the determination regarding the positional relationship between the imaging range F and the part C is executed based on board data including data related to the specification of the part C attracted by each nozzle 41, and part data indicating the shape and size of the part C. . This also applies to the following.
  • step S102 component recognition is executed in the normal mode (step S102).
  • the head unit 20 starts moving by the drive control unit 130, and the component C sucked by the head unit 20 from the component supply location 32 starts moving to the imaging range F ( Step S201).
  • the drive control unit 130 moves the component C in parallel to the Y direction while matching the X coordinate Px of the head unit 20 and the position (X coordinate) of the optical axis O5 of the component recognition camera 5 in the X direction.
  • the component C enters the imaging range F (step S202).
  • the component C moves in parallel to the Y direction in the imaging range F while approaching the board B carried by the conveyor 12.
  • the switching unit 141 transfers the Y coordinate Py of the X coordinate Px and the Y coordinate Py of the head unit 20 to the image reading board 142 as the position information P20 of the head unit 20. Output. Then, the image reading board 142 determines whether the head unit 20 has reached the normal position based on the Y coordinate Py of the head unit 20 (step S203).
  • the normal position is a position of the head unit 20 when the rotation axis R4 of the mounting head 4 and the optical axis O5 of the component recognition camera 5 coincide with each other, as shown in the column “Normal position” in FIG. is there.
  • the image reading board 142 determines that the head unit 20 has reached the normal position (YES), it outputs an imaging trigger Tr to the component recognition camera 5 (step S204), and the component recognition camera 5 images the component C. (Step S205).
  • the image IM of the component C thus captured is transferred to the image reading board 142 and used for component recognition.
  • the arithmetic processing unit 110 determines whether or not all the parts C sucked by the head unit 20 can be imaged at a time in the offset mode. .
  • this offset mode as shown in the column of “offset position” in FIG. 8, the rotation axis R4 of the mounting head 4 of the head unit 20 and the optical axis O5 of the component recognition camera 5 are offset in the Y direction by an offset amount d.
  • the component recognition camera 5 captures an image of the component C sucked by the mounting head 4.
  • step S103 when the arithmetic processing unit 110 determines that all of the components C attracted to the mounting head 4 are within the imaging range F, it determines that all components C can be imaged in the offset mode (YES). When a part of the component C attracted by the mounting head 4 is located outside the imaging range F, it is determined that all components C cannot be imaged (NO) in the offset mode. Specifically, the offset amount d that allows all the components C held by the head unit 20 to be positioned in the imaging range F by shifting the head unit 20 by the offset amount d in the Y direction with respect to the component recognition camera 5. Based on the result of determining whether or not exists, the determination in step S103 is executed.
  • step S104 component recognition is executed in the offset mode (step S104).
  • step S301 the movement of the component C to the imaging range F is started (step S301), and the component C enters the imaging range F parallel to the Y direction (step S302).
  • steps S301 and S302 are the same as the operations in steps S201 and S202 in the normal mode.
  • the switching unit 141 outputs the Y coordinate Py of the head unit 20 to the image reading board 142 as the position information P20 of the head unit 20. Then, the image reading board 142 determines whether the head unit 20 has reached the offset position based on the Y coordinate Py of the head unit 20 (step S303).
  • the offset position includes the rotation axis R ⁇ b> 4 of the mounting head 4 and component recognition in order to place all the components C attracted by the head unit 20 in the imaging range F. This is the position of the head unit 20 when the optical axis O5 of the camera 5 is shifted by an offset amount d in the Y direction.
  • the image reading board 142 determines that the head unit 20 has reached the offset position (YES)
  • the image reading board 142 outputs the imaging trigger Tr to the component recognition camera 5 (step S304), and the component recognition camera 5 images the component C. (Step S305).
  • the image IM of the component C thus captured is transferred to the image reading board 142 and used for component recognition.
  • step S105 component recognition is executed in the division mode (step S105).
  • imaging of all the parts C sucked by the head unit 20 is performed by performing imaging a plurality of times while moving the parts C in the Y direction within the imaging range F.
  • the arithmetic processing unit 110 determines a necessary number of times of imaging Nx that is necessary for dividing the imaging of all the parts C (step S401).
  • the arithmetic processing unit 110 resets the count value N of the number of imaging times to zero (step S402), and then increments the count value N (step S403).
  • step S404 the movement of the component C to the imaging range F is started (step S404), and the component C enters the imaging range F in parallel with the Y direction (step S405).
  • steps S404 and S405 are the same as the operations in steps S201 and S202 in the normal mode.
  • the switching unit 141 outputs the Y coordinate Py of the head unit 20 to the image reading board 142 as the position information P20 of the head unit 20. Then, the image reading board 142 determines based on the Y coordinate Py of the head unit 20 whether the head unit 20 has reached the position where the N-th imaging is performed (step S406). If the image reading board 142 determines that the head unit 20 has reached the position (YES), it outputs an imaging trigger Tr to the component recognition camera 5 (step S407), and the component recognition camera 5 images the component C. (Step S408).
  • steps S401 to S408 are executed, and all the parts C are imaged.
  • the image IM of the component C thus captured is transferred to the image reading board 142 and used for component recognition.
  • the component recognition can be similarly performed by moving the component C in the X direction.
  • the X coordinate Px may be output as the position information P20 from the switching unit 141 to the image reading board 142 to execute component recognition.
  • the component mounter 1 may be configured so that both the component recognition for moving the component C in the X direction and the component recognition for moving the component C in the Y direction can be executed, and these are used depending on the situation.
  • the component mounter 1 may be configured to execute only one of them.
  • the component recognition camera 5 that images the component C passing through the imaging range F by the area sensor 551 is used.
  • the component C passing through the imaging range F is imaged by causing the component recognition camera 5 to perform imaging at a timing corresponding to the position information P20 indicating the position of the head unit 20.
  • the head is selected from the X coordinate Px (first position information) indicating the position of the head unit 20 in the X direction and the Y coordinate Py (second position information) indicating the position of the head unit 20 in the Y direction. Imaging is performed at a timing according to the position information P20 selected according to the moving direction of the unit 20 (in other words, the direction in which the component C passes the imaging range F).
  • the part C can be appropriately imaged according to the moving direction.
  • the head unit 20 picks up the component C supplied from the component supply unit 3 and then mounts it on the board B positioned in the Y direction of the component supply unit 3. Then, the controller 100 causes the component recognition camera 5 to image the component C that passes through the imaging range F while the head unit 20 moves from the component supply unit 3 to the substrate B. With this configuration, it is possible to accurately recognize the component C before being mounted on the board B.
  • the controller 100 causes the component recognition camera 5 to perform imaging at a timing at which the position of the head unit 20 and the position of the component recognition camera 5 have a predetermined relationship in the Y direction (the relationship indicated by “normal position” in FIG. 8).
  • the normal mode and the offset mode in which the component recognition camera 5 executes imaging at the timing when the position of the head unit 20 and the position of the component recognition camera 5 deviate from the predetermined relationship in the Y direction can be selectively executed.
  • the mounting head 4 is offset d.
  • the offset mode Is executed.
  • the component recognition camera 5 performs imaging in a state where all of the components C held by the head unit 20 are within the imaging range F.
  • all of the components C held by the head unit 20 are executed by executing the offset mode. Can be captured at a time. Therefore, compared with the case where imaging of the component C is performed in a plurality of times, the movement of the head unit 20 in the X direction can be started earlier, and the mounting of the component C by the head unit 20 can be performed quickly.
  • FIG. 9 is a flowchart showing a second example of component recognition executed by the component recognition apparatus
  • FIG. 10 is a flowchart showing an example of the Y mode executed in the component recognition of FIG. 9
  • FIG. FIG. 12 is a flowchart showing an example of an X mode executed in component recognition
  • FIG. 12 is a plan view schematically showing an operation executed in accordance with the flowchart of FIG.
  • the configuration of the head unit 20 is different in the second example compared to the first example. That is, in the head unit 20, four nozzle rows L ⁇ b> 41 configured by arranging a plurality of nozzles 41 in the X direction are arranged in the Y direction, and components can be sucked by each nozzle 41. That is, the head unit 20 is a so-called inline type.
  • the other configurations of the component mounter 1 are common to the first example and the second example.
  • step S501 of FIG. 9 the arithmetic processing unit 110 determines whether or not all the parts C sucked by the head unit 20 can be accommodated inside the imaging range F in the X direction. Specifically, as shown in FIG. 12, the component C held by the head unit 20 between two virtual straight lines V that coincide with both ends of the imaging range F in the X direction and is parallel to the Y direction. It is determined whether the position of the head unit 20 can be adjusted with respect to the position of the component recognition camera 5 so that all are located.
  • step S501 since all the parts C fall within the two virtual straight lines V in the Y direction, “YES” is determined in step S501, and the parts are recognized by the Y mode. Is executed (step S502).
  • the drive control unit 130 starts to move the component C sucked by the head unit 20 from the component supply location 32 to the imaging range F (step S601). Then, the drive control unit 130 moves the component C parallel to the Y direction while keeping all the components C between the two virtual straight lines V, and causes the component C to enter the imaging range F (step S602). As a result, the component C moves in parallel to the Y direction in the imaging range F while approaching the board B carried by the conveyor 12.
  • the switching unit 141 While the part C moves in the Y direction within the imaging range F, the switching unit 141 outputs the Y coordinate Py of the head unit 20 to the image reading board 142 as the position information P20 of the head unit 20. Then, the image reading board 142 outputs the imaging trigger Tr to the component recognition camera 5 at a timing corresponding to the Y coordinate Py of the head unit 20, thereby causing the component recognition camera 5 to image the component C that has reached the imaging range F. (Step S603). At this time, if all the parts C can be accommodated in the imaging range F, all the parts C may be imaged once, and if not, all the parts C may be imaged in multiple times. As a result, the number of times of imaging can be minimized and the time required for imaging the component C can be shortened.
  • step S501 since some of the parts C go outside the two virtual straight lines V, “NO” is determined in step S501, and the parts are recognized by the X mode. It is executed (step S503).
  • the drive control unit 130 starts moving the component C sucked by the head unit 20 from the component supply location 32 to the imaging range F (step S701). Then, the drive control unit 130 moves the component C in parallel to the X direction while positioning all of the components C attracted by the head unit 20 inside the imaging range F in the Y direction, and thereby captures the component C in the imaging range. F is entered (step S702).
  • the switching unit 141 While the part C moves in the X direction within the imaging range F, the switching unit 141 outputs the X coordinate Px of the head unit 20 to the image reading board 142 as the position information P20 of the head unit 20. Then, the image reading board 142 outputs the imaging trigger Tr to the component recognition camera 5 at a timing according to the X coordinate Px of the head unit 20, thereby causing the component recognition camera 5 to image the component C that has reached the imaging range F. (Step S703).
  • the X coordinate Px (first position information) indicating the position of the head unit 20 in the X direction and the Y coordinate Py (second position information) indicating the position of the head unit 20 in the Y direction.
  • the imaging is executed at a timing according to the position information P20 selected according to the moving direction of the head unit 20. Therefore, even if the part C moves in any direction of the X direction and the Y direction, the part C can be appropriately imaged according to the moving direction.
  • the controller 100 can store all of the components C held by the head unit 20 between two virtual straight lines V extending in parallel to the Y direction from both ends of the imaging range F in the X direction
  • the component recognition camera 5 causes the component recognition camera 5 to image the component C passing through the imaging range F while moving the head unit 20 in parallel in the Y direction in a state where all of these components C are accommodated between the two virtual straight lines V.
  • the controller 100 cannot fit all of these components C between the two virtual straight lines V, the component C passing the imaging range F while moving the head unit 20 in parallel in the X direction. Is imaged by the component recognition camera 5.
  • the component recognition camera 5 In such a configuration, for example, as shown in the column of “state A1” in FIG.
  • the part C when the part C is collected and adsorbed by some nozzles 41 of the head unit 20, the part C is set to 2.
  • component recognition can be performed while the head unit 20 is brought closer to the substrate B from the component supply unit 3. Therefore, the component C can be quickly mounted by the head unit 20.
  • the component mounting machine 1 corresponds to an example of the “component mounting machine” of the present invention
  • the component supply unit 3 corresponds to an example of the “component supply unit” of the present invention
  • the conveyor 12 is the main component.
  • the component recognition device 9 corresponds to an example of the “component recognition device” of the present invention
  • the controller 100 serves as the “position information selection unit” and the “control unit” of the present invention.
  • the component recognition camera 5 corresponds to an example of the “camera” of the present invention
  • the area sensor 551 corresponds to an example of the “area sensor” of the present invention
  • the imaging range F is an example of the “imaging range” of the present invention.
  • the virtual straight line V corresponds to an example of the “virtual straight line” of the present invention
  • the head unit 20 corresponds to an example of the “head unit” of the present invention
  • the X-axis motor Mx corresponds to the “first motor” of the present invention. In the X direction of the present invention.
  • X axis encoder Ex corresponds to an example of “first encoder” of the present invention
  • X coordinate Px corresponds to an example of “first position information” of the present invention
  • Y axis The motor My corresponds to an example of the “second motor” of the present invention
  • the Y direction corresponds to an example of the “second direction” of the present invention
  • the Y-axis encoder Ey corresponds to an example of the “second encoder” of the present invention.
  • the Y coordinate Py corresponds to an example of “second position information” of the present invention
  • the position information P20 corresponds to an example of “position information” of the present invention, and is shown in the “normal position” column of FIG.
  • the positional relationship between the mounting head 4 of the head unit 20 and the component recognition camera 5 corresponds to an example of the “predetermined relationship” of the present invention
  • the normal mode of FIG. 5 corresponds to an example of the “normal mode” of the present invention
  • 6 offset modes correspond to an example of the “offset mode” of the present invention
  • the rotation axis R4 corresponds to an example of the “arrangement center” of the present invention
  • the optical axis O5 corresponds to an example of the “optical axis” of the present invention
  • the nozzle 41 corresponds to an example of the “nozzle” of the present invention.
  • the nozzle row L41 corresponds to an example of the “nozzle row” of the present invention
  • the component C corresponds to an example of the “component” of the present invention
  • the substrate B corresponds to an example of the “substrate” of the present invention.
  • the component mounter 1 is configured so that the above-described head unit 20 can be replaced, and the rotary type head unit 20 and the inline type head unit 20 can be used as appropriate. Also good.
  • the rotary type head unit 20 is attached, the part C is moved in the Y direction to execute part recognition.
  • the inline type head unit 20 is attached, the part C is moved in the X direction.
  • the component recognition may be executed by moving to. In this case, the replacement of the head unit 20 can be easily handled by simply switching the position information P20 output from the switching unit 141 between the X coordinate Px and the Y coordinate Py.
  • the positional relationship between the mounting head 4 and the component recognition camera 5 at the “normal position” shown in FIG. 8 is not limited to the above example, and may be changed as appropriate.
  • the number of nozzles 41 in the rotary type head unit 20 and the number of nozzle rows L41 in the inline type head unit 20 can be appropriately changed. Therefore, the number of nozzle rows L41 may be one.
  • Y-axis encoder (second encoder) Px ... X coordinate (first position information) Py ... Y coordinate (second position information) P20: Position information X: X direction (first direction) Y ... Y direction (second direction) B ... Board C ... Parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

ヘッドユニット20の位置を示す位置情報P20に応じたタイミングで部品認識カメラ5に撮像を実行させることで、撮像範囲Fを通過する部品Cが撮像される。しかも、ヘッドユニット20のX方向への位置を示すX座標Pxと、ヘッドユニット20のY方向への位置を示すY座標Pyとのうちから、ヘッドユニット20の移動方向に応じて選択された位置情報P20に応じたタイミングで撮像が実行される。そのため、X方向およびY方向のいずれの方向に部品Cが移動する場合であっても、その移動方向に応じて適切に部品Cを撮像できる。つまり、部品認識には、X座標PxおよびY座標Pyから選択した位置情報P20に応じたタイミングで部品認識カメラ5に撮像を実行させれば足り、特別な演算を要しない。その結果、X方向およびY方向のいずれの方向に移動する部品Cの認識も実行可能としつつ、部品Cの認識に要する演算量を低減することが可能となっている。

Description

部品認識装置、部品実装機および部品認識方法
 この発明は、カメラにより部品を撮像することで部品を認識する技術に関する。
 従来、搬送方向に基板を搬送する基板搬送部によって搬入した基板に、部品供給部から供給される部品をヘッドにより実装する部品実装機が知られている。このような部品実装機では、特許文献1、2に示されるように、ヘッドによって吸着された部品を認識する部品認識が適宜実行される。この部品認識は、ヘッドの移動に伴ってカメラの撮像範囲を通過する部品を撮像することで実行される。
 この際、ヘッドの移動方向としては、基板の搬送方向である第1方向と、これに直交する第2方向とが一般に存在する。そこで、特許文献2では、第1方向および第2方向に対して45度傾斜させたラインセンサーにより部品を撮像することで、第1方向および第2方向のいずれの方向に移動する部品の認識も実行可能としている。
WO2015/011851号公報 特開2012-174816号公報
 ただし、特許文献2の技術によると、ラインセンサーによって撮像されたライン画像を、ラインセンサーの傾斜角度に応じて変換する演算が必要となる。そのため、部品の認識に要する演算量が増大するといった問題があった。
 この発明は上記課題に鑑みなされたものであり、第1方向および第2方向のいずれの方向に移動する部品の認識も実行可能としつつ、部品の認識に要する演算量を低減することを可能とする技術の提供を目的とする。
 本発明に係る部品認識装置は、部品を保持するヘッドユニットを第1方向に駆動する第1モーターに設けられた第1エンコーダーから出力される、ヘッドユニットの第1方向への位置を示す第1位置情報と、第1方向に直交する第2方向にヘッドユニットを駆動する第2モーターに設けられた第2エンコーダーから出力される、ヘッドユニットの第2方向への位置を示す第2位置情報とのうちの一方を、位置情報として選択する位置情報選択部と、その撮像範囲をエリアセンサーにより撮像するカメラと、位置情報選択部により選択された位置情報に応じたタイミングでカメラに撮像を実行させることで、撮像範囲を通過する部品を撮像する制御部とを備え、位置情報選択部は、ヘッドユニットが第1方向に平行に移動して撮像範囲を通過する場合には第1位置情報を位置情報として選択し、ヘッドユニットが第2方向に平行に移動して撮像範囲を通過する場合には第2位置情報を位置情報として選択する。
 本発明に係る部品認識方法は、部品を保持するヘッドユニットを第1方向に駆動する第1モーターに設けられた第1エンコーダーから出力される、ヘッドユニットの第1方向への位置を示す第1位置情報と、第1方向に直交する第2方向にヘッドユニットを駆動する第2モーターに設けられた第2エンコーダーから出力される、ヘッドユニットの第2方向への位置を示す第2位置情報とのうちの一方を、位置情報として選択する工程と、その撮像範囲をエリアセンサーにより撮像するカメラに、選択された位置情報に応じたタイミングで撮像を実行させることで、撮像範囲を通過する部品を撮像する工程とを備え、ヘッドユニットが第1方向に平行に移動して撮像範囲を通過する場合には第1位置情報が位置情報として選択され、ヘッドユニットが第2方向に平行に移動して撮像範囲を通過する場合には第2位置情報が位置情報として選択される。
 このように構成された本発明(部品認識装置、部品認識方法)では、その撮像範囲を通過する部品をエリアセンサーにより撮像するカメラが用いられる。具体的には、ヘッドユニットの位置を示す位置情報に応じたタイミングでカメラに撮像を実行させることで、撮像範囲を通過する部品が撮像される。しかも、ヘッドユニットの第1方向への位置を示す第1位置情報と、ヘッドユニットの第2方向への位置を示す第2位置情報とのうちから、ヘッドユニットの移動方向に応じて選択された位置情報に応じたタイミングで撮像が実行される。そのため、第1方向および第2方向のいずれの方向に部品が移動する場合であっても、その移動方向に応じて適切に部品を撮像できる。かかる本発明によれば、部品認識には、第1位置情報および第2位置情報から選択した位置情報に応じたタイミングでカメラに撮像を実行させれば足り、特別な演算を要しない。その結果、第1方向および第2方向のいずれの方向に移動する部品の認識も実行可能としつつ、部品の認識に要する演算量を低減することが可能となっている。
 また、ヘッドユニットは、部品供給部から供給された部品をピックアップしてから、部品供給部の第2方向に位置する基板に実装し、制御部は、ヘッドユニットが部品供給部から基板へ移動する途中で撮像範囲を通過する部品をカメラに撮像させるように、部品認識装置を構成しても良い。かかる構成では、基板に実装される前の部品を的確に認識することができる。
 また、制御部は、ヘッドユニットの位置とカメラの位置とが第2方向において所定関係となるタイミングでカメラに撮像を実行させる通常モードと、ヘッドユニットの位置とカメラの位置とが所定関係から第2方向にずれるタイミングでカメラに撮像を実行させるオフセットモードとを選択的に実行可能であり、カメラに対して所定関係を満たすヘッドユニットに保持される部品の少なくとも一部が撮像範囲の第2方向の外側に位置する場合にオフセットモードを実行することで、ヘッドユニットに保持される部品の全部を撮像範囲に収めた状態でカメラに撮像を実行させるように、部品認識装置を構成しても良い。かかる構成では、通常モードでは、ヘッドユニットに保持される部品の全部を1度に撮像できない場合であっても、オフセットモードを実行することで、ヘッドユニットに保持される部品の全部を1度に撮像できる。したがって、部品の撮像を複数回に分けて行う場合と比較して、ヘッドユニットの第1方向への移動を早く開始でき、ヘッドユニットによる部品の実装を迅速に行うことができる。
 具体的には、ヘッドユニットは、所定の配列中心の周りで円周状に配列された複数のノズルのそれぞれで部品を保持可能であり、所定関係は、ヘッドユニットの配列中心とカメラの光軸とが一致する位置関係であるように、部品認識装置を構成しても良い。
 また、ヘッドユニットは、第1方向に沿って並ぶ複数のノズルで構成されるノズル列を1列以上有し、複数のノズルのそれぞれで部品を保持可能であり、制御部は、撮像範囲の第1方向の両端にそれぞれ一致して第2方向に平行な2本の仮想直線の間に、ヘッドユニットに保持される部品の全部を納められる場合には、ヘッドユニットに保持される部品の全部を2本の仮想直線の間に収めた状態でヘッドユニットを第2方向に平行に移動させつつ、撮像範囲を通過する部品をカメラに撮像させる一方、2本の仮想直線の間にヘッドユニットに保持される部品の全部を納められない場合には、ヘッドユニットを第1方向に平行に移動させつつ、撮像範囲を通過する部品をカメラに撮像させるように、部品認識装置を構成しても良い。かかる構成では、例えば、ヘッドユニットの一部のノズルに部品が集まって吸着されているような場合には、当該部品を2本の仮想直線の間に収めた状態でヘッドユニットを第2方向へ移動させることで、ヘッドユニットを部品供給部から基板へと近づけつつ部品認識を実行できる。そのため、ヘッドユニットによる部品の実装を迅速に行うことができる。
 本発明に係る部品実装機は、部品を供給する部品供給部と、基板を搬入する基板搬送部と、部品供給部により供給された部品を基板搬入部により搬入された基板に実装するヘッドユニットと、上記の部品認識装置とを備える。したがって、第1方向および第2方向のいずれの方向に移動する部品の認識も実行可能としつつ、部品の認識に要する演算量を低減することが可能となっている。
 本発明によれば、第1方向および第2方向のいずれの方向に移動する部品の認識も実行可能としつつ、部品の認識に要する演算量を低減することが可能となる。
本発明に係る部品実装機を模式的に示す部分平面図。 図1の部品実装機が備える電気的構成を示すブロック図。 図1の部品実装機が備える部品認識カメラの構成の一例を模式的に示す図。 部品認識装置により実行される部品認識の第1例を示すフローチャート。 図4の部品認識で実行される通常モードの一例を示すフローチャート。 図4の部品認識で実行されるオフセットモードの一例を示すフローチャート。 図4の部品認識で実行される分割モードの一例を示すフローチャート。 図4のフローチャートに従って実行される動作を模式的に示す平面図。 部品認識装置により実行される部品認識の第2例を示すフローチャート。 図9の部品認識で実行されるYモードの一例を示すフローチャート。 図9の部品認識で実行されるXモードの一例を示すフローチャート。 図9のフローチャートに従って実行される動作を模式的に示す平面図。
 図1は本発明に係る部品実装機を模式的に示す部分平面図であり、図2は図1の部品実装機が備える電気的構成を示すブロック図である。図1および以下の図では、Z方向を鉛直方向とするXYZ直交座標を適宜示す。図2に示すように、部品実装機1は、装置全体を統括的に制御するコントローラー100を備える。コントローラー100は、CPU(Central Processing Unit)やRAM(Random Access Memory)で構成されたプロセッサーである演算処理部110およびHDD(Hard Disk Drive)で構成された記憶部120を有するコンピューターである。さらに、コントローラー100は、部品実装機1の駆動系を制御する駆動制御部130と、部品実装機1の撮像系を制御する撮像制御部140とを有する。そして、この実施形態では、コントローラー100と、後に詳述する部品認識カメラ5とが、本発明に係る部品認識装置9を構成する。
 演算処理部110は記憶部120に記憶される実装プログラムに従って駆動制御部130および撮像制御部140を制御することで、実装プログラムが規定する部品実装を実行する。この際、演算処理部110は撮像制御部140が部品認識カメラ5により撮像した画像IMに基づき、部品実装を制御する。また、部品実装機1には、表示/操作ユニット150が設けられており、演算処理部110は、部品実装機1の状況を表示/操作ユニット150に表示したり、表示/操作ユニット150に入力された作業者からの指示を受け付けたりする。
 図1に示すように、部品実装機1は、基台11の上に設けられた一対のコンベア12、12を備える。そして、部品実装機1は、コンベア12によりX方向(基板搬送方向)の上流側から実装処理位置(図1の基板Bの位置)に搬入した基板Bに対して部品を実装し、部品実装を完了した基板Bをコンベア12により実装処理位置からX方向の下流側へ搬出する。
 この部品実装機1では、X方向に直交するY方向に平行な一対のY軸レール21、21と、Y方向に平行なY軸ボールネジ22と、Y軸ボールネジ22を回転駆動するY軸モーターMy(サーボモーター)とが設けられ、X方向に平行なX軸レール23が一対のY軸レール21、21にY方向に移動可能に支持された状態でY軸ボールネジ22のナットに固定されている。X軸レール23には、X方向に平行なX軸ボールネジ24と、X軸ボールネジ24を回転駆動するX軸モーターMx(サーボモーター)とが取り付けられており、ヘッドユニット20がX軸レール23にX方向に移動可能に支持された状態でX軸ボールネジ24のナットに固定されている。
 これに対して、図2の駆動制御部130は、X軸モーターMxおよびY軸モーターMyを制御するサーボアンプ131を有する。このサーボアンプ131は、Y軸モーターMyによりY軸ボールネジ22を回転させてヘッドユニット20をY方向に平行に移動させ、あるいはX軸モーターMxによりX軸ボールネジ24を回転させてヘッドユニット20をX方向に平行に移動させる。また、X軸モーターMxに対しては、X軸モーターMxの回転位置を、X方向におけるヘッドユニット20の位置(X座標Px)として出力するX軸エンコーダーExが設けられ、Y軸モーターMyに対しては、Y軸モーターMyの回転位置を、Y方向におけるヘッドユニット20の位置(Y座標Py)として出力するY軸エンコーダーEyが設けられている。そして、X軸エンコーダーExから出力されたヘッドユニット20のX座標PxおよびY軸エンコーダーEyから出力されたヘッドユニット20のY座標Pyは、それぞれサーボアンプ131に入力される。したがって、駆動制御部130は、サーボアンプ131を用いて、ヘッドユニット20の位置に対するサーボ制御を実行することができる。
 図1に示すように、一対のコンベア12、12のY方向の両側それぞれでは、2つの部品供給部3がX方向に並んでいる。各部品供給部3に対しては、複数のテープフィーダー31がX方向に並んで着脱可能に装着されている。テープフィーダー31はY方向に延設されており、Y方向におけるヘッドユニット20側の先端部に部品供給箇所32を有する。そして、集積回路、トランジスター、コンデンサ等の小片状の部品を所定間隔おきに収納したテープがテープフィーダー31に装填されている。各テープフィーダー31は、テープをヘッドユニット20側へ向けてY方向に間欠的に送り出す。これによって、テープ内の部品がY方向(フィード方向)に送り出されて、各テープフィーダー31の部品供給箇所32に順番に供給される。
 ヘッドユニット20は、いわゆるロータリー型の実装ヘッド4を有する。つまり、実装ヘッド4は、回転軸R4を中心に円周状に等角度間隔で配列された複数(8個)のノズル41を有し、複数のノズル41は回転軸R4を中心に回転可能である。そして、実装ヘッド4は、各ノズル41により部品の吸着・実装を行う。具体的には、実装ヘッド4はテープフィーダー31の上方へ移動して、テープフィーダー31により部品供給箇所32に供給された部品をノズル41により吸着(ピックアップ)する。実装ヘッド4はこうして部品を保持した状態で、実装処理位置の基板Bの上方に移動して基板Bに部品を実装する。
 さらに、部品実装機1で、上方を向いて基台11に取り付けられた部品認識カメラ5が、Y方向における部品供給部3とコンベア12との間に配置されている。部品認識カメラ5は、上方に位置する実装ヘッド4のノズル41に吸着された部品を、その撮像範囲F(視野)に収めつつ下方から撮像する。そして、撮像制御部140は、部品認識カメラ5が撮像した画像IMに基づき、ノズル41に吸着される部品を認識して、部品の吸着状態の良否等を判定する。
 図3は図1の部品実装機が備える部品認識カメラの構成の一例を模式的に示す図である。部品認識カメラ5は、撮像範囲F内の部品に対して光を照射する光照射部51と、光照射部51により光が照射された部品を下方から撮像する撮像部55と、光照射部51および撮像部55を支持するハウジング59とを有する。ハウジング59の上部には凹部591が形成され、凹部591の底部にZ方向へ開口するスリット592が設けられている。また、ハウジング59内のスリット592より下方には、内部空間593が設けられている。
 光照射部51は、メイン照明511、サイド照明512および同軸照明513を有する。メイン照明511、サイド照明512および同軸照明513のそれぞれは、複数のLED(Light Emitting Diode)を二次元的に配列した構成を有する。メイン照明511は、凹部591の内壁のうち下側に配置されて、斜め下方から部品に光を照射し、サイド照明512は凹部591の内壁のうちメイン照明511より上側に配置されて、側方から部品に光を照射する。また、同軸照明513は、内部空間593の内壁に配置され、ビームスプリッター57を介して、下方から部品に光を照射する。つまり、ハウジング59の内部空間593にはビームスプリッター57が配置されており、同軸照明513から射出された光は、ビームスプリッター57で反射されてから、スリット592を通過して部品に照射される。
 また、撮像部55は、ハウジング59の内部空間593に配置され、スリット592に下方から対向している。スリット592と撮像部55との間にはビームスプリッター57が配置されており、撮像部55は、光照射部51により照らされた部品により反射されてから、スリット592およびビームスプリッター57を通過した光を撮像する。この撮像部55は、COMS(Complementary MOS)イメージセンサーあるいはCCD(Charge-Coupled
Device)イメージセンサー等の固体撮像素子で構成されたエリアセンサー551と、その光軸O5がZ方向に平行となるように配置されたレンズ552とを有する。そして、レンズ552が撮像範囲F内の部品により反射された光をエリアセンサー551に結像することで、部品の画像IMがエリアセンサー551により撮像される。
 かかる部品認識カメラ5を制御する撮像制御部140は、図2に示すように、切換部141と、画像読取ボード142とを有する。切換部141は、サーボアンプ131から受信したヘッドユニット20のX座標PxおよびY座標Pyのうちから、画像読取ボード142に転送する位置座標を選択するために設けられる。つまり、ヘッドユニット20が部品供給箇所32から部品を吸着してから基板Bの上方へ移動する途中において、撮像範囲F内に部品を通過させつつ当該部品を撮像することで、部品認識が実行される。この際、撮像範囲Fで部品を移動させる方向は、X方向およびY方向の一方となる。そこで、切換部141は、X座標PxおよびY座標Pyのうち、部品の移動方向に応じた一方を選択的に位置情報P20として、画像読取ボード142に出力する。
 画像読取ボード142は、位置情報P20が示すヘッドユニット20の位置に応じたタイミングで撮像トリガーTrを部品認識カメラ5に出力する。そして、部品認識カメラ5は、撮像トリガーTrの受信に伴って撮像を行うことで、撮像範囲F内に到達した部品を撮像する。部品認識カメラ5により撮像された部品の画像IMは、撮像制御部140の画像読取ボード142に転送され、撮像制御部140は、部品の画像IMに基づき、ヘッドユニット20に吸着された部品を認識する。続いては、この部品認識について詳述する。
 図4は部品認識装置により実行される部品認識の第1例を示すフローチャートであり、図5は図4の部品認識で実行される通常モードの一例を示すフローチャートであり、図6は図4の部品認識で実行されるオフセットモードの一例を示すフローチャートであり、図7は図4の部品認識で実行される分割モードの一例を示すフローチャートであり、図8は図4のフローチャートに従って実行される動作を模式的に示す平面図である。
 図8に例示するように、長尺方向と当該長尺方向より短い短尺方向を有する部品Cについては、部品Cの長尺方向がY方向に平行になるように、ヘッドユニット20の実装ヘッド4は吸着を行う。ただし、部品Cの吸着態様はこの例に限られないことは言うまでもない。また、平面視で矩形である部品Cが例示されているが、部品Cの形状がこれに限られない点も同様である。
 図4のステップS101では、演算処理部110は、ヘッドユニット20により吸着された部品Cの全部を、通常モードで1度に撮像可能であるかを判定する。この通常モードでは、図8の「通常位置」の欄に示すように、ヘッドユニット20の実装ヘッド4の回転軸R4と、部品認識カメラ5の光軸O5とが一致した状態で、部品認識カメラ5が実装ヘッド4に吸着された部品Cを撮像する。そして、ステップS101では、演算処理部110は、実装ヘッド4に吸着される部品Cの全部が撮像範囲F内に収まると判断すると、通常モードで全部品Cを撮像可能(YES)と判定し、実装ヘッド4に吸着される部品Cの少なくとも一部が撮像範囲Fの外側に位置する場合には、通常モードで全部品Cを撮像不可能(NO)と判定する。なお、図8の「通常位置」の欄に示す例では、一部の部品Cが撮像範囲Fの外側に出ているため、撮像不能(NO)と判定されることとなる。なお、撮像範囲Fと部品Cとの位置関係に関する判断は、各ノズル41が吸着する部品Cの仕様に関するデータ等を含む基板データや、部品Cの形状およびサイズを示す部品データに基づき実行される。この点は、以下においても同様である。
 ステップS101で「YES」と判定されると、通常モードで部品認識が実行される(ステップS102)。図5に示すように、通常モードでは、駆動制御部130によってヘッドユニット20が移動を開始し、部品供給箇所32からヘッドユニット20により吸着された部品Cが撮像範囲Fへの移動を開始する(ステップS201)。そして、駆動制御部130は、ヘッドユニット20のX座標Pxと、部品認識カメラ5の光軸O5のX方向への位置(X座標)とを一致させつつY方向に平行に部品Cを移動させて、部品Cを撮像範囲Fに進入させる(ステップS202)。これによって、部品Cは、コンベア12により搬入された基板Bに近づきつつ、撮像範囲F内をY方向に平行に移動する。
 部品Cが撮像範囲F内をY方向へ移動する間、切換部141は、ヘッドユニット20のX座標PxおよびY座標PyのうちY座標Pyをヘッドユニット20の位置情報P20として画像読取ボード142に出力する。そして、画像読取ボード142は、ヘッドユニット20のY座標Pyに基づき、ヘッドユニット20が通常位置に到達したかを判定する(ステップS203)。ここで、通常位置は、図8の「通常位置」の欄に示すように、実装ヘッド4の回転軸R4と、部品認識カメラ5の光軸O5とが一致する場合のヘッドユニット20の位置である。
 そして、画像読取ボード142は、ヘッドユニット20が通常位置に到達した(YES)と判定すると、撮像トリガーTrを部品認識カメラ5に出力し(ステップS204)、部品認識カメラ5が部品Cを撮像する(ステップS205)。こうして撮像された部品Cの画像IMは、画像読取ボード142に転送されて、部品認識に利用される。
 一方、図4のステップS101で「NO」と判定されると、演算処理部110は、ヘッドユニット20により吸着された部品Cの全部を、オフセットモードで1度に撮像可能であるかを判定する。このオフセットモードでは、図8の「オフセット位置」の欄に示すように、ヘッドユニット20の実装ヘッド4の回転軸R4と、部品認識カメラ5の光軸O5とが、オフセット量dだけY方向にずれた状態で、部品認識カメラ5が実装ヘッド4に吸着された部品Cを撮像する。そして、ステップS103では、演算処理部110は、実装ヘッド4に吸着される部品Cの全部が撮像範囲F内に収まると判断すると、オフセットモードで全部品Cを撮像可能(YES)と判定し、実装ヘッド4に吸着される部品Cの一部が撮像範囲Fの外側に位置する場合には、オフセットモードで全部品Cを撮像不可能(NO)と判定する。具体的には、ヘッドユニット20を部品認識カメラ5に対してY方向にオフセット量dだけずらすことで、ヘッドユニット20に保持される全部品Cが撮像範囲Fに位置させることができるオフセット量dが存在するか否かを判断した結果に基づき、ステップS103での判定が実行される。
 ステップS103で「YES」と判定されると、オフセットモードで部品認識が実行される(ステップS104)。図6に示すオフセットモードでは、撮像範囲Fへの部品Cの移動が開始され(ステップS301)、部品CがY方向に平行に撮像範囲Fへ進入する(ステップS302)。これらステップS301、S302の動作は、通常モードでのステップS201、S202の動作と同一である。
 部品Cが撮像範囲F内をY方向へ移動する間、切換部141は、ヘッドユニット20のY座標Pyをヘッドユニット20の位置情報P20として画像読取ボード142に出力する。そして、画像読取ボード142は、ヘッドユニット20のY座標Pyに基づき、ヘッドユニット20がオフセット位置に到達したかを判定する(ステップS303)。ここで、オフセット位置は、図8の「オフセット位置」の欄に示すように、ヘッドユニット20に吸着された全部品Cを撮像範囲Fに収めるために、実装ヘッド4の回転軸R4と部品認識カメラ5の光軸O5とがY方向にオフセット量dだけずれた場合のヘッドユニット20の位置である。
 そして、画像読取ボード142は、ヘッドユニット20がオフセット位置に到達した(YES)と判定すると、撮像トリガーTrを部品認識カメラ5に出力し(ステップS304)、部品認識カメラ5が部品Cを撮像する(ステップS305)。こうして撮像された部品Cの画像IMは、画像読取ボード142に転送されて、部品認識に利用される。
 一方、図4のステップS103で「NO」と判定されると、分割モードで部品認識が実行される(ステップS105)。この分割モードは、部品Cを撮像範囲F内でY方向に移動させつつ複数回の撮像を実行することで、ヘッドユニット20に吸着された全部品Cの撮像を行うものである。図7に示すように、分割モードでは、演算処理部110は、全部品Cの撮像を分割して撮像するために必要となる必要撮像回数Nxを決定する(ステップS401)。そして、演算処理部110は、撮像回数のカウント値Nをゼロにリセットしてから(ステップS402)、カウント値Nをインクリメントする(ステップS403)。そして、撮像範囲Fへの部品Cの移動が開始され(ステップS404)、部品CがY方向に平行に撮像範囲Fへ進入する(ステップS405)。これらステップS404、S405の動作は、通常モードでのステップS201、S202の動作と同一である。
 部品Cが撮像範囲F内をY方向へ移動する間、切換部141は、ヘッドユニット20のY座標Pyをヘッドユニット20の位置情報P20として画像読取ボード142に出力する。そして、画像読取ボード142は、ヘッドユニット20のY座標Pyに基づき、ヘッドユニット20がN回目の撮像を行う位置に到達したかを判定する(ステップS406)。 そして、画像読取ボード142は、ヘッドユニット20が当該位置に到達した(YES)と判定すると、撮像トリガーTrを部品認識カメラ5に出力し(ステップS407)、部品認識カメラ5が部品Cを撮像する(ステップS408)。
 そして、撮像回数のカウント値Nが必要撮像回数Nxとなるまで(ステップS409で「YES」となるまで)、ステップS401~S408が実行され、全部品Cが撮像される。こうして撮像された部品Cの画像IMは、画像読取ボード142に転送されて、部品認識に利用される。
 なお、上記では、Y方向に部品Cを移動させつつ部品認識を行う例を説明したが、X方向に部品Cを移動させることによっても、同様に部品認識を実行できる。この場合には、切換部141から画像読取ボード142にX座標Pxを位置情報P20として出力して、部品認識を実行すれば良い。例えば、部品認識カメラ5がX方向に並ぶ2個の部品供給部3の間に配置されているような場合は、部品CをX方向に移動させる部品認識が好適となる。また、部品CをX方向へ移動させる部品認識と、部品CをY方向へ移動させる部品認識との両方を実行可能として、これらを状況によって使い分けるように部品実装機1を構成しても良いし、いずれか一方のみを実行するように部品実装機1を構成しても良い。
 以上に説明した実施形態では、その撮像範囲Fを通過する部品Cをエリアセンサー551により撮像する部品認識カメラ5が用いられる。具体的には、ヘッドユニット20の位置を示す位置情報P20に応じたタイミングで部品認識カメラ5に撮像を実行させることで、撮像範囲Fを通過する部品Cが撮像される。しかも、ヘッドユニット20のX方向への位置を示すX座標Px(第1位置情報)と、ヘッドユニット20のY方向への位置を示すY座標Py(第2位置情報)とのうちから、ヘッドユニット20の移動方向(換言すれば、部品Cが撮像範囲Fを通過する方向)に応じて選択された位置情報P20に応じたタイミングで撮像が実行される。そのため、X方向およびY方向のいずれの方向に部品Cが移動する場合であっても、その移動方向に応じて適切に部品Cを撮像できる。かかる実施形態によれば、部品認識には、X座標PxおよびY座標Pyから選択した位置情報P20に応じたタイミングで部品認識カメラ5に撮像を実行させれば足り、特別な演算を要しない。その結果、X方向およびY方向のいずれの方向に移動する部品Cの認識も実行可能としつつ、部品Cの認識に要する演算量を低減することが可能となっている。
 また、ヘッドユニット20は、部品供給部3から供給された部品Cをピックアップしてから、部品供給部3のY方向に位置する基板Bに実装する。そして、コントローラー100は、ヘッドユニット20が部品供給部3から基板Bへ移動する途中で撮像範囲Fを通過する部品Cを部品認識カメラ5に撮像させる。かかる構成では、基板Bに実装される前の部品Cを的確に認識することができる。
 また、コントローラー100は、ヘッドユニット20の位置と部品認識カメラ5の位置とがY方向において所定関係(図8の「通常位置」に示す関係)となるタイミングで部品認識カメラ5に撮像を実行させる通常モードと、ヘッドユニット20の位置と部品認識カメラ5の位置とが当該所定関係からY方向にずれるタイミングで部品認識カメラ5に撮像を実行させるオフセットモードとを選択的に実行可能である。そして、部品認識カメラ5に対して当該所定関係を満たすヘッドユニット20に保持される部品Cの少なくとも一部が撮像範囲FのY方向の外側に位置する際には、実装ヘッド4がオフセット量dだけY方向にずれた状態で実装ヘッド4に吸着される部品Cの全部が撮像範囲F内に収まると判断し、オフセットモードで全部品Cを撮像可能(YES)と判定する場合に、オフセットモードが実行される。これによって、ヘッドユニット20に保持される部品Cの全部を撮像範囲Fに収めた状態で部品認識カメラ5が撮像を実行する。かかる構成では、通常モードでは、ヘッドユニット20に保持される部品Cの全部を1度に撮像できない場合であっても、オフセットモードを実行することで、ヘッドユニット20に保持される部品Cの全部を1度に撮像できる。したがって、部品Cの撮像を複数回に分けて行う場合と比較して、ヘッドユニット20のX方向への移動を早く開始でき、ヘッドユニット20による部品Cの実装を迅速に行うことができる。
 図9は部品認識装置により実行される部品認識の第2例を示すフローチャートであり、図10は図9の部品認識で実行されるYモードの一例を示すフローチャートであり、図11は図9の部品認識で実行されるXモードの一例を示すフローチャートであり、図12は図9のフローチャートに従って実行される動作を模式的に示す平面図である。なお、以下では、上記実施形態との差を中心に説明することとし、共通部分は相当符号を付して適宜説明を省略する。ただし、共通する構成を備えることで同様の効果が奏されることは言うまでもない。
 図12に示すように、上記の第1例と比較してこの第2例では、ヘッドユニット20の構成が異なる。つまり、ヘッドユニット20では、複数のノズル41がX方向に配列して構成されるノズル列L41がY方向に4列配列されており、各ノズル41によって部品を吸着することができる。つまり、ヘッドユニット20は、いわゆるインライン型である。なお、部品実装機1のその他の構成は、第1例と第2例とで共通する。
 図9のステップS501では、演算処理部110は、ヘッドユニット20により吸着された部品Cの全部を、X方向において撮像範囲Fの内側に収めることが可能かを判定する。具体的には、図12に示すように、撮像範囲FのX方向の両端にそれぞれ一致してY方向に平行な2本の仮想直線Vの間に、ヘッドユニット20に保持される部品Cの全部が位置するように、ヘッドユニット20の位置を部品認識カメラ5の位置に対して調整できるかが判定される。
 そして、図12の「状態A1」の欄に示す例では、全部品CがY方向の2本の仮想直線Vの間に収まるため、ステップS501で「YES」と判断され、Yモードによって部品認識が実行される(ステップS502)。図10に示すように、Yモードでは、駆動制御部130は、部品供給箇所32からヘッドユニット20により吸着された部品Cの撮像範囲Fへの移動を開始する(ステップS601)。そして、駆動制御部130は、全部品Cを2本の仮想直線Vの間に収めつつY方向に平行に部品Cを移動させて、部品Cを撮像範囲Fに進入させる(ステップS602)。これによって、部品Cは、コンベア12により搬入された基板Bに近づきつつ、撮像範囲F内をY方向に平行に移動する。
 部品Cが撮像範囲F内をY方向へ移動する間、切換部141は、ヘッドユニット20のY座標Pyをヘッドユニット20の位置情報P20として画像読取ボード142に出力する。そして、画像読取ボード142は、ヘッドユニット20のY座標Pyに応じたタイミングで撮像トリガーTrを部品認識カメラ5に出力することで、撮像範囲Fに到達した部品Cを部品認識カメラ5に撮像させる(ステップS603)。この際、全部品Cを撮像範囲Fに収められる場合には、全部品Cを1回で撮像すれば良く、そうでない場合には、全部品Cを複数回に分けて撮像すれば良い。これによって、撮像回数を極力少なく抑えて、部品Cの撮像に要する時間を短縮することができる。
 一方、図12の「状態A2」の欄に示す例では、一部の部品Cが2本の仮想直線Vの外側に出るため、ステップS501で「NO」と判断され、Xモードによって部品認識が実行される(ステップS503)。図12に示すように、Xモードでは、駆動制御部130は、部品供給箇所32からヘッドユニット20により吸着された部品Cの撮像範囲Fへの移動を開始する(ステップS701)。そして、駆動制御部130は、ヘッドユニット20により吸着された部品Cの全部をY方向において撮像範囲Fの内側に位置させつつ、X方向に平行に部品Cを移動させて、部品Cを撮像範囲Fに進入させる(ステップS702)。
 部品Cが撮像範囲F内をX方向へ移動する間、切換部141は、ヘッドユニット20のX座標Pxをヘッドユニット20の位置情報P20として画像読取ボード142に出力する。そして、画像読取ボード142は、ヘッドユニット20のX座標Pxに応じたタイミングで撮像トリガーTrを部品認識カメラ5に出力することで、撮像範囲Fに到達した部品Cを部品認識カメラ5に撮像させる(ステップS703)。
 以上に説明した実施形態では、ヘッドユニット20のX方向への位置を示すX座標Px(第1位置情報)と、ヘッドユニット20のY方向への位置を示すY座標Py(第2位置情報)とのうちから、ヘッドユニット20の移動方向に応じて選択された位置情報P20に応じたタイミングで撮像が実行される。そのため、X方向およびY方向のいずれの方向に部品Cが移動する場合であっても、その移動方向に応じて適切に部品Cを撮像できる。かかる実施形態によれば、部品認識には、X座標PxおよびY座標Pyから選択した位置情報P20に応じたタイミングで部品認識カメラ5に撮像を実行させれば足り、特別な演算を要しない。その結果、X方向およびY方向のいずれの方向に移動する部品Cの認識も実行可能としつつ、部品Cの認識に要する演算量を低減することが可能となっている。
 また、コントローラー100は、撮像範囲FのX方向の両端からY方向に平行にそれぞれ延びる2本の仮想直線Vの間に、ヘッドユニット20に保持される部品Cの全部を納められる場合には、これらの部品Cの全部を2本の仮想直線Vの間に収めた状態でヘッドユニット20をY方向に平行に移動させつつ、撮像範囲Fを通過する部品Cを部品認識カメラ5に撮像させる。一方、コントローラー100は、2本の仮想直線Vの間にこれらの部品Cの全部を納められない場合には、ヘッドユニット20をX方向に平行に移動させつつ、撮像範囲Fを通過する部品Cを部品認識カメラ5に撮像させる。かかる構成では、例えば、図12の「状態A1」の欄に示すように、ヘッドユニット20の一部のノズル41に部品Cが集まって吸着されているような場合には、当該部品Cを2本の仮想直線Vの間に収めた状態でヘッドユニット20をY方向へ移動させることで、ヘッドユニット20を部品供給部3から基板Bへと近づけつつ部品認識を実行できる。そのため、ヘッドユニット20による部品Cの実装を迅速に行うことができる。
 このように本実施形態では、部品実装機1が本発明の「部品実装機」の一例に相当し、部品供給部3が本発明の「部品供給部」の一例に相当し、コンベア12が本発明の「基板搬送部」の一例に相当し、部品認識装置9が本発明の「部品認識装置」の一例に相当し、コントローラー100が本発明の「位置情報選択部」および「制御部」として機能し、部品認識カメラ5が本発明の「カメラ」の一例に相当し、エリアセンサー551が本発明の「エリアセンサー」の一例に相当し、撮像範囲Fが本発明の「撮像範囲」の一例に相当し、仮想直線Vが本発明の「仮想直線」の一例に相当し、ヘッドユニット20が本発明の「ヘッドユニット」の一例に相当し、X軸モーターMxが本発明の「第1モーター」の一例に相当し、X方向が本発明の「第1方向」の一例に相当し、X軸エンコーダーExが本発明の「第1エンコーダー」の一例に相当し、X座標Pxが本発明の「第1位置情報」の一例に相当し、Y軸モーターMyが本発明の「第2モーター」の一例に相当し、Y方向が本発明の「第2方向」の一例に相当し、Y軸エンコーダーEyが本発明の「第2エンコーダー」の一例に相当し、Y座標Pyが本発明の「第2位置情報」の一例に相当し、位置情報P20が本発明の「位置情報」の一例に相当し、図8の「通常位置」の欄に示すヘッドユニット20の実装ヘッド4と部品認識カメラ5との位置関係が本発明の「所定関係」の一例に相当し、図5の通常モードが本発明の「通常モード」の一例に相当し、図6のオフセットモードが本発明の「オフセットモード」の一例に相当し、回転軸R4が本発明の「配列中心」の一例に相当し、光軸O5が本発明の「光軸」の一例に相当し、ノズル41が本発明の「ノズル」の一例に相当し、ノズル列L41が本発明の「ノズル列」の一例に相当し、部品Cが本発明の「部品」の一例に相当し、基板Bが本発明の「基板」の一例に相当する。
 なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば、上記のヘッドユニット20を交換可能とする構成を設けて、ロータリー型のヘッドユニット20と、インライン型のヘッドユニット20とを適宜交換して使用できるように、部品実装機1を構成しても良い。この際、ロータリー型のヘッドユニット20を取り付けた場合には、部品CをY方向に移動させて部品認識を実行する一方、インライン型のヘッドユニット20を取り付けた場合には、部品CをX方向に移動させて部品認識を実行するようにしても良い。この場合、ヘッドユニット20の交換に対して、切換部141から出力する位置情報P20をX座標PxとY座標Pyとの間で切り換えるだけで簡便に対応できる。
 また、図8に示す「通常位置」での実装ヘッド4と部品認識カメラ5との位置関係は、上記の例に限られず、適宜変更しても良い。
 また、ロータリー型のヘッドユニット20におけるノズル41の個数や、インライン型のヘッドユニット20でのノズル列L41の個数も適宜変更が可能である。したがって、ノズル列L41の個数は1個でも構わない。
 1…部品実装機
 12…コンベア(基板搬送部)
 20…ヘッドユニット
 3…部品供給部
 41…ノズル
 L41…ノズル列
 R4…回転軸(配列中心)
 5…部品認識カメラ(カメラ)
 551…エリアセンサー
 F…撮像範囲
 V…仮想直線
 O5…光軸
 9…部品認識装置
 100…コントローラー(位置情報選択部、制御部)
 Mx…X軸モーター(第1モーター)
 My…Y軸モーター(第2モーター)
 Ex…X軸エンコーダー(第1エンコーダー)
 Ey…Y軸エンコーダー(第2エンコーダー)
 Px…X座標(第1位置情報)
 Py…Y座標(第2位置情報)
 P20…位置情報
 X…X方向(第1方向)
 Y…Y方向(第2方向)
 B…基板
 C…部品
 

Claims (7)

  1.  部品を保持するヘッドユニットを第1方向に駆動する第1モーターに設けられた第1エンコーダーから出力される、前記ヘッドユニットの前記第1方向への位置を示す第1位置情報と、前記第1方向に直交する第2方向に前記ヘッドユニットを駆動する第2モーターに設けられた第2エンコーダーから出力される、前記ヘッドユニットの前記第2方向への位置を示す第2位置情報とのうちの一方を、位置情報として選択する位置情報選択部と、
     その撮像範囲をエリアセンサーにより撮像するカメラと、
     前記位置情報選択部により選択された前記位置情報に応じたタイミングで前記カメラに撮像を実行させることで、前記撮像範囲を通過する前記部品を撮像する制御部と
    を備え、
     前記位置情報選択部は、前記ヘッドユニットが前記第1方向に平行に移動して前記撮像範囲を通過する場合には前記第1位置情報を前記位置情報として選択し、前記ヘッドユニットが前記第2方向に平行に移動して前記撮像範囲を通過する場合には前記第2位置情報を前記位置情報として選択する部品認識装置。
  2.  前記ヘッドユニットは、部品供給部から供給された前記部品をピックアップしてから、前記部品供給部の前記第2方向に位置する基板に実装し、
     前記制御部は、前記ヘッドユニットが前記部品供給部から前記基板へ移動する途中で前記撮像範囲を通過する前記部品を前記カメラに撮像させる請求項1に記載の部品認識装置。
  3.  前記制御部は、前記ヘッドユニットの位置と前記カメラの位置とが前記第2方向において所定関係となるタイミングで前記カメラに撮像を実行させる通常モードと、前記ヘッドユニットの位置と前記カメラの位置とが前記所定関係から前記第2方向にずれるタイミングで前記カメラに撮像を実行させるオフセットモードとを選択的に実行可能であり、
     前記カメラに対して前記所定関係を満たす前記ヘッドユニットに保持される前記部品の少なくとも一部が前記撮像範囲の前記第2方向の外側に位置する場合に前記オフセットモードを実行することで、前記ヘッドユニットに保持される前記部品の全部を前記撮像範囲に収めた状態で前記カメラに撮像を実行させる請求項2に記載の部品認識装置。
  4.  前記ヘッドユニットは、所定の配列中心の周りで円周状に配列された複数のノズルのそれぞれで前記部品を保持可能であり、
     前記所定関係は、前記ヘッドユニットの前記配列中心と前記カメラの光軸とが一致する位置関係である請求項3に記載の部品認識装置。
  5.  前記ヘッドユニットは、前記第1方向に沿って並ぶ複数のノズルで構成されるノズル列を1列以上有し、前記複数のノズルのそれぞれで前記部品を保持可能であり、
     前記制御部は、前記撮像範囲の前記第1方向の両端にそれぞれ一致して前記第2方向に平行な2本の仮想直線の間に、前記ヘッドユニットに保持される前記部品の全部を納められる場合には、前記ヘッドユニットに保持される前記部品の全部を前記2本の仮想直線の間に収めた状態で前記ヘッドユニットを前記第2方向に平行に移動させつつ、前記撮像範囲を通過する前記部品を前記カメラに撮像させる一方、前記2本の仮想直線の間に前記ヘッドユニットに保持される前記部品の全部を納められない場合には、前記ヘッドユニットを前記第1方向に平行に移動させつつ、前記撮像範囲を通過する前記部品を前記カメラに撮像させる請求項2に記載の部品認識装置。
  6.  部品を供給する部品供給部と、
     基板を搬入する基板搬送部と、
     前記部品供給部により供給された部品を前記基板搬入部により搬入された前記基板に実装するヘッドユニットと、
     請求項1ないし5のいずれか一項印記載の部品認識装置と
    を備える部品実装機。
  7.  部品を保持するヘッドユニットを第1方向に駆動する第1モーターに設けられた第1エンコーダーから出力される、前記ヘッドユニットの前記第1方向への位置を示す第1位置情報と、前記第1方向に直交する第2方向に前記ヘッドユニットを駆動する第2モーターに設けられた第2エンコーダーから出力される、前記ヘッドユニットの前記第2方向への位置を示す第2位置情報とのうちの一方を、位置情報として選択する工程と、
     その撮像範囲をエリアセンサーにより撮像するカメラに、選択された前記位置情報に応じたタイミングで撮像を実行させることで、前記撮像範囲を通過する前記部品を撮像する工程と
    を備え、
     前記ヘッドユニットが前記第1方向に平行に移動して前記撮像範囲を通過する場合には前記第1位置情報が前記位置情報として選択され、前記ヘッドユニットが前記第2方向に平行に移動して前記撮像範囲を通過する場合には前記第2位置情報が前記位置情報として選択される部品認識方法。
     
PCT/JP2018/015965 2018-04-18 2018-04-18 部品認識装置、部品実装機および部品認識方法 WO2019202678A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020514840A JP6920548B2 (ja) 2018-04-18 2018-04-18 部品認識装置、部品実装機および部品認識方法
PCT/JP2018/015965 WO2019202678A1 (ja) 2018-04-18 2018-04-18 部品認識装置、部品実装機および部品認識方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015965 WO2019202678A1 (ja) 2018-04-18 2018-04-18 部品認識装置、部品実装機および部品認識方法

Publications (1)

Publication Number Publication Date
WO2019202678A1 true WO2019202678A1 (ja) 2019-10-24

Family

ID=68239979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015965 WO2019202678A1 (ja) 2018-04-18 2018-04-18 部品認識装置、部品実装機および部品認識方法

Country Status (2)

Country Link
JP (1) JP6920548B2 (ja)
WO (1) WO2019202678A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210400857A1 (en) * 2020-06-22 2021-12-23 Asm Assembly Systems Gmbh & Co. Kg Placement head with two rotor arrangements with individually actuatable handling devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174292A (ja) * 2001-12-07 2003-06-20 Matsushita Electric Ind Co Ltd 部品実装方法及び部品実装装置
JP2004304120A (ja) * 2003-04-01 2004-10-28 Fuji Mach Mfg Co Ltd 部品実装機における部品吸着位置補正装置
JP2010016115A (ja) * 2008-07-02 2010-01-21 Panasonic Corp 部品実装方法
JP2012174816A (ja) * 2011-02-21 2012-09-10 Panasonic Corp 電子部品実装装置および電子部品実装装置における画像読取り方法
WO2013168450A1 (ja) * 2012-05-10 2013-11-14 ヤマハ発動機株式会社 部品実装装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174292A (ja) * 2001-12-07 2003-06-20 Matsushita Electric Ind Co Ltd 部品実装方法及び部品実装装置
JP2004304120A (ja) * 2003-04-01 2004-10-28 Fuji Mach Mfg Co Ltd 部品実装機における部品吸着位置補正装置
JP2010016115A (ja) * 2008-07-02 2010-01-21 Panasonic Corp 部品実装方法
JP2012174816A (ja) * 2011-02-21 2012-09-10 Panasonic Corp 電子部品実装装置および電子部品実装装置における画像読取り方法
WO2013168450A1 (ja) * 2012-05-10 2013-11-14 ヤマハ発動機株式会社 部品実装装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210400857A1 (en) * 2020-06-22 2021-12-23 Asm Assembly Systems Gmbh & Co. Kg Placement head with two rotor arrangements with individually actuatable handling devices

Also Published As

Publication number Publication date
JP6920548B2 (ja) 2021-08-18
JPWO2019202678A1 (ja) 2021-05-13

Similar Documents

Publication Publication Date Title
JP6014315B2 (ja) 電子部品装着装置の測定方法
KR101400822B1 (ko) 실장기, 그 실장 방법 및 실장기에 있어서의 기판 촬상 수단의 이동 방법
KR101908734B1 (ko) 부품 실장 장치, 정보 처리 장치, 정보 처리 방법 및 기판 제조 방법
KR101051106B1 (ko) 전자부품 실장장치 및 전자부품 실장방법
JP2001230597A (ja) 電気部品位置検出方法
CN105848462B (zh) 部件安装装置及部件安装方法
WO2019202678A1 (ja) 部品認識装置、部品実装機および部品認識方法
JP2009212251A (ja) 部品移載装置
JPWO2014128913A1 (ja) 部品実装システムおよびそれに用いるバルク部品決定方法
JP7312812B2 (ja) 部品装着機
JP5600705B2 (ja) 部品実装装置
JP2009253224A (ja) 部品実装方法
JP2003101299A (ja) 電気回路製造装置、電気回路製造方法および電気回路製造用プログラム
JP5752401B2 (ja) 部品保持方位検出方法
JP2017092175A (ja) 部品実装機、部品吸着方法
JP3264742B2 (ja) 部品実装装置
JP4386419B2 (ja) 部品認識装置及び同装置を搭載した表面実装機並びに部品試験装置
JP6590949B2 (ja) 実装ヘッドの移動誤差検出装置および部品実装装置
CN117322151A (zh) 元件安装机以及电子元件的拍摄方法
JP4298462B2 (ja) 部品認識装置、部品認識方法、表面実装機および部品試験装置
CN112314065B (zh) 安装机及安装系统
JP2013251346A (ja) 電子部品実装装置
JPWO2019012576A1 (ja) 撮像装置、表面実装機及び検査装置
JP2018109550A (ja) 電子部品搬送装置および電子部品検査装置
JP2005127836A (ja) 部品認識方法、部品認識装置、表面実装機、部品試験装置および基板検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514840

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915538

Country of ref document: EP

Kind code of ref document: A1