WO2019189692A1 - 有機無機複合粒子とその製造方法、および化粧料 - Google Patents

有機無機複合粒子とその製造方法、および化粧料 Download PDF

Info

Publication number
WO2019189692A1
WO2019189692A1 PCT/JP2019/013871 JP2019013871W WO2019189692A1 WO 2019189692 A1 WO2019189692 A1 WO 2019189692A1 JP 2019013871 W JP2019013871 W JP 2019013871W WO 2019189692 A1 WO2019189692 A1 WO 2019189692A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
inorganic composite
composite particles
particles
average particle
Prior art date
Application number
PCT/JP2019/013871
Other languages
English (en)
French (fr)
Inventor
慧 渡邊
直幸 榎本
郁子 嶋崎
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68061919&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019189692(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to KR1020207024543A priority Critical patent/KR20200136888A/ko
Priority to JP2020511051A priority patent/JP6861453B2/ja
Priority to EP19775731.3A priority patent/EP3778749A4/en
Priority to CA3093805A priority patent/CA3093805A1/en
Priority to US16/979,341 priority patent/US11701307B2/en
Priority to CN201980016948.7A priority patent/CN111801377A/zh
Priority to BR112020019683A priority patent/BR112020019683A8/pt
Publication of WO2019189692A1 publication Critical patent/WO2019189692A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/025Explicitly spheroidal or spherical shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0279Porous; Hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/12Face or body powders for grooming, adorning or absorbing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3072Treatment with macro-molecular organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to spherical organic-inorganic composite particles having good biodegradability, and a cosmetic containing organic-inorganic composite particles.
  • plastics are used in various industries to support modern life. Many of the synthetic polymers have been developed for long-term stability and are difficult to decompose in the natural environment. This has caused various environmental problems. For example, plastic products that have spilled into the water environment have accumulated for a long period of time, causing the problem of serious damage to the marine and lake ecosystems. In recent years, a fine plastic having a length of 5 mm or less to a nano level, called a micro plastic, has become a big problem. Examples of micro plastics include small consumer products such as cosmetics, small lumps of plastic resin before processing, and products that have become finer as large products float in the sea.
  • plastic particles for example, polyethylene particles
  • plastic particles have a low true specific gravity and are difficult to remove at sewage treatment plants, and flow into rivers, oceans, ponds and marshes.
  • plastic particles are easy to adsorb chemical substances such as insecticides. These accumulate in fish and shellfish and are concentrated, which may affect the human body. This is pointed out in the United Nations Environment Program, etc., and various countries and various industry groups are considering regulations.
  • biodegradable plastics that are decomposed into water and carbon dioxide by microorganisms in the natural environment and incorporated into the natural carbon cycle is being actively promoted all over the world.
  • a cleaning agent containing fibrous biodegradable plastic particles having a particle diameter of 425 ⁇ m or more as an abrasive is known (see Patent Document 1).
  • polylactic acid having a size of 1 to 44 ⁇ m suitable for use in cosmetic compositions is known (see Patent Document 2).
  • polylactic acid resin fine particles having a number average particle diameter of less than 1 ⁇ m are known as fine biodegradable particles (see Patent Document 3).
  • an object of the present invention is to provide organic-inorganic composite particles having a low average risk of causing environmental problems, a good fluidity, a high sphericity, and an average particle size of 0.5 to 25 ⁇ m. is there.
  • Such organic-inorganic composite particles are suitable for blending into cosmetics, and can be used with peace of mind in the same applications as plastic beads.
  • the organic-inorganic composite particles of the present invention are spherical particles containing 1.0 to 83.0% by weight of a silica component and 17.0 to 99.0% by weight of a biodegradable plastic.
  • the average particle diameter d 1 is 0.5 to 25 ⁇ m, the true density is 1.03 to 2.00 g / cm 3 , and the sphericity is 0.80 or more.
  • the contact angle of the organic-inorganic composite particles with respect to water was set to 90 ° or less.
  • the elastic modulus of the organic-inorganic composite particles was set to 2 to 30 GPa.
  • the ratio (d 3 / d 1 ) of the average particle diameter d 3 after dispersion and the average particle diameter d 1 before dispersion is determined. 0.95 to 1.05.
  • the method for producing organic-inorganic composite particles according to the present invention includes an emulsification step of preparing an emulsion containing emulsion droplets by adding a surfactant and a non-aqueous solvent to a dispersion containing a silica component and a biodegradable plastic. And a dehydration step of dehydrating the emulsified droplets, and a step of solid-liquid separation of the non-aqueous solvent dispersion obtained in the dehydration step to obtain organic-inorganic composite particles as a solid.
  • the cosmetic according to the present invention contains any of the organic-inorganic composite particles described above.
  • the organic-inorganic composite particles according to the present invention do not float in water even if they flow into the environment, are difficult to adsorb non-water-soluble harmful chemical substances, and have better biodegradability. There are few concerns that cause it.
  • the organic-inorganic composite particles according to the present invention contain 1.0 to 83.0% by weight of the silica component and 17.0 to 99.0% by weight of the biodegradable plastic.
  • the average particle diameter d 1 is 0.5 to 25 ⁇ m, the true density is 1.03 to 2.00 g / cm 3 , and the sphericity is 0.80 or more.
  • the silica component When the silica component is less than 1%, the effect of the silica component as a binder is low, and the number of contacts between fine biodegradable plastics increases, making it difficult to re-separate. On the other hand, when the biodegradable plastic is less than 17%, the soft feeling and moist feeling peculiar to plastic beads cannot be obtained. Further, 1 to 79% by weight of the silica component and 21 to 99% by weight of the biodegradable plastic are preferable. In particular, the silica component is preferably 5 to 70% by weight, and the biodegradable plastic is preferably 30 to 95% by weight.
  • the true density of the organic-inorganic composite particles is less than 1.03 g / cm 3 , the biodegradation rate is delayed because the organic inorganic composite particles float on the water when they flow into the aqueous environment.
  • particles having a true density exceeding 2.00 g / cm 3 have a low content of biodegradable plastic, and it is difficult to obtain touch characteristics like those of plastic particles.
  • the true density is particularly preferably in the range of 1.10 to 1.90 g / cm 3 .
  • the sphericity of the organic / inorganic composite particles is less than 0.80, the durability of the rolling feeling when applied on the skin is remarkably reduced.
  • the sphericity is particularly preferably 0.90 or more.
  • the sphericity can be obtained by an image analysis method from a photograph of a scanning electron microscope.
  • the average particle diameter d 1 of the organic-inorganic composite particles is less than 0.5 [mu] m, rolling sensation, persistent feeling rolling, cosmetic feel characteristics such as uniform extended spreading resistance decreases significantly. On the other hand, when it exceeds 25 ⁇ m, when the particle powder is touched, it feels rough, and soft feeling and moist feeling are reduced.
  • the average particle size is more preferably 2 to 10 ⁇ m. The average particle diameter is determined by a laser diffraction method.
  • the organic / inorganic composite particles preferably have a contact angle with water of 90 ° or less.
  • Organic-inorganic composite particles having a contact angle with water exceeding 90 ° tend to float on water when flowing into an aqueous environment, and the biodegradation rate may be delayed.
  • the contact angle depends on the properties of the biodegradable plastic that is a constituent component. When the biodegradable plastic is hydrophobic, the contact angle often exceeds 90 °. In this case, the contact angle can be made 90 ° or less by adding a surfactant or the like to the organic-inorganic composite particles.
  • Hydrophilic organic-inorganic composite particles having a contact angle of 90 ° or less are not only difficult to delay biodegradation but also difficult to adsorb water-insoluble harmful chemical substances such as polychlorinated biphenyl compounds and insecticides. Furthermore, the contact angle is preferably 80 ° or less, and particularly preferably 70 ° or less.
  • the elastic modulus of the organic / inorganic composite particles is preferably 2 to 30 GPa.
  • the elastic modulus is less than 2, the strength of a compression molded product such as a powder foundation is lowered, so that the blending amount of particles may be limited.
  • the elastic modulus exceeds 30 GPa, distortion due to stress hardly occurs, and soft feeling and moist feeling like plastic beads cannot be imparted.
  • the elastic modulus is particularly preferably in the range of 3 to 20 GPa.
  • the elastic modulus is obtained by a micro compression test method.
  • a dispersion liquid in which organic-inorganic composite particles are dispersed in distilled water was dispersed for 60 minutes using an ultrasonic disperser.
  • the ratio (d 3 / d 1 ) between the average particle diameter d 3 after the dispersion test and the average particle diameter d 1 before the test is preferably within ⁇ 0.05, that is, 0.95 to 1.05.
  • the ratio (d 3 / d 1 ) is less than 0.95, the strength of the particles is low, and the particles are collapsed by mechanical addition in the production process of cosmetics and the like, and the desired feeling improving effect May not be obtained. That this ratio is greater than 1.05 indicates that the biodegradable plastic swells in water. Therefore, it is easy to thicken after manufacturing cosmetics and the like, and quality stability cannot be guaranteed. In addition, the feel characteristics may change.
  • the ratio (d 3 / d 1 ) is particularly preferably 0.97 to 1.03.
  • organic / inorganic composite particles particles having a hollow structure in which cavities are formed inside the outer shell can be applied. Since hollow particles are lighter than solid particles having the same diameter, the number of hollow particles is larger than the number of particles in the case of solid particles when the component amount (% by weight) is the same.
  • the ratio of the outer shell thickness T to the outer diameter OD of the organic-inorganic composite particles (T / OD) is preferably in the range of 0.02 to 0.45.
  • the thickness ratio (T / OD) of the outer shell exceeds 0.45, it becomes substantially equivalent to particles having no hollow structure.
  • the thickness ratio of the outer shell is less than 0.02, the particles are likely to collapse.
  • the thickness ratio (T / OD) of the outer shell is particularly preferably in the range of 0.04 to 0.30.
  • the outer shell may be porous through which nitrogen gas passes or non-porous through which nitrogen gas does not pass.
  • the specific surface area per unit volume determined by the BET method is preferably 5 to less than 60 m 2 / cm 3 .
  • the specific surface area of the organic-inorganic composite particles is less than 5 m 2 / cm 3 , biodegradability may be inferior. If the specific surface area is 60 m 2 / cm 3 or more, the definition of the nanomaterial is met, and there is a case where the specific surface area cannot be used with peace of mind in the same application as the conventional plastic beads.
  • the specific surface area is particularly preferably 10 to less than 60 m 2 / cm 3 .
  • silica component and the biodegradable plastic contained in the organic-inorganic composite particles of the present invention will be described in detail.
  • silica component examples include silicic acid binders and silica particles.
  • silicic acid binder an alkali metal silicate or a silicate aqueous solution such as an organic base silicate treated with a cation exchange resin and dealkalized (removal of Na ions, etc.) can be used.
  • the silicate include alkali metal silicates such as sodium silicate (water glass) and potassium silicate, and silicates of organic bases such as quaternary ammonium silicate.
  • the silica particles represent inorganic oxide particles containing silica, and examples thereof include not only silica but also composite oxides such as silica-alumina, silica-zirconia, silica-titania, silica-ceria. It is not necessary to change the production conditions of the organic-inorganic composite particles depending on the difference in the composition of the silica particles.
  • Amorphous silica is suitable when blended in cosmetics.
  • the average particle size d 2 of the silica particles 5 nm ⁇ 1 [mu] m is preferred.
  • the average particle diameter exceeds 1 ⁇ m, the effect as a binder for the biodegradable particles decreases.
  • the dissolution rate of silica in an underwater environment may decrease, and as a result, good biodegradability may be impaired.
  • the average particle diameter is less than 5 nm, the stability as particles is low, which is not preferable from an industrial aspect.
  • a range of 10 nm to 0.5 ⁇ m is particularly desirable.
  • the organic / inorganic composite particles may contain inorganic oxide particles containing at least one of titanium oxide, iron oxide, zinc oxide, and cerium oxide as long as they are 20% by weight or less. With this amount, the inorganic oxide particles can be uniformly contained inside the organic-inorganic composite particles.
  • iron oxide ferric oxide, ⁇ -iron oxyhydroxide, and triiron tetroxide are preferable.
  • the average particle diameter of the inorganic oxide particles is at the same level as the silica particles. That is, a range of 5 nm to 1 ⁇ m is suitable.
  • silica component generated from plant-derived raw materials from the viewpoint of realizing a sustainable society. Overseas, such as Europe and the United States, there is a growing need for natural and organic cosmetics from the viewpoint of harmony with the environment and safety. In ISO16128-1 (Guidelines on technical definitions and criteria for natural And organic cosmetic ingredients and products Part1: Definitions for ingredients), the raw materials are defined. Silica sand is frequently used as a silica source. Silica derived from silica sand is a classification of mineral-derived raw materials, but if it is a plant-derived silica component, it can be classified as a natural raw material and the natural index can be increased, so that the needs can be met.
  • Plant-derived silica components are abundant in gramineous plants and can be extracted from rice husks and their ears. For example, it is known that high-purity silica can be obtained by a firing method disclosed in JP-A-7-196312, a pressurized hot water method disclosed in JP-A-2002-265257, or the like. The plant-derived silica component thus obtained is dissolved in sodium hydroxide to prepare sodium silicate, and then silica particles can be prepared according to a conventional method.
  • biodegradable plastic particles having an average particle diameter d 4 of 1 nm to 1 ⁇ m are preferable.
  • Organic-inorganic composite particles obtained from such fine particles having an average particle diameter exhibit good biodegradability.
  • a range of 0.1 to 0.5 ⁇ m is particularly preferable.
  • cellulose nanofibers with a thickness of 1 to 500 nm and a length of 1 ⁇ m or more as measured by electron micrographs, and cellulose nanocrystals with a thickness of 10 to 50 nm and a length of 100 to 500 nm are also biodegradable plastics. Is preferred.
  • crystalline cellulose having glucose molecules as structural units is preferable.
  • crystalline cellulose which is an I-type crystal form having glucose molecules as structural units is preferred.
  • Cellulose subjected to intentional chemical modification that is not a crystal form of type I may not be classified as a natural raw material based on the above-mentioned definition of ISO16128-1.
  • the crystal form of cellulose can be identified by infrared spectroscopy, and strong absorption is observed at 3365 to 3370 cm ⁇ 1 .
  • the solid 13C NMR method can also be identified from the difference in chemical shift and the diffraction angle by the X-ray diffraction method.
  • the crystal form may be either I ⁇ or I ⁇ or a mixture.
  • Biodegradable plastic is biomass plastic, which is a renewable organic resource.
  • Polylactic acid, polycaprolactone, polybutylene succinate, polyethylene succinate produced by chemical synthesis are desirable.
  • Nate polyvinyl alcohol, polyaspartic acid, pullulan produced by microorganisms, polyglutamic acid, polyhydroxyalkanoic acid, starch derived from plants and animals, cellulose, amylose, amylopectin, chitin, chitosan, porphyran.
  • Plant-derived cellulose is particularly preferable from the viewpoints of quality, price, distribution amount, and safety.
  • a mixed liquid in which a silica component and a biodegradable plastic are dispersed is prepared.
  • a surfactant and a non-aqueous solvent are added to this mixed solution to form emulsified droplets (emulsification step).
  • the emulsified droplets are dehydrated (dehydration step).
  • the obtained dispersion is subjected to solid-liquid separation, and the organic-inorganic composite particles are taken out as a solid (solid-liquid separation step). This solid is dried and crushed (drying step).
  • a mixed liquid in which a silica component and a biodegradable plastic are dispersed is prepared. You may prepare by mixing the dispersion liquid of a silica component, and the dispersion liquid of a biodegradable plastics.
  • the solid content concentration of the mixed solution is adjusted to be in the range of 0.01 to 50%.
  • the solvent is preferably water. When the solid concentration exceeds 50%, the viscosity of the aqueous dispersion usually increases, and the uniformity of the emulsified droplets may be impaired. If the solid content concentration is less than 0.01%, there is no particular advantage and the economy is poor.
  • non-aqueous solvent and surfactant to this mixture.
  • the non-aqueous solvent necessary for emulsification is not particularly limited as long as it is incompatible with water, and a general hydrocarbon solvent can be used.
  • the surfactant is not particularly limited as long as it can form water-in-oil type emulsion droplets, but a surfactant having an HLB value in the range of 1 to 10 is suitable depending on the polarity of the non-aqueous solvent. .
  • the HLB value of the surfactant is particularly preferably in the range of 1-5. A combination of surfactants having different HLB values may be used.
  • this solution is emulsified with an emulsifier.
  • an emulsion containing emulsion droplets of 0.5 to 500 ⁇ m is prepared.
  • the emulsifying device is a conventional high-speed shearing device, a high-pressure emulsifying device that can obtain finer emulsified droplets, a membrane emulsifying device that can obtain more uniform emulsified droplets, a microchannel emulsifying device, and the like. It can be used according to the purpose.
  • the emulsion obtained in the emulsification step is dehydrated.
  • water is evaporated by heating under normal pressure or reduced pressure.
  • the emulsified droplets are dehydrated to obtain a non-aqueous solvent dispersion containing organic-inorganic composite particles having a particle size of 0.5 to 25 ⁇ m.
  • the separable flask equipped with a cooling tube is heated, and dehydration is performed while collecting the non-aqueous solvent.
  • dehydration is performed while recovering the non-aqueous solvent by heating under reduced pressure using a rotary evaporator or an evaporator. It is preferable to perform dehydration to the extent that it can be taken out as a solid from the non-aqueous solvent dispersion in the solid-liquid separation step described below. If dehydration is insufficient, it is necessary to be careful because the form as spherical particles cannot be maintained in the solid-liquid separation process.
  • Solid-liquid separation process the solid content is separated from the non-aqueous solvent dispersion obtained in the dehydration step by a conventionally known method such as filtration or centrifugation. Thereby, the cake-like substance of organic-inorganic composite particles is obtained.
  • the drying step the non-aqueous solvent is evaporated from the cake-like substance obtained in the solid-liquid separation step by heating under normal pressure or reduced pressure. Thereby, a dry powder of organic-inorganic composite particles having an average particle size of 0.5 to 25 ⁇ m is obtained.
  • a freezing step may be provided between the emulsification step and the dehydration step.
  • a frozen emulsion in which water in the droplets is frozen can be obtained.
  • the frozen emulsion is dehydrated in a dehydration step.
  • the freezing temperature is ⁇ 50 ° C. to ⁇ 10 ° C.
  • porous organic-inorganic composite particles can be prepared.
  • the silica component and the biodegradable plastic component in the droplet are expelled to the outer periphery of the droplet. Therefore, hollow-structure organic-inorganic composite particles having cavities inside the outer shell can be prepared.
  • a specific temperature in the range of ⁇ 10 to 0 ° C. may be maintained, or may be varied within this range.
  • the surfactant may be reduced by washing the cake-like substance of the organic-inorganic composite particles obtained in the solid-liquid separation step.
  • the organic-inorganic composite particles according to the present invention are used in a solid preparation such as a foundation, there is no particular problem.
  • the residual amount of the surfactant is preferably 500 ppm or less with respect to the organic-inorganic composite particles.
  • washing with an organic solvent is preferable.
  • organic-inorganic composite particles of the present invention are used in cosmetics, unlike conventional particles composed of an inorganic single component such as silica particles, not only the rolling feeling, the durability of the rolling feeling, and the uniform extension and spreadability, It is possible to obtain typical feel characteristics required for a cosmetic feel improving material such as soft feeling and moist feeling peculiar to plastic beads.
  • Oils such as olive oil, rapeseed oil, jojoba oil, and beef tallow.
  • Hydrocarbons such as paraffin, squalane, synthetic and plant squalane, ⁇ -olefin oligomer, microcrystalline wax, pentane, hexane and the like.
  • Fatty acids such as stearic acid, myristic acid and oleic acid.
  • Alcohols such as isostearyl alcohol, octyldodecanol, lauryl alcohol, ethanol, isopropanol, butyl alcohol, myristyl alcohol, cetanol, stearyl alcohol, and behenyl alcohol; Esters such as alkyl glyceryl ethers, isopropyl myristate, isopropyl palmitate, ethyl stearate, ethyl oleate, cetyl laurate, decyl oleate.
  • Polyhydric alcohols such as ethylene glycol, triethylene glycol, polyethylene glycol and diglycerin.
  • Sugars such as sorbitol, glucose and sucrose.
  • Silicone oils such as methylpolysiloxane, methylhydrogenpolysiloxane, methylphenyl silicone oil, various modified silicone oils, and cyclic dimethylsilicone oil. Silicone gel crosslinked with organic compounds such as silicone. Nonionic, cationic, anionic, or amphoteric surfactants. Fluorine oil such as perfluoropolyether. Polymers such as gum arabic, carrageenan, agar, xanthan gum, gelatin, alginic acid, guar gum, albumin, pullulan, carboxyvinyl polymer, cellulose and its derivatives, polyacrylic amide, sodium polyacrylate, polyvinyl alcohol and the like.
  • UV protection agents such as cinnamic acid type such as octyl paramethoxycinnamate, salicylic acid type, benzoic acid ester type, urocanic acid type and benzophenone type.
  • Solvents such as butyl acetate, acetone, and toluene.
  • the surface of the inorganic compound such as titanium oxide or zinc oxide may be subjected to silicone treatment, fluorine treatment, metal soap treatment, or the like in advance.
  • resin particles such as polymethyl acrylate, nylon, silicone resin, silicone rubber, polyethylene, polyester, and polyurethane may be included.
  • arbutin as an active ingredient having a whitening effect, arbutin, kojic acid, vitamin C, sodium ascorbate, magnesium ascorbate phosphate, ascorbyl dipartate, ascorbyl glucoside, other ascorbic acid derivatives, placenta extract, sulfur, Plant extracts such as oil-soluble licorice extract and mulberry extract, linoleic acid, linolenic acid, lactic acid, tranexamic acid and the like may be included.
  • Anti-aging effects such as vitamin C, carotenoids, flavonoids, tannins, caffeine derivatives, lignans, saponins, retinoic acid and retinoic acid structural analogs, N-acetylglucosamine, ⁇ -hydroxy acids, etc.
  • polyhydric alcohols such as 1,3-butylene glycol
  • mixed isomerized sugars sugars such as trehalose, pullulan, sodium hyaluronate, collagen, elastin, chitin / chitosan, chondroitin sulfate sodium Biopolymers such as amino acids, betaines, ceramides, sphingolipids, cholesterol and derivative
  • Cosmetics can be produced by a conventionally known general method.
  • Cosmetics are used in various forms such as powder, cake, pencil, stick, cream, gel, mousse, and liquid. Specific examples include the following products.
  • Cosmetics for cleaning such as soap, cleansing foam, makeup remover cream.
  • Skin care cosmetics for moisturizing and preventing rough skin, acne, keratin care, massage, wrinkle / sagging, dullness / bearing, UV care, whitening, antioxidant care.
  • Base makeup cosmetics such as powder foundation, liquid foundation, cream foundation, mousse foundation, pressed powder, makeup base.
  • Point makeup cosmetics such as eye shadow, eyebrow, eyeliner, mascara and lipstick.
  • Body care cosmetics such as body powder for washing, sun protection, hand roughening, slimming, blood circulation improvement, itching control, body odor prevention, antiperspirant, hair care, repellant, body powder, etc.
  • Fragrance cosmetics such as perfume, eau de perfume, eau de toilette, eau de cologne, shower colon, etc., perfume, body lotion, bath oil.
  • Oral care products such as toothpaste and mouthwash.
  • Example 1 50 g of commercially available silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SS-300, average particle size 300 nm, silica concentration 20% by mass) is concentrated by a rotary evaporator to obtain 25 g of silica sol having a silica concentration of 40% by mass.
  • a cation resin manufactured by Mitsubishi Kasei Co., Ltd., SK-1B is added at once to the silica sol to adjust the pH to 2.5, and then the cation exchange resin is separated.
  • a slurry b is prepared by adding 10 g of type I cellulose particles (Ceorus (registered trademark) RC-N30 manufactured by Asahi Kasei Corporation) and 30 g of pure water to the slurry a.
  • the obtained slurry b was added to a solution obtained by mixing 1300 g of heptane (manufactured by Kanto Chemical Co., Inc.) and 9.75 g of a surfactant AO-10V (manufactured by Kao Corp.), and an emulsifying disperser (TK Robot manufactured by PRIMIX Corporation). Emulsification at 10000 rpm for 10 minutes.
  • the obtained emulsified liquid was heated at 60 ° C. for 16 hours, dehydrated from the emulsified droplets, and then quantitative filter paper (No. 2 manufactured by Advantech Toyo Co., Ltd.) using a Buchner funnel (3.2 L manufactured by Sekiya Rika Glass Instruments Co., Ltd.). Filter with.
  • the surfactant is removed by repeated washing with heptane to obtain a cake-like substance.
  • the cake-like material is dried at 120 ° C. for 12 hours.
  • the dried powder was pulverized with a juicer mixer (manufactured by Hitachi, Ltd.) for 10 seconds and sieved with a 250 mesh sieve (standard sieve for JIS test) to obtain a powder of organic-inorganic composite particles.
  • Table 1 shows the conditions for preparing the organic-inorganic composite particles for each example. Further, the physical properties of the powder of the organic / inorganic composite particles were measured by the following method. The results are shown in Table 2.
  • Average particle diameter of each particle (d 1 , d 2 , d 4 )
  • the particle size distribution of the organic / inorganic composite particles, silica particles, and biodegradable plastic particles was measured using a laser diffraction method, and the median diameter was determined from the particle size distribution to obtain the average particle size.
  • an average particle diameter d 4 of the average particle diameter d 1 an average particle size d 2 and biodegradable plastic particles of the silica particles of the organic-inorganic composite particles.
  • a laser diffraction / scattering particle size distribution measuring apparatus LA-950v2 manufactured by Horiba, Ltd.
  • the average particle diameter d 4 of fibrous biodegradable plastic particles represented by cellulose nanofibers, cellulose nanocrystals, etc. the average in terms of equivalent spheres using the following formula from the specific surface area and specific gravity of the particles: The particle size was calculated.
  • Average particle size 6000 ⁇ (“true density” ⁇ “specific surface area”)
  • Average particle size ratio (d 3 / d 1 )
  • the dispersion condition of the device is set to “ultrasonic 60 minutes” and dispersed, and then the particle size distribution is determined. taking measurement.
  • the average particle diameter d 3 which is represented by the median diameter of particle size distribution after dispersion seek. From this, the average particle size ratio (d 3 / d 1 ) before and after ultrasonic dispersion is determined.
  • Pore volume and pore diameter of organic / inorganic composite particles 10 g of powder of organic / inorganic composite particles was placed in a crucible, dried at 105 ° C. for 1 hour, then cooled to room temperature in a desiccator, and an automatic porosimeter (counterchrome ⁇ The pore size distribution was measured by mercury porosimetry using Instruments (PoreMasterPM33GT manufactured by Instruments). Specifically, mercury is injected at a pressure of 1.5 kPa to 231 MPa, and the pore size distribution is determined from the relationship between the pressure and the pore size.
  • Elastic modulus One particle having an average particle size in the range of ⁇ 0.5 ⁇ m was selected from the organic-inorganic composite particle powder and used as a sample. Using a micro compression tester (manufactured by Shimadzu Corporation, MCTM-200), a load was applied to this sample at a constant load speed, and the compression modulus was measured.
  • Example 2 Instead of the type I cellulose particles in the polymer dispersion used in Example 1, BiNFi-s WMa-10002 manufactured by Sugino Machine Co. was used. Other than this, organic-inorganic composite particles were prepared in the same manner as in Example 1, and the physical properties were measured in the same manner as in Example 1.
  • Example 3 Instead of the type I cellulose particles in the polymer dispersion used in Example 1, RheoCrysta C-2SP manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was used. Other than this, organic-inorganic composite particles were prepared in the same manner as in Example 1, and the physical properties were measured in the same manner as in Example 1.
  • Example 4 The mixing amount of type I cellulose particles (Ceolas (registered trademark) RC-N30 manufactured by Asahi Kasei Co., Ltd.) in the polymer dispersion was changed to 4.3 g. Other than this, organic-inorganic composite particles were prepared in the same manner as in Example 1, and the physical properties were measured in the same manner as in Example 1.
  • Example 5 The mixing amount of type I cellulose particles (Ceolas (registered trademark) RC-N30 manufactured by Asahi Kasei Co., Ltd.) in the polymer dispersion was changed to 23.3 g. Other than this, organic-inorganic composite particles were prepared in the same manner as in Example 1, and the physical properties were measured in the same manner as in Example 1.
  • Example 6 The emulsified liquid is allowed to stand in a thermostatic bath at ⁇ 5 ° C. for 16 hours to freeze the emulsified droplets.
  • the emulsified liquid is allowed to stand at room temperature and then used with a Buchner funnel (3.2 L manufactured by Sekiya Rika Glass Instruments Co., Ltd.). And filtered with a quantitative filter paper (No. 2 manufactured by Advantech Toyo Co., Ltd.).
  • a quantitative filter paper No. 2 manufactured by Advantech Toyo Co., Ltd.
  • organic-inorganic composite particles were prepared in the same manner as in Example 1, and the physical properties were measured in the same manner as in Example 1.
  • Example 7 The emulsified liquid was allowed to stand in a thermostatic bath at ⁇ 25 ° C. for 16 hours to freeze the emulsified droplets.
  • organic-inorganic composite particles were prepared in the same manner as in Example 6, and the physical properties were measured in the same manner as in Example 1.
  • Example 8 Implemented except that 62.5 g of a commercial product (SS-160, JGC Catalysts Chemical Co., Ltd., average particle size 160 nm, solid content concentration 16% by mass) was used as the silica sol and was concentrated with an evaporator to obtain a silica sol with a silica concentration of 40% by weight.
  • Organic-inorganic composite particles were prepared in the same manner as in Example 1, and the physical properties were measured in the same manner as in Example 1.
  • Example 9 Organic-inorganic composite particles as in Example 1 except that 50 g of a commercially available product (SI-550 manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle size 5 nm, solid content concentration 20% by mass) was used as silica sol, and no concentration was performed using an evaporator. And the physical properties were measured in the same manner as in Example 1.
  • a commercially available product SI-550 manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle size 5 nm, solid content concentration 20% by mass
  • Example 10 As a slurry a, 200 g of a silicic acid solution (solid content concentration 5%) is used, and a polymer dispersion obtained by mixing 10 g of type I cellulose particles (Ceorus (registered trademark) RC-N30 manufactured by Asahi Kasei Co., Ltd.) and 30 g of pure water is used. This was added to prepare slurry b. Thereafter, organic-inorganic composite particles were prepared in the same manner as in Example 6, and the physical properties were measured in the same manner as in Example 1.
  • a silicic acid solution solid content concentration 5%
  • Example 11 Organic-inorganic composite particles were prepared in the same manner as in Example 1 except that emulsification was carried out at 5000 rpm for 10 minutes using an emulsifying disperser (TK Robotics manufactured by Primics). Physical properties were measured.
  • Example 2 Organic-inorganic composite particles were prepared in the same manner as in Example 1 except that the emulsion was heated at 95 ° C. for 4 hours, and the physical properties were measured in the same manner as in Example 1. By rapidly heating at a high temperature, the emulsified droplets collapsed prior to dehydration, so particles with high sphericity could not be obtained.
  • Evaluation point criteria (a) 5 points: Excellent. 4 points: Excellent. 3 points: Normal. 2 points: Inferior. 1 point: Very inferior. Evaluation criteria (b) ⁇ : Total score is 80 or more ⁇ : Total score is 60 or more and less than 80 ⁇ : Total score is 40 or more and less than 60 ⁇ : Total score is 20 or more and less than 40 ⁇ : Total score is less than 20
  • a powder foundation was prepared using the powder of the organic-inorganic composite particles so as to have a blending ratio (% by weight) shown in Table 4. That is, the powder (component (1)) and components (2) to (9) of Example 1 were placed in a mixer and stirred to mix uniformly. Next, the cosmetic ingredients (10) to (12) were put into this mixer and stirred, and further mixed uniformly. Next, after crushing the obtained cake-like substance, about 12 g was taken out from it, put into a square metal pan of 46 mm ⁇ 54 mm ⁇ 4 mm, and press molded. The powder foundation thus obtained was subjected to a sensory test by 20 professional panelists.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Composite Materials (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

良好な生分解性を有する球状の有機無機複合粒子を提供する。 本発明の有機無機複合粒子は、シリカ成分1~79重量%と生分解性プラスチック21~99重量%を含んでいる。有機無機複合粒子の平均粒子径dが0.5~25μm、真密度が1.03~2.00g/cm、真球度が0.80以上である。このような特性を備えた有機無機複合粒子を配合した化粧料は優れた感触特性を有している。

Description

有機無機複合粒子とその製造方法、および化粧料
 本発明は、良好な生分解性を有する球状の有機無機複合粒子、及び有機無機複合粒子を含む化粧料に関する。
 現在、石油由来の合成高分子(プラスチック)は、さまざまな産業で利用され、現代の生活を支えている。合成高分子の多くは、長期安定性を求めて開発されているため、自然環境中で分解し難い。そこで、様々な環境問題を引き起こしている。例えば、水環境中に流出したプラスチック製品が長い期間蓄積され、海洋や湖沼の生態系に大きな害を与えるという問題が発生している。また、近年、マイクロプラスチックと呼ばれる長さが5mm以下からナノレベルまでの微細なプラスチックが大きな問題となっている。マイクロプラスチックに該当するものとして、化粧用品などの小型の個人消費材、加工前のプラスチック樹脂の小さな塊、大きな製品が海中で浮遊するうちに微細化した物、などが挙げられている。
 近年では、洗顔料に、ざらざらした手触りを与えるため、また、洗浄効果を高めるために数百μm級のプラスチック粒子(例えば、ポリエチレン粒子)が含まれている。プラスチック粒子は、真比重が軽いため下水処理場で除去し難く、河川、海洋、池沼等に流れ出している。更にプラスチック粒子は、殺虫剤などの化学物質を吸着し易い。これらが魚介類に蓄積し、濃縮され、これらを通して人体に影響を与える虞がある。このことは国連環境計画等でも指摘されており、各国、各種業界団体が規制を検討している。
 このような背景から、自然環境中で微生物などにより水と二酸化炭素に分解され、自然界の炭素サイクルに組み込まれる生分解性プラスチックの開発が世界中で活発に進められている。例えば、粒子径425μm以上の繊維状の生分解性プラスチック粒子を研磨材として含む洗浄剤が知られている(特許文献1を参照)。また、化粧品組成物への使用に適した1~44μmのポリ乳酸が知られている(特許文献2を参照)。さらに、微細な生分解性粒子として、数平均粒子径が1μm未満のポリ乳酸系樹脂微粒子が知られている(特許文献3を参照)。
特開2013-136732号公報 特表2013-527204号公報 特開2014-43566号公報
 従来の生分解性プラスチック粒子は、粒子サイズが大きいと自然分解までに長い期間が必要である。粒子サイズが微細なものほど短い期間で自然分解するものの、微細な粒子は粒子同士の付着性が強く、流動性が低いという欠点がある。また、感触改良材として化粧料に配合した場合、肌との付着性が強くなる。そのため、好適な延び広がり性を要する感触改良材には適さなかった。また、従来の生分解性高分子は、水に浮くことや、有害な化学物質を吸着して濃縮しやすいため、環境問題を引き起こすおそれがあった。
 そこで、本発明の目的は、環境問題を引き起こす懸念が少なく、さらに、良好な流動性を有するとともに、真球度の高い、平均粒子径0.5~25μmの有機無機複合粒子を提供することにある。このような有機無機複合粒子は、化粧料への配合に適しており、プラスチックビーズと同様な用途に安心して使用することができる。
 本発明の有機無機複合粒子は、シリカ成分1.0~83.0重量%と生分解性プラスチック17.0~99.0重量%を含んだ球状粒子である。その平均粒子径dが0.5~25μm、真密度が1.03~2.00g/cm、真球度が0.80以上である。
 さらに、有機無機複合粒子の水に対する接触角を90°以下とした。さらに、有機無機複合粒子の弾性率を2~30GPaとした。さらに、有機無機複合粒子の分散液を超音波分散機により60分間分散させたとき、分散後の平均粒子径dと、分散前の平均粒子径dの比(d/d)を、0.95~1.05の範囲とした。
 また、本発明による有機無機複合粒子の製造方法は、シリカ成分と生分解性プラスチックを含んだ分散液に界面活性剤と非水系溶媒を加えて、乳化液滴を含む乳化液を調製する乳化工程と、前記乳化液滴を脱水処理する脱水工程と、前記脱水工程で得られた非水系溶媒分散体を固液分離して有機無機複合粒子を固形物として得る工程とを備えている。
 また、本発明に係る化粧料は、上述したいずれかの有機無機複合粒子が配合されている。
 本発明による有機無機複合粒子は、環境に流出しても水に浮かず、また、非水溶性の有害な化学物質を吸着し難く、更に良好な生分解性を有しているため、環境問題を引き起こす懸念が少ない。
 本発明による有機無機複合粒子は、シリカ成分を1.0~83.0重量%、生分解性プラスチックを17.0~99.0重量%の範囲で含んでいる。また、平均粒子径dが0.5~25μm、真密度が1.03~2.00g/cm、真球度が0.80以上である。
 シリカ成分が1%未満の場合は、シリカ成分が持つバインダーとしての効果が低くなり、また、微細な生分解性プラスチック同士の接点が多くなるために、再分離させることが困難となる。一方、生分解性プラスチックが17%未満の場合は、プラスチックビーズ特有のソフト感としっとり感が得られない。さらに、シリカ成分が1~79重量%、生分解性プラスチックが21~99重量%が好ましい。特に、シリカ成分が5~70重量%、生分解性プラスチックが30~95重量%が好ましい。
 有機無機複合粒子の真密度が1.03g/cm未満だと、水系環境に流出した際に水に浮くために、生分解の速度が遅延する。一方、真密度が2.00g/cmを超える粒子では、生分解性プラスチックの含有量が低く、プラスチック粒子の様な感触特性が得られにくい。真密度は1.10~1.90g/cmの範囲が特に好ましい。
 有機無機複合粒子の真球度が0.80未満であると、肌上に塗布された際の転がり感の持続性が著しく低下する。真球度は0.90以上が特に好ましい。なお、真球度は走査型電子顕微鏡の写真から画像解析法により求められる。
 有機無機複合粒子の平均粒子径dが0.5μm未満であると、転がり感、転がり感の持続性、均一な延び広がり性などの化粧料の感触特性が著しく低下する。一方、25μmを超えると、粒子粉体に触ったとき、ざらつきを感じるようになり、ソフト感としっとり感が低減する。また、平均粒子径は2~10μmがより好ましい。なお、平均粒子径はレーザー回折法で求められる。
 さらに、有機無機複合粒子は水に対する接触角が90°以下であることが好ましい。水に対する接触角が90°を超える有機無機複合粒子は、水系環境に流出した際に水に浮きやすく、生分解の速度が遅延するおそれがある。なお、接触角は、構成成分である生分解性プラスチックの性質に依存する。生分解性プラスチックが疎水性の場合は、接触角が90°を超えることが多い。この場合は、有機無機複合粒子に界面活性剤等を加えることで、接触角を90°以下にできる。接触角が90°以下の親水性の有機無機複合粒子は、生分解の遅延が起きにくいだけでなく、ポリ塩化ビフェニル化合物や殺虫剤などの非水溶性の有害な化学物質を吸着しにくい。さらに、接触角は80°以下が好ましく、70°以下が特に好ましい。
 さらに、有機無機複合粒子の弾性率は2~30GPaが好ましい。弾性率が2未満であると、パウダーファンデーション等の圧縮成型品の強度が低下するため、粒子の配合量が制限されることがある。弾性率が30GPaを超えると、応力に対する歪が生じ難く、プラスチックビーズのようなソフト感としっとり感を付与できない。なお、弾性率は3~20GPaの範囲が特に好ましい。ここで、弾性率は微小圧縮試験法で求められる。
 有機無機複合粒子を化粧料に用いる場合、化粧料の製造工程で粒子が崩壊し、当初想定していた機能が得られないおそれがある。そのため、粒子の分散液に超音波を印加し、印加前後の平均粒子径の変化率が変わらないことが好ましい。そこで、有機無機複合粒子を蒸留水に分散させた分散液を、超音波分散機を用いて60分間分散させた。分散試験後の平均粒子径dと試験前の平均粒子径dの比(d/d)は、±0.05以内、すなわち、0.95~1.05が好ましい。この比(d/d)が0.95未満ということは、粒子の強度が低いということであり、化粧料等の製造工程における機械的付加により、粒子が崩壊し、所望の感触改良効果が得られないおそれがある。この比が1.05より大きいということは、水中で生分解性プラスチックが膨潤することを表している。そのため、化粧料等の製造後に増粘しやすく、品質安定性を担保できない。さらに、感触特性も変化する虞がある。なお、この比(d/d)は、0.97~1.03が特に好ましい。
 また、有機無機複合粒子として、外殻の内部に空洞が形成された中空構造の粒子を適用することができる。中空粒子は同径の中実粒子より軽いため、成分量(重量%)が同一のとき、中空粒子の粒子数は中実粒子の場合の粒子数より多い。
 なお、外殻の厚さTと有機無機複合粒子の外径ODの比(T/OD)は、0.02~0.45の範囲が好ましい。外殻の厚さ比(T/OD)が、0.45を超えると、中空構造でない粒子と実質的に同等になってしまう。一方、外殻の厚さ比が、0.02未満であると、粒子が崩壊しやすくなる。更に、外殻の厚さ比(T/OD)は、0.04~0.30の範囲が特に好ましい。ここで、外殻は、窒素ガスが通過する多孔性でも、窒素ガスが通過しない無孔性でも良い。
 さらに、BET法で求めた単位体積当たりの比表面積は5~60m/cm未満が好ましい。有機無機複合粒子の比表面積が5m/cm未満であると、生分解性が劣ることがある。比表面積が60m/cm以上であると、ナノマテリアルの定義に適合してしまい、従来のプラスチックビーズと同様な用途で安心して使用できない場合がある。比表面積は10~60m/cm未満が特に好ましい。
 以下に、本発明の有機無機複合粒子に含まれるシリカ成分と生分解プラスチックについて詳細に説明する。
 <シリカ成分>
 シリカ成分を例示すると、珪酸バインダーやシリカ粒子が挙げられる。珪酸バインダーとしては、アルカリ金属珪酸塩、有機塩基の珪酸塩等の珪酸塩水溶液を陽イオン交換樹脂で処理して脱アルカリ(Naイオンの除去等)したものを使用できる。珪酸塩としては、珪酸ナトリウム(水ガラス)、珪酸カリウム等のアルカリ金属珪酸塩、第4級アンモニウムシリケート等の有機塩基の珪酸塩などが挙げられる。
 ここで、シリカ粒子とはシリカを含有する無機酸化物粒子を表し、シリカだけでなく、シリカ-アルミナ、シリカ-ジルコニア、シリカ-チタニア、シリカ-セリアなどの複合酸化物が例示できる。シリカ粒子の組成の違いによって有機無機複合粒子の製造条件を変更する必要はない。化粧料に配合する場合には非晶質シリカが好適である。
 また、シリカ粒子の平均粒子径dは、5nm~1μmが好ましい。平均粒子径が1μmを超えると、生分解性粒子に対するバインダーとしての効果が低下する。また、水中環境でのシリカの溶解速度が低下し、その結果、良好な生分解性を損なうことがある。平均粒子径が5nm未満の場合は、粒子としての安定性が低いことから工業的な側面で好ましくない。10nm~0.5μmの範囲が特に望ましい。
 さらに、有機無機複合粒子には、酸化チタン、酸化鉄、酸化亜鉛、酸化セリウムの少なくとも一つを含む無機酸化物粒子が20重量%以下であれば含まれてもよい。この量であれば、有機無機複合粒子の内部に均一にこの無機酸化物粒子を含有することができる。ここで、酸化鉄として、酸化第二鉄、α-オキシ水酸化鉄、四酸化三鉄が好ましい。また、無機酸化物粒子の平均粒子径は、シリカ粒子と同レベルであることが望ましい。すなわち、5nm~1μmの範囲が適している。
 なお、植物由来の原料から生成されたシリカ成分を用いることが持続可能社会の実現の観点で好ましい。また、欧米などの海外では環境との調和、安全性の観点から自然及びオーガニック化粧料のニーズが高まっている。ISO16128-1(Guidelines on technical definitions and criteria for natural And organic cosmetic ingredients and products Part1:Definitions for ingredients)ではその原料が定義されている。シリカ源としては珪砂が多用されている。珪砂を起源とするシリカは鉱物由来原料の分類であるが、植物由来のシリカ成分であれば自然原料として分類され自然指数を高めることができることから、当該ニーズに対応することができる。
 植物由来のシリカ成分は、イネ科植物に多く含まれており、米の籾殻やその稲穂から抽出することができる。例えば、特開平7-196312号公報に開示された焼成法や特開2002-265257号公報に開示された加圧熱水法などにより、高純度なシリカが得られることが知られている。このようにして得られた植物由来のシリカ成分を水酸化ナトリウムで溶解して珪酸ナトリウムを調製し、その後、常法に従って、シリカ粒子を調製することができる。
 <生分解性プラスチック>
 生分解性プラスチックとしては、平均粒子径dが1nm~1μmの生分解性プラスチック粒子が好ましい。このような微細な平均粒子径の粒子により得られる有機無機複合粒子は、良好な生分解性を発揮する。0.1~0.5μmの範囲が特に好ましい。その他、電子顕微鏡写真で計測される太さが1~500nm、長さが1μm以上のセルロースナノファイバーや、太さが10~50nm、長さが100~500nmのセルロースナノクリスタルも生分解性プラスチックとして好適である。
 特に、グルコース分子を構成単位とした結晶性セルロースが好ましい。更に、グルコース分子を構成単位としたI型の結晶形である結晶性セルロースが好ましい。I型の結晶形でない意図的な化学修飾を行ったセルロースは、前述のISO16128-1の定義に基づき、自然原料としての分類とはならない可能性がある。なお、セルロースの結晶形は、赤外分光法にて同定することができ、3365~3370cm-1に強い吸収が認められる。その他、固体13C NMR法でもケミカルシフトの違いや、X線回折法による回折角から同定することもできる。また、結晶形は、Iα、Iβの何れであっても良く、混合物であっても良い。
 生分解性プラスチックには、石油由来の物が工業的に多用されているが、生分解性があれば原料が何であるかは問わない。但し、持続可能社会の実現の観点では、生分解性プラスチックは、再生可能な有機資源であるバイオマスプラスチックであることが望ましく、化学合成で作られるポリ乳酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリビニルアルコール、ポリアスパラギン酸、微生物で作られるプルラン、ポリグルタミン酸、ポリヒドロキシアルカン酸、植物や動物由来のデンプン、セルロース、アミロース、アミロペクチン、キチン、キトサン、ポルフィランが挙げられる。特に植物由来のセルロースが品質、価格、流通量、および安全性の観点で好適である。
 <有機無機複合粒子の製造方法>
 次に、有機無機複合粒子の製造方法について説明する。はじめに、シリカ成分と生分解性プラスチックが分散された混合液を用意する。この混合液に界面活性剤と非水系溶媒を加えて、乳化液滴を形成する(乳化工程)。そして、この乳化液滴を脱水処理する(脱水工程)。得られた分散体を固液分離して有機無機複合粒子を固形物として取り出す(固液分離工程)。この固形物を乾燥して解砕する(乾燥工程)。
 以下、各工程を詳細に説明する。
 <乳化工程>
 シリカ成分と生分解性プラスチックが分散された混合液を用意する。シリカ成分の分散液と生分解性プラスチックの分散液とを混合して調製してもよい。この混合液の固形分濃度が、0.01~50%の範囲になるように調整する。なお、溶媒は水が好ましい。固形分濃度が50%を超えると、通常、水分散体の粘度が高くなり、乳化液滴の均一性が損なわれることがある。固形分濃度が0.01%未満では特に利点がなく、経済性が悪い。
 この混合液に非水系溶媒と界面活性剤を加える。乳化のために必要な非水系溶媒は、水と相溶しないものであればよく、一般的な炭化水素溶媒を用いることができる。また、界面活性剤は、油中水滴型の乳化液滴を形成できるものであればよいが、非水系溶媒の極性に応じて、HLB値が1~10の範囲の界面活性剤が適している。界面活性剤のHLB値は特に1~5の範囲が好ましい。異なるHLB値の界面活性剤を組み合わせて用いてもよい。
 次に、この溶液を乳化装置により乳化させる。このようにして、0.5~500μmの乳化液滴を含んだ乳化液を調製する。乳化装置は、一般的な高速せん断装置の他、より微細な乳化液滴が得られる高圧乳化装置、より均一な乳化液滴が得られる膜乳化装置、マイクロチャネル乳化装置などの従来公知の装置を目的に応じて用いることができる。
 <脱水工程>
 次に、乳化工程で得られた乳化液を脱水処理する。例えば、常圧、または減圧下での加熱により、水を蒸発させる。これにより、乳化液滴が脱水されて粒子径0.5~25μmの有機無機複合粒子を含む非水系溶媒分散体が得られる。
 具体的には、常圧下の加熱脱水法では、冷却管を備えたセパラブルフラスコを加熱し、非水系溶媒を回収しながら、脱水を行う。また、減圧下の加熱脱水法では、ロータリーエバポレーターや、蒸発缶など用いて減圧加熱し、非水系溶媒を回収しながら、脱水を行う。後述の固液分離工程で非水系溶媒分散体から固形物として取り出せる程度まで脱水を行うことが好ましい。脱水が不十分であると、固液分離工程で球状粒子としての形態を維持できないので注意が必要である。
 <固液分離工程>
 固液分離工程では、従来公知の濾過、遠心分離などの方法で、脱水工程で得られた非水系溶媒分散体から固形分を分離する。これにより、有機無機複合粒子のケーキ状物質が得られる。
 <乾燥工程>
 乾燥工程では、常圧または減圧下での加熱により、固液分離工程で得られたケーキ状物質から非水系溶媒を蒸発させる。これにより、平均粒子径0.5~25μmの有機無機複合粒子の乾燥粉体が得られる。
 なお、乳化工程と脱水工程の間に凍結工程を設けてもよい。乳化工程で得られた乳化液滴を-50~0℃の範囲で冷却することにより、液滴中の水を凍結させた凍結乳化物が得られる。次いで、脱水工程で凍結乳化物を脱水処理する。凍結温度が-50℃~-10℃の場合は、多孔性の有機無機複合粒子が調製できる。-10~0℃の場合は、氷の結晶の成長に伴い、液滴中のシリカ成分と生分解性プラスチック成分が液滴の外周に排斥される。そのため、外殻の内部に空洞を有する中空構造の有機無機複合粒子が調製できる。凍結工程では、例えば、-10~0℃の範囲の特定の温度を維持させてもよいし、この範囲内で変動させてもよい。
 さらに、固液分離工程で得られた有機無機複合粒子のケーキ状物質を洗浄して、界面活性剤を低減してもよい。本発明に係る有機無機複合粒子をファンデーション等の固形製剤に用いる場合は、特に問題はないが、乳化物等の液体製剤に配合した場合、長期安定性を阻害することがある。そのため、有機無機複合粒子に対して、界面活性剤の残留量を500ppm以下とすることが好ましい。界面活性剤を低減させるためには、有機溶媒を用いて洗浄すると良い。
 <化粧料>
 以下に、有機無機複合粒子と各種の化粧料成分とを配合して得られる化粧料について具体的に説明する。
 化粧料に本発明の有機無機複合粒子を用いると、従来のシリカ粒子等の無機系単一成分からなる粒子と異なり、転がり感、転がり感の持続性、及び均一な延び広がり性だけでなく、プラスチックビーズ特有のソフト感としっとり感という、化粧料の感触改良材に求められる代表的な感触特性を得ることができる。
 化粧料成分としては、以下のものが挙げられる。オリーブ油、ナタネ油、ホホバ油、牛脂等の油脂類。カルナバロウ、キャンデリラロウ、ミツロウ等のロウ類。パラフィン、スクワラン、合成及び植物性スクワラン、α-オレフィンオリゴマー、マイクロクリスタリンワックス、ペンタン、ヘキサン等の炭化水素類。ステアリン酸、ミリスチン酸、オレイン酸等の脂肪酸類。イソステアリルアルコール、オクチルドデカノール、ラウリルアルコール、エタノール、イソプロパノール、ブチルアルコール、ミリスチルアルコール、セタノール、ステアリルアルコール、ベヘニルアルコール等のアルコール類。アルキルグリセリルエーテル類、ミリスチン酸イソプロピル、パルチミン酸イソプロピル、ステアリン酸エチル、オレイン酸エチル、ラウリル酸セチル、オレイン酸デシル等のエステル類。エチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジグリセリン等の多価アルコール類。ソルビトール、ブドウ糖、ショ糖等の糖類。メチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルシリコーン油、各種変性シリコーン油、環状ジメチルシリコン油等のシリコーン油。シリコーン系等の有機化合物にて架橋させたシリコーンゲル。ノニオン系、カチオン系、アニオン系、または両性の界面活性剤。パーフルオロポリエーテル等のフッ素油。アラビアガム、カラギーナン、寒天、キサンタンガム、ゼラチン、アルギン酸、グアーガム、アルブミン、プルラン、カルボキシビニルポリマー、セルロース及びその誘導体、ポリアクリル酸アミド、ポリアクリル酸ナトリウム、ポリビニルアルコール等の高分子。パラメトキシケイ皮酸オクチル等のケイ皮酸系、サリチル酸系、安息香酸エステル系、ウロカニン酸系、ベンゾフェノン系をはじめとした紫外線防御剤。各種粒子径、粒子径分布および形状を有する酸化チタン、酸化亜鉛、酸化アルミニウム、水酸化アルミニウム、ベンガラ、黄色酸化鉄、黒色酸化鉄、酸化セリウム、酸化ジルコニウム、シリカ、マイカ、タルク、セリサイト、窒化ホウ素、硫酸バリウム、パール光沢を有する雲母チタン、およびそれらの複合物。酢酸ブチル、アセトン、トルエン等の溶剤。動植物抽出物、アミノ酸及びペプチド類、ビタミン類、殺菌・防腐剤、酸化防止剤、変性又は未変性の粘土鉱物、各種有機顔染料、水、香料。ここで、前述の酸化チタンや酸化亜鉛等の無機化合物では、その表面に予めシリコーン処理、フッ素処理、金属石鹸処理などを施してもよい。
 また、ポリアクリル酸メチル、ナイロン、シリコーン樹脂、シリコーンゴム、ポリエチレン、ポリエステル、ポリウレタンなどの樹脂粒子を含んでいてもよい。
 さらに、美白効果を有する有効成分として、アルブチン、コウジ酸、ビタミンC、アスコルビン酸ナトリウム、アスコルビン酸リン酸エステルマグネシウム、ジ-パルチミン酸アスコルビル、アスコルビン酸グルコシド、その他のアスコルビン酸誘導体、プラセンタエキス、イオウ、油溶性甘草エキス、クワエキス等の植物抽出液、リノール酸、リノレイン酸、乳酸、トラネキサム酸などを含ませてもよい。
 また、肌荒れ改善効果を有する有効成分として、ビタミンC、カロチノイド、フラボノイド、タンニン、カフェー誘導体、リグナン、サポニン、レチノイン酸及びレチノイン酸構造類縁体、N-アセチルグルコサミン、α-ヒドロキシ酸等の抗老化効果を有する有効成分、グリセリン、プロピレングリコール、1,3-ブチレングリコール等の多価アルコール類、混合異性化糖、トレハロース、プルラン等の糖類、ヒアルロン酸ナトリウム、コラーゲン、エラスチン、キチン・キトサン、コンドロイチン硫酸ナトリウム等の生体高分子類、アミノ酸、ベタイン、セラミド、スフィンゴ脂質、コレステロール及びその誘導体、ε-アミノ化プロン酸、グリチルリチン酸、各種ビタミン類などを含ませてもよい。
 さらに、医薬部外品原料規格2006(発行:株式会社薬事日報社、平成18年6月16日)や、International Cosmetic Ingredient Dictionary and Handbook(発行:The Cosmetic, Toiletry, and Fragrance Association、Eleventh Edition2006)等に収載されている化粧料成分を使用することができる。
 このような化粧料は、従来公知の一般的な方法で製造することができる。化粧料は、粉末状、ケーキ状、ペンシル状、スティック状、クリーム状、ジェル状、ムース状、液状などの各種形態で使用される。具体的には以下の製品が挙げられる。石鹸、クレンジングフォーム、メーク落とし用クリーム等の洗浄用化粧料。保湿・肌荒れ防止、アクネ、角質ケア、マッサージ、しわ・たるみ対応、くすみ・くま対応、紫外線ケア、美白、抗酸化ケア用等のスキンケア化粧料。パウダーファンデーション、リキッドファンデーション、クリームファンデーション、ムースファンデーション、プレスドパウダー、化粧下地等のベースメークアップ化粧料。アイシャドウ、アイブロー、アイライナー、マスカラ、口紅等のポイントメークアップ化粧料。育毛用、フケ防止、かゆみ防止、洗浄用、コンディショニング・整髪用、パーマネント・ウエーブ用、ヘアカラー・ヘアブリーチ用等のヘアケア化粧料。洗浄用、日焼け防止、手荒れ防止、スリミング用、血行改善用、かゆみ抑制、体臭防止、制汗、体毛ケア、リペラント用、ボディパウダー等のボディーケア化粧料。香水、オードパルファム、オードトワレ、オーデコロン、シャワーコロン等、練香水、ボディーロ-ション、バスオイル等のフレグランス化粧料。歯磨き、マウスウォッシュ等のオーラルケア製品。
 以下、本発明の実施例を具体的に説明する。
 [実施例1]
 市販のシリカゾル(日揮触媒化成社製:SS-300、平均粒子径300nm、シリカ濃度20質量%)50gをロータリーエバポレーターで濃縮し、シリカ濃度40質量%のシリカゾル25gとする。このシリカゾルに、陽イオン樹脂(三菱化成社製、SK-1B)を一気に加えてpHを2.5とした後、陽イオン交換樹脂を分離する。これにより、脱アルカリ処理(Naイオンの除去等)がなされ、シリカ粒子濃度39.3質量%のスラリーaが得られる。スラリーaに、I型セルロース粒子(旭化成社製セオラス(登録商標)RC-N30)10gと純水30gを均一に分散した高分子分散液を添加し、スラリーbを調製する。
 得られたスラリーbを、ヘプタン(関東化学社製)1300gと界面活性剤AO-10V(花王社製)9.75gを混合した溶液中に加え、乳化分散機(プライミクス社製T.K.ロボミックス)を使用して10000rpmにて10分間乳化を行う。得られた乳化液を60℃で16時間加熱して、乳化液滴から脱水したのち、ブフナー漏斗(関谷理化硝子器械社製3.2L)を用いて定量濾紙(アドバンテック東洋社製No.2)で濾過する。その後、ヘプタンで繰り返し洗浄して界面活性剤を除去し、ケーキ状物質を得る。このケーキ状物質を、120℃で12時間乾燥する。この乾燥粉体をジューサーミキサー(日立製作所社製)で10秒間粉砕し、250mesh篩(JIS試験用規格篩)でふるいにかけ、有機無機複合粒子の粉体を得た。有機無機複合粒子の調製条件を実施例ごとに表1に示す。また、有機無機複合粒子の粉体の物性を以下の方法で測定した。その結果を表2に示す。
 (1)各粒子の平均粒子径(d、d、d
 レーザー回折法を用いて、有機無機複合粒子、シリカ粒子、生分解性プラスチック粒子の粒度分布を測定し、この粒度分布からメジアン径を求め、平均粒子径とした。このようにして、有機無機複合粒子の平均粒子径d、シリカ粒子の平均粒子径dおよび生分解性プラスチック粒子の平均粒子径dを求めた。レーザー回折法による粒度分布の測定は、レーザー回折/散乱式粒子径分布測定装置LA-950v2(株式会社堀場製作所製)を用いた。但し、セルロースナノファイバーやセルロースナノクリスタル等に代表される繊維状生分解性プラスチック粒子の平均粒子径dについては、その粒子の比表面積と比重から、以下の式を用いて等価球換算の平均粒子径を算出した。
      「平均粒子径」=6000÷(「真密度」×「比表面積」)
 (2)平均粒子径比(d/d
 レーザー回折/散乱式粒子径分布測定装置LA-950v2にて有機無機複合粒子の平均粒子径を測定する際、該装置の分散条件を「超音波60分間」に設定し分散した後、粒度分布を測定する。分散後の粒度分布からメジアン径で表わされる平均粒子径dを求める。これから超音波分散前後の平均粒子径比(d/d)を求める。
 (3)有機無機複合粒子の真密度の測定方法
 有機無機複合粒子を磁性ルツボ(B-2型)に約30mL採取し、105℃で2時間乾燥後、デシケーターに入れて室温まで冷却する。次に、サンプルを15mL採取し、全自動ピクノメーター(QUANTACHROME社製:Ultrapyc1200e)を用いて真密度を測定した。
 (4)シリカ粒子の変動係数
 走査型電子顕微鏡(日本電子社製JSM-7600F)により、倍率2万倍から25万倍で写真(SEM写真)を撮影する。この画像の250個の粒子について、画像解析装置(旭化成社製、IP-1000)を用いて、平均粒子径を測定し、粒子径分布に関する変動係数(CV値)を算出した。
 (5)シリカ粒子、有機無機複合粒子の真球度
 透過型電子顕微鏡(日立製作所製、H-8000)により、倍率2000倍から25万倍の倍率で写真撮影して得られる写真投影図から、任意の50個の粒子を選び、それぞれその最大径DLと、これに直交する短径DSとの比(DS/DL)を測定し、それらの平均値を真球度とした。
 (6)有機無機複合粒子の比表面積
 有機無機複合粒子の粉体を磁性ルツボ(B-2型)に約30mL採取し、105℃の温度で2時間乾燥した後、デシケーターに入れて室温まで冷却する。次に、この試料を1g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、比表面積(m/g)をBET法にて測定した。有機無機複合粒子に配合したシリカと生分解性プラスチックの組成比(配合重量比)から求められる比重(例えば、シリカが100%であれば2.2g/cm、セルロースが100%であれば1.5g/cm)でこれを換算し、単位体積当たりの比表面積を求めた。
 (7)有機無機複合粒子の細孔容積、細孔径
 有機無機複合粒子の粉体10gをルツボに取り、105℃で1時間乾燥した後、デシケーター中で室温まで冷却し、自動ポロシメーター(カウンタークローム・インスツルメンツ社製PoreMasterPM33GT)を使用して水銀圧入法により細孔径分布を測定した。詳しくは、水銀を1.5kPa~231MPaで圧入し、圧力と細孔径の関係から細孔径分布が求められる。この方法によれば、約7nmから約1000μmの細孔に水銀が圧入されるため、有機無機複合粒子の内部に存在する小径の細孔と、有機無機複合粒子の粒子同士の間隙の両方が細孔径分布に表れる。粒子同士の間隙は、概ね粒子の平均粒子径に対して1/5~1/2の大きさになる。粒子同士の間隙に依存する部分を除いて、細孔に依存する細孔径分布に基づき、細孔容積、平均細孔径を算出した。このとき、必要に応じてピーク分離ソフト(自動ポロシメーターに付属)が用いられる。
 (8)有機無機複合粒子の組成分析
 有機無機複合粒子の粉体0.2gを白金皿で精秤し、硫酸10mLと弗化水素酸10mLを加えて、砂浴上で硫酸の白煙が出るまで加熱する。冷却後、水約50mLを加えて加温溶解する。冷却後、水200mLに希釈しこれを試験溶液とする。この試験溶液について誘導結合プラズマ発光分光分析装置(島津製作所製、ICPS-8100、解析ソフトウェアICPS-8000)を使用し、有機無機複合粒子の組成を求める。
 (9)接触角
 有機無機複合粒子1gを105℃で乾燥させた後、直径1cm、高さ5cmのセルに入れ、50kgfの荷重でプレスして成型物を得る。得られた成型物の表面に水を一滴たらして水に対する接触角を測定した。
 (10)弾性率
 有機無機複合粒子の粉体から、平均粒子径±0.5μmの範囲にある粒子1個を選び、試料とした。微小圧縮試験機(島津製作所製、MCTM-200)を用いて、この試料に一定の負荷速度で荷重を負荷し、圧縮弾性率を測定した。
 [実施例2]
 実施例1で用いた高分子分散液内のI型セルロース粒子の代わりに、スギノマシン社製BiNFi-s WMa―10002を用いた。これ以外は実施例1と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。
 [実施例3]
 実施例1で用いた高分子分散液内のI型セルロース粒子の代わりに、第一工業製薬社製レオクリスタC-2SPを用いた。これ以外は実施例1と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。
 [実施例4]
 高分子分散液内のI型セルロース粒子(旭化成社製セオラス(登録商標)RC-N30)の混合量を、4.3gに変更した。これ以外は実施例1と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。
 [実施例5]
 高分子分散液内のI型セルロース粒子(旭化成社製セオラス(登録商標)RC-N30)の混合量を、23.3gに変更した。これ以外は実施例1と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。
 [実施例6]
 乳化液を-5℃の恒温槽中に16時間静置して乳化液滴を凍結させ、さらにその乳化液を常温で放置したのち、ブフナー漏斗(関谷理化硝子器械社製3.2L)を用いて定量濾紙(アドバンテック東洋社製No.2)で濾過した。これ以外は実施例1と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。
 [実施例7]
 乳化液を-25℃の恒温槽中に16時間静置して乳化液滴を凍結させた。これ以外は実施例6と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。
 [実施例8]
 シリカゾルとして市販品(日揮触媒化成社製 SS-160、平均粒子径160nm、固形分濃度16質量%)62.5gを使用し、エバポレーターで濃縮してシリカ濃度40重量%のシリカゾルとした以外は実施例1と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。
 [実施例9]
 シリカゾルとして市販品(日揮触媒化成社製 SI-550、平均粒子径5nm、固形分濃度20質量%)50gを使用し、エバポレーターによる濃縮を行わなかった以外は実施例1と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。
 [実施例10]
 スラリーaとして珪酸液(固形分濃度5%)200gを使用し、これに、I型セルロース粒子(旭化成社製セオラス(登録商標)RC-N30)10gと純水30gを混合した高分子分散液を添加し、スラリーbを調製した。以降は実施例6と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。
 [実施例11]
 乳化分散機(プライミクス社製T.K.ロボミックス)を使用して5000rpmにて10分間乳化を行った以外は、実施例1と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。
 [比較例1]
 高分子分散液内のセルロース粒子(旭化成社製セオラス(登録商標)RC-N30)の混合量を、1.1gに変更した以外は実施例1と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。
 [比較例2]
 乳化液を95℃で4時間加熱した以外は実施例1と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。高温で急激に加熱することにより、脱水より先に乳化液滴が崩壊したため、真球度の高い粒子が得られなかった。
 [比較例3]
 乳化分散機(プライミクス社製T.K.ロボミックス)を使用して500rpmにて10分間乳化を行った以外は、実施例1と同様に有機無機複合粒子を調製し、実施例1と同様に物性を測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [有機無機複合粒子の粉体の感触特性]
 次に、各実施例と比較例で得られた粉体を用いて、感触特性を評価した。各粉体について、20名の専門パネラーによる官能テストを行った。さらさら感、しっとり感、転がり感、均一な延び広がり性、肌への付着性、転がり感の持続性、およびソフト感の7つの評価項目に関して聞き取り調査を行い、以下の評価点基準(a)に基づき評価する。各人の評価点を合計し、以下の評価基準(b)に基づき有機無機複合粒子の感触に関する評価を行った。結果を表3に示す。その結果、各実施例の粉体は、化粧料の感触改良材として極めて優れているが、比較例の粉体は、感触改良材として適していないことが分かった。
評価点基準(a)
  5点:非常に優れている。
  4点:優れている。
  3点:普通。
  2点:劣る。
  1点:非常に劣る。
評価基準(b)
  ◎:合計点が80点以上
  ○:合計点が60点以上80点未満
  △:合計点が40点以上60点未満
  ▲:合計点が20点以上40点未満
  ×:合計点が20点未満
Figure JPOXMLDOC01-appb-T000003
 [パウダーファンデーションの使用感]
 次に、有機無機複合粒子の粉体を用いて表4に示す配合比率(重量%)となるようにパウダーファンデーションを作製した。すなわち、実施例1の粉体(成分(1))と成分(2)~(9)をミキサーに入れて撹拌し、均一に混合した。次に、化粧料成分(10)~(12)をこのミキサーに入れて撹拌し、さらに均一に混合した。次いで、得られたケーキ状物質を解砕処理した後、その中から約12gを取り出し、46mm×54mm×4mmの角金皿に入れてプレス成型した。この様にして得られたパウダーファンデーションについて、20名の専門パネラーによる官能テストを行った。肌への塗布中の均一な延び、しっとり感、滑らかさ、および、肌に塗布後の化粧膜の均一性、しっとり感、やわらかさの6つの評価項目に関して聞き取り調査を行い、評価点基準(a)に基づき評価した。また、各人の評価点を合計し、評価基準(b)に基づきファンデーションの使用感を評価した。結果を表5に示す。ここでは、実施例1~3による化粧料A~Cを代表例として取り上げて評価した。実施例に基づく化粧料A~Cは、その使用感が、塗布中でも塗布後でも、非常に優れていることが分かった。しかし、比較例1~3の化粧料a~cは、その使用感がよくないことが分かった。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

Claims (12)

  1.  シリカ成分1.0~83.0重量%と生分解性プラスチック17.0~99.0重量%を含む球状の有機無機複合粒子であって、平均粒子径dが0.5~25μm、真密度が1.03~2.00g/cm、真球度が0.80以上である有機無機複合粒子。
  2.  水に対する接触角が90°以下であることを特徴とする請求項1に記載の有機無機複合粒子。
  3.  弾性率が2~30GPaであることを特徴とする請求項1または2に記載の有機無機複合粒子。
  4.  前記有機無機複合粒子の分散液を、超音波分散機を用いて60分間分散させたとき、分散後の平均粒子径dと、分散前の平均粒子径dの比(d/d)が、0.95~1.05の範囲にあることを特徴とする請求項1~3のいずれか一項に記載の有機無機複合粒子。
  5.  前記シリカ成分として、平均粒子径dが5nm~1μmの範囲にあるシリカ粒子が含まれることを特徴とする請求項1~4のいずれか一項に記載の有機無機複合粒子。
  6.  前記生分解性プラスチックは、平均粒子径dが1nm~1μmの粒子であることを特徴とする請求項1~5のいずれか一項に記載の有機無機複合粒子。
  7.  前記生分解性プラスチックが、グルコース分子を構成単位とした結晶性セルロースであることを特徴とする請求項1~6のいずれか一項に記載の有機無機複合粒子。
  8.  前記有機無機複合粒子が外殻の内部に空洞を有する中空粒子であることを特徴とする請求項1~7のいずれか一項に記載の有機無機複合粒子。
  9.  請求項1~8のいずれか一項に記載の有機無機複合粒子が配合された化粧料。
  10.  シリカ成分と生分解性プラスチックが分散された分散液に、界面活性剤と非水系溶媒を加えて、乳化液滴を含む乳化液を調製する乳化工程と、
     前記乳化液滴を脱水処理する脱水工程と、
     前記脱水工程で得られた非水系溶媒分散体を固液分離して有機無機複合粒子を固形物として得る工程と、を含むことを特徴とする有機無機複合粒子の製造方法。
  11.  前記乳化工程と前記脱水工程の間に、前記乳化液滴を凍結する凍結工程を含むことを特徴とする請求項10に記載の有機無機複合粒子の製造方法。
  12.  前記乳化工程において、前記乳化液滴が-10~0℃で凍結されたことを特徴とする請求項11に記載の有機無機複合粒子の製造方法。
PCT/JP2019/013871 2018-03-30 2019-03-28 有機無機複合粒子とその製造方法、および化粧料 WO2019189692A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207024543A KR20200136888A (ko) 2018-03-30 2019-03-28 유기 무기 복합 입자와 그 제조 방법, 및 화장료
JP2020511051A JP6861453B2 (ja) 2018-03-30 2019-03-28 有機無機複合粒子とその製造方法、および化粧料
EP19775731.3A EP3778749A4 (en) 2018-03-30 2019-03-28 ORGANIC-INORGANIC COMPOSITE PARTS, MANUFACTURING METHODS FOR THEM AND COSMETIC
CA3093805A CA3093805A1 (en) 2018-03-30 2019-03-28 Organic-inorganic composite particles, manufacturing method therefor, and cosmetic
US16/979,341 US11701307B2 (en) 2018-03-30 2019-03-28 Organic-inorganic composite particles, manufacturing method therefor, and cosmetic
CN201980016948.7A CN111801377A (zh) 2018-03-30 2019-03-28 有机无机复合粒子及其制造方法、以及化妆品
BR112020019683A BR112020019683A8 (pt) 2018-03-30 2019-03-28 Partículas compostas orgânicas-inorgânicas esféricas e método de fabricação das mesmas e cosméticos

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018066583 2018-03-30
JP2018-066583 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189692A1 true WO2019189692A1 (ja) 2019-10-03

Family

ID=68061919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013871 WO2019189692A1 (ja) 2018-03-30 2019-03-28 有機無機複合粒子とその製造方法、および化粧料

Country Status (8)

Country Link
US (1) US11701307B2 (ja)
EP (1) EP3778749A4 (ja)
JP (1) JP6861453B2 (ja)
KR (1) KR20200136888A (ja)
CN (1) CN111801377A (ja)
BR (1) BR112020019683A8 (ja)
CA (1) CA3093805A1 (ja)
WO (1) WO2019189692A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022022544A1 (zh) * 2020-07-28 2022-02-03 黎明职业大学 一种抗菌改性塑料
WO2023189800A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 中空粒子及びその製造方法
JP7443614B1 (ja) 2022-10-05 2024-03-05 松本油脂製薬株式会社 樹脂粒子及びその用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328268B2 (ja) * 2021-02-19 2023-08-16 日揮触媒化成株式会社 被覆粒子とその製造方法、および化粧料
CN115386208A (zh) * 2022-08-11 2022-11-25 长兴电子(苏州)有限公司 可降解微珠及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196312A (ja) 1993-12-28 1995-08-01 Maeda Seikan Kk 籾殻を原料とする非晶質シリカの製造方法
JP2002265257A (ja) 2001-03-05 2002-09-18 National Institute Of Advanced Industrial & Technology シリカ原料の製造方法
JP2005128128A (ja) * 2003-10-22 2005-05-19 Konica Minolta Business Technologies Inc 静電荷像現像用トナー
JP2008273780A (ja) * 2007-04-27 2008-11-13 Jgc Catalysts & Chemicals Ltd 改質シリカ系ゾルおよびその製造方法
JP2013527204A (ja) 2010-05-24 2013-06-27 マイクロ パウダーズ,インコーポレイテッド 化粧品組成物に使用するための生分解性ポリマーを含む組成物
JP2013136732A (ja) 2011-11-28 2013-07-11 Asahi Kasei Chemicals Corp 洗浄剤及びその製造方法
JP2014043566A (ja) 2012-07-31 2014-03-13 Toray Ind Inc ポリ乳酸系樹脂微粒子およびそれを用いてなる分散液、ならびにポリ乳酸系樹脂微粒子の製造方法
JP2016002739A (ja) * 2014-06-18 2016-01-12 株式会社日本触媒 複合粒子
JP2017186187A (ja) * 2016-04-01 2017-10-12 日揮触媒化成株式会社 多孔質シリカ系粒子、及び洗浄用化粧料
JP2018172578A (ja) * 2017-03-31 2018-11-08 日揮触媒化成株式会社 有機無機複合粒子、及び化粧料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954403A1 (de) * 1999-11-12 2001-05-17 Wolff Walsrode Ag Ein- und mehrschichtige, biologisch abbaubare, thermoplastische Folien mit verbesserten Barriereeigenschaften sowie deren Verwendung als Verpackungsfolie oder in Kosmetik- und Hygieneartikeln
JP4731053B2 (ja) * 2001-06-28 2011-07-20 日揮触媒化成株式会社 樹脂被覆球状多孔質粒子、その製造方法、および該粒子を配合した化粧料
US7547498B2 (en) 2003-10-16 2009-06-16 Konica Minolta Business Technologies, Inc. Toner for developing electrostatic latent images and a production method for the same
JP5757698B2 (ja) * 2009-08-06 2015-07-29 日揮触媒化成株式会社 有機無機複合粒子並びにその製造方法、該粒子を含む分散液および該粒子を配合した化粧料
US20150157539A1 (en) 2012-07-13 2015-06-11 L'oreal Cosmetic composition comprising composite particles
KR20180079673A (ko) * 2017-01-02 2018-07-11 퀴아오셩 리 나노 재료 및 한약 추출물을 포함하는 피부미백 선 케어 조성물
CN107497378A (zh) * 2017-10-09 2017-12-22 南京慧联生物科技有限公司 一步法制备核壳结构的聚乙烯醇/二氧化硅复合微球的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196312A (ja) 1993-12-28 1995-08-01 Maeda Seikan Kk 籾殻を原料とする非晶質シリカの製造方法
JP2002265257A (ja) 2001-03-05 2002-09-18 National Institute Of Advanced Industrial & Technology シリカ原料の製造方法
JP2005128128A (ja) * 2003-10-22 2005-05-19 Konica Minolta Business Technologies Inc 静電荷像現像用トナー
JP2008273780A (ja) * 2007-04-27 2008-11-13 Jgc Catalysts & Chemicals Ltd 改質シリカ系ゾルおよびその製造方法
JP2013527204A (ja) 2010-05-24 2013-06-27 マイクロ パウダーズ,インコーポレイテッド 化粧品組成物に使用するための生分解性ポリマーを含む組成物
JP2013136732A (ja) 2011-11-28 2013-07-11 Asahi Kasei Chemicals Corp 洗浄剤及びその製造方法
JP2014043566A (ja) 2012-07-31 2014-03-13 Toray Ind Inc ポリ乳酸系樹脂微粒子およびそれを用いてなる分散液、ならびにポリ乳酸系樹脂微粒子の製造方法
JP2016002739A (ja) * 2014-06-18 2016-01-12 株式会社日本触媒 複合粒子
JP2017186187A (ja) * 2016-04-01 2017-10-12 日揮触媒化成株式会社 多孔質シリカ系粒子、及び洗浄用化粧料
JP2018172578A (ja) * 2017-03-31 2018-11-08 日揮触媒化成株式会社 有機無機複合粒子、及び化粧料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"International Cosmetic Ingredient Dictionary and Handbook", 2006, THE COSMETIC, TOILETRY, AND FRAGRANCE ASSOCIATION
"Japanese Standards of Quasi-drug Ingredients", 16 June 2006, YAKUJI NIPPO, LIMITED
See also references of EP3778749A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022022544A1 (zh) * 2020-07-28 2022-02-03 黎明职业大学 一种抗菌改性塑料
WO2023189800A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 中空粒子及びその製造方法
JP7443614B1 (ja) 2022-10-05 2024-03-05 松本油脂製薬株式会社 樹脂粒子及びその用途

Also Published As

Publication number Publication date
BR112020019683A2 (pt) 2021-01-05
EP3778749A4 (en) 2021-06-02
US20210000705A1 (en) 2021-01-07
JPWO2019189692A1 (ja) 2020-12-03
JP6861453B2 (ja) 2021-04-21
US11701307B2 (en) 2023-07-18
CA3093805A1 (en) 2019-10-03
BR112020019683A8 (pt) 2021-12-21
EP3778749A1 (en) 2021-02-17
CN111801377A (zh) 2020-10-20
KR20200136888A (ko) 2020-12-08

Similar Documents

Publication Publication Date Title
JP6861453B2 (ja) 有機無機複合粒子とその製造方法、および化粧料
JP7058944B2 (ja) 有機無機複合粒子、及び化粧料
KR101763191B1 (ko) 다공질 실리카계 입자, 그 제조 방법 및 그것을 배합한 화장료
JP5631530B2 (ja) 表面平滑性を備えた多孔質シリカ系粒子、その製造方法および該多孔質シリカ系粒子を配合してなる化粧料
JP7170633B2 (ja) 中空粒子及び化粧料
US11806421B2 (en) Porous-cellulose particles and production method thereof, and cosmetic
EP4019553A1 (en) Particles containing starch, method for producing same, and cosmetic preparation
JP5791771B2 (ja) 表面平滑性に優れた多孔質シリカ系粒子および該多孔質シリカ系粒子を配合してなる化粧料
JP2019178257A (ja) 有機無機複合粒子、及び化粧料
EP3318243A1 (en) Composite powder in which jade powder particles are impregnated in porous polymer, cosmetic composition containing same and manufacturing method for same
JP2009091318A (ja) 変性表面改質剤、その製造方法、および該改質剤による粉体の表面改質方法並びに該改質粉体を含む化粧料
EA029628B1 (ru) Вспениваемая композиция для личной гигиены, содержащая непрерывную масляную фазу
JP5174447B2 (ja) 変性表面改質剤の製造方法、該改質剤による粉体の表面改質方法および該粉体を含む化粧料の製造方法
JP6854883B2 (ja) メイクアップ化粧料
JP5450711B2 (ja) 変性表面改質剤の製造方法、該改質剤による粉体の表面改質方法および該粉体を含む化粧料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511051

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3093805

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020019683

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2019775731

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112020019683

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200928