WO2019198590A1 - 状態変化検出装置及び状態変化検出方法 - Google Patents

状態変化検出装置及び状態変化検出方法 Download PDF

Info

Publication number
WO2019198590A1
WO2019198590A1 PCT/JP2019/014793 JP2019014793W WO2019198590A1 WO 2019198590 A1 WO2019198590 A1 WO 2019198590A1 JP 2019014793 W JP2019014793 W JP 2019014793W WO 2019198590 A1 WO2019198590 A1 WO 2019198590A1
Authority
WO
WIPO (PCT)
Prior art keywords
servo system
state
evaluation target
gain
changed
Prior art date
Application number
PCT/JP2019/014793
Other languages
English (en)
French (fr)
Inventor
研太郎 浦邊
守 恵木
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201980019498.7A priority Critical patent/CN111868653B/zh
Priority to EP19784224.8A priority patent/EP3779627B1/en
Publication of WO2019198590A1 publication Critical patent/WO2019198590A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4062Monitoring servoloop, e.g. overload of servomotor, loss of feedback or reference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a state change detection device and a state change method for detecting a state change of a servo system.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a state change detection device and a state change detection method capable of detecting a state change in which the resonance frequency does not change and a state change in which the resonance peak value decreases.
  • a state change detection apparatus measures a gain-frequency characteristic of an evaluation target servo system, and each of the measured gain-frequency characteristics within an evaluation target frequency range.
  • a calculating means for calculating a value correlated with an integrated value of the gain of the frequency as a feature quantity of the evaluation target servo system; the feature quantity calculated by the calculation means; and the past feature quantity of the evaluation target servo system; Determining means for determining whether or not the state of the servo system to be evaluated has changed.
  • the “gain-frequency characteristics in each frequency within the frequency range to be evaluated” The feature value, which is a value “correlated with the gain integrated value”, changes from that in the past. Therefore, according to the state change detection device having the above-described configuration, it is possible to detect a state change that cannot be detected by the conventional technique.
  • the evaluation target frequency range in the state change detection device may be the entire frequency range in which the gain-frequency characteristics are measured.
  • the evaluation target frequency range may be a frequency range equal to or higher than the speed proportional gain used in the evaluation target servo system.
  • the calculation means of the state change detection device may calculate an integrated value of a value obtained by subtracting a reference gain from a gain of each frequency within the evaluation target frequency range as the feature amount of the evaluation target servo system.
  • a reference gain changing means for changing the reference gain to a value specified by the user, or a frequency range change for changing at least one of the upper limit value and the lower limit value of the evaluation target frequency range to a value specified by the user Means may be added.
  • Warning information output means for outputting warning information indicating that the state of the evaluation target servo system has changed when the determination means determines that the state of the evaluation target servo system has changed, to the state change detection device. , May be added.
  • the determination unit compares the feature amount calculated by the calculation unit with the past feature amount of the evaluation target servo system, thereby comparing the evaluation target servo system.
  • a primary determination is made as to whether or not the state has changed, and when it is continuously determined a predetermined number of times that the state of the evaluation target servo system has changed due to the primary determination, the evaluation target servo system A means for determining that the state has changed may be employed.
  • the state change detection device may be configured as a determination unit by: “The state of the evaluation target servo system is changed by comparing the feature amount calculated by the calculation unit with the past feature amount of the evaluation target servo system. And determining whether or not the state of the servo system to be evaluated has changed, based on a first determination for determining whether or not a resonance peak gain in the gain-frequency characteristic measured by the calculation means A determination result as to whether or not the state of the evaluation target servo system has changed, based on a logical product or a logical sum of the determination result of the first determination and the determination result of the second determination. You may adopt the means.
  • the state change detection device includes one or more state quantities relating to the servo system to be evaluated as start condition information.
  • a means for calculating the feature amount of the servo system to be evaluated when a specified condition is satisfied may be employed.
  • the state change detection device further comprises a control means for controlling a plurality of servo systems, wherein the calculation means specifies one or more state quantities related to the plurality of servo systems by the control means as start condition information.
  • the state change detection device may be realized as a controller having an automatic detection function of a servo system state change based on the feature amount.
  • the calculation means of the state change detection device may store the measured gain-frequency characteristic in a storage device in association with the start condition information, and the measured gain-frequency characteristic is stored in the gain-frequency characteristic.
  • the frequency characteristic measurement time and the start condition information may be associated with each other and stored in the storage device.
  • the state change detection method measures the gain-frequency characteristic of the servo system to be evaluated, and the integrated value of the gain of each frequency within the evaluation target frequency range in the measured gain-frequency characteristic.
  • the present invention it is possible to detect a state change in which the resonance frequency does not change and a state change in which the resonance peak value decreases.
  • FIG. 1A is a gain-frequency characteristic diagram of a normal servo system.
  • FIG. 1B is a gain-frequency characteristic diagram of the servo system in which the connection between the motor and the machine is abnormal. It is explanatory drawing of the usage type example of the controller which concerns on one Embodiment of this invention. It is a functional block diagram of a controller concerning an embodiment.
  • FIG. 4A is an explanatory diagram of feature amounts.
  • FIG. 4B is an explanatory diagram of the feature amount.
  • FIG. 5 is a flowchart of a state start process executed by the controller (state monitoring unit) according to the embodiment.
  • FIG. 6 is a flowchart of a first state determination process that can be executed by the controller (state monitoring unit) according to the embodiment.
  • FIG. 7 is a flowchart of a second state determination process that can be executed by the controller (state monitoring unit) according to the embodiment.
  • FIG. 8 is a flowchart of a third state determination process that can be executed by the controller (state monitoring unit) according to the embodiment.
  • FIG. 9 is a flowchart of a fourth state determination process that can be executed by the controller (state monitoring unit) according to the embodiment.
  • FIG. 2 shows an example of how the controller 10 according to an embodiment of the present invention is used.
  • the controller 10 is a device (so-called PLC: Programmable Logic Controller) that controls a plurality of servo systems 23 and detects a change in the state of each servo system 23.
  • the servo system 23 is a system configured by a machine 22 such as a ball screw, a motor (M) 21 for driving the machine 22, and a servo driver 20 for controlling the motor 21. .
  • the controller 10 As shown in FIG. 2, the controller 10 according to the present embodiment is operated in a state where it is connected to the servo driver 20 and the information processing device 30 in each servo system 23.
  • the servo driver 20 connected to the controller 10 is a servo driver having a function of measuring a frequency response (frequency dependence of gain and phase).
  • the information processing apparatus 30 is a computer used by a user to program the controller 10 and to change parameters of various processes executed by the controller 10 (a state monitoring unit 12 described later: see FIG. 3). The information processing apparatus 30 is also used to notify the user that a state change has occurred in any servo system 23.
  • FIG. 3 shows a functional block diagram of the controller 10. As illustrated, the controller 10 includes a control unit 11, a state monitoring unit 12, and a storage unit 13.
  • the control unit 11 is a functional block that controls each servo system 23 by giving various control commands (position command, speed command, etc.) to the servo driver 20 of each servo system 23.
  • the state monitoring unit 12 is a functional block that detects a state change of each servo system 23.
  • the storage unit 13 is a storage device that stores various types of information (start condition information, comparison feature amount, etc.) that the state monitoring unit 12 refers to.
  • the storage unit 13 is also used to store information (not shown) collected / calculated by the state monitoring unit 12, and the state monitoring unit 12 uses the information on the storage unit 13 as another device (information processing device). 30).
  • the state monitoring unit 12 includes a certain servo system 23 (hereinafter referred to as an evaluation target servo system).
  • the state change is expressed on the basis of “a value that correlates with an integrated gain value of each frequency within the evaluation target frequency range in the gain-frequency characteristics of the evaluation target servo system”. Yes.
  • the “value correlating with the gain integrated value of each frequency within the evaluation target frequency range in the gain-frequency characteristics of the evaluation target servo system” (hereinafter referred to as the characteristic amount of the evaluation target servo system) is: For example, the following values.
  • the evaluation target frequency range is a frequency range including the resonance peak frequency.
  • the characteristic amount T of the servo system to be evaluated is the value (d), that is, the value calculated by the following equation (1).
  • g baseline is the reference gain [dB]
  • g (k) is the gain [dB] at the frequency f (k)
  • n and m are f (k), respectively.
  • the servo system 23 may undergo a state change in which the resonance frequency decreases or a state change in which the resonance peak value increases (see FIGS. 1A and 1B).
  • the evaluation target frequency range is 700 Hz.
  • the reference gain is ⁇ 1200 Hz and the reference gain is ⁇ 10 dB
  • the feature amount T calculated by the above equation (1) is the area of the hatched portion shown in FIGS. 4A and 4B (more precisely, the horizontal axis ( This is a value representing the area when the frequency axis is a linear scale.
  • T A and the feature quantity TB for the state of the evaluation target servo system can be employed a variety of things. For example, when T B is a value equal to or greater than T A (1 ⁇ / 100) and equal to or less than T A (1 + ⁇ / 100), it is determined that the state of the servo system to be evaluated has not changed, and so If not, it may be determined that the state of the servo system to be evaluated has changed.
  • is a preset value for defining an allowable range.
  • the state of the servo system to be evaluated is It may be determined that it has not changed, and if not, it may be determined that the state of the servo system to be evaluated has changed.
  • the state monitoring unit 12 is configured to start the state monitoring process of the procedure illustrated in FIG. 5 when the operation of the control unit 11 is started.
  • the state monitoring unit 12 receives information from the servo driver 20 and / or the control unit 11 and the storage unit 13 in step S101. Based on the plurality of start condition information, a state of waiting (monitoring) for the start condition of any state determination process to be satisfied is established.
  • the start condition information (see FIG. 2) on the storage unit 13 is information including the following information.
  • Servo system designation information for designating the servo system 23 to be checked for the presence or absence of state change.
  • Type designation information for designating the type of state determination processing to be performed on the servo system 23 designated by the servo system designation information.
  • a process in which conditions for executing the type of state determination process designated by the designation information are defined by state quantities (position of each machine 22, actual torque of each motor 21, etc.) obtained from the servo driver 20 and / or the control unit 11.
  • the determination that the state monitoring unit 12 actually makes in step S101 is that the state monitoring unit 12 satisfies the condition specified by the process execution condition information in any start condition information on the storage unit 13. It is a judgment of no.
  • the comparison target feature amount on the storage unit 13 is a feature amount stored on the storage unit 13 by the state monitoring unit 12 before the start condition information is set / changed. Specifically, when the user tries to set / change the start condition information by operating the information processing apparatus 30, the state monitoring unit 12 indicates the process execution condition information in the start condition information to be set / changed. After controlling each servo system 23 so as to satisfy the condition, the frequency response of the servo system to be evaluated is measured. Thereafter, the state monitoring unit 12 calculates the feature quantity from the measured frequency response, and stores the calculated feature quantity in the storage unit 13 in a form that can be identified by specific identification information. Then, the state monitoring unit 12 generates the actual start condition information by including the identification information in the start condition information to be set / changed, and stores the generated start condition information in the storage unit 13.
  • the state monitoring unit 12 executes the state determination process in which the start condition is satisfied (step S102). More specifically, when a condition defined by certain process execution condition information on the storage unit 13 is satisfied (step S101; YES), the state monitoring unit 12 starts the condition including the process execution condition information. Based on the other information in the information, the processing target servo system which is the servo system 23 to be checked for the presence of state change is grasped (step S102). The state monitoring unit 12 also determines the type of state determination processing to be performed on the processing target servo system, each parameter value (evaluation target frequency range, reference gain, etc.) to be used during the state determination processing, and comparison target characteristics. The amount is grasped (step S102). Then, the state monitoring unit 12 executes the grasped type of state determination process using the grasped evaluation target frequency range or the like (step S102).
  • step S102 Before describing the contents of the remaining steps of the state monitoring process (FIG. 5), the contents of each state determination process that may be executed in step S102 will be described.
  • the state determination processing (state determination processing of different types) that may be executed in step S102 includes first to fourth state determination processing.
  • the first state determination process is a process of the procedure shown in FIG.
  • the state monitoring unit 12 that has started the first state determination process first measures the frequency response of the evaluation target servo system (step S201). More specifically, in this step S201, the state monitoring unit 12 issues a frequency response measurement instruction to the evaluation target servo system (servo driver 20 in the evaluation target servo system) and evaluates it as a response to the instruction. A process of storing (storing) the frequency response transmitted from the target servo system in the storage unit 13 in association with the start condition information that is the reason for starting the first state determination process is performed.
  • the state monitoring unit 12 that has finished the process of step S201 calculates the feature quantity of the servo system to be evaluated from the measured frequency response (step S202).
  • the feature amount calculated by the state monitoring unit 12 according to the present embodiment in step S202 is the above-described feature amount (d).
  • the feature amount is “a value that correlates with the gain integrated value of each frequency within the evaluation target frequency range in the gain-frequency characteristics of the evaluation target servo system” (for example, the features of (a) to (c) described above) Amount).
  • the state monitoring unit 12 determines the difference between the calculated feature amount and the comparison target feature amount specified in the start condition information that is the reason for starting the state determination process being executed (in this embodiment, the comparison target amount). (Feature amount ⁇ calculated feature amount) is calculated (step S203). Then, the state monitoring unit 12 determines that the calculated difference is a value within the allowable range specified in the start condition information that is the reason for starting the state determination process being executed (step S204; YES). Determines that the state of the servo system to be evaluated has not changed (step S205), and ends the first state determination process. If the calculated difference is not within the allowable range (step S204; NO), the state monitoring unit 12 determines that the state of the servo system to be evaluated has changed (step S206). The first state determination process is terminated.
  • the second state determination process is a process of the procedure shown in FIG.
  • steps S301 to S303 of the second state determination process are the same as the processes of steps S201 to S203 of the first state determination process (FIG. 6), respectively.
  • the resonance peak gain (resonance peak gain value) is identified from the frequency response measurement result before determining whether or not the state has changed (step S305). (Step S304).
  • step S305 if the feature amount difference calculated in the process of step S303 is within the allowable range and the resonance peak gain is less than the threshold value (step S305; YES), the servo to be evaluated It is determined that the state of the system has changed (step S305). If not (step S305; NO), it is determined that the state of the servo system to be evaluated has not changed (step S307).
  • the third state determination process is a process of the procedure shown in FIG.
  • the third state determination process is a process in which the determination condition as to whether or not the state during the second state determination process has changed is changed to another condition.
  • step S305b when the feature amount difference is within the allowable range and when the resonance peak gain is less than the threshold value (step S305b; YES) ), It is determined that the state of the evaluation target servo system has changed (step S306). Then, when the feature amount difference is not within the allowable range and when the resonance peak gain is not less than the threshold (step S305b; NO), it is determined that the state of the servo system to be evaluated has not changed. (Step S307).
  • the fourth state determination process is a process of the procedure shown in FIG.
  • steps S401 to S404 of the fourth state determination process are the same as the processes of steps S201 to S204 of the first state determination process (FIG. 6), respectively.
  • step S204 of the first state determination process is the final determination whether or not the state of the servo system to be evaluated has changed
  • the determination in step S404 of the fourth state determination process is This is a primary determination as to whether the state of the servo system has changed.
  • the state monitoring unit 12 executing the fourth state determination process evaluates when the feature amount difference is not within the allowable range (step S ⁇ b> 404; NO).
  • the number of continuous times managed as information related to the servo system is incremented by “1” (step S405).
  • step S407 determines that the state of the evaluation target servo system has changed (step S408). If the number of continuous times is not equal to or greater than the prescribed number (step S407; NO), it is determined that the state of the evaluation target servo system has not changed (step S409). And the state monitoring part 12 which finished the process of step S408 or S409 complete
  • step S404 If the feature amount difference is within the allowable range (step S404; YES), the state monitoring unit 12 resets the continuous count to “0” (step S406). Then, the state monitoring unit 12 determines that the state of the evaluation target servo system has not changed (step S409), and then ends the fourth state determination process.
  • the state monitoring unit 12 determines whether or not it is determined in the state determination process that the state of the servo system to be evaluated has changed (Step S12). S103). Then, when it is not determined in the state determination process that the state of the servo system to be evaluated has changed (step S103; NO), the state monitoring unit 12 starts the processes after step S101 again. Further, when it is determined in the state determination process that the state of the servo system to be evaluated has changed (step S103; YES), the state monitoring unit 12 performs a process associated with the established start condition ( Step S104).
  • step S104 in accordance with the established start condition (start condition information satisfying the conditions specified in the process execution condition information), the fact that the state change has occurred in the servo system to be evaluated together with the state change detection time, etc. Processing to be displayed on the display of the information processing device 30 and processing to notify the control unit 11 that a state change has occurred in the evaluation target servo system are performed.
  • step S104 the control unit 11 changes the contents of changes to some servo systems 23 when notified that a state change has occurred in the evaluation target servo system. Composed.
  • the controller 10 determines that the state of each servo system 23 is based on the feature quantity that is “a value that correlates with the gain integrated value of each frequency within the evaluation target frequency range in the gain-frequency characteristics”. It has a function of detecting whether or not it has changed. Further, since the controller 10 is configured so that the user can change various parameters, the controller 10 can accurately determine whether or not the state of each servo system 23 has changed.
  • the controller 10 described above can perform various modifications.
  • the controller 10 may be modified into a device that controls one servo system 23.
  • an apparatus having only a function of detecting whether or not the state of one or a plurality of servo systems 23 has changed an apparatus in which the control function of the servo system 23 is removed from the controller 10.
  • the specific processing procedures of the state monitoring process and each state determination process may be different from those shown in FIGS.
  • each state determination process may be transformed into a process for calculating the ratio of two feature values, not the difference between two feature values, and determining the presence or absence of a state change based on the calculation result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Numerical Control (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

サーボ系の共振周波数が変化しない状態変化や共振ピーク値が低下する状態変化を検出できる状態変化検出装置を提供する。状態変化検出装置は、評価対象サーボ系のゲイン-周波数特性を測定し、測定されたゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインの積算値と相関する値を、前記評価対象サーボ系の特徴量として算出する算出手段と、前記算出手段により算出された前記特徴量と前記評価対象サーボ系の過去の前記特徴量とを比較することで前記評価対象サーボ系の状態が変化したか否かを判定する判定手段と、を備える。

Description

状態変化検出装置及び状態変化検出方法
 本発明は、サーボ系の状態変化を検出する状態変化検出装置と状態変化方法とに関する。
 機械とモータとサーボドライバとで構成されたサーボ系では、機械の状態(剛性等)や、機械・モータ間の接続状態の変化により振動等が発生することがある。そのため、サーボ系の状態変化を、共振周波数の低下により検出すること(特許文献1参照)や、共振ピーク値(共振ピークにおけるゲインの値)の上昇により検出することが提案されている。
特開2016-34224号公報
 上記従来技術によれば、サーボ系に、共振周波数が低下する状態変化又は共振ピーク値が上昇する状態変化が生じたことを検出することが出来る。ただし、サーボ系に、共振周波数が変化しない状態変化や、共振ピーク値が低下する状態変化が生ずることがある。具体的には、例えば、機械とモータ間を接続しているカップリングのねじが緩むと、ゲイン-周波数特性が、図1Aに示したものから図1Bに示したものに変化する。上記従来技術では、このような状態変化を検出することができない。
 本発明は、上記問題に鑑みてなされたものであり、共振周波数が変化しない状態変化や、共振ピーク値が低下する状態変化を検出できる状態変化検出装置及び状態変化検出方法を提供することを目的とする。
 上記課題を解決するために、本発明の一観点に係る状態変化検出装置は、評価対象サーボ系のゲイン-周波数特性を測定し、測定されたゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインの積算値と相関する値を、前記評価対象サーボ系の特徴量として算出する算出手段と、前記算出手段により算出された前記特徴量と前記評価対象サーボ系の過去の前記特徴量とを比較することで前記評価対象サーボ系の状態が変化したか否かを判定する判定手段と、を備える。
 すなわち、サーボ系に生じた状態変化が、共振周波数が変化しないものであっても、共振ピーク値が低下するものであっても、“ゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインの積算値と相関する値”である特徴量の値は、過去のそれから変化する。従って、上記構成を有する状態変化検出装置によれば、上記従来技術では検出できない状態変化も検出することが出来る。
 なお、状態変化検出装置(算出手段)における評価対象周波数範囲は、ゲイン-周波数特性が測定された全周波数範囲であっても良い。評価対象周波数範囲は、前記評価対象サーボ系に使用されている速度比例ゲイン以上の周波数範囲であっても良い。また、状態変化検出装置の算出手段は、前記評価対象サーボ系の前記特徴量として、前記評価対象周波数範囲内の各周波数のゲインから基準ゲインを減じた値の積算値を算出しても良い。
 状態変化検出装置に、前記基準ゲインをユーザが指定した値に変更する基準ゲイン変更手段や、前記評価対象周波数範囲の上限値及び下限値の少なくとも一方をユーザが指定した値に変更する周波数範囲変更手段を、付加しても良い。状態変化検出装置に、前記判定手段により前記評価対象サーボ系の状態が変化したと判定された場合に、前記評価対象サーボ系の状態が変化した旨を示す警告情報を出力する警告情報出力手段を、付加しても良い。
 状態変化検出装置に、判定手段として、『前記判定手段は、前記算出手段により算出された前記特徴量と前記評価対象サーボ系の過去の前記特徴量とを比較することで前記評価対象サーボ系の状態が変化したか否かについての第1次判定を行い、前記第1次判定により前記評価対象サーボ系の状態が変化したと所定回数連続して判定された場合に、前記評価対象サーボ系の状態が変化したと判定する』手段を採用しても良い。
 また、状態変化検出装置に、判定手段として、『前記算出手段により算出された前記特徴量と前記評価対象サーボ系の過去の前記特徴量とを比較することで前記評価対象サーボ系の状態が変化したか否かを判定する第1の判定と、前記算出手段により測定された前記ゲイン-周波数特性における共振ピークゲインの大きさに基づき、前記評価対象サーボ系の状態が変化したか否かを判定する第2の判定とを行い、前記第1の判定の判定結果と前記第2の判定の判定結果の論理積又は論理和を前記評価対象サーボ系の状態が変化したか否かの判定結果とする』手段を採用しても良い。
 自動的に評価対象サーボ系の状態の変化の有無を検出できるようにするために、状態変化検出装置に、算出手段として、前記評価対象サーボ系に関する1つ以上の状態量が、開始条件情報で指定されている条件を満たしたときに、前記評価対象サーボ系の前記特徴量を算出する手段を採用しても良い。
 状態変化検出装置に、『複数のサーボ系を制御する制御手段を、さらに備え、前記算出手段は、前記制御手段による前記複数のサーボ系に関する1つ以上の状態量が、開始条件情報で指定されている条件を満たしたときに、当該開始条件情報で指定されている、前記複数のサーボ系の中の1つのサーボ系を前記評価対象サーボ系として取り扱って、前記評価対象サーボ系の前記特徴量を算出する』構成を採用しても良い。換言すれば、状態変化検出装置を、上記特徴量に基づくサーボ系の状態変化の自動検出機能を有するコントローラとして実現しても良い。
 状態変化検出装置の算出手段は、前記測定されたゲイン-周波数特性を、前記開始条件情報に対応づけて、記憶装置に保存しても良く、前記測定されたゲイン-周波数特性を、前記ゲイン-周波数特性の測定時刻及び前記開始条件情報に対応づけて、前記記憶装置に保存しても良い。
 また、本発明の一観点に係る状態変化検出方法は、評価対象サーボ系のゲイン-周波数特性を測定し、測定されたゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインの積算値と相関する値を、前記評価対象サーボ系の特徴量として算出する算出ステップと、前記算出ステップにより算出された前記特徴量と前記評価対象サーボ系の過去の前記特徴量とを比較することで前記評価対象サーボ系の状態が変化したか否かを判定する判定ステップと、を含む。
 従って、この状態変化検出方法によっても、上記従来技術では検出できない状態変化も検出することが出来る。
 本発明によれば、共振周波数が変化しない状態変化や、共振ピーク値が低下する状態変化を検出することが可能となる。
図1Aは、正常なサーボ系のゲイン-周波数特性図である。 図1Bは、モータ、機械間の接続が異常な状態となったサーボ系のゲイン-周波数特性図である。 本発明の一実施形態に係るコントローラの使用形態例の説明図である。 実施形態に係るコントローラの機能ブロック図である。 図4Aは、特徴量の説明図である。 図4Bは、特徴量の説明図である。 図5は、実施形態に係るコントローラ(状態監視部)が実行する状態開始処理の流れ図である。 図6は、実施形態に係るコントローラ(状態監視部)が実行可能な第1状態判定処理の流れ図である。 図7は、実施形態に係るコントローラ(状態監視部)が実行可能な第2状態判定処理の流れ図である。 図8は、実施形態に係るコントローラ(状態監視部)が実行可能な第3状態判定処理の流れ図である。 図9は、実施形態に係るコントローラ(状態監視部)が実行可能な第4状態判定処理の流れ図である。
 以下、図面に基づいて、本発明の実施の形態を説明する。
 図2に、本発明の一実施形態に係るコントローラ10の使用形態例を示す。
 本実施形態に係るコントローラ10は、複数のサーボ系23を制御すると共に、各サーボ系23の状態変化を検出する装置(いわゆるPLC:Programmable Logic Controller)である。なお、サーボ系23とは、ボールねじ等の機械22と、機械22を駆動するためのモータ(M)21と、モータ21を制御するためのサーボドライバ20とにより構成されたシステムのことである。
 図2に示してあるように、本実施形態に係るコントローラ10は、各サーボ系23内のサーボドライバ20と情報処理装置30とに接続された状態で運用される。
 コントローラ10に接続されるサーボドライバ20は、周波数応答(ゲイン、位相の周波数依存性)を測定する機能を有するサーボドライバである。情報処理装置30は、コントローラ10をプログラミングするためや、コントローラ10(後述する状態監視部12:図3参照)が実行する各種処理のパラメータを変更するためにユーザが使用するコンピュータである。情報処理装置30は、いずれかのサーボ系23に状態変化が生じたことをユーザに通知するためにも使用される。
 図3に、コントローラ10の機能ブロック図を示す。図示してあるように、コントローラ10は、制御部11と状態監視部12と記憶部13とを備える。
 制御部11は、各サーボ系23のサーボドライバ20に各種制御指令(位置指令、速度指令等)を与えることにより、各サーボ系23を制御する機能ブロックである。
 状態監視部12は、各サーボ系23の状態変化を検出する機能ブロックである。記憶部13は、状態監視部12が参照する各種情報(開始条件情報、比較対照特徴量等)を記憶した記憶装置である。この記憶部13は、状態監視部12が収集/算出した情報(図示略)を保存しておくためにも使用され、状態監視部12は、記憶部13上の情報を他装置(情報処理装置30)に提供する機能も有している。
 以下、状態監視部12及び記憶部13についてさらに具体的に説明する。
 共振周波数が変化しない状態変化や共振ピーク値が低下する状態変化がサーボ系23に生じたことを検出可能とするために、状態監視部12は、或るサーボ系23(以下、評価対象サーボ系と表記する)の状態変化の有無を、“評価対象サーボ系のゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインの積算値と相関する値”に基づき判定するように構成されている。
 ここで、“評価対象サーボ系のゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインの積算値と相関する値”(以下、評価対象サーボ系の特徴量と表記する)とは、例えば、以下のような値のことである。
(a)評価対象サーボ系のゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインの積算値
(b)評価対象サーボ系のゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインの絶対値の積算値
(c)評価対象サーボ系のゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインから基準ゲインを減じた値の積算値
(d)評価対象サーボ系のゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインから基準ゲインを減じた値の絶対値の積算値
 また、評価対象周波数範囲とは、共振ピーク周波数を含む周波数範囲のことである。
 ここで、評価対象サーボ系の特徴量Tが、(d)の値、すなわち、以下の(1)式で算出される値である場合を考える。
Figure JPOXMLDOC01-appb-M000001
 なお、この(1)式において、gbaselineは、基準ゲイン[dB]であり、g(k)は、周波数f(k)におけるゲイン[dB]であり、n,mは、それぞれ、f(k)が、評価対象周波数範囲の下限値、上限値に最も近くなるk値である。
 既に説明したように、サーボ系23に、共振周波数が低下する状態変化や共振ピーク値が上昇する状態変化が生じることがある(図1A、図1B参照)が、例えば、評価対象周波数範囲が700Hz~1200Hzであり、基準ゲインが-10dBである場合に上記(1)式にて算出される特徴量Tは、図4A、図4Bに示してある斜線部の面積(正確には、横軸(周波数軸)がリニアスケールである場合の面積)を表す値となる。
 従って、正常時の特徴量Tと現在の特徴量Tとを比較することにより、評価対象サーボ系に、共振周波数が低下する状態変化や共振ピーク値が上昇する状態変化が生じたか否かを判定することができる。
 なお、評価対象サーボ系の状態が変化したか否かを判定するための特徴量Tと特徴量TBの比較方法としては、様々なものを採用することが出来る。例えば、Tが、T(1-σ/100)以上、且つ、T(1+σ/100)以下の値である場合に、評価対象サーボ系の状態が変化していないと判定し、そうではない場合に、評価対象サーボ系の状態が変化したと判定しても良い。ここで、σとは、予め設定されている、許容範囲を規定するための値のことである。
 また、“T/T”値や、“T/T”値が、規定範囲(“1”を中心とした数値範囲)内に入っている場合に、評価対象サーボ系の状態が変化していないと判定し、そうでなかった場合に、評価対象サーボ系の状態が変化したと判定しても良い。
 以上、説明したように、上記特徴量により評価対象サーボ系の状態が変化したか否かを判定すれば、共振周波数が低下する状態変化や共振ピーク値が上昇する状態変化がサーボ系に生じたことを検出できる。ただし、評価対象周波数範囲や基準ゲインの適正値は、サーボ系23により異なる、また、各サーボ系23の評価を行うべきタイミングも様々である。そのため、状態監視部12は、制御部11の動作開始時に、図5に示した手順の状態監視処理を開始するように構成されている。
 すなわち、制御部11が各サーボ系23(サーボドライバ20)の制御を開始すると、状態監視部12は、ステップS101にて、サーボドライバ20及び/又は制御部11からの情報と、記憶部13上の複数の開始条件情報とに基づき、いずれかの状態判定処理の開始条件が成立するのを待機(監視)している状態となる。
 ここで、記憶部13上の開始条件情報(図2参照)とは、以下の情報を含む情報のことである。
・状態変化の有無をチェックすべきサーボ系23を指定するサーボ系指定情報
・サーボ系指定情報が指定しているサーボ系23に対して行うべき状態判定処理の種類を指定する種類指定情報
・種類指定情報が指定する種類の状態判定処理を実行すべき条件を、サーボドライバ20及び/又は制御部11から得られる状態量(各機械22の位置、各モータ21の実トルク等)で規定した処理実行条件情報
・種類指定情報が示す種類の状態判定処理の実行時に、使用すべき各パラメータ値(評価対象周波数範囲、基準ゲイン、後述する許容範囲等)と、記憶部13上の比較対象特徴量(詳細は後述)とを指定する情報
 従って、状態監視部12がステップS101にて実際に行う判断は、状態監視部12は、記憶部13上のいずれかの開始条件情報中の処理実行条件情報にて規定される条件が満たされたか否かの判断である。
 また、記憶部13上の比較対象特徴量とは、開始条件情報の設定/変更前に、状態監視部12によって記憶部13上に記憶される特徴量のことである。具体的には、ユーザが情報処理装置30に対する操作により開始条件情報を設定/変更しようとした場合、状態監視部12は、設定/変更予定の開始条件情報中の処理実行条件情報が示している条件を満たすように各サーボ系23を制御した上で、評価対象サーボ系の周波数応答を測定する。その後、状態監視部12は、測定した周波数応答から上記特徴量を算出し、算出した特徴量を、特定の識別情報で識別可能な形で記憶部13に記憶する。そして、状態監視部12は、設定/変更予定の開始条件情報に、当該識別情報を含めることで、実際の開始条件情報を生成し、生成した開始条件情報を記憶部13に記憶する。
 状態監視部12は、いずれかの状態判定処理の開始条件が成立した場合(ステップS101;YES)には、開始条件が成立した状態判定処理を実行する(ステップS102)。より具体的には、状態監視部12は、記憶部13上の或る処理実行条件情報にて規定される条件が満たされた場合(ステップS101;YES)、当該処理実行条件情報を含む開始条件情報中の他の情報に基づき、状態変化の有無をチェックすべきサーボ系23である処理対象サーボ系を把握する(ステップS102)。また、状態監視部12は、処理対象サーボ系に対して行うべき状態判定処理の種類と、当該状態判定処理時に使用すべき各パラメータ値(評価対象周波数範囲、基準ゲイン等)と、比較対象特徴量とを把握する(ステップS102)。そして、状態監視部12は、把握した種類の状態判定処理を、把握した評価対象周波数範囲等を用いて実行する(ステップS102)。
 状態監視処理(図5)の残りのステップの内容を説明する前に、ステップS102にて実行されることがある各状態判定処理の内容を説明する。
 ステップS102にて実行されることがある状態判定処理(種類の異なる状態判定処理)には、第1~第4状態判定処理がある。
 第1状態判定処理は、図6に示した手順の処理である。
 すなわち、この第1状態判定処理を開始した状態監視部12は、まず、評価対象サーボ系の周波数応答を測定する(ステップS201)。より具体的には、このステップS201にて、状態監視部12は、評価対象サーボ系(評価対象サーボ系内のサーボドライバ20)に対して周波数応答の測定指示を出し、その指示に対する応答として評価対象サーボ系から送信されている周波数応答を、第1状態判定処理の開始事由となった開始条件情報に対応づけて記憶部13内に記憶(保存)する処理を行う。
 ステップS201の処理を終えた状態監視部12は、測定した周波数応答から、評価対象サーボ系の特徴量を算出する(ステップS202)。本実施形態に係る状態監視部12が、このステップS202で算出する特徴量は、上記した(d)の特徴量である。ただし、特徴量は、“評価対象サーボ系のゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインの積算値と相関する値”(例えば、上記した(a)~(c)の特徴量)であれば良い。
 その後、状態監視部12は、算出した特徴量と、実行中の状態判定処理の開始事由となった開始条件情報にて指定されている比較対象特徴量との差(本実施形態では、比較対象特徴量-算出特徴量)を算出する(ステップS203)。そして、状態監視部12は、算出した差が、実行中の状態判定処理の開始事由となった開始条件情報にて指定されている許容範囲内の値であった場合(ステップS204;YES)には、評価対象サーボ系の状態が変化していないと判定して(ステップS205)、この第1状態判定処理を終了する。また、状態監視部12は、算出した差が上記許容範囲内の値でなかった場合(ステップS204;NO)には、評価対象サーボ系の状態が変化していると判定して(ステップS206)、この第1状態判定処理を終了する。
 第2状態判定処理は、図7に示した手順の処理である。
 この第2状態判定処理のステップS301~S303の処理は、それぞれ、第1状態判定処理(図6)のステップS201~S203の処理と同じ処理である。図示してあるように、第2状態判定処理では、状態が変化したか否かの判定(ステップS305)の前に、周波数応答の測定結果から、共振ピークゲイン(共振ピークのゲイン値)が特定される(ステップS304)。
 そして、第2状態判定処理では、ステップS303の処理で算出された特徴量差が許容範囲内であり、且つ、共振ピークゲインが閾値未満であった場合(ステップS305;YES)に、評価対象サーボ系の状態が変化したと判定され(ステップS305)、そうでなかった場合(ステップS305;NO)には、評価対象サーボ系の状態が変化していないと判定される(ステップS307)。
 第3状態判定処理は、図8に示した手順の処理である。
 図7と図8とを比較すれば明らかなように、第3状態判定処理は、第2状態判定処理中の状態が変化したか否かの判定条件を他条件に変更した処理である。
 具体的には、図示してあるように、この第3状態判定処理では、特徴量差が許容範囲内となっていた場合と共振ピークゲインが閾値未満であった場合とに(ステップS305b;YES)、評価対象サーボ系の状態が変化したと判定される(ステップS306)。そして、特徴量差が許容範囲内となっていなかった場合と共振ピークゲインが閾値未満ではなかった場合とには(ステップS305b;NO)、評価対象サーボ系の状態が変化していないと判定される(ステップS307)。
 第4状態判定処理は、図9に示した手順の処理である。
 この第4状態判定処理のステップS401~S404の処理は、それぞれ、第1状態判定処理(図6)のステップS201~S204の処理と同じ処理である。
 ただし、第1状態判定処理のステップS204の判断が、評価対象サーボ系の状態が変化したか否かの最終判断であったのに対し、第4状態判定処理のステップS404の判断は、評価対象サーボ系の状態が変化したか否かの第1次の判断となっている。具体的には、図9に示してあるように、第4状態判定処理を実行している状態監視部12は、特徴量差が許容範囲内でなかった場合(ステップS404;NO)、評価対象サーボ系に関する情報として管理している連続回数を“1”インクリメントする(ステップS405)。
 そして、状態監視部12は、値更新後の連続回数が規定回数以上となっていた場合(ステップS407;YES)には、評価対象サーボ系の状態が変化していると判定し(ステップS408)、連続回数が規定回数以上となっていなかった場合(ステップS407;NO)には、評価対象サーボ系の状態が変化していないと判定する(ステップS409)。そして、ステップS408又はS409の処理を終えた状態監視部12は、この第4状態判定処理を終了する。
 また、特徴量差が許容範囲内であった場合(ステップS404;YES)、状態監視部12は、連続回数を“0”リセットする(ステップS406)。そして、状態監視部12は、評価対象サーボ系の状態が変化していないと判定(ステップS409)してから、この第4状態判定処理を終了する。
 図5に戻って、状態監視処理の残りのステップについて説明する。
 状態判定処理(第1~第4状態判定処理のいずれか)を終えた状態監視部12は、状態判定処理にて評価対象サーボ系の状態が変化したと判定されたか否かを判断する(ステップS103)。そして、状態監視部12は、状態判定処理にて評価対象サーボ系の状態が変化したと判定されなかった場合(ステップS103;NO)には、ステップS101以降の処理を再び開始する。また、状態監視部12は、状態判定処理にて評価対象サーボ系の状態が変化したと判定された場合(ステップS103;YES)には、成立した開始条件に対応付けられている処理を行う(ステップS104)。このステップでは、成立した開始条件(処理実行条件情報にて規定される条件が満たされた開始条件情報)に応じて、評価対象サーボ系に状態変化が生じた旨を状態変化の検出時刻等と共に情報処理装置30のディスプレイ上に表示させる処理や、制御部11に、評価対象サーボ系に状態変化が生じた旨を通知する処理が行われる。なお、ステップS104にて後者の処理を行わせる場合、制御部11は、評価対象サーボ系に状態変化が生じた旨を通知された場合、幾つかのサーボ系23に対する変更内容を変更するように構成される。
 以上、説明したように、コントローラ10は、“ゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインの積算値と相関する値”である特徴量に基づき、各サーボ系23の状態が変化したか否かを検出する機能を有している。また、コントローラ10は、各種パラメータをユーザが変更できるように構成されているので、コントローラ10によれば、各サーボ系23の状態が変化したか否かを正確に判定することが可能となる。
 《変形形態》
 上記したコントローラ10は、各種の変形を行えるものである。例えば、コントローラ10を、1つのサーボ系23を制御する装置に変形しても良い。また、上記技術に基づき、1つ又は複数のサーボ系23の状態が変化したか否かを検出する機能のみを有する装置(コントローラ10からサーボ系23の制御機能を取り除いた装置)を実現しても良い。また、状態監視処理や各状態判定処理の具体的な処理手順を、図5~図9に示したものとは異なるものとしておいても良い。例えば、各状態判定処理を、2つの特徴量の差ではなく、2つの特徴量の比を算出し、算出結果に基づき、状態変化の有無を判定する処理に変形しても良い。
 10  コントローラ
 11  制御部
 12  状態監視部
 13  記憶部
 20  サーボドライバ
 21  モータ
 22  機械
 23  サーボ系
 30  情報処理装置

Claims (13)

  1.  評価対象サーボ系のゲイン-周波数特性を測定し、測定されたゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインの積算値と相関する値を、前記評価対象サーボ系の特徴量として算出する算出手段と、
     前記算出手段により算出された前記特徴量と前記評価対象サーボ系の過去の前記特徴量とを比較することで前記評価対象サーボ系の状態が変化したか否かを判定する判定手段と、
     を備えることを特徴とする状態変化検出装置。
  2.  前記算出手段は、前記評価対象サーボ系の前記特徴量として、前記評価対象周波数範囲内の各周波数のゲインから基準ゲインを減じた値の積算値を算出する、
     ことを特徴とする請求項1に記載の状態変化検出装置。
  3.  前記基準ゲインをユーザが指定した値に変更する基準ゲイン変更手段を、さらに備える
     ことを特徴とする請求項2に記載の状態変化検出装置。
  4.  前記評価対象周波数範囲の上限値及び下限値の少なくとも一方をユーザが指定した値に変更する周波数範囲変更手段を、さらに備える
     ことを特徴とする請求項1から3のいずれか一項に記載の状態変化検出装置。
  5.  前記評価対象周波数範囲が、前記評価対象サーボ系に使用されている速度比例ゲイン以上の周波数範囲である、
     ことを特徴とする請求項1又は2に記載の状態変化検出装置。
  6.  前記判定手段により前記評価対象サーボ系の状態が変化したと判定された場合に、前記評価対象サーボ系の状態が変化した旨を示す警告情報を出力する警告情報出力手段を、さらに備える
     ことを特徴とする請求項1から5のいずれか一項に記載の状態変化検出装置。
  7.  前記判定手段は、前記算出手段により算出された前記特徴量と前記評価対象サーボ系の過去の前記特徴量とを比較することで前記評価対象サーボ系の状態が変化したか否かについての第1次判定を行い、前記第1次判定により前記評価対象サーボ系の状態が変化したと所定回数連続して判定された場合に、前記評価対象サーボ系の状態が変化したと判定する、
     ことを特徴とする請求項1から6のいずれか一項に記載の状態変化検出装置。
  8.  前記判定手段は、前記算出手段により算出された前記特徴量と前記評価対象サーボ系の過去の前記特徴量とを比較することで前記評価対象サーボ系の状態が変化したか否かを判定する第1の判定と、前記算出手段により測定された前記ゲイン-周波数特性における共振ピークゲインの大きさに基づき、前記評価対象サーボ系の状態が変化したか否かを判定する第2の判定とを行い、前記第1の判定の判定結果と前記第2の判定の判定結果の論理積又は論理和を前記評価対象サーボ系の状態が変化したか否かの判定結果とする、
     ことを特徴とする請求項1から6のいずれか一項に記載の状態変化検出装置。
  9.  前記算出手段は、前記評価対象サーボ系に関する1つ以上の状態量が、開始条件情報で指定されている条件を満たしたときに、前記評価対象サーボ系の前記特徴量を算出する、
     ことを特徴とする請求項1から8のいずれか一項に記載の状態変化検出装置。
  10.  複数のサーボ系を制御する制御手段を、さらに備え、
     前記算出手段は、前記制御手段による前記複数のサーボ系に関する1つ以上の状態量が、開始条件情報で指定されている条件を満たしたときに、当該開始条件情報で指定されている、前記複数のサーボ系の中の1つのサーボ系を前記評価対象サーボ系として取り扱って、前記評価対象サーボ系の前記特徴量を算出する、
     ことを特徴とする請求項1から8のいずれか一項に記載の状態変化検出装置。
  11.  前記算出手段は、前記測定されたゲイン-周波数特性を、前記開始条件情報に対応づけて、記憶装置に保存する、
     ことを特徴とする請求項9又は10に記載の状態変化検出装置。
  12.  前記算出手段は、前記測定されたゲイン-周波数特性を、前記ゲイン-周波数特性の測定時刻及び前記開始条件情報に対応づけて、前記記憶装置に保存する、
     ことを特徴とする請求項11に記載の状態変化検出装置。
  13.  評価対象サーボ系のゲイン-周波数特性を測定し、測定されたゲイン-周波数特性における、評価対象周波数範囲内の各周波数のゲインの積算値と相関する値を、前記評価対象サーボ系の特徴量として算出する算出ステップと、
     前記算出ステップにより算出された前記特徴量と前記評価対象サーボ系の過去の前記特徴量とを比較することで前記評価対象サーボ系の状態が変化したか否かを判定する判定ステップと、
     を含むことを特徴とする状態変化検出方法。
PCT/JP2019/014793 2018-04-12 2019-04-03 状態変化検出装置及び状態変化検出方法 WO2019198590A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980019498.7A CN111868653B (zh) 2018-04-12 2019-04-03 状态变化检测装置以及状态变化检测方法
EP19784224.8A EP3779627B1 (en) 2018-04-12 2019-04-03 State-change detecting device and state-change detecting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-076807 2018-04-12
JP2018076807A JP7006471B2 (ja) 2018-04-12 2018-04-12 状態変化検出装置及び状態変化検出方法

Publications (1)

Publication Number Publication Date
WO2019198590A1 true WO2019198590A1 (ja) 2019-10-17

Family

ID=68163173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014793 WO2019198590A1 (ja) 2018-04-12 2019-04-03 状態変化検出装置及び状態変化検出方法

Country Status (3)

Country Link
EP (1) EP3779627B1 (ja)
JP (1) JP7006471B2 (ja)
WO (1) WO2019198590A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053772A1 (fr) * 2006-11-01 2008-05-08 Kabushiki Kaisha Yaskawa Denki Dispositif de commande de moteur et son procédé de commande
JP2009192837A (ja) * 2008-02-14 2009-08-27 Mitsubishi Electric Corp ガルバノスキャナ制御装置
JP2013089089A (ja) * 2011-10-19 2013-05-13 Sumitomo Heavy Ind Ltd 共振抑制装置及び共振抑制方法
JP2014035569A (ja) * 2012-08-07 2014-02-24 Denso Corp 制御システム及び車両操舵制御システム
JP2015156194A (ja) * 2014-02-21 2015-08-27 三菱重工業株式会社 機械装置の制御装置及び摩擦補償用のゲイン決定方法
JP2015216709A (ja) * 2014-05-07 2015-12-03 山洋電気株式会社 モータ制御装置
JP2016034224A (ja) 2014-07-31 2016-03-10 ファナック株式会社 機械剛性の自己測定機能および自己監視機能を有するサーボモータ制御装置
JP2017174180A (ja) * 2016-03-24 2017-09-28 ファナック株式会社 サーボ制御装置、サーボ制御方法及びサーボ制御プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3178202B2 (ja) * 1992-12-10 2001-06-18 松下電器産業株式会社 サーボモータの制御パラメータ調整装置及び調整方法
WO2016163343A1 (ja) * 2015-04-10 2016-10-13 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053772A1 (fr) * 2006-11-01 2008-05-08 Kabushiki Kaisha Yaskawa Denki Dispositif de commande de moteur et son procédé de commande
JP2009192837A (ja) * 2008-02-14 2009-08-27 Mitsubishi Electric Corp ガルバノスキャナ制御装置
JP2013089089A (ja) * 2011-10-19 2013-05-13 Sumitomo Heavy Ind Ltd 共振抑制装置及び共振抑制方法
JP2014035569A (ja) * 2012-08-07 2014-02-24 Denso Corp 制御システム及び車両操舵制御システム
JP2015156194A (ja) * 2014-02-21 2015-08-27 三菱重工業株式会社 機械装置の制御装置及び摩擦補償用のゲイン決定方法
JP2015216709A (ja) * 2014-05-07 2015-12-03 山洋電気株式会社 モータ制御装置
JP2016034224A (ja) 2014-07-31 2016-03-10 ファナック株式会社 機械剛性の自己測定機能および自己監視機能を有するサーボモータ制御装置
JP2017174180A (ja) * 2016-03-24 2017-09-28 ファナック株式会社 サーボ制御装置、サーボ制御方法及びサーボ制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779627A4

Also Published As

Publication number Publication date
EP3779627A1 (en) 2021-02-17
EP3779627A4 (en) 2022-01-05
EP3779627B1 (en) 2023-02-15
JP7006471B2 (ja) 2022-01-24
JP2019187138A (ja) 2019-10-24
CN111868653A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
US9830559B2 (en) Machine learning unit, spindle replacement judging device, controller, machine tool, production system, and machine learning method, which are able to judge necessity of spindle replacement
US9429936B2 (en) Servo motor controller having self-measuring function and self-monitoring function of mechanical stiffness
CN102163047A (zh) 学习控制机器人
JPH04110125A (ja) 射出成形機の部品保守警告方法
US10528041B2 (en) Machining time estimation device
JP4481953B2 (ja) 状態判定装置および状態判定方法
WO2019198590A1 (ja) 状態変化検出装置及び状態変化検出方法
US11624728B2 (en) Method for determining the geometry of a defect and for determining a load limit
KR101708739B1 (ko) 복수개의 고정 노치 필터를 이용한 서보 시스템의 공진 감지 및 억제 장치 및 그 방법
CN111868653B (zh) 状态变化检测装置以及状态变化检测方法
KR101755691B1 (ko) 아이에스지 공조조건 판단방법
JP4237237B2 (ja) スクリュー回転トルク監視機能を備えた射出成形機
JP4546437B2 (ja) オートチューニング装置およびオートチューニング方法
JP5221276B2 (ja) プラント監視制御装置、その制御方法及びその制御プログラム
JP2020099982A (ja) 工作機械の熱変位補正方法、熱変位補正プログラム、熱変位補正装置
JP7119760B2 (ja) 設定支援装置
US20220187792A1 (en) Method for Operating a Machine Tool and a Machine Tool
JP4440898B2 (ja) 状態判定装置および状態判定方法
US7070141B2 (en) Method for controlling winder
JP2006277247A (ja) プラント異常監視システム及びプラント異常監視方法
JP7014095B2 (ja) 設定支援装置
JP7119761B2 (ja) 設定支援装置
JP7014094B2 (ja) 設定支援装置
JP6117841B2 (ja) 工具オフセットデータの誤入力防止機能を備えた数値制御装置
JP2000047709A (ja) プロセス制御装置およびプロセス制御情報管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019784224

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019784224

Country of ref document: EP

Effective date: 20201112