WO2019198560A1 - 眼鏡用レンズ及び眼鏡 - Google Patents
眼鏡用レンズ及び眼鏡 Download PDFInfo
- Publication number
- WO2019198560A1 WO2019198560A1 PCT/JP2019/014548 JP2019014548W WO2019198560A1 WO 2019198560 A1 WO2019198560 A1 WO 2019198560A1 JP 2019014548 W JP2019014548 W JP 2019014548W WO 2019198560 A1 WO2019198560 A1 WO 2019198560A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- spectacle lens
- resin
- general formula
- lens according
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/10—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/07—Aldehydes; Ketones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/315—Compounds containing carbon-to-nitrogen triple bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/10—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
- G02C7/108—Colouring materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0041—Optical brightening agents, organic pigments
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3445—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3462—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/35—Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
- C08K5/353—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/10—Transparent films; Clear coatings; Transparent materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
Definitions
- This disclosure relates to spectacle lenses and spectacles.
- Image display devices such as cathode ray tube display devices, plasma displays, electroluminescence displays, fluorescent display displays, field emission displays, liquid crystal displays (LCD), various displays such as smartphones and tablet terminals equipped with touch panels
- the screen of the display provided with the light source is visually observed.
- the blue light emitted from the displays of these devices causes eye strain.
- the problem of blue light in the wavelength range of 450 nm to 460 nm has been pointed out.
- 'Molecular Vision' Vol. 22 pp61-72 (2016) also pointed out the problems of blue light in the wavelength range of 480 nm to 500 nm. From the standpoint of suppressing eye fatigue and sleep disorders caused by light stimulation, it is longer.
- fluorescent light has a steep emission peak with a half-value width of 25 nm from a wavelength of 480 nm to 500 nm.
- a white light emitting diode LED
- LED has an emission peak in a wavelength range of 460 nm to 500 nm.
- spectacle lenses absorb blue light, especially blue light with a wavelength in the range of 400 nm to 500 nm, that is, blue light having a longer wavelength than conventional ones, and reduce the influence of blue light on the eyes.
- a spectacle lens capable of absorbing blue light a spectacle lens including a dye layer containing a colorant such as an oxonol dye on a plastic substrate has been proposed (see Japanese Patent No. 5961437).
- the oxonol dye described in Japanese Patent No. 5961437 can obtain a blue light cut property
- the absorption waveform is broad, for example, the half-value width is 50 nm or more, and thus the yellow coloration is strong, and through the lens.
- a change in color may occur.
- the eyeglass lens containing the benzotriazole ultraviolet absorber described in Japanese Patent Application Laid-Open No. 2010-84006 has a problem that blue light having a wavelength in the vicinity of 400 nm cannot be sufficiently blocked.
- a problem to be solved by an embodiment of the present invention is that glasses that can block blue light in a wavelength region of at least 400 nm to 500 nm and hardly perceive a change in color when an object is viewed through a lens. Is to provide a lens.
- the problem to be solved by another embodiment of the present invention is to provide spectacles including the spectacle lens.
- Means for solving the above problems include the following aspects.
- the dye is a methine dye.
- a 1 represents a keto form of an acidic nucleus selected from the group consisting of the following general formula (1-a) to general formula (1-x).
- a 2 represents an enol body of an acidic nucleus selected from the group consisting of the following general formulas (1-a) to (1-x), and the hydroxyl group of the enol body may be dissociated.
- L 1 , L 2 and L 3 each independently represent a methine group which may be substituted.
- R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 each independently represent a hydrogen atom or a monovalent substituent.
- a 1 represents a keto body having an acidic nucleus selected from the group consisting of (1-b), (1-c) and (1-q)
- a 2 represents (1- The spectacle lens according to ⁇ 5>, which represents an enol of an acidic nucleus selected from the group consisting of b), (1-c) and (1-q).
- M + represents a hydrogen atom or a monovalent counter cation.
- ⁇ 8> The spectacle lens according to any one of ⁇ 1> to ⁇ 7>, wherein the pigment is kneaded in a resin.
- ⁇ 9> The spectacle lens according to any one of ⁇ 1> to ⁇ 8>, further comprising an ultraviolet absorber selected from a benzotriazole compound and a triazine compound.
- Eyeglasses comprising the eyeglass lens according to any one of ⁇ 1> to ⁇ 9>.
- a spectacle lens that can block blue light in a wavelength range of at least 400 nm to 500 nm and hardly perceives a change in color when an object is viewed through the lens.
- spectacles comprising the above spectacle lens are provided.
- the lens for spectacles and the spectacles of the present disclosure will be described.
- the present disclosure is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the gist thereof.
- a numerical range indicated by using “to” means a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
- an upper limit value or a lower limit value described in a numerical range may be replaced with an upper limit value or a lower limit value in another numerical range.
- the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
- a combination of two or more preferred embodiments is a more preferred embodiment.
- the concentration or content of each component means the total concentration or content of the plurality of types of substances unless there is a specific case when there are a plurality of types of substances corresponding to the respective components.
- blocking blue light means not only completely blocking blue light but also blocking at least part of the blue light through a spectacle lens and reducing the transmittance of blue light. Including.
- the spectacle lens of the present disclosure has a maximum absorption wavelength in a methanol solution (hereinafter sometimes simply referred to as “maximum absorption wavelength”) in the range of 400 nm to 500 nm, and a half-value width of an absorption peak in the methanol solution (hereinafter referred to as “maximum absorption wavelength”). And a dye (hereinafter sometimes referred to as “specific compound”) having a width of 10 nm or more and less than 40 nm.
- the eyeglass lens of the present disclosure can block blue light in a wavelength range of at least 400 nm to 500 nm and hardly perceives a change in color when an object is viewed through the lens.
- the values calculated from the absorption spectra obtained by measurement in methanol are used for the maximum absorption wavelength and the half-value width of each compound in the present disclosure.
- the absorption spectrum is measured at room temperature (25 ° C.) using a spectrophotometer (model number: UV 3150) manufactured by Shimadzu Corporation as a measuring device.
- Blue light having a wavelength range of 400 nm to 500 nm can be blocked to some extent by an ultraviolet absorbent having a maximum absorption in the wavelength range of 380 nm to 400 nm.
- a general ultraviolet absorber has a broad absorption waveform, the half width of the absorption peak is 50 nm or more, generally 100 nm or more, and has absorption in a wavelength region other than the absorption peak. Therefore, when viewing an object through a spectacle lens, undesired absorption occurs, and particularly yellowness is felt. Therefore, when a plastic lens containing a general ultraviolet absorber is used as a spectacle lens, a yellowish image is visually recognized, and a change in color is felt when an object is viewed through the spectacle lens. It tends to be easy.
- the specific compound contained in the spectacle lens of the present disclosure has a maximum absorption in a wavelength region in the range of 400 nm to 500 nm in a methanol solution, and a half width of 10 nm or more and less than 40 nm, which is extremely narrow.
- the peak of the maximum absorption wavelength in the absorption spectrum is sharp. That is, when the full width at half maximum is 10 nm or more and less than 40 nm, the absorptivity of light having a wavelength shorter or longer than the maximum absorption wavelength is extremely low.
- the necessary blue light blocking property is good, and the peak of the maximum absorption wavelength in the absorption spectrum is sharp, compared to the absorption in the wavelength region other than the maximum absorption wavelength, the absorption in the maximum absorption wavelength, Since it is in an extremely low state, when applied to a spectacle lens, the spectacle lens is unlikely to be yellowish, and it is considered difficult to feel a change in color when the object is viewed through the spectacle lens.
- the half width of absorption in a compound such as an ultraviolet absorber is caused by the vibration of the molecule of the compound, and the half width tends to increase as a plurality of vibration modes exist in the molecule of the compound.
- the molecular structure is easily thermally twisted, a plurality of vibration modes exist in the molecule of the compound, and the half width increases due to the presence of the plurality of vibration modes.
- the molecular structure of the compound is difficult to be thermally twisted, it is considered that the molecule of the compound becomes a single vibration mode and the full width at half maximum is reduced.
- a plurality of vibration modes exist and the full width at half maximum is increased.
- Examples of the compound having a structure in which molecules are polarized correspond to donor-acceptor-type dyes, and specific examples include donor-acceptor-type azo dyes and merocyanine dyes.
- donor-acceptor-type azo dyes and merocyanine dyes In the case of a compound having a structure in which the symmetry of the molecule is high and the charge of the molecule is delocalized, it becomes a single vibration mode and the half width is reduced.
- Examples of the compound having a structure in which the molecular charge is delocalized are methine dyes, and specific examples include oxonol dyes and cyanine dyes.
- the cause of phase separation between the resin and the dye contained in the spectacle lens is presumed to be related to factors such as the difference in hydrophilicity / hydrophobicity between the dye and the resin and the magnitude of the intermolecular interaction between the dye and the resin.
- factors such as the difference in hydrophilicity / hydrophobicity between the dye and the resin and the magnitude of the intermolecular interaction between the dye and the resin.
- one of the factors is a difference in the degree of twisting of the molecules described above. That is, a compound having a large half-value width is likely to be twisted in the molecular structure when excited. Specifically, a compound having a large half-value width tends to cause molecular twisting when excited by energy application such as ultraviolet irradiation.
- phase separation between the dye and the resin is likely to occur due to the twist of the dye dispersed in the resin.
- a specific compound having a small half-width at the absorption peak hardly causes twisting in the molecular structure and hardly causes phase separation.
- the specific compound of the present disclosure has a desired blue light cut property, and when it coexists with the resin, the phase separation between the resin and the specific compound due to the twisting of the compound molecule is suppressed, resulting in the phase separation. It is considered that there is a secondary effect that a decrease in the transparency of the spectacle lens, that is, an increase in haze is suppressed.
- the half width of the absorption spectrum of the compound is less than 10 nm, which is smaller than the provisions of the present disclosure, the blocking property of blue light in the wavelength range of 400 nm to 500 nm may be reduced.
- the oxonol dye described in Japanese Patent No. 5961437 has a half-value width of 40 nm to 140 nm and may block blue light to some extent, but the eyeglass lens is yellowish.
- the spectacle lens described in Japanese Patent Application Laid-Open No. 2010-84006 contains a benzotriazole ultraviolet absorber as a main compound for blocking blue light. Since the benzotriazole ultraviolet absorber has a wide absorption from 400 nm to 450 nm, the blocking ability of blue light having a wavelength near 400 nm is not sufficient, and it can absorb light having a wavelength near 450 nm. Eyeglass lenses tend to be yellowish. Note that the above estimation does not limit the effect of the spectacle lens of the present disclosure, and is described as an example.
- the maximum absorption wavelength of the specific compound is in the range of 400 nm to 500 nm, preferably in the range of 440 nm to 500 nm, and more preferably in the range of 480 nm to 500 nm.
- the full width at half maximum of the specific compound is in the range of 10 nm to less than 40 nm, preferably in the range of 15 nm to less than 40 nm, and more preferably in the range of 20 nm to 35 nm.
- the blue light blocking property in the target wavelength range is good, and when the object is visually recognized through the spectacle lens It becomes harder to feel changes in color.
- An absorption characteristic having a maximum absorption wavelength in the range of 400 nm to 500 nm and a half width of 10 nm or more and less than 40 nm may be hereinafter referred to as a specific absorption characteristic in the present disclosure.
- any dye having specific absorption characteristics can be used without limitation. Of these, methine dyes having a specific absorption characteristic are preferred.
- the specific compound is preferably an oxonol dye having a specific absorption characteristic.
- the specific compound is preferably an oxonol dye and a compound represented by the following general formula (1).
- a 1 represents a keto form of an acidic nucleus selected from the group consisting of the following general formula (1-a) to general formula (1-x).
- a 2 represents an enol body of an acidic nucleus selected from the group consisting of the following general formulas (1-a) to (1-x), and the hydroxyl group of the enol body may be dissociated.
- L 1 , L 2 and L 3 each independently represent a methine group which may be substituted. Examples of the substituent that can be introduced into L 1 , L 2, and L 3 include an alkyl group, an aryl group, and a halogen atom exemplified in the description of R 1 described later.
- M + represents a hydrogen atom or a monovalent counter cation
- X represents an oxygen atom or a sulfur atom.
- X is preferably an oxygen atom.
- Y represents an electron-withdrawing group.
- An electron-withdrawing group is a substituent having a property of attracting electrons from a substitution position at a specific substitution position of a molecule, and refers to a substituent having an effect of reducing the electron density.
- Examples of the electron-withdrawing group include groups having a halogen atom, a nitrile group, a carboxy group, a carbonyl group, a nitro group, and the like.
- Y Specific examples of the electron-withdrawing group represented by Y include an acyl group, an acyloxy group, a carbamoyl group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a cyano group, a nitro group, a dialkylphosphono group, and a diarylphosphono group.
- diarylphosphinyl group alkylsulfinyl group, arylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, heterocyclic sulfonyl group, sulfonyloxy group, acylthio group, sulfamoyl group, thiocyanate group, thiocarbonyl group, halogenated alkyl group A halogenated alkoxy group, a halogenated aryloxy group, a halogenated alkylamino group, a halogenated alkylthio group, an aryl group substituted with another electron-withdrawing group having a Hammett's substituent constant ⁇ p value of 0.2 or more, hetero Ring group, halogen source , An azo group, or a selenocyanate group.
- substituents are selected from cyano group, alkylsulfonyl group, arylsulfonyl group, heterocyclic sulfonyl group, acyl group, optionally substituted sulfamoyl group, optionally substituted carbamoyl group, alkyloxycarbonyl group, aryloxycarbonyl group Preferred substituents are selected.
- substituents when the sulfamoyl group or carbamoyl group has a substituent include a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted heterocyclic group.
- Z is hydrogen atom, carbamoyl group, alkyl group, aryl group, cyano group, carboxyl group, acyl group, alkyloxycarbonyl group, aryloxycarbonyl group, halogen atom, amino group, acylamino group, alkylsulfonyl group, arylsulfonyl group, Or represents a sulfo group.
- Z is preferably a hydrogen atom, a carbamoyl group, an alkyl group, a cyano group, an acyl group, a halogen atom, an acylamino group, an alkylsulfonyl group, or a sulfo group, more preferably a hydrogen atom, a carbamoyl group, or a cyano group.
- Z is a substituent other than a hydrogen atom, the substituent may further have a substituent.
- R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 each independently represent a hydrogen atom or a monovalent substituent. .
- R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 represent a monovalent substituent, a halogen atom, an alkyl group (including a cycloalkyl group and a bicycloalkyl group), an alkenyl group (cycloalkenyl) Group, bicycloalkenyl group), alkynyl group, aryl group, heterocyclic group, cyano group, hydroxyl group, nitro group, carboxyl group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyl Oxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy, amino group (including anilino group), acyla
- halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- the alkyl group may be linear, branched or cyclic. Further, it may be an alkyl group having a substituent or an unsubstituted alkyl group. That is, the alkyl group in the monovalent substituent is used in a meaning that includes a cycloalkyl group, a bicycloalkyl group, an alkyl group having a tricyclic structure that is a polycyclic structure, and the like.
- An alkyl group (for example, an alkyl group of an alkoxy group or an alkylthio group) in a substituent described below also represents such an alkyl group.
- the alkyl group is preferably an alkyl group having 1 to 30 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a t-butyl group, an n-octyl group, an eicosyl group.
- a methyl group such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a t-butyl group, an n-octyl group, an eicosyl group.
- benzyl group phenethyl group, 2-chloroethyl group, 2-cyanoethyl group, 2-ethylhexyl group and the like.
- cycloalkyl group examples include substituted or unsubstituted cycloalkyl groups having 3 to 30 carbon atoms, such as a cyclohexyl group, a cyclopentyl group, and a 4-n-dodecylcyclohexyl group.
- the bicycloalkyl group is preferably a substituted or unsubstituted bicycloalkyl group having 5 to 30 carbon atoms, that is, a monovalent group obtained by removing one hydrogen atom from a bicycloalkane having 5 to 30 carbon atoms, for example, bicyclo Examples include [1,2,2] heptan-2-yl group and bicyclo [2,2,2] octane-3-yl group.
- the alkenyl group may be linear, branched or cyclic. Further, it may be an alkyl group having a substituent or an unsubstituted alkenyl group. That is, the alkenyl group in the monovalent substituent includes a cycloalkenyl group and a bicycloalkenyl group. Specifically, the alkenyl group is preferably a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, such as a vinyl group, an allyl group, a prenyl group, a geranyl group, and an oleyl group.
- the cycloalkenyl group is preferably a substituted or unsubstituted cycloalkenyl group having 3 to 30 carbon atoms, that is, a monovalent group obtained by removing one hydrogen atom of a cycloalkene having 3 to 30 carbon atoms, for example, 2 -Cyclopenten-1-yl group, 2-cyclohexen-1-yl group and the like.
- a substituted or unsubstituted bicycloalkenyl group preferably a substituted or unsubstituted bicycloalkenyl group having 5 to 30 carbon atoms, that is, one hydrogen atom of a bicycloalkene having one double bond is removed.
- monovalent groups such as a bicyclo [2,2,1] hept-2-en-1-yl group and a bicyclo [2,2,2] oct-2-en-4-yl group.
- the alkynyl group is preferably a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, such as an ethynyl group, a propargyl group, a trimethylsilylethynyl group, and the like.
- the aryl group is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, such as a phenyl group, a p-tolyl group, a naphthyl group, an m-chlorophenyl group, an o-hexadecanoylaminophenyl group, and the like. Can be mentioned.
- the heterocyclic group is preferably a monovalent group obtained by removing one hydrogen atom from a 5- or 6-membered substituted or unsubstituted aromatic or non-aromatic heterocyclic compound. More preferable examples include 5- or 6-membered aromatic heterocyclic groups having 3 to 30 carbon atoms, such as 2-furyl group, 2-thienyl group, 2-pyrimidinyl group, 2-benzothiazolyl group and the like.
- the alkoxy group is preferably a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, such as a methoxy group, an ethoxy group, an isopropoxy group, a t-butoxy group, an n-octyloxy group, or a 2-methoxyethoxy group. Etc.
- the aryloxy group is preferably a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, such as a phenoxy group, 2-methylphenoxy group, 4-t-butylphenoxy group, 3-nitrophenoxy group, 2 -Tetradecanoylaminophenoxy group and the like.
- silyloxy group examples include substituted or unsubstituted silyloxy groups having 0 to 20 carbon atoms, such as trimethylsilyloxy group and diphenylmethylsilyloxy group.
- the heterocyclic oxy group is preferably a substituted or unsubstituted heterocyclic oxy group having 2 to 30 carbon atoms, such as a 1-phenyltetrazol-5-oxy group and a 2-tetrahydropyranyloxy group.
- the acyloxy group is preferably a formyloxy group, a substituted or unsubstituted alkylcarbonyloxy group having 2 to 30 carbon atoms, a substituted or unsubstituted arylcarbonyloxy group having 6 to 30 carbon atoms, such as an acetyloxy group, Examples include pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group and the like.
- the carbamoyloxy group is preferably a substituted or unsubstituted carbamoyloxy group having 1 to 30 carbon atoms, such as N, N-dimethylcarbamoyloxy group, N, N-diethylcarbamoyloxy group, morpholinocarbonyloxy group, N , N-di-n-octylaminocarbonyloxy group, Nn-octylcarbamoyloxy group and the like.
- the alkoxycarbonyloxy group is preferably a substituted or unsubstituted alkoxycarbonyloxy group having 2 to 30 carbon atoms, such as a methoxycarbonyloxy group, an ethoxycarbonyloxy group, a t-butoxycarbonyloxy group, or an n-octylcarbonyloxy group. Etc.
- aryloxycarbonyloxy group a substituted or unsubstituted aryloxycarbonyloxy group having 7 to 30 carbon atoms such as phenoxycarbonyloxy group, p-methoxyphenoxycarbonyloxy group, pn-hexadecyloxy is preferable. Examples include phenoxycarbonyloxy group.
- the amino group includes, in addition to an amino group, an alkylamino group, an arylamino group, and a heterocyclic amino group, which are amino groups having an alkyl group, an aryl group, or a heterocyclic group.
- the amino group is preferably an amino group, a substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted anilino group having 6 to 30 carbon atoms, such as a methylamino group, a dimethylamino group, Anilino group, N-methyl-anilino group, diphenylamino group, triazinylamino group and the like can be mentioned.
- the acylamino group is preferably a formylamino group, a substituted or unsubstituted alkylcarbonylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylcarbonylamino group having 6 to 30 carbon atoms, such as an acetylamino group, Examples include pivaloylamino group, lauroylamino group, benzoylamino group, 3,4,5-tri-n-octyloxyphenylcarbonylamino group, and the like.
- the aminocarbonylamino group is preferably a substituted or unsubstituted aminocarbonylamino group having 1 to 30 carbon atoms, such as a carbamoylamino group, N, N-dimethylaminocarbonylamino group, N, N-diethylaminocarbonylamino group. And a morpholinocarbonylamino group.
- the alkoxycarbonylamino group is preferably a substituted or unsubstituted alkoxycarbonylamino group having 2 to 30 carbon atoms, such as a methoxycarbonylamino group, an ethoxycarbonylamino group, a t-butoxycarbonylamino group, or an n-octadecyloxycarbonylamino group. Group, N-methyl-methoxycarbonylamino group and the like.
- the aryloxycarbonylamino group is preferably a substituted or unsubstituted aryloxycarbonylamino group having 7 to 30 carbon atoms, such as phenoxycarbonylamino group, p-chlorophenoxycarbonylamino group, mn-octyloxyphenoxy. Examples thereof include a carbonylamino group.
- the sulfamoylamino group is preferably a substituted or unsubstituted sulfamoylamino group having 0 to 30 carbon atoms, such as a sulfamoylamino group, N, N-dimethylaminosulfonylamino group, Nn- Examples include octylaminosulfonylamino group.
- the alkylsulfonylamino group or arylsulfonylamino group is preferably a substituted or unsubstituted alkylsulfonylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted arylsulfonylamino group having 6 to 30 carbon atoms, such as methyl.
- Examples include sulfonylamino group, butylsulfonylamino group, phenylsulfonylamino group, 2,3,5-trichlorophenylsulfonylamino group, p-methylphenylsulfonylamino group, and the like.
- the alkylthio group is preferably a substituted or unsubstituted alkylthio group having 1 to 30 carbon atoms, such as a methylthio group, an ethylthio group, and an n-hexadecylthio group.
- the arylthio group is preferably a substituted or unsubstituted arylthio group having 6 to 30 carbon atoms, such as a phenylthio group, a p-chlorophenylthio group, and an m-methoxyphenylthio group.
- heterocyclic thio group examples include substituted or unsubstituted heterocyclic thio groups having 2 to 30 carbon atoms, such as 2-benzothiazolylthio group and 1-phenyltetrazol-5-ylthio group.
- the sulfamoyl group is preferably a substituted or unsubstituted sulfamoyl group having 0 to 30 carbon atoms, such as N-ethylsulfamoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N-dimethylsulfuryl group.
- Examples include a famoyl group, an N-acetylsulfamoyl group, an N-benzoylsulfamoyl group, and an N- (N′-phenylcarbamoyl) sulfamoyl group.
- the alkylsulfinyl group or arylsulfinyl group is preferably a substituted or unsubstituted alkylsulfinyl group having 1 to 30 carbon atoms, a substituted or unsubstituted arylsulfinyl group having 6 to 30 carbon atoms, such as a methylsulfinyl group or an ethylsulfinyl group. , Phenylsulfinyl group, p-methylphenylsulfinyl group and the like.
- the alkylsulfonyl group or arylsulfonyl group is preferably a substituted or unsubstituted alkylsulfonyl group having 1 to 30 carbon atoms, a substituted or unsubstituted arylsulfonyl group having 6 to 30 carbon atoms, such as a methylsulfonyl group or an ethylsulfonyl group. , Phenylsulfonyl group, p-methylphenylsulfonyl group and the like.
- the acyl group is preferably a formyl group, a substituted or unsubstituted alkylcarbonyl group having 2 to 30 carbon atoms, a substituted or unsubstituted arylcarbonyl group having 7 to 30 carbon atoms, a substituted or unsubstituted group having 2 to 30 carbon atoms.
- Heterocyclic carbonyl groups bonded to carbonyl groups at substituted carbon atoms eg, acetyl, pivaloyl, 2-chloroacetyl, stearoyl, benzoyl, pn-octyloxyphenylcarbonyl, 2-pyridyl
- Examples thereof include a carbonyl group and a 2-furylcarbonyl group.
- the aryloxycarbonyl group is preferably a substituted or unsubstituted aryloxycarbonyl group having 7 to 30 carbon atoms, such as a phenoxycarbonyl group, an o-chlorophenoxycarbonyl group, an m-nitrophenoxycarbonyl group, pt- A butylphenoxycarbonyl group etc. are mentioned.
- the alkoxycarbonyl group is preferably a substituted or unsubstituted alkoxycarbonyl group having 2 to 30 carbon atoms, such as a methoxycarbonyl group, an ethoxycarbonyl group, a t-butoxycarbonyl group, and an n-octadecyloxycarbonyl group.
- the carbamoyl group is preferably a substituted or unsubstituted carbamoyl group having 1 to 30 carbon atoms, such as a carbamoyl group, an N-methylcarbamoyl group, an N, N-dimethylcarbamoyl group, or an N, N-di-n-octyl group.
- a carbamoyl group, an N- (methylsulfonyl) carbamoyl group, and the like can be given.
- the arylazo group or heterocyclic azo group is preferably a substituted or unsubstituted arylazo group having 6 to 30 carbon atoms, a substituted or unsubstituted heterocyclic azo group having 3 to 30 carbon atoms, such as phenylazo, p-chlorophenylazo. , 5-ethylthio-1,3,4-thiadiazol-2-ylazo and the like.
- Preferred examples of the imide group include an N-succinimide group and an N-phthalimide group.
- the phosphino group is preferably a substituted or unsubstituted phosphino group having 0 to 30 carbon atoms, such as a dimethylphosphino group, a diphenylphosphino group, a methylphenoxyphosphino group, and the like.
- the phosphinyl group is preferably a substituted or unsubstituted phosphinyl group having 0 to 30 carbon atoms, such as a phosphinyl group, a dioctyloxyphosphinyl group, a diethoxyphosphinyl group, and the like.
- the phosphinyloxy group is preferably a substituted or unsubstituted phosphinyloxy group having 0 to 30 carbon atoms, such as a diphenoxyphosphinyloxy group and a dioctyloxyphosphinyloxy group.
- the phosphinylamino group is preferably a substituted or unsubstituted phosphinylamino group having 0 to 30 carbon atoms, such as a dimethoxyphosphinylamino group or a dimethylaminophosphinylamino group.
- silyl group examples include substituted or unsubstituted silyl groups having 0 to 30 carbon atoms, such as a trimethylsilyl group, a t-butyldimethylsilyl group, and a phenyldimethylsilyl group.
- R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, Carboxyl group, acyl group, alkyloxycarbonyl group, aryloxycarbonyl group, carbamoyl group, cyano group, amino group, acylamino group, alkylsulfonylamino group, arylsulfonylamino group, aminocarbonylamino group, carbamoyloxy group, hydroxyl group, An alkoxy group, an aryloxy group, a heterocyclic oxy group, an acyloxy group, or a sulfamoyl group is preferable, and a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, a carboxyl group, an acyl group, an alkyloxycarbony
- each of A 1 and A 2 is a ring selected from a 5-membered ring, a 6-membered ring, and a condensed ring structure.
- a structure having a structure and a structure derived from an acidic nucleus having a structure having an electron-withdrawing group are preferable.
- a structure having a saturated 5-membered ring is more preferable, and a structure having a saturated 5-membered ring in which the carbonyl group is at the control position is more preferable.
- a 1 and A 2 are each preferably a keto body and an enol body derived from acidic nuclei having the same structure from the viewpoint of suitability for synthesis.
- a 1 is the general formula (1- Of (a) to (1-x), (1-b), (1-c), (1-f), (1-o), (1-q), (1-r), (1- v) and (1-w) are preferably keto bodies having an acidic nucleus selected from the group consisting of (1-w), and A 2 represents (1-b), (1-c), (1-f), Preferably, it is an enol of an acidic nucleus selected from the group consisting of (1-o), (1-q), (1-r), (1-v), and (1-w), and A 1 is (1) represents a keto form of an acidic nucleus selected from the group consisting of (1-b), (1-c) and (1-q), and A 2 represents (1-b), (1-c) and (1 Selected from the group consisting of -q) More preferably, it represents an enol form of
- examples of the counter cation M that forms a salt include ammonium ions, alkali metal ions (eg, lithium ions, sodium ions, potassium ions) and organic cations (eg, tetramethylammonium ions, tetraethylammonium ions). Ion, tetrabutylammonium ion, triethylammonium ion, tributylammonium ion, trihexylammonium ion, trioctylammonium ion, tetramethylguanidinium ion, tetramethylphosphonium).
- the counter cation M is preferably an organic cation, and more preferably a tetraalkylammonium ion or a trialkylammonium ion.
- Examples of the specific compound represented by the general formula (1) are shown below by clearly indicating the general formula indicating the structure and the substituent in each general formula. The maximum absorption wavelength and the half value width of each compound measured by the method described above are also shown.
- the specific compound represented by General formula (1) in this indication is not limited to the following examples.
- the methyl group is Me
- the ethyl group is Et
- the butyl group is Bu
- the propyl group is Pr
- the phenyl group is Ph
- 1,8-diazabicycloundecene (1,8- Diazabicyclo (5,4,0) undec-7-ene) is abbreviated as DBU.
- a hydrogen atom is indicated by H.
- the specific compounds (I-2) to (I) are selected from the viewpoint that the maximum absorption wavelength is on the longer wavelength side and the full width at half maximum is in an appropriate range. -5), (I-7), (H-3), (H-4), (J-3), (J-4) and (J-7) are preferred, and (I-2) to (I -5), (I-7), (J-3), (J-4) and (J-7) are more preferred, and (I-7) is more preferred.
- Another preferable example of the specific compound is a methine dye, which is a compound represented by the following general formula (2).
- M + represents a hydrogen atom or a monovalent counter cation.
- the counter cation includes ammonium ion, alkali metal ion (eg, lithium ion, sodium ion, potassium ion) and organic cation (eg, tetramethylammonium ion, tetraethylammonium ion, tetra Butylammonium ion, triethylammonium ion, tributylammonium ion, trihexylammonium ion, trioctylammonium ion, tetramethylguanidinium ion, tetramethylphosphonium ion).
- alkali metal ion eg, lithium ion, sodium ion, potassium ion
- organic cation eg, tetramethylammonium ion, tetraethylammonium ion, tetra Butylam
- the counter cation M is preferably an organic cation, specifically, a tetraalkylammonium ion having a C 1-5 alkyl group or a trialkylammonium ion is more preferable, and a tetraalkyl having an ethyl group or a butyl group. More preferred are ammonium ions or trialkylammonium ions.
- Examples of the specific compound represented by the general formula (2) are shown below by clearly indicating the general formula indicating the structure and the substituent in each general formula. The maximum absorption wavelength and the half value width of each compound measured by the method described above are also shown.
- the specific compound represented by General formula (2) in this indication is not limited to the following examples.
- the methyl group is Me
- the ethyl group is Et
- the butyl group is Bu
- the propyl group is Pr
- the phenyl group is Ph
- the 1,8-diazabicycloundecene is DBU.
- a hydrogen atom is indicated by H.
- the specific compound (K-2) is preferable from the viewpoint that the maximum absorption wavelength is on the longer wavelength side and the full width at half maximum is in an appropriate range.
- the spectacle lens of the present disclosure may contain only one type of specific compound, or may contain two or more types.
- the content of the specific compound in the spectacle lens of the present disclosure is not particularly limited.
- the content of the specific compound in the spectacle lens is, for example, preferably 0.01 parts by weight to 1.0 parts by weight with respect to 100 parts by weight of the resin, and 0.01 parts by weight to 0.5 parts by weight. Part is more preferable, and 0.05 part by weight to 0.2 part by weight is even more preferable.
- the specific compound in the spectacle lens of the present disclosure has a maximum absorption wavelength in a wavelength range of 400 nm to 500 nm, a high molar extinction coefficient in the absorption wavelength range, and a half width of 10 nm or more and less than 40 nm. It is. For this reason, when the content of the specific compound in the spectacle lens of the present disclosure is in the above range, the blue light in the wavelength region can be well blocked, and undesired coloring of the spectacle lens is suppressed.
- the eyeglass lens of the present disclosure contains a resin.
- the resin is not particularly limited as long as it satisfies physical properties such as transparency, refractive index, workability, and hardness after curing required for a spectacle lens.
- As the resin used for the eyeglass lens of the present disclosure either a resin having a high refractive index or a resin having a low refractive index can be used.
- the resin may be a thermoplastic resin (for example, polycarbonate resin) or a thermosetting resin (for example, urethane resin).
- the resin is preferably transparent, that is, has high visible light transmittance.
- that the resin is transparent means that the average transmittance of the spectacle lens including the resin in the wavelength range of 430 nm to 700 nm is 80% or more, and the transmittance is in the wavelength range of 430 nm to 700 nm. Any means 75% or more.
- the average transmittance in the wavelength region of 430 nm to 700 nm is preferably 85% or more, and more preferably 90% or more.
- the average transmittance of the spectacle lens of 430 nm to 700 nm is determined by measuring the spectroscopic spectrum of the molded spectacle lens using a UV / vis spectrum meter, for example, UV / vis spectrum meter UV3100 manufactured by Shimadzu Corporation. It can be obtained by calculating the average value of the measurement results of transmittance for each wavelength of 1 nm in the wavelength region. In the above measurement results, the measurement results of the transmittance for each wavelength of 1 nm are 75% or more, so that the transmittance is 75% or more in the wavelength range of 430 nm to 700 nm. Can be confirmed.
- the specific compound in the present disclosure Since the specific compound in the present disclosure has almost no absorption in the visible light wavelength range, it is included in the spectacle lens by measuring the transmittance and average transmittance of each wavelength of 430 nm to 700 nm of the spectacle lens. Transparency in the resin can be estimated.
- Suitable examples of the transparent resin include cellulose esters such as diacetylcellulose, triacetylcellulose, propionylcellulose, butyrylcellulose, acetylpropionylcellulose, nitrocellulose, polyacrylic acid (PA), polycarbonate (PC), polyethylene terephthalate ( PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), poly-1,4-cyclohexanedimethylene terephthalate, polyethylene-1,2-diphenoxyethane-4,4′-dicarboxylate, syndiotactic Polystyrene such as polystyrene, polyolefin such as polyethylene, polypropylene and polymethylpentene, acrylic resin such as polymethyl methacrylate (PMMA), polysulfone, poly Examples include ether sulfone, polyvinyl butyral, ethylene vinyl acetate, polyether ketone, polyether imide, and polyoxyethylene. Of these, cellulose ester
- resin with a high refractive index is preferable.
- resin is preferably at least one resin selected from the group consisting of urethane resins, episulfide resins, and polycarbonate resins, and is at least one resin selected from urethane resins and episulfide resins. Is more preferable.
- urethane resin a thiourethane resin is particularly preferable.
- thiourethane resins and episulfide resins are widely used as materials for spectacle lenses, they are poorly compatible with the ultraviolet absorbers used in conventional spectacle lenses and are particularly prone to precipitation of ultraviolet absorbers. It is.
- the lens for spectacles of this indication contains at least one sort chosen from thiourethane resin and episulfide resin as resin, precipitation of a specific pigment resulting from deterioration in compatibility with a specific compound and resin is controlled. In addition, phase separation between the specific compound and the resin due to the above-described molecular twisting is also suppressed. Further, since the specific compound has a narrow half-value width and low absorption on the short wavelength side, the spectacle lens has good transparency, and the good transparency of the spectacle lens is maintained for a long time. It is thought that it is difficult to feel a change in color when the object is visually recognized through the lens for use.
- the resin included in the spectacle lens of the present disclosure may be a resin having a refractive index higher than 1.65.
- the thiourethane resin and episulfide resin suitable as the resin for the eyeglass lens of the present disclosure see JP-A-8-3267, JP-A-11-158229, JP-A-2009-256692, and JP-A-2009-266992. Reference can be made to the descriptions in JP-A No. 2007-238952, JP-A No. 2009-74624, JP-A No. 2015-212395, and JP-A No. 2016-84381.
- a commercially available resin can be used as the resin.
- the resin may be a resin formed using a commercially available resin precursor monomer.
- the spectacle lens of the present disclosure may contain only one kind of resin, or may contain two or more kinds.
- the content of the resin in the spectacle lens of the present disclosure is not particularly limited, and is preferably, for example, 70% by mass to 99.99% by mass with respect to the total mass of the spectacle lens, and 80% by mass to The content is more preferably 99.99% by mass, and still more preferably 90% by mass to 99.99% by mass.
- a lightweight and thin lens can be produced.
- the eyeglass lens of the present disclosure may contain a compound having an ultraviolet absorbing ability other than the specific compound described above (hereinafter also referred to as “other ultraviolet absorber”).
- the spectacle lens of the present disclosure can block blue light in a wide range of the ultraviolet region and the visible region by containing other ultraviolet absorbers.
- Other ultraviolet absorbers are not particularly limited as long as they are known ultraviolet absorbers used for spectacle lenses.
- Other ultraviolet absorbers include triazine compounds (ie triazine ultraviolet absorbers), benzotriazole compounds (ie benzotriazole ultraviolet absorbers), benzophenone compounds (ie benzophenone ultraviolet absorbers), cyanine compounds (ie cyanine ultraviolet rays).
- dibenzoylmethane compounds ie dibenzoylmethane UV absorbers
- cinnamic acid compounds ie cinnamic acid UV absorbers
- acrylate compounds ie acrylate UV absorbers
- benzoic acid ester compounds ie Benzoic acid ester UV absorber
- oxalic acid diamide compound ie oxalic acid diamide UV absorber
- formamidine compound ie formamidine UV absorber
- benzoxazole compound ie benzoxazole UV absorber
- benzo Kisajinon compound ie, benzoxazinone UV absorbers
- benzodithiol compound ie, benzodithiol ultraviolet absorber
- UV absorbers for example, “Monthly Fine Chemical” May 2004 issue, pages 28-38, published by Toray Research Center Research Division, “New Development of Functional Additives for Polymers” (Toray Research) Center, 1999) 96-140 pages, supervised by Shinichi Okachi “Development of Polymer Additives and Environmental Measures” (CM Publishing, 2003) 54-64 pages, “Technology” Degradation / discoloration mechanism and its stabilization technology-know-how collection "(Technical Information Association, 2006), etc. can be referred to.
- Specific examples of the benzoxazole compound include, for example, compounds described in Japanese Patent No. 431869, and specific examples of the benzoxazinone compound include, for example, Japanese Patent No.
- the eyeglass lens of the present disclosure preferably contains an ultraviolet absorber selected from a benzotriazole compound and a triazine compound.
- an ultraviolet absorber having a maximum absorption wavelength of 350 nm or less is particularly preferable.
- the spectacle lens of the present disclosure includes, as another ultraviolet absorber, an ultraviolet absorber having a maximum absorption wavelength of 350 nm or less, so that a change in transmittance of light having a wavelength of 400 nm due to light irradiation with a wavelength of 350 nm or less is suppressed. (That is, the light resistance of the specific compound is improved).
- the reason why the transmittance of light having a wavelength of 400 nm of the spectacle lens including the specific compound described above is changed by irradiation with light having a wavelength of 350 nm or less is because (1) the specific compound is directly decomposed by light having a wavelength of 400 nm. (2) Since the resin is decomposed by light having a short wavelength of 350 nm or less, and the specific compound is decomposed by the decomposition product of the resin, two causes are estimated.
- the specific compound can sufficiently shield blue light having a wavelength of 400 nm to 500 nm, but has a physical property of transmitting ultraviolet light in the wavelength region of 300 nm to 350 nm (hereinafter sometimes referred to as UV light) to some extent. ing. Therefore, the spectacle lens of the present disclosure uses a specific compound in combination with an ultraviolet absorber having a maximum absorption wavelength of 350 nm or less (for example, an ultraviolet absorber having a property of blocking UV light in a wavelength region of 300 nm to 350 nm). By doing so, the cause of said (2) is eliminated.
- the ultraviolet absorber having a maximum absorption wavelength of 350 nm or less suppresses the decomposition of the resin by light having a short wavelength of 350 nm or less, and suppresses the decomposition of the specific compound by the decomposition product of the resin.
- the spectacle lens of the present disclosure contains other ultraviolet absorbers, it may contain only one type of other ultraviolet absorber, or may contain two or more types.
- the content of the other ultraviolet absorber in the spectacle lens is appropriately set depending on the type of the selected ultraviolet absorber.
- the content of the other ultraviolet absorbers in the eyeglass lens of the present disclosure is 0.01% by mass to 1.0% by mass with respect to the total mass of the resin per one type of other ultraviolet absorbers. % Is preferred.
- the total content of the other ultraviolet absorbers in the spectacle lens of the present disclosure is 0.01% with respect to the total mass of the resin.
- the mass is preferably from 3.0% by mass.
- the eyeglass lens of the present disclosure may contain components other than those already described (so-called other additives).
- Other additives include plasticizers, deterioration inhibitors (eg, antioxidants, peroxide decomposers, radical inhibitors, metal deactivators, acid scavengers, amines), dyes other than specific compounds, internal Examples include release agents, deodorants, and flame retardants.
- the method for manufacturing a spectacle lens according to the present disclosure is not particularly limited as long as the spectacle lens according to the present disclosure described above can be manufactured.
- the mode in which the spectacle lens contains the specific compound There is no particular limitation on the mode in which the spectacle lens contains the specific compound.
- a specific compound may be included by being kneaded into a resin, or may be included by impregnating a specific compound into a spectacle lens pre-molded with a resin, and is specific to a spectacle lens molded with a resin. It may be contained by laminating layers containing a compound.
- Lamination of the layer containing the specific compound may be performed by applying a coating liquid composition containing the specific compound to a spectacle lens and drying, or separately forming a resin layer in which the specific compound is kneaded into the resin, You may carry out by transcription
- the specific compound is preferably kneaded into the resin from the viewpoints of durability and uniform dispersibility of the specific compound.
- the spectacle lens of the present disclosure when the resin contained in the spectacle lens is a thermoplastic resin, the spectacle lens of the present disclosure includes a resin, a specific compound, and, if necessary, other ultraviolet absorbers that are optional components,
- the resin composition containing the additive is kneaded using a melt extruder, molded into a pellet shape, and a known molding method such as an injection molding method is applied using the obtained pellet-shaped resin composition Can be manufactured.
- the resin contained in the spectacle lens is a thermosetting resin
- the spectacle lens of the present disclosure requires a monomer that is a precursor of the resin, a specific compound, a polymerization catalyst (for example, dibutyltin dichloride), and the like.
- a resin composition containing other ultraviolet absorbers which are optional components and other additives is prepared, and the obtained resin composition is referred to as a mold (hereinafter sometimes referred to as a mold). It can be manufactured by filling in and heating and curing.
- the spectacles of the present disclosure include the spectacle lens of the present disclosure described above. That is, the spectacles of the present disclosure have a configuration in which the spectacle lens of the present disclosure described above is mounted on an appropriate spectacle frame. According to the spectacles of the present disclosure, the spectacle lens attached to the spectacles can block blue light in a wavelength region in the range of at least 400 nm to 500 nm. When done, it can be expected to reduce eye fatigue caused by blue light. Moreover, according to the glasses of the present disclosure, it is difficult to feel a change in color when the object is visually recognized through the lens.
- the specific compound has a half-width at the maximum absorption wavelength in the range of 10 nm or more and less than 40 nm, so that even when used for a long period of time, the transparency of the spectacle lens is deteriorated due to phase separation due to molecular vibration and phase separation. Therefore, the glasses of the present disclosure also have an advantage of excellent durability.
- Example 1 MR-7 (registered trademark) [trade name, refractive index: 1.67, Mitsui Chemicals, Inc.], which is a precursor monomer of the thiourethane resin, is 100 parts by mass, and the specific compound I-2 is 0. 1 part by mass and 0.01 part by mass of dibutyltin dichloride as a polymerization catalyst were mixed to obtain a resin composition. After filling the obtained resin composition in a mold, it was heated at 130 ° C. for 2 hours and cured to produce a lens for spectacles having a thickness of 2 mm. The produced spectacle lens was confirmed to be transparent when visually confirmed.
- Example 2 A spectacle lens was produced in the same manner as in Example 1 except that the specific compound and resin used in Example 1 were changed as shown in Table 2 below. When the produced spectacle lens was visually confirmed, it was confirmed that any spectacle lens was transparent.
- Example 3 MR-7 (registered trademark) [trade name, refractive index: 1.67, Mitsui Chemicals, Inc.], which is a precursor monomer of the thiourethane resin, is 100 parts by mass, and the specific compound I-3 is 0. 1 part by mass, 0.05 part by mass of other UV absorber compound UV-1 (compound having the following structure) and 0.01 part by mass of dibutyltin dichloride as a polymerization catalyst are mixed to obtain a resin composition Got. After filling the obtained resin composition in a mold, it was heated at 130 ° C. for 2 hours and cured to produce a lens for spectacles having a thickness of 2 mm. The produced spectacle lens was confirmed to be transparent when visually confirmed.
- MR-7 registered trademark [trade name, refractive index: 1.67, Mitsui Chemicals, Inc.], which is a precursor monomer of the thiourethane resin, is 100 parts by mass, and the specific compound J-3 is 0. 1 part by mass, 0.05 part by mass of UV-1 (compound having the above structure) as another ultraviolet absorber, and 0.01 part by mass of dibutyltin dichloride as a polymerization catalyst are mixed to obtain a resin composition Got. After filling the obtained resin composition in a mold, it was heated at 130 ° C. for 2 hours and cured to produce a lens for spectacles having a thickness of 2 mm. The produced spectacle lens was confirmed to be transparent when visually confirmed.
- MR-8 registered trademark [trade name, refractive index: 1.60, Mitsui Chemicals, Inc.], which is a precursor monomer of the thiourethane resin, is 100 parts by mass, and the specific compound I-3 described above is 0.00. 1 part by mass and 0.01 part by mass of dibutyltin dichloride as a polymerization catalyst were mixed to obtain a resin composition. After filling the obtained resin composition in a mold, it was heated at 130 ° C. for 2 hours and cured to produce a lens for spectacles having a thickness of 2 mm. The produced spectacle lens was confirmed to be transparent when visually confirmed.
- TEX30 ⁇ (specification: complete meshing, same direction rotation, two-thread screw) manufactured by Nippon Steel Works, Ltd. was used for the vent type twin screw extruder.
- the kneading zone was a type provided at one location before the vent port (upstream side).
- the extrusion conditions were a discharge rate of 30 kg / hr, a screw rotation speed of 150 rpm (rotations per minute), a vent vacuum of 3 kPa, and an extrusion temperature from the first supply port to the soybean part of 280 ° C.
- the obtained pellets were dried at 120 ° C.
- a spectacle lens was produced.
- the produced spectacle lens was confirmed to be light yellow and transparent by visual inspection.
- Example 15 As a precursor of episulfide resin, 100 parts by mass of bis- ⁇ -epithiopropyl disulfide (refractive index: 1.7) and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-tri 10 parts by mass of thiaundecane, 0.1 part by mass of the aforementioned specific compound I-3, and 0.01 parts by mass of N, N-dimethylcyclohexylamine as a polymerization catalyst were mixed using a blender. A mixture was obtained. After the obtained mixture was filled in the mold, it was allowed to stand at 30 ° C. for 8 hours and then cured at 100 ° C. for 10 hours to produce a 2 mm thick spectacle lens. The produced spectacle lens was confirmed to be transparent when visually confirmed.
- MR-174 registered trademark [trade name, refractive index: 1.74, Mitsui Chemicals, Inc.], which is a precursor monomer of a thiourethane resin, is 100 parts by mass, and the specific compound I-4 is 0. 1 part by mass and 0.01 part by mass of dibutyltin dichloride as a polymerization catalyst were mixed to obtain a resin composition. After filling the obtained resin composition in a mold, it was heated at 130 ° C. for 2 hours and cured to produce a lens for spectacles having a thickness of 2 mm. The produced spectacle lens was confirmed to be transparent when visually confirmed.
- MR-7 registered trademark [trade name, refractive index: 1.67, Mitsui Chemicals, Inc.], which is a precursor monomer of thiourethane resin, is 100 parts by mass, and the specific compound K-2 described above is 0 0.1 parts by mass and 0.01 parts by mass of dibutyltin dichloride as a polymerization catalyst were mixed to obtain a resin composition. After filling the obtained resin composition in a mold, it was heated at 130 ° C. for 2 hours and cured to produce a lens for spectacles having a thickness of 2 mm. The produced spectacle lens was confirmed to be transparent when visually confirmed.
- Comparative Example 1 100 parts by mass of MR-7 (registered trademark) [trade name, refractive index: 1.67, Mitsui Chemicals, Inc.], which is a precursor monomer of thiourethane resin, and ultraviolet rays having the following structure, which is Comparative Compound C-1 0.1 parts by mass of the absorbent and 0.01 parts by mass of dibutyltin dichloride as a polymerization catalyst were mixed to obtain a resin composition. After filling the obtained resin composition in a mold, it was heated at 130 ° C. for 2 hours and cured to produce a lens for spectacles having a thickness of 2 mm. The produced spectacle lens was confirmed to be orange-yellow and visually inferior in transparency.
- Comparative Example 2 100 parts by mass of MR-7 (registered trademark) [trade name, refractive index: 1.67, Mitsui Chemicals, Inc.], which is a precursor monomer of thiourethane resin, and ultraviolet rays having the following structure, which is Comparative Compound C-1 0.1 parts by mass of the absorbent and 0.01 parts by mass of dibutyltin dichloride as a polymerization catalyst were mixed to obtain a resin composition.
- the obtained resin composition was filled in a mold (that is, a mold), and then heated at 130 ° C. for 2 hours to be cured, thereby producing a spectacle lens having a thickness of 2 mm.
- the produced spectacle lens was confirmed to be orange-yellow and visually inferior in transparency.
- the spectacle lenses of Examples 1 to 17 and Comparative Examples 1 to 2 were each mounted on a spectacle frame to produce spectacles. Depending on the evaluation item, the produced spectacles or the obtained spectacle lens was used for the evaluation.
- the transmittance at the maximum absorption wavelength of the spectacle lens was measured using a spectrophotometer (model number: UV 3150) manufactured by Shimadzu Corporation in the same manner as described above.
- the width of change in transmittance at the maximum absorption wavelength before and after light irradiation is calculated, and when the width of change is less than 5%, the light resistance is evaluated as “particularly good”, and the width of change is 5% or more and 10%.
- the light resistance was evaluated as “good” when the ratio was less than 10%, and the light resistance was evaluated as “defective” when the change width was 10% or more.
- Table 2 The results are shown in Table 2.
- Light resistance is suppressed even if the spectacle lens is exposed to ultraviolet rays for a long period of time, the decomposition, precipitation, phase separation from the resin, etc. of the ultraviolet absorber such as a specific compound contained in the spectacle lens is suppressed over a long period of time. It is an index for maintaining a good blocking property of blue light.
- a spectacle lens has absorption on the longer wavelength side than 400 nm, by having absorption at a longer wavelength, a change in color of the spectacle lens itself by visual observation and an object visually recognized through the spectacle lens It makes it easier to feel changes in the color of things. For this reason, it is considered that the eyeglass lens of the comparative example was evaluated as orange-yellow not only by the above-described yellowness evaluation but also by visual observation.
- the change in the color of the object visually recognized through the spectacle lens for example, if the spectacle lens is transparent to light yellow, it is difficult to feel the change in the color of the object.
- the spectacle lens has an absorption on the longer wavelength side and is tinged with orange to red, it becomes easy to feel a change in the color of the object.
- the spectacle lenses of Examples 1 to 17 have lower transmittance values at the maximum absorption wavelength than the spectacle lenses of Comparative Examples 1 to 2, and the blue light It was confirmed that the shielding properties were excellent. In addition, it was confirmed that the spectacle lenses of Examples 1 to 17 had a low haze value and excellent transparency as compared with the spectacle lenses of Comparative Examples 1 to 2. Further, it was confirmed that the spectacle lenses of Examples 1 to 17 were superior in light resistance and hardly yellowed as compared with the spectacle lenses of Comparative Examples 1 and 2.
- the specific compound used in the spectacle lens of the example has a small half-value absorption because the molecular structure is not easily twisted. Therefore, the spectacle lens is interpreted as being yellowish and light yellow. Furthermore, in the evaluation of light resistance, since the molecular structure of the specific compound is not easily twisted, phase separation from the lens resin is suppressed, and as a result, the transmittance change width is small and the blue light blocking property is maintained for a long time. Is interpreted. From the above evaluation results, it is possible to suppress eye fatigue, sleep disturbance, etc. caused by blue light by wearing the spectacle lenses using the spectacle lenses of Examples 1 to 17, and to be viewed through the spectacles. It is expected that it is difficult to perceive changes in the color of things. From the comparison between Example 2 and Examples 13 to 15, the spectacle lens of the example achieves good performance with no practical problems regardless of the type of resin contained in any of them. I understand.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Ophthalmology & Optometry (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Optical Filters (AREA)
- Eyeglasses (AREA)
Abstract
樹脂と、メタノール溶液中における極大吸収波長が400nmから500nmの範囲であり、メタノール溶液中における吸収ピークの半値幅が10nm以上40nm未満である色素と、を含有する眼鏡用レンズ及び眼鏡。
Description
本開示は、眼鏡用レンズ及び眼鏡に関する。
陰極管表示装置、プラズマディスプレイ、エレクトロルミネッセンスディスプレイ、蛍光表示ディスプレイ、フィールドエミッションディスプレイ、液晶ディスプレイ(Liquid Crystal Display;LCD)等の画像表示装置、タッチパネルを搭載したスマートフォン、タブレット端末等の各種ディスプレイなどを使用する際は、光源を備えるディスプレイの画面を目視することになる。これらの装置のディスプレイから発せられるブルーライトは、眼精疲労を引き起こす要因となることが知られている。
従来は、波長450nmから460nmの範囲のブルーライトの問題点が指摘されていたが、例えば、’Moleculer Vision’ Vol.22 pp61-72(2016年)には、波長480nmから500nmの範囲のブルーライトの問題点についても指摘がなされており、光刺激による目の疲れ、睡眠障害発生等の抑制の観点から、より長波長側のブルーライトを遮断することが望まれている。例えば、蛍光灯の光では、波長480nm~500nmにかけて半値幅が25nmの急峻な発光ピークを有することが知られている。また、白色発光ダイオード(light emitting diode:LED)では、波長460nm~500nmの範囲に発光ピークを有することが知られている。
従来は、波長450nmから460nmの範囲のブルーライトの問題点が指摘されていたが、例えば、’Moleculer Vision’ Vol.22 pp61-72(2016年)には、波長480nmから500nmの範囲のブルーライトの問題点についても指摘がなされており、光刺激による目の疲れ、睡眠障害発生等の抑制の観点から、より長波長側のブルーライトを遮断することが望まれている。例えば、蛍光灯の光では、波長480nm~500nmにかけて半値幅が25nmの急峻な発光ピークを有することが知られている。また、白色発光ダイオード(light emitting diode:LED)では、波長460nm~500nmの範囲に発光ピークを有することが知られている。
このため、近年、眼鏡用レンズにブルーライト、特に波長400nm~500nmの範囲のブルーライト、即ち、従来よりも、より長波長側のブルーライトをも吸収させ、ブルーライトの眼への影響を低減する試みがなされている。
例えば、ブルーライトを吸収することができる眼鏡用レンズとして、プラスチック基材にオキソノール染料等の着色剤を含む染色層を備える眼鏡用レンズが提案されている(特許第5961437号公報参照)。
例えば、ブルーライトを吸収することができる眼鏡用レンズとして、プラスチック基材にオキソノール染料等の着色剤を含む染色層を備える眼鏡用レンズが提案されている(特許第5961437号公報参照)。
また、ブルーライトを吸収することができる眼鏡用レンズとして、ベンゾトリアゾール系紫外線吸収剤を含む眼鏡用レンズが提案されている(特開2010-84006号公報参照)。
しかしながら、特許第5961437号公報に記載のオキソノール染料は、ブルーライトカット性は得られるが、吸収波形がブロードであり、例えば半値幅が50nm以上であるため、黄色の着色が強く、レンズを介して対象物を視認した際に色味の変化が生じることがある。
特開2010-84006号公報に記載のベンゾトリアゾール系紫外線吸収剤を含む眼鏡用レンズでは、400nm近傍の波長のブルーライトを十分に遮断することができないという問題がある。
特開2010-84006号公報に記載のベンゾトリアゾール系紫外線吸収剤を含む眼鏡用レンズでは、400nm近傍の波長のブルーライトを十分に遮断することができないという問題がある。
本発明の一実施形態が解決しようとする課題は、少なくとも400nm~500nmの波長領域のブルーライトを遮断することができ、レンズを介して対象物を視認した際に色味の変化を感じ難い眼鏡用レンズを提供することである。
本発明の別の実施形態が解決しようとする課題は、上記眼鏡用レンズを備える眼鏡を提供することである。
本発明の別の実施形態が解決しようとする課題は、上記眼鏡用レンズを備える眼鏡を提供することである。
上記課題を解決するための手段には、以下の態様が含まれる。
<1> 樹脂と、メタノール溶液中における極大吸収波長が400nmから500nmの範囲であり、メタノール溶液中における吸収ピークの半値幅が10nm以上40nm未満である色素と、を含有する眼鏡用レンズ。
<2> 色素の極大吸収波長が480nmから500nmの範囲である<1>に記載の眼鏡用レンズ。
<3> 色素が、メチン色素である<1>又は<2>に記載の眼鏡用レンズ。
<4> 色素が、オキソノール色素である<1>~<3>のいずれか1つに記載の眼鏡用レンズ。
<1> 樹脂と、メタノール溶液中における極大吸収波長が400nmから500nmの範囲であり、メタノール溶液中における吸収ピークの半値幅が10nm以上40nm未満である色素と、を含有する眼鏡用レンズ。
<2> 色素の極大吸収波長が480nmから500nmの範囲である<1>に記載の眼鏡用レンズ。
<3> 色素が、メチン色素である<1>又は<2>に記載の眼鏡用レンズ。
<4> 色素が、オキソノール色素である<1>~<3>のいずれか1つに記載の眼鏡用レンズ。
<5> オキソノール色素が、下記一般式(1)で表される<4>に記載の眼鏡用レンズ。
一般式(1)中、A1は下記一般式(1-a)から一般式(1-x)からなる群より選ばれる酸性核のケト体を表す。A2は下記一般式(1-a)から一般式(1-x)からなる群より選ばれる酸性核のエノール体を表し、エノール体の水酸基は解離していてもよい。
L1、L2及びL3は、それぞれ独立に置換されていてもよいメチン基を表す。
M+は水素原子又は一価の対カチオンを表し、nは、Mの正電荷数と、A1=L1-L2=L3-A2の負電荷数とが等しくなるために必要な数を表す。
L1、L2及びL3は、それぞれ独立に置換されていてもよいメチン基を表す。
M+は水素原子又は一価の対カチオンを表し、nは、Mの正電荷数と、A1=L1-L2=L3-A2の負電荷数とが等しくなるために必要な数を表す。
一般式(1-a)から一般式(1-x)において、*は酸性核のケト体A1がL1と、酸性核のエノール体A2がL3と、それぞれ結合する位置を示す。
Xは、酸素原子又は硫黄原子を表す。Yは電子吸引性基を表す。Zは、水素原子、カルバモイル基、アルキル基、アリール基、シアノ基、カルボキシル基、アシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ハロゲン原子、アミノ基、アシルアミノ基、アルキルスルホニル基、アリールスルホニル基、又はスルホ基を表す。R1、R2、R3、R4、R5、及びR6は、それぞれ独立に、水素原子または一価の置換基を表す。
<6> 一般式(1)において、A1は(1-b)、(1-c)及び(1-q)からなる群より選ばれる酸性核のケト体を表し、A2は(1-b)、(1-c)及び(1-q)からなる群より選ばれる酸性核のエノール体を表す<5>に記載の眼鏡用レンズ。
Xは、酸素原子又は硫黄原子を表す。Yは電子吸引性基を表す。Zは、水素原子、カルバモイル基、アルキル基、アリール基、シアノ基、カルボキシル基、アシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ハロゲン原子、アミノ基、アシルアミノ基、アルキルスルホニル基、アリールスルホニル基、又はスルホ基を表す。R1、R2、R3、R4、R5、及びR6は、それぞれ独立に、水素原子または一価の置換基を表す。
<6> 一般式(1)において、A1は(1-b)、(1-c)及び(1-q)からなる群より選ばれる酸性核のケト体を表し、A2は(1-b)、(1-c)及び(1-q)からなる群より選ばれる酸性核のエノール体を表す<5>に記載の眼鏡用レンズ。
<7> メチン色素が下記一般式(2)で表される<3>に記載の眼鏡用レンズ。
一般式(2)中、M+は水素原子又は一価の対カチオンを表す。
<8> 色素は、樹脂に練り込まれている<1>~<7>のいずれか1つに記載の眼鏡用レンズ。
<9> さらに、ベンゾトリアゾール化合物及びトリアジン化合物から選ばれる紫外線吸収剤を含有する<1>~<8>のいずれか1つに記載の眼鏡用レンズ。
<10> <1>~<9>のいずれか1つに記載の眼鏡用レンズを備える眼鏡。
<9> さらに、ベンゾトリアゾール化合物及びトリアジン化合物から選ばれる紫外線吸収剤を含有する<1>~<8>のいずれか1つに記載の眼鏡用レンズ。
<10> <1>~<9>のいずれか1つに記載の眼鏡用レンズを備える眼鏡。
本発明の一実施形態によれば、少なくとも400nm~500nmの範囲の波長領域のブルーライトを遮断することができ、レンズを介して対象物を視認した際に色味の変化を感じ難い眼鏡用レンズが提供される。
本発明の別の実施形態によれば、上記眼鏡用レンズを備える眼鏡が提供される。
本発明の別の実施形態によれば、上記眼鏡用レンズを備える眼鏡が提供される。
以下、本開示の眼鏡用レンズ、及び眼鏡について説明する。但し、本開示は、以下の実施形態に何ら限定されるものではなく、その主旨の範囲内において、適宜、変更を加えて実施することができる。
本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
また、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
本開示において、各成分の濃度又は含有量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、複数種の物質の合計の濃度又は含有量を意味する。
本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
また、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
本開示において、各成分の濃度又は含有量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、複数種の物質の合計の濃度又は含有量を意味する。
本開示において、「ブルーライトの遮断」とは、ブルーライトを完全に遮断する場合のみならず、眼鏡用レンズを介することで、ブルーライトの少なくとも一部を遮断し、ブルーライトの透過率を減少させることを包含する。
[眼鏡用レンズ]
本開示の眼鏡用レンズは、メタノール溶液中における極大吸収波長(以下、単に「極大吸収波長」と称することがある)が400nmから500nmの範囲であり、メタノール溶液中における吸収ピークの半値幅(以下、単に「半値幅」と称することがある)が10nm以上40nm未満である色素(以下、「特定化合物」と称することがある。)と、を含有する。
本開示の眼鏡用レンズは、少なくとも400nm~500nmの範囲の波長領域のブルーライトを遮断することができ、レンズを介して対象物を視認した際に色味の変化を感じ難い。
本開示の眼鏡用レンズは、メタノール溶液中における極大吸収波長(以下、単に「極大吸収波長」と称することがある)が400nmから500nmの範囲であり、メタノール溶液中における吸収ピークの半値幅(以下、単に「半値幅」と称することがある)が10nm以上40nm未満である色素(以下、「特定化合物」と称することがある。)と、を含有する。
本開示の眼鏡用レンズは、少なくとも400nm~500nmの範囲の波長領域のブルーライトを遮断することができ、レンズを介して対象物を視認した際に色味の変化を感じ難い。
本開示における各化合物の極大吸収波長と半値幅は、メタノール中で測定して求めた吸収スペクトルから算出した値を採用している。吸収スペクトルの測定は、測定装置として(株)島津製作所の分光光度計(型番:UV 3150)を用い、常温(25℃)において行なう。
本開示の眼鏡用レンズの作用機構は明らかではないが、本発明者は、以下のように推測している。
400nm~500nmの範囲の波長領域のブルーライトは、380nm~400nmの波長領域に極大吸収を有する紫外線吸収剤によって、ある程度遮断することができる。しかし、一般的な紫外線吸収剤は、吸収波形がブロードであり、吸収ピークの半値幅が50nm以上、一般的には100nm以上であり、吸収ピーク以外の波長領域にも吸収を有する。従って、眼鏡用レンズを介して物を見る際に、所望されない吸収が生じ、特に黄色みを感じることになる。そのため、一般的な紫外線吸収剤を含むプラスチックレンズは、眼鏡用レンズとして用いた場合、黄色味がかった画像が視認され、眼鏡用レンズを介して対象物を視認した際に色味の変化を感じ易い傾向がある。
これに対し、本開示の眼鏡用レンズに含まれる特定化合物は、メタノール溶液中において、400nm~500nmの範囲の波長領域に極大吸収を有し、かつ、半値幅が10nm以上40nm未満と極めて狭く、吸収スペクトルにおける極大吸収波長のピークがシャープである。即ち、半値幅が10nm以上40nm未満であることにより、極大吸収波長よりも短波長側或いは長波長側の波長の光の吸収性が著しく低い。このため、必要なブルーライトの遮断性が良好であり、且つ、吸収スペクトルにおける極大吸収波長のピークがシャープであり、極大吸収波長以外の波長領域における吸収性が極大吸収波長の吸収に比較し、極めて低い状態であるため、眼鏡用レンズに適用した際に、眼鏡用レンズが黄色味を帯び難く、眼鏡用レンズを介して対象物を視認した際に色味の変化を感じ難いと考えられる。
これに対し、本開示の眼鏡用レンズに含まれる特定化合物は、メタノール溶液中において、400nm~500nmの範囲の波長領域に極大吸収を有し、かつ、半値幅が10nm以上40nm未満と極めて狭く、吸収スペクトルにおける極大吸収波長のピークがシャープである。即ち、半値幅が10nm以上40nm未満であることにより、極大吸収波長よりも短波長側或いは長波長側の波長の光の吸収性が著しく低い。このため、必要なブルーライトの遮断性が良好であり、且つ、吸収スペクトルにおける極大吸収波長のピークがシャープであり、極大吸収波長以外の波長領域における吸収性が極大吸収波長の吸収に比較し、極めて低い状態であるため、眼鏡用レンズに適用した際に、眼鏡用レンズが黄色味を帯び難く、眼鏡用レンズを介して対象物を視認した際に色味の変化を感じ難いと考えられる。
一般に、紫外線吸収剤などの化合物における吸収の半値幅は、化合物の分子の振動に起因しており、化合物の分子に複数の振動モードが存在するほど半値幅が大きくなる傾向がある。また、分子構造が熱的に捩れやすい場合には、化合物の分子に複数の振動モードが存在し、複数の振動モードの存在に起因して半値幅が大きくなる。一方、化合物の分子構造が熱的に捩れ難い場合には、化合物の分子が単一の振動モードとなり、半値幅が小さくなると考えられている。
一般的に、分子が分極した構造を有する化合物である場合には、複数の振動モードが存在して半値幅が大きくなる。分子が分極した構造を有する化合物としては、例えば、ドナーアクセプター型の色素が相当し、具体的には、ドナーアクセプター型アゾ色素、メロシアニン色素などが挙げられる。一方、分子の対称性が高く、分子の電荷が非局在化した構造を有する化合物である場合には、単一の振動モードとなり半値幅が小さくなる。分子の電荷が非局在化した構造を有する化合物としては、例えば、メチン系色素が相当し、具体的にはオキソノール色素、シアニン色素などが挙げられる。
一般的に、分子が分極した構造を有する化合物である場合には、複数の振動モードが存在して半値幅が大きくなる。分子が分極した構造を有する化合物としては、例えば、ドナーアクセプター型の色素が相当し、具体的には、ドナーアクセプター型アゾ色素、メロシアニン色素などが挙げられる。一方、分子の対称性が高く、分子の電荷が非局在化した構造を有する化合物である場合には、単一の振動モードとなり半値幅が小さくなる。分子の電荷が非局在化した構造を有する化合物としては、例えば、メチン系色素が相当し、具体的にはオキソノール色素、シアニン色素などが挙げられる。
眼鏡用レンズに含まれる樹脂と色素とが相分離する原因としては、色素と樹脂の親疎水性の差、色素と樹脂との分子間相互作用の大きさなどの要因が関わると推定されている。さらに、眼鏡用レンズに含まれる樹脂と色素とが相分離する他の原因として、既述の分子の捩れの程度の化合物相互の違いも要因の一つと考えられる。すなわち、半値幅の大きな化合物は、励起した場合に分子構造に捩れが生じやすくなる。具体的には、半値幅の大きな化合物は、例えば、紫外線照射等によるエネルギー付与により励起した場合に分子の捩れが生じやすい。そのため、樹脂に分散された色素の捩れに起因して、色素と樹脂との相分離が起こり易いという懸念がある。他方、吸収ピークにおける半値幅の小さい特定化合物は、分子構造に捩れが生じ難く、相分離が起こり難いことが予想される。
本開示の特定化合物は、所望のブルーライトカット性を有しながら、樹脂と共存した場合に、化合物分子の捩れが生じることによる樹脂と特定化合物との相分離が抑制され、相分離に起因する眼鏡レンズの透明性の低下、即ち、ヘイズの上昇が抑制されるという副次的な効果を奏すると考えられる。従って、紫外線吸収剤として特定化合物を用いることで、眼鏡用レンズの透明性の低下が抑制され、眼鏡用レンズの特性の一つである透明性が長期間に亘り維持され、眼鏡用レンズの耐光性がより向上するという利点をも有すると考えられる。
一方で、化合物の吸収スペクトルの半値幅が10nm未満と、本開示の規定よりも小さくなった場合には、波長400nm~500nmの範囲のブルーライトの遮断性が低下する場合がある。
本開示の特定化合物は、所望のブルーライトカット性を有しながら、樹脂と共存した場合に、化合物分子の捩れが生じることによる樹脂と特定化合物との相分離が抑制され、相分離に起因する眼鏡レンズの透明性の低下、即ち、ヘイズの上昇が抑制されるという副次的な効果を奏すると考えられる。従って、紫外線吸収剤として特定化合物を用いることで、眼鏡用レンズの透明性の低下が抑制され、眼鏡用レンズの特性の一つである透明性が長期間に亘り維持され、眼鏡用レンズの耐光性がより向上するという利点をも有すると考えられる。
一方で、化合物の吸収スペクトルの半値幅が10nm未満と、本開示の規定よりも小さくなった場合には、波長400nm~500nmの範囲のブルーライトの遮断性が低下する場合がある。
本開示の眼鏡用レンズに対して、特許第5961437号公報に記載のオキソノール色素は、半値幅が40nm~140nmであり、ブルーライトをある程度遮断できる場合もあるが、眼鏡用レンズが黄色みを帯びてしまうことが懸念される。また、特開2010-84006号公報に記載された眼鏡用レンズは、ブルーライト遮断用の主たる化合物としてベンゾトリアゾール系紫外線吸収剤を含んでいる。ベンゾトリアゾール系紫外線吸収剤は、400nm~450nmまで幅広い吸収を有しているため、400nm近傍の波長のブルーライトの遮断性が十分ではなく、且つ、450nm付近の波長の光まで吸収し得るため、眼鏡用レンズが黄色味を帯びやすい。
なお、上記の推測は、本開示の眼鏡レンズにおける効果を限定的に解釈するものではなく、一例として説明するものである。
なお、上記の推測は、本開示の眼鏡レンズにおける効果を限定的に解釈するものではなく、一例として説明するものである。
特定化合物の極大吸収波長は、400nm~500nmの範囲であり、440nmから500nmの範囲であることが好ましく、480nmから500nmの範囲であることがより好ましい。
特定化合物の半値幅は、10nm以上40nm未満の範囲であり、15nm以上40nm未満の範囲であることが好ましく、20nmから35nmの範囲であることがより好ましい。
特定化合物の半値幅は、10nm以上40nm未満の範囲であり、15nm以上40nm未満の範囲であることが好ましく、20nmから35nmの範囲であることがより好ましい。
特定化合物の極大吸収波長と、半値幅とが、上記範囲にあることで、目的とする波長域におけるブルーライトの遮断性が良好となり、且つ、眼鏡用レンズを介して対象物を視認した際における色味の変化をより感じ難くなる。
400nm~500nmの範囲に極大吸収波長を有し、且つ、半値幅が10nm以上40nm未満である吸収特性を、以下、本開示では、特定吸収特性と称することがある。
本開示における特定化合物としては、特定吸収特性を有する色素であれば制限無く使用することができる。なかでも、メチン色素であって、特定吸収特性を有する色素が好ましい。
また、特定化合物としては、オキソノール色素であって、特定吸収特性を有する色素が好ましい。
本開示における特定化合物としては、特定吸収特性を有する色素であれば制限無く使用することができる。なかでも、メチン色素であって、特定吸収特性を有する色素が好ましい。
また、特定化合物としては、オキソノール色素であって、特定吸収特性を有する色素が好ましい。
特定化合物としては、オキソノール色素であって、下記一般式(1)で表される化合物が好ましい。
一般式(1)中、A1は下記一般式(1-a)から一般式(1-x)からなる群より選ばれる酸性核のケト体を表す。A2は下記一般式(1-a)から一般式(1-x)からなる群より選ばれる酸性核のエノール体を表し、エノール体の水酸基は解離していてもよい。
L1、L2及びL3は、それぞれ独立に置換されていてもよいメチン基を表す。
L1、L2及びL3に導入可能な置換基としては、後述のR1の説明において例示されるアルキル基、アリール基、ハロゲン原子などが挙げられる。置換基を複数有する場合には、それぞれ互いに同じでも異なっていてもよい。また、2以上の置換基が互いに結合して環を構成していてもよい。
M+は水素原子又は一価の対カチオンを表し、nは、Mの正電荷数と、A1=L1-L2=L3-A2の負電荷数とが等しくなるために必要な数を表す。
L1、L2及びL3は、それぞれ独立に置換されていてもよいメチン基を表す。
L1、L2及びL3に導入可能な置換基としては、後述のR1の説明において例示されるアルキル基、アリール基、ハロゲン原子などが挙げられる。置換基を複数有する場合には、それぞれ互いに同じでも異なっていてもよい。また、2以上の置換基が互いに結合して環を構成していてもよい。
M+は水素原子又は一価の対カチオンを表し、nは、Mの正電荷数と、A1=L1-L2=L3-A2の負電荷数とが等しくなるために必要な数を表す。
一般式(1-a)から一般式(1-x)において、*は酸性核のケト体A1がL1と、酸性核のエノール体A2がL3と、それぞれ結合する位置を示す。
Xは酸素原子又は硫黄原子を表す。Yは電子吸引性基を表す。Zは、水素原子、カルバモイル基、アルキル基、アリール基、シアノ基、カルボキシル基、アシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ハロゲン原子、アミノ基、アシルアミノ基、アルキルスルホニル基、アリールスルホニル基、又はスルホ基を表す。R1、R2、R3、R4、R5、及びR6は、それぞれ独立に、水素原子または一価の置換基を表す。
Xは酸素原子又は硫黄原子を表す。Yは電子吸引性基を表す。Zは、水素原子、カルバモイル基、アルキル基、アリール基、シアノ基、カルボキシル基、アシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ハロゲン原子、アミノ基、アシルアミノ基、アルキルスルホニル基、アリールスルホニル基、又はスルホ基を表す。R1、R2、R3、R4、R5、及びR6は、それぞれ独立に、水素原子または一価の置換基を表す。
上記一般式(1-a)から一般式(1-x)について説明する。
一般式(1-a)から一般式(1-x)において、Xは酸素原子、又は硫黄原子を表す。Xは酸素原子であることが好ましい。
一般式(1-a)から一般式(1-x)において、Xは酸素原子、又は硫黄原子を表す。Xは酸素原子であることが好ましい。
Yは、電子吸引性基を表す。電子吸引性基とは、分子の特定の置換位置について、置換位置から電子を吸引する性質を有する置換基であり、電子密度を減弱させる効果を持つ置換基を指す。電子吸引性基としては、ハロゲン原子、ニトリル基、カルボキシ基、カルボニル基、ニトロ基などを有する基が挙げられる。
Yで表される電子吸引性基としては、具体的には、アシル基、アシルオキシ基、カルバモイル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、シアノ基、ニトロ基、ジアルキルホスホノ基、ジアリールホスホノ基、ジアリールホスフィニル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、ヘテロ環スルホニル基、スルホニルオキシ基、アシルチオ基、スルファモイル基、チオシアネート基、チオカルボニル基、ハロゲン化アルキル基、ハロゲン化アルコキシ基、ハロゲン化アリールオキシ基、ハロゲン化アルキルアミノ基、ハロゲン化アルキルチオ基、ハメットの置換基定数σp値が0.2以上の他の電子吸引性基で置換されたアリール基、ヘテロ環基、ハロゲン原子、アゾ基、又はセレノシアネート基が挙げられる。
なかでも、シアノ基、アルキルスルホニル基、アリールスルホニル基、ヘテロ環スルホニル基、アシル基、置換されていても良いスルファモイル基、置換されていても良いカルバモイル基、アルキルオキシカルボニル基、アリールオキシカルボニル基から選ばれる置換基が好ましい。
ここで、スルファモイル基、カルバモイル基が置換基を有する場合の置換基としては、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、置換若しくは無置換のヘテロ環基が挙げられる。
なかでも、シアノ基、アルキルスルホニル基、アリールスルホニル基、ヘテロ環スルホニル基、アシル基、置換されていても良いスルファモイル基、置換されていても良いカルバモイル基、アルキルオキシカルボニル基、アリールオキシカルボニル基から選ばれる置換基が好ましい。
ここで、スルファモイル基、カルバモイル基が置換基を有する場合の置換基としては、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、置換若しくは無置換のヘテロ環基が挙げられる。
Zは水素原子、カルバモイル基、アルキル基、アリール基、シアノ基、カルボキシル基、アシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ハロゲン原子、アミノ基、アシルアミノ基、アルキルスルホニル基、アリールスルホニル基、又はスルホ基を表す。Zとしては、水素原子、カルバモイル基、アルキル基、シアノ基、アシル基、ハロゲン原子、アシルアミノ基、アルキルスルホニル基、又はスルホ基が好ましく、水素原子、カルバモイル基、又はシアノ基がより好ましい。
Zが水素原子以外の置換基である場合、置換基は、さらに置換基を有していてもよい。
Zが水素原子以外の置換基である場合、置換基は、さらに置換基を有していてもよい。
一般式(1-a)から一般式(1-x)において、R1、R2、R3、R4、R5、及びR6は、それぞれ独立に水素原子または一価の置換基を表す。
R1、R2、R3、R4、R5、及びR6が一価の置換基を表す場合、ハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ、アミノ基(アニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルスルホニルアミノ基、アリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールアゾ基、ヘテロ環アゾ基、イミド基、ホスホン酸基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、又はシリル基であり、これらの置換基は更に上記置換基によって置換されていてもよく、置換基同士が結合して環を形成してもよい。
以下、R1、R2、R3、R4、R5、及びR6が一価の置換基である場合の、例示された各置換基について説明する。
R1、R2、R3、R4、R5、及びR6が一価の置換基を表す場合、ハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ、アミノ基(アニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルスルホニルアミノ基、アリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールアゾ基、ヘテロ環アゾ基、イミド基、ホスホン酸基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、又はシリル基であり、これらの置換基は更に上記置換基によって置換されていてもよく、置換基同士が結合して環を形成してもよい。
以下、R1、R2、R3、R4、R5、及びR6が一価の置換基である場合の、例示された各置換基について説明する。
ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が挙げられる。
アルキル基は、直鎖、分岐、環状のいずれであってもよい。また、置換基を有するアルキル基であっても無置換のアルキル基であってもよい。即ち、一価の置換基におけるアルキル基とは、シクロアルキル基、ビシクロアルキル基、更に多環構造であるトリシクロ構造等を有するアルキル基なども包含する意味で用いられる。
以下に説明する置換基の中のアルキル基(例えば、アルコキシ基、アルキルチオ基のアルキル基)もこのような概念のアルキル基を表す。
詳細には、アルキル基としては、好ましくは、炭素数1から30のアルキル基、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、t-ブチル基、n-オクチル基、エイコシル基、ベンジル基、フェネチル基、2-クロロエチル基、2-シアノエチル基、2―エチルヘキシル基等が挙げられる。シクロアルキル基としては、好ましくは、炭素数3から30の置換又は無置換のシクロアルキル基、例えば、シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等が挙げられる。ビシクロアルキル基としては、好ましくは、炭素数5から30の置換若しくは無置換のビシクロアルキル基、つまり、炭素数5から30のビシクロアルカンから水素原子を一つ取り去った一価の基、例えば、ビシクロ[1,2,2]ヘプタン-2-イル基、ビシクロ[2,2,2]オクタン-3-イル基等が挙げられる。
以下に説明する置換基の中のアルキル基(例えば、アルコキシ基、アルキルチオ基のアルキル基)もこのような概念のアルキル基を表す。
詳細には、アルキル基としては、好ましくは、炭素数1から30のアルキル基、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、t-ブチル基、n-オクチル基、エイコシル基、ベンジル基、フェネチル基、2-クロロエチル基、2-シアノエチル基、2―エチルヘキシル基等が挙げられる。シクロアルキル基としては、好ましくは、炭素数3から30の置換又は無置換のシクロアルキル基、例えば、シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等が挙げられる。ビシクロアルキル基としては、好ましくは、炭素数5から30の置換若しくは無置換のビシクロアルキル基、つまり、炭素数5から30のビシクロアルカンから水素原子を一つ取り去った一価の基、例えば、ビシクロ[1,2,2]ヘプタン-2-イル基、ビシクロ[2,2,2]オクタン-3-イル基等が挙げられる。
アルケニル基としては、直鎖、分岐、環状のいずれであってもよい。また、置換基を有するアルキル基であっても無置換のアルケニル基であってもよい。即ち、一価の置換基におけるアルケニル基は、シクロアルケニル基、ビシクロアルケニル基を包含する。
詳細には、アルケニル基としては、好ましくは、炭素数2から30の置換又は無置換のアルケニル基、例えば、ビニル基、アリル基、プレニル基、ゲラニル基、オレイル基等が挙げられる。シクロアルケニル基としては、好ましくは、炭素数3から30の置換若しくは無置換のシクロアルケニル基、つまり、炭素数3から30のシクロアルケンの水素原子を一つ取り去った一価の基、例えば、2-シクロペンテン-1-イル基、2-シクロヘキセン-1-イル基等が挙げられる。ビシクロアルケニル基としては、置換若しくは無置換のビシクロアルケニル基、好ましくは、炭素数5から30の置換若しくは無置換のビシクロアルケニル基、つまり二重結合を一つ有するビシクロアルケンの水素原子を一つ取り去った一価の基、例えば、ビシクロ[2,2,1]ヘプト-2-エン-1-イル基、ビシクロ[2,2,2]オクト-2-エン-4-イル基等が挙げられる。
詳細には、アルケニル基としては、好ましくは、炭素数2から30の置換又は無置換のアルケニル基、例えば、ビニル基、アリル基、プレニル基、ゲラニル基、オレイル基等が挙げられる。シクロアルケニル基としては、好ましくは、炭素数3から30の置換若しくは無置換のシクロアルケニル基、つまり、炭素数3から30のシクロアルケンの水素原子を一つ取り去った一価の基、例えば、2-シクロペンテン-1-イル基、2-シクロヘキセン-1-イル基等が挙げられる。ビシクロアルケニル基としては、置換若しくは無置換のビシクロアルケニル基、好ましくは、炭素数5から30の置換若しくは無置換のビシクロアルケニル基、つまり二重結合を一つ有するビシクロアルケンの水素原子を一つ取り去った一価の基、例えば、ビシクロ[2,2,1]ヘプト-2-エン-1-イル基、ビシクロ[2,2,2]オクト-2-エン-4-イル基等が挙げられる。
アルキニル基としては、好ましくは、炭素数2から30の置換又は無置換のアルキニル基、例えば、エチニル基、プロパルギル基、トリメチルシリルエチニル基等が挙げられる。
アリール基としては、好ましくは、炭素数6から30の置換若しくは無置換のアリール基、例えば、フェニル基、p-トリル基、ナフチル基、m-クロロフェニル基、o-ヘキサデカノイルアミノフェニル基等が挙げられる。
ヘテロ環基としては、好ましくは、5員又は6員の置換若しくは無置換の芳香族若しくは非芳香族のヘテロ環化合物から水素原子を一つ取り除いた一価の基が挙げられる。更に好ましくは、炭素数3から30の5又は6員の芳香族のヘテロ環基、例えば、2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基等が挙げられる。
アルコキシ基としては、好ましくは、炭素数1から30の置換若しくは無置換のアルコキシ基、例えば、メトキシ基、エトキシ基、イソプロポキシ基、t-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等が挙げられる。
アリールオキシ基としては、好ましくは、炭素数6から30の置換若しくは無置換のアリールオキシ基、例えば、フェノキシ基、2-メチルフェノキシ基、4-t-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等が挙げられる。
シリルオキシ基としては、好ましくは、炭素数0から20の置換若しくは無置換のシリルオキシ基、例えば、トリメチルシリルオキシ基、ジフェニルメチルシリルオキシ基等が挙げられる。
ヘテロ環オキシ基としては、好ましくは、炭素数2から30の置換若しくは無置換のヘテロ環オキシ基、例えば、1-フェニルテトラゾール-5-オキシ基、2-テトラヒドロピラニルオキシ基等が挙げられる。
アシルオキシ基としては、好ましくは、ホルミルオキシ基、炭素数2から30の置換若しくは無置換のアルキルカルボニルオキシ基、炭素数6から30の置換若しくは無置換のアリールカルボニルオキシ基、例えば、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等が挙げられる。
カルバモイルオキシ基としては、好ましくは、炭素数1から30の置換若しくは無置換のカルバモイルオキシ基、例えば、N,N-ジメチルカルバモイルオキシ基、N,N-ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N-ジ-n-オクチルアミノカルボニルオキシ基、N-n-オクチルカルバモイルオキシ基等が挙げられる。
アルコキシカルボニルオキシ基としては、好ましくは、炭素数2から30の置換若しくは無置換アルコキシカルボニルオキシ基、例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、t-ブトキシカルボニルオキシ基、n-オクチルカルボニルオキシ基等が挙げられる。
アリールオキシカルボニルオキシ基としては、好ましくは、炭素数7から30の置換若しくは無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ基、p-メトキシフェノキシカルボニルオキシ基、p-n-ヘキサデシルオキシフェノキシカルボニルオキシ基等が挙げられる。
アミノ基は、アミノ基に加え、アルキル基、アリール基、又はヘテロ環基を有するアミノ基であるアルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基を包含する。
アミノ基としては、好ましくは、アミノ基、炭素数1から30の置換若しくは無置換のアルキルアミノ基、炭素数6から30の置換若しくは無置換のアニリノ基、例えば、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基、トリアジニルアミノ基等が挙げられる。
アミノ基としては、好ましくは、アミノ基、炭素数1から30の置換若しくは無置換のアルキルアミノ基、炭素数6から30の置換若しくは無置換のアニリノ基、例えば、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基、トリアジニルアミノ基等が挙げられる。
アシルアミノ基としては、好ましくは、ホルミルアミノ基、炭素数1から30の置換若しくは無置換のアルキルカルボニルアミノ基、炭素数6から30の置換若しくは無置換のアリールカルボニルアミノ基、例えば、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基、3,4,5-トリ-n-オクチルオキシフェニルカルボニルアミノ基等が挙げられる。
アミノカルボニルアミノ基としては、好ましくは、炭素数1から30の置換若しくは無置換のアミノカルボニルアミノ基、例えば、カルバモイルアミノ基、N,N-ジメチルアミノカルボニルアミノ基、N,N-ジエチルアミノカルボニルアミノ基、モルホリノカルボニルアミノ基等が挙げられる。
アルコキシカルボニルアミノ基としては、好ましくは、炭素数2から30の置換若しくは無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、t-ブトキシカルボニルアミノ基、n-オクタデシルオキシカルボニルアミノ基、N-メチルーメトキシカルボニルアミノ基等が挙げられる。
アリールオキシカルボニルアミノ基としては、好ましくは、炭素数7から30の置換若しくは無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ基、p-クロロフェノキシカルボニルアミノ基、m-n-オクチルオキシフェノキシカルボニルアミノ基等が挙げられる。
スルファモイルアミノ基としては、好ましくは、炭素数0から30の置換若しくは無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ基、N,N-ジメチルアミノスルホニルアミノ基、N-n-オクチルアミノスルホニルアミノ基等が挙げられる。
アルキルスルホニルアミノ基又はアリールスルホニルアミノ基としては、好ましくは、炭素数1から30の置換若しくは無置換のアルキルスルホニルアミノ基、炭素数6から30の置換若しくは無置換のアリールスルホニルアミノ基、例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等が挙げられる。
アルキルチオ基としては、好ましくは、炭素数1から30の置換若しくは無置換のアルキルチオ基、例えば、メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等が挙げられる。
アリールチオ基としては、好ましくは、炭素数6から30の置換若しくは無置換のアリールチオ基、例えば、フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等が挙げられる。
ヘテロ環チオ基としては、好ましくは、炭素数2から30の置換又は無置換のヘテロ環チオ基、例えば、2-ベンゾチアゾリルチオ基、1-フェニルテトラゾール-5-イルチオ基等が挙げられる。
スルファモイル基としては、好ましくは、炭素数0から30の置換若しくは無置換のスルファモイル基、例えば、N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N‘-フェニルカルバモイル)スルファモイル基等が挙げられる。
アルキルスルフィニル基又はアリールスルフィニル基としては、好ましくは、炭素数1から30の置換又は無置換のアルキルスルフィニル基、6から30の置換又は無置換のアリールスルフィニル基、例えば、メチルスルフィニル基、エチルスルフィニル基、フェニルスルフィニル基、p-メチルフェニルスルフィニル基等が挙げられる。
アルキルスルホニル基又はアリールスルホニル基としては、好ましくは、炭素数1から30の置換又は無置換のアルキルスルホニル基、6から30の置換又は無置換のアリールスルホニル基、例えば、メチルスルホニル基、エチルスルホニル基、フェニルスルホニル基、p-メチルフェニルスルホニル基等が挙げられる。
アシル基としては、好ましくは、ホルミル基、炭素数2から30の置換又は無置換のアルキルカルボニル基、炭素数7から30の置換若しくは無置換のアリールカルボニル基、炭素数2から30の置換若しくは無置換の炭素原子でカルボニル基と結合しているヘテロ環カルボニル基、例えば、アセチル基、ピバロイル基、2-クロロアセチル基、ステアロイル基、ベンゾイル基、p-n-オクチルオキシフェニルカルボニル基、2-ピリジルカルボニル基、2-フリルカルボニル基等が挙げられる。
アリールオキシカルボニル基としては、好ましくは、炭素数7から30の置換若しくは無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル基、o-クロロフェノキシカルボニル基、m-ニトロフェノキシカルボニル基、p-t-ブチルフェノキシカルボニル基等が挙げられる。
アルコキシカルボニル基としては、好ましくは、炭素数2から30の置換若しくは無置換アルコキシカルボニル基、例えば、メトキシカルボニル基、エトキシカルボニル基、t-ブトキシカルボニル基、n-オクタデシルオキシカルボニル基等が挙げられる。
カルバモイル基としては、好ましくは、炭素数1から30の置換若しくは無置換のカルバモイル基、例えば、カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等が挙げられる。
アリールアゾ基又はヘテロ環アゾ基としては、好ましくは炭素数6から30の置換若しくは無置換のアリールアゾ基、炭素数3から30の置換若しくは無置換のヘテロ環アゾ基、例えば、フェニルアゾ、p-クロロフェニルアゾ、5-エチルチオ-1,3,4-チアジアゾール-2-イルアゾ等が挙げられる。
イミド基としては、好ましくは、N-スクシンイミド基、N-フタルイミド基等が挙げられる。
ホスフィノ基としては、好ましくは、炭素数0から30の置換若しくは無置換のホスフィノ基、例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基等が挙げられる。
ホスフィニル基としては、好ましくは、炭素数0から30の置換若しくは無置換のホスフィニル基、例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基等が挙げられる。
ホスフィニルオキシ基としては、好ましくは、炭素数0から30の置換若しくは無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基等が挙げられる。
ホスフィニルアミノ基としては、好ましくは、炭素数0から30の置換若しくは無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基が挙げられる。
シリル基としては、好ましくは、炭素数0から30の置換若しくは無置換のシリル基、例えば、トリメチルシリル基、t-ブチルジメチルシリル基、フェニルジメチルシリル基等が挙げられる。
一般式(1-a)から一般式(1-x)において、R1、R2、R3、R4、R5、及びR6は、水素原子、アルキル基、アリール基、ヘテロ環基、カルボキシル基、アシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、シアノ基、アミノ基、アシルアミノ基、アルキルスルホニルアミノ基、アリールスルホニルアミノ基、アミノカルボニルアミノ基、カルバモイルオキシ基、ヒドロキシル基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、又はスルファモイル基が好ましく、水素原子、アルキル基、アリール基、ヘテロ環基、カルボキシル基、アシル基、アルキルオキシカルボニル基、カルバモイル基、シアノ基、アミノ基、アシルアミノ基、アルキルスルホニルアミノ基、アリールスルホニルアミノ基、ヒドロキシル基、アルコキシ基、又はスルファモイル基がより好ましく、水素原子、アルキル基、アリール基、ヘテロ環基、カルボキシル基、アルキルオキシカルボニル基、カルバモイル基、シアノ基、アシルアミノ基、ヒドロキシル基、又はアルコキシ基がさらに好ましい。
特定化合物の吸収ピークが急峻になりやすく、半値幅を適切な範囲に保ち易いという観点から、A1及びA2は、いずれも、5員環、6員環、及び縮環構造から選ばれる環構造を有する構造、及び、電子吸引性基を有する構造の酸性核に由来する構造が好ましい。環構造のなかでも、飽和の5員環を有する構造がより好ましく、カルボニル基が対照の位置にある飽和の5員環を有する構造がさらに好ましい。
A1及びA2は、それぞれ同じ構造の酸性核に由来するケト体及びエノール体であることが、合成適性の観点から好ましい。
A1及びA2は、それぞれ同じ構造の酸性核に由来するケト体及びエノール体であることが、合成適性の観点から好ましい。
一般式(1)において、極大吸収波長の吸収ピークが急峻になりやすい、色価がより高い、及び特定化合物の耐久性がより高いという観点から、A1は、既述の一般式(1-a)~(1-x)のうち、(1-b)、(1-c)、(1-f)、(1-o)、(1-q)、(1-r)、(1-v)、及び(1-w)からなる群より選ばれる酸性核のケト体であることが好ましく、且つ、A2は、(1-b)、(1-c)、(1-f)、(1-o)、(1-q)、(1-r)、(1-v)、及び(1-w)からなる群より選ばれる酸性核のエノール体であることが好ましく、A1は(1-b)、(1-c)及び(1-q)からなる群より選ばれる酸性核のケト体を表し、且つ、A2は(1-b)、(1-c)及び(1-q)からなる群より選ばれる酸性核のエノール体を表すことがさらに好ましい。
一般式(1)において、塩を形成する対カチオンMの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)及び有機カチオン(例、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラブチルアンモニウムイオン、トリエチルアンモニウムイオン、トリブチルアンモニウムイオン、トリヘキシルアンモニウムイオン、トリオクチルアンモニウムイオン、テトラメチルグアニジウムイオン、テトラメチルホスホニウム)が含まれる。
対カチオンMとしては、有機カチオンが好ましく、具体的には、テトラアルキルアンモニウムイオン、又はトリアルキルアンモニウムイオンがより好ましい。
対カチオンMとしては、有機カチオンが好ましく、具体的には、テトラアルキルアンモニウムイオン、又はトリアルキルアンモニウムイオンがより好ましい。
一般式(1)で表される特定化合物の例を、その構造を示す一般式と、それぞれの一般式における置換基とを明示することで以下に示す。既述の方法で測定した各化合物の極大吸収波長と半値幅とを併記する。
なお、本開示における一般式(1)で表される特定化合物は以下の例に限定されない。
なお、下記式中、メチル基はMeと、エチル基はEtと、ブチル基はBuと、プロピル基はPrと、フェニル基はPhと、1,8-ジアザビシクロウンデセン(1,8-Diazabicyclo(5,4,0)undec-7-ene)はDBUと、それぞれ略記する。水素原子はHで示す。
なお、本開示における一般式(1)で表される特定化合物は以下の例に限定されない。
なお、下記式中、メチル基はMeと、エチル基はEtと、ブチル基はBuと、プロピル基はPrと、フェニル基はPhと、1,8-ジアザビシクロウンデセン(1,8-Diazabicyclo(5,4,0)undec-7-ene)はDBUと、それぞれ略記する。水素原子はHで示す。
上記例示した一般式(1)で表される特定化合物の中でも、極大吸収波長がより長波長側であり、半値幅が適正な範囲にあるという観点から、特定化合物(I-2)~(I-5)、(I-7)、(H-3)、(H-4)、(J-3)、(J-4)及び(J-7)が好ましく、(I-2)~(I-5)、(I-7)、(J-3)、(J-4)及び(J-7)がより好ましく、(I-7)がさらに好ましい。
特定化合物の好ましい他の例として、メチン色素であって、下記一般式(2)で表される化合物が挙げられる。
一般式(2)中、M+は水素原子又は一価の対カチオンを表す。
Mが一価の対カチオンを表す場合の対カチオンとしては、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)及び有機カチオン(例、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラブチルアンモニウムイオン、トリエチルアンモニウムイオン、トリブチルアンモニウムイオン、トリヘキシルアンモニウムイオン、トリオクチルアンモニウムイオン、テトラメチルグアニジウムイオン、テトラメチルホスホニウムイオン)が挙げられる。
対カチオンMとしては、有機カチオンが好ましく、具体的には、炭素数が1~5のアルキル基を有するテトラアルキルアンモニウムイオン、又はトリアルキルアンモニウムイオンがより好ましく、エチル基又はブチル基を有するテトラアルキルアンモニウムイオン、又はトリアルキルアンモニウムイオンがさらに好ましい。
Mが一価の対カチオンを表す場合の対カチオンとしては、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)及び有機カチオン(例、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラブチルアンモニウムイオン、トリエチルアンモニウムイオン、トリブチルアンモニウムイオン、トリヘキシルアンモニウムイオン、トリオクチルアンモニウムイオン、テトラメチルグアニジウムイオン、テトラメチルホスホニウムイオン)が挙げられる。
対カチオンMとしては、有機カチオンが好ましく、具体的には、炭素数が1~5のアルキル基を有するテトラアルキルアンモニウムイオン、又はトリアルキルアンモニウムイオンがより好ましく、エチル基又はブチル基を有するテトラアルキルアンモニウムイオン、又はトリアルキルアンモニウムイオンがさらに好ましい。
一般式(2)で表される特定化合物の例を、その構造を示す一般式と、それぞれの一般式における置換基とを明示することで以下に示す。既述の方法で測定した各化合物の極大吸収波長と半値幅とを併記する。
なお、本開示における一般式(2)で表される特定化合物は以下の例に限定されない。
なお、下記式中、メチル基はMeと、エチル基はEtと、ブチル基はBuと、プロピル基はPrと、フェニル基はPhと、1,8-ジアザビシクロウンデセンはDBUと、それぞれ略記する。水素原子はHで示す。
なお、本開示における一般式(2)で表される特定化合物は以下の例に限定されない。
なお、下記式中、メチル基はMeと、エチル基はEtと、ブチル基はBuと、プロピル基はPrと、フェニル基はPhと、1,8-ジアザビシクロウンデセンはDBUと、それぞれ略記する。水素原子はHで示す。
上記例示した一般式(2)で表される特定化合物の中でも、極大吸収波長がより長波長側であり、半値幅が適正な範囲にあるという観点から、特定化合物(K-2)が好ましい。
本開示の眼鏡用レンズは、特定化合物を1種のみ含有していてもよく、2種以上含有していてもよい。
本開示の眼鏡用レンズ中における特定化合物の含有量は、特に制限されない。眼鏡用レンズ中における特定化合物の含有量は、例えば、樹脂の100質量部に対して、0.01質量部~1.0質量部であることが好ましく、0.01質量部~0.5質量部であることがより好ましく、0.05質量部~0.2質量部であることが更に好ましい。
本開示の眼鏡用レンズ中における特定化合物は、400nm~500nmの範囲の波長領域に極大吸収波長を有し、上記吸収波長範囲におけるモル吸光係数が高く、且つ、半値幅が10nm以上40nm未満の範囲である。このため、本開示の眼鏡用レンズ中における特定化合物の含有量が上記範囲において、上記波長領域のブルーライトを良好に遮断することができ、眼鏡用レンズの所望されない着色が抑制される。
〔樹脂〕
本開示の眼鏡用レンズは、樹脂を含有する。
樹脂としては、眼鏡用レンズに求められる透明性、屈折率、加工性、硬化後の硬度等の物性を満たす樹脂であれば、特に制限はない。
本開示の眼鏡用レンズに用いられる樹脂は、屈折率の高い樹脂及び屈折率の低い樹脂のいずれも使用することができる。
本開示の眼鏡用レンズは、樹脂を含有する。
樹脂としては、眼鏡用レンズに求められる透明性、屈折率、加工性、硬化後の硬度等の物性を満たす樹脂であれば、特に制限はない。
本開示の眼鏡用レンズに用いられる樹脂は、屈折率の高い樹脂及び屈折率の低い樹脂のいずれも使用することができる。
樹脂は、熱可塑性樹脂(例えば、ポリカーボネート樹脂)であってもよいし、熱硬化性樹脂(例えば、ウレタン樹脂)であってもよい。
眼鏡用レンズに用いるため、樹脂は透明であること、即ち、可視光透過率が高いことが好ましい。
本明細書において、樹脂が透明であるとは、樹脂を含む眼鏡用レンズの430nm~700nmの波長域における平均透過率が80%以上であり、かつ、430nm~700nmの波長域において、透過率がいずれも75%以上であることを意味する。430nm~700nmの波長域における平均透過率は、85%以上が好ましく、90%以上がより好ましい。
眼鏡用レンズの430nm~700nmの平均透過率は、成形した眼鏡用レンズを、UV/visスペクトルメーター、例えば、島津製作所社製、UV/visスペクトルメーターUV3100、を用いて分光スペクトルを測定し、上記波長域における波長1nm毎の透過率の測定結果の平均値を算出することで得ることができる。また、上記測定結果において、波長1nm毎の透過率の各測定結果が75%以上であることで、430nm~700nmの波長域において、透過率がいずれも75%以上であるとの条件を満たすことが確認できる。
本開示における特定化合物は、可視光の波長域には殆ど吸収を有しないため、眼鏡用レンズの430nm~700nmの各波長の透過率及び平均透過率を測定することで、眼鏡用レンズに含まれる樹脂における透明性を推定することができる。
本明細書において、樹脂が透明であるとは、樹脂を含む眼鏡用レンズの430nm~700nmの波長域における平均透過率が80%以上であり、かつ、430nm~700nmの波長域において、透過率がいずれも75%以上であることを意味する。430nm~700nmの波長域における平均透過率は、85%以上が好ましく、90%以上がより好ましい。
眼鏡用レンズの430nm~700nmの平均透過率は、成形した眼鏡用レンズを、UV/visスペクトルメーター、例えば、島津製作所社製、UV/visスペクトルメーターUV3100、を用いて分光スペクトルを測定し、上記波長域における波長1nm毎の透過率の測定結果の平均値を算出することで得ることができる。また、上記測定結果において、波長1nm毎の透過率の各測定結果が75%以上であることで、430nm~700nmの波長域において、透過率がいずれも75%以上であるとの条件を満たすことが確認できる。
本開示における特定化合物は、可視光の波長域には殆ど吸収を有しないため、眼鏡用レンズの430nm~700nmの各波長の透過率及び平均透過率を測定することで、眼鏡用レンズに含まれる樹脂における透明性を推定することができる。
透明な樹脂の好適な例としては、ジアセチルセルロース、トリアセチルセルロース、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ニトロセルロース等のセルロースエステル、ポリアクリル酸(PA)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリ-1,4-シクロヘキサンジメチレンテレフタレート、ポリエチレン-1,2-ジフェノキシエタン-4,4’-ジカルボキシレート、シンジオタクチックポリスチレン等のポリスチレン、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリスルホン、ポリエーテルスルホン、ポリビニルブチラール、エチレンビニルアセテート、ポリエーテルケトン、ポリエーテルイミド及びポリオキシエチレンなどが挙げられる。
なかでも、セルロースエステル、PC、ポリエステル、ポリオレフィン、アクリル樹脂が好ましく、PC、ポリエステルがより好ましい。
なかでも、セルロースエステル、PC、ポリエステル、ポリオレフィン、アクリル樹脂が好ましく、PC、ポリエステルがより好ましい。
なかでも、眼鏡用レンズに含まれる樹脂としては、屈折率が高い樹脂が好ましい。屈折率が高いという観点から、ウレタン樹脂、エピスルフィド樹脂、及びポリカーボネート樹脂からなる群より選ばれる少なくとも1種の樹脂であることが好ましく、ウレタン樹脂及びエピスルフィド樹脂から選ばれる少なくとも1種の樹脂であることがより好ましい。
また、ウレタン樹脂としては、チオウレタン樹脂が特に好ましい。
チオウレタン樹脂及びエピスルフィド樹脂は、眼鏡用レンズの材料として広く用いられているが、従来の眼鏡用レンズに用いられている紫外線吸収剤との相溶性が悪く、特に紫外線吸収剤が析出しやすい樹脂である。
また、ウレタン樹脂としては、チオウレタン樹脂が特に好ましい。
チオウレタン樹脂及びエピスルフィド樹脂は、眼鏡用レンズの材料として広く用いられているが、従来の眼鏡用レンズに用いられている紫外線吸収剤との相溶性が悪く、特に紫外線吸収剤が析出しやすい樹脂である。
本開示の眼鏡用レンズは、樹脂としてチオウレタン樹脂及びエピスルフィド樹脂から選ばれる少なくとも1種を含有する場合であっても、特定化合物と樹脂との相溶性に悪化に起因する特定色素の析出が抑制され、且つ、既述の分子の捩れによる特定化合物と樹脂との相分離も抑制される。さらに、特定化合物は半値幅が狭く、短波長側における吸収が低いため、眼鏡用レンズは透明性が良好であり、且つ、眼鏡用レンズの良好な透明性が長期間維持されることから、眼鏡用レンズを介して対象物を視認した際に色味の変化を感じ難いと考えられる。
なお、本開示の眼鏡用レンズに含まれる樹脂は、屈折率が1.65より高い樹脂であってもよい。
なお、本開示の眼鏡用レンズの樹脂として好適なチオウレタン樹脂及びエピスルフィド樹脂の詳細については、特開平8-3267号公報、特開平11-158229号公報、特開2009-256692号公報、特開2007-238952号公報、特開2009-74624号公報、特開2015-212395号公報、及び特開2016-84381号公報の記載を参照することができる。
なお、本開示の眼鏡用レンズに含まれる樹脂は、屈折率が1.65より高い樹脂であってもよい。
なお、本開示の眼鏡用レンズの樹脂として好適なチオウレタン樹脂及びエピスルフィド樹脂の詳細については、特開平8-3267号公報、特開平11-158229号公報、特開2009-256692号公報、特開2007-238952号公報、特開2009-74624号公報、特開2015-212395号公報、及び特開2016-84381号公報の記載を参照することができる。
樹脂としては、市販の樹脂を用いることができる。
樹脂の市販品の例としては、パンライト(登録商標)L-1250WP〔商品名、芳香族ポリカーボネート樹脂パウダー、帝人(株):屈折率n=1.58〕、パンライト(登録商標)SP-1516〔商品名、帝人(株)〕、ユピゼータ(登録商標)EP-5000〔商品名、三菱ガス化学(株)〕、ユピゼータ(登録商標)EP-4000〔商品名、三菱ガス化学(株)〕等が挙げられる。
また、樹脂は、市販の樹脂の前駆体モノマーを用いて形成された樹脂であってもよい。
樹脂の前駆体モノマーの市販品の例としては、チオウレタン樹脂の前駆体モノマーである、MR-6(登録商標)〔屈折率n=1.59〕、MR-7(登録商標)〔屈折率:1.67〕、MR-8(登録商標)〔屈折率:1.60〕、MR-10(登録商標)〔屈折率:1.67〕、MR-174(登録商標)〔屈折率:1.74〕〔以上商品名、三井化学(株)〕等が挙げられる。また、ルミプラス(登録商標)LPB-1102〔屈折率n=1.71〕〔以上商品名、三菱ガス化学(株)〕等も挙げられる。
樹脂の市販品の例としては、パンライト(登録商標)L-1250WP〔商品名、芳香族ポリカーボネート樹脂パウダー、帝人(株):屈折率n=1.58〕、パンライト(登録商標)SP-1516〔商品名、帝人(株)〕、ユピゼータ(登録商標)EP-5000〔商品名、三菱ガス化学(株)〕、ユピゼータ(登録商標)EP-4000〔商品名、三菱ガス化学(株)〕等が挙げられる。
また、樹脂は、市販の樹脂の前駆体モノマーを用いて形成された樹脂であってもよい。
樹脂の前駆体モノマーの市販品の例としては、チオウレタン樹脂の前駆体モノマーである、MR-6(登録商標)〔屈折率n=1.59〕、MR-7(登録商標)〔屈折率:1.67〕、MR-8(登録商標)〔屈折率:1.60〕、MR-10(登録商標)〔屈折率:1.67〕、MR-174(登録商標)〔屈折率:1.74〕〔以上商品名、三井化学(株)〕等が挙げられる。また、ルミプラス(登録商標)LPB-1102〔屈折率n=1.71〕〔以上商品名、三菱ガス化学(株)〕等も挙げられる。
本開示の眼鏡用レンズは、樹脂を1種のみ含有していてもよく、2種以上含有していてもよい。
本開示の眼鏡用レンズ中における樹脂の含有量は、特に制限されず、例えば、眼鏡用レンズの全質量に対して、70質量%~99.99質量%であることが好ましく、80質量%~99.99質量%であることがより好ましく、90質量%~99.99質量%であることが更に好ましい。
本開示の眼鏡用レンズ中における樹脂の含有量が上記範囲内であると、軽量で、かつ薄いレンズを作製することができる。
本開示の眼鏡用レンズ中における樹脂の含有量が上記範囲内であると、軽量で、かつ薄いレンズを作製することができる。
〔その他の紫外線吸収剤〕
本開示の眼鏡用レンズは、既述の特定化合物以外の紫外線吸収能を有する化合物(以下、「その他の紫外線吸収剤」ともいう。)を含有していてもよい。
本開示の眼鏡用レンズは、その他の紫外線吸収剤を含有することにより、紫外線領域及び可視領域の広い範囲において、ブルーライトを遮断し得る。
その他の紫外線吸収剤としては、眼鏡用レンズに用いられる公知の紫外線吸収剤であれば、特に制限はない。
その他の紫外線吸収剤としては、トリアジン化合物(即ち、トリアジン紫外線吸収剤)、ベンゾトリアゾール化合物(即ち、ベンゾトリアゾール紫外線吸収剤)、ベンゾフェノン化合物(即ち、ベンゾフェノン紫外線吸収剤)、シアニン化合物(即ち、シアニン紫外線吸収剤)、ジベンゾイルメタン化合物(即ち、ジベンゾイルメタン紫外線吸収剤)、桂皮酸化合物(即ち、桂皮酸紫外線吸収剤)、アクリレート化合物(即ち、アクリレート紫外線吸収剤)、安息香酸エステル化合物(即ち、安息香酸エステル紫外線吸収剤)、シュウ酸ジアミド化合物(即ち、シュウ酸ジアミド紫外線吸収剤)、ホルムアミジン化合物(即ち、ホルムアミジン紫外線吸収剤)、ベンゾオキサゾール化合物(即ち、ベンゾオキサゾール紫外線吸収剤)、ベンゾオキサジノン化合物(即ち、ベンゾオキサジノン紫外線吸収剤)、ベンゾジチオール化合物(即ち、ベンゾジチオール紫外線吸収剤)等の紫外線吸収剤が挙げられる。これらの紫外線吸収剤の詳細については、例えば、「月刊ファインケミカル」2004年5月号、28ページ~38ページ、東レリサーチセンター調査研究部門発行「高分子用機能性添加剤の新展開」(東レリサーチセンター、1999年)96ページ~140ページ、大勝靖一監修「高分子添加剤の開発と環境対策」(シーエムシー出版、2003年)54ページ~64ページ、(株)技術情報協会発行「高分子の劣化・変色メカニズムとその安定化技術-ノウハウ集-」(技術情報協会、2006年)等の記載を参照することができる。
また、ベンゾオキサゾール化合物の具体例としては、例えば、特許第4311869号公報に記載の化合物が挙げられ、ベンゾオキサジノン化合物の具体例としては、例えば、特許第5591453号公報及び特許第5250289号公報に記載の化合物が挙げられ、ベンゾジチオール化合物の具体例としては、例えば、特許第5450994号公報及び特許第5364311号公報に記載の化合物が挙げられる。
これらの中でも、本開示の眼鏡用レンズは、ベンゾトリアゾール化合物及びトリアジン化合物から選ばれる紫外線吸収剤を含有することが好ましい。
本開示の眼鏡用レンズは、既述の特定化合物以外の紫外線吸収能を有する化合物(以下、「その他の紫外線吸収剤」ともいう。)を含有していてもよい。
本開示の眼鏡用レンズは、その他の紫外線吸収剤を含有することにより、紫外線領域及び可視領域の広い範囲において、ブルーライトを遮断し得る。
その他の紫外線吸収剤としては、眼鏡用レンズに用いられる公知の紫外線吸収剤であれば、特に制限はない。
その他の紫外線吸収剤としては、トリアジン化合物(即ち、トリアジン紫外線吸収剤)、ベンゾトリアゾール化合物(即ち、ベンゾトリアゾール紫外線吸収剤)、ベンゾフェノン化合物(即ち、ベンゾフェノン紫外線吸収剤)、シアニン化合物(即ち、シアニン紫外線吸収剤)、ジベンゾイルメタン化合物(即ち、ジベンゾイルメタン紫外線吸収剤)、桂皮酸化合物(即ち、桂皮酸紫外線吸収剤)、アクリレート化合物(即ち、アクリレート紫外線吸収剤)、安息香酸エステル化合物(即ち、安息香酸エステル紫外線吸収剤)、シュウ酸ジアミド化合物(即ち、シュウ酸ジアミド紫外線吸収剤)、ホルムアミジン化合物(即ち、ホルムアミジン紫外線吸収剤)、ベンゾオキサゾール化合物(即ち、ベンゾオキサゾール紫外線吸収剤)、ベンゾオキサジノン化合物(即ち、ベンゾオキサジノン紫外線吸収剤)、ベンゾジチオール化合物(即ち、ベンゾジチオール紫外線吸収剤)等の紫外線吸収剤が挙げられる。これらの紫外線吸収剤の詳細については、例えば、「月刊ファインケミカル」2004年5月号、28ページ~38ページ、東レリサーチセンター調査研究部門発行「高分子用機能性添加剤の新展開」(東レリサーチセンター、1999年)96ページ~140ページ、大勝靖一監修「高分子添加剤の開発と環境対策」(シーエムシー出版、2003年)54ページ~64ページ、(株)技術情報協会発行「高分子の劣化・変色メカニズムとその安定化技術-ノウハウ集-」(技術情報協会、2006年)等の記載を参照することができる。
また、ベンゾオキサゾール化合物の具体例としては、例えば、特許第4311869号公報に記載の化合物が挙げられ、ベンゾオキサジノン化合物の具体例としては、例えば、特許第5591453号公報及び特許第5250289号公報に記載の化合物が挙げられ、ベンゾジチオール化合物の具体例としては、例えば、特許第5450994号公報及び特許第5364311号公報に記載の化合物が挙げられる。
これらの中でも、本開示の眼鏡用レンズは、ベンゾトリアゾール化合物及びトリアジン化合物から選ばれる紫外線吸収剤を含有することが好ましい。
その他の紫外線吸収剤としては、極大吸収波長が350nm以下の紫外線吸収剤が特に好ましい。
本開示の眼鏡用レンズは、その他の紫外線吸収剤として、極大吸収波長が350nm以下の紫外線吸収剤を含むことで、波長350nm以下の光の照射による波長400nmの光の透過率の変化が抑制される(即ち、特定化合物の耐光性が向上する)。
波長350nm以下の光の照射によって、既述の特定化合物を含む眼鏡用レンズの波長400nmの光の透過率が変化する原因としては、(1)特定化合物が波長400nmの光により直接分解されるため、及び(2)350nm以下の短波長の光により樹脂が分解され、樹脂の分解物により特定化合物が分解されるため、の2通りの原因が推定される。
本開示の眼鏡用レンズは、その他の紫外線吸収剤として、極大吸収波長が350nm以下の紫外線吸収剤を含むことで、波長350nm以下の光の照射による波長400nmの光の透過率の変化が抑制される(即ち、特定化合物の耐光性が向上する)。
波長350nm以下の光の照射によって、既述の特定化合物を含む眼鏡用レンズの波長400nmの光の透過率が変化する原因としては、(1)特定化合物が波長400nmの光により直接分解されるため、及び(2)350nm以下の短波長の光により樹脂が分解され、樹脂の分解物により特定化合物が分解されるため、の2通りの原因が推定される。
特定化合物は、波長400nm~500nmのブルーライトについては十分に遮蔽できるが、300nm~350nmの波長領域の紫外光(以下、UV光と称することがある)については、ある程度透過するという物性を有している。そのため、本開示の眼鏡用レンズでは、特定化合物と、極大吸収波長が350nm以下の紫外線吸収剤(例えば、300nm~350nmの波長領域のUV光を遮蔽する性質を有する紫外線吸収剤)と、を併用することで、上記(2)の原因が解消される。詳細には、極大吸収波長が350nm以下の紫外線吸収剤により、350nm以下の短波長の光による樹脂の分解が抑制され、樹脂の分解物による特定化合物の分解が抑制される。
本開示の眼鏡用レンズは、その他の紫外線吸収剤を含有する場合、その他の紫外線吸収剤を1種のみ含有していてもよく、2種以上含有していてもよい。
本開示の眼鏡用レンズがその他の紫外線吸収剤を含有する場合、眼鏡用レンズ中におけるその他の紫外線吸収剤の含有量は、選択される紫外線吸収剤の種類によって、適宜設定される。
一般的には、本開示の眼鏡用レンズ中におけるその他の紫外線吸収剤の含有量は、その他の紫外線吸収剤1種類あたり、樹脂の全質量に対して、0.01質量%~1.0質量%であることが好ましい。
本開示の眼鏡用レンズがその他の紫外線吸収剤を2種以上含有する場合、本開示の眼鏡用レンズ中におけるその他の紫外線吸収剤の合計含有量は、樹脂の全質量に対して、0.01質量%~3.0質量%であることが好ましい。
本開示の眼鏡用レンズ中におけるその他の紫外線吸収剤の合計含有量が上記範囲内であると、ヘイズが発生したり、黄色味を帯びたりすることを抑制し、且つ、広い範囲の紫外線領域のブルーライトを良好に遮断し得る。
一般的には、本開示の眼鏡用レンズ中におけるその他の紫外線吸収剤の含有量は、その他の紫外線吸収剤1種類あたり、樹脂の全質量に対して、0.01質量%~1.0質量%であることが好ましい。
本開示の眼鏡用レンズがその他の紫外線吸収剤を2種以上含有する場合、本開示の眼鏡用レンズ中におけるその他の紫外線吸収剤の合計含有量は、樹脂の全質量に対して、0.01質量%~3.0質量%であることが好ましい。
本開示の眼鏡用レンズ中におけるその他の紫外線吸収剤の合計含有量が上記範囲内であると、ヘイズが発生したり、黄色味を帯びたりすることを抑制し、且つ、広い範囲の紫外線領域のブルーライトを良好に遮断し得る。
〔その他の成分〕
本開示の眼鏡用レンズは、既述した成分以外の成分(所謂、他の添加剤)を含有していてもよい。
他の添加剤としては、可塑剤、劣化防止剤(例えば、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン)、特定化合物以外の染料、内部離型剤、消臭剤、難燃剤等が挙げられる。
本開示の眼鏡用レンズは、既述した成分以外の成分(所謂、他の添加剤)を含有していてもよい。
他の添加剤としては、可塑剤、劣化防止剤(例えば、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン)、特定化合物以外の染料、内部離型剤、消臭剤、難燃剤等が挙げられる。
〔眼鏡用レンズの製造方法〕
本開示の眼鏡用レンズの製造方法は、既述の本開示の眼鏡用レンズを製造できればよく、特に制限されない。
眼鏡用レンズが特定化合物を含有する態様にも特に制限はない。例えば、特定化合物が樹脂に練り込まれて含まれてもよく、予め樹脂により成形された眼鏡用レンズに特定化合物を含浸させることで含まれてもよく、樹脂により成形された眼鏡用レンズに特定化合物を含む層を積層させて含まれてもよい。特定化合物を含有する層の積層は、眼鏡用レンズに特定化合物を含む塗布液組成物を塗布し、乾燥して行なってもよく、特定化合物を樹脂に練り込んだ樹脂層を別途形成して、転写により行なってもよい。
なかでも、耐久性、特定化合物の均一分散性などの観点から、特定化合物は樹脂に練り込まれていることが好ましい。
本開示の眼鏡用レンズの製造方法は、既述の本開示の眼鏡用レンズを製造できればよく、特に制限されない。
眼鏡用レンズが特定化合物を含有する態様にも特に制限はない。例えば、特定化合物が樹脂に練り込まれて含まれてもよく、予め樹脂により成形された眼鏡用レンズに特定化合物を含浸させることで含まれてもよく、樹脂により成形された眼鏡用レンズに特定化合物を含む層を積層させて含まれてもよい。特定化合物を含有する層の積層は、眼鏡用レンズに特定化合物を含む塗布液組成物を塗布し、乾燥して行なってもよく、特定化合物を樹脂に練り込んだ樹脂層を別途形成して、転写により行なってもよい。
なかでも、耐久性、特定化合物の均一分散性などの観点から、特定化合物は樹脂に練り込まれていることが好ましい。
例えば、眼鏡用レンズに含有される樹脂が熱可塑性樹脂の場合、本開示の眼鏡用レンズは、樹脂と、特定化合物と、必要に応じて、任意成分であるその他の紫外線吸収剤と、その他の添加剤と、を含む樹脂組成物を、溶融押出機を用いて混練し、ペレット状に成形し、得られたペレット状の樹脂組成物を用いて、射出成形法等の公知の成形法を適用することにより製造することができる。
例えば、眼鏡用レンズに含有される樹脂が熱硬化性樹脂の場合、本開示の眼鏡用レンズは、樹脂の前駆体であるモノマーと、特定化合物と、重合触媒(例えば、ジブチルスズジクロリド)と、必要に応じて、任意成分であるその他の紫外線吸収剤と、その他の添加剤と、を含む樹脂組成物を調製し、得られた樹脂組成物を成形型(以下、モールドと称することがある。)内に充填し、加熱して硬化させることにより製造することができる。
例えば、眼鏡用レンズに含有される樹脂が熱硬化性樹脂の場合、本開示の眼鏡用レンズは、樹脂の前駆体であるモノマーと、特定化合物と、重合触媒(例えば、ジブチルスズジクロリド)と、必要に応じて、任意成分であるその他の紫外線吸収剤と、その他の添加剤と、を含む樹脂組成物を調製し、得られた樹脂組成物を成形型(以下、モールドと称することがある。)内に充填し、加熱して硬化させることにより製造することができる。
[眼鏡]
本開示の眼鏡は、既述の本開示の眼鏡用レンズを備える。
すなわち、本開示の眼鏡は、既述の本開示の眼鏡用レンズを適切な眼鏡フレームに装着した構成を有する。
本開示の眼鏡によれば、眼鏡に装着された眼鏡用レンズが、少なくとも400nm~500nmの範囲の波長領域のブルーライトを遮断することができるので、画像表示装置のディスプレイを見る作業等を長時間行った場合の、ブルーライトに起因する眼の疲労の軽減が期待できる。
また、本開示の眼鏡によれば、レンズを介して対象物を視認した際に色味の変化を感じ難い。
さらに、特定化合物は、極大吸収波長における半値幅が10nm以上40nm未満の範囲にあることで、長期間使用した場合でも、分子振動による相分離及び相分離に起因する眼鏡用レンズの透明性の低下が抑制されるため、本開示の眼鏡は耐久性にも優れるという利点をも有する。
本開示の眼鏡は、既述の本開示の眼鏡用レンズを備える。
すなわち、本開示の眼鏡は、既述の本開示の眼鏡用レンズを適切な眼鏡フレームに装着した構成を有する。
本開示の眼鏡によれば、眼鏡に装着された眼鏡用レンズが、少なくとも400nm~500nmの範囲の波長領域のブルーライトを遮断することができるので、画像表示装置のディスプレイを見る作業等を長時間行った場合の、ブルーライトに起因する眼の疲労の軽減が期待できる。
また、本開示の眼鏡によれば、レンズを介して対象物を視認した際に色味の変化を感じ難い。
さらに、特定化合物は、極大吸収波長における半値幅が10nm以上40nm未満の範囲にあることで、長期間使用した場合でも、分子振動による相分離及び相分離に起因する眼鏡用レンズの透明性の低下が抑制されるため、本開示の眼鏡は耐久性にも優れるという利点をも有する。
以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を超えない限り、以下の実施例に限定されるものではない。
[レンズの作製]
(実施例1)
チオウレタン樹脂の前駆体モノマーであるMR-7(登録商標)〔商品名、屈折率:1.67、三井化学(株)〕を100質量部と、既述の特定化合物I-2を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。
作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
(実施例1)
チオウレタン樹脂の前駆体モノマーであるMR-7(登録商標)〔商品名、屈折率:1.67、三井化学(株)〕を100質量部と、既述の特定化合物I-2を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。
作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
(実施例2、実施例4~実施例9、実施例11及び実施例12)
実施例1で用いた特定化合物並びに樹脂を下記表2に記載の如く変えた以外は、実施例1と同様にして眼鏡用レンズを作製した。
作製した眼鏡用レンズを、目視にて確認したところ、いずれの眼鏡用レンズも透明であることが確認された。
実施例1で用いた特定化合物並びに樹脂を下記表2に記載の如く変えた以外は、実施例1と同様にして眼鏡用レンズを作製した。
作製した眼鏡用レンズを、目視にて確認したところ、いずれの眼鏡用レンズも透明であることが確認された。
(実施例3)
チオウレタン樹脂の前駆体モノマーであるMR-7(登録商標)〔商品名、屈折率:1.67、三井化学(株)〕を100質量部と、既述の特定化合物I-3を0.1質量部と、その他の紫外線吸収剤である化合物UV-1(下記構造を有する化合物)0.05質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
チオウレタン樹脂の前駆体モノマーであるMR-7(登録商標)〔商品名、屈折率:1.67、三井化学(株)〕を100質量部と、既述の特定化合物I-3を0.1質量部と、その他の紫外線吸収剤である化合物UV-1(下記構造を有する化合物)0.05質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
(実施例10)
チオウレタン樹脂の前駆体モノマーであるMR-7(登録商標)〔商品名、屈折率:1.67、三井化学(株)〕を100質量部と、既述の特定化合物J-3を0.1質量部と、その他の紫外線吸収剤であるUV-1(上記の構造を有する化合物)0.05質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
チオウレタン樹脂の前駆体モノマーであるMR-7(登録商標)〔商品名、屈折率:1.67、三井化学(株)〕を100質量部と、既述の特定化合物J-3を0.1質量部と、その他の紫外線吸収剤であるUV-1(上記の構造を有する化合物)0.05質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
(実施例13)
チオウレタン樹脂の前駆体モノマーであるMR-8(登録商標)〔商品名、屈折率:1.60、三井化学(株)〕を100質量部と、既述の特定化合物I-3を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
チオウレタン樹脂の前駆体モノマーであるMR-8(登録商標)〔商品名、屈折率:1.60、三井化学(株)〕を100質量部と、既述の特定化合物I-3を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
(実施例14)
ポリカーボネート樹脂(屈折率n=1.58)であるパンライト(登録商標)L-1250WP〔商品名、ビスフェノールとホスゲンとから界面縮重合法により製造された芳香族ポリカーボネート樹脂パウダー、粘度平均分子量:24,000、帝人化成(株)〕を100質量部と、既述の特定化合物I-3を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを、ブレンダーを用いて混合し、樹脂組成物を得た。得られた樹脂組成物を、ベント式二軸押出機を用いて溶融混練し、ペレットを得た。なお、ベント式二軸押出機には、(株)日本製鋼所のTEX30α(仕様:完全かみ合い、同方向回転、2条ネジスクリュー)を用いた。混練ゾーンは、ベント口の手前(上流側)に1箇所備えるタイプとした。押出条件は、吐出量を30kg/hrとし、スクリュー回転数を150rpm(rotations per minute)とし、ベントの真空度を3kPaとし、第1供給口からダイズ部分までの押出温度を280℃とした。得られたペレットを120℃で5時間、熱風循環式乾燥機を用いて乾燥させた後、射出成形機(射出条件:シリンダー温度340℃、金型温度80℃)を用いて、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、淡黄色透明であることが確認された。
ポリカーボネート樹脂(屈折率n=1.58)であるパンライト(登録商標)L-1250WP〔商品名、ビスフェノールとホスゲンとから界面縮重合法により製造された芳香族ポリカーボネート樹脂パウダー、粘度平均分子量:24,000、帝人化成(株)〕を100質量部と、既述の特定化合物I-3を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを、ブレンダーを用いて混合し、樹脂組成物を得た。得られた樹脂組成物を、ベント式二軸押出機を用いて溶融混練し、ペレットを得た。なお、ベント式二軸押出機には、(株)日本製鋼所のTEX30α(仕様:完全かみ合い、同方向回転、2条ネジスクリュー)を用いた。混練ゾーンは、ベント口の手前(上流側)に1箇所備えるタイプとした。押出条件は、吐出量を30kg/hrとし、スクリュー回転数を150rpm(rotations per minute)とし、ベントの真空度を3kPaとし、第1供給口からダイズ部分までの押出温度を280℃とした。得られたペレットを120℃で5時間、熱風循環式乾燥機を用いて乾燥させた後、射出成形機(射出条件:シリンダー温度340℃、金型温度80℃)を用いて、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、淡黄色透明であることが確認された。
(実施例15)
エピスルフィド樹脂の前駆体として、ビス-β-エピチオプロピルジスルフィドを100質量部(屈折率:1.7)と、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを10質量部と、既述の特定化合物I-3を0.1質量部と、重合触媒であるN,N-ジメチルシクロヘキシルアミンを0.01質量部とを、ブレンダーを用いて混合し、混合物を得た。得られた混合物をモールド内に充填した後、30℃で8時間放置し、次に100℃で10時間硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
エピスルフィド樹脂の前駆体として、ビス-β-エピチオプロピルジスルフィドを100質量部(屈折率:1.7)と、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを10質量部と、既述の特定化合物I-3を0.1質量部と、重合触媒であるN,N-ジメチルシクロヘキシルアミンを0.01質量部とを、ブレンダーを用いて混合し、混合物を得た。得られた混合物をモールド内に充填した後、30℃で8時間放置し、次に100℃で10時間硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
(実施例16)
チオウレタン樹脂の前駆体モノマーであるMR-174(登録商標)〔商品名、屈折率:1.74、三井化学(株)〕を100質量部と、既述の特定化合物I-4を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
チオウレタン樹脂の前駆体モノマーであるMR-174(登録商標)〔商品名、屈折率:1.74、三井化学(株)〕を100質量部と、既述の特定化合物I-4を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
(実施例17)
チオウレタン樹脂の前駆体モノマーであるMR-7(登録商標)〔商品名、屈折率:1.67、三井化学(株))〕を100質量部と、既述の特定化合物K-2を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
チオウレタン樹脂の前駆体モノマーであるMR-7(登録商標)〔商品名、屈折率:1.67、三井化学(株))〕を100質量部と、既述の特定化合物K-2を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、透明であることが確認された。
(比較例1)
チオウレタン樹脂の前駆体モノマーであるMR-7(登録商標)〔商品名、屈折率:1.67、三井化学(株)〕を100質量部と、比較化合物C-1である下記構造の紫外線吸収剤を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、橙黄色であり、透明性に劣っていた。
チオウレタン樹脂の前駆体モノマーであるMR-7(登録商標)〔商品名、屈折率:1.67、三井化学(株)〕を100質量部と、比較化合物C-1である下記構造の紫外線吸収剤を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、橙黄色であり、透明性に劣っていた。
(比較例2)
チオウレタン樹脂の前駆体モノマーであるMR-7(登録商標)〔商品名、屈折率:1.67、三井化学(株)〕を100質量部と、比較化合物C-1である下記構造の紫外線吸収剤を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド(即ち、成形型)内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、橙黄色であり、透明性に劣っていた。
チオウレタン樹脂の前駆体モノマーであるMR-7(登録商標)〔商品名、屈折率:1.67、三井化学(株)〕を100質量部と、比較化合物C-1である下記構造の紫外線吸収剤を0.1質量部と、重合触媒であるジブチルスズジクロリドを0.01質量部とを混合し、樹脂組成物を得た。得られた樹脂組成物をモールド(即ち、成形型)内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡用レンズを作製した。作製した眼鏡用レンズは、目視にて確認したところ、橙黄色であり、透明性に劣っていた。
<物性及び性能評価>
実施例及び比較例に用いた各化合物の、上記と同様の方法で測定した極大吸収波長と半値幅を以下に示す。
実施例及び比較例に用いた各化合物の、上記と同様の方法で測定した極大吸収波長と半値幅を以下に示す。
[眼鏡の作製]
実施例1~実施例17及び比較例1~比較例2の各眼鏡用レンズを、それぞれ眼鏡フレームに装着し、眼鏡を作製した。
評価項目に応じて、作製した眼鏡又は得られた眼鏡用レンズを評価に用いた。
実施例1~実施例17及び比較例1~比較例2の各眼鏡用レンズを、それぞれ眼鏡フレームに装着し、眼鏡を作製した。
評価項目に応じて、作製した眼鏡又は得られた眼鏡用レンズを評価に用いた。
[評価]
1.透過率
実施例及び比較例の眼鏡用レンズの極大吸収波長における透過率を測定した。
測定装置には、(株)島津製作所の分光光度計(型番:UV 3150)を用いた。
測定された透過率の値が低いほど、極大吸収波長のブルーライトの遮断性が良好であることを示す。結果を表2に示す。
1.透過率
実施例及び比較例の眼鏡用レンズの極大吸収波長における透過率を測定した。
測定装置には、(株)島津製作所の分光光度計(型番:UV 3150)を用いた。
測定された透過率の値が低いほど、極大吸収波長のブルーライトの遮断性が良好であることを示す。結果を表2に示す。
2.ヘイズ
実施例及び比較例の各眼鏡用レンズのヘイズを測定した。
測定装置には、日本電色工業(株)のヘイズメーター(型番:NDH 7000)を用いた。
測定されたヘイズの値が低いほど、眼鏡用レンズが透明性に優れることを示す。結果を表2に示す。
実施例及び比較例の各眼鏡用レンズのヘイズを測定した。
測定装置には、日本電色工業(株)のヘイズメーター(型番:NDH 7000)を用いた。
測定されたヘイズの値が低いほど、眼鏡用レンズが透明性に優れることを示す。結果を表2に示す。
3.耐光性
実施例及び比較例の各眼鏡用レンズの耐光性を評価した。
まず、眼鏡用レンズの極大吸収波長における透過率を、(株)島津製作所の分光光度計(型番:UV 3150)を用いて測定した。
次いで、超促進耐候性試験機〔製品名:アイ スーパーUVテスター、岩崎電気(株)〕を用いて、眼鏡用レンズに対して、メタルハライドランプ(約290nm以下カット)の光を、照度90mW/cm2(露光エネルギー90mJ/cm2)、温度63℃、相対湿度50%の条件で、60時間照射した。光照射後、眼鏡用レンズの極大吸収波長における透過率を、上記と同様に、(株)島津製作所の分光光度計(型番:UV 3150)を用いて測定した。
光照射前後の極大吸収波長における透過率の変化の幅を算出し、変化の幅が5%未満の場合を耐光性が「特に良好」であると評価し、変化の幅が5%以上10%未満の場合を耐光性が「良好」であると評価し、変化の幅が10%以上の場合を耐光性が「不良」であると評価した。結果を表2に示す。
耐光性は、眼鏡用レンズが長期間紫外線に曝されても、眼鏡用レンズに含まれる特定化合物等の紫外線吸収剤の分解、析出、樹脂との相分離などが抑制され、長期間に亘り、ブルーライトの良好な遮断性を維持することの指標となる。
実施例及び比較例の各眼鏡用レンズの耐光性を評価した。
まず、眼鏡用レンズの極大吸収波長における透過率を、(株)島津製作所の分光光度計(型番:UV 3150)を用いて測定した。
次いで、超促進耐候性試験機〔製品名:アイ スーパーUVテスター、岩崎電気(株)〕を用いて、眼鏡用レンズに対して、メタルハライドランプ(約290nm以下カット)の光を、照度90mW/cm2(露光エネルギー90mJ/cm2)、温度63℃、相対湿度50%の条件で、60時間照射した。光照射後、眼鏡用レンズの極大吸収波長における透過率を、上記と同様に、(株)島津製作所の分光光度計(型番:UV 3150)を用いて測定した。
光照射前後の極大吸収波長における透過率の変化の幅を算出し、変化の幅が5%未満の場合を耐光性が「特に良好」であると評価し、変化の幅が5%以上10%未満の場合を耐光性が「良好」であると評価し、変化の幅が10%以上の場合を耐光性が「不良」であると評価した。結果を表2に示す。
耐光性は、眼鏡用レンズが長期間紫外線に曝されても、眼鏡用レンズに含まれる特定化合物等の紫外線吸収剤の分解、析出、樹脂との相分離などが抑制され、長期間に亘り、ブルーライトの良好な遮断性を維持することの指標となる。
4.黄色味
実施例及び比較例の各眼鏡用レンズを用いて作製した各眼鏡用レンズを白い紙の上に配置した。評価モニター1名に、紙上の眼鏡用レンズを目視にて観察してもらい、眼鏡用レンズに黄色味があるか否かを評価してもらった。結果を表2に示す。
本評価では、眼鏡用レンズを白い紙の上に置いて評価するため、既述の作製された眼鏡用レンズの目視による確認よりも、眼鏡用レンズの色味がより明確に確認できる。このため、目視にて透明と評価された実施例1~実施例16の眼鏡用レンズは、本評価によれば淡黄色と評価された。他方、比較例の眼鏡用レンズは、目視、及び本評価のいずれによっても橙黄色と評価された。
一般に、眼鏡用レンズが400nmよりも長波長側に吸収を有する場合、より長波長に吸収を有することで、目視による眼鏡用レンズ自体の色味の変化、及び眼鏡用レンズを介して視認した対象物の色味の変化を感じやすくなる。このため、比較例の眼鏡用レンズでは、上記した黄色味の評価のみならず、目視による観察でも橙黄色と評価されたと考えられる。また、眼鏡用レンズを介して視認した対象物の色味の変化についても、例えば、眼鏡用レンズが透明~淡黄色であれば、対象物の色味の変化を感じ難い。一方、眼鏡用レンズがより長波長側の吸収を有することで橙色~赤色を帯びると、対象物の色味の変化を感じ易くなる。
実施例及び比較例の各眼鏡用レンズを用いて作製した各眼鏡用レンズを白い紙の上に配置した。評価モニター1名に、紙上の眼鏡用レンズを目視にて観察してもらい、眼鏡用レンズに黄色味があるか否かを評価してもらった。結果を表2に示す。
本評価では、眼鏡用レンズを白い紙の上に置いて評価するため、既述の作製された眼鏡用レンズの目視による確認よりも、眼鏡用レンズの色味がより明確に確認できる。このため、目視にて透明と評価された実施例1~実施例16の眼鏡用レンズは、本評価によれば淡黄色と評価された。他方、比較例の眼鏡用レンズは、目視、及び本評価のいずれによっても橙黄色と評価された。
一般に、眼鏡用レンズが400nmよりも長波長側に吸収を有する場合、より長波長に吸収を有することで、目視による眼鏡用レンズ自体の色味の変化、及び眼鏡用レンズを介して視認した対象物の色味の変化を感じやすくなる。このため、比較例の眼鏡用レンズでは、上記した黄色味の評価のみならず、目視による観察でも橙黄色と評価されたと考えられる。また、眼鏡用レンズを介して視認した対象物の色味の変化についても、例えば、眼鏡用レンズが透明~淡黄色であれば、対象物の色味の変化を感じ難い。一方、眼鏡用レンズがより長波長側の吸収を有することで橙色~赤色を帯びると、対象物の色味の変化を感じ易くなる。
5.眼の疲れ
実施例及び比較例の眼鏡用レンズを用いた各眼鏡について、評価モニター2名に眼鏡を装着してもらい、画像表示装置のディスプレイを3時間連続して眺めてもらった後、眼の疲れを感じるか否かを評価してもらった。
その結果、実施例1~実施例17の眼鏡用レンズを備える眼鏡を装着した2名の評価モニターは、いずれも眼の疲れが感じられないと評価した。
一方、比較例1~比較例2の眼鏡用レンズを備える眼鏡を装着した2名の評価モニターは、いずれも眼の疲れを感じると評価した。
眼鏡に装着された実施例1~実施例17の眼鏡用レンズは、後述の透過率評価に明なように、比較例1~比較例2の眼鏡用レンズに対し、極大吸収波長のブルーライト遮断性がより良好であるため、ブルーライトに起因する目の疲れを効果的に抑制することができる。
実施例及び比較例の眼鏡用レンズを用いた各眼鏡について、評価モニター2名に眼鏡を装着してもらい、画像表示装置のディスプレイを3時間連続して眺めてもらった後、眼の疲れを感じるか否かを評価してもらった。
その結果、実施例1~実施例17の眼鏡用レンズを備える眼鏡を装着した2名の評価モニターは、いずれも眼の疲れが感じられないと評価した。
一方、比較例1~比較例2の眼鏡用レンズを備える眼鏡を装着した2名の評価モニターは、いずれも眼の疲れを感じると評価した。
眼鏡に装着された実施例1~実施例17の眼鏡用レンズは、後述の透過率評価に明なように、比較例1~比較例2の眼鏡用レンズに対し、極大吸収波長のブルーライト遮断性がより良好であるため、ブルーライトに起因する目の疲れを効果的に抑制することができる。
6.色味の変化
実施例及び比較例の眼鏡用レンズを用いた各眼鏡について、評価モニター2名に眼鏡を装着してもらい、画像表示装置のディスプレイに表示された画像を視認してもらった。そして、眼鏡用レンズを介して画像を視認した際に、眼鏡の装着の前後において、表示された画像の色味の変化を感じるか否かを評価してもらった。
その結果、実施例1~実施例17の眼鏡用レンズを備える眼鏡を装着した2名の評価モニターは、いずれも色味の変化がほとんど感じられないと評価した。
一方、比較例1~比較例2の眼鏡用レンズを備える眼鏡を装着した2名の評価モニターは、いずれも色味の変化を感じると評価した。
実施例及び比較例の眼鏡用レンズを用いた各眼鏡について、評価モニター2名に眼鏡を装着してもらい、画像表示装置のディスプレイに表示された画像を視認してもらった。そして、眼鏡用レンズを介して画像を視認した際に、眼鏡の装着の前後において、表示された画像の色味の変化を感じるか否かを評価してもらった。
その結果、実施例1~実施例17の眼鏡用レンズを備える眼鏡を装着した2名の評価モニターは、いずれも色味の変化がほとんど感じられないと評価した。
一方、比較例1~比較例2の眼鏡用レンズを備える眼鏡を装着した2名の評価モニターは、いずれも色味の変化を感じると評価した。
表2に示すように、実施例1~実施例17の眼鏡用レンズは、比較例1~比較例2の眼鏡用レンズと比較して、極大吸収波長における透過率の値が低く、ブルーライトの遮蔽性に優れていることが確認された。
また、実施例1~実施例17の眼鏡用レンズは、比較例1~比較例2の眼鏡用レンズと比較して、ヘイズの値が低く、透明性に優れていることが確認された。
さらに、実施例1~実施例17の眼鏡用レンズは、比較例1~比較例2の眼鏡用レンズと比較して、耐光性に優れ、黄色味を帯び難いことも確認された。
また、実施例1~実施例17の眼鏡用レンズは、比較例1~比較例2の眼鏡用レンズと比較して、ヘイズの値が低く、透明性に優れていることが確認された。
さらに、実施例1~実施例17の眼鏡用レンズは、比較例1~比較例2の眼鏡用レンズと比較して、耐光性に優れ、黄色味を帯び難いことも確認された。
上記結果から、比較例の眼鏡用レンズに用いた比較化合物はいずれも、分子構造が捩れやすいために、吸収の半値幅が大きく、このため比較化合物を含む眼鏡用レンズは黄色味、さらには、より長波長側の橙色味を帯びやすいと解釈される。また、耐光性の評価において、比較化合物は分子構造が捩れやすいために、レンズ樹脂との相分離が促進され、結晶化して色素による光の吸収量が小さくなり、レンズの透過率が大きく変化し、ブルーライト遮断性が低下したと解釈される。
一方、実施例の眼鏡用レンズに用いた特定化合物は、分子構造が捩れにくいために、吸収の半値幅が小さく、このため眼鏡用レンズは黄色味が小さく淡黄色であると解釈される。さらに、耐光性の評価において、特定化合物は分子構造が捩れにくいために、レンズ樹脂との相分離が抑制され、その結果、透過率の変化幅が小さく、ブルーライト遮断性が長期間維持されると解釈される。
上記評価結果より、実施例1~実施例17の眼鏡用レンズを用いた眼鏡を装着することでブルーライトに起因する目の疲れ、睡眠障害の発生などが抑制され、眼鏡を介して視認する対象物の色味の変化を感じ難いことが期待される。
実施例2と、実施例13~実施例15との対比より、実施例の眼鏡用レンズは、いずれも含まれる樹脂の種類に拘わらず、実用上問題のない良好な性能を達成していることが分かる。
上記評価結果より、実施例1~実施例17の眼鏡用レンズを用いた眼鏡を装着することでブルーライトに起因する目の疲れ、睡眠障害の発生などが抑制され、眼鏡を介して視認する対象物の色味の変化を感じ難いことが期待される。
実施例2と、実施例13~実施例15との対比より、実施例の眼鏡用レンズは、いずれも含まれる樹脂の種類に拘わらず、実用上問題のない良好な性能を達成していることが分かる。
2018年4月11日に出願された日本国特許2018-076258の開示は参照により本開示に取り込まれる。
本開示に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本開示中に参照により取り込まれる。
本開示に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本開示中に参照により取り込まれる。
Claims (10)
- 樹脂と、メタノール溶液中における極大吸収波長が400nmから500nmの範囲であり、メタノール溶液中における吸収ピークの半値幅が10nm以上40nm未満である色素と、を含有する眼鏡用レンズ。
- 前記色素の極大吸収波長が480nmから500nmの範囲である請求項1に記載の眼鏡用レンズ。
- 前記色素が、メチン色素である請求項1又は請求項2に記載の眼鏡用レンズ。
- 前記色素が、オキソノール色素である請求項1~請求項3のいずれか1項に記載の眼鏡用レンズ。
- 前記オキソノール色素が、下記一般式(1)で表される請求項4に記載の眼鏡用レンズ。
一般式(1)中、A1は下記一般式(1-a)から一般式(1-x)からなる群より選ばれる酸性核のケト体を表す。A2は下記一般式(1-a)から一般式(1-x)からなる群より選ばれる酸性核のエノール体を表し、エノール体の水酸基は解離していてもよい。
L1、L2及びL3はそれぞれ独立に置換されていてもよいメチン基を表す。
M+は水素原子又は一価の対カチオンを表し、nは、Mの正電荷数と、A1=L1-L2=L3-A2の負電荷数とが等しくなるために必要な数を表す。
一般式(1-a)から一般式(1-x)において、*は酸性核のケト体A1がL1と、酸性核のエノール体A2がL3と、それぞれ結合する位置を示す。
Xは酸素原子又は硫黄原子を表す。Yは電子吸引性基を表す。Zは、水素原子、カルバモイル基、アルキル基、アリール基、シアノ基、カルボキシル基、アシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ハロゲン原子、アミノ基、アシルアミノ基、アルキルスルホニル基、アリールスルホニル基、又はスルホ基を表す。R1、R2、R3、R4、R5、及びR6は、それぞれ独立に、水素原子または一価の置換基を表す。 - 前記一般式(1)において、A1は(1-b)、(1-c)及び(1-q)からなる群より選ばれる酸性核のケト体を表し、A2は(1-b)、(1-c)及び(1-q)からなる群より選ばれる酸性核のエノール体を表す請求項5に記載の眼鏡用レンズ。
- 前記色素は、前記樹脂に練り込まれている請求項1~請求項7のいずれか1項に記載の眼鏡用レンズ。
- さらに、ベンゾトリアゾール化合物及びトリアジン化合物から選ばれる紫外線吸収剤を含有する請求項1~請求項8のいずれか1項に記載の眼鏡用レンズ。
- 請求項1~請求項9のいずれか1項に記載の眼鏡用レンズを備える眼鏡。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980024743.3A CN111954844B (zh) | 2018-04-11 | 2019-04-01 | 眼镜用透镜及眼镜 |
JP2020513209A JP7065946B2 (ja) | 2018-04-11 | 2019-04-01 | 眼鏡用レンズ及び眼鏡 |
US17/064,585 US11542385B2 (en) | 2018-04-11 | 2020-10-06 | Lens for spectacles and spectacles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-076258 | 2018-04-11 | ||
JP2018076258 | 2018-04-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/064,585 Continuation US11542385B2 (en) | 2018-04-11 | 2020-10-06 | Lens for spectacles and spectacles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019198560A1 true WO2019198560A1 (ja) | 2019-10-17 |
Family
ID=68163694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/014548 WO2019198560A1 (ja) | 2018-04-11 | 2019-04-01 | 眼鏡用レンズ及び眼鏡 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11542385B2 (ja) |
JP (1) | JP7065946B2 (ja) |
CN (1) | CN111954844B (ja) |
WO (1) | WO2019198560A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101787372B1 (ko) * | 2015-08-12 | 2017-10-19 | 주식회사 피엠씨테크 | 누액 감지 센서 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007535708A (ja) * | 2004-04-30 | 2007-12-06 | アドバンスト メディカル オプティクス, インコーポレーテッド | 高選択性紫色光透過性フィルターを有する眼用器具 |
JP2013159764A (ja) * | 2012-02-08 | 2013-08-19 | Fujifilm Corp | 着色組成物、インク組成物並びにインクジェット記録用インク |
JP2018036516A (ja) * | 2016-08-31 | 2018-03-08 | 富士フイルム株式会社 | 積層体、透過光調整材、保護シート材、眼鏡用レンズ及び眼鏡 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3047650A (en) | 1959-06-24 | 1962-07-31 | Square D Co | Service fitting housing for under-floor wiring system |
JP2000258618A (ja) | 1999-03-04 | 2000-09-22 | Fuji Photo Film Co Ltd | 光学フィルターおよび反射防止膜 |
JP2001013318A (ja) | 1999-06-30 | 2001-01-19 | Fuji Photo Film Co Ltd | 反射防止層を有する選択吸収フィルター |
JP2010084006A (ja) | 2008-09-30 | 2010-04-15 | Hoya Corp | プラスチックレンズ及びプラスチックレンズの製造方法 |
JP5619472B2 (ja) | 2010-05-13 | 2014-11-05 | 山本化成株式会社 | 眼鏡レンズ |
JP5961437B2 (ja) | 2012-04-25 | 2016-08-02 | 株式会社ニコン・エシロール | プラスチック眼鏡レンズ |
US20190146235A9 (en) * | 2014-12-12 | 2019-05-16 | Imax Theatres International Limited | Stereo viewing device |
JP2019095492A (ja) | 2017-11-17 | 2019-06-20 | 住友ベークライト株式会社 | 光学シートおよび光学部品 |
-
2019
- 2019-04-01 JP JP2020513209A patent/JP7065946B2/ja active Active
- 2019-04-01 CN CN201980024743.3A patent/CN111954844B/zh active Active
- 2019-04-01 WO PCT/JP2019/014548 patent/WO2019198560A1/ja active Application Filing
-
2020
- 2020-10-06 US US17/064,585 patent/US11542385B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007535708A (ja) * | 2004-04-30 | 2007-12-06 | アドバンスト メディカル オプティクス, インコーポレーテッド | 高選択性紫色光透過性フィルターを有する眼用器具 |
JP2013159764A (ja) * | 2012-02-08 | 2013-08-19 | Fujifilm Corp | 着色組成物、インク組成物並びにインクジェット記録用インク |
JP2018036516A (ja) * | 2016-08-31 | 2018-03-08 | 富士フイルム株式会社 | 積層体、透過光調整材、保護シート材、眼鏡用レンズ及び眼鏡 |
Also Published As
Publication number | Publication date |
---|---|
CN111954844A (zh) | 2020-11-17 |
JP7065946B2 (ja) | 2022-05-12 |
CN111954844B (zh) | 2022-05-13 |
JPWO2019198560A1 (ja) | 2021-03-18 |
US20210017358A1 (en) | 2021-01-21 |
US11542385B2 (en) | 2023-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7462306B2 (en) | Cellulose acylate film, process for producing cellulose acylate film, polarizing plate and liquid crystal display device | |
JP5025196B2 (ja) | 近赤外線吸収材料および近赤外線吸収フィルタ | |
US20070298194A1 (en) | Cellulose Acylate Film, Process for Producing Cellulose Acylate Film, Polarizing Plate and Liquid Crystal Display Device | |
JP2007262323A (ja) | 近赤外線吸収材料 | |
JP2007262164A (ja) | 近赤外線吸収材料 | |
JPWO2008010421A1 (ja) | 光学フィルム、その製造方法、偏光板及び液晶表示装置 | |
WO2009123147A1 (ja) | 紫外線吸収剤およびその製造方法 | |
US11542385B2 (en) | Lens for spectacles and spectacles | |
JP5798727B2 (ja) | 重合体、高分子組成物、紫外線吸収剤、塗料及び樹脂成形物 | |
JP2008105958A (ja) | ベンゾトリアゾール系化合物、色素微粒子、色素微粒子分散物および該色素微粒子を含有する近赤外線吸収材料 | |
JP5085080B2 (ja) | 近赤外線吸収材料及び近赤外線吸収フィルター | |
US20210033886A1 (en) | Lens for spectacles and spectacles | |
JP7123149B2 (ja) | 眼鏡用レンズ及び眼鏡 | |
KR20050020666A (ko) | 착색제함유 경화성 조성물, 컬러필터 및 그 제조방법 | |
JP2016114940A (ja) | カラーフィルタ用着色組成物及びカラーフィルタ | |
US20090066887A1 (en) | Polymer Film, Polarizing Plate Protective Film, Polarizing Plate and Liquid Crystal Display Device | |
JP2007262327A (ja) | 近赤外線吸収材料 | |
WO2021251433A1 (ja) | 組成物、及び化合物 | |
JP6724498B2 (ja) | カラーフィルタ用着色組成物及びカラーフィルタ | |
JP2007254682A (ja) | 近赤外線吸収材料 | |
JP5085082B2 (ja) | 近赤外線吸収材料及び近赤外線吸収フィルター | |
JP2013195504A (ja) | 位相差フィルム、偏光板及び液晶表示装置 | |
JP2009179733A (ja) | 光学フィルム、光学フィルムの製造方法、それを用いた偏光板、及び液晶表示装置 | |
US20230227424A1 (en) | Ultraviolet absorbing agent, resin composition, cured substance, optical member, method of producing ultraviolet absorbing agent, and compound | |
US20240084106A1 (en) | Kneaded material, method of producing kneaded material, molded body, and optical member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19784927 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020513209 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19784927 Country of ref document: EP Kind code of ref document: A1 |