WO2019196221A1 - 3d打印线路板的方法 - Google Patents

3d打印线路板的方法 Download PDF

Info

Publication number
WO2019196221A1
WO2019196221A1 PCT/CN2018/095287 CN2018095287W WO2019196221A1 WO 2019196221 A1 WO2019196221 A1 WO 2019196221A1 CN 2018095287 W CN2018095287 W CN 2018095287W WO 2019196221 A1 WO2019196221 A1 WO 2019196221A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive medium
liquid conductive
insulating layer
printing
printer
Prior art date
Application number
PCT/CN2018/095287
Other languages
English (en)
French (fr)
Inventor
胡军辉
李嘉
Original Assignee
深圳市百柔新材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市百柔新材料技术有限公司 filed Critical 深圳市百柔新材料技术有限公司
Priority to DE112018007453.6T priority Critical patent/DE112018007453T5/de
Publication of WO2019196221A1 publication Critical patent/WO2019196221A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/107Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/098Special shape of the cross-section of conductors, e.g. very thick plated conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0759Forming a polymer layer by liquid coating, e.g. a non-metallic protective coating or an organic bonding layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material

Definitions

  • This application belongs to the technical field of circuit board manufacturing, and more particularly to a method of 3D printed circuit board.
  • the purpose of the present application is to provide a method for a 3D printed circuit board, which aims to solve the technical problem that the thickness of the printed circuit can only be less than 5 ⁇ m in the prior art, resulting in excessive resistance of the line.
  • the application provides a method for a 3D printed circuit board, comprising the following steps:
  • step S10 includes:
  • the first wiring pattern is formed by engraving the first wiring pattern on the cured initial insulating layer using a laser engraving device.
  • the lateral engraving resolution of the laser engraving apparatus is less than or equal to 35 ⁇ m, and the longitudinal resolution of the laser engraving apparatus is less than or equal to 35 ⁇ m.
  • step S20 includes:
  • first layer of the liquid conductive medium and the second layer of the liquid conductive medium have the same thickness.
  • step S20 the method further includes the steps of:
  • Step S40 Step S30 is repeated until printing of all line patterns is completed.
  • the via hole is engraved by a laser engraving device.
  • liquid conductive medium is cured by optical radiation.
  • the lateral resolution of the 3D printer is less than or equal to 35 ⁇ m, and the vertical resolution of the 3D printing device is less than or equal to 35 ⁇ m.
  • the 3D printer has an energy radiation function.
  • curing the liquid conductive medium in step S20 comprises: the 3D printer solidifies the printed liquid conductive medium in real time by energy radiation, the liquid conductive medium forms a viscoelastic state, and then is completely cured by optical radiation.
  • the liquid conductive medium is a nano conductive ink having a plurality of nanoparticles.
  • the size of the nanoparticles ranges from 5 nm to 50 nm
  • the weight percentage of the nanoparticles in the nano conductive ink ranges from 10 wt.% to 50. Wt.%.
  • nanoparticles are one or more of silver nano, copper nano, silver nano alloy or copper nano alloy.
  • the nano conductive ink has a resistivity after curing of less than 10 ⁇ cm and a surface hardness of more than 2H.
  • the method of the 3D printed circuit board provided by the present application has the beneficial effects that the method of the 3D printed wiring board of the present application pre-prints a first insulating layer having a thickness greater than or equal to 10 ⁇ m on the substrate, compared with the prior art.
  • FIG. 1 is a structural diagram of a first insulating layer after printing an embodiment of the present application
  • FIG. 2 is a structural view showing a portion of a liquid conductive medium printed in a first line groove according to an embodiment of the present application
  • FIG. 3 is a structural diagram of a first line groove filled with a liquid conductive medium according to an embodiment of the present application
  • FIG. 4 is a structural diagram of a second insulating layer after printing an embodiment of the present application.
  • FIG. 5 is a structural diagram of printing a portion of a liquid conductive medium in a via hole according to an embodiment of the present application
  • FIG. 6 is a structural diagram of filling a conductive medium in a via hole in an embodiment of the present application.
  • FIG. 7 is a structural diagram of a third insulating layer after printing an embodiment of the present application.
  • FIG. 8 is a structural diagram of printing a portion of a liquid conductive medium in a second line groove according to an embodiment of the present application.
  • FIG. 9 is a structural diagram of a second line groove filled with a liquid conductive medium according to an embodiment of the present application.
  • first, second, and the like are used for the purpose of description only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • the method for providing a 3D printed circuit board includes the following steps:
  • the method for 3D printed circuit board provided by the present application compares with the prior art, the method for 3D printed circuit board of the present application pre-prints a first insulating layer 2 having a thickness greater than or equal to 10 ⁇ m on the substrate 1, and then The first line groove 20 in an insulating layer 2 prints a liquid conductive medium, and the liquid conductive medium is solidified to form a first line pattern 21 having a thickness greater than or equal to 10 ⁇ m, which increases the thickness of the printing line and reduces the line resistance. It can meet the technical requirements of most electronic circuit boards.
  • step S10
  • the lateral resolution of the 3D printing apparatus is less than or equal to 35 ⁇ m
  • the longitudinal resolution of the 3D printing apparatus is less than or equal to 35 ⁇ m
  • the lateral and longitudinal directions thereof are perpendicular to each other.
  • the 3D printing device has an energy radiation function, and the printed liquid material can be solidified in real time during printing, so that a circuit board with high printing precision can be realized by using an ultra-low viscosity liquid material.
  • the first insulating layer 2 is formed by spraying a liquid insulating material through a 3D printer, and the liquid insulating material has a curing property, and can rapidly increase the viscosity to a viscoelastic state by self-cure under energy radiation, and then pass the heat for more than 10 minutes. Curing, the insulating material is completely cured to form the first insulating layer 2.
  • the insulating material is free of volatile organic solvents, and small molecular weight organic monomers are bonded during photocuring, and no waste emissions are generated in subsequent industries.
  • the thickness of the first insulating layer 2 is greater than or equal to 10 ⁇ m, and accordingly, the depth of the first wiring groove 20 is greater than or equal to 10 ⁇ m.
  • the first insulating layer 2 has a first line groove 20, and when the first insulating layer 2 is printed, the first line pattern 21 can be input into the 3D printing device to directly print out the first line recess.
  • the first insulating layer 2 of the trench 20 ; of course, the following steps may also be included:
  • the first wiring pattern 21 is engraved on the cured initial insulating layer using a laser engraving device to form the first insulating layer 2.
  • the initial insulating layer completely covers the substrate 1.
  • the initial insulating layer does not have the first line groove 20, and the initial insulating layer can be completely cured by thermal radiation.
  • the first line pattern 21 is input into the laser engraving device.
  • the laser engraving device engraves the output first line pattern 21, and removes the insulating material corresponding to the first line pattern 21 on the initial insulating layer, thereby forming the first insulating layer 2 having the first line groove 20.
  • the lateral engraving resolution of the laser engraving device is less than or equal to 35 ⁇ m
  • the longitudinal engraving resolution of the laser engraving device is less than or equal to 35 ⁇ m
  • the lateral and longitudinal directions thereof are perpendicular to each other.
  • step S20
  • the 3D printer When the 3D printer ejects the liquid conductive medium into the first line groove 20, the 3D printer can solidify the printed liquid conductive medium in real time by energy radiation, and the liquid conductive medium forms a viscoelastic state, and then is completely cured by the optical radiation.
  • the liquid conductive medium may be a nano conductive ink, the nano conductive ink comprises a plurality of nanoparticles, the size of the nanoparticles ranges from 5 nm to 50 nm, and the weight percentage of the nanoparticles in the nano conductive ink ranges from 10 Wt.% to 50 wt.% to meet the conductivity of nano-conductive inks.
  • the nanoparticles may be one or more of silver nano, copper nano, silver nano alloy, and copper nano alloy.
  • the resistivity of the nano-conductive ink after curing is less than 10 ⁇ cm, the surface hardness is greater than 2H, and the adhesion to the substrate is greater than 10N.
  • a first line pattern 21 is formed.
  • the thickness of the first line pattern 21 is the same as the thickness of the first insulating layer 2, and is greater than or equal to 10 ⁇ m, so that the resistance of the line pattern is higher. Small, to meet the design requirements of the circuit board.
  • the first line groove 20 may be filled by one printing, or the first line groove 20 may be filled by multiple printing. Specifically, filling the first line groove 20 multiple times includes the following steps:
  • the first layer of liquid conductive medium is printed into the first line groove 20, and the first layer of liquid conductive medium is cured;
  • the thickness of the first layer of the conductive medium and the second layer of the conductive medium are not limited herein, and the thickness of the first layer of the conductive medium and the second layer of the conductive medium are preferably equal according to the printing parameter setting of the 3D printer. In order to fill the first line groove 20, the number of times of printing of the 3D printer is not limited herein.
  • step S20 please refer to FIG. 4 to FIG. 9, which further includes the following steps:
  • the liquid conductive medium is solidified to form a conductive column 31;
  • the liquid conductive medium is solidified to form the second line pattern 41;
  • Step S40 Step S30 is repeated until printing of all line patterns is completed.
  • steps S10 to S20 printing of the first line pattern 21 is completed, step S30 completes printing of the second line pattern 41, and step S40 completes printing of the third line pattern and printing of the fourth line pattern until All line graphics are printed.
  • the method of printing a wiring board realizes printing of a multilayer circuit board in which line patterns of respective layers are each greater than or equal to 10 ⁇ m.
  • step S30 referring to FIG. 4, when the second insulating layer 3 is printed, the second insulating layer 3 having the via holes 30 can be directly printed; or the first insulating layer 2 and the first line pattern 21 can be completely completed first. Covering, the via hole 30 is engraved using a laser engraving device. The via hole 30 is opposed to the first line pattern 21, and the first line pattern 21 can be exposed through the via hole 30.
  • the via hole 30 can be directly filled by one printing; or the filling via 30 can be filled and printed multiple times, and the first line groove 20 is filled with multiple printings.
  • the steps are the same, specifically: referring to FIG. 5, the first layer of liquid conductive medium is printed in the through hole 30 to solidify the first layer of liquid conductive medium; the second layer of liquid conductive medium is printed in the through hole 30 to solidify the second layer of liquid.
  • Conductive medium Referring to FIG. 6, the above steps are repeated until the liquid conductive medium fills the via hole 30 to form the conductive pillar 31.
  • the shape and number of the conductive columns 31 are not limited herein.
  • the second insulating layer 3 having the second line groove 40 may be directly printed; or the second insulating layer 3 and the conductive pillar 31 may be completely covered, and then the laser is used.
  • the engraving device engraves the second line groove 40.
  • the second line groove 40 is opposite to the conductive post 31 to expose the conductive post 31 to form an electrical connection between the first line pattern 21 and the second line pattern 41.
  • the second line groove 40 can be directly filled by one printing; or the second line groove 40 can be filled and printed multiple times, and the printing is repeated multiple times.
  • the steps of filling the first line groove 20 are the same, specifically: referring to FIG. 8, printing a first layer of liquid conductive medium into the second line groove 40, curing the first layer of liquid conductive medium; toward the second line groove 40 The second layer of liquid conductive medium is printed to cure the second layer of liquid conductive medium; referring to FIG. 9, the above steps are repeated until the liquid conductive medium fills the second line groove 40 to form the second line pattern 41.
  • a wiring board having a multilayer wiring pattern is formed by repeating step S30.

Abstract

一种3D打印线路板的方法,包括步骤:使用3D打印机在基板(1)上打印并固化形成第一绝缘层(1),其中第一绝缘层(1)的厚度大于或者等于10μm,第一绝缘层(1)具有与第一线路图形(21)相对应的第一线路凹槽(20);使用3D打印机向第一线路凹槽(20)中打印填满液态导电介质并固化液态导电介质,液态导电介质固化后形成所述第一线路图形(21)。这种3D打印线路板的方法可打印形成厚度大于或者等于10μm的线路图形,增大了打印线路的厚度,减小了线路电阻。

Description

3D打印线路板的方法 技术领域
本申请属于线路板制造技术领域,更具体地说,是涉及一种3D打印线路板的方法。
背景技术
目前对于电子线路板的大规模生产,通常采用曝光显影、化学刻蚀的方法制造,但是该种方法材料损耗大、环境污染严重、设备和工艺复杂且生产良率低。随着增材制造设备和材料的不断进步,市场上已经出现了一些3D打印电子线路板的技术和设备。但目前使用3D打印设备打印线路的厚度只能小于5µm,导致线路的电阻过大,不满足大多数电子线路板的技术要求。
技术问题
本申请的目的在于提供一种3D打印线路板的方法,旨在解决现有技术中,打印线路的厚度只能小于5µm,导致线路的电阻过大的技术问题。
技术解决方案
本申请提供了一种3D打印线路板的方法,包括如下步骤:
S10:使用3D打印机在基板上打印并固化形成第一绝缘层,其中所述第一绝缘层的厚度大于或者等于10µm,所述第一绝缘层具有与第一线路图形相对应的第一线路凹槽;
S20:使用3D打印机向所述第一线路凹槽中打印填满液态导电介质并固化液态导电介质,液态导电介质固化后形成所述第一线路图形。
进一步地,步骤S10包括:
使用3D打印机在基板上打印完全覆盖基板的初始绝缘层;
固化所述初始绝缘层;
在已固化的所述初始绝缘层上使用激光雕刻设备雕刻所述第一线路图形,形成所述第一绝缘层。
进一步地,所述激光雕刻设备的横向雕刻分辨率小于或者等于35µm,所述激光雕刻设备的纵向分辨率小于或者等于35µm。
进一步地,步骤S20包括:
向所述第一线路凹槽中打印第一层液态导电介质,并固化所述第一层液态导电介质;
向所述第一线路凹槽中打印第二层液态导电介质,并固化所述第二层液态导电介质;
重复上述步骤,直至液态导电介质填满所述第一线路凹槽。
进一步地,所述第一层液态导电介质和所述第二层液态导电介质的厚度相等。
进一步地,在步骤S20后,还包括步骤:
S30:使用3D打印机在第一绝缘层及第一线路图形上打印并固化形成第二绝缘层,其中所述第二绝缘层的厚度大于或者等于10µm,所述第二绝缘层具有用于连通所述第一线路图形的导通孔;
使用3D打印机向所述导通孔中打印填满液态导电介质并固化液态导电介质,液态导电介质固化后形成导电柱;
使用3D打印机在所述第二绝缘层和所述导电柱上打印并形成第三绝缘层,其中第三绝缘层的厚度大于或者等于10µm,所述第三绝缘层具有与第二线路图形相对应的第二线路凹槽;
使用3D打印机向所述第二线路凹槽中打印填满液态导电介质并固化液态导电介质,液态导电介质固化后形成所述第二线路图形;
S40:重复步骤S30,直至完成所有线路图形的打印。
进一步地,所述导通孔由激光雕刻设备雕刻而成。
进一步地,液态导电介质通过光辐射固化。
进一步地,3D打印机的横向分辨率小于或者等于35µm,3D打印设备的纵向分辨率小于或者等于35µm。
进一步地,3D打印机具有能量辐射功能。
进一步地,步骤S20中固化液态导电介质包括:3D打印机通过能量辐射将打印出的液态导电介质实时固化,液态导电介质形成粘弹性状态,然后再通过光辐射完全固化。
进一步地,所述液态导电介质为具有多个纳米颗粒的纳米导电墨水。
进一步地,所述纳米颗粒的尺寸范围为5nm至50nm,纳米颗粒在纳米导电墨水中的重量百分比范围为10 wt.%至50 wt.%。
进一步地,所述纳米颗粒为银纳米、铜纳米、银纳米合金或铜纳米合金其中的一种或多种。
进一步地,所述纳米导电墨水固化后的电阻率小于10μΩ·cm,表面硬度大于2H。
有益效果
本申请提供的3D打印线路板的方法的有益效果在于:与现有技术相比,本申请3D打印线路板的方法通过在基板上预先打印一层厚度大于或者等于10µm的第一绝缘层,再向第一绝缘层中的第一线路凹槽打印液态导电介质,液态导电介质固化后即可形成厚度大于或者等于10µm的第一线路图形,增大了打印线路的厚度,减小了线路电阻,可满足大多数电子线路板的技术要求。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例打印第一绝缘层后的结构图;
图2为本申请实施例第一线路凹槽中打印部分液态导电介质后的结构图;
图3为本申请实施例第一线路凹槽中填满液态导电介质后的结构图;
图4为本申请实施例打印第二绝缘层后的结构图;
图5为本申请实施例在导通孔中打印部分液态导电介质的结构图;
图6为本申请实施例在导通孔中填满液态导电介质的结构图;
图7为本申请实施例打印第三绝缘层后的结构图;
图8为本申请实施例第二线路凹槽中打印部分液态导电介质后的结构图;
图9为本申请实施例第二线路凹槽中填满液态导电介质后的结构图。
其中,图中各附图标记:
1-基板;2-第一绝缘层;20-第一线路凹槽;21-第一线路图形;3-第二绝缘层;30-导通孔;31-导电柱;4-第三绝缘层;40-第二线路凹槽;41-第二线路图形。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请一并参阅图1至图3,本申请提供的3D打印线路板的方法包括以下步骤:
S10:使用3D打印机在基板1上打印并固化形成第一绝缘层2,其中第一绝缘层2的厚度大于或者等于10µm,第一绝缘层2具有与第一线路图形21相对应的第一线路凹槽20;
S20:使用3D打印机向第一线路凹槽20中打印液态导电介质并固化液态导电介质,液态导电介质固化后形成第一线路图形21。
本申请提供的3D打印线路板的方法,与现有技术相比,本申请3D打印线路板的方法通过在基板1上预先打印一层厚度大于或者等于10µm的第一绝缘层2,再向第一绝缘层2中的第一线路凹槽20打印液态导电介质,液态导电介质固化后即可形成厚度大于或者等于10µm的第一线路图形21,增大了打印线路的厚度,减小了线路电阻,可满足大多数电子线路板的技术要求。
在步骤S10中:
3D打印设备的横向分辨率小于或者等于35µm,3D打印设备的纵向分辨率小于或者等于35µm,其横向和纵向相互垂直。且该3D打印设备具有能量辐射功能,在打印时,能将打印出的液态材料实时固化,所以可使用超低粘度的液态材料实现高打印精度的线路板。
第一绝缘层2通过3D打印机喷射液态的绝缘材料后固化形成,液态的绝缘材料具有固化特性,可在能量辐射下通过自身的固化快速提高粘度达到粘弹性状态,然后再通过10分钟以上的热固化,使绝缘材料完全固化,形成第一绝缘层2。该绝缘材料不含挥发性有机溶剂,小分子量的有机单体在光固化的过程中联结,后续工业中不会产生废弃排放。第一绝缘层2的厚度大于或者等于10µm,相应地,第一线路凹槽20的深度大于或者等于10µm。
更进一步地,第一绝缘层2具有第一线路凹槽20,3D打印设备在打印第一绝缘层2时,可将第一线路图形21输入3D打印设备中,直接打印出具有第一线路凹槽20的第一绝缘层2;当然也可包括以下步骤:
使用3D打印机在基板1上打印完全覆盖基板1的初始绝缘层;
固化所述初始绝缘层;
在已固化的所述初始绝缘层上使用激光雕刻设备雕刻所述第一线路图形21,形成所述第一绝缘层2。
具体地,初始绝缘层完全覆盖基板1,初始绝缘层上不具有第一线路凹槽20,初始绝缘层可通过热辐射完全固化,初始绝缘层固化后,将第一线路图形21输入激光雕刻设备中,激光雕刻设备雕刻输出第一线路图形21,去除初始绝缘层上与第一线路图形21相对应的绝缘材料,从而形成具有第一线路凹槽20的第一绝缘层2。
其中,激光雕刻设备的横向雕刻分辨率小于或者等于35µm,激光雕刻设备的纵向雕刻分辨率小于或者等于35µm,其横向和纵向相互垂直。
在步骤S20中:
3D打印机在向第一线路凹槽20中喷射液态导电介质时,3D打印机可通过能量辐射将打印出的液态导电介质实时固化,液态导电介质形成粘弹性状态,然后再通过光辐射完全固化。
其中,液态导电介质可为纳米导电墨水,纳米导电墨水包括多个纳米颗粒,纳米颗粒的尺寸范围为5nm至50nm,纳米颗粒在纳米导电墨水的重量百分比范围为10 wt.%至50 wt.%,以满足纳米导电墨水的导电性能。纳米颗粒可为银纳米、铜纳米、银纳米合金、铜纳米合金中的一种或者多种。纳米导电墨水固化后的电阻率小于10μΩ·cm,表面硬度大于2H,与基材的附着力大于10N。
液态导电介质填满第一凹槽并固化后,形成第一线路图形21,该第一线路图形21的厚度与第一绝缘层2的厚度相同,大于或者等于10µm,使得一线线路图形的电阻较小,满足线路板的设计要求。
3D打印机在向第一线路凹槽20中喷射液态导电介质时,可通过一次打印即将第一线路凹槽20填满,也可通过多次打印将第一线路凹槽20填满。具体地,多次打印填满第一线路凹槽20包括以下步骤:
请参阅图2,向第一线路凹槽20中打印第一层液态导电介质,并固化第一层液态导电介质;
向第一线路凹槽20中打印第二层液态导电介质,并固化第二层液态导电介质;
请参阅图3,重复上述步骤,直至液态导电介质填满所述第一线路凹槽20。
其中,第一层导电介质和第二层导电介质的厚度此处不作限定,可根据3D打印机的打印参数设置,优选第一层导电介质和第二层导电介质的厚度相等。为填满第一线路凹槽20,3D打印机的打印次数此处不作限定。
在步骤S20后,请参阅图4至图9,还包括以下步骤:
S30:使用3D打印机在第一绝缘层2及第一线路图形21上打印并固化形成第二绝缘层3,其中所述第二绝缘层3的厚度大于或者等于10µm,所述第二绝缘层3具有用于连通所述第一线路图形21的导通孔30;
使用3D打印机向所述导通孔30中打印填满液态导电介质并固化液态导电介质,液态导电介质固化后形成导电柱31;
使用3D打印机在所述第二绝缘层3和所述导电柱31上打印并形成第三绝缘层4,其中第三绝缘层4的厚度大于或者等于10µm,所述第三绝缘层4具有与第二线路图形41相对应的第二线路凹槽40;
使用3D打印机向所述第二线路凹槽40中打印填满液态导电介质并固化液态导电介质,液态导电介质固化后形成所述第二线路图形41;
S40:重复步骤S30,直至完成所有线路图形的打印。
需要说明的是,步骤S10至S20,完成了第一线路图形21的打印,步骤S30完成了第二线路图形41的打印,步骤S40完成第三线路图形的打印、第四线路图形的打印,直至所有的线路图形打印完毕。该打印线路板的方法实现了多层电路板的打印,其中各层的线路图形均大于或者等于10µm。
在步骤S30中,请参阅图4,打印第二绝缘层3时,可直接打印出具有导通孔30的第二绝缘层3;也可先将第一绝缘层2及第一线路图形21完全覆盖,再使用激光雕刻设备雕刻出导通孔30。导通孔30与第一线路图形21相正对,可使第一线路图形21通过导通孔30露出。
向导通孔30中打印填满液态导电介质时,可通过一次打印直接填满导通孔30;也可多次打印填满导通孔30,与多次打印填满第一线路凹槽20的步骤相同,具体为:请参阅图5,向导通孔30中打印第一层液态导电介质,固化第一层液态导电介质;向导通孔30中打印第二层液态导电介质,固化第二层液态导电介质;请参阅图6,重复上述步骤,直至液态导电介质填满导通孔30,形成导电柱31。导电柱31的形状及个数此处不作限定。
请参阅图7,打印第三绝缘层4时,可直接打印出具有第二线路凹槽40的第二绝缘层3;也可先将第二绝缘层3及导电柱31完全覆盖,再使用激光雕刻设备雕刻出第二线路凹槽40。第二线路凹槽40与导电柱31相正对,可使导电柱31露出,形成第一线路图形21和第二线路图形41的电连接。
向第二线路凹槽40中打印填满液态导电介质时,可通过一次打印直接填满导第二线路凹槽40;也可多次打印填满第二线路凹槽40,与多次打印填满第一线路凹槽20的步骤相同,具体为:请参阅图8,向第二线路凹槽40中打印第一层液态导电介质,固化第一层液态导电介质;向第二线路凹槽40中打印第二层液态导电介质,固化第二层液态导电介质;请参阅图9,重复上述步骤,直至液态导电介质填满第二线路凹槽40,形成第二线路图形41。
通过重复步骤S30形成具有多层线路图形的线路板。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 3D打印线路板的方法,其特征在于,包括如下步骤:
    S10:使用3D打印机在基板上打印并固化形成第一绝缘层,其中所述第一绝缘层的厚度大于或者等于10µm,所述第一绝缘层具有与第一线路图形相对应的第一线路凹槽;
    S20:使用3D打印机向所述第一线路凹槽中打印填满液态导电介质并固化液态导电介质,液态导电介质固化后形成所述第一线路图形。
  2. 如权利要求1所述的3D打印线路板的方法,其特征在于,步骤S10包括:
    使用3D打印机在基板上打印完全覆盖基板的初始绝缘层;
    固化所述初始绝缘层;
    在已固化的所述初始绝缘层上使用激光雕刻设备雕刻所述第一线路图形,形成所述第一绝缘层。
  3. 如权利要求2所述的3D打印线路板的方法,其特征在于,所述激光雕刻设备的横向雕刻分辨率小于或者等于35µm,所述激光雕刻设备的纵向分辨率小于或者等于35µm。
  4. 如权利要求1所述的3D打印线路板的方法,其特征在于,步骤S20包括:
    向所述第一线路凹槽中打印第一层液态导电介质,并固化所述第一层液态导电介质;
    向所述第一线路凹槽中打印第二层液态导电介质,并固化所述第二层液态导电介质;
    重复上述步骤,直至液态导电介质填满所述第一线路凹槽。
  5. 如权利要求4所述的3D打印线路板的方法,其特征在于,所述第一层液态导电介质和所述第二层液态导电介质的厚度相等。
  6. 如权利要求1所述的3D打印线路板的方法,其特征在于,在步骤S20后,还包括步骤:
    S30:使用3D打印机在第一绝缘层及第一线路图形上打印并固化形成第二绝缘层,其中所述第二绝缘层的厚度大于或者等于10µm,所述第二绝缘层具有用于连通所述第一线路图形的导通孔;
    使用3D打印机向所述导通孔中打印填满液态导电介质并固化液态导电介质,液态导电介质固化后形成导电柱;
    使用3D打印机在所述第二绝缘层和所述导电柱上打印并形成第三绝缘层,其中第三绝缘层的厚度大于或者等于10µm,所述第三绝缘层具有与第二线路图形相对应的第二线路凹槽;
    使用3D打印机向所述第二线路凹槽中打印填满液态导电介质并固化液态导电介质,液态导电介质固化后形成所述第二线路图形;
    S40:重复步骤S30,直至完成所有线路图形的打印。
  7. 如权利要求6所述的3D打印线路板的方法,其特征在于,所述导通孔由激光雕刻设备雕刻而成。
  8. 如权利要求1所述的3D打印线路板的方法,其特征在于,液态导电介质通过光辐射固化。
  9. 如权利要求1所述的3D打印线路板的方法,其特征在于,3D打印机的横向分辨率小于或者等于35µm,3D打印设备的纵向分辨率小于或者等于35µm。
  10. 如权利要求1所述的3D打印线路板的方法,其特征在于,3D打印机具有能量辐射功能。
  11. 如权利要求10所述的3D打印线路板的方法,其特征在于,步骤S20中固化液态导电介质包括:3D打印机通过能量辐射将打印出的液态导电介质实时固化,液态导电介质形成粘弹性状态,然后再通过光辐射完全固化。
  12. 如权利要求1所述的3D打印线路板的方法,其特征在于,所述液态导电介质为具有多个纳米颗粒的纳米导电墨水。
  13. 如权利要求12所述的3D打印线路板的方法,其特征在于,所述纳米颗粒的尺寸范围为5nm至50nm,纳米颗粒在纳米导电墨水中的重量百分比范围为10 wt.%至50 wt.%。
  14. 如权利要求12所述的3D打印线路板的方法,其特征在于,所述纳米颗粒为银纳米、铜纳米、银纳米合金或铜纳米合金其中的一种或多种。
  15. 如权利要求12所述的3D打印线路板的方法,其特征在于,所述纳米导电墨水固化后的电阻率小于10μΩ·cm,表面硬度大于2H。
PCT/CN2018/095287 2018-04-11 2018-07-11 3d打印线路板的方法 WO2019196221A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018007453.6T DE112018007453T5 (de) 2018-04-11 2018-07-11 Verfahren zum 3D-Drucken einer Leiterplatte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810319702.4 2018-04-11
CN201810319702.4A CN108495474A (zh) 2018-04-11 2018-04-11 3d打印线路板的方法

Publications (1)

Publication Number Publication Date
WO2019196221A1 true WO2019196221A1 (zh) 2019-10-17

Family

ID=63315346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095287 WO2019196221A1 (zh) 2018-04-11 2018-07-11 3d打印线路板的方法

Country Status (3)

Country Link
CN (1) CN108495474A (zh)
DE (1) DE112018007453T5 (zh)
WO (1) WO2019196221A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074090A (zh) * 2020-09-08 2020-12-11 北京大华博科智能科技有限公司 一种电路板3d打印制备方法及制备的电路板
CN112654180A (zh) * 2020-12-11 2021-04-13 杨同建 一种多层电路板制作方法与制作机器
CN114980579A (zh) * 2022-06-08 2022-08-30 芯体素(杭州)科技发展有限公司 一种高精密多层线路板制备过程中的固化方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110139491B (zh) * 2019-06-11 2021-04-20 北京大华博科智能科技有限公司 一种电路板制备方法及电路板
CN110430674A (zh) * 2019-07-10 2019-11-08 广东工业大学 一种电镀沉积电路板的制备方法
CN110536551B (zh) * 2019-07-10 2020-08-21 广东工业大学 一种电路板的制备方法
CN110572939B (zh) * 2019-08-19 2021-06-01 深南电路股份有限公司 一种3d打印电路板的方法以及3d打印电路板
KR102438657B1 (ko) * 2019-12-13 2022-08-31 주식회사 티엘비 3d 프린팅을 이용한 인쇄회로기판의 제조 방법
CN112188759B (zh) * 2020-09-22 2021-11-16 江南大学 一种应变片阵列电路的直书写打印方法
CN113015343B (zh) * 2021-04-27 2022-07-22 四会富仕电子科技股份有限公司 一种层间交叉线连接结构的制作方法及电路板
CN114390792B (zh) * 2022-01-06 2023-07-04 东莞市龙谊电子科技有限公司 柔性电路板的制作方法及其柔性电路板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219771A1 (en) * 2002-06-07 2004-11-04 Fuji Photo Film Co., Ltd. Pattern forming method and pattern forming device
CN103327741A (zh) * 2013-07-04 2013-09-25 江俊逢 一种基于3d打印的封装基板及其制造方法
CN103407296A (zh) * 2013-07-29 2013-11-27 南京鼎科纳米技术研究所有限公司 一种激光熔融辅助纳米墨水实现高熔点材料3d打印的方法
WO2014118783A1 (en) * 2013-01-31 2014-08-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd Three-dimensional conductive patterns and inks for making same
CN107222976A (zh) * 2017-05-19 2017-09-29 大连大学 一种柔性透明电路的制备方法
CN107660066A (zh) * 2017-10-31 2018-02-02 北京京东方显示技术有限公司 一种柔性电路板、其制作方法及显示装置
CN107846790A (zh) * 2016-09-19 2018-03-27 苏州纳格光电科技有限公司 多层柔性电路板的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219771A1 (en) * 2002-06-07 2004-11-04 Fuji Photo Film Co., Ltd. Pattern forming method and pattern forming device
WO2014118783A1 (en) * 2013-01-31 2014-08-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd Three-dimensional conductive patterns and inks for making same
CN103327741A (zh) * 2013-07-04 2013-09-25 江俊逢 一种基于3d打印的封装基板及其制造方法
CN103407296A (zh) * 2013-07-29 2013-11-27 南京鼎科纳米技术研究所有限公司 一种激光熔融辅助纳米墨水实现高熔点材料3d打印的方法
CN107846790A (zh) * 2016-09-19 2018-03-27 苏州纳格光电科技有限公司 多层柔性电路板的制备方法
CN107222976A (zh) * 2017-05-19 2017-09-29 大连大学 一种柔性透明电路的制备方法
CN107660066A (zh) * 2017-10-31 2018-02-02 北京京东方显示技术有限公司 一种柔性电路板、其制作方法及显示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074090A (zh) * 2020-09-08 2020-12-11 北京大华博科智能科技有限公司 一种电路板3d打印制备方法及制备的电路板
CN112074090B (zh) * 2020-09-08 2023-09-26 北京大华博科智能科技有限公司 一种电路板3d打印制备方法及制备的电路板
CN112654180A (zh) * 2020-12-11 2021-04-13 杨同建 一种多层电路板制作方法与制作机器
CN114980579A (zh) * 2022-06-08 2022-08-30 芯体素(杭州)科技发展有限公司 一种高精密多层线路板制备过程中的固化方法
CN114980579B (zh) * 2022-06-08 2024-02-06 芯体素(杭州)科技发展有限公司 一种高精密多层线路板制备过程中的固化方法

Also Published As

Publication number Publication date
DE112018007453T5 (de) 2020-12-24
CN108495474A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2019196221A1 (zh) 3d打印线路板的方法
US8435440B2 (en) Method for forming a conductive pattern and a wired board
JP4486660B2 (ja) 印刷回路基板の製造方法
JP4555323B2 (ja) 多層印刷回路基板の製造方法、多層印刷回路基板及び真空印刷装置
KR100643934B1 (ko) 인쇄회로기판의 회로패턴 형성방법
CN108174615A (zh) 布线构造体及其制造方法、半导体装置、多层布线构造体及其制造方法、半导体元件搭载用基板、图案构造体的形成方法、压印用的模具及其制造方法、压印模具组、以及多层布线基板的制造方法
US20150104562A1 (en) Method Of Manufacturing Multilayer Interconnects For Printed Electronic Systems
TWI414224B (zh) 雙面線路板之製作方法
JP2006332615A (ja) パターン形成方法
CN109451674A (zh) 印刷电路板的制造方法
KR20080104944A (ko) 포팅 댐을 구비한 프린트 배선판의 제조 방법 및 그 방법에의해 제조된 프린트 배선판
KR100836654B1 (ko) 인쇄회로기판 제조장치 및 제조방법
TWI574592B (zh) 電路板及電路板之製造方法
CN104427751A (zh) 印刷电路板及其制造方法
JP5085965B2 (ja) 樹脂膜形成方法、樹脂膜形成装置、及び電子回路基板製造方法
JP2005197574A (ja) 多層配線板用基材およびその製造方法、多層配線板の製作方法
JP2007067189A (ja) 配線基板及びその製造方法
JP4888073B2 (ja) 電子基板の製造方法
JP5232893B2 (ja) 配線板の製造方法
JP2024016695A (ja) 多層プリント配線板
US20180160543A1 (en) Manufacturing method of circuit board and structure thereof
CN116968461A (zh) 一种喷墨打印方法及pcb板的制备方法
KR20090091577A (ko) 미세 회로가 형성된 필름 기판 및 그 제조방법
CN108207083A (zh) 线路板的制作方法及其结构
KR20130087149A (ko) 비아를 포함하는 다층 인쇄 회로 기판의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914360

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.02.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18914360

Country of ref document: EP

Kind code of ref document: A1