WO2019198772A1 - 食品製造装置、食品製造システム、食品製造方法及び制御プログラム - Google Patents

食品製造装置、食品製造システム、食品製造方法及び制御プログラム Download PDF

Info

Publication number
WO2019198772A1
WO2019198772A1 PCT/JP2019/015684 JP2019015684W WO2019198772A1 WO 2019198772 A1 WO2019198772 A1 WO 2019198772A1 JP 2019015684 W JP2019015684 W JP 2019015684W WO 2019198772 A1 WO2019198772 A1 WO 2019198772A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooking
cooking object
robot arm
food manufacturing
manufacturing apparatus
Prior art date
Application number
PCT/JP2019/015684
Other languages
English (en)
French (fr)
Inventor
哲也 沢登
Original Assignee
コネクテッドロボティクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コネクテッドロボティクス株式会社 filed Critical コネクテッドロボティクス株式会社
Publication of WO2019198772A1 publication Critical patent/WO2019198772A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B5/00Baking apparatus for special goods; Other baking apparatus
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/04Roasting apparatus with movably-mounted food supports or with movable heating implements; Spits

Definitions

  • the present disclosure relates to a food production apparatus, a food production system, a food production method, and a control program.
  • Patent Document 1 an apparatus for producing a food such as takoyaki by baking a dough made of cereal flour such as wheat flour into a substantially spherical shape.
  • the manufacturing apparatus such as takoyaki disclosed in Patent Document 1 is a takoyaki manufacturing line that employs a belt conveyor. The first line that heats the dough and the oil is drawn to inject ingredients such as dough and tako.
  • the second line is provided in parallel and is a device that automatically injects oil, dough and ingredients from the second line.
  • the first hot plate provided with a concave portion into which dough or the like is first injected and the first hot plate are in a semi-baked state.
  • a takoyaki manufacturing apparatus including a second hot plate provided so as to sandwich the takoyaki that has been formed (see, for example, Patent Document 2).
  • the dough is poured into the recesses of the first hot plate and when it becomes solid to some extent, it is transferred to the second hot plate and sandwiched up and down by the second hot plate. Molded. In this way, takoyaki is improved and the shape is improved.
  • a food production apparatus is a food production apparatus that cooks food by applying heat to the object to be cooked using a cooking device, and cooking the object to be cooked.
  • a control unit that controls the operation of the robot arm.
  • the control unit controls the operation of the cooking device according to the determination result.
  • the control unit controls a first operation and a second operation among a plurality of operations of the robot arm according to a degree of completion of the cooking object. After completion of the predetermined time, the degree of completion of the cooking object is determined again, and the first operation and the second operation are controlled.
  • the control unit is based on the shape and / or color of the cooking object according to the detection state of the cooking object detected by the sensor. And determining the degree of completion of the cooking object.
  • the control unit determines the degree of completion for each of the partitioned areas, and determines a plurality of robot arms according to the determination result. The priority order of the first action and the second action among the actions is determined, and the action of the robot arm is controlled based on the determined priority order.
  • the control unit determines the degree of completion for each of the divided areas, and indicates the degree of completion for each of the divided areas. Display information.
  • the control unit converts the shape and / or color of the cooking object analyzed by machine learning from the past image data of the cooking object. Based on this, the degree of completion of the cooking object is determined.
  • the robot arm moves the cooking utensil that places the cooking object on the cooking device and moves the cooking object. The contact surface of the cooking object with the cooking device is moved.
  • the robot arm In the configuration of any one of (1) to (8), the robot arm is The cooking object is lifted and taken out.
  • the control unit vibrates the cooking device when the cooking device heats the cooking object.
  • the senor includes an imaging unit that captures the cooking object and generates image data.
  • a content injecting unit that injects the cooking object into the cooking device.
  • a food manufacturing system is a robot arm for a food manufacturing apparatus that uses a cooking device to apply heat to an object to be cooked, and performs cooking on the object to be cooked.
  • the degree of completion of the cooking object is determined according to the detection state of the cooking object detected by the sensor and the sensor that detects the state of the cooking object, and according to the determination result, the robot arm
  • a food production device comprising a control unit for controlling the operation; and a server device comprising an analysis unit connected to the food production device and analyzing the state of the cooking object from the image data received from the food production device; .
  • the food production method according to the present invention is a food production method in which heat is applied to a cooking object to be cooked, and the operation of a robot arm is controlled to place the cooking object on the cooking device. And a step of detecting the state of the cooking object by a sensor; a step of determining a degree of completion of the cooking object according to a detection state of the cooking object detected by the sensor; Controlling the operation of the robot arm according to the determination result.
  • the control program of the present invention is a control program for a food manufacturing apparatus that cooks food by applying heat to the cooking object, and controls the operation of a robot arm to place the cooking object on the cooking device.
  • a step of detecting the state of the cooking object by a sensor, a step of determining a degree of completion of the cooking object according to a detection state of the cooking object detected by the sensor, and the determination result In response to this, the step of controlling the operation of the robot arm is executed by an electronic computer.
  • FIG. 3 is a functional block configuration diagram illustrating an exemplary configuration of a computer 300 according to an embodiment of the present disclosure.
  • FIG. 1 is a functional block configuration diagram illustrating a food production system 1 according to Embodiment 1 of the present disclosure.
  • This food production system 1 is a system for producing food, and shows a takoyaki production system that automatically produces takoyaki as an example.
  • the food production system 1 includes a food production apparatus 100, a server apparatus 200, and a network NW.
  • the food manufacturing apparatus 100 and the server apparatus 200 are connected via a network NW.
  • the network NW includes the Internet, a LAN (Local Area Network), a WAN (Wide Area Network), and the like.
  • FIG. 2 is an external view showing the food manufacturing apparatus 100 of FIG. 1, and is a perspective view (a) and a front view (b) showing the food manufacturing apparatus 100.
  • the food manufacturing apparatus 100 is an apparatus that automatically bakes grain flour dough into a substantially spherical shape using a robot arm, and is configured to be mounted on a mounting table TA such as a table.
  • the food manufacturing apparatus 100 includes a heating plate 110, a robot arm 120, an imaging unit 130, a content injection unit 140, an operation terminal 150, and a control unit 160. (Registered trademark) and a LAN so that they can communicate with each other.
  • the heating plate 110 is, for example, an iron plate in which a liquid dough of cereal flour is injected, and a heating device by electric heating or gas combustion is disposed in the lower part (not shown), and the dough is heated and hardened by baking.
  • a heating device by electric heating or gas combustion is disposed in the lower part (not shown), and the dough is heated and hardened by baking.
  • two robot arms 120 are arranged on the left and right sides with the robot arm 120 interposed therebetween.
  • 32 concave portions 111 for firing the injected liquid dough into a substantially spherical shape are arranged on one heating plate 110.
  • the heating plate 110 is configured to vibrate in the front-rear and left-right directions under the control of the control unit 160, and a vibration device such as a vibration motor is disposed in the lower portion to vibrate the heating plate 110 (illustrated). Is omitted). Thus, the heating plate 110 is configured to vibrate. In order to uniformly bake the dough as described later, it is necessary to move the contact surface between the dough and the heating plate 110 and apply heat uniformly. The reason is that the dough can be easily removed from the heating plate 110 by slightly vibrating the heating plate 110.
  • a heating button having a switch function for turning on / off heating of the heating plate 110, a temperature change button for changing the heating level of the heating plate 110, and vibration of the heating plate 110 are turned on / off.
  • the robot arm 120 is a device that performs operations such as grabbing, releasing, and carrying like a human hand, and a series of operations for injecting and baking grain flour dough into the heating plate 110, for example, on the heating plate 110.
  • An injection shown in FIG. 2 (a) for lifting a brush (not shown) for drawing oil such as vegetable oil to draw oil to the heating plate 110 or to inject liquid dough to the heating plate 110 The server S is lifted to inject the dough into the heating plate 110, the contents injecting section 140 to be described later is moved, or the pick P for moving the contact surface of the dough with the heating plate 110 is lifted to the heating plate.
  • 110 is provided for moving the contact surface with 110 or lifting the tongue T for taking out the baked takoyaki and taking out the takoyaki.
  • the injection server S is a container with a handle for storing a liquid dough.
  • a switch for injecting the dough into the handle is provided. When the switch is grasped, the lower part of the container is opened and the liquid dough is lowered. To fall.
  • the pick P is a cooking utensil whose tip is formed in a needle shape and used for rotating takoyaki or the like.
  • the tongue T is a bowl-shaped cooking utensil for grasping and lifting food.
  • the robot arm 120 includes a fixing part 121, an upper arm part 122, a joint part 123, a forearm part 124, a wrist part 125, a support part 126, and a clamping part 127.
  • a fixing part 121 an upper arm part 122, a joint part 123, a forearm part 124, a wrist part 125, a support part 126, and a clamping part 127.
  • the fixed part 121 is a part where the robot arm 120 is fixed to the mounting table TA, and is a movable part where one end of the upper arm part 122 is connected and the angle with the upper surface of the mounting table TA can be changed.
  • the fixing unit 121 has a built-in servo motor, and is configured to be driven by the control unit 160 to rotate the upper arm unit 122.
  • the joint portion 123 is a portion that rotatably connects the other end of the upper arm portion 122 and one end of the forearm portion 124.
  • the joint portion 123 has a built-in servo motor, and is configured such that the servo motor is driven by the control of the control portion 160 to rotate the forearm portion 124.
  • the wrist portion 125 is a portion that rotatably connects the other end of the forearm portion 124 and one end of the support portion 126.
  • the wrist portion 125 has a built-in servo motor, and is configured such that the servo motor is driven by the control of the control portion 160 to rotate the support portion 126.
  • the sandwiching portion 127 is a portion that sandwiches the brush, the injection server S, the pick P, and the tongue T.
  • the clamping unit 127 has a built-in servo motor. The servo motor is driven by the control of the control unit 160 to clamp the brush, the injection server S, the pick P, and the tongue T with appropriate force. When the dough is injected by S and the takoyaki is taken out by Tong T, each operation can be performed with appropriate force. In addition, the clamping unit 127 moves the content injection unit 140 by pressing the heating button or the heating plate vibration button of the panel 112.
  • the imaging unit 130 is an apparatus that captures the heating plate 110 and the injected dough and generates image data.
  • an imaging apparatus such as a charge coupled device (CCD) and a conversion apparatus that converts the captured image into image data. And taking images and converting them into image data at predetermined time intervals. It is also possible to obtain shape data by preparing a plurality of cameras or using a TOF® (Time of Flight) camera or the like.
  • CCD charge coupled device
  • TOF® Time of Flight
  • a plurality of imaging units 130 are arranged above the heating plate 110, one unit is arranged below the wrist 125 shown in FIG. 2, and a position (not shown) where the entire upper surface of the heating plate 110 can be imaged.
  • Two units are fixedly arranged. The arrangement is such that the position of the clamping unit 127 and the target object are grasped by the imaging unit 130 arranged at the lower part of the wrist 125, and the state of the dough on the heating plate 110 by the other two units. It is for grasping.
  • the content injection unit 140 is a device for injecting the contents (for example, ingredients for takoyaki such as octopus and cabbage) to be put into the dough of grain flour into the heating plate 110, and for one heating plate 110. One is disposed adjacent to the heating plate 110.
  • the content injecting unit 140 is configured to slide when it is pulled by the holding unit 127 of the robot arm 120 and to move above the heating plate 110.
  • the content placement unit 141 is a plate-like member on which the content is placed, is formed to have substantially the same size so as to cover the heating plate 110, and has substantially the same size so as to correspond to the recess 111. Thirty-two circular holes are provided.
  • the slide mechanism 142 is a mechanism that slides the content placement unit 141 and the lower plate 143 above the heating plate 110, and has a flat plate shape provided with a guide rail that guides the content placement unit 141 and the lower plate 143.
  • the member is provided perpendicular to the mounting table TA.
  • the lower plate 143 is a stopper member for holding the contents in the hole portion of the contents placing portion 141.
  • the lower plate 143 slides above the heating plate 110 simultaneously with the content placing unit 141 in a state where the content is placed in the hole of the content placing unit 141, and is held by the holding unit 127 of the robot arm 120.
  • the lower part of the hole is opened, and the contents are dropped onto the heating plate 110 and injected into the recess 111.
  • the operation terminal 150 is an apparatus for operating the food production apparatus 100, and is constituted by, for example, a tablet terminal provided with a touch panel. Since the food manufacturing apparatus 100 is an apparatus that automatically manufactures takoyaki, an operation during operation is unnecessary, but a button for starting the manufacture of a baked product, a button for temporarily stopping in the event of an emergency, etc. In order to display a button for stopping, or to display a screen for setting the number of products to be manufactured before the start of manufacturing.
  • FIG. 3 is a schematic diagram showing an example of the operation screen W1 displayed on the operation terminal 150 of FIG.
  • This operation screen W1 is, for example, a screen displayed on the operation terminal 150 in the initial state of the food manufacturing apparatus 100.
  • the alignment mode selection button B1, the takoyaki mode selection button B2, and the start A button B3, a pause button B4, and a stop button B5 are displayed to be pressed.
  • Alignment mode selection button B1 is a button for transitioning to a takoyaki setting screen W2 to be described later.
  • the takoyaki mode selection button B2 is a button that is selected to operate the food manufacturing apparatus 100.
  • the start button B3 is a button that is pressed when the food manufacturing apparatus 100 starts manufacturing takoyaki.
  • the pause button B4 is a button that is pressed when the food manufacturing apparatus 100 needs to be temporarily stopped, for example, when the contents are not placed on the contents injection unit 140.
  • the stop button B5 is a button that is pressed when it is necessary to stop the food manufacturing apparatus 100 in an emergency or the like.
  • FIG. 4 is a schematic diagram showing an example of a takoyaki setting screen W2 displayed on the operation terminal 150 of FIG.
  • This takoyaki setting screen W2 is a screen that is transitioned and displayed when the alignment mode selection button B1 is pressed on the operation screen W1 when it is desired to set the number of takoyaki manufactured by the food manufacturing apparatus 100 and the cooking time.
  • a cooking time setting field G1 and a takoyaki setting field G2 are displayed.
  • the cooking time setting column G1 is a column for setting the cooking time for manufacturing takoyaki, and can be set by inputting the time (minute, second).
  • the cooking time varies depending on the state of the heating device that heats the heating plate 110, and the degree of completion of takoyaki varies depending on the ambient temperature and the like. It is provided to adjust the heating time of the plate 110 and the baking time of the takoyaki.
  • the takoyaki setting column G2 is a column for setting the number of takoyaki to be manufactured at one time by the food manufacturing apparatus 100, and an image simulating the heating plate 110 is displayed according to the two heating plates 110.
  • the recess 111 4 is tapped on the screen of the operation terminal 150, it is colored as shown by hatching in FIG. 4, and the takoyaki is manufactured at that location, that is, a liquid dough is injected by the injection server S. Which indicates that.
  • the control unit 160 is a device that controls the operation of the heating plate 110, the robot arm 120, the imaging unit 130, and the content injection unit 140, and is configured by a PC (Personal Computer) or the like. Specifically, control is performed so that the vibration device of the heating plate 110 is vibrated when the heating plate vibration button of the heating plate 110 is pressed.
  • the robot arm 120 holds the pouring and pouring server S, picks P and tongs T to inject the dough and take out the takoyaki. In order to move, the operation of the servo motor built in the fixing part 121, the joint part 123, the wrist part 125, and the clamping part 127 is controlled.
  • control unit 160 identifies the image data of the fabric from the image data on the heating plate 110 generated by the imaging unit 130, determines the degree of completion of the fabric from the shape and color of the fabric, and if necessary, the robot arm The contact surface between the takoyaki and the heating plate 110 is moved by the pick P by 120, and the takoyaki is taken out by the tongue T.
  • FIG. 5 is a schematic diagram illustrating an example of a takoyaki image W3 generated by the imaging unit 130 of FIG.
  • the takoyaki image W3 is image data generated by being photographed by the imaging unit 130 in a state where a liquid dough is poured into the heating plate 110.
  • control unit 160 performs image analysis of the takoyaki image W3, identifies each takoyaki image, and performs segmentation for each section A1. As shown in FIG. 5, the takoyaki image W3 is divided into 24 rows A1 of 4 rows and 6 columns, and one individual image C1 is arranged for each zone A1.
  • the degree of completion is determined from the shape and color of the fabric based on the learned model stored in the storage unit 210 of the server device 200, which will be described later, and a numerical value (unit) indicating the ratio of the degree of completion Is% and is a number between 0 and 100).
  • a numerical value unit indicating the ratio of the degree of completion Is% and is a number between 0 and 100.
  • a numerical value R1 indicating the degree of completeness is displayed over the individual image C1.
  • the numerical value R1 is equal to or greater than a predetermined threshold value, it is determined to be in a good state.
  • the numerical value R1 is equal to or lower than the predetermined threshold value, it is determined to be defective.
  • control unit 160 performs image analysis of such a takoyaki image W3 at a predetermined time interval. Then, the order of the movement of the takoyaki by the pick P and the extraction of the takoyaki by the tong T are changed according to the value of the numerical value R1 indicating the degree of completion of the takoyaki.
  • the dough is injected into the heating plate 110, the contact surface between the takoyaki and the heating plate 110 is moved by the pick P, and the order of taking out the takoyaki is a predetermined order, for example, in the case of the takoyaki image W3 in FIG.
  • the first row is shifted from 111 to the right, the upper row is shifted down by one row, the second row is shifted leftward, and this is repeated until the lower left is reached.
  • R1 the degree of completion of takoyaki
  • control unit 160 performs image analysis at predetermined time intervals, and when no change is observed in the value R1, the controller 160 determines that the heat applied by the heating device applied to the heating plate 110 is low, and holds the robot arm 120 between The temperature of the heating plate 110 is increased by causing the part 127 to press the temperature change button. If it is determined that the heat from the heating device applied to the heating plate 110 is high depending on the change in the value R1, the temperature of the heating plate 110 is lowered by the temperature change button. This temperature adjustment is performed as necessary according to the cooking time on the takoyaki setting screen W2.
  • 1 is a server device that analyzes a takoyaki image W3, and includes a storage unit 210 and a control unit 220.
  • the storage unit 210 stores programs for executing various control processes and functions in the control unit 220, input data, and the like, and includes a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. . In addition, the storage unit 210 stores a learned model of the shape and color of the fabric that has been analyzed and trained by the analysis unit 221 described later.
  • the control unit 220 controls the overall operation of the server device 200 by executing a program stored in the storage unit 210, and includes a CPU (Central Processing Unit) and the like.
  • An analysis unit 221 is provided as a function of the control unit 220. The analysis unit 221 is activated and executed by a program stored in the storage unit 210.
  • the analysis unit 221 acquires a large amount of image data such as the takoyaki image W3, learning is performed by, for example, deep learning, and a learned model for determining the individual image C1 is constructed. Similar to the control unit 160, image analysis of the takoyaki image W3 is performed to perform segmentation for each section A1, and the shape and color of the fabric are identified for each individual image C1. Then, training is performed to determine whether the takoyaki of each individual image C1 is good or bad, numerical values of the degree of completion are calculated for each shape and color of the fabric, and a threshold value is set for whether or not it is good As a result, good takoyaki can be discriminated.
  • image analysis of the takoyaki image W3 is performed to perform segmentation for each section A1, and the shape and color of the fabric are identified for each individual image C1. Then, training is performed to determine whether the takoyaki of each individual image C1 is good or bad, numerical values of the degree of completion are calculated
  • FIG. 6 is a flowchart showing a takoyaki manufacturing process performed by the food manufacturing apparatus 100 of FIG.
  • the cooking time is set in the cooking time setting field G1 of the takoyaki setting screen W2 of the operation terminal 150, the number of takoyaki to be manufactured is set in the takoyaki setting field G2, and the operation screen W1 is started.
  • button B3 is pressed, the takoyaki manufacturing process is started, and the process proceeds to step S101.
  • the setting on the takoyaki setting screen W2 may be omitted.
  • step S101 the servo motor of the fixing part 121 of the robot arm 120, the joint part 123, the wrist part 125, and the clamping part 127 is driven by the control of the control part 160, and the clamping part 127 moves to the panel 112 and heats.
  • the button is pressed. Thereby, heating of the heating plate 110 is started.
  • step S102 the servo motors of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 are driven by the control of the control unit 160, and the clamping unit 127 draws oil. Move to the position where is placed, and lift and hold the brush.
  • step S103 the servo motor of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 is driven by the control of the control unit 160, and the clamping unit 127 that clamps the brushes is operated. It moves to the upper part of the recessed part 111 which manufactures takoyaki, and the clamping part 127 moves to the downward direction, and oil drawing is performed.
  • step S104 the servo motors of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 are driven by the control of the control unit 160, and the clamping unit 127 places the injection server S. Move to position and lift and hold injection server S.
  • step S105 the servo motors of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 are driven by the control of the control unit 160, and the clamping unit 127 that clamps the injection server S is driven. It moves upward of the concave portion 111 for manufacturing takoyaki, the clamping portion 127 moves downward, the switch of the injection server S is grasped, the liquid dough falls downward, and the dough is injected into the concave portion 111.
  • step S106 the servo motors of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 are driven by the control of the control unit 160, and the clamping unit 127 is positioned at the contents injection unit 140.
  • the content injection unit 140 is pulled toward the heating plate 110 by the sandwiching unit 127 and slides above the heating plate 110.
  • Takoyaki ingredients such as octopus and cabbage are placed on the content placement unit 141 of the content injection unit 140.
  • step S107 the servo motors of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 are driven by the control of the control unit 160, and the clamping unit 127 is moved to the end of the lower plate 143.
  • the ingredients for takoyaki such as octopus and cabbage placed on the contents placing portion 141 fall downward and are injected into the dough in the recess 111.
  • step S108 the servo motors of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 are driven by the control of the control unit 160, and the clamping unit 127 places the injection server S. Move to position and lift and hold injection server S.
  • step S109 the servo motor of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 is driven by the control of the control unit 160, and the clamping unit 127 that clamps the injection server S is driven.
  • the clamping part 127 Moving to the upper part of the recess 111 for manufacturing takoyaki, the clamping part 127 moves downward, the switch of the injection server S is gripped, the liquid dough falls downward, and the dough is injected again into the recess 111.
  • step S110 the image on the heating plate 110 is photographed by the imaging unit 130 and image data is generated.
  • the control unit 160 performs image analysis of the takoyaki image W3 and individually determines the degree of completion of takoyaki. . If it is determined that the surface is in a semi-burned state and the contact surface with the heating plate 110 should be moved by the pick P, the process proceeds to step S111.
  • step S111 the servo motors of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 are driven by the control of the control unit 160, and the clamping unit 127 is moved to the panel 112 and heated.
  • the plate vibration button is pressed. Thereby, the vibration of the heating plate 110 is started.
  • step S112 the servo motors of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 are driven by the control of the control unit 160, and the clamping unit 127 is at the position where the pick P is placed. To pick up and pick the pick P.
  • step S113 the servo motor of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 is driven by the control of the control unit 160, and the clamping unit 127 that clamps the pick P is used.
  • the holding part 127 Moving to the upper part of the recess 111 where the takoyaki is manufactured, the holding part 127 is moved downward, the pick P pushes out the periphery of the takoyaki, and the contact surface with the heating plate 110 is moved.
  • step S114 the image on the heating plate 110 is photographed by the imaging unit 130 and image data is generated.
  • the control unit 160 performs image analysis of the takoyaki image W3 and individually determines the degree of completion of takoyaki. . If it is determined that the completed state has been reached, the process proceeds to step S115.
  • step S115 the servo motors of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 are driven by the control of the control unit 160, and the clamping unit 127 is at the position where the tongue T is placed. And lift the tongue T and pinch it.
  • step S116 the servo motors of the fixing unit 121, the joint unit 123, the wrist unit 125, and the clamping unit 127 of the robot arm 120 are driven by the control of the control unit 160, and the clamping unit 127 that clamps the tongue T is provided.
  • the holding part 127 Moving to the upper part of the recess 111 where the takoyaki is manufactured, the holding part 127 is moved downward and the tung T is used to hold the takoyaki and take it out. This takoyaki is placed on a dish D shown in FIG.
  • the robot arm is driven by the control unit, moves onto the heating plate while sandwiching the injection server, and the liquid dough is injected into the recess, and the content is injected.
  • the contents are injected by the section, and the baked takoyaki is taken out by the tongue held by the robot arm. This makes it possible to automatically manufacture takoyaki.
  • the state of the fabric on the heating plate is photographed by the imaging unit, the image data of the fabric is identified by the control unit, and the completeness of the fabric is determined from the shape and color of the fabric. Thereby, it is possible to automatically manufacture high quality takoyaki.
  • FIG. 7 is a functional block configuration diagram showing an example of the configuration of the computer 300.
  • the computer 300 includes a CPU 301, a main storage device 302, an auxiliary storage device 303, and an interface 304.
  • the control unit 160 is mounted on the computer 300.
  • the operation of each component of the control unit 160 is stored in the auxiliary storage device 303 in the form of a program.
  • the CPU 301 reads the program from the auxiliary storage device 303 and develops it in the main storage device 302, and executes the above processing according to the program. Further, the CPU 301 secures a storage area corresponding to the above-described storage unit in the main storage device 302 according to the program.
  • the computer 300 lifts the server for injecting the dough into the robot arm and moves the server above the recess of the heating plate to inject the dough into the recess, and above the heating plate.
  • An imaging step for photographing the fabric with the imaging unit arranged in the image and generating image data, an analysis step for analyzing the shape and / or color of the fabric from the image data, and injecting into the recess based on the analysis result of the image data This is a control program that realizes a dough moving step for moving the contact surface of the dough with the heating plate and a dough taking out step for taking out the baked dough based on the analysis result of the image data.
  • the auxiliary storage device 303 is an example of a tangible medium that is not temporary.
  • Other examples of the non-temporary tangible medium include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory connected through the interface 304.
  • the program may be for realizing a part of the functions described above. Further, the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device 303.
  • difference file difference program
  • 1 food production system 100 food production equipment, 110 heating plate, 111 recess, 112 panel, 120 robot arm, 121 fixing part, 122 upper arm part, 123 joint part, 124 forearm part, 125 wrist part, 126 support part, 127 clamping Unit, 130 imaging unit, 140 content injection unit, 141 content placement unit, 142 slide mechanism, 143 lower plate, 150 operation terminal, 160 control unit, 200 server device, 210 storage unit, 220 control unit, 221 analysis unit , 300 computers, NW network

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Baking, Grill, Roasting (AREA)

Abstract

食品を高品質に自動製造することが可能な食品製造装置、食品製造システム、食品製造方法及び制御プログラムを提供する。 本発明の食品製造装置100は、加熱調理器具110を用いて、調理対象物に熱を加えて調理するものであって、調理対象物に対する調理を行うロボットアーム120と、調理対象物の状態を検出するセンサ130と、センサ130で検出した調理対象物の検出状態に応じて、調理対象物の完成度を判定し、判定結果に応じて、ロボットアーム120の動作を制御する制御部160と、を備える。

Description

食品製造装置、食品製造システム、食品製造方法及び制御プログラム
 本開示は、食品製造装置、食品製造システム、食品製造方法及び制御プログラムに関する。
 従来、小麦粉のような穀物粉の生地を略球状に焼成する、たこ焼きのような食品を製造する装置が知られている(例えば、特許文献1参照。)。特許文献1に開示されているたこ焼き等の製造装置は、ベルトコンベアを採用したたこ焼き製造ラインであり、生地を加熱する第1のラインと、油を引き、生地及びたこ等の具材を注入する第2のラインとが平行に設けられており、第2のラインから油、生地及び具材を自動注入する装置である。
 また、このような製造装置によって製造されたたこ焼きの品質を向上させるために、最初に生地等が注入される凹部が設けられた第1の熱板と、第1の熱板で半焼成状態になったたこ焼きを上下で挟むように設けられた第2の熱板とを備えるたこ焼き製造装置が知られている(例えば、特許文献2参照。)。このたこ焼き製造装置では、まず、第1の熱板の凹部に生地が注入され、ある程度の固さになったところで、第2の熱板に移され、第2の熱板で上下に挟まれて成形される。これにより、たこ焼きの焼き加減や形の向上を図っている。
特開平7-264965号公報 特許第4819978号公報
 ところで、一般的なたこ焼き販売店では、鉄板に生地を注入し、具材を注入し、略球状に成形して焼き上げる、という一連の工程が人の手により行われている。特に、同じ鉄板の中でも温度が微妙に異なるため、通常、一度に複数個製造するたこ焼きの焼き加減は個々に異なり、たこ焼きの焼き具合を人の目により判断して調整する必要があり、職人のような技能によるところが大きい。このような人の手により製造されたたこ焼きは、上述のたこ焼き製造装置で製造されたたこ焼きと比較すると非常に高品質なものである。
 しかしながら、このような技能はすぐに身につくものではないので、機械による自動製造が可能で、高品質な食品を製造可能な装置が望まれていた。
 そこで、本開示では、食品を高品質に自動製造することが可能な食品製造装置、食品製造システム、食品製造方法及び制御プログラムについて説明する。
 上記課題を解決するために、(1)本発明の食品製造装置は、加熱調理器具を用いて、調理対象物に熱を加えて調理する食品製造装置であって、前記調理対象物に対する調理を行うロボットアームと、前記調理対象物の状態を検出するセンサと、前記センサで検出した調理対象物の検出状態に応じて、前記調理対象物の完成度を判定し、前記判定結果に応じて、前記ロボットアームの動作を制御する制御部と、を備える。
 (2)上記(1)の構成において、前記制御部は、前記判定結果に応じて前記加熱調理器具の動作を制御する。
 (3)上記(1)又は(2)の構成において、前記制御部は、前記調理対象物の完成度に応じて前記ロボットアームの複数の動作のうちの第1動作と第2動作を制御し、所定時間の経過後に再度、前記調理対象物の完成度を判定し、前記第1動作と前記第2動作を制御する。
 (4)上記(1)から(3)のいずれかの構成において、前記制御部は、前記センサで検出した調理対象物の検出状態に応じて、前記調理対象物の形状及び/又は色に基づいて前記調理対象物の完成度を判定する。
 (5)上記(1)から(4)のいずれかの構成において、前記制御部は、区画分割された領域ごとに前記完成度を判定し、前記判定結果に応じて、前記ロボットアームの複数の動作のうちの第1動作及び第2動作の優先順位を決定し、前記決定された優先順位に基づいて前記ロボットアームの動作を制御する。
 (6)上記(1)から(5)のいずれかの構成において、前記制御部は、区画分割された領域ごとに前記完成度を判定し、前記区画分割された領域ごとに前記完成度を示す情報を表示する。
 (7)上記(1)から(6)のいずれかの構成において、前記制御部は、過去の前記調理対象物の画像データから機械学習により解析された前記調理対象物の形状及び/又は色に基づき、前記調理対象物の完成度を判定する。
 (8)上記(1)から(7)のいずれかの構成において、前記ロボットアームは、前記調理対象物を前記加熱調理器具に載置し、前記調理対象物を移動させる調理具を移動して前記調理対象物の前記加熱調理器具との接触面を移動させる。
 (9)上記(1)から(8)のいずれかの構成において、前記ロボットアームは、
 前記調理対象物を持ち上げて取り出す。
 (10)上記(1)から(9)のいずれかの構成において、前記制御部は、前記加熱調理器具が前記調理対象物を加熱するときに前記加熱調理器具を振動させる。
 (11)上記(1)から(10)のいずれかの構成において、前記センサは、前記調理対象物を撮影して画像データを生成する撮像部を含む。
 (12)上記(1)から(11)のいずれかの構成において、前記調理対象物を前記加熱調理器具へ注入する内容物注入部を備える。
 (13)本発明の食品製造システムは、加熱調理器具を用いて、調理対象物に熱を加えて調理する食品製造装置用のロボットアームであって、前記調理対象物に対する調理を行うロボットアームと、前記調理対象物の状態を検出するセンサと、前記センサで検出した調理対象物の検出状態に応じて、前記調理対象物の完成度を判定し、前記判定結果に応じて、前記ロボットアームの動作を制御する制御部と、を備える食品製造装置と、前記食品製造装置に接続され、前記食品製造装置から受信した前記画像データから前記調理対象物の状態を解析する解析部を備えるサーバ装置と、を備える。
 (14)本発明の食品製造方法は、調理対象物に熱を加えて調理する食品製造方法であって、ロボットアームの動作を制御して前記調理対象物を前記加熱調理器具に載置するステップと、センサにより前記調理対象物の状態を検出するステップと、前記センサで検出した調理対象物の検出状態に応じて、前記調理対象物の完成度を判定するステップと、
 前記判定結果に応じて、前記ロボットアームの動作を制御するステップと、を有する。
 (15)本発明の制御プログラムは、調理対象物に熱を加えて調理する食品製造装置用の制御プログラムであって、ロボットアームの動作を制御して前記調理対象物を前記加熱調理器具に載置するステップと、センサにより前記調理対象物の状態を検出するステップと、前記センサで検出した調理対象物の検出状態に応じて、前記調理対象物の完成度を判定するステップと、前記判定結果に応じて、前記ロボットアームの動作を制御するステップと、を電子計算機に実行させるものである。
 本開示によれば、食品を高品質に自動製造することが可能な食品製造装置、食品製造システム、食品製造方法及び制御プログラムを提供することができる。
本開示の一実施形態に係る食品製造システム1を示す機能ブロック構成図である。 図1の食品製造装置100を示す外観図である。 図1の操作端末150に表示される操作画面W1の例を示す模式図である。 図1の操作端末150に表示されるたこ焼き設定画面W2の例を示す模式図である。 図1の撮像部130により生成されるたこ焼き画像W3の例を示す模式図である。 図1の食品製造装置100が行うたこ焼き製造処理を示すフローチャートである。 本開示の一実施形態に係るコンピュータ300の構成の例を示す機能ブロック構成図である。
 以下、本開示の実施形態について図面を参照して説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本開示の内容を不当に限定するものではない。また、実施形態に示される構成要素のすべてが、本開示の必須の構成要素であるとは限らない。
 (実施形態1)
 <構成>
 図1は、本開示の実施形態1に係る食品製造システム1を示す機能ブロック構成図である。この食品製造システム1は、食品を製造するシステムであり、例としてたこ焼きを自動で製造するたこ焼き製造システムを示している。
 食品製造システム1は、食品製造装置100と、サーバ装置200と、ネットワークNWと、を有している。食品製造装置100と、サーバ装置200とは、ネットワークNWを介して接続される。ネットワークNWは、インターネット、LAN(Local Area Network)やWAN(Wide Area Network)等により構成される。
 図2は、図1の食品製造装置100を示す外観図であり、食品製造装置100を示す斜視図(a)、及び正面図(b)である。食品製造装置100は、ロボットアームを用いて自動で穀物粉の生地を略球状に焼成する装置であり、テーブルのような載置台TAに載置されて稼働するように構成されている。食品製造装置100は、図1に示すように、加熱プレート110と、ロボットアーム120と、撮像部130と、内容物注入部140と、操作端末150と、制御部160とを備え、例えば、USB(登録商標)やLANにより相互に通信可能に接続されている。
 加熱プレート110は、穀物粉の液状の生地が注入され、下部に電熱又はガス燃焼による加熱装置が配設されて(図示は省略)生地を加熱することで固めて焼成する、例えば鉄板であり、図2(a)に示すように、例えばロボットアーム120を挟むように左右に2つ配置されている。この加熱プレート110には、注入された液状の生地を略球状に焼成するための凹部111が、1つの加熱プレート110に例えば32個配置されている。
 また、この加熱プレート110は、制御部160の制御により前後左右に振動するように構成されており、下部に加熱プレート110を振動させるために、振動モータ等の振動装置が配置されている(図示は省略)。このように、加熱プレート110を振動させる構成にしたのは、後述するように生地を均一に焼成するためには、生地と加熱プレート110との接触面を移動させて均一に熱を加える必要があり、加熱プレート110を微振動させることで生地が加熱プレート110から取れやすくするためである。
 加熱プレート110のロボットアーム120側には、加熱プレート110の加熱をオン/オフするスイッチ機能を有する加熱ボタンや、加熱プレート110の加熱レベルを変更する温度変更ボタン、加熱プレート110の振動をオン/オフするスイッチ機能を有する加熱プレート振動ボタンが配置されたパネル112が設けられている。このボタンは、後述するように、ロボットアーム120の挟持部127により押下される。
 ロボットアーム120は、人間の手のようにつかむ、離す、運ぶ等の動作を行う装置であり、穀物粉の生地を加熱プレート110へ注入して焼成するための一連の動作、例えば加熱プレート110に植物油等の油を引くためのはけ(図示は省略)を持ち上げて加熱プレート110への油引きを行ったり、加熱プレート110へ液状の生地を注入するための、図2(a)に示す注入サーバSを持ち上げて加熱プレート110への生地の注入を行ったり、後述する内容物注入部140を移動させたり、生地の加熱プレート110との接触面を移動させるためのピックPを持ち上げて加熱プレート110との接触面を移動させたり、焼成したたこ焼きを取り出すためのトングTを持ち上げてたこ焼きを取り出したりするために設けられている。
 ここで、注入サーバSは、液状の生地を入れておく取っ手付きの容器であり、取っ手に生地を注入させるスイッチが設けられ、このスイッチを握ると容器の下方が開放されて液状の生地が下方に落ちるようになっている。ピックPは、先端が針状に形成されてたこ焼き等を回転させるために用いられる調理器具である。トングTは、食材をつかんで持ち上げるための鋏状の調理器具である。
 ロボットアーム120は、図2(b)に示すように、固定部121と、上腕部122と、継手部123と、前腕部124と、手首部125と、支持部126と、挟持部127から構成されている。
 固定部121は、ロボットアーム120が載置台TAに固定されている箇所であり、上腕部122の一端が接続され、載置台TAの上面との角度が変更自在な可動箇所である。固定部121には、サーボモータが内蔵されており、制御部160の制御によりサーボモータが駆動して上腕部122を回動させるように構成されている。
 継手部123は、上腕部122の他端と前腕部124の一端とを回動自在に接続する箇所である。継手部123には、サーボモータが内蔵されており、制御部160の制御によりサーボモータが駆動して前腕部124を回動させるように構成されている。
 手首部125は、前腕部124の他端と支持部126の一端とを回動自在に接続する箇所である。手首部125には、サーボモータが内蔵されており、制御部160の制御によりサーボモータが駆動して支持部126を回動させるように構成されている。
 挟持部127は、はけや注入サーバS、ピックP、トングTを挟持する箇所である。挟持部127には、サーボモータが内蔵されており、制御部160の制御によりサーボモータが駆動して、はけや注入サーバS、ピックP、トングTを適切な力加減で挟持し、注入サーバSによる生地の注入やトングTによるたこ焼きの取出しの際に、適切な力加減でそれぞれの動作を行えるように構成されている。また、挟持部127は、パネル112の加熱ボタン又は加熱プレート振動ボタンを押下し、内容物注入部140を移動させる。
 撮像部130は、加熱プレート110及び注入された生地を撮影し、画像データを生成する装置であり、例えばCCD(Charge Coupled Device)等の撮影装置と、撮影した画像を画像データに変換する変換装置とを備えるデジタルカメラ等により構成され、所定の時間間隔で画像の撮影及び画像データへの変換を行っている。なお、カメラを複数台用意したり、TOF (Time of Flight)カメラ等を使用したりすることにより、形状データを取得することも可能である。
 この撮像部130は、例えば、加熱プレート110の上方に複数配置されており、図2に示す手首部125の下部に1台配置され、さらに、加熱プレート110の上面全体を撮影可能な図示しない位置に2台、固定されて配置されている。このような配置にしているのは、手首部125の下部に配置された撮像部130で挟持部127の位置や目的とする物を把握し、他の2台で加熱プレート110上の生地の状態を把握するためである。
 内容物注入部140は、加熱プレート110に穀物粉の生地の中に入れる内容物(例えば、たこやキャベツ等のたこ焼きの具材)を注入するための装置であり、1つの加熱プレート110に対して1つ、加熱プレート110に隣接して配置されている。この内容物注入部140は、ロボットアーム120の挟持部127により引っ張られるとスライドし、加熱プレート110の上方に移動するように構成されており、内容物載置部141と、スライド機構142と、下板143とを備えている。
 内容物載置部141は、内容物を載置しておく板状の部材であり、加熱プレート110を覆うように略同一の大きさに形成され、凹部111に対応するように略同一の大きさの円形の孔部が32個設けられている。
 スライド機構142は、内容物載置部141及び下板143を加熱プレート110の上方にスライドさせる機構であり、内容物載置部141及び下板143をガイドするガイドレールが設けられた平板状の部材が載置台TAに対して垂直に設けられている。
 下板143は、内容物載置部141の孔部に内容物を留めておくためのストッパ部材である。この下板143は、内容物載置部141の孔部に内容物が載置された状態で内容物載置部141と同時に加熱プレート110の上方にスライドし、ロボットアーム120の挟持部127により引っ張られて下板143のみが逆方向にスライドすることにより、孔部の下方が開放し、内容物が加熱プレート110に落下して凹部111に注入されるように構成されている。
 操作端末150は、食品製造装置100を操作するための装置であり、例えば、タッチパネルが設けられたタブレット端末等により構成されている。食品製造装置100は、たこ焼きを自動で製造する装置であるため、稼働中の操作は不要であるが、焼成物の製造を開始するためのボタン、非常時等の場合に一時停止するためのボタン、停止するためのボタンを表示したり、製造開始前に製造する個数を設定する画面を表示したりするために設けられている。
 図3は、図1の操作端末150に表示される操作画面W1の例を示す模式図である。この操作画面W1は、例えば、食品製造装置100の初期状態のときに操作端末150に表示される画面であり、図3に示すように、位置合わせモード選択ボタンB1、たこ焼きモード選択ボタンB2、スタートボタンB3、一時停止ボタンB4、停止ボタンB5が押下可能に表示されている。
 位置合わせモード選択ボタンB1は、後述するたこ焼き設定画面W2に遷移するためのボタンである。たこ焼きモード選択ボタンB2は、この食品製造装置100の操作を行うために選択されるボタンである。スタートボタンB3は、食品製造装置100によるたこ焼きの製造を開始する際に押下されるボタンである。一時停止ボタンB4は、例えば内容物注入部140に内容物が載置されていなかった場合等、食品製造装置100を一時的に停止する必要がある場合に押下されるボタンである。停止ボタンB5は、非常事態等、食品製造装置100を停止する必要がある場合に押下されるボタンである。
 図4は、図1の操作端末150に表示されるたこ焼き設定画面W2の例を示す模式図である。このたこ焼き設定画面W2は、食品製造装置100で製造するたこ焼きの個数や調理時間を設定したい場合に、操作画面W1にて位置合わせモード選択ボタンB1が押下されることで遷移して表示される画面であり、調理時間設定欄G1、たこ焼き設定欄G2が表示されている。
 調理時間設定欄G1は、たこ焼きを製造するための調理時間を設定するための欄であり、時間(分、秒)を入力することにより設定できるようになっている。この調理時間は、例えば、加熱プレート110を加熱する加熱装置の状態によりたこ焼きの完成度が異なり、加熱プレート110が所定の温度にまで上昇するための温度は周囲の温度等によっても異なるため、加熱プレート110の加熱時間及びたこ焼きの焼き時間を調整するために設けられている。
 たこ焼き設定欄G2は、食品製造装置100で一度に製造するたこ焼きの個数を設定するための欄であり、2つの加熱プレート110に合わせて加熱プレート110を模した画像が表示され、例えば、凹部111を模した丸の欄を操作端末150の画面上でタップすると、図4にハッチングで示すように彩色され、当該箇所でたこ焼きの製造が行われる、すなわち、注入サーバSにより液状の生地が注入されることを示している。
 制御部160は、加熱プレート110、ロボットアーム120、撮像部130、及び内容物注入部140の動作を制御する装置であり、PC(Personal Computer)等により構成されている。具体的には、加熱プレート110の加熱プレート振動ボタンが押下されたときに加熱プレート110の振動装置に振動させるように制御する。また、ロボットアーム120にはけや注入サーバS、ピックP、トングTを挟持させて生地の注入やたこ焼きの取出しを行わせ、加熱ボタンや加熱プレート振動ボタンを押下させ、内容物注入部140を移動させるために、固定部121、継手部123、手首部125、及び挟持部127に内蔵されているサーボモータの動作を制御する。
 また、制御部160は、撮像部130により生成された加熱プレート110上の画像データから生地の画像データを識別し、生地の形状や色から生地の完成度を判定し、必要に応じてロボットアーム120によりピックPにてたこ焼きと加熱プレート110との接触面を移動させ、トングTにてたこ焼きを取り出す。
 図5は、図1の撮像部130により生成されるたこ焼き画像W3の例を示す模式図である。このたこ焼き画像W3は、加熱プレート110に液状の生地が注入された状態で撮像部130により撮影されて生成された画像データである。
 まず、制御部160は、このたこ焼き画像W3の画像解析を行って個々のたこ焼きごとに識別し、それぞれ区画A1ごとに区分けを行う。図5に示すように、たこ焼き画像W3が4行6列の24個の区画A1に区分けされ、区画A1ごとにそれぞれ1個の個別画像C1が配置されている。
 これらの個別画像C1ごとに、生地の形状や色から、後述するサーバ装置200の記憶部210に記憶されている学習済みモデルに基づき、完成度が判定され、完成度の割合を示す数値(単位は%であり、0~100の数値)が返される。この値が所定の閾値以上の場合、良好な状態と判定される。図5に示すたこ焼き画像W3の場合、個別画像C1に重ねて完成度の割合を示す数値R1が表示されている。この数値R1が所定の閾値以上の場合、良好な状態と判定され、所定の閾値以下の場合、不良と判定され、ピックPによりたこ焼きの移動が行われて形状や色が調整される。
 また、制御部160は、このようなたこ焼き画像W3の画像解析を所定の時間間隔で行っている。そして、たこ焼きの完成度を示す数値R1の値に応じて、ピックPによるたこ焼きの移動や、トングTによるたこ焼きの取出しの順番を変更する。通常、加熱プレート110に生地を注入し、ピックPによりたこ焼きと加熱プレート110との接触面を移動し、たこ焼きを取り出す順番は、所定の順番、例えば図5のたこ焼き画像W3の場合、左上の凹部111から右方向にずれるように1列目に対して行い、右上に達すると1列下にずれ、左方向にずれるように2列目に対して行い、これを繰り返して左下に達するまで行う、というような所定の順番で行う。しかし、数値R1の値、すなわちたこ焼きの完成度によっては、ピックPによる移動が必要ない場合や、ピックPによる移動を行ってたこ焼きを成型する必要がある。これは、加熱プレート110の中で温度に差が生じることがあるためである。そのため、数値R1の値に応じて、ピックPによるたこ焼きの移動やトングTによるたこ焼きの取出しの優先順位を変更している。
 さらに、制御部160は、画像解析を所定の時間間隔で行い、数値R1の値に変化が見られない場合、加熱プレート110に加えられる加熱装置による熱が低いと判断し、ロボットアーム120の挟持部127に温度変更ボタンを押下させて加熱プレート110の温度を上昇させる。また、数値R1の値の変化によっては加熱プレート110に加えられる加熱装置による熱が高いと判断される場合は、温度変更ボタンにより加熱プレート110の温度を下降させる。この温度調整は、たこ焼き設定画面W2の調理時間により必要に応じて行われる。
 図1に示すサーバ装置200は、たこ焼き画像W3の解析を行うサーバ装置であり、記憶部210と、制御部220とを備えている。
 記憶部210は、各種制御処理や制御部220内の機能を実行するためのプログラム、入力データ等を記憶するものであり、RAM(Random Access Memory)、ROM(Read Only Memory)等から構成される。また、記憶部210は、後述する解析部221にて解析されてトレーニングされた、生地の形状や色の学習済みモデルを記憶している。
 制御部220は、記憶部210に記憶されているプログラムを実行することにより、サーバ装置200の全体の動作を制御するものであり、CPU(Central Processing Unit)等から構成される。制御部220の機能として、解析部221を備えている。この解析部221は、記憶部210に記憶されているプログラムにより起動されて実行される。
 解析部221は、たこ焼き画像W3のような画像データを大量に取得し、例えばディープラーニングによる学習が行われ、個別画像C1を判定するための学習済みモデルの構築が行われる。制御部160と同様に、たこ焼き画像W3の画像解析を行って区画A1ごとに区分けを行い、個別画像C1ごとに生地の形状や色を識別する。そして、それぞれの個別画像C1のたこ焼きが良好であるか又は不良であるかトレーニングが行われ、それぞれの生地の形状や色について完成度の数値が算出され、良好であるか否かの閾値が設定されることで、良好なたこ焼きを判別できるようにしている。
 <処理の流れ>
 以下、図6を参照しながら、食品製造システム1が実行するたこ焼き製造処理の一例を説明する。図6は、図1の食品製造装置100が行うたこ焼き製造処理を示すフローチャートである。
 たこ焼き製造処理の前に、操作端末150のたこ焼き設定画面W2の調理時間設定欄G1にて調理時間を設定し、たこ焼き設定欄G2にて製造するたこ焼きの個数を設定し、操作画面W1にてスタートボタンB3が押下されると、たこ焼き製造処理が開始され、ステップS101へ進む。なお、食品製造装置100に事前に設定されている調理時間及び製造するたこ焼きの個数を変更する必要がないときは、たこ焼き設定画面W2での設定は省略しても良い。
 ステップS101の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、挟持部127がパネル112に移動して加熱ボタンが押下される。これにより、加熱プレート110の加熱が開始される。
 ステップS102の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、挟持部127が油を引くためのはけを置いてある位置に移動し、はけを持ち上げて挟持する。
 ステップS103の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、はけを挟持している挟持部127がたこ焼きの製造を行う凹部111の上方へ移動し、挟持部127が下方へ移動して油引きが行われる。
 ステップS104の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、挟持部127が注入サーバSを置いてある位置に移動し、注入サーバSを持ち上げて挟持する。
 ステップS105の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、注入サーバSを挟持している挟持部127がたこ焼きの製造を行う凹部111の上方へ移動し、挟持部127が下方へ移動し、注入サーバSのスイッチが握られて液状の生地が下方に落ちて凹部111に生地が注入される。
 ステップS106の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、挟持部127が内容物注入部140の位置に移動し、挟持部127により内容物注入部140が加熱プレート110側に引っ張られて加熱プレート110の上方にスライドする。内容物注入部140の内容物載置部141には、たこやキャベツ等のたこ焼きの具材が載置されている。
 ステップS107の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、挟持部127が下板143の端部に移動し、下板143をスライドさせると、内容物載置部141に載置されているたこやキャベツ等のたこ焼きの具材が下方に落ちて凹部111の生地の中に注入される。
 ステップS108の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、挟持部127が注入サーバSを置いてある位置に移動し、注入サーバSを持ち上げて挟持する。
 ステップS109の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、注入サーバSを挟持している挟持部127がたこ焼きの製造を行う凹部111の上方へ移動し、挟持部127が下方へ移動し、注入サーバSのスイッチが握られて液状の生地が下方に落ちて凹部111に生地が再度注入される。
 ステップS110の処理として、撮像部130により加熱プレート110上の生地が撮影されて画像データが生成され、制御部160によりたこ焼き画像W3の画像解析が行われ、たこ焼きの完成度が個々に判定される。半焼け状態になり、ピックPにより加熱プレート110との接触面を移動させるべき状態であると判定された場合、ステップS111へ進む。
 ステップS111の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、挟持部127がパネル112に移動して加熱プレート振動ボタンが押下される。これにより、加熱プレート110の振動が開始される。
 ステップS112の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、挟持部127がピックPを置いてある位置に移動し、ピックPを持ち上げて挟持する。
 ステップS113の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、ピックPを挟持している挟持部127がたこ焼きの製造を行う凹部111の上方へ移動し、挟持部127が下方へ移動し、ピックPがたこ焼きの周囲を押し出して加熱プレート110との接触面が移動させられる。
 ステップS114の処理として、撮像部130により加熱プレート110上の生地が撮影されて画像データが生成され、制御部160によりたこ焼き画像W3の画像解析が行われ、たこ焼きの完成度が個々に判定される。完成状態になったと判定された場合、ステップS115へ進む。
 ステップS115の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、挟持部127がトングTを置いてある位置に移動し、トングTを持ち上げて挟持する。
 ステップS116の処理として、制御部160の制御によりロボットアーム120の固定部121、継手部123、手首部125、及び挟持部127のサーボモータが駆動し、トングTを挟持している挟持部127がたこ焼きの製造を行う凹部111の上方へ移動し、挟持部127が下方へ移動し、トングTによりたこ焼きを挟持して取り出す。このたこ焼きは、図2(a)に示す皿Dに載置される。
 以上のように、本実施形態に係る食品製造装置は、制御部によりロボットアームが駆動し、注入サーバを挟持した状態で加熱プレート上に移動して凹部に液状の生地が注入され、内容物注入部により内容物の注入が行われ、焼きあがったたこ焼きがロボットアームが挟持するトングにより取り出される。これにより、たこ焼きを自動製造することが可能になる。
 また、撮像部により加熱プレート上の生地の状態が撮影され、制御部により生地の画像データが識別され、生地の形状や色から生地の完成度が判定される。これにより、高品質なたこ焼きを自動製造することが可能である。
 なお、本実施形態は、ロボットアームによりたこ焼きを自動製造する場合について説明したが、コミュニケーション機能を備えたロボットのアーム部によりたこ焼きを自動製造するような構成にしても良い。
 (実施形態2(プログラム))
 図7は、コンピュータ300の構成の例を示す機能ブロック構成図である。コンピュータ300は、CPU301、主記憶装置302、補助記憶装置303、インタフェース304を備える。
 ここで、実施形態に係る制御部160を構成する各機能を実現するための制御プログラムの詳細について説明する。制御部160は、コンピュータ300に実装される。そして、制御部160の各構成要素の動作は、プログラムの形式で補助記憶装置303に記憶されている。CPU301は、プログラムを補助記憶装置303から読み出して主記憶装置302に展開し、当該プログラムに従って上記処理を実行する。また、CPU301は、プログラムに従って、上述した記憶部に対応する記憶領域を主記憶装置302に確保する。
 当該プログラムは、具体的には、コンピュータ300において、ロボットアームに生地を注入するサーバを持ち上げさせて加熱プレートの凹部の上方に移動させ、生地を凹部へ注入させる生地注入ステップと、加熱プレートの上方に配置された撮像部にて生地を撮影して画像データを生成する撮像ステップと、画像データから生地の形状及び/又は色を解析する解析ステップと、画像データの解析結果に基づき、凹部に注入された生地の加熱プレートとの接触面を移動させる生地移動ステップと、画像データの解析結果に基づき、焼成した生地を取り出す生地取出ステップと、をコンピュータによって実現する制御プログラムである。
 なお、補助記憶装置303は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例としては、インタフェース304を介して接続される磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等が挙げられる。また、このプログラムがネットワークを介してコンピュータ300に配信される場合、配信を受けたコンピュータ300が当該プログラムを主記憶装置302に展開し、上記処理を実行してもよい。
 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能を補助記憶装置303に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 以上、開示に係る実施形態について説明したが、これらはその他の様々な形態で実施することが可能であり、種々の省略、置換および変更を行なって実施することができる。これらの実施形態および変形例ならびに省略、置換および変更を行なったものは、特許請求の範囲の技術的範囲とその均等の範囲に含まれる。
1 食品製造システム、100 食品製造装置、110 加熱プレート、111 凹部、112 パネル、120 ロボットアーム、121 固定部、122 上腕部、123 継手部、124 前腕部、125 手首部、126 支持部、127 挟持部、130 撮像部、140 内容物注入部、141 内容物載置部、142 スライド機構、143 下板、150 操作端末、160 制御部、200 サーバ装置、210 記憶部、220 制御部、221 解析部、300 コンピュータ、NW ネットワーク

Claims (15)

  1.  加熱調理器具を用いて、調理対象物に熱を加えて調理する食品製造装置であって、
     前記調理対象物に対する調理を行うロボットアームと、
     前記調理対象物の状態を検出するセンサと、
     前記センサで検出した調理対象物の検出状態に応じて、前記調理対象物の完成度を判定し、前記判定結果に応じて、前記ロボットアームの動作を制御する制御部と、を備える食品製造装置。
  2.  前記制御部は、前記判定結果に応じて前記加熱調理器具の動作を制御する、請求項1に記載の食品製造装置。
  3.  前記制御部は、前記調理対象物の完成度に応じて前記ロボットアームの複数の動作のうちの第1動作と第2動作を制御し、所定時間の経過後に再度、前記調理対象物の完成度を判定し、前記第1動作と前記第2動作を制御する、請求項1又は請求項2に記載の食品製造装置。
  4.  前記制御部は、前記センサで検出した調理対象物の検出状態に応じて、前記調理対象物の形状及び/又は色に基づいて前記調理対象物の完成度を判定する、請求項1から請求項3のいずれか1項に記載の食品製造装置。
  5.  前記制御部は、区画分割された領域ごとに前記完成度を判定し、前記判定結果に応じて、前記ロボットアームの複数の動作のうちの第1動作及び第2動作の優先順位を決定し、前記決定された優先順位に基づいて前記ロボットアームの動作を制御する、請求項1から請求項4のいずれか1項に記載の食品製造装置。
  6.  前記制御部は、区画分割された領域ごとに前記完成度を判定し、前記区画分割された領域ごとに前記完成度を示す情報を表示する、請求項1から請求項5のいずれか1項に記載の食品製造装置。
  7.  前記制御部は、過去の前記調理対象物の画像データから機械学習により解析された前記調理対象物の形状及び/又は色に基づき、前記調理対象物の完成度を判定する、請求項1から請求項6のいずれか1項に記載の食品製造装置。
  8.  前記ロボットアームは、
     前記調理対象物を前記加熱調理器具に載置し、
     前記調理対象物を移動させる調理具を移動して前記調理対象物の前記加熱調理器具との接触面を移動させる、請求項1から請求項7のいずれか1項に記載の食品製造装置。
  9.  前記ロボットアームは、
     前記調理対象物を持ち上げて取り出す、請求項1から請求項8のいずれか1項に記載の食品製造装置。
  10.  前記制御部は、前記加熱調理器具が前記調理対象物を加熱するときに前記加熱調理器具を振動させる、請求項1から請求項9のいずれか1項に記載の食品製造装置。
  11.  前記センサは、前記調理対象物を撮影して画像データを生成する撮像部を含む、請求項1から請求項10のいずれか1項に記載の食品製造装置。
  12.  前記調理対象物を前記加熱調理器具へ注入する内容物注入部を備える、請求項1から請求項11のいずれか1項に記載の食品製造装置。
  13.  加熱調理器具を用いて、調理対象物に熱を加えて調理する食品製造装置用のロボットアームであって、前記調理対象物に対する調理を行うロボットアームと、
     前記調理対象物の状態を検出するセンサと、
     前記センサで検出した調理対象物の検出状態に応じて、前記調理対象物の完成度を判定し、前記判定結果に応じて、前記ロボットアームの動作を制御する制御部と、を備える食品製造装置と、
     前記食品製造装置に接続され、前記食品製造装置から受信した前記画像データから前記調理対象物の状態を解析する解析部を備えるサーバ装置と、を備える、食品製造システム。
  14.  調理対象物に熱を加えて調理する食品製造方法であって、
     ロボットアームの動作を制御して前記調理対象物を前記加熱調理器具に載置するステップと、
     センサにより前記調理対象物の状態を検出するステップと、
     前記センサで検出した調理対象物の検出状態に応じて、前記調理対象物の完成度を判定するステップと、
     前記判定結果に応じて、前記ロボットアームの動作を制御するステップと、
     を有する食品製造方法。
  15.  調理対象物に熱を加えて調理する食品製造装置用の制御プログラムであって、
     ロボットアームの動作を制御して前記調理対象物を前記加熱調理器具に載置するステップと、
     センサにより前記調理対象物の状態を検出するステップと、
     前記センサで検出した調理対象物の検出状態に応じて、前記調理対象物の完成度を判定するステップと、
     前記判定結果に応じて、前記ロボットアームの動作を制御するステップと、
     を電子計算機に実行させる、制御プログラム。
PCT/JP2019/015684 2018-04-10 2019-04-10 食品製造装置、食品製造システム、食品製造方法及び制御プログラム WO2019198772A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018075212A JP6429138B1 (ja) 2018-04-10 2018-04-10 食品製造装置、食品製造システム及び制御プログラム
JP2018-075212 2018-04-10

Publications (1)

Publication Number Publication Date
WO2019198772A1 true WO2019198772A1 (ja) 2019-10-17

Family

ID=64480487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015684 WO2019198772A1 (ja) 2018-04-10 2019-04-10 食品製造装置、食品製造システム、食品製造方法及び制御プログラム

Country Status (2)

Country Link
JP (1) JP6429138B1 (ja)
WO (1) WO2019198772A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100011801A1 (it) * 2021-05-07 2021-08-07 Totaro S R L Sistema automatizzato di selezione e movimentazione, e relativo metodo
CN113759731A (zh) * 2020-06-22 2021-12-07 北京京东乾石科技有限公司 一种调度机械臂的方法和装置
US11574269B2 (en) * 2020-02-21 2023-02-07 Worximity Technologies Inc. Controller and method using machine learning to optimize operations of a processing chain of a food factory

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762581B2 (ja) * 2018-09-26 2020-09-30 株式会社アールティ 多関節ロボット
JP2020156592A (ja) * 2019-03-25 2020-10-01 東京瓦斯株式会社 調理管理の方法、システム、プログラム、および機器
CN113317672A (zh) * 2020-02-09 2021-08-31 异起(上海)智能科技有限公司 一种炒或烹饪食物的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642882A (en) * 1987-06-25 1989-01-06 Omron Tateisi Electron Co Robot control method
JPH07264965A (ja) * 1994-03-29 1995-10-17 Mukai Seisakusho:Kk たこ焼き等の製造装置
JP2009106734A (ja) * 2007-10-10 2009-05-21 Panasonic Corp 調理補助ロボット及び調理補助方法
JP2016502061A (ja) * 2012-12-04 2016-01-21 ゲナント ヴェルスボールグ インゴ シトーク 熱処理監視システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239115A (ja) * 2005-03-03 2006-09-14 Yuichi Furuya 振動式たこ焼き機
DK3107429T3 (da) * 2014-02-20 2024-02-12 Mbl Ltd Fremgangsmåder og systemer til tilberedning af mad i et robot-madlavningskøkken

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642882A (en) * 1987-06-25 1989-01-06 Omron Tateisi Electron Co Robot control method
JPH07264965A (ja) * 1994-03-29 1995-10-17 Mukai Seisakusho:Kk たこ焼き等の製造装置
JP2009106734A (ja) * 2007-10-10 2009-05-21 Panasonic Corp 調理補助ロボット及び調理補助方法
JP2016502061A (ja) * 2012-12-04 2016-01-21 ゲナント ヴェルスボールグ インゴ シトーク 熱処理監視システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11574269B2 (en) * 2020-02-21 2023-02-07 Worximity Technologies Inc. Controller and method using machine learning to optimize operations of a processing chain of a food factory
US11972380B2 (en) 2020-02-21 2024-04-30 Worximity Technologies Inc Controller and method using machine learning to optimize operations of a processing chain of a food factory
CN113759731A (zh) * 2020-06-22 2021-12-07 北京京东乾石科技有限公司 一种调度机械臂的方法和装置
IT202100011801A1 (it) * 2021-05-07 2021-08-07 Totaro S R L Sistema automatizzato di selezione e movimentazione, e relativo metodo

Also Published As

Publication number Publication date
JP2019180289A (ja) 2019-10-24
JP6429138B1 (ja) 2018-11-28

Similar Documents

Publication Publication Date Title
WO2019198772A1 (ja) 食品製造装置、食品製造システム、食品製造方法及び制御プログラム
US20170011649A1 (en) Recipe system
CN105979832B (zh) 具有非接触式操作的厨房电器
TW201138687A (en) Kitchen machine
CN101711116B (zh) 带有检验特征的电动烤箱
CN105520651B (zh) 煎烤机的加热方法、煎烤机的加热装置和煎烤机
TW201827185A (zh) 機器人、機器人之控制裝置、及機器人之位置教示方法
WO2017141273A1 (en) An automatic machine for making flat edibles
CN107411581A (zh) 焦度可视的华夫机及焦度可视的华夫机的控制系统
CN110275456A (zh) 烹饪控制方法、系统及计算机可读存储介质
CN108348088A (zh) 烹饪装置及其控制方法
US10092011B1 (en) Scalable semi-automated injera making system
WO2020171085A1 (ja) 複合調理装置及び制御プログラム
KR20160015103A (ko) 밥 버거 성형장치
CN111419096B (zh) 一种食物加工的方法、控制器及食物加工设备
CN208339407U (zh) 煎烤机
JP2014158716A (ja) 歯科焼成窯ならびに歯科焼成窯の運転方法
JP7290519B2 (ja) 調理の方法、システム、プログラムおよび機器
JP2022133846A (ja) ソース塗布装置
JP6895830B2 (ja) 調理支援装置
CA2633556C (en) Electronic cooker and method for game using the same
JP3245165U (ja) シェフロボット装置
JP7265435B2 (ja) 調理の方法、システム、プログラムおよび機器
JP6994655B1 (ja) 加熱調理器
TW202108059A (zh) 自動料理機及其實施方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP