WO2019196256A1 - 一种太阳能电池模组、制备方法及车辆 - Google Patents

一种太阳能电池模组、制备方法及车辆 Download PDF

Info

Publication number
WO2019196256A1
WO2019196256A1 PCT/CN2018/097490 CN2018097490W WO2019196256A1 WO 2019196256 A1 WO2019196256 A1 WO 2019196256A1 CN 2018097490 W CN2018097490 W CN 2018097490W WO 2019196256 A1 WO2019196256 A1 WO 2019196256A1
Authority
WO
WIPO (PCT)
Prior art keywords
lower package
solar cell
curvature
radius
encapsulation layer
Prior art date
Application number
PCT/CN2018/097490
Other languages
English (en)
French (fr)
Inventor
程晓龙
佟德林
张丽勤
Original Assignee
北京汉能光伏投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810327185.5A external-priority patent/CN110391309A/zh
Priority claimed from CN201820520854.6U external-priority patent/CN208093569U/zh
Application filed by 北京汉能光伏投资有限公司 filed Critical 北京汉能光伏投资有限公司
Publication of WO2019196256A1 publication Critical patent/WO2019196256A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1018Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using only vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • B60K2016/003Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind solar power driven
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of solar photovoltaic application technologies, and in particular, to a solar battery module, a method of manufacturing the solar battery module, and a vehicle having the solar battery module.
  • the solar battery module can supply electric energy to the vehicle by using solar energy without consuming energy such as gasoline or diesel, it is widely used in vehicles such as automobiles.
  • solar cell modules generally have a large radius of curvature.
  • a device for example, the roof of a vehicle
  • the solar cell module can only be laid on a surface having a large radius of curvature of the device (for example, a surface having a radius of curvature of 1200 mm to 6000 mm).
  • the existing solar battery packs are limited in laying and can only be laid on curved surfaces having a large radius of curvature.
  • the present disclosure proposes a solar cell module, a solar cell module manufacturing method, and a vehicle having the solar cell module.
  • the solar cell module can be laid on a curved surface having a small radius of curvature.
  • an embodiment of the present disclosure provides a solar cell module including: a solar cell stack, a film, an upper encapsulation layer having a set curved surface shape, and at least one lower package back plate.
  • the number of the lower package backplane is determined according to a radius of curvature of the curved surface shape; and the solar battery pack is laid on the upper encapsulation layer and the at least one through the film according to the curved shape
  • the lower backplane is packaged between the backplanes, and the at least one lower package backplane has a laying area no greater than a surface area of the upper encapsulation layer.
  • an embodiment of the present disclosure provides a method for fabricating a solar cell module, which may include the steps of: preparing an upper encapsulation layer having a solar cell stack, a film, and setting a curved shape; a lower package backplane, the number of the at least one lower package backplane being determined according to a radius of curvature of the curved shape; and the solar cell stack being laid in the upper encapsulation layer according to the curved shape through the adhesive film And the at least one lower package backplane, wherein the at least one lower package backplane has a laying area no larger than a surface area of the upper encapsulation layer.
  • an embodiment of the present disclosure provides a vehicle including the above solar battery module, and the solar battery module is covered on an outer surface of a cover of the vehicle.
  • FIG. 1 is a schematic structural diagram of a solar cell module according to an embodiment of the present disclosure
  • FIG. 2 is a top plan view of a solar cell module according to an embodiment of the present disclosure
  • FIG. 3 is a front elevational view of a solar cell module according to an embodiment of the present disclosure
  • FIG. 4 is a top plan view of a solar cell module according to another embodiment of the present disclosure.
  • FIG. 5 is a front elevational view of a solar cell module according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a solar cell connected in series according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram showing a solar cell connected in parallel according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram showing a solar cell connected in a series-parallel hybrid manner according to an embodiment of the present disclosure
  • FIG. 9 is a flow chart showing a method of fabricating a solar cell module according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a vehicle according to an embodiment of the present disclosure.
  • FIG. 11 is a top plan view of a solar cell module according to still another embodiment of the present disclosure.
  • FIG. 12 is a front elevational view showing a solar cell module according to still another embodiment of the present disclosure.
  • FIG. 13 is a left side view of a solar cell module according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a solar cell module including: a solar cell stack 102 , a film 103 , an upper encapsulation layer 101 having a set curved surface shape, and at least one lower package a backing plate 104, wherein the number of the lower package backplanes 104 is determined according to a radius of curvature of the curved surface shape; the solar battery pack 102 is laid in the upper package by the film 103 according to the curved shape Between the layer 101 and the at least one lower package backplane 104, and the laying area of the at least one lower package backplane 104 is not greater than the surface area of the upper encapsulation layer 101.
  • the solar cell module includes a solar cell stack, a film, an upper package layer in the shape of a curved surface, and one or more lower package back sheets.
  • the number of lower package backplanes is determined by the radius of curvature of the curved shape.
  • the solar cell is laid between the upper encapsulation layer and each of the lower package back sheets by a film according to a curved shape, and the laying area of each lower package back sheet is not larger than the surface area of the upper encapsulation layer.
  • the surface area may be the surface area of the side of the upper encapsulation layer that is in contact with the solar cell stack.
  • each lower package backplane is the same as the surface area of the upper package layer, or the laying area of each lower package backplane is slightly smaller than the surface area of the upper package layer.
  • the number of the lower package backplane is determined according to the radius of curvature of the curved shape, when the radius of curvature of the upper encapsulation layer is small (for example, the minimum radius of curvature is 600 mm to 1200 mm), the package may also be in the upper package.
  • Each of the lower package back sheets is laid on the layer so that the solar cell module can be laid on a curved surface having a small radius of curvature (for example, a minimum radius of curvature of 600 mm to 1200 mm). Therefore, the solution provided by the embodiment of the present disclosure can realize that the solar cell module can be laid on a curved surface having a small radius of curvature.
  • Figure 1 schematically shows a partial solar cell module comprising two lower package backsheets.
  • the curved shape of the upper encapsulation layer coincides with the curved shape of the object to be laid.
  • the object to be laid is the roof of the vehicle
  • the curved shape of the upper encapsulation layer of the solar cell module is consistent with the curved shape of the roof to make the solar cell module and the roof have a higher degree of fit.
  • the minimum thickness of curvature of the upper encapsulation layer is greater than or equal to 600 mm.
  • the relationship between the number of the lower package back plates 104 and the radius of curvature of the curved surface shape satisfies: the minimum radius of curvature of the number of the lower package back plates 104 along the curved surface shape Increase and decrease.
  • the smaller the radius of curvature of the curved surface shape the larger the curvature of the curved surface.
  • the curvature of the surface is large, it is necessary to increase the number of the lower package backplanes, so that the curvature variation on the single lower package backplane can be reduced during the paving, thereby reducing the possibility of forming wrinkles or wavy lines on the lower package backplane. .
  • the relationship between the number of the lower package back sheets 104 and the radius of curvature of the curved surface shape includes at least the following Two situations:
  • Case 1 In an embodiment of the present disclosure, the relationship between the number of the lower package back plates 104 and the radius of curvature of the curved surface shape satisfies the equations (1);
  • N represents the number of the lower package backplane; and R min represents a minimum radius of curvature of the curved surface shape, and the unit is mm.
  • the curved surface having a small radius of curvature is usually a curved surface having a large curvature.
  • the lower package backsheet When laying a larger package backplane in a curved surface, the lower package backsheet usually forms wrinkles or wavy lines. These wrinkles or wavy lines are often easy to cause bubbles or empty drums in the solar cell module, and bubbles or empty drums will reduce the reliability and safety of the solar cell module.
  • the radius of curvature of each curved surface included in the upper package layer in order to reduce the possibility of wrinkles or wave-like lines on the lower package backplane, it is necessary to obtain the radius of curvature of each curved surface included in the upper package layer. Then compare the radius of curvature of each surface and find the minimum radius of curvature in each surface. Then, based on the minimum radius of curvature, the number of lower package backplanes is determined. It can be seen from the equation (1) that the equation (1) is suitable for the case where the minimum radius of curvature is greater than or equal to 600 mm. When the minimum radius of curvature is greater than or equal to 600 mm, the number of lower package plates can be determined directly according to the equation (1).
  • the radius of curvature when the radius of curvature is greater than or equal to 600 mm, the smaller the minimum radius of curvature, the smaller the number of lower package back plates.
  • the number of lower package backplanes is determined according to equation (1).
  • Case 2 In an embodiment of the present disclosure, the relationship between the number of the lower package back plates 104 and the radius of curvature of the curved surface shape satisfies the equations (2);
  • N represents the number of the lower package backplane; and R min represents the smallest radius of curvature of the curved surface shape, and the unit is mm.
  • 2-4 lower package back plates can be selected as needed. For example, you can select two lower package backplanes, three lower package backplanes, or four lower package backplanes.
  • the minimum radius of curvature is in the range of 800 mm to 2000 mm
  • the number of the lower package back sheets is 2.
  • the number of lower package backplanes is four.
  • the number of lower package back plates can be determined according to the minimum radius of curvature. Therefore, in the case where the minimum radius of curvature is greater than or equal to 600 mm, the number of lower package back sheets matching the minimum radius of curvature can reduce the possibility of forming wrinkles or wave patterns, thereby improving the reliability of the solar cell. And security.
  • the number of the lower package back sheets 104 is determined according to a minimum radius of curvature and a maximum radius of curvature of the curved surface shape.
  • the relationship between the number of the lower package back plate 104 and the radius of curvature of the curved surface shape satisfies the equation (3);
  • the number of lower package backplanes can be determined by a multiple relationship between the maximum curvature radius and the minimum radius of curvature.
  • the lower curved backplane is laid in a curved surface with a relatively large curvature, thereby reducing the possibility of wrinkles or wavy lines when the lower package backing plate is laid.
  • the quantity constant K can be determined according to business requirements.
  • the number constant K can be any constant greater than zero.
  • the number constant K can be determined according to the material, modulus of elasticity, and deformation coefficient of the lower package back sheet.
  • the lower package back plate having a relatively small area can be laid in the curved surface having a larger curvature, thereby lowering the lower The possibility of wrinkles or wavy lines when the package backing plate is laid.
  • the number of the lower package backplanes 104 is at least two; and each of the lower package backplanes 104 has the same or different areas.
  • the area of the lower package backing plate can be determined by determining the layable area of the layable area. The quotient between the layable area and the number of lower package backplanes is then determined as the area of the single lower package backplane.
  • the layable area may be the surface area of the upper encapsulation layer on the side in contact with the solar cell stack.
  • each of the lower package back sheets may have the same length and width.
  • each of the lower package backplanes has the same area, so that the lower package backplane can be mass-produced, thereby improving the production efficiency of the lower package backplane.
  • each of the lower package back plates 104 has a different area; a region having a larger radius of curvature in the curved shape of the upper package layer 101 corresponds to the lower package back plate 104 having a larger area.
  • the region having a small radius of curvature in the curved shape of the upper encapsulation layer 101 corresponds to the lower package back plate 104 having a smaller area.
  • each lower package backplane can be designed according to equation (1), namely: lower package backplane 201, lower package backplane 202, and lower package backplane. 203 and lower package backplane 204, as shown in Figures 2 and 3.
  • T1 is an overlapping area of the lower package backplane 203 and the lower package backplane 202
  • T2 is an overlapping area of the lower package backplane 202 and the lower package backplane 201
  • T3 is a lower package backplane 201 and a lower package backplane 204.
  • the lower package back plate 201 is laid in the 2A area, and the 2A area corresponds to a radius of curvature ranging from "curvature radius greater than 5000".
  • the lower package back plate 204 is laid in a 2D area, and the 2D area corresponds to a radius of curvature ranging from "curvature radius less than 5000 and greater than 3000".
  • the lower package back plate 202 is paved in the 2B region, and the 2B region corresponds to a radius of curvature ranging from "the radius of curvature is less than 3000 and greater than 2000".
  • the lower package back plate 203 is laid in the 2C region, and the 2C region corresponds to a radius of curvature ranging from "the radius of curvature is less than 2000".
  • the area relationship between the lower package backplanes 201-204 can be determined as: lower package backplane 201> lower package backplane 204> lower package backplane 202> lower package backplane 203 .
  • the minimum radius of curvature 620 mm is between 600 mm and 800 mm
  • five lower package backplanes can be designed according to equation (1), namely: lower package backplane 205, lower package backplane 206, and lower package backplane. 207.
  • the lower package backplane 208 and the lower package backplane 209 are as shown in FIGS. 4 and 5.
  • P1 is an overlapping area of the lower package backplane 205 and the lower package backplane 206
  • P2 is an overlapping area of the lower package backplane 206 and the lower package backplane 207
  • P3 is a lower package backplane 207 and a lower package backplane 208.
  • the overlapping area, P4, is the overlapping area of the lower package backplane 208 and the lower package backplane 209.
  • the lower package back plate 207 is paved in the 3C region, and the 3C region corresponds to a radius of curvature ranging from "curvature radius greater than 6000".
  • the lower package back plate 208 is paved in a 3D area, and the 3D area corresponds to a radius of curvature of "the radius of curvature is less than 6000 and greater than 3000.
  • the lower package back plate 209 is laid in the 3E area, and the 3E area corresponds to a radius of curvature of "
  • the lower package back plate 206 is paved in the 3B region, and the 3B region corresponds to a radius of curvature ranging from "the radius of curvature is less than 2000 and greater than 800".
  • the lower package back plate 205 is paved in the 3A region.
  • the radius of curvature of the 3A area ranges from “the radius of curvature is less than 800.”
  • the area relationship between the lower package backplanes 205-209 can be determined as: the area relationship of the lower package backplane.
  • each of the lower package back sheets has a different area.
  • a region having a large curvature of the curved shape of the upper encapsulation layer corresponds to a lower package back plate having a larger area
  • a region having a smaller curvature of the curved shape of the upper encapsulation layer corresponds to a lower package back plate having a smaller area. Therefore, the possibility of forming wrinkles or corrugations can be more effectively reduced, thereby improving the reliability of the solar cell.
  • any adjacent two lower package back sheets 104 have a splicing overlap area of 5 mm to 30 mm.
  • the width of the splicing overlap region may be any value between 5 mm and 30 mm.
  • the stitching overlap area may have a width of 8 mm or 10 mm.
  • the width of the overlap region cannot be too narrow or too wide. If the width of the overlap region is too narrow, there is a high possibility that the solar cell group is exposed, and if the width of the overlap region is too wide, the waste amount of the lower package back plate is high.
  • a splicing overlap region of 5 mm to 30 mm is provided between any two adjacent lower package back sheets. This overlapping area not only reduces the possibility of exposure of the solar cell stack, but also reduces the amount of wasted of the lower package backplane.
  • the solar battery pack 102 may include a bus bar 1021, an output 1022, and a plurality of solar cells 1023;
  • the plurality of solar cells 1023 are connected into a current output group in any one of a series mode, a parallel mode, or a series-parallel hybrid mode;
  • the current output group is connected to the bus bar 1021 for transmitting the current generated by itself to the bus bar 1021.
  • the bus bar 1021 is configured to transmit the current transmitted by the current output group to the output terminal 1022;
  • the output end 1022 is connected to an external power storage device for transmitting the current transmitted by the bus bar 1021 to the power storage device.
  • the type of solar cell can be determined according to business requirements.
  • the solar cell may include, but is not limited to, a copper indium gallium selenide thin film solar cell, a perovskite thin film solar cell, an organic semiconductor thin film solar cell, a gallium arsenide GaAs compound semiconductor thin film solar cell.
  • the type and location of the output can be determined according to service requirements.
  • the output end when the output end is disposed on the side edge of the solar cell module, the output end may be an output line, and the output line may be connected to a power storage device (such as a battery in a vehicle).
  • a power storage device such as a battery in a vehicle.
  • the output end when the output end is disposed on the lower surface of any of the lower package back sheets that is not in contact with the film.
  • the output can be a junction box, and the junction box can be connected to a storage device such as a battery in a vehicle.
  • the plurality of solar cells are connected into a current output group, and the laying area of the current output group may be the same as the laying area of each of the lower package back plates. Or, the laying area of the current output group is slightly smaller than the laying area of each lower package backboard. Since the number of the lower package backplane is determined according to the radius of curvature of the curved shape, the layable area of the lower package backplane is larger, and the laying area of the current output group is enlarged, thereby increasing the output power of the solar battery module.
  • the plurality of solar cells are connected into the current output group in any one of a series mode, a parallel mode, or a series-parallel hybrid mode. Therefore, business applications are more flexible.
  • the plurality of solar cells 1023 are connected in series to the current output group; among the solar cells 1023 connected in series, the positive electrode of the solar cell 1023 located at the top position and the bus bar 1021 is connected, and a negative electrode of the solar cell 1023 located at the last position is connected to the bus bar 1021.
  • the positive electrode of the solar cell 1023 located at the top position is connected to the bus bar 1021, and the negative electrode of the solar cell 1023 located at the last position is connected to the bus bar 1021.
  • the positive electrode of one solar cell is connected to the negative electrode of another solar cell.
  • the plurality of solar cells 1023 are connected in parallel to the current output group; in each of the solar cells 1023 connected in parallel, the positive pole of each of the solar cells 1023 and the The busbars 1021 are connected, and the negative poles of each of the solar cells are respectively connected to the busbars 1021.
  • FIG. 7 For the sake of clarity, only two solar cells connected in parallel are shown in FIG. In this embodiment, as shown in FIG. 7, the positive electrodes of each solar cell are respectively connected to the bus bar, and the negative electrodes of each solar cell are respectively connected to the bus bar.
  • the plurality of solar cells 1023 are connected in a series-parallel hybrid manner to the current output group; the plurality of solar cells 1023 form at least two battery strings, wherein each of the battery strings Included in the series state of at least two solar cells 1023; the positive electrode of the solar cell 1023 in the first position in each of the battery strings is connected to the bus bar 1022, and the negative electrode of the solar cell 1023 at the last position and the bus bar 1022 is connected such that the at least two battery strings are connected in parallel.
  • each battery string comprises two solar cells connected in series.
  • the positive electrode of the solar cell located in the first position in each battery string is connected to the bus bar, and the negative electrode of the solar cell located at the last position is connected to the bus bar.
  • the positive pole of one solar cell is connected to the negative pole of the other solar cell such that the two battery strings are connected in parallel.
  • a plurality of solar cells are connected in a series-parallel hybrid manner into a current output group. Since the individual solar cells are mixed in parallel, even if some of the solar cells are blocked during use of the solar cell module, the unobstructed portion of the solar cell can be stably outputted.
  • any two adjacent solar cells 1023 have a set separation distance, wherein the separation distance is 0-5 mm.
  • the separation distance can be determined according to service requirements. For example, in the case of limited space, in order to be able to arrange more solar cells, the separation distance can be set to zero. When the space is sufficient, the separation distance can be set to 2 mm in consideration of the deformation of the solar cell module in the application.
  • any two adjacent solar cells have a separation distance of 0 to 5 mm. Therefore, the solar cells can be arranged according to different spatial conditions, and the service suitability is strong.
  • the solar cell module may further include a sealing tape for mounting on the upper encapsulation layer and forming a paving area with the upper encapsulation layer.
  • the solar cell stack and the at least one lower package backsheet are adhesively laid in the pavement area.
  • the specific type of sealing tape can be determined according to business requirements.
  • the sealing tape may include, but is not limited to, a modified polyvinyl chloride sealing tape, a neoprene sealing tape, a thermoplastic EPDM sealing tape, and a vulcanized EPDM sealing tape.
  • the sealing tape when the sealing tape is mounted on the upper encapsulation layer, it can be attached to the peripheral edges of the upper encapsulation layer.
  • the solar cell group and each of the lower package back sheets are adhesively laid in the pavement area formed by the sealing tape and the upper encapsulation layer. Therefore, in the use of the solar cell module, the possibility that the solar cell group is eroded by moisture or the like can be reduced, thereby improving the reliability of the solar cell module.
  • the upper encapsulation layer may include, but is not limited to, a common glass upper encapsulation layer, a tempered glass upper encapsulation layer, a laminated glass upper encapsulation layer, a polystyrene upper encapsulation layer, and polymethyl methacrylate.
  • an upper encapsulation layer having a visible light transmittance of 91% or more and having an effect of isolating water vapor and impact resistance can also be selected.
  • the thickness of the upper encapsulation layer may be 0.5 mm to 8 mm.
  • the lower package backplane may include, but is not limited to, an inorganic glass lower package back sheet, a stainless steel lower package back sheet, an ethylene/vinyl alcohol copolymer lower package back sheet, and polyethylene terephthalate.
  • the flexibleness of the lower package backplane is better, and the corresponding bending can be performed according to the curvature change of the upper encapsulation layer, so that the lower package backplane can be perfectly matched with the upper encapsulation layer.
  • the thickness of the lower package back plate may be 0.2 mm to 5 mm.
  • the adhesive film may include, but is not limited to, a polyolefin film, a polyvinyl butyral film, an ethylene-vinyl acetate copolymer film, and an organic silicone film.
  • the film thickness between the upper package layer and the solar cell group and the film thickness between the lower package back plate and the solar cell group may each be 0.1 mm to 1.5 mm.
  • the curved shape of the upper encapsulation layer 101 coincides with the curved shape of any of the covers in the vehicle.
  • the cover member includes but is not limited to an engine cover, a roof cover, left and right side panels, front and rear doors, front, rear, left and right fenders, trunk cover, engine front support Board, engine front apron, front wall upper cover, rear wall, rear upper cover, front apron, front frame, front fender, wheel fender, rear fender, rear panel, luggage
  • the solar module in order to enable the solar module to receive sufficient sunlight, is preferably covered on the roof cover.
  • the curved shape of the upper encapsulation layer coincides with the curved shape of the roof cover.
  • an embodiment of the present disclosure provides a method for fabricating a solar cell module, which may include the following steps:
  • Step 301 preparing an upper encapsulation layer having a solar cell stack, a film, and a curved shape
  • Step 302 preparing at least one lower package backplane, the number of the at least one lower package backplane being determined according to a radius of curvature of the curved shape;
  • Step 303 Laying the solar cell stack between the upper encapsulation layer and the at least one lower package backplane through the film according to the curved shape, wherein the at least one lower package back panel is laid.
  • the area is not greater than the surface area of the upper encapsulation layer.
  • a solar cell stack, a film, and an upper encapsulation layer having a curved shape are first prepared.
  • One or more lower package back sheets are then prepared, and the number of lower package back sheets is determined according to the radius of curvature of the curved shape.
  • the solar cell stack is laid between the upper encapsulation layer and each of the lower package backplanes through the film in a curved shape, and the laying area of each lower package backplane is not greater than the surface area of the upper encapsulation layer.
  • the number of the lower package backplane is determined according to the radius of curvature of the curved surface shape.
  • the upper encapsulation layer may also be used.
  • the upper package backplane is mounted on the upper cover so that the solar cell module can be laid on a curved surface having a small radius of curvature (for example, a minimum radius of curvature of 600 mm to 1200 mm). Therefore, the solution provided by the embodiment of the present disclosure can realize that the solar cell module can be laid on a curved surface having a small radius of curvature.
  • At least one lower package backplane is prepared, and the step 302 of determining the number of the at least one lower package backplane according to the radius of curvature of the curved surface shape may include:
  • A1 determining a minimum radius of curvature of the curved surface shape
  • A2 determining the number of the lower package backplane according to the minimum radius of curvature, wherein the number of the lower package backplane decreases as the minimum radius of curvature of the curved shape increases;
  • A3 Each of the lower package backplanes is prepared according to the determined number of the lower package backplanes.
  • step A2 can be implemented in the following two ways:
  • the step A2 of determining the number of the lower package backplane according to the minimum radius of curvature includes:
  • N represents the number of the lower package backplane; and R min represents the smallest radius of curvature of the curved surface shape, and the unit is mm.
  • the step A2 of determining the number of the lower package backplane according to the minimum radius of curvature includes:
  • N represents the number of the lower package backplane; and R min represents the smallest radius of curvature of the curved surface shape, and the unit is mm.
  • At least one lower package backplane is prepared in the above-mentioned flowchart of FIG. 9, and the step 302 of determining the number of the at least one lower package backplane according to the radius of curvature of the curved shape may include :
  • Each of the lower package backplanes is prepared according to the determined number of the lower package backplanes.
  • the step of determining the number of the lower package backplane according to the minimum radius of curvature and the maximum radius of curvature of the curved surface shape includes:
  • the prepared lower package backplanes have the same or different areas, respectively.
  • a region having a large curvature of the curved surface shape of the upper encapsulation layer corresponds to a lower package backplane having a larger area, and a surface of the upper encapsulation layer
  • the area of the shape having a small curvature corresponds to the lower package back sheet having a smaller area.
  • the solar cell group is laid on the upper encapsulation layer and the at least one lower package back plate according to the curved shape through the film in the flow chart shown in FIG. 9 above.
  • the method may further include:
  • the step B1 of performing a vacuuming process on the solar cell stack, the upper encapsulation layer, and the at least one lower package backplane may be performed by:
  • the solar cell stack, the upper encapsulation layer, and the at least one lower package backsheet are placed in a vacuum bag;
  • the vacuum bag is subjected to a vacuuming operation by using a vacuuming device, wherein the vacuuming operation is performed for 0.5 hours to 1 hour, so that the vacuum degree in the vacuum bag after the vacuuming operation is -80 KPa to -100 KPa, wherein the vacuum The degree is relative vacuum.
  • the module to be prepared can be placed in a vacuum bag of a vacuum laminator and vacuumed at room temperature, wherein the vacuum operation time is 0.5 to 1 hour, so that the vacuum is performed after the vacuuming operation.
  • the degree of vacuum in the bag is -80 Kpa to -100 KPa.
  • the vacuum bag is evacuated by the vacuuming device, the air between the upper package layer and the lower package back plate is removed, so that the solar cell module is less likely to have bubbles or empty drums. .
  • the step B2 of forming a solar cell module by laminating the module to be prepared may include:
  • the laminator is subjected to lamination of the module to be prepared after vacuuming at a temperature of 130 ° C to 160 ° C and a vacuum of -80 Kpa to -100 KPa for 1 hour to 3 hours.
  • the film can be fully melted and crosslinked and filled into the gap between the upper encapsulation layer, the solar cell stack, the film, and the respective lower package backsheet.
  • Step 303 can include:
  • the splicing overlap of any adjacent two lower package backplanes is 5 mm to 30 mm. region.
  • the solar cell group is laid on the lower surface of the upper encapsulation layer according to the curved shape through the film, and the at least two lower package back sheets are in accordance with the curved surface.
  • the method may further include: mounting a sealing tape on the upper encapsulation layer, and forming a paving area with the upper encapsulation layer; The solar cell stack and each of the lower package backsheets are then laid in the paving area.
  • the sealing tape may include, but is not limited to, any one of a modified polyvinyl chloride sealing tape, a neoprene sealing tape, a thermoplastic EPDM sealing tape, and a vulcanized EPDM rubber sealing tape.
  • the step 301 of preparing the upper encapsulation layer, the solar cell stack, and the adhesive film having the shape of the curved surface in the flow chart shown in FIG. 9 may include:
  • the current output group is connected to an external power storage device.
  • any two adjacent solar cells have a set separation distance, wherein the separation distance is 0-5 mm.
  • the solar cell may include, but is not limited to, a copper indium gallium selenide thin film solar cell, a perovskite thin film solar cell, an organic semiconductor thin film solar cell, a gallium arsenide GaAs compound semiconductor thin film solar cell.
  • an embodiment of the present disclosure provides a vehicle, comprising: the solar battery module 501 according to any of the above embodiments, and the outer surface of the cover of the vehicle is covered with the solar energy Battery module 501.
  • the roof cover 401 of the vehicle 40 is covered with a solar battery module 501 (the solar battery module 501 is shown in the shaded portion in the figure).
  • the curved shape of the solar cell module shown in FIG. 10 coincides with the curved shape of the roof.
  • the minimum radius of curvature in the curved shape is determined to be 1000 mm.
  • the curvature radii R1000, R1094, R3834, R2061, R2935, R3812 and the regions corresponding to the respective curvature radii in the curved shape are shown in FIGS. 12 and 13. Therefore, according to the equation group (1), the solar cell module has three lower package back plates, and the total laying area of the three lower package back plates is the same as the inner surface area of the upper package layer.
  • the solar cell module includes an upper encapsulation layer 5011, three lower package back plates 5012, a film 5013, and a solar cell group 5014.
  • the points A and B indicated by the short thick lines in Fig. 12 are the splicing portions between the adjacent package back sheets.
  • FIG. 11 is a plan view of the solar cell module.
  • the center of the paved solar cell stack coincides with the center of the upper encapsulation layer, and the edge C of the solar cell stack has a distance a from the edge D of the upper package board.
  • This distance a can be determined according to business requirements. For example, the distance a is 40mm (note that 40mm is only an example).
  • the width of the projection plane corresponding to the solar cell module that is, the horizontal distance between the M1 point and the M2 point in FIG. 11
  • the width of the projection plane corresponding to the solar cell module can be determined according to the curved shape of the roof.
  • the horizontal distance between the M1 point and the M2 point is 1017 mm
  • the length of the projection plane corresponding to the solar cell module (that is, the horizontal distance between the M2 point and the M3 point in FIG. 11) can be determined according to the shape of the curved surface of the roof.
  • the horizontal distance between the M2 point and the M3 point is 1395 mm. (It should be noted that 1017mm and 1395mm are only one example).
  • FIG. 12 is a front view of the solar cell module.
  • the height between the highest point and the lowest point of the curved surface of the solar cell module i.e., the vertical distance between the H1 point and the H2 point in Fig. 12
  • the vertical distance between H1 and H2 can be 111mm (note that 111mm is only an example).
  • the height between the highest point and the lowest point of the surface of the upper encapsulation layer can be determined according to the shape of the curved surface of the roof.
  • the vertical distance between H1 and H3 can be 79mm (note that 79mm is only an example).
  • FIG. 13 is a left side view of the solar cell module.
  • the solar cell module includes a solar cell stack, a film, a curved upper package layer, and one or more lower package back plates.
  • the number of lower package backplanes is determined by the radius of curvature of the curved shape.
  • the solar cell is laid between the upper encapsulation layer and each of the lower package back sheets by a film according to a curved shape, and the laying area of each lower package back sheet is not larger than the surface area of the upper encapsulation layer.
  • the surface area may be the surface area of the side of the upper encapsulation layer that is in contact with the solar cell stack.
  • each lower package backplane is the same as the surface area of the upper package layer, or the laying area of each lower package backplane is slightly smaller than the surface area of the upper package layer.
  • the number of the lower package backplane is determined according to the radius of curvature of the curved surface shape. Therefore, when the radius of curvature of the upper encapsulation layer is small (for example, the minimum radius of curvature is 600 mm to 1200 mm), the package can also be packaged.
  • Each of the lower package back sheets is laid on the layer so that the solar cell module can be laid on a curved surface having a small radius of curvature (for example, a minimum radius of curvature of 600 mm to 1200 mm). Therefore, the solution provided by the embodiment of the present disclosure can realize that the solar cell module can be laid on a curved surface having a small radius of curvature.
  • the number of the lower package backplanes may be reduced as the minimum radius of curvature of the curved shape increases, which may reduce the curvature variation on the single lower package backplane, thereby reducing the formation on the lower package backplane.
  • the number of the lower package back plates is determined according to the minimum radius of curvature of the curved surface shape, the possibility of forming wrinkles or wave-shaped lines can be reduced when paving the respective lower package back plates, thereby improving The reliability and safety of solar cells.
  • the number of lower package backplanes may be determined according to the minimum radius of curvature. Therefore, when the minimum radius of curvature is greater than or equal to 600, the number of lower package backplanes matching the minimum radius of curvature can reduce the possibility of forming wrinkles or wavy lines, thereby improving the reliability and safety of the solar cell. .
  • the number of lower package back plates is determined according to the minimum radius of curvature and the maximum radius of curvature of the curved surface shape. Therefore, it is possible to lay a lower-sized lower package back plate in a curved surface with a larger curvature, thereby reducing the possibility of wrinkles or wavy lines when the lower package back plate is laid.
  • each of the lower package backplanes has the same area, so the lower package backplane can be mass-produced, so that the production efficiency of the lower package backplane can be improved.
  • each of the lower package backplanes has a different area.
  • a region having a large curvature of the curved shape of the upper encapsulation layer corresponds to a lower package back plate having a larger area
  • a region having a smaller curvature of the curved shape of the upper encapsulation layer corresponds to a lower package back plate having a smaller area. Therefore, the possibility of forming wrinkles or corrugations can be more effectively reduced, thereby improving the reliability of the solar cell.
  • a plurality of solar cells are connected into a current output group in any one of a series mode, a parallel mode, or a series-parallel hybrid mode. Therefore, business applications are more flexible.
  • a plurality of solar cells are connected in a series-parallel hybrid manner into a current output group. Since the solar cells are connected in parallel in parallel, when the solar cell module is applied, even if some of the solar cells are blocked, the unshielded solar cells can be stably outputted.
  • any two adjacent solar cells have a separation distance of 0 to 5 mm. Therefore, the solar cells can be arranged according to different spatial conditions, and the service suitability is strong.
  • the solar cell group and each of the lower package back sheets are adhesively laid in the paving area formed by the sealing tape and the upper encapsulating layer, the solar cell group can be reduced in humidity during use of the solar cell module.
  • the vacuum bag is vacuumed by the vacuuming device, the air between the upper package layer and the lower package back plate is removed, so that the possibility of air bubbles or empty drums in the solar battery module is higher. low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Fluid Mechanics (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

本公开提供了一种太阳能电池模组、太阳能电池模组的制备方法及具有太阳能电池模组的车辆。太阳能电池模组包括:具有设定曲面形状的上封装层、太阳能电池组、胶膜以及至少一个下封装背板。所述下封装背板的数量是根据所述曲面形状的曲率半径确定的;所述太阳能电池组通过所述胶膜按照所述曲面形状铺设在所述上封装层和所述至少一个下封装背板之间,且所述太阳能电池组的铺设面积不大于所述至少一个下封装背板的铺设面积。因此,本公开提供的方案可以实现太阳能电池模组能够在曲率半径小的曲面上铺设。

Description

一种太阳能电池模组、制备方法及车辆
相关申请的交叉引用
本公开要求2018年4月12日提交的中国专利申请No.201810327185.5和No.201820520854.6的优先权,在此将通过引用方式上述申请全部内容并入本文。
技术领域
本公开涉及太阳能光伏应用技术领域,特别是涉及一种太阳能电池模组、该太阳能电池模组的制备方法及具有该太阳能电池模组的车辆。
背景技术
太阳能电池模组由于不需要消耗汽油、柴油等能源便可以利用太阳能为车辆提供电能,因此被广泛的应用在机动车等车辆中。
目前,为了降低太阳能电池模组出现褶皱或者波浪型纹路的可能性,太阳能电池模组通常具有较大的曲率半径范围。在将太阳能电池模组铺设到设备(比如,车辆的车顶)上时,太阳能电池模组也只能铺设在设备的曲率半径较大的表面(比如,曲率半径为1200mm~6000mm的表面)上。因此,现有的太阳能电池组的铺设受限,仅能铺设在曲率半径较大的曲面上。
发明内容
有鉴于此,本公开提出了一种太阳能电池模组、太阳能电池模组制备方法及具有太阳能电池模组的车辆。根据本公开,太阳能电池模组能够在曲率半径小的曲面上铺设。
第一方面,本公开的一个实施例提供了一种太阳能电池模组,该太阳能电池模组包括:太阳能电池组、胶膜、具有设定曲面形状的上封装层以及至少一个下封装背板,其中,所述下封装背板的数量是根据所述曲面形状的曲率半径确定的;并且所述太阳能电池组通过所述 胶膜按照所述曲面形状铺设在所述上封装层和所述至少一个下封装背板之间,且所述至少一个下封装背板的铺设面积不大于所述上封装层的表面积。
第二方面,本公开的一个实施例提供了一种太阳能电池模组的制备方法,该方法可以包括以下步骤:制备具有太阳能电池组、胶膜以及设定曲面形状的上封装层;制备出至少一个下封装背板,所述至少一个下封装背板的数量根据所述曲面形状的曲率半径确定;以及将所述太阳能电池组通过所述胶膜按照所述曲面形状铺设在所述上封装层和所述至少一个下封装背板之间,其中,所述至少一个下封装背板的铺设面积不大于所述上封装层的表面积。
第三方面,本公开的一个实施例提供了一种车辆,该车辆包括上述太阳能电池模组,并且在所述车辆的覆盖件的外表面上覆盖有所述太阳能电池模组。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本公开一个实施例提供的一种太阳能电池模组的结构示意图;
图2示出了本公开一个实施例提供的一种太阳能电池模组的俯视图;
图3示出了本公开一个实施例提供的一种太阳能电池模组的正视 图;
图4示出了本公开另一个实施例提供的一种太阳能电池模组的俯视图;
图5示出了本公开另一个实施例提供的一种太阳能电池模组的正视图;
图6示出了本公开一个实施例提供的一种太阳能电池以串联方式连接的示意图;
图7示出了本公开一个实施例提供的一种太阳能电池以并联方式连接的示意图;
图8示出了本公开一个实施例提供的一种太阳能电池以串并联混合方式连接的示意图;
图9示出了本公开一个实施例提供的一种太阳能电池模组的制备方法的流程图;
图10示出了本公开一个实施例提供的一种车辆的结构示意图;
图11示出了本公开又一个实施例提供的一种太阳能电池模组的俯视图;
图12示出了本公开又一个实施例提供的一种太阳能电池模组的正视图;
图13示出了本公开一个实施例提供的一种太阳能电池模组的左视图。
具体实施方式
下面将参照附图更加详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
如图1所示,本公开实施例提供了一种太阳能电池模组,该太阳能电池模组包括:太阳能电池组102、胶膜103、具有设定曲面形状的上封装层101以及至少一个下封装背板104,其中,所述下封装背板 104的数量是根据所述曲面形状的曲率半径确定的;所述太阳能电池组102通过所述胶膜103按照所述曲面形状铺设在所述上封装层101和所述至少一个下封装背板104之间,且所述至少一个下封装背板104的铺设面积不大于所述上封装层101的表面积。
根据图1所示的实施例,该太阳能电池模组包括太阳能电池组、胶膜、曲面形状的上封装层以及一个或多个下封装背板。下封装背板的数量是根据曲面形状的曲率半径确定的。太阳能电池组通过胶膜按照曲面形状铺设在上封装层和各个下封装背板之间,且各个下封装背板的铺设面积不大于上封装层的表面积。这里,该表面积可以为上封装层中与太阳能电池组相接触一侧的表面积。换句话说,各个下封装背板的铺设面积与上封装层的表面积相同,或,各个下封装背板的铺设面积稍小于上封装层的表面积。通过上述实施例可知,由于下封装背板的数量是根据曲面形状的曲率半径确定的,因此在上封装层的曲率半径较小时(比如,最小曲率半径为600mm-1200mm),也可以在上封装层上铺装各个下封装背板,从而使得太阳能电池模组可以铺装在曲率半径较小(比如,最小曲率半径为600mm-1200mm)的曲面上。因此,本公开实施例提供的方案可以实现太阳能电池模组能够在曲率半径小的曲面上铺设。
图1示意性示出了包括两个下封装背板的部分太阳能电池模组。
在本公开一个实施例中,上封装层的曲面形状与待铺设物体的曲面形状相一致。比如,当待铺设物体为车辆的车顶时,太阳能电池模组的上封装层的曲面形状与车顶的曲面形状相一致,以使太阳能电池模组与车顶的贴合度较高。
在本实施例中,优选地,上封装层的最小曲率半径大于或等于600mm。
在本公开一个实施例中,所述下封装背板104的数量与所述曲面形状的曲率半径之间的关系满足:所述下封装背板104的数量随着所述曲面形状的最小曲率半径的增大而减少。
在本实施例中,在曲面形状的最小的曲率半径越小,曲面的弧度越大。在曲面弧度较大时,需要增加下封装背板的数量,这样在铺装 时可以减小单个下封装背板上的曲率变化,从而降低下封装背板上形成褶皱或者波浪型纹路的可能性。
在本公开一个实施例中,在根据曲面形状的最小的曲率半径确定下封装背板的数量时,所述下封装背板104的数量与所述曲面形状的曲率半径之间的关系至少包括如下两种情况:
情况一:在本公开一个实施例中,所述下封装背板104的数量与所述曲面形状的曲率半径之间的关系满足方程组(1);
Figure PCTCN2018097490-appb-000001
其中,所述N表示所述下封装背板的数量;所述R min表示所述曲面形状的最小曲率半径,单位为mm。
在本实施例中,曲率半径较小的曲面通常为弧度较大的曲面。在弧度较大的曲面中铺设面积较大的下封装背板时,下封装背板通常会形成褶皱或者波浪型纹路。而这些褶皱或者波浪型纹路通常易在太阳能电池模组中引起气泡或者空鼓,气泡或者空鼓将降低太阳能电池模组的可靠性和安全性。
在本实施例中,为了降低下封装背板出现褶皱或者波浪型纹路的可能性,需要获取上封装层所包括的各个曲面的曲率半径。然后比较各个曲面的曲率半径,并找出各个曲面中的最小曲率半径。然后根据最小曲率半径的大小,确定出下封装背板的数量。从方程组(1)中可以看出,方程组(1)适用于最小曲率半径大于或等于600mm的情况。在最小曲率半径大于或等于600mm时,可以直接根据方程组(1)确定出下封装板的数量。
在本实施例中,在曲率半径大于或等于600mm时,最小曲率半径越大,下封装背板的数量越少。
比如,确定出曲面形状中最小的曲率半径为750时,则根据方程组(1)确定出下封装背板的数量5。
情况二:在本公开一个实施例中,所述下封装背板104的数量与所述曲面形状的曲率半径之间的关系满足方程组(2);
Figure PCTCN2018097490-appb-000002
其中,所述N表示所述下封装背板的数量;所述R min表示所述曲面形状中最小的曲率半径,单位为mm。
在本实施例中,在最小曲率半径为800mm到2000mm的范围之内时,可以根据需要选取2-4个下封装背板。比如,可以选取2个下封装背板、3个下封装背板或4个下封装背板。
具体地,在最小曲率半径为800mm到2000mm的范围之内时,当需要减少各个下封装背板之间的拼接点时,可以确定下封装背板的数量为2。当需要最大限度降低下封装背板中出现褶皱或者波浪型纹路的可能性时,可以确定下封装背板的数量为4。
根据上述实施例,在最小曲率半径大于或等于600mm时,可以根据最小曲率半径确定出下封装背板的数量。因此,在最小曲率半径大于或等于600mm的情况下,铺装与最小曲率半径相匹配的数量的下封装背板时可以降低形成褶皱或者波浪型纹路的可能性,从而提高了太阳能电池的可靠性和安全性。
在本公开一个实施例中,所述下封装背板104的数量根据所述曲面形状的最小曲率半径和最大曲率半径确定。
在本实施例中,曲面形状中的最大曲率半径与最小曲率半径的差异越大,曲面形状的弧度或起伏变化越大。因此可以根据曲面形状中的最小曲率半径和最大曲率半径确定下封装背板的数量,以在铺装时缩小每一个下封装背板对应的曲率变化范围。
在本公开一个实施例中,所述下封装背板104的数量与所述曲面形状的曲率半径之间的关系满足方程式(3);
Figure PCTCN2018097490-appb-000003
其中,所述N表示所述下封装背板的数量;所述R max表示所述曲面形状中最大的曲率半径;所述R min表示所述曲面形状中最小的曲率半径;所述K表示预设的数量常数;所述
Figure PCTCN2018097490-appb-000004
表示向上取整符号。
在本实施例中,曲面形状中的最大曲率半径与最小曲率半径的差异越大,曲面形状的弧度或起伏变化越大。因此可以利用最大曲率半 径与最小曲率半径之间的倍数关系确定出下封装背板的数量。使得弧度较大的曲面中铺设面积相对较少的下封装背板,从而降低下封装背板铺设时出现褶皱或者波浪型纹路的可能性。
在本实施例中,数量常数K可以根据业务要求确定。比如,数量常数K可以为大于0的任一常数。另外,数量常数K可以根据下封装背板的材质、弹性模量以及形变系数来确定。
根据上述实施例,由于下封装背板的数量是根据曲面形状中的最小曲率半径和最大曲率半径确定,因此可以在弧度较大的曲面中铺设面积相对较小的下封装背板,从而降低下封装背板铺设时出现褶皱或者波浪型纹路的可能性。
在本公开一个实施例中,所述下封装背板104的数量为至少两个;并且每一个所述下封装背板104分别具有相同或不同的面积。
在本公开一个实施例中,在每一个下封装背板104均分别具有相同的面积时,下封装背板的面积可以通过确定出可铺设区域的可铺设面积来确定。然后,将可铺设面积与下封装背板的数量之间的商确定为单个下封装背板的面积。其中,可铺设面积可以为上封装层中与太阳能电池组相接触一侧的表面积。
在本实施例中,由于每一个下封装背板具有相同的面积,因此各个下封装背板可以具有相同的长度以及宽度。
根据上述实施例,各个下封装背板均具有相同的面积,因此下封装背板可以批量生产,从而可以提高下封装背板的生产效率。
在本公开一个实施例中,所述每一个下封装背板104具有不同的面积;所述上封装层101的曲面形状中曲率半径大的区域对应具有较大面积的所述下封装背板104,而所述上封装层101的曲面形状中曲率半径小的区域对应具有较小面积的所述下封装背板104。
下面以最小曲率半径为900mm为例进行说明。在本实施例中,由于最小曲率半径900mm位于800mm至1000mm之间,可按照方程(1)设计四块下封装背板,即:下封装背板201、下封装背板202、下封装背板203以及下封装背板204,如图2和图3所示。在图中T1为下封装背板203和下封装背板202的重叠区域,T2为下封装背板202和下 封装背板201的重叠区域,T3为下封装背板201和下封装背板204的重叠区域。下封装背板201铺装在2A区域,该2A区域对应的曲率半径范围为“曲率半径大于5000”。下封装背板204铺装在2D区域,该2D区域对应的曲率半径范围为“曲率半径小于5000且大于3000”。下封装背板202铺装在2B区域,该2B区域对应的曲率半径范围为“曲率半径小于3000且大于2000”。下封装背板203铺装在2C区域,该2C区域对应的曲率半径范围为“曲率半径小于2000”。根据各下封装背板对应的曲率半径,下封装背板201-204之间的面积关系可以确定为:下封装背板201>下封装背板204>下封装背板202>下封装背板203。
下面以最小的曲率半径为620mm为例进行说明。在本实施例中,由于最小曲率半径620mm位于600mm至800mm之间,可按照方程(1)设计五块下封装背板,即:下封装背板205、下封装背板206、下封装背板207、下封装背板208以及下封装背板209,如图4和图5所示。在图中P1为下封装背板205和下封装背板206的重叠区域,P2为下封装背板206和下封装背板207的重叠区域,P3为下封装背板207和下封装背板208的重叠区域,P4为下封装背板208和下封装背板209的重叠区域。下封装背板207铺装在3C区域,该3C区域对应的曲率半径范围为“曲率半径大于6000”。下封装背板208铺装在3D区域,该3D区域对应的曲率半径范围为“曲率半径小于6000且大于3000。下封装背板209铺装在3E区域,该3E区域对应的曲率半径范围为“曲率半径大于2000且小于3000”。下封装背板206铺装在3B区域,该3B区域对应的曲率半径范围为“曲率半径小于2000且大于800”。下封装背板205铺装在3A区域,该3A区域对应的曲率半径范围为“曲率半径小于800”。根据各下封装背板对应的曲率半径,下封装背板205-209之间的面积关系可以确定为:下封装背板的面积关系为下封装背板207>下封装背板208>下封装背板209>下封装背板206>下封装背板205。
根据上述实施例,各个下封装背板具有不同的面积。在上封装层的曲面形状的曲率大的区域对应具有较大面积的下封装背板,而上封装层的曲面形状的曲率小的区域对应具有较小面积的下封装背板。因 此,可以更有效的降低形成褶皱或波纹的可能性,从而提升了太阳能电池的可靠性。
在本公开一个实施例中,在所述下封装板104的数量为至少两个时,任意相邻的两个下封装背板104之间具有5mm~30mm的拼接重叠区域。
在本实施例中,拼接重叠区域的宽度可以为5mm~30mm之间的任一数值。比如,拼接重叠区域的宽度可以为8mm或10mm。
在本实施例中,重叠区域的宽度不能太窄也不能太宽。如果重叠区域的宽度太窄,出现太阳能电池组裸露的可能性较高,而如果重叠区域的宽度太宽,则下封装背板的浪费量较高。
根据上述实施例,优选的是,任意相邻的两个下封装背板之间具有5mm~30mm的拼接重叠区域。该重叠区域不仅可以降低出现太阳能电池组裸露的可能性,而且可以降低下封装背板的浪费量。
在本公开一个实施例中,如图6-图8所示,所述太阳能电池组102可以包括汇流带1021、输出端1022以及多个太阳能电池1023;
所述多个太阳能电池1023以串联方式、并联方式或串并联混合方式中的任意一种方式,连接成电流输出组;
所述电流输出组与所述汇流带1021相连,用于将自身产生的电流传输给所述汇流带1021;
所述汇流带1021用于将所述电流输出组传输来的电流传输给所述输出端1022;
所述输出端1022与外部的储电设备相连,用于将所述汇流带1021传输来的电流传输给所述储电设备。
在本实施例中,太阳能电池的类型可以根据业务要求确定。比如太阳能电池可以包括但不限于铜铟镓硒薄膜太阳能电池、钙钛矿薄膜太阳能电池、有机半导体薄膜太阳能电池、砷化镓GaAs化合物半导体薄膜太阳能电池。
在本实施例中,输出端的类型以及位置均可以根据业务要求确定。比如,在输出端设置在太阳能电池模组侧面边缘上时,该输出端可以为一段输出线路,且该输出线路可以与储电设备(比如车辆中蓄电池) 相连。又如,在输出端设置在任一下封装背板中不与胶膜接触的下表面时。该输出端可以为接线盒,且该接线盒可以与储电设备(比如车辆中蓄电池)相连。
在本实施例中,多个太阳能电池连接成电流输出组,该电流输出组的铺设面积可以与各个下封装背板的铺设面积相同。或,该电流输出组的铺设面积稍小于各个下封装背板的铺设面积。由于下封装背板的数量是根据曲面形状的曲率半径确定出来的,因此下封装背板的可铺设面积较大,扩大了电流输出组的铺设面积,从而增加太阳能电池模组的输出功率。
根据上述实施例中,由于多个太阳能电池以串联方式、并联方式或串并联混合方式中的任意一种方式连接成电流输出组。因此,业务应用较为灵活。
在本公开一个实施例中,所述多个太阳能电池1023以串联方式连接成所述电流输出组;在串联的各个所述太阳能电池1023中,位于首位的太阳能电池1023的正极与所述汇流带1021相连,且位于末位的太阳能电池1023的负极与所述汇流带1021相连。
出于清楚的目的,在图6中只示出了两个串联连接的太阳能电池。在本实施例中,如图6所示,位于首位的太阳能电池1023的正极与汇流带1021相连,且位于末位的太阳能电池1023的负极与汇流带1021相连。任意两个相邻的太阳能电池中,一个太阳能电池的正极与另一个太阳能电池的负极相连。
在本公开一个实施例中,所述多个太阳能电池1023以并联方式连接成所述电流输出组;在并联的各个所述太阳能电池1023中,每一个所述太阳能电池1023的正极分别与所述汇流带1021相连,且每一个所述太阳能电池的负极分别与所述汇流带1021相连。
出于清楚的目的,在图7中只示出了两个并联连接的太阳能电池。在本实施例中,如图7所示,每一个太阳能电池的正极分别与汇流带相连,且每一个太阳能电池的负极分别与汇流带相连。
在本公开一个实施例中,所述多个太阳能电池1023以串并联混合方式连接成所述电流输出组;所述多个太阳能电池1023形成至少两个 电池串,其中,每一个所述电池串包括处于串联状态的至少两个太阳能电池1023;每一个所述电池串中位于首位的太阳能电池1023的正极与所述汇流带1022相连,且位于末位的太阳能电池1023的负极与所述汇流带1022相连,使得所述至少两个电池串以并联方式连接。
出于清楚的目的,在图8中只示出了两个电池串且每一个电池串包括两个串联连接的太阳能电池。在本实施例中,如图8所示,每一个电池串中位于首位的太阳能电池的正极与汇流带相连,且位于末位的太阳能电池的负极与汇流带相连。每一个电池串中任意两个相邻的太阳能电池中,一个太阳能电池的正极与另一个太阳能电池的负极相连,使得两个电池串以并联方式连接。
根据上述实施例,多个太阳能电池以串并联混合方式连接成电流输出组。由于各个太阳能电池串并联混合,因此在太阳能电池模组在使用时即使部分太阳能电池被遮挡,太阳能电池的未遮挡部分仍能够稳定输出。
在本公开一个实施例中,任意两个相邻的太阳能电池1023之间具有设定的间隔距离,其中,所述间隔距离为0~5mm。
在本实施例中,可以根据业务要求确定出间隔距离。比如,在空间受限时,为了可以布置更多的太阳能电池,可以将间隔距离设定为0。在空间充足时,考虑到太阳能电池模组在应用中的形变,可以将间隔距离设定为2mm。
根据上述实施例,任意两个相邻的太阳能电池之间具有0~5mm的间隔距离。因此可以根据不同的空间条件来布置太阳能电池,业务适用性较强。
在本公开一个实施例中,太阳能电池模组可以进一步包括密封胶带,所述密封胶带用于贴装在所述上封装层上,且与所述上封装层形成铺装区域。
所述太阳能电池组以及所述至少一个下封装背板粘接铺设在所述铺装区域内。
在本实施例中,密封胶带的具体型式可以根据业务要求确定。比如,密封胶带可以包括但不限于改性聚氯乙烯密封胶带、氯丁橡胶密 封胶带、热塑性三元乙丙橡胶密封胶带、硫化三元乙丙橡胶密封胶带。
在本实施例中,在密封胶带贴装在上封装层上时,可以贴装在上封装层的四周边缘上。
根据上述实施例,由于太阳能电池组以及各个下封装背板粘接铺设在密封胶带与上封装层形成的铺装区域内。因此在太阳能电池模组使用过程中可以降低太阳能电池组受湿气等侵蚀等可能性,从而提升了太阳能电池模组可靠性。
在本公开一个实施例中,所述上封装层可以包括但不限于普通玻璃上封装层、钢化玻璃上封装层、夹胶玻璃上封装层、聚苯乙烯上封装层、聚甲基丙烯酸甲酯上封装层、聚碳酸酯上封装层、聚对苯二甲酸乙二醇酯上封装层、乙烯-四氟乙烯共聚物上封装层。
在本实施例中,还可以选用可见光透过率在91%以上,且具有隔绝水汽、防冲击等作用的上封装层。
在本实施例中,上封装层的厚度可以为0.5mm~8mm。
在本公开一个实施例中,所述下封装背板可以包括但不限于无机玻璃下封装背板、不锈钢下封装背板、乙烯/乙烯醇共聚物下封装背板、聚对苯二甲酸乙二醇酯下封装背板、聚对苯二甲酸乙二醇酯与铝的复合材料下封装背板。
在本实施例中,下封装背板的柔性较好,可以依据上封装层曲率变化进行相应的弯曲,以使下封装背板可以与上封装层完美贴合。
在本实施例中,下封装背板的厚度可以为0.2mm~5mm。
在本公开一个实施例中,所述胶膜可以包括但不限于聚烯烃类胶膜、聚乙烯醇缩丁醛类胶膜、乙烯-醋酸乙烯共聚物类胶膜、有机硅胶膜。
在本实施例中,上封装层与太阳能电池组之间的胶膜厚度以及下封装背板与太阳能电池组之间的胶膜厚度均可以为0.1mm-1.5mm。
在本公开一个实施例中,在太阳能电池模组应用于车辆时,上封装层101的曲面形状与车辆中的任一覆盖件的曲面形状相一致。
在本实施例中,覆盖件包括但不限于引擎盖板,车顶盖,左、右车侧围,前、后车门,前、后、左、右翼子板,行李箱盖板,发动机 前支撑板,发动机前裙板,前围上盖板,后围板,后围上盖板,前裙板,前框架,前翼子板,车轮挡泥板、后翼子板、后围板、行李仓盖,后围上盖板、顶盖、前围侧板、前围板、前围上盖板、前挡泥板、发动机罩。
在本实施例中,为了使太阳能模组可以接收到足够太阳光的照射,优选将太阳能模组覆盖在车顶盖上。在太阳能模组需要覆盖在车顶盖上时,上封装层的曲面形状与车顶盖的曲面形状相一致。
如图9所示,本公开实施例提供了一种太阳能电池模组的制备方法,该制备方法可以包括如下步骤:
步骤301:制备具有太阳能电池组、胶膜以及设定曲面形状的上封装层;
步骤302:制备出至少一个下封装背板,所述至少一个下封装背板的数量根据所述曲面形状的曲率半径确定;以及
步骤303:将所述太阳能电池组通过所述胶膜按照所述曲面形状铺设在所述上封装层和所述至少一个下封装背板之间,其中,所述至少一个下封装背板的铺设面积不大于所述上封装层的表面积。
根据图9所示的流程图,首先制备太阳能电池组、胶膜以及曲面形状的上封装层。然后制备出一个或多个下封装背板,且下封装背板的数量根据曲面形状的曲率半径确定的。然后将太阳能电池组通过胶膜按照曲面形状铺设在上封装层和各个下封装背板之间,且各个下封装背板的铺设面积不大于上封装层的表面积。通过上述实施例可知,下封装背板的数量是根据曲面形状的曲率半径确定的,因此在上封装层的曲率半径较小时(比如,最小曲率半径为600mm-1200mm),也可以在上封装层上铺装各个下封装背板,从而使得太阳能电池模组可以铺装在曲率半径较小(比如,最小曲率半径为600mm-1200mm)的曲面上。因此,本公开实施例提供的方案可以实现太阳能电池模组能够在曲率半径小的曲面上铺设。
在本公开一个实施例中,上述图9所示流程图中制备至少一个下封装背板,所述至少一个下封装背板的数量根据所述曲面形状的曲率半径确定的步骤302,可以包括:
A1:确定出所述曲面形状的最小曲率半径;
A2:根据所述最小曲率半径确定出所述下封装背板的数量,其中,所述下封装背板的数量随着所述曲面形状的最小曲率半径的增大而减少;以及
A3:根据确定出的所述下封装背板的数量制备出各个所述下封装背板。
在本公开一个实施例中,可以通过以下两种方式实现步骤A2:
方式一:在本公开一个实施例中,根据所述最小曲率半径确定出所述下封装背板的数量的步骤A2,包括:
根据所述曲面形状的曲率半径,利用方程组(1)计算出所述下封装背板的数量;
Figure PCTCN2018097490-appb-000005
其中,所述N表示所述下封装背板的数量;所述R min表示所述曲面形状中最小的曲率半径,单位为mm。
方式二:在本公开一个实施例中,根据所述最小的曲率半径确定出所述下封装背板的数量的步骤A2,包括:
根据所述曲面形状的曲率半径,利用方程组(2)计算出所述下封装背板的数量;
Figure PCTCN2018097490-appb-000006
其中,所述N表示所述下封装背板的数量;所述R min表示所述曲面形状中最小的曲率半径,单位为mm。
在本公开一个实施例中,上述图9所示流程图中制备出至少一个下封装背板,所述至少一个下封装背板的数量根据所述曲面形状的曲率半径确定的步骤302,可以包括:
根据所述曲面形状的最小曲率半径和最大曲率半径确定出所述下封装背板的数量;以及
根据确定出的所述下封装背板的数量制备出各个所述下封装背板。
在本公开一个实施例中,根据所述曲面形状的最小曲率半径和最大曲率半径确定出所述下封装背板的数量的步骤,包括:
根据所述曲面形状的曲率半径,利用方程式(3)计算出所述下封装背板的数量;
Figure PCTCN2018097490-appb-000007
其中,所述N表示所述下封装背板的数量;所述R max表示所述曲面形状中最大的曲率半径;所述R min表示所述曲面形状中最小的曲率半径;所述K表示预设的数量常数;所述
Figure PCTCN2018097490-appb-000008
表示向上取整符号。
在本公开一个实施例中,在所述太阳能电池模组至少包括两个下封装背板时,制备出的所述下封装背板分别具有相同或不同的面积。
在本公开一个实施例中,在所述下封装背板具有不同的面积时,在上封装层的曲面形状的曲率大的区域对应具有较大面积的下封装背板,而上封装层的曲面形状的曲率小的区域对应具有较小面积的下封装背板。
在本公开一个实施例中,在上述图9所示流程图中的将所述太阳能电池组通过所述胶膜按照所述曲面形状铺设在所述上封装层和所述至少一个下封装背板之间的步骤303之后,所述方法还可以进一步包括:
B1:对所述太阳能电池组、所述上封装层以及所述至少一个下封装背板进行抽真空处理,形成待制备模组;以及
B2:对所述待制备模组进行层压处理,形成太阳能电池模组。
在本公开一个实施例中,对所述太阳能电池组、所述上封装层以及所述至少一个下封装背板进行抽真空处理进行抽真空处理的步骤B1,可以包括:
将对所述太阳能电池组、所述上封装层以及所述至少一个下封装背板放置在真空袋中;以及
利用抽真空设备对所述真空袋进行抽真空操作,其中,抽真空操作时长为0.5小时~1小时,使得在抽真空操作之后真空袋内的真空度为-80Kpa~-100KPa,其中所述真空度为相对真空度。
在本实施例中,可以将待制备模组整体放入真空层压机的真空袋 中,在室温下抽真空,其中,抽真空操作时长为时间0.5~1小时,使得在抽真空操作之后真空袋内的真空度为-80Kpa~-100KPa。在抽真空操作时,可以抽出上封装层和下封装背板之间的空气。
根据上述实施例中,由于利用抽真空设备对真空袋进行抽真空操作,抽取掉了上封装层和下封装背板之间的空气,因此太阳能电池模组出现气泡或者空鼓的可能性较低。
在本公开一个实施例中,对所述待制备模组进行层压处理,形成太阳能电池模组的步骤B2可以包括:
利用层压机在温度为130℃~160℃、真空度为-80Kpa~-100KPa的操作条件下对抽真空处理后的待制备模组进行1小时~3小时的层压,其中所述真空度为相对真空度。
在本实施例中,层压机在温度为130℃~160℃、真空度为-80Kpa~-100KPa的操作条件下对抽真空处理后的待制备模组进行1小时~3小时的层压,可以使胶膜充分融化和交联,并填充上封装层、太阳能电池组、胶膜以及各个下封装背板之间的空隙内。
在本公开一个实施例中,上述图9所示流程图中将所述太阳能电池组通过所述胶膜按照所述曲面形状铺设在所述上封装层和所述至少一个下封装背板之间的步骤303可以包括:
将所述太阳能电池组通过所述胶膜按照所述曲面形状铺设在所述上封装层的下表面上,以及将所述至少两个下封装背板按照所述曲面形状依次拼接并通过所述胶膜铺设在所述太阳能电池组的下表面上,形成待制备模组。
在本实施例中,各个下封装背板按照曲面形状依次拼接并通过胶膜铺设在太阳能电池组的下表面上时,任意相邻的两个下封装背板之间具有5mm~30mm的拼接重叠区域。
在本实施例中,在将所述太阳能电池组通过所述胶膜按照所述曲面形状铺设在所述上封装层的下表面上,以及将所述至少两个下封装背板按照所述曲面形状依次拼接并通过所述胶膜铺设在所述太阳能电池组的下表面上之前,所述方法可以进一步包括:将密封胶带贴装在上封装层上,且与上封装层形成铺装区域;然后,将太阳能电池组以 及各个下封装背板铺设在铺装区域内。
在本实施例中,密封胶带可以包括但不限于改性聚氯乙烯密封胶带、氯丁橡胶密封胶带、热塑性三元乙丙橡胶密封胶带、硫化三元乙丙橡胶密封胶带中的任意一种。
在本公开一个实施例中,上述图9所示流程图中制备具有设定曲面形状的上封装层、太阳能电池组以及胶膜的步骤301,可以包括:
制备汇流带、输出端以及多个太阳能电池;
将多个太阳能电池以串联方式、并联方式或串并联混合方式中的任意一种方式,连接成电流输出组;
将电流输出组与所述汇流带相连;以及
将所述电流输出组与外部的储电设备相连。
在本实施例中,任意两个相邻的太阳能电池之间具有设定的间隔距离,其中,所述间隔距离为0~5mm。
在本实施例中,太阳能电池可以包括但不限于铜铟镓硒薄膜太阳能电池、钙钛矿薄膜太阳能电池、有机半导体薄膜太阳能电池、砷化镓GaAs化合物半导体薄膜太阳能电池。
如图10所示,本公开实施例提供了一种车辆,该车辆包括:上述任一实施例所述的太阳能电池模组501,并且所述车辆的覆盖件的外表面上覆盖有所述太阳能电池模组501。
在本实施例中,如图10所示,车辆40的车顶盖401上覆盖有太阳能电池模组501(图中阴影部分所示的为太阳能电池模组501)。
在本实施例中,图10中所示的太阳能电池模组的曲面形状与车顶的曲面形状一致。根据曲面包括的各个曲率半径,确定出曲面形状中的最小曲率半径为1000mm。比如,在图12和图13中示出曲率半径R1000、R1094、R3834、R2061、R2935、R3812以及各个曲率半径在曲面形状中对应的区域。因此,根据方程组(1)设定该太阳能电池模组具有三个下封装背板,且三个下封装背板的总铺设面积与上封装层的内表面积相同。
下面参考图11至图13对覆盖在车顶的太阳能电池模组进行说明。太阳能电池模组包括上封装层5011、3个下封装背板5012、胶膜5013 以及太阳能电池组5014。图12中短粗线表示的A点和B点均为相邻的封装背板之间的拼接部分。
具体地,图11为该太阳能电池模组的俯视图。从图11中可以看出,铺装的太阳能电池组的中心与上封装层的中心重合,且太阳能电池组的边缘C均与上封装板的边缘D之间具有距离a。该距离a可以根据业务要求确定。比如距离a为40mm(需要注意的是,40mm仅为一个实例)。从图11中还可以看出,该太阳能电池模组对应的投影平面的宽度(也就是图11中M1点到M2点之间的水平距离)可以根据车顶的曲面形状确定出。比如M1点到M2点之间的水平距离为1017mm、该太阳能电池模组对应的投影平面的长度(也就是图11中M2点到M3点之间的水平距离)可以根据车顶的曲面形状确定出。比如M2点到M3点之间的水平距离为1395mm。(需要注意的是,1017mm以及1395mm均仅为一个实例)。
具体地,图12为该太阳能电池模组的正视图。从图12中可以看出,太阳能电池模组的曲面最高点与最低点之间的高度(也就是图12中H1点到H2点之间的垂直距离)可以根据车顶的曲面形状确定出。比如H1点到H2点之间的垂直距离可以为111mm(需要注意的是,111mm仅为一个实例)。上封装层的曲面最高点与最低点之间的高度(也就是图12中H1点到H3点之间的垂直距离)可以根据车顶的曲面形状确定出。比如H1点到H3点之间的垂直距离可以为79mm(需要注意的是,79mm仅为一个实例)。
具体地,图13为该太阳能电池模组的左视图。
本公开各个实施例至少具有如下有益效果:
在本公开实施例中,该太阳能电池模组包括太阳能电池组、胶膜、曲面形状的上封装层以及一个或多个下封装背板。下封装背板的数量是根据曲面形状的曲率半径确定出来的。太阳能电池组通过胶膜按照曲面形状铺设在上封装层和各个下封装背板之间,且各个下封装背板的铺设面积不大于上封装层的表面积。该表面积可以为上封装层中与太阳能电池组相接触一侧的表面积。比如,各个下封装背板的铺设面积与上封装层的表面积相同,或,各个下封装背板的铺设面积稍小于 上封装层的表面积。通过上述实施例可知,下封装背板的数量是根据曲面形状的曲率半径确定出来的,因此在上封装层的曲率半径较小时(比如,最小曲率半径为600mm-1200mm),也可以在上封装层上铺装各个下封装背板,从而使得太阳能电池模组可以铺装在曲率半径较小(比如,最小曲率半径为600mm-1200mm)的曲面上。因此,本公开实施例提供的方案可以实现太阳能电池模组能够在曲率半径小的曲面上铺设。
在本公开实施例中,下封装背板的数量可以随着曲面形状的最小曲率半径的增大而减少,这样可以减小单个下封装背板上的曲率变化,从而降低下封装背板上形成褶皱或者波浪型纹路的可能性。
在本公开实施例中,由于下封装背板的数量是根据曲面形状的最小曲率半径确定出的,因此在铺装各个下封装背板时可以降低形成褶皱或者波浪型纹路的可能性,从而提高了太阳能电池的可靠性和安全性。
在本公开实施例中,在最小曲率半径大于或等于600时,可以根据最小曲率半径确定出下封装背板的数量。因此在最小曲率半径大于或等于600时,铺装与最小曲率半径相匹配的数量个下封装背板时可以降低形成褶皱或者波浪型纹路的可能性,从而提高了太阳能电池的可靠性和安全性。
本公开实施例中,下封装背板的数量根据曲面形状中最小曲率半径和最大曲率半径确定。因此可以在弧度较大的曲面中铺设面积相对较小的下封装背板,从而降低下封装背板铺设时出现褶皱或者波浪型纹路的可能性。
在本公开实施例中,各个下封装背板均具有相同的面积,因此下封装背板可以批量生产,从而可以提高下封装背板的生产效率。
在本公开实施例中,各个下封装背板具有不同的面积。在上封装层的曲面形状的曲率大的区域对应具有较大面积的下封装背板,而上封装层的曲面形状的曲率小的区域对应具有较小面积的下封装背板。因此可以更有效的降低形成褶皱或波纹的可能性,从而提升了太阳能电池的可靠性。
在本公开实施例中,任意相邻的两个下封装背板之间具有5mm~30mm的拼接重叠区域。该重叠区域不仅可以降低出现太阳能电池组裸露的可能性,而且可以降低下封装背板的浪费量。
在本公开实施例中,由于多个太阳能电池以串联方式、并联方式或串并联混合方式中的任意一种方式连接成电流输出组。因此,业务应用较为灵活。
在本公开实施例中,多个太阳能电池以串并联混合方式连接成电流输出组。由于各个太阳能电池串并联混合,因此在太阳能电池模组应用时,即使部分太阳能电池被遮挡,未遮挡部分的太阳能电池仍能够稳定输出。
在本公开实施例中,任意两个相邻的太阳能电池之间具有0~5mm的间隔距离。因此可以根据不同的空间条件来布置太阳能电池,业务适用性较强。
在本公开实施例中,由于太阳能电池组以及各个下封装背板粘接铺设在密封胶带与上封装层形成的铺装区域内,因此在太阳能电池模组使用过程中可以降低太阳能电池组受湿气等侵蚀等可能性,从而提升了太阳能电池模组可靠性。
在本公开实施例中,由于利用抽真空设备对真空袋进行抽真空操作,抽取掉了上封装层和下封装背板之间的空气,因此太阳能电池模组出现气泡或者空鼓的可能性较低。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
需要说明的是,在本文中,诸如第一和第二之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的过程、 方法、物品或者设备中还存在另外的相同因素。
最后需要说明的是:以上所述仅为本公开的较佳实施例,仅用于说明本公开的技术方案,并非用于限定本公开的保护范围。凡在本公开的精神和原则之内所做的任何修改、等同替换、改进等,均包含在本公开的保护范围内。

Claims (29)

  1. 一种太阳能电池模组,包括:太阳能电池组、胶膜、具有设定曲面形状的上封装层以及至少一个下封装背板,其中
    所述下封装背板的数量是根据所述曲面形状的曲率半径确定的;并且
    所述太阳能电池组通过所述胶膜按照所述曲面形状铺设在所述上封装层和所述至少一个下封装背板之间,且所述至少一个下封装背板的铺设面积不大于所述上封装层的表面积。
  2. 根据权利要求1所述的太阳能电池模组,其中
    所述下封装背板的数量与所述曲面形状的曲率半径之间的关系满足:
    所述下封装背板的数量随着所述曲面形状的最小曲率半径的增大而减少。
  3. 根据权利要求2所述的太阳能电池模组,其中
    所述下封装背板的数量与所述曲面形状的曲率半径之间的关系满足第一方程组:
    Figure PCTCN2018097490-appb-100001
    其中,所述N表示所述下封装背板的数量;所述R min表示所述曲面形状中最小的曲率半径,单位为mm。
  4. 根据权利要求2所述的太阳能电池模组,其中
    所述下封装背板的数量与所述曲面形状的曲率半径之间的关系满足第二方程组:
    Figure PCTCN2018097490-appb-100002
    其中,所述N表示所述下封装背板的数量;所述R min表示所述曲面形状中最小的曲率半径,单位为mm。
  5. 根据权利要求1所述的太阳能电池模组,其中
    所述下封装背板的数量根据所述曲面形状的最小曲率半径和最大曲率半径确定。
  6. 根据权利要求5所述的太阳能电池模组,其中
    所述下封装背板的数量与所述曲面形状的曲率半径之间满足第三方程式:
    Figure PCTCN2018097490-appb-100003
    其中,所述N表示所述下封装背板的数量;所述R max表示所述曲面形状中最大的曲率半径;所述R min表示所述曲面形状中最小的曲率半径;所述K表示预设的数量常数;所述
    Figure PCTCN2018097490-appb-100004
    表示向上取整符号。
  7. 根据权利要求1至6任一所述的太阳能电池模组,其中
    所述太阳能电池模组至少包括两个下封装背板,并且每一个所述下封装背板分别具有相同或不同的面积;
    和/或,
    所述太阳能电池模组至少包括两个下封装板,并且任意相邻的两个下封装背板之间具有5mm~30mm的拼接重叠区域。
  8. 根据权利要求7所述的太阳能电池模组,其中
    所述每一个下封装背板具有不同的面积;并且
    所述上封装层的曲面形状中曲率半径大的区域对应具有较大面积的所述下封装背板,而所述上封装层的曲面形状中曲率半径小的区域对应具有较小面积的所述下封装背板。
  9. 根据权利要求1所述的太阳能电池模组,其中
    所述太阳能电池组包括汇流带、输出端以及多个太阳能电池;
    所述多个太阳能电池以串联方式、并联方式或串并联混合方式中的任意一种方式,连接成电流输出组;
    所述电流输出组与所述汇流带相连,用于将自身产生的电流传输给所述汇流带;
    所述汇流带用于将所述电流输出组传输来的电流传输给所述输出端;并且
    所述输出端与外部的储电设备相连,用于将所述汇流带传输来的电流传输给所述储电设备。
  10. 根据权利要求9所述的太阳能电池模组,其中
    所述多个太阳能电池以串并联混合方式连接成所述电流输出组;
    所述多个太阳能电池形成至少两个电池串,其中,每一个所述电池串包括处于串联状态的至少两个太阳能电池;
    每一个所述电池串中位于首位的太阳能电池的正极与所述汇流带相连,且位于末位的太阳能电池的负极与所述汇流带相连,使得所述至少两个电池串以并联方式连接。
  11. 根据权利要求9所述的太阳能电池模组,其中
    任意两个相邻的太阳能电池之间具有设定的距离,其中,所述距离为0~5mm。
  12. 根据权利要求9所述的太阳能电池模组,其中
    所述太阳能电池,包括:铜铟镓硒薄膜太阳能电池、钙钛矿薄膜太阳能电池、有机半导体薄膜太阳能电池、砷化镓GaAs化合物半导体薄膜太阳能电池中的任意一种或多种。
  13. 根据权利要求1至6以及8至12中任一所述的太阳能电池模组,还包括:密封胶带,用于贴装在所述上封装层上,且与所述上封装层形成铺装区域,其中
    所述太阳能电池组以及所述至少一个下封装背板铺设在所述铺装 区域内。
  14. 根据权利要求13所述的太阳能电池模组,其中
    所述密封胶带,包括:改性聚氯乙烯密封胶带、氯丁橡胶密封胶带、热塑性三元乙丙橡胶密封胶带、硫化三元乙丙橡胶密封胶带中的任意一种或多种。
  15. 根据权利要求1至6以及8至12中任一所述的太阳能电池模组,其中
    所述上封装层,包括:普通玻璃上封装层、钢化玻璃上封装层、夹胶玻璃上封装层、聚苯乙烯上封装层、聚甲基丙烯酸甲酯上封装层、聚碳酸酯上封装层、聚对苯二甲酸乙二醇酯上封装层、乙烯-四氟乙烯共聚物上封装层中的任意一种或多种;
    和/或,
    所述下封装背板,包括无机玻璃下封装背板、不锈钢下封装背板、乙烯/乙烯醇共聚物下封装背板、聚对苯二甲酸乙二醇酯下封装背板、聚对苯二甲酸乙二醇酯与铝的复合材料下封装背板中的任意一种或多种;
    和/或,
    所述胶膜,包括:聚烯烃类胶膜、聚乙烯醇缩丁醛类胶膜、乙烯-醋酸乙烯共聚物类胶膜、有机硅胶膜中的任意一种或多种。
  16. 根据权利要求1至6以及8至12中任一所述的太阳能电池模组,其中
    所述上封装层的厚度为0.5mm~8mm;
    和/或,
    所述下封装背板的厚度为0.2mm~5mm;
    和/或,
    所述胶膜的厚度为0.1mm~1.5mm。
  17. 根据权利要求1至6以及8至12中任一所述的太阳能电池模组,其中
    所述太阳能电池模组应用于车辆,并且
    所述上封装层的曲面形状与所述车辆的覆盖件的曲面形状相一致。
  18. 一种权利要求1至17任一所述的太阳能电池模组的制备方法,包括以下步骤:
    制备具有太阳能电池组、胶膜以及设定曲面形状的上封装层;
    制备出至少一个下封装背板,所述至少一个下封装背板的数量根据所述曲面形状的曲率半径确定;以及
    将所述太阳能电池组通过所述胶膜按照所述曲面形状铺设在所述上封装层和所述至少一个下封装背板之间,其中,所述至少一个下封装背板的铺设面积不大于所述上封装层的表面积。
  19. 根据权利要求18所述的方法,其中,所述制备出至少一个下封装背板,所述至少一个下封装背板的数量根据所述曲面形状的曲率半径确定的步骤,包括:
    确定出所述曲面形状的最小曲率半径;
    根据所述最小曲率半径确定出所述下封装背板的数量,其中,所述下封装背板的数量随着所述曲面形状的最小曲率半径的增大而减少;以及
    根据确定出的所述下封装背板的数量制备出各个所述下封装背板。
  20. 根据权利要求19所述的方法,其中,所述根据所述最小的曲率半径确定出所述下封装背板的数量的步骤,包括:
    根据所述曲面形状的曲率半径,利用第一方程组计算出所述下封装背板的数量;
    所述第一方程组包括:
    Figure PCTCN2018097490-appb-100005
    其中,所述N表示所述下封装背板的数量;所述R min表示所述曲面形状中最小的曲率半径,单位为mm。
  21. 根据权利要求19所述的方法,其中,所述根据所述最小的曲率半径确定出所述下封装背板的数量的步骤,包括:
    根据所述曲面形状的曲率半径,利用第二方程组计算出所述下封装背板的数量;
    所述第二方程组包括:
    Figure PCTCN2018097490-appb-100006
    其中,所述N表示所述下封装背板的数量;所述R min表示所述曲面形状中最小的曲率半径,单位为mm。
  22. 根据权利要求18所述的方法,其中,所述制备出至少一个下封装背板,所述至少一个下封装背板的数量根据所述曲面形状的曲率半径确定的步骤,包括:
    根据所述曲面形状的最小曲率半径和最大曲率半径确定出所述下封装背板的数量;以及
    根据确定出的所述下封装背板的数量制备出各个所述下封装背板。
  23. 根据权利要求22所述的方法,其中,所述根据所述曲面形状中最小的曲率半径和最大的曲率半径确定出所述下封装背板的数量的步骤,包括:
    根据所述曲面形状的曲率半径,利用第三方程式计算出所述下封装背板的数量;
    所述第三方程式包括:
    Figure PCTCN2018097490-appb-100007
    其中,所述N表示所述下封装背板的数量;所述R max表示所述曲面形状中最大的曲率半径;所述R min表示所述曲面形状中最小的曲率半径;所述K表示预设的数量常数;所述
    Figure PCTCN2018097490-appb-100008
    表示向上取整符号。
  24. 根据权利要求18至23任一所述的方法,其中
    在所述太阳能电池模组至少包括两个下封装背板时,制备出的所述下封装背板分别具有相同或不同的面积。
  25. 根据权利要求24所述的方法,其中
    在所述下封装背板具有不同的面积时,在上封装层的曲面形状的曲率大的区域对应具有较大面积的下封装背板,而上封装层的曲面形状的曲率小的区域对应具有较小面积的下封装背板。
  26. 根据权利要求18至23、25中任一所述的方法,其中
    在所述将所述太阳能电池组通过所述胶膜按照所述曲面形状铺设在所述上封装层和所述至少一个下封装背板之间之后,所述方法进一步包括:
    对所述太阳能电池组、所述上封装层以及所述至少一个下封装背板进行抽真空处理,形成待制备模组;以及
    对所述待制备模组进行层压处理,形成太阳能电池模组。
  27. 根据权利要求26所述的方法,其中
    所述对所述太阳能电池组、所述上封装层以及所述至少一个下封装背板进行抽真空处理进行抽真空处理的步骤,包括:
    将对所述太阳能电池组、所述上封装层以及所述至少一个下封装背板放置在真空袋中;以及
    利用抽真空设备对所述真空袋进行抽真空操作,其中,抽真空操作时长为0.5小时~1小时,使得在抽真空操作之后真空袋内的真空度为-80Kpa~-100Kpa,其中所述真空度为相对真空度。
  28. 根据权利要求26所述的方法,其中
    所述对所述待制备模组进行层压处理,形成太阳能电池模组的步骤,包括:
    利用层压机在温度为130℃~160℃、真空度为-80Kpa~-100KPa的操作条件下对抽真空处理后的待制备模组进行1小时~3小时的层压,其中,所述真空度为相对真空度。
  29. 一种车辆,包括权利要求1至17任一所述的太阳能电池模组,并且
    在所述车辆的覆盖件的外表面上覆盖有所述太阳能电池模组。
PCT/CN2018/097490 2018-04-12 2018-07-27 一种太阳能电池模组、制备方法及车辆 WO2019196256A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820520854.6 2018-04-12
CN201810327185.5A CN110391309A (zh) 2018-04-12 2018-04-12 一种太阳能电池模组、制备方法及车辆
CN201820520854.6U CN208093569U (zh) 2018-04-12 2018-04-12 一种太阳能电池模组及车辆
CN201810327185.5 2018-04-12

Publications (1)

Publication Number Publication Date
WO2019196256A1 true WO2019196256A1 (zh) 2019-10-17

Family

ID=63244382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097490 WO2019196256A1 (zh) 2018-04-12 2018-07-27 一种太阳能电池模组、制备方法及车辆

Country Status (6)

Country Link
US (1) US20190319145A1 (zh)
EP (1) EP3553831A1 (zh)
JP (1) JP2019186511A (zh)
KR (1) KR20190119496A (zh)
BR (1) BR202018069244U2 (zh)
WO (1) WO2019196256A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130080A1 (ja) * 2016-01-29 2017-08-03 株式会社半導体エネルギー研究所 電力制御システム
KR102137004B1 (ko) 2019-11-22 2020-07-23 한밭대학교 산학협력단 오염방치 텍스쳐링 층이 형성된 태양전지 모듈, 태양전지 모듈에 형성된 오염방지 텍스쳐링 층 형성 방법, 텍스쳐링 층 형성에 사용되는 열처리 장치
JP7430781B2 (ja) * 2020-12-17 2024-02-13 湖北万度光能有限責任公司 印刷可能な曲面ペロブスカイト太陽電池及其製造方法
NL2028845B1 (en) * 2021-07-26 2023-01-31 Atlas Technologies Holding Bv Solar module comprising solar cells mounted on two sheets of back contact foil.
CN114361278A (zh) * 2021-12-31 2022-04-15 锦州阳光能源有限公司 一种新型太阳能组件封装结构
WO2023154934A2 (en) * 2022-02-13 2023-08-17 Aptera Motors Corp. Plant providing continuous process for making laminated solar panels
CN115832089B (zh) * 2022-12-29 2024-02-02 苏州馥昶空间技术有限公司 一种空间柔性太阳电池阵及其封装方法和应用
CN116314410B (zh) * 2023-05-17 2023-08-22 赫里欧新能源有限公司 太阳能板的封装结构及其封装方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649743B1 (ko) * 2005-10-20 2006-11-27 삼성전기주식회사 Cnt를 포함하는 태양전지 및 그 제조방법
CN202624389U (zh) * 2012-04-18 2012-12-26 张飞虎 太阳能车顶
CN103441169A (zh) * 2013-08-22 2013-12-11 绍兴合田新能源有限公司 一种柔性可弯曲晶体硅太阳能电池板
CN104282775A (zh) * 2013-07-03 2015-01-14 新日光能源科技股份有限公司 背板串接型太阳能电池及其模块
CN205186299U (zh) * 2015-11-04 2016-04-27 江苏阿波罗太阳能汽车股份有限公司 一种太阳能电动汽车专用太阳能车顶
CN205666790U (zh) * 2016-06-12 2016-10-26 杭州索乐光电有限公司 一种可折叠和拼接的太阳能电池组件
CN206023684U (zh) * 2016-08-31 2017-03-15 苏州市乐能光伏有限公司 太阳能电池组件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2589529B2 (ja) * 1988-02-01 1997-03-12 日本板硝子株式会社 曲面太陽電池モジュールの製造方法
JP2005317714A (ja) * 2004-04-28 2005-11-10 Nakajima Glass Co Inc 太陽電池モジュール及びその製造方法
CN102496650B (zh) * 2011-11-24 2015-01-21 奇瑞汽车股份有限公司 一种太阳能电池组件的制作方法
JP5671707B2 (ja) * 2012-11-12 2015-02-18 パナソニックIpマネジメント株式会社 太陽電池モジュール
WO2014109281A1 (ja) * 2013-01-10 2014-07-17 三洋電機株式会社 太陽電池モジュールの製造方法
CN104037254B (zh) * 2014-06-24 2017-01-25 中山大学 一种多面双玻光伏组件及其制备工艺
WO2018150794A1 (ja) * 2017-02-17 2018-08-23 パナソニックIpマネジメント株式会社 太陽電池モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649743B1 (ko) * 2005-10-20 2006-11-27 삼성전기주식회사 Cnt를 포함하는 태양전지 및 그 제조방법
CN202624389U (zh) * 2012-04-18 2012-12-26 张飞虎 太阳能车顶
CN104282775A (zh) * 2013-07-03 2015-01-14 新日光能源科技股份有限公司 背板串接型太阳能电池及其模块
CN103441169A (zh) * 2013-08-22 2013-12-11 绍兴合田新能源有限公司 一种柔性可弯曲晶体硅太阳能电池板
CN205186299U (zh) * 2015-11-04 2016-04-27 江苏阿波罗太阳能汽车股份有限公司 一种太阳能电动汽车专用太阳能车顶
CN205666790U (zh) * 2016-06-12 2016-10-26 杭州索乐光电有限公司 一种可折叠和拼接的太阳能电池组件
CN206023684U (zh) * 2016-08-31 2017-03-15 苏州市乐能光伏有限公司 太阳能电池组件

Also Published As

Publication number Publication date
US20190319145A1 (en) 2019-10-17
KR20190119496A (ko) 2019-10-22
JP2019186511A (ja) 2019-10-24
EP3553831A1 (en) 2019-10-16
BR202018069244U2 (pt) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2019196256A1 (zh) 一种太阳能电池模组、制备方法及车辆
US20210249549A1 (en) Lightweight and flexible photovoltaic module comprising a front layer consisting of a polymer and a rear layer consisting of a composite material
JP2004319800A (ja) 太陽電池モジュール
US20060207645A1 (en) Method of manufacturing a solor cell module
JP2006310680A (ja) 薄膜太陽電池モジュール
WO2017177829A1 (zh) 双玻组件
US20180122972A1 (en) Semi-flexible solar module using crystaline solar cells and method for fabrication thereof
JP2002039631A (ja) 光熱ハイブリッドパネル及びそれを用いたハイブリッドパネル本体及び光熱ハイブリッドパネルの製造方法
US20140182651A1 (en) Integrated junction insulation for photovoltaic module
JPH0945951A (ja) 太陽電池モジュール
CN114530513A (zh) 改进的柔性且轻的光伏模块
JP2014013876A (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
CN102315301A (zh) 轻型光伏组件
JP2000114569A (ja) 太陽電池モジュール
JP2006278702A (ja) 太陽電池モジュール及びその製造方法
JP2006295145A (ja) 太陽電池モジュールの製造方法
JP2003264308A (ja) 薄膜太陽電池モジュールとその製造方法
CN114695586A (zh) 一种bipv光伏组件及其制备方法
CN111403516A (zh) 太阳能电池组件及太阳能电池组件的制备方法
CN208093569U (zh) 一种太阳能电池模组及车辆
CN110391309A (zh) 一种太阳能电池模组、制备方法及车辆
US11545593B2 (en) Encapsulation for solar cell and method for encapsulating solar cell
CN202307947U (zh) 轻型光伏组件
TWI650871B (zh) 疊片太陽能電池模組之封裝材與太陽能電池模組之製造方法
CN117637887B (zh) 一种光伏组件及光伏组件的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18914141

Country of ref document: EP

Kind code of ref document: A1