WO2019189254A1 - 炭化ケイ素焼結体用分散体、これを用いた炭化ケイ素焼結体用グリーンシートおよび炭化ケイ素焼結体用プリプレグ材、ならびにその製造方法 - Google Patents

炭化ケイ素焼結体用分散体、これを用いた炭化ケイ素焼結体用グリーンシートおよび炭化ケイ素焼結体用プリプレグ材、ならびにその製造方法 Download PDF

Info

Publication number
WO2019189254A1
WO2019189254A1 PCT/JP2019/012991 JP2019012991W WO2019189254A1 WO 2019189254 A1 WO2019189254 A1 WO 2019189254A1 JP 2019012991 W JP2019012991 W JP 2019012991W WO 2019189254 A1 WO2019189254 A1 WO 2019189254A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
dispersion
particles
boron nitride
carbide particles
Prior art date
Application number
PCT/JP2019/012991
Other languages
English (en)
French (fr)
Inventor
圭吾 鴨志田
創万 田口
圭史 芦▲高▼
直也 三輪
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2020510961A priority Critical patent/JP7252941B2/ja
Priority to CA3094430A priority patent/CA3094430A1/en
Priority to EP19777660.2A priority patent/EP3778534B1/en
Priority to US17/042,404 priority patent/US11760697B2/en
Publication of WO2019189254A1 publication Critical patent/WO2019189254A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63464Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • B28B19/0046Machines or methods for applying the material to surfaces to form a permanent layer thereon to plastics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Definitions

  • the present invention relates to a dispersion for a silicon carbide sintered body, a green sheet for a silicon carbide sintered body, a prepreg material for a silicon carbide sintered body, and a method for producing the same.
  • Silicon carbide has high hardness, high temperature heat resistance, mechanical strength, impact resistance, wear resistance, oxidation resistance and corrosion resistance, and a small thermal expansion coefficient. Applications in various applications including high temperature structural members are expected.
  • silicon carbide when forming a desired composition or material, it is necessary to disperse particulate silicon carbide (silicon carbide particles, SiC particles) in a dispersion medium or a polymer material medium, Mixing with inorganic particles such as ceramic particles has been studied.
  • the silicon carbide particles have high dispersibility in the medium, such as other ceramic particles.
  • a dispersion containing silicon carbide particles that can be uniformly dispersed in inorganic particles is particularly desired.
  • JP-A-2-22179 silicon carbide (SiC) whiskers are dispersed in a medium together with other ceramic particles such as Si 3 N 4 to produce a dispersion, which is sintered to obtain a sintered body. Techniques for making are described. JP-A-2-22179 discloses a sintered body in which these particles are uniformly mixed by adjusting the pH of the dispersion to adjust the zeta potential of silicon carbide whiskers and other ceramic particles. It is described that it is obtained.
  • Boron nitride is known to be a hard material, and combined with silicon carbide particles is expected to improve the thermal shock resistance and machinability of a sintered body containing silicon carbide.
  • the silicon carbide particles and the boron nitride particles in the dispersion are obtained. Must be stably and uniformly dispersed. Further, in order to efficiently produce a silicon carbide sintered body using the dispersion, the dispersion is required to have excellent temporal stability.
  • the present invention has been made in view of the above problems, and has a dispersion for a silicon carbide sintered body having a low environmental load, high dispersibility, and excellent temporal stability, and a method for producing the same.
  • the purpose is to provide.
  • the present inventors have conducted intensive research.
  • the main dispersion medium is water, boron nitride particles are used as inorganic particles, a resin having a hydroxyl group is added, the pH of the dispersion is controlled within a predetermined range, and the surfaces of the silicon carbide particles and the boron nitride particles are controlled. It has been found that the above problems can be solved by controlling the electric charges to have the same sign, and the present invention has been completed.
  • Silicon carbide particles Silicon carbide particles; Boron nitride particles, A resin having a hydroxyl group; water and, Including A dispersion for sintered silicon carbide, wherein the pH at 25 ° C is 7.0 or less, and the silicon carbide particles and the boron nitride particles have the same sign of charge.
  • An aqueous dispersion comprising silicon carbide particles; An aqueous dispersion containing boron nitride particles; An aqueous solution containing a resin having a hydroxyl group;
  • a method for producing a dispersion for sintered silicon carbide comprising a mixing step of mixing
  • the manufacturing method in which the silicon carbide particles and the boron nitride particles have the same sign of charge, and the dispersion for the silicon carbide sintered body has a pH at 25 ° C. of 7.0 or less.
  • X to Y indicating a range means “X or more and Y or less”.
  • measurement of operation and physical properties is performed under the conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • One embodiment of the present invention includes silicon carbide particles, boron nitride particles, a resin having a hydroxyl group, and water, and the pH at 25 ° C. is 7.0 or less.
  • the silicon carbide particles and the boron nitride It is a dispersion for a silicon carbide sintered body in which particles have the same sign.
  • One embodiment of the present invention is for a silicon carbide sintered body having a mixing step of mixing an aqueous dispersion containing silicon carbide particles, an aqueous dispersion containing boron nitride particles, and an aqueous solution containing a resin having a hydroxyl group.
  • the dispersion for a silicon carbide sintered body obtained by the production method of the present invention is also referred to as “dispersion according to the present invention”.
  • a dispersion for a silicon carbide sintered body having a low environmental load, high dispersibility and stability over time, and a method for producing the same are provided.
  • the use of water as a dispersion medium for silicon carbide sintered bodies is advantageous in terms of environmental load and waste liquid treatment costs compared to the case of using an organic solvent.
  • water when water is used as a medium, the charge of silicon carbide particles and inorganic particles greatly affects the cohesiveness of these particles in the dispersion as compared to the case where an organic solvent is used. Therefore, it becomes difficult to uniformly disperse the silicon carbide particles and the inorganic particles.
  • a dispersion aqueous dispersion
  • silicon carbide particles boron nitride particles, and a resin having a hydroxyl group
  • the boron nitride particles are expressed by the following formula under an alkaline condition where the pH at 25 ° C. exceeds 7.0.
  • a resin having a hydroxyl group react and bond to form a complex, thereby causing gelation.
  • the viscosity of the dispersion increases with time.
  • the pH of the dispersion is 7.0 or less, the above reaction is unlikely to proceed, so the viscosity is considered to be kept stable.
  • dispersion stability is improved by making the silicon carbide particles and boron nitride particles have the same sign of charge under the condition that the pH at 25 ° C. is 7.0 or less.
  • the dispersibility and dispersion stability can be further improved by adjusting the zeta potential of the particle surface.
  • Silicon carbide (SiC) particles have high hardness, high temperature heat resistance, mechanical strength, impact resistance, wear resistance, oxidation resistance and corrosion resistance, and a low thermal expansion coefficient. It can be used for various applications including high-temperature structural members.
  • the silicon carbide particles are not particularly limited, but when the charge is controlled by being coated with a coating layer containing a charge control component, the silicon carbide particles are dispersed in the dispersion medium from the generation of the particles to the coating with the coating layer. Is preferably maintained. By maintaining the state dispersed in the dispersion from the generation of the silicon carbide particles to the coating with the coating layer, aggregation of the silicon carbide particles due to drying can be avoided. Thus, the high dispersibility of the silicon carbide particles at the time of production is maintained at a higher level even in the state of the silicon carbide particles coated with the coating layer, so that the silicon carbide particles coated with the coating layer are extremely high. Dispersibility is obtained.
  • the average primary particle diameter of the silicon carbide particles is not particularly limited, but is preferably 900 nm or less. When the average primary particle diameter is within this range, a dispersion having higher dispersibility can be obtained. From the same viewpoint, the average primary particle diameter of the silicon carbide particles is more preferably 700 nm or less, and further preferably 600 nm or less. The average primary particle diameter of the silicon carbide particles is not particularly limited, but is preferably 1 nm or more. When the average primary particle diameter is within this range, the function of the silicon carbide particles can be further improved. From the same viewpoint, the average primary particle diameter of the silicon carbide particles is more preferably 5 nm or more, and further preferably 10 nm or more.
  • the value of the average primary particle diameter of the silicon carbide particles is based on the average value of the specific surface area (SA) of the silicon carbide particles calculated from the values measured continuously 3 to 5 times by the BET method.
  • SA specific surface area
  • the density value can be used and calculated assuming that the shape of the silicon carbide particles is a true sphere.
  • the measurement of the specific surface area of the silicon carbide particles can be performed using, for example, Flow SorbII 2300 manufactured by Micromeritex.
  • the average secondary particle diameter of the silicon carbide particles is preferably less than 2 ⁇ m. When the average secondary particle diameter is within this range, a dispersion having higher dispersibility can be obtained. From the same viewpoint, the average secondary particle diameter of the silicon carbide particles is more preferably 1.9 ⁇ m or less, further preferably 1.8 ⁇ m or less, and still more preferably less than 1.5 ⁇ m, It is particularly preferably less than 1.0 ⁇ m, and most preferably less than 0.5 ⁇ m. Moreover, it is preferable that the average secondary particle diameter of a silicon carbide particle is 0.03 micrometer or more. When the average secondary particle diameter is within this range, charge control by coating with a coating layer can be performed with high efficiency.
  • the average secondary particle diameter of the silicon carbide particles is preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the value of the average secondary particle diameter of the silicon carbide particles can be measured with a scattering particle size distribution measuring apparatus LA-950 manufactured by Horiba, Ltd. Details of the measurement method are described in the examples.
  • the ratio of the average secondary particle diameter to the average primary particle diameter of the silicon carbide particles is not particularly limited, but is preferably 10 or less. Within this range, dispersibility is further improved. From the same viewpoint, the ratio of the average secondary particle diameter to the average primary particle diameter of the silicon carbide particles is more preferably 8 or less, and further preferably 6 or less. Further, the ratio of the average secondary particle diameter to the average primary particle diameter of the silicon carbide particles is not particularly limited, but is preferably 1.5 or more. Productivity improves more that it is this range. From the same viewpoint, the ratio of the average secondary particle diameter to the average primary particle diameter of the silicon carbide particles is more preferably 2 or more, further preferably 2.5 or more, and particularly preferably 3 or more. preferable.
  • silicon carbide particles commercially available products or synthetic products may be used. Although it does not restrict
  • the silicon carbide particles may be used alone or as a composite thereof or as a mixture of two or more thereof.
  • the method for producing an aqueous dispersion containing silicon carbide particles that is, the procedure and method for dispersing silicon carbide particles in a dispersion medium containing water is not particularly limited, and conventionally known procedures and methods can be used.
  • the water used in the method for producing an aqueous dispersion containing silicon carbide particles is preferably water containing as little impurities as possible.
  • water having a total content of transition metal ions of 100 ppb or less is preferable.
  • the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of foreign matters by a filter, distillation, and the like.
  • deionized water ion exchange water
  • pure water, ultrapure water, distilled water, or the like is preferably used as the water.
  • an aqueous dispersion containing coated silicon carbide particles obtained by a method for producing coated silicon carbide particles (coated silicon carbide particles) having a coating layer containing a charge control component described later can be used.
  • the aqueous dispersion containing silicon carbide particles can contain a dispersion medium other than water, as will be described later.
  • the dispersion medium is preferably only water from the viewpoint of reducing the environmental load.
  • silicon carbide particles that are charge-controlled can be used.
  • the charge control of the silicon carbide particles is not particularly limited, but there is a method of adjusting the surface charge by forming a layer of another component (charge control component) on the surface of the silicon carbide particles to form the coated silicon carbide particles. It is done.
  • the charge control component include oxides such as silicon dioxide, aluminum oxide, titanium oxide, and zirconium oxide, and hydroxides such as aluminum hydroxide, magnesium hydroxide, yttrium hydroxide, and titanium hydroxide. .
  • silicon carbide particles coated with a layer containing aluminum hydroxide aluminum hydroxide
  • aluminum hydroxide aluminum hydroxide
  • aluminum hydroxide-coated silicon carbide particles are coated particles having silicon carbide particles and a coating layer containing aluminum hydroxide that coats the silicon carbide particles.
  • the aluminum hydroxide-coated silicon carbide particles may be particles in which at least a part of the silicon carbide particles is coated with a coating layer containing aluminum hydroxide.
  • the aluminum hydroxide-coated silicon carbide particles are preferably capable of maintaining the form as the aluminum hydroxide-coated silicon carbide particles even when washed with a solvent (preferably water) or dispersed in water. .
  • the average secondary particle diameter of the aluminum hydroxide-coated silicon carbide particles is preferably 2 ⁇ m or less. Within this range, dispersibility can be further improved when the aluminum hydroxide-coated silicon carbide particles are dispersed in water as a dispersion medium. Particles with a small average secondary particle size have a low degree of aggregation in the first place and a small variation in particle size. Also, the smaller the particle size, the lower the cohesion. Accordingly, if aluminum hydroxide-coated silicon carbide particles having an average secondary particle diameter of 2 ⁇ m or less are dispersed in water, a dispersion having higher dispersibility can be obtained.
  • the aluminum hydroxide-coated silicon carbide particles are combined in water by combining both the reduction effect of aggregation at the formation stage of the coating layer and the reduction effect of aggregation as particles. Higher dispersibility can be realized when dispersed.
  • the average secondary particle diameter of the aluminum hydroxide-coated silicon carbide particles is preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less, and further preferably 0.5 ⁇ m or less. preferable.
  • the average secondary particle diameter of the aluminum hydroxide-coated silicon carbide particles is not particularly limited, but is preferably 0.03 ⁇ m or more.
  • the average secondary particle diameter of the aluminum hydroxide-coated silicon carbide particles is more preferably more than 0.03 ⁇ m, further preferably more than 0.05 ⁇ m, and more than 0.05 ⁇ m. Even more preferably, it is particularly preferably 0.1 ⁇ m or more, and most preferably more than 0.1 ⁇ m.
  • the value of the average secondary particle diameter of the aluminum hydroxide-coated silicon carbide particles is a dispersion in which the aluminum hydroxide-coated silicon carbide particles are dispersed in a dispersion medium so as to have an appropriate concentration for measurement.
  • the scattering type particle size distribution measuring apparatus LA-950 can be used. Details of the measurement method are described in the examples.
  • the average secondary particle diameter is also used. Is preferably in the above range.
  • Ratio of average secondary particle diameter of aluminum hydroxide-coated silicon carbide particles to average secondary particle diameter of silicon carbide particles Ratio of average secondary particle diameter of aluminum hydroxide-coated silicon carbide particles (particles after coating) to average secondary particle diameter of silicon carbide particles (particles before coating) Is also not particularly limited, but is preferably 10 or less. Within this range, the aluminum hydroxide-coated silicon carbide particles are produced while maintaining high dispersibility of the silicon carbide particles. Thus, when the aluminum hydroxide-coated silicon carbide particles are dispersed in water, a dispersion having higher dispersibility can be obtained.
  • the ratio of the average secondary particle diameter to the silicon carbide particles is more preferably 5 or less, further preferably 3 or less, still more preferably 2 or less, and 1.6 It is more preferable that it is below, and it is especially preferable that it is 1.2 or below. Further, the ratio of the average secondary particle diameter to the silicon carbide particles is not particularly limited, but is preferably more than 1.
  • the aluminum hydroxide-coated silicon carbide particles are formed by coating the surfaces of the silicon carbide particles with a coating layer containing aluminum hydroxide. Thus, in the production of aluminum hydroxide-coated silicon carbide particles, this is the range when no further operation for crushing the secondary particles of the silicon carbide particles is performed.
  • an operation for crushing the secondary particles of the silicon carbide particles may be performed, and the ratio of the average secondary particle diameter to the silicon carbide particles is 1 or less regardless of whether or not the operation is performed. (Lower limit is over 0).
  • the average secondary particle diameter of the aluminum hydroxide-coated silicon carbide particles and the silicon carbide particles can be determined by the method described above.
  • the charge-controlled silicon carbide particles other than the aluminum hydroxide-coated silicon carbide particles, coated particles in which a layer of another charge control component is formed on the surface of the silicon carbide particles may also be used.
  • the ratio of the secondary particle diameter is preferably in the above range.
  • Ratio of average secondary particle size of aluminum hydroxide-coated silicon carbide particles to average primary particle size of silicon carbide particles Ratio of average secondary particle size of aluminum hydroxide-coated silicon carbide particles (particles after coating) to average primary particle size of silicon carbide particles (particles before coating) (average secondary particle size with respect to average primary particle size of silicon carbide particles) Is also not particularly limited, but is preferably 50 or less. Within this range, when the aluminum hydroxide-coated silicon carbide particles are dispersed in water, a dispersion having high dispersibility can be obtained.
  • the ratio of the average secondary particle diameter to the average primary particle diameter of the silicon carbide particles is more preferably 20 or less, further preferably 10 or less, and further preferably 9 or less. 7 or less is particularly preferable. Further, the ratio of the average secondary particle diameter to the silicon carbide particles is usually more than 1. This is because the aluminum hydroxide-coated silicon carbide particles are formed by coating the surface of the silicon carbide particles with a coating layer containing aluminum hydroxide. Further, from the viewpoint of production efficiency in consideration of the cohesiveness of the silicon carbide particles, it is preferably 3 or more, and more preferably 5 or more.
  • coated particles in which a layer of another charge control component is formed on the surface of the silicon carbide particles may also be used.
  • the ratio of the average secondary particle diameter to the particle diameter is preferably in the above range.
  • a method for producing coated silicon carbide particles having a coating layer containing a charge control component includes adding a charge control agent and an acid to a raw material dispersion containing silicon carbide particles, and adjusting the pH to 9.0 or more and 12.
  • a silicon carbide particle is prepared by forming a coated silicon carbide particle having a coating layer containing a charge control component on the surface of the silicon carbide particle by making the range 0 or less to prepare an aqueous dispersion containing the silicon carbide particle.
  • charge control agent examples include sodium aluminate, a cationic polymer (preferably poly (diallyldimethylammonium chloride) (PDDA)), and the like.
  • a cationic polymer preferably poly (diallyldimethylammonium chloride) (PDDA)
  • the dispersion according to the present invention improves the dispersibility of the silicon carbide particles under acidic conditions and improves the stability in the acidic region, so that the silicon carbide particles coated with a layer containing aluminum hydroxide ( It is preferable to use aluminum hydroxide-coated silicon carbide particles). Therefore, in the following, a method for producing aluminum hydroxide-coated silicon carbide particles will be described.
  • the production method of the aluminum hydroxide-coated silicon carbide particles is not particularly limited.
  • the method is used.
  • the aluminum hydroxide-coated silicon carbide particles to be produced may be produced in a state of being dispersed in a dispersion medium, or may be produced through a process of removing the dispersion medium thereafter.
  • Aluminum hydroxide-coated silicon carbide particles produced in a state of being dispersed in water (dispersion medium) can be used as an aqueous dispersion containing silicon carbide particles in the mixing step described later.
  • Step (A) includes a raw material dispersion (1) containing silicon carbide particles, alkali and water and having a pH of 9.0 or more and 12.0 or less, a raw material solution (2) containing sodium aluminate and water, Is a step of preparing each.
  • a method for preparing the raw material dispersion (1) is not particularly limited. For example, a method of adding an alkali to an aqueous dispersion of silicon carbide particles (a dispersion containing water as a dispersion medium, preferably an aqueous dispersion), and the like. Can be mentioned.
  • the aqueous dispersion of silicon carbide particles may be a commercial product or a synthetic product.
  • synthesizing (preparing) an aqueous dispersion of silicon carbide particles it is not particularly limited, and a known apparatus and a known method can be used.
  • the content of silicon carbide particles in the aqueous dispersion of silicon carbide particles is not particularly limited, but is preferably 8% by mass or more based on the total mass of the aqueous dispersion from the viewpoint of productivity. % Or more is more preferable. Further, from the viewpoint of dispersibility, it is preferably 50% by mass or less, and more preferably 30% by mass or less, with respect to the total mass of the aqueous dispersion.
  • the amount of alkali used is not particularly limited, and the amount used may be adjusted so that the pH of the dispersion is 9.0 or more and 12.0 or less.
  • alkali used examples include ammonia, potassium hydroxide, sodium hydroxide, ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate, tetramethylammonium hydroxide, tetraethylammonium hydroxide, Tetrabutylammonium hydroxide, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine, Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, imidazole, triazol Etc. The. These alkalis can be used alone or in combination of two or more.
  • the silicon carbide particles are not particularly limited, but the silicon carbide particles are maintained in a state of being dispersed in the dispersion medium from the generation until the raw material dispersion (1) is prepared in the step (A). Is preferred. And it is more preferable to maintain the state by which the silicon carbide particle was disperse
  • the silicon carbide particles maintain a high level of dispersibility at the time of production even in the state of the aluminum hydroxide-coated silicon carbide particles. For this reason, when the produced aluminum hydroxide-coated silicon carbide particles are dispersed in water, a dispersion having extremely high dispersibility can be obtained.
  • the raw material dispersion (1) preferably contains water as a dispersion medium.
  • the water is preferably water containing as little impurities as possible.
  • water having a total content of transition metal ions of 100 ppb or less is preferable.
  • the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of foreign matters by a filter, distillation, and the like.
  • the water for example, deionized water (ion exchange water), pure water, ultrapure water, distilled water, or the like is preferably used.
  • the procedure and method for dispersing silicon carbide particles in water and the procedure and method for adding alkali are not particularly limited, and known procedures and methods can be used.
  • the raw material dispersion (1) may contain a dispersion medium other than water.
  • the dispersion medium other than water may be a mixed solvent of water and an organic solvent for dispersing or dissolving each component.
  • preferred examples of the organic solvent to be used include acetone, acetonitrile, ethanol, methanol, isopropanol, glycerin, ethylene glycol, propylene glycol and the like, which are organic solvents miscible with water.
  • an organic solvent may be used without being mixed with water, and each component may be dispersed or dissolved and then mixed with water. These organic solvents can be used alone or in combination of two or more.
  • the content of water in the raw material dispersion (1) is based on the total mass of the raw material dispersion medium (1) from the viewpoint that the coating of silicon carbide particles with aluminum hydroxide proceeds better. It is preferably 50% by mass or more, and more preferably 70% by mass or more.
  • the raw material dispersion (1) obtained in this step preferably has a pH of 9.0 or more and 12.0 or less. If the pH is 9.0 or more, local aggregation at the acid dropping site is unlikely to occur. On the other hand, when the pH is 12.0 or less, the generation of aluminum hydroxide single particles is suppressed. From the viewpoint of improving the speed of forming the coating layer and improving productivity, the pH is more preferably more than 9.0 and not more than 12.0.
  • the method for preparing the raw material solution (2) is not particularly limited, and examples thereof include a method of adding sodium aluminate to water.
  • the content of sodium aluminate in the raw material solution (2) is not particularly limited, but is preferably 10% by mass or more and 50% by mass or less, and more preferably 20% by mass or more and 40% by mass with respect to the total mass of the raw material solution (2). It is more preferable that the amount is not more than mass%.
  • Step (B) the raw material solution (2) and an acid are added to the raw material dispersion (1) prepared in the step (A), and the pH is maintained in the range of 9.0 to 12.0. And forming coated particles having a coating layer containing aluminum hydroxide on the surface of the silicon carbide particles. In the step (B), aluminum hydroxide-coated silicon carbide particles are produced.
  • the method of adding the raw material solution (2) and the acid to the raw material dispersion (1) is particularly effective if the pH can be maintained at 9.0 or higher and 12.0 or lower (that is, unless the concentration of aluminate ions becomes excessive).
  • the method is not limited, and examples thereof include a method in which the raw material solution (2) and the acid are added simultaneously, and a method in which the raw material solution (2) and the acid are alternately added little by little.
  • the addition amount of the raw material solution (2) is not particularly limited, but it is preferable to add the raw material solution (2) so that sodium aluminate is 1 part by mass or more with respect to 100 parts by mass of the silicon carbide particles. More preferably, it is more than 10 parts by mass.
  • the silicon carbide particles can be sufficiently covered with aluminum hydroxide (Al (OH) 3 ), and the function derived from the aluminum-containing compound is sufficiently exhibited. Because it can.
  • the amount of the raw material solution (2) added is not particularly limited, but it is preferable to add the raw material solution (2) so that sodium aluminate is 800 parts by mass or less with respect to 100 parts by mass of the silicon carbide particles.
  • the amount of sodium aluminate used is 1 to 100 parts by mass with respect to 100 parts by mass of silicon carbide particles.
  • the acid is not particularly limited, but examples thereof include inorganic acids such as nitric acid, sulfuric acid, phosphoric acid and hydrochloric acid (particularly strong inorganic acids such as nitric acid, sulfuric acid and hydrochloric acid), acetic acid, citric acid, lactic acid, oxalic acid and phthalic acid.
  • An organic acid etc. are mentioned.
  • the acid is preferably added in the form of an aqueous solution
  • the concentration of the acid in the aqueous solution is not particularly limited, but is preferably 1.0% by mass or more. This is because when the acid concentration is within this range, the amount added is small and productivity is increased.
  • the concentration of the acid in the aqueous solution is more preferably 1.5% by mass or more, and further preferably 2.0% by mass or more.
  • the concentration of the acid in the aqueous solution is not particularly limited, but is preferably 30% by mass or less. This is because when the acid concentration in the aqueous solution is within this range, the corrosiveness is low and the equipment load is reduced.
  • the concentration of the acid in the aqueous solution is more preferably 20% by mass or less, further preferably 15% by mass or less, and further more preferably 10% by mass or less.
  • the speed (addition speed) at which the raw material solution (2) and the acid are added is not particularly limited, and is adjusted as appropriate so that the pH is in the range of 9.0 to 12.0 and the subsequent pH can be easily maintained. do it.
  • this step includes a step of forming coated particles having a coating layer containing aluminum hydroxide on the surface of the silicon carbide particles by setting the pH in the range of 9.0 to 12.0.
  • the maintenance time in a state where the pH is in the range of 9.0 to 12.0 is preferably 1 minute or more.
  • the silicon carbide particles can be more sufficiently coated with aluminum hydroxide, and the function derived from the aluminum-containing compound in the aluminum hydroxide-coated silicon carbide particles is further improved.
  • the dispersion in the dispersion is less likely to occur and has a high dispersibility. It is because it becomes possible to obtain.
  • the maintenance time is preferably 30 minutes or more, more preferably 50 minutes or more, and further preferably 60 minutes or more.
  • the maintenance time in this stage is preferably 200 minutes or less. This is because if the coating proceeds to some extent, the effect obtained by the coating becomes constant, and if the maintenance time is within this range, the economic efficiency and production efficiency are further improved.
  • the maintenance time is preferably 150 minutes or less, and more preferably 120 minutes or less.
  • the pH at this stage is preferably 9.0 or more and 12.0 or less.
  • the pH is 9.0 or more, aggregation of silicon carbide particles hardly occurs and it becomes easy to maintain uniform dispersibility. If pH is 12.0 or less, since it can prevent forming many aluminum hydroxide particles, it is preferable.
  • a dispersion containing aluminum hydroxide-coated silicon carbide particles and a dispersion medium can be obtained. That is, aluminum hydroxide-coated silicon carbide particles can be produced in a state of being dispersed in a dispersion medium.
  • the method for producing aluminum hydroxide-coated silicon carbide particles may further include steps other than step (A) and step (B). In step (A) and step (B), other operations may be performed. You may have further the step which concerns.
  • the film thickness of the coating layer may be difficult to directly measure due to a change in the presence state of particles due to the coating, but in general, as the film thickness of the coating layer increases, the zeta potential, etc. There is a tendency for the pH of the electric point to increase.
  • the preferable film thickness of the coating layer can be determined from the value within the preferable pH range of the isoelectric point of the aluminum hydroxide-coated silicon carbide particles.
  • the fact that the coating layer contains aluminum hydroxide means that the aluminum hydroxide-coated silicon carbide particles are observed by SEM (Scanning Electron Microscope) -EDX (Energy Dispersive X-ray Spectroscopy) and EELS (Electron Energy Loss Analysis). Can be confirmed.
  • the pH of the isoelectric point of the silicon carbide particles (the charge-controlled silicon carbide particles when the charge is controlled) is not particularly limited, but is preferably 4.5 or more.
  • the pH of the isoelectric point is within this range, in a dispersion containing a dispersion medium, even when silicon carbide particles and boron nitride particles are used in combination, aggregation in the dispersion medium hardly occurs and good dispersibility is achieved. Is maintained. As a result, a dispersion having higher dispersibility can be obtained when silicon carbide particles and other particles are dispersed in a medium.
  • the pH of the isoelectric point of the silicon carbide particles is more preferably 5 or more, further preferably 5.5 or more, and particularly preferably 6 or more. Moreover, the pH of the isoelectric point of the silicon carbide particles is not particularly limited, but is preferably 9 or less from the same viewpoint. Thus, the pH of the isoelectric point of the silicon carbide particles according to a preferred embodiment of the present invention is, for example, 4.5 or more and 9 or less.
  • the pH of the isoelectric point is determined by measuring the data potential by preparing a zeta potential measurement solution having a pH of 1.0 increments, for example, a pH in the range of pH 3.0 to 10.0 in increments of 1.0. It can be calculated by the following formula from the pH before and after the sign change and the zeta potential at the pH before and after.
  • the pH can be measured with a pH meter (model number: F-71) manufactured by Horiba, Ltd.
  • the zeta potential can be measured with a zeta potential measuring device (trade name “Zetasizer nano ZSP”) manufactured by Malvern Instruments. Details of the measurement method are described in the examples.
  • the zeta potential of the silicon carbide particles in the dispersion for silicon carbide sintered body is not particularly limited as long as it has the same sign as the boron nitride particles, but the dispersibility is improved.
  • the absolute value is preferably 10 mV or more, and more preferably +10 mV or more.
  • the upper limit value of the zeta potential of the silicon carbide particles in the silicon carbide sintered body dispersion is not particularly limited, but the absolute value is substantially 50 mV or less, for example, +50 mV or less.
  • the lower limit of the content of silicon carbide particles (in the case of charge control, charge controlled silicon carbide particles) in the silicon carbide sintered body dispersion according to the present invention is preferably 0.1% by mass or more, The content is more preferably 0.5% by mass or more, further preferably 1% by mass or more, and most preferably 5% by mass or more.
  • the upper limit of the content of silicon carbide particles in the dispersion for silicon carbide sintered body is preferably 55% by mass or less, more preferably 45% by mass or less, and 35% by mass or less. Is more preferable, and most preferably 25% by mass or less. If it is such a range, the stability of a dispersion and the handleability will become favorable. Moreover, a high-quality silicon carbide sintered body can be obtained.
  • BN particles ⁇ Boron nitride (BN) particles> Since boron nitride (BN) is a hard material, combination of boron nitride (BN) particles with silicon carbide particles is expected to improve the thermal shock resistance and machinability of a sintered body containing silicon carbide.
  • the crystal structure of boron nitride is not particularly limited, and any of hexagonal boron nitride and cubic boron nitride can be adopted, but hexagonal boron nitride can be preferably used because of easy production.
  • the average primary particle diameter of the boron nitride particles is not particularly limited, but is preferably 9 ⁇ m or less. When the average primary particle diameter is within this range, a dispersion having higher dispersibility can be obtained. From the same viewpoint, the average primary particle diameter of the silicon carbide particles is more preferably 7 ⁇ m or less, and further preferably 6 ⁇ m or less.
  • the average primary particle diameter of the boron nitride particles is not particularly limited, but is preferably 10 nm or more. When the average primary particle diameter is within this range, the function of the boron nitride particles can be further improved.
  • the average primary particle diameter of the boron nitride particles is more preferably 50 nm or more, and further preferably 100 nm or more.
  • the value of the average primary particle diameter of the boron nitride particles is based on the average value of the specific surface area (SA) of the boron nitride particles calculated from the values measured three to five times continuously by the BET method.
  • SA specific surface area
  • the density value can be used and calculated assuming that the shape of the boron nitride particles is a true sphere.
  • the measurement of the specific surface area of the boron nitride particles can be performed using, for example, Flow SorbII 2300 manufactured by Micromeritex.
  • the average secondary particle diameter of the boron nitride particles is preferably less than 20 ⁇ m. When the average secondary particle diameter is within this range, a dispersion having higher dispersibility can be obtained. From the same viewpoint, the average secondary particle diameter of the boron nitride particles is more preferably 19 ⁇ m or less, further preferably 18 ⁇ m or less, further preferably less than 15 ⁇ m, and more preferably less than 10 ⁇ m. Particularly preferred is less than 5 ⁇ m. Moreover, it is preferable that the average secondary particle diameter of a boron nitride particle is 0.3 micrometer or more. When the average secondary particle diameter is within this range, charge control by coating with a coating layer can be performed with high efficiency.
  • the average secondary particle diameter of the boron nitride particles is more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more.
  • the value of the average secondary particle diameter of the boron nitride particles can be measured by a scattering type particle diameter distribution measuring apparatus LA-950 manufactured by Horiba, Ltd. Details of the measurement method are described in the examples.
  • boron nitride particles a commercially available product or a synthetic product may be used. Although it does not restrict
  • Boron nitride particles may be used singly or as a composite of these or a mixture of two or more.
  • a method for producing an aqueous dispersion containing boron nitride particles that is, a procedure and method for dispersing boron nitride particles in a dispersion medium containing water is not particularly limited, and conventionally known procedures and methods can be used.
  • the water used in the method for producing an aqueous dispersion containing boron nitride particles is preferably water containing as little impurities as possible.
  • water having a total content of transition metal ions of 100 ppb or less is preferable.
  • the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of foreign matters by a filter, distillation, and the like.
  • deionized water ion exchange water
  • pure water, ultrapure water, distilled water, or the like is preferably used as the water.
  • an aqueous dispersion containing coated boron nitride particles obtained by a method for producing boron nitride particles adsorbed with a functional polymer described later can be used.
  • the aqueous dispersion containing boron nitride particles can contain a dispersion medium other than water as described later.
  • the dispersion medium is preferably only water from the viewpoint of reducing the environmental load.
  • boron nitride particles have the same charge (zeta potential) as that of the silicon carbide particles, they can be used without restriction, whether they are charge-controlled or not. .
  • boron nitride particles are used in order to obtain a surface charge having the same sign as that of the silicon carbide particles, or in order to increase repulsion with the silicon carbide particles even if they have the same sign as the silicon carbide particles. It is preferable to use those whose charge is controlled.
  • the charge control of the boron nitride particles is not particularly limited, and a method of adjusting the surface charge by forming a layer of another component on the surface of the boron nitride particles can be mentioned.
  • the surface charge can be adjusted by adsorbing a functional polymer having a function of adjusting the surface charge on the surface of the boron nitride particles.
  • the dispersibility and stability are improved by adjusting the silicon carbide particles and the zeta potential to have the same sign under the condition that the pH at 25 ° C. is 7.0 or less.
  • the cationic polymer is not particularly limited as long as it is positively charged in a predetermined dispersion medium, and a conventionally known polymer can be used.
  • a conventionally known polymer can be used.
  • poly (diallyldimethylammonium chloride) (PDDA) poly (methacryloyloxyethyltrimethylammonium chloride), poly (acrylamide-co-diallyldimethylammonium chloride), poly (dimethylamine-co-epichlorohydrin-co-ethylenediamine) ), Polyethyleneimine, ethoxylated polyethyleneimine, poly (amidoamine), poly (methacryloyloxyethyldimethylammonium chloride), poly (vinylpyrrolidone), poly (vinylimidazole), poly (vinylpyridine), poly (vinylamine), polyallylamine And quaternized products thereof, polyallylamine hydrochloride (PAH), polylysine, polyacrylamide, polypyr
  • the cationic polymer includes poly (diallyldimethylammonium chloride), poly (methacryloyloxyethyltrimethylammonium chloride), poly (acrylamide-co-diallyldimethylammonium chloride), poly (dimethylamine-co-epichlorohydride).
  • Phospho-co-ethylenediamine polyethyleneimine, ethoxylated polyethyleneimine, poly (amidoamine), poly (methacryloyloxyethyldimethylammonium chloride), poly (vinylpyrrolidone), poly (vinylimidazole), poly (vinylpyridine), or poly (Vinylamine) is used.
  • the molecular weight of the cationic polymer is not particularly limited, but for example, the weight average molecular weight is preferably 20,000 to 200,000. Within the above range, the effects of the present invention can be obtained particularly remarkably. In the present specification, the value measured by gel permeation chromatography (GPC) is adopted as the value of “weight average molecular weight”.
  • the cationic polymer-coated boron nitride particles are coated particles having boron nitride particles and a coating layer containing a cationic polymer that coats the boron nitride particles.
  • the cationic polymer-coated boron nitride particles may be particles in which at least a part of the boron nitride particles is coated with a coating layer containing a cationic polymer.
  • the cationic polymer-coated boron nitride particles can maintain the form of the cationic polymer-coated boron nitride particles even when washed with a solvent (preferably water) or dispersed in water. Is preferred.
  • the average secondary particle diameter of the cationic polymer-coated boron nitride particles is preferably 20 ⁇ m or less. Within this range, the dispersibility can be further improved when the cationic polymer-coated boron nitride particles are dispersed in water as a dispersion medium. Particles with a small average secondary particle size have a low degree of aggregation in the first place and a small variation in particle size. Also, the smaller the particle size, the lower the cohesion.
  • the average secondary particle diameter of the cationic polymer-coated boron nitride particles is more preferably 15 ⁇ m or less, further preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the average secondary particle size of the cationic polymer-coated boron nitride particles is not particularly limited, but is preferably 0.3 ⁇ m or more.
  • the average secondary particle size of the cationic polymer-coated boron nitride particles is more preferably more than 0.3 ⁇ m, further preferably more than 0.5 ⁇ m, and more than 0.5 ⁇ m. Is more preferably 1 ⁇ m or more, and most preferably more than 1 ⁇ m.
  • the value of the average secondary particle diameter of the cationic polymer-coated boron nitride particles is determined by Horiba, Ltd.
  • a dispersion in which the cationic polymer-coated boron nitride particles are dispersed in a dispersion medium so as to have an appropriate concentration for measurement. It can be measured by a scattering type particle size distribution measuring apparatus LA-950 manufactured by Seisakusho. Details of the measurement method are described in the examples.
  • the average secondary particle diameter is as described above. A range is preferable.
  • Ratio of the average secondary particle size of the cationic polymer-coated boron nitride particles to the average secondary particle size of the boron nitride particles Ratio of the average secondary particle size of the cationic polymer-coated boron nitride particles (particles after coating) to the average secondary particle size of boron nitride particles (particles before coating) (hereinafter referred to as the average secondary particle size of boron nitride particles)
  • the ratio is also not particularly limited, but is preferably 10 or less. Within this range, the cationic polymer-coated boron nitride particles are generated while maintaining high dispersibility of the boron nitride particles.
  • the ratio of the average secondary particle diameter to the boron nitride particles is more preferably 5 or less, further preferably 3 or less, still more preferably 2 or less, and 1.6 or less. More preferably, it is more preferably 1.2 or less. Moreover, the ratio of the average secondary particle diameter to the boron nitride particles is not particularly limited, but is preferably 0.9 or more.
  • the charge-controlled boron nitride particles in addition to the cationic polymer-coated boron nitride particles, when using coated particles in which layers of other components are formed on the surface of the boron nitride particles, average secondary particles with respect to the boron nitride particles are also used.
  • the diameter ratio is preferably within the above range.
  • the method for producing boron nitride particles to which the functional polymer is adsorbed includes adding a solution containing the functional polymer to the raw material dispersion containing the boron nitride particles, and applying the solution to the surface of the boron nitride particles. It has the preparation process of the aqueous dispersion containing a boron nitride particle which forms the coated boron nitride particle which has a coating layer containing a functional polymer, and prepares the aqueous dispersion containing a boron nitride particle.
  • the silicon carbide particles and the boron nitride particles are charged with the same sign (zeta potential) under the condition that the pH at 25 ° C. is 7.0 or less. And stability are improved. Therefore, it is preferable to adsorb a cationic polymer as a functional polymer to the boron nitride particles. Therefore, below, the manufacturing method of the boron nitride particle which adsorb
  • the boron nitride particles on which the cationic polymer is adsorbed are not particularly limited.
  • the produced cationic polymer-coated boron nitride particles may be produced in a state of being dispersed in water, or may be produced through a process of removing water thereafter.
  • Cationic polymer-coated boron nitride particles produced in a state of being dispersed in water can be used as an aqueous dispersion containing boron nitride particles in a mixing step described later.
  • Step (A) is a step of preparing a raw material dispersion (1) containing boron nitride particles and water and a raw material solution (2) containing a cationic polymer and water, respectively.
  • the method for preparing the raw material dispersion (1) containing boron nitride particles and water is not particularly limited. Commercial products may be used, or synthetic products may be used. When synthesizing (preparing) the raw material dispersion (1) containing boron nitride particles and water, there is no particular limitation, and a known apparatus and a known method can be used.
  • the content of boron nitride particles in the raw material dispersion (1) is not particularly limited, but is preferably 8% by mass or more based on the total mass of the raw material dispersion (1) from the viewpoint of productivity. More preferably, it is 10 mass% or more. Further, from the viewpoint of dispersibility, it is preferably 50% by mass or less, and more preferably 30% by mass or less, with respect to the total mass of the raw material dispersion (1).
  • the boron nitride particles are not particularly limited, but the state in which the silicon carbide particles are dispersed in the dispersion medium is maintained from the generation until the raw material dispersion (1) is prepared in the step (A). Is preferred. And it is more preferable to maintain the state by which the boron nitride particle was disperse
  • the boron nitride particles maintain a high level of dispersibility at the time of generation even in the state of the cationic polymer-coated boron nitride particles. For this reason, when the produced cationic polymer-coated boron nitride particles are dispersed in water, a dispersion having extremely high dispersibility can be obtained.
  • the raw material dispersion (1) preferably contains water as a dispersion medium.
  • the water is preferably water containing as little impurities as possible.
  • water having a total content of transition metal ions of 100 ppb or less is preferable.
  • the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of foreign matters by a filter, distillation, and the like.
  • the water for example, deionized water (ion exchange water), pure water, ultrapure water, distilled water, or the like is preferably used.
  • the procedure and method for dispersing boron nitride particles in water are not particularly limited, and known procedures and methods can be used.
  • the raw material dispersion (1) may contain a dispersion medium other than water.
  • the dispersion medium other than water may be a mixed solvent of water and an organic solvent for dispersing or dissolving each component.
  • preferred examples of the organic solvent to be used include acetone, acetonitrile, ethanol, methanol, isopropanol, glycerin, ethylene glycol, propylene glycol and the like, which are organic solvents miscible with water.
  • an organic solvent may be used without being mixed with water, and each component may be dispersed or dissolved and then mixed with water. These organic solvents can be used alone or in combination of two or more.
  • the content of water in the raw material dispersion (1) is based on the total mass of the raw material dispersion medium (1) from the viewpoint that the coating of the boron nitride particles with the cationic polymer proceeds better. 50% by mass or more, more preferably 70% by mass or more.
  • the raw material dispersion (1) obtained in this step is not particularly limited, but preferably has a pH of 5.0 or more from the viewpoint of suppressing electrostatic aggregation.
  • the method for preparing the raw material solution (2) is not particularly limited, and examples thereof include a method of adding a cationic polymer to water.
  • the content of the cationic polymer in the raw material solution (2) is not particularly limited, but is preferably 10% by mass or more and 50% by mass or less, and more preferably 20% by mass or more with respect to the total mass of the raw material solution (2). It is more preferable that it is 40 mass% or less.
  • Step (B) the raw material dispersion (1) prepared in the step (A) is added with the raw material solution (2) and an acid, and the surface of the boron nitride particles is coated with a cationic polymer. This is a step of forming coated particles having a layer.
  • step (B) cationic polymer-coated boron nitride particles in which the cationic polymer is adsorbed on the surface of the boron nitride particles are produced.
  • the method for adding the raw material solution (2) to the raw material dispersion (1) is not particularly limited.
  • the raw material solution (2) may be added at once, or the raw material solution (2) may be added little by little. Also good.
  • the addition amount of the raw material solution (2) is not particularly limited, but the raw material solution (2) may be added so that the cationic polymer is 0.1 parts by mass or more with respect to 100 parts by mass of the boron nitride particles. Preferably, it is 0.5 mass part or more, More preferably, it is 1 mass part or more. This is because, when the amount of the raw material solution (2) is within this range, the boron nitride particles can be sufficiently covered with the cationic polymer, and the charge can be controlled so as to obtain a desired zeta potential. .
  • the amount of the raw material solution (2) added is not particularly limited, but the raw material solution (2) may be added so that the cationic polymer is 80 parts by mass or less with respect to 100 parts by mass of the boron nitride particles.
  • the amount is preferably 40 parts by mass or less, and more preferably 10 parts by mass or less. This is because when the coating proceeds to some extent, the effect obtained by the coating becomes constant, so that the amount of the raw material solution (2) added is not more than a predetermined amount, thereby improving the economy and production efficiency.
  • the raw material solution (2) it is preferable to add the raw material solution (2) to the raw material dispersion (1) and stir to advance the reaction.
  • the reaction time is not particularly limited but is preferably 1 minute or longer. This is because when the reaction time is within this range, the boron nitride particles can be more sufficiently coated with the cationic polymer, and the charge can be controlled so as to obtain a desired zeta potential. Further, in the production of a dispersion for a silicon carbide sintered body, when silicon carbide particles and cationic polymer-coated boron nitride particles are dispersed in water, the dispersion in the dispersion is less likely to occur, and the dispersion has high dispersibility. This is because the body can be obtained.
  • the reaction time is preferably 30 minutes or more, more preferably 50 minutes or more, and further preferably 60 minutes or more.
  • the reaction time in this stage is preferably 200 minutes or less. This is because if the coating proceeds to some extent, the effect obtained by the coating becomes constant, and if the reaction time is within this range, economic efficiency and production efficiency are further improved.
  • the reaction time is preferably 150 minutes or less, more preferably 120 minutes or less, and further preferably 90 minutes or less.
  • the pH at this stage is not particularly limited, but from the viewpoint of suppressing electrostatic repulsion with the functional polymer, the pH is preferably 5.0 to 11.0.
  • a dispersion containing the cationic polymer-coated boron nitride particles and the dispersion medium can be obtained. That is, the cationic polymer-coated boron nitride particles can be produced in a state of being dispersed in the dispersion medium.
  • the method for producing the cationic polymer-coated boron nitride particles may further include steps other than the step (A) and the step (B). In the step (A) and the step (B), other operations are performed.
  • the method may further include a step related to.
  • the boron nitride particles are coated with the cationic polymer by measuring the zeta potential of the cationic polymer-coated boron nitride particles.
  • the boron nitride particles are not particularly limited as long as they have the same sign as that of the silicon carbide particles, but the isoelectric point may have a pH of 5 or more. preferable.
  • the boron nitride particles have an isoelectric point having a pH of 5 or more and 11 or less.
  • the absolute value of the difference between the pH of the isoelectric point of the boron nitride particles and the pH of the isoelectric point of the silicon carbide particles is preferably as small as possible, but is preferably 2 or less, and preferably 1.5 or less. More preferably, it is more preferably 1 or less (lower limit 0). This is because particles having close isoelectric points are less likely to aggregate.
  • the zeta potential of boron nitride particles in the dispersion for sintered silicon carbide is not particularly limited as long as it has the same sign as the silicon carbide particles, but improves dispersibility.
  • the absolute value is preferably 10 mV or more, and more preferably +10 mV or more.
  • the upper limit value of the zeta potential of the boron nitride particles in the dispersion for sintered silicon carbide is not particularly limited, but the absolute value is substantially 50 mV or less, for example, +50 mV or less.
  • the lower limit of the content of boron nitride particles (in the case of charge control, charge-controlled boron nitride particles) in the dispersion for silicon carbide sintered body according to the present invention is preferably 0.1% by mass or more, It is more preferably 0.3% by mass or more, further preferably 0.5% by mass or more, and most preferably 1% by mass or more.
  • the upper limit of the content of boron nitride particles in the dispersion for silicon carbide sintered body is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass or less. Is more preferable, and most preferably 20% by mass or less. If it is such a range, the stability of a dispersion and the handleability will become favorable. Moreover, a high-quality silicon carbide sintered body can be obtained.
  • the resin having a hydroxyl group examples include polyvinyl alcohol (PVA), polyvinyl butyral (PVB), glyoxal resin, acrylic resin, phenol resin, hydroxyl group-containing polyvinyl pyrrolidone (PVP), hydroxyl group-containing polyester, hydroxyl group-containing silicone, or hydroxyl group-containing polycarboxylic acid. Is preferably used, but is not limited thereto.
  • polyvinyl alcohol (PVA) and polyvinyl butyral (PVB) are preferable from the viewpoint of ease of handling and viscosity adjustment.
  • the dispersion according to the present invention can obtain excellent dispersibility and high stability over time under the condition of pH 7.0 or less by using a resin having a hydroxyl group.
  • the molecular weight of the resin having a hydroxyl group is not particularly limited, but the weight average molecular weight is preferably 500 to 500,000 from the viewpoint of ease of handling and viscosity adjustment. Within the above range, the effects of the present invention can be obtained particularly remarkably. In the present specification, the value measured by gel permeation chromatography (GPC) is adopted as the value of “weight average molecular weight”.
  • the lower limit of the content of the resin having a hydroxyl group in the dispersion for sintered silicon carbide is not particularly limited, but is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, More preferably, it is 1% by mass or more.
  • the upper limit of the content of the hydroxyl group-containing resin in the silicon carbide sintered body dispersion is preferably 40% by mass or less, more preferably 30% by mass or less, and 20% by mass or less. More preferably. If it is such a range, the stability of a dispersion and the handleability will become favorable. Moreover, a high-quality silicon carbide sintered body can be obtained.
  • the resin having a hydroxyl group is treated as different from the cationic polymer used for controlling the charge of the boron nitride particles.
  • Aqueous solution containing a hydroxyl group-containing resin (Aqueous solution containing a hydroxyl group-containing resin)
  • the method for producing an aqueous solution containing a hydroxyl group-containing resin that is, the procedure and method for dissolving the hydroxyl group-containing resin in a solvent containing water is not particularly limited, and conventionally known procedures and methods can be used.
  • the water used in the method for producing an aqueous solution containing a resin having a hydroxyl group is preferably water containing as little impurities as possible.
  • water having a total content of transition metal ions of 100 ppb or less is preferable.
  • the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of foreign matters by a filter, distillation, and the like.
  • deionized water ion exchange water
  • pure water, ultrapure water, distilled water, or the like is preferably used as the water.
  • the aqueous dispersion containing silicon carbide particles, the aqueous dispersion containing boron nitride particles, and the aqueous solution containing a resin having a hydroxyl group contain water as a dispersion medium or a solvent.
  • the dispersion medium or solvent has a function of dispersing or dissolving each component.
  • the dispersion medium or solvent is preferably water only.
  • the dispersion medium or solvent may further contain an organic solvent for dispersing or dissolving each component.
  • organic solvent used include acetone, acetonitrile, ethanol, methanol, isopropanol, glycerin, ethylene glycol, propylene glycol, and the like, which are organic solvents miscible with water.
  • the dispersion medium or solvent may be a mixture of water and an organic solvent.
  • an organic solvent may be used without being mixed with water, and each component may be dispersed or dissolved and then mixed with water. These organic solvents can be used alone or in combination of two or more.
  • Water is preferably water containing as little impurities as possible.
  • water having a total content of transition metal ions of 100 ppb or less is preferable.
  • the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of foreign matters by a filter, distillation, and the like.
  • the water for example, deionized water (ion exchange water), pure water, ultrapure water, distilled water, or the like is preferably used.
  • the dispersion according to one embodiment of the present invention and the dispersion produced by the production method of the present invention may contain other components as long as the effects of the present invention are not impaired. Although it does not restrict
  • the plasticizer is not particularly limited, but is a water-soluble plasticizer such as polyethylene glycol or glycerin, or a plasticizer of a type that is insoluble in water and moves into an emulsion, such as a phthalate ester plasticizer such as dibutyl phthalate. Can be used.
  • the content of the plasticizer in the silicon carbide sintered body dispersion is not particularly limited, but the lower limit of the plasticizer content is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more. More preferably, the content is 1% by mass or more. Further, the upper limit of the content of the plasticizer in the dispersion for sintered silicon carbide is preferably 30% by mass or less, more preferably 20% by mass or less, and preferably 10% by mass or less. Further preferred. If it is such a range, the stability of a dispersion and the handleability will become favorable. Moreover, a high-quality silicon carbide sintered body can be obtained.
  • a silicone type antifoamer a fatty acid, a higher alcohol, a polyalkylene derivative, a polyether derivative, etc. can be used.
  • the content of the antifoaming agent in the silicon carbide sintered body dispersion is not particularly limited, but the lower limit of the content of the antifoaming agent is preferably 0.005% by mass or more, and 0.01% by mass or more. It is more preferable that it is 0.05 mass% or more. Further, the upper limit of the content of the antifoaming agent in the dispersion for sintered silicon carbide is preferably 30% by mass or less, more preferably 20% by mass or less, and 10% by mass or less. Is more preferable. If it is such a range, the stability of a dispersion and the handleability will become favorable. Moreover, a high-quality silicon carbide sintered body can be obtained.
  • the pH of the dispersion according to one embodiment of the present invention is not particularly limited as long as the pH at 25 ° C. is 7.0 or less, but in the range of 2.0 to 7.0 from the viewpoint of having high dispersibility. It is preferable that
  • the pH adjusting agent for achieving the above pH is not particularly limited, and a known pH adjusting agent capable of achieving a desired pH can be appropriately used.
  • a known pH adjusting agent capable of achieving a desired pH can be appropriately used.
  • the viscosity of the dispersion according to one embodiment of the present invention is not particularly limited, but from the viewpoint of improving dispersibility and stability, the viscosity at 25 ° C. immediately after the preparation of the dispersion is 0.5 to 100 Pa ⁇ s. It is preferably 1 to 50 Pa ⁇ s. Further, it is preferable that the viscosity of the dispersion does not vary with time. Specifically, the viscosity after storage at 25 ° C. for 7 days is preferably within ⁇ 20%, more preferably within ⁇ 10% of the viscosity immediately after the preparation of the dispersion. In addition, the viscosity of a dispersion can be measured by the method as described in the below-mentioned Example.
  • the production method of the present invention includes a mixing step of mixing an aqueous dispersion containing silicon carbide particles, an aqueous dispersion containing boron nitride particles, and an aqueous solution containing a resin having a hydroxyl group.
  • a charge control agent and an acid are added to the raw material dispersion containing silicon carbide particles, and the pH is in the range of 9.0 to 12.0.
  • An aqueous dispersion containing silicon carbide particles is prepared by forming coated silicon carbide particles having a coating layer containing a charge control component on the surface of the silicon carbide particles to prepare an aqueous dispersion containing silicon carbide particles.
  • a solution containing a functional polymer is added to a raw material dispersion containing boron nitride particles to form coated boron nitride particles having a coating layer containing the functional polymer on the surface of the boron nitride particles.
  • at least one of the steps of preparing an aqueous dispersion containing boron nitride particles for preparing an aqueous dispersion containing boron nitride particles is further included.
  • the method of mixing the aqueous dispersion containing silicon carbide particles, the aqueous dispersion containing boron nitride particles, and the aqueous solution containing a resin having a hydroxyl group is not particularly limited.
  • the three liquids which are aqueous solutions containing a hydroxyl group-containing resin, are usually higher in viscosity than the first and second liquids. Therefore, when the first and second liquids are previously kneaded and then the third liquid is added, silicon carbide particles and boron nitride are added. This is preferable because the dispersibility of the particles is further improved.
  • Step (1) an aqueous dispersion containing silicon carbide particles (1 liquid), an aqueous dispersion containing boron nitride particles having the same sign as the silicon carbide particles (2 liquids), and a resin having a hydroxyl group
  • An aqueous solution (3 liquids) is prepared.
  • the method for preparing an aqueous dispersion (one liquid) containing silicon carbide particles is not particularly limited.
  • a commercial product may be used for the aqueous dispersion containing silicon carbide particles, or a synthetic product may be used. You may prepare using what was obtained by the method described in ⁇ the manufacturing method of the covering silicon carbide particle which has a coating layer containing a charge control component> above.
  • the pH of the aqueous dispersion after the coating layer is formed on the silicon carbide particles by the above method can be adjusted to a desired pH using an acid or an alkali. If necessary, it is preferable to adjust the concentration of silicon carbide particles in one solution to 40 to 60% by mass by adding water or concentrating the solution.
  • a method for preparing an aqueous dispersion (two liquids) containing boron nitride particles is not particularly limited.
  • a commercially available product or a synthetic product may be used as the aqueous dispersion containing boron nitride particles. You may prepare using what was obtained by the method described in said ⁇ the manufacturing method of the boron nitride particle which made the functional polymer adsorb
  • the pH of the aqueous dispersion after adsorbing the functional polymer to the boron nitride particles by the above method can be adjusted to a desired pH using an acid or alkali. If necessary, it is preferable to adjust the concentration of boron nitride particles in the two liquids to be 8 to 50% by mass by adding water or concentrating.
  • the method for preparing the aqueous solution (three liquids) of the resin having a hydroxyl group is not particularly limited. At this time, it is preferable to adjust the pH of the aqueous solution (3 liquids) so that the final dispersion has a desired pH of 7.0 or less.
  • the concentration of the hydroxyl group-containing resin in the three liquids is not particularly limited, but is preferably adjusted to 5 to 40% by mass, for example.
  • step (2) the first and second liquids prepared above are kneaded.
  • the method for kneading the first liquid and the second liquid is not particularly limited. At this time, if necessary, other components such as a plasticizer and an antifoaming agent may be further added and mixed.
  • the kneading means is not particularly limited, and for example, a conventionally known kneading stirrer such as a self-revolving stirrer or a planetary mixer can be used.
  • the kneading time is, for example, about 5 to 30 minutes. At this time, it is preferable to perform kneading under vacuum from the viewpoint of suppressing the generation of bubbles during kneading.
  • step (3) the three liquids prepared above are added to the mixed liquid obtained in step (2) and further kneaded.
  • the method of adding and mixing the three liquids is not particularly limited. Further, the kneading method is not particularly limited, and for example, a conventionally known kneading stirrer such as a self-revolving stirrer or a planetary mixer can be used.
  • the kneading time is, for example, about 5 to 60 minutes. At this time, it is preferable to perform kneading under vacuum from the viewpoint of suppressing the generation of bubbles during kneading.
  • Green sheet for sintered silicon carbide One embodiment of the present invention relates to a green sheet for sintered silicon carbide formed using the dispersion for sintered silicon carbide.
  • a dispersion for a silicon carbide sintered body is obtained by the method for producing a dispersion for a silicon carbide sintered body, and the dispersion for a silicon carbide sintered body is applied to a substrate. The manufacturing method of the green sheet for silicon carbide sintered compacts which has the process to carry out.
  • the dispersion for silicon carbide sintered body according to the present invention and the dispersion for silicon carbide sintered body obtained by the production method of the present invention are excellent in dispersibility of silicon carbide particles and boron nitride particles and have high stability. Therefore, in the green sheet using this, the silicon carbide particles and the boron nitride particles are uniformly present at high density, the resin is hardly separated, and there are few voids. Therefore, a high-strength silicon carbide sintered body can be manufactured.
  • the method for producing the green sheet is not particularly limited, and for example, a method of forming a sheet by applying the above-described dispersion for silicon carbide sintered body on a substrate can be used.
  • the substrate is not particularly limited.
  • a resin film such as a polyolefin film (polyethylene, polypropylene, etc.), a polyester film (polyethylene terephthalate (PET), polyethylene naphthalate, etc.) or polyvinyl chloride is preferably used.
  • the thickness of the substrate is not particularly limited, but is, for example, 10 to 300 ⁇ m, preferably 20 to 150 ⁇ m.
  • the coating method of the dispersion for silicon carbide sintered body is not particularly limited, and any known method can be used, for example, bar coating method, die coater method, comma coating method, gravure roll coater method, blade coater method.
  • the spray coater method, the air knife coating method, the dip coating method, the transfer method and the like are used.
  • the thickness of the layer obtained by applying the dispersion for silicon carbide sintered body is not particularly limited, but is preferably 100 to 2000 ⁇ m from the viewpoint of productivity and suppression of cracking.
  • One embodiment of the present invention is a prepreg material for a silicon carbide sintered body formed from the green sheet for a silicon carbide sintered body.
  • a green sheet for a silicon carbide sintered body is obtained by the method for producing a green sheet for a silicon carbide sintered body, and the green sheet for a silicon carbide sintered body is laminated on a fiber substrate.
  • the present invention relates to a method for producing a prepreg material for a silicon carbide sintered body having a step.
  • the prepreg material is a semi-cured composite material produced by impregnating a dispersion containing resin into a fiber base material such as glass cloth, silicon carbide fiber, or carbon fiber and drying it.
  • a general production method is to manufacture a prepreg material by impregnating a fiber base material with a dispersion and evaporating and removing a solvent in a drying step. Impregnation is performed by dipping, coating, or the like, and can be repeated a plurality of times as necessary.
  • a prepreg material can be produced by laminating a sheet-like green sheet on a fiber base material.
  • a prepreg material can also be manufactured by combining this method and a method of impregnating a fiber base material with the above dispersion.
  • the prepreg material of the present embodiment can be sintered into a silicon carbide sintered body, and can be used as a silicon carbide fiber reinforced silicon carbide composite material (silicon carbide / silicon carbide composite material).
  • the silicon carbide / silicon carbide composite material has excellent physical properties such as light weight, high heat resistance, high hardness, and high fracture toughness, and can be used as a heat and environment resistant material.
  • Example 1 [Preparation of aqueous dispersion of silicon carbide (SiC) particles (1 liquid)] A 20% by mass aqueous dispersion of silicon carbide particles (GC # 40000, average secondary particle size of 0.36 ⁇ m, manufactured by Fujimi Incorporated, powder) is prepared, and 1M NaOH aqueous solution is added so as to have a pH of 10.0. did.
  • SiC silicon carbide
  • a 30% by mass aqueous dispersion of sodium aluminate was prepared, and the sodium aluminate aqueous dispersion in an amount of 50 parts by mass of sodium aluminate with respect to 100 parts by mass of silicon carbide particles, and 9.9% by mass nitric acid Were added over 45 minutes with stirring to maintain a pH of 9.0-11.0. Then, after further stirring for 45 minutes, 9.9% by mass nitric acid was added so that the pH was 10.5, and an aqueous dispersion containing silicon carbide particles coated with aluminum hydroxide was prepared.
  • BN Boron Nitride
  • Part 2 100% by mass of an aqueous solution of 35% by mass of poly (diallyldimethylammonium chloride) (PDDA, manufactured by Sigma Aldrich Japan LLC) in an aqueous dispersion of 20% by mass of boron nitride particles having an average secondary particle size of 3.07 ⁇ m.
  • PDDA was added to 2.0 parts by mass to prepare a dispersion containing boron nitride particles coated with PDDA. Thereafter, 9.9% by mass nitric acid was added so that the pH was 3.0. Two liquids were thus obtained.
  • Example 2 A dispersion of Example 2 was prepared in the same manner as in Example 1, except that the 1st liquid, the 2nd liquid, and the 3rd liquid were each adjusted to pH 5.0.
  • Example 3 A dispersion of Example 3 was prepared in the same manner as in Example 1, except that the 1st liquid, 2nd liquid, and 3rd liquid were each adjusted to pH 7.0.
  • Example 4 A dispersion of Example 4 was prepared in the same manner as in Example 1, except that 9.9% by mass nitric acid in the preparation of 1 part, 2 parts, and 3 parts was changed to 9.9% by mass hydrochloric acid.
  • Example 5 In Example 2, the 20 mass% PVB aqueous solution in the three liquids was changed to an aqueous solution diluted so that PVA (polyvinyl alcohol, product name: PVA-124, manufactured by Kuraray Co., Ltd.) was 16 mass%, and the same manner was performed. A dispersion of Example 5 was prepared.
  • PVA polyvinyl alcohol, product name: PVA-124, manufactured by Kuraray Co., Ltd.
  • Example 2 50 mass% obtained by concentrating 20 mass% aqueous dispersion of silicon carbide particles (GC # 40000, average secondary particle size 0.36 ⁇ m, manufactured by Fujimi Incorporated, Inc., powder) by suction filtration. A dispersion of Comparative Example 1 was prepared in the same manner as in Example 2 except that 1% of the aqueous dispersion was 1% and 2 parts of the aqueous dispersion of 20% by mass boron nitride particles was used.
  • GC # 40000 average secondary particle size 0.36 ⁇ m, manufactured by Fujimi Incorporated, Inc., powder
  • Comparative Example 2 A dispersion of Comparative Example 2 was prepared in the same manner as in Comparative Example 1, except that the first, second, and third liquids were each adjusted to pH 9.0.
  • Comparative Example 3 A dispersion of Comparative Example 3 was prepared in the same manner as in Example 3, except that the aqueous dispersion of 20% by mass boron nitride particles was changed to two.
  • Example 4 In Example 3, 50 mass% obtained by concentrating 20 mass% aqueous dispersion of silicon carbide particles (GC # 40000, average secondary particle diameter 0.36 ⁇ m, powder manufactured by Fujimi Incorporated, Inc.) by suction filtration. A dispersion of Comparative Example 4 was prepared in the same manner except that the aqueous dispersion was 1%.
  • Comparative Example 5 A dispersion of Comparative Example 5 was prepared in the same manner as in Example 1, except that the liquid 1, liquid 2 and liquid 3 were each adjusted to pH 10.0.
  • composition and structural analysis About 2 mL of an aqueous dispersion (1 liquid) of silicon carbide particles used in each Example and Comparative Example was collected and dropped onto a filter (New Clipore 5 ⁇ m) (manufactured by WHATMAN). Subsequently, suction filtration was performed, and then the powder was washed on the filter with 10 mL of pure water, and the silicon carbide particles were dried. Then, the dried silicon carbide particles are collected on a Si wafer, and using a scanning electron microscope SU-8000 manufactured by Hitachi High-Technologies Corporation, SEM (Scanning Electron Microscope) -EDX (Energy Dispersive X-ray Spectroscopy). Observations were made.
  • the dried silicon carbide particles were collected on a carbon tape and subjected to EELS (Electron Energy Loss Spectroscopy) analysis using TITAN 80-300 manufactured by FEI.
  • EELS Electro Energy Loss Spectroscopy
  • the observed EELS spectrum is a spectral shape peculiar to the EELS standard spectrum of aluminum hydroxide (Al (OH) 3 ) (the spectrum of a compound containing Al or other Al and O and It can be determined that the component containing Al and O contains Al (OH) 3 .
  • zeta potential measurement The aqueous dispersion of silicon carbide particles (1 liquid) and the aqueous dispersion of boron nitride particles (2 liquids) used in each example and comparative example were each diluted with pure water, and 0.01 to A zeta potential measurement solution having an arbitrary pH was prepared using 0.1 M NaOH and HCl. That is, in each of the examples and comparative examples, the pH of the zeta potential measurement solution was adjusted so as to be the pH of the dispersion finally obtained by mixing the first solution, the second solution, and the third solution. Here, pH was measured at 25 ° C. using a pH meter (model number: F-71) manufactured by Horiba, Ltd.
  • the zeta potential was measured with a zeta potential measuring device (trade name “Zetasizer nano ZSP”) manufactured by Malvern Instruments.
  • a refractive index of 1.760 and an absorptance of 0.300 which are typical values of general alumina, are used as measurement particle conditions, and a refractive index of 2.170 and an absorptance of 0 are represented as representative values of boron nitride.
  • Measurements were made using a refractive index of 2.650 and an absorptance of 0.900 as representative values for .720, silicon carbide.
  • Table 2 shows the zeta potential of silicon carbide particles and boron nitride particles. If the zeta potential of the silicon carbide particles and the boron nitride particles have the same sign, good dispersibility can be obtained.
  • the criteria for determining the dispersibility of the particles in Table 2 are as follows.
  • Zeta potential of silicon carbide particles and boron nitride particles have the same sign
  • X The zeta potentials of silicon carbide particles and boron nitride particles have different signs.
  • a sample having a pH of 1.0 increments from pH 3.0 to 10.0 is prepared as a zeta potential measurement solution. Then, the pH of the zeta potential measuring solution having a pH in increments of 1.0 from pH 3.0 to 10.0 is measured, and the above description is based on the pH before and after the change of the sign of the zeta potential and the zeta potential at the previous and next pH. It was calculated by the formula.
  • the pH value which is the isoelectric point of the silicon carbide particles used in each of the examples and comparative examples is 5.0 for silicon carbide particles not subjected to charge control, and 8. for silicon carbide particles coated with aluminum hydroxide. 6. Further, the pH that is the isoelectric point of the boron nitride particles was 4.6 for the boron nitride particles that were not subjected to charge control, and 8.0 for the boron nitride particles coated with PDDA.
  • the average secondary particle size of the silicon carbide particles was measured with a scattering type particle size distribution measuring apparatus LA-950 manufactured by Horiba, Ltd.
  • the silicon carbide particles were measured using a 10% by mass aqueous dispersion of silicon carbide particles obtained by diluting the aqueous dispersion (one liquid) of the silicon carbide particles used in each example and comparative example.
  • the average secondary particle diameter of the silicon carbide particles coated with aluminum hydroxide was 0.42 ⁇ m.
  • the boron nitride particles were also measured using a 10% by mass aqueous dispersion of boron nitride particles obtained by diluting the aqueous dispersion (2 liquids) of boron nitride particles used in each example and comparative example.
  • the average secondary particle diameter of the boron nitride particles coated with PDDA was 3.06 ⁇ m.
  • The viscosity after 7 days is within ⁇ 20% of the viscosity immediately after preparation of the dispersion.
  • X The viscosity after 7 days exceeds ⁇ 20% with respect to the viscosity immediately after preparation of the dispersion.
  • Example 6 (Production of green sheets) [Example 6] Using the dispersion of Example 2, a 1000 ⁇ m gap applicator was used to form a sheet on a PET film (thickness: 100 ⁇ m) to obtain a green sheet.
  • Example 7 A prepreg material was obtained by laminating the green sheet produced in Example 6 on a silicon carbide fiber woven fabric.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】環境負荷が少なく、高い分散性を有し、優れた経時安定性を有する、炭化ケイ素焼結体用分散体、およびその製造方法を提供する。 【解決手段】炭化ケイ素粒子と、窒化ホウ素粒子と、水酸基を有する樹脂と、水と、を含み、25℃でのpHが7.0以下であり、前記炭化ケイ素粒子と前記窒化ホウ素粒子とが同符号の電荷を有する、炭化ケイ素焼結体用分散体である。上記分散体は、炭化ケイ素粒子を含む水分散体と、窒化ホウ素粒子を含む水分散体と、水酸基を有する樹脂を含む水溶液と、を混合する混合工程を有する、炭化ケイ素焼結体用分散体の製造方法によって製造される。

Description

炭化ケイ素焼結体用分散体、これを用いた炭化ケイ素焼結体用グリーンシートおよび炭化ケイ素焼結体用プリプレグ材、ならびにその製造方法
 本発明は、炭化ケイ素焼結体用分散体、これを用いた炭化ケイ素焼結体用グリーンシートおよび炭化ケイ素焼結体用プリプレグ材、ならびにその製造方法に関する。
 炭化ケイ素(SiC)は、高硬度であり、高温耐熱性、機械的強度、耐衝撃性、耐摩耗性、耐酸化性および耐食性に優れ、熱膨張係数が小さいことから、研磨用組成物や、高温構造部材をはじめとして、種々の用途での応用が期待されている。
 炭化ケイ素の応用に際しては、所望の組成物や材料を形成するに当たり、粒子状の炭化ケイ素(炭化ケイ素粒子、SiC粒子)を分散媒やポリマー材料の媒体中に分散して用いることや、他のセラミックス粒子等の無機粒子と混合して用いることが検討されている。また、炭化ケイ素粒子を含む分散体や混合物、およびこれらより形成される成形体または焼結体等の機能向上のため、炭化ケイ素粒子が媒体に対する高い分散性を有し、他のセラミックス粒子等の無機粒子に対しても均一に分散されうる、炭化ケイ素粒子を含む分散体が特に望まれている。
 特開平2-22179号公報には、炭化ケイ素(SiC)ウィスカーを、Siなどの他のセラミックス粒子とともに媒体に分散させて分散体を作製し、これを焼結して焼結体を作製する技術が記載されている。特開平2-22179号公報には、分散体のpHを調整して炭化ケイ素ウィスカーと他のセラミックス粒子とのゼータ電位を調節することによって、これらの粒子が均一に混在した状態の焼結体が得られることが記載されている。
 窒化ホウ素(BN)は硬質材料であることが知られており、炭化ケイ素粒子と組み合わせることで、炭化ケイ素を含む焼結体の耐熱衝撃性、機械加工性の向上が期待される。この際、炭化ケイ素粒子および無機粒子である窒化ホウ素粒子を含む分散体を用いて作製される炭化ケイ素焼結体が十分な強度を得るためには、分散体中で炭化ケイ素粒子および窒化ホウ素粒子が安定に、均一に分散されていることが必要である。また、分散体を用いて炭化ケイ素焼結体を効率的に製造するために、分散体は経時安定性に優れることが求められる。しかしながら、無機粒子として窒化ホウ素粒子を用いた場合、特開平2-22179号公報に係る技術では、媒体中で炭化ケイ素粒子および窒化ホウ素粒子の十分な分散性および分散体の経時安定性が得られないことがわかった。加えて、複雑な形状への同材料の適用にはバインダーの添加が必要となるが、その際に媒体として有機溶媒が使用されることが一般的であり、環境負荷の観点から好ましくないといった課題がある。
 したがって、本発明は、上記課題に鑑みてなされたものであり、環境負荷が少なく、高い分散性を有し、優れた経時安定性を有する、炭化ケイ素焼結体用分散体およびその製造方法を提供することを目的とする。
 上記課題を解決すべく、本発明者らは鋭意研究を積み重ねた。その結果、主分散媒を水として、無機粒子として窒化ホウ素粒子を用い、水酸基を有する樹脂を添加し、分散体のpHを所定の範囲に制御するとともに、炭化ケイ素粒子および窒化ホウ素粒子の表面の電荷が同符号となるように制御することで、上記課題が解決されることを見出し、本発明を完成させるに至った。
 すなわち、本発明の上記課題は、以下の手段により解決される;
 炭化ケイ素粒子と、
 窒化ホウ素粒子と、
 水酸基を有する樹脂と、
 水と、
を含み、
 25℃でのpHが7.0以下であり、前記炭化ケイ素粒子と前記窒化ホウ素粒子とが同符号の電荷を有する、炭化ケイ素焼結体用分散体。
 また、本発明の上記課題は、以下の手段により解決される;
 炭化ケイ素粒子を含む水分散体と、
 窒化ホウ素粒子を含む水分散体と、
 水酸基を有する樹脂を含む水溶液と、
を混合する混合工程を有する、炭化ケイ素焼結体用分散体の製造方法であって、
 前記炭化ケイ素粒子と前記窒化ホウ素粒子とが同符号の電荷を有し、かつ前記炭化ケイ素焼結体用分散体の25℃でのpHが7.0以下である、製造方法。
 以下、本発明を説明する。なお、本発明は、以下の実施の形態のみには限定されない。
 本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、本明細書において、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で行う。
 <炭化ケイ素焼結体用分散体>
 本発明の一形態は、炭化ケイ素粒子と、窒化ホウ素粒子と、水酸基を有する樹脂と、水と、を含み、25℃でのpHが7.0以下であり、前記炭化ケイ素粒子と前記窒化ホウ素粒子とが同符号の電荷を有する、炭化ケイ素焼結体用分散体である。
 本発明の一形態は、炭化ケイ素粒子を含む水分散体と、窒化ホウ素粒子を含む水分散体と、水酸基を有する樹脂を含む水溶液と、を混合する混合工程を有する、炭化ケイ素焼結体用分散体の製造方法であって、前記炭化ケイ素粒子と前記窒化ホウ素粒子とが同符号の電荷を有し、かつ前記炭化ケイ素焼結体用分散体の25℃でのpHが7.0以下である、製造方法である。本明細書中、本発明の製造方法により得られる炭化ケイ素焼結体用分散体を「本発明に係る分散体」とも称する。
 本発明によれば、環境負荷が少なく、高い分散性および経時安定性を有する、炭化ケイ素焼結体用分散体およびその製造方法が提供される。
 本発明者らは、本発明によって上記課題が解決されるメカニズムを以下のように推定している。
 炭化ケイ素焼結体用分散体の媒体として水を用いることは、有機溶媒を用いる場合と比較して、環境負荷や廃液処理コストの面で有利である。しかしながら、一般に、媒体として水を用いた場合、有機溶媒を用いた場合と比較して、炭化ケイ素粒子および無機粒子の電荷が分散体におけるこれらの粒子の凝集性に大きな影響を与える。そのため、炭化ケイ素粒子および無機粒子を均一に分散させることが困難になる。また、分散体を長時間安定した粘度に保つことが困難である。その結果、この分散体を用いて焼結体を作製したときに、十分な強度が得られなくなる。
 炭化ケイ素粒子と、窒化ホウ素粒子と、水酸基を有する樹脂と、を含む分散体(水分散液)において、25℃でのpHが7.0を超えるアルカリ性下では、下記式のように窒化ホウ素粒子と水酸基を有する樹脂とが反応し、結合して錯体を形成することにより、ゲル化が生じる。その結果、分散体の粘度が時間の経過にしたがって上昇するものと考えられる。これに対して、分散体のpHを7.0以下にすることで、上記反応が進行しにくくなるため、粘度が安定に保たれるものと考えられる。
Figure JPOXMLDOC01-appb-C000001
 さらに、25℃でのpHが7.0以下の条件下で、炭化ケイ素粒子と窒化ホウ素粒子とが同符号の電荷を有するようにすることによって、分散安定性が向上することがわかった。
 なお、上記メカニズムは推測に基づくものであり、その正誤が本発明の技術的範囲に影響を及ぼすものではない。
 また、本発明の分散体においては、炭化ケイ素粒子および窒化ホウ素粒子のうち少なくとも一方が電荷制御されていることが好ましい。このようにすることで、粒子表面のゼータ電位を調節して、分散性および分散安定性をより高めることができる。本発明の分散体においては、炭化ケイ素粒子および窒化ホウ素粒子の両方が電荷制御されていることがより好ましい。
 <炭化ケイ素(SiC)粒子>
 炭化ケイ素(SiC)粒子は、高硬度であり、高温耐熱性、機械的強度、耐衝撃性、耐摩耗性、耐酸化性および耐食性に優れ、熱膨張係数が小さいことから、研磨用組成物や、高温構造部材をはじめとして、種々の用途に用いることができる。
 炭化ケイ素粒子は、特に制限されないが、電荷制御成分を含む被覆層で被覆されることにより電荷制御される場合、粒子の生成から、被覆層で被覆されるまで、分散媒中に分散された状態を維持することが好ましい。炭化ケイ素粒子の生成から被覆層で被覆されるまで分散体中に分散された状態を維持することで、乾燥による炭化ケイ素粒子の凝集を回避することができる。これより、生成された時点での炭化ケイ素粒子の高い分散性が被覆層で被覆された炭化ケイ素粒子の状態でもより高いレベルで維持されるため、被覆層で被覆された炭化ケイ素粒子の極めて高い分散性が得られる。
 炭化ケイ素粒子の平均一次粒子径は、特に制限されないが、900nm以下であることが好ましい。平均一次粒子径がこの範囲であると、より高い分散性を有する分散体が得られる。同様の観点から、炭化ケイ素粒子の平均一次粒子径は、700nm以下であることがより好ましく、600nm以下であることがさらに好ましい。また、炭化ケイ素粒子の平均一次粒子径は、特に制限されないが、1nm以上であることが好ましい。平均一次粒子径がこの範囲であると、炭化ケイ素粒子の機能をより向上させることができる。同様の観点から、炭化ケイ素粒子の平均一次粒子径は、5nm以上であることがより好ましく、10nm以上であることがさらに好ましい。ここで、炭化ケイ素粒子の平均一次粒子径の値は、BET法で3~5回連続で測定した値から算出した炭化ケイ素粒子の比表面積(SA)の平均値に基づき、炭化ケイ素粒子の真密度の値を使用し、炭化ケイ素粒子の形状が真球であると仮定して算出することができる。炭化ケイ素粒子の比表面積の測定は、例えば、マイクロメリテックス社製のFlow SorbII 2300を用いて行うことができる。
 炭化ケイ素粒子の平均二次粒子径は、2μm未満であることが好ましい。平均二次粒子径がこの範囲であると、より高い分散性を有する分散体が得られる。同様の観点から、炭化ケイ素粒子の平均二次粒子径は、1.9μm以下であることがより好ましく、1.8μm以下であることがさらに好ましく、1.5μm未満であることがよりさらに好ましく、1.0μm未満であることが特に好ましく、0.5μm未満であることが最も好ましい。また、炭化ケイ素粒子の平均二次粒子径は、0.03μm以上であることが好ましい。平均二次粒子径がこの範囲であると、被覆層での被覆による電荷制御を高効率で行うことができる。同様の観点から、炭化ケイ素粒子の平均二次粒子径は、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましい。ここで、炭化ケイ素粒子の平均二次粒子径の値は、株式会社堀場製作所製の散乱式粒子径分布測定装置LA-950により測定することができる。なお、測定方法の詳細は実施例に記載する。
 ここで、炭化ケイ素粒子の平均一次粒子径に対する平均二次粒子径の比(平均二次粒子径/平均一次粒子径)は、特に制限されないが、10以下であることが好ましい。この範囲であると、分散性がより向上する。同様の観点から、炭化ケイ素粒子の平均一次粒子径に対する平均二次粒子径の比は、8以下であることがより好ましく、6以下であることがさらに好ましい。また、炭化ケイ素粒子の平均一次粒子径に対する平均二次粒子径の比は、特に制限されないが、1.5以上であることが好ましい。この範囲であると、生産性がより向上する。同様の観点から、炭化ケイ素粒子の平均一次粒子径に対する平均二次粒子径の比は、2以上であることがより好ましく、2.5以上であることがさらに好ましく、3以上であることが特に好ましい。
 また、炭化ケイ素粒子は、市販品を用いてもよいし合成品を用いてもよい。市販品としては、特に制限されないが、例えば、株式会社フジミインコーポレーテッド製のGC#40000、GC8000S等を用いることができる。
 炭化ケイ素粒子は、単独でもまたはこれらの複合物でもまたは2種以上混合して用いてもよい。
 <炭化ケイ素粒子を含む水分散体>
 炭化ケイ素粒子を含む水分散体の製造方法、すなわち炭化ケイ素粒子を水を含む分散媒に分散させる手順および方法は、特に制限されず、従来公知の手順および方法を用いることができる。
 炭化ケイ素粒子を含む水分散体の製造方法に使用される水は、不純物をできる限り含有しない水が好ましい。例えば、遷移金属イオンの合計含有量が100ppb以下である水が好ましい。ここで、水の純度は、例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって高めることができる。具体的には、水としては、例えば、脱イオン水(イオン交換水)、純水、超純水、蒸留水などを用いることが好ましい。
 また、後述する電荷制御成分を含む被覆層を有する被覆炭化ケイ素粒子(被覆炭化ケイ素粒子)の製造方法で得られた被覆炭化ケイ素粒子を含む水分散体を使用することができる。
 炭化ケイ素粒子を含む水分散体は、後述のとおり、水以外の分散媒を含むことができる。分散媒は、環境負荷を少なくするとの観点から、好ましくは水のみである。
  <炭化ケイ素粒子の電荷制御>
 本発明の分散体においては、炭化ケイ素粒子は電荷制御されているものを用いることができる。炭化ケイ素粒子の電荷制御としては、特に制限されないが、炭化ケイ素粒子の表面に他成分(電荷制御成分)の層を形成して被覆炭化ケイ素粒子とすることで、表面電荷を調整する方法が挙げられる。電荷制御成分としては、例えば、二酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、などの酸化物、または、水酸化アルミニウム、水酸化マグネシウム、水酸化イットリウム、水酸化チタンなどの水酸化物が挙げられる。本発明の分散体においては、特に酸性下での炭化ケイ素粒子の分散性が向上し、酸性領域において安定性が向上することから、水酸化アルミニウムを含む層で被覆した炭化ケイ素粒子(水酸化アルミニウム被覆炭化ケイ素粒子)を用いることが好ましい。すなわち、本発明の分散体においては、炭化ケイ素粒子が水酸化アルミニウム被覆により電荷制御されてなることが好ましい。
 (水酸化アルミニウム被覆炭化ケイ素粒子)
 本明細書において、水酸化アルミニウム被覆炭化ケイ素粒子とは、炭化ケイ素粒子と、炭化ケイ素粒子を被覆する水酸化アルミニウムを含む被覆層と、を有する被覆粒子である。ここで、水酸化アルミニウム被覆炭化ケイ素粒子は、炭化ケイ素粒子の少なくとも一部が水酸化アルミニウムを含む被覆層によって被覆されている粒子であればよい。
 水酸化アルミニウム被覆炭化ケイ素粒子は、溶剤(好ましくは水)で洗浄した場合や、水中に分散された状態であっても、水酸化アルミニウム被覆炭化ケイ素粒子としての形態を維持することができることが好ましい。
 (水酸化アルミニウム被覆炭化ケイ素粒子の平均二次粒子径)
 水酸化アルミニウム被覆炭化ケイ素粒子の平均二次粒子径は、2μm以下であることが好ましい。この範囲であると、水酸化アルミニウム被覆炭化ケイ素粒子を分散媒である水に分散させた際に、分散性をより向上させることができる。平均二次粒子径が小さい粒子は、そもそも凝集の度合いが小さく、粒子径のバラツキも小さい。また、粒径が小さい粒子ほど凝集性が低くなる。したがって、平均二次粒子径が2μm以下である水酸化アルミニウム被覆炭化ケイ素粒子を水に分散させれば、より高い分散性を有する分散体を得ることができる。特に後述する方法で被覆層を形成した場合、水酸化アルミニウム被覆炭化ケイ素粒子は、被覆層の形成段階での凝集の低減効果と、粒子としての凝集の低減効果の両方を組み合わせることで、水に分散させた際により高い分散性を実現することができる。同様の観点から、水酸化アルミニウム被覆炭化ケイ素粒子の平均二次粒子径は、1.5μm以下であることが好ましく、1.0μm以下であることがより好ましく、0.5μm以下であることがさらに好ましい。また、水酸化アルミニウム被覆炭化ケイ素粒子の平均二次粒子径は、特に制限されないが、0.03μm以上であることが好ましい。被覆層の平均膜厚は直接測定することは困難であるが非常に薄いと考えられることから、炭化ケイ素粒子の好ましい平均二次粒子径に対応したものである。同様の観点から、水酸化アルミニウム被覆炭化ケイ素粒子の平均二次粒子径は、0.03μm超であることがより好ましく、0.05μm以上であることがさらに好ましく、0.05μm超であることがよりさらに好ましく、0.1μm以上であることが特に好ましく、0.1μm超であることが最も好ましい。ここで、水酸化アルミニウム被覆炭化ケイ素粒子の平均二次粒子径の値は、測定の適正濃度となるよう水酸化アルミニウム被覆炭化ケイ素粒子を分散媒に分散させた分散体において、株式会社堀場製作所製の散乱式粒子径分布測定装置LA-950により測定することができる。なお、測定方法の詳細は実施例に記載する。
 なお、電荷制御された炭化ケイ素粒子として、水酸化アルミニウム被覆炭化ケイ素粒子以外の、炭化ケイ素粒子の表面に他の電荷制御成分の層を形成した被覆粒子を用いる場合も、その平均二次粒子径は上記範囲であることが好ましい。
 (炭化ケイ素粒子の平均二次粒子径に対する水酸化アルミニウム被覆炭化ケイ素粒子の平均二次粒子径の比率)
 炭化ケイ素粒子(被覆前粒子)の平均二次粒子径に対する、水酸化アルミニウム被覆炭化ケイ素粒子(被覆後粒子)の平均二次粒子径の比率(以下、炭化ケイ素粒子に対する平均二次粒子径の比率とも称する)は、特に制限されないが、10以下であることが好ましい。この範囲であると、水酸化アルミニウム被覆炭化ケイ素粒子は、炭化ケイ素粒子の高い分散性を高度に維持したまま生成される。これより、水酸化アルミニウム被覆炭化ケイ素粒子を水に分散させた際に、より高い分散性を有する分散体が得られる。同様の観点から、炭化ケイ素粒子に対する平均二次粒子径の比率は、5以下であることがより好ましく、3以下であることがさらに好ましく、2以下であることがよりさらにより好ましく、1.6以下であることがよりさらに好ましく、1.2以下であることが特に好ましい。また、炭化ケイ素粒子に対する平均二次粒子径の比率は、特に制限されないが、1超であることが好ましい。水酸化アルミニウム被覆炭化ケイ素粒子は、炭化ケイ素粒子の表面が水酸化アルミニウムを含む被覆層によって被覆されることで形成される。これより、水酸化アルミニウム被覆炭化ケイ素粒子の製造において、炭化ケイ素粒子の二次粒子を解砕するためのさらなる操作を行わない場合にはこの範囲となる。ただし、炭化ケイ素粒子の二次粒子を解砕するための操作をしてもよく、また当該操作を有するか否かに関わらず、炭化ケイ素粒子に対する平均二次粒子径の比率は1以下であってもよい(下限0超)。ここで、水酸化アルミニウム被覆炭化ケイ素粒子および炭化ケイ素粒子の平均二次粒子径は上述した方法で求めることができる。
 なお、電荷制御された炭化ケイ素粒子として、水酸化アルミニウム被覆炭化ケイ素粒子以外の、炭化ケイ素粒子の表面に他の電荷制御成分の層を形成した被覆粒子を用いる場合も、炭化ケイ素粒子に対する平均二次粒子径の比率は上記範囲であることが好ましい。
 (炭化ケイ素粒子の平均一次粒子径に対する水酸化アルミニウム被覆炭化ケイ素粒子の平均二次粒子径の比率)
 炭化ケイ素粒子(被覆前粒子)の平均一次粒子径に対する、水酸化アルミニウム被覆炭化ケイ素粒子(被覆後粒子)の平均二次粒子径の比率(炭化ケイ素粒子の平均一次粒子径に対する平均二次粒子径の比率とも称する)は、特に制限されないが、50以下であることが好ましい。この範囲であると、水酸化アルミニウム被覆炭化ケイ素粒子は、水に分散させた際に、高い分散性を有する分散体を得ることができる。同様の観点から、炭化ケイ素粒子の平均一次粒子径に対する平均二次粒子径の比率は、20以下であることがより好ましく、10以下であることがさらに好ましく、9以下であることがよりさらに好ましく、7以下であることが特に好ましい。また、炭化ケイ素粒子に対する平均二次粒子径の比率は、通常1超となる。水酸化アルミニウム被覆炭化ケイ素粒子は、炭化ケイ素粒子の表面が水酸化アルミニウムを含む被覆層によって被覆されることで形成されるからである。また、炭化ケイ素粒子の凝集性を考慮した生産効率の観点から、3以上であることが好ましく、5以上であることがより好ましい。
 なお、電荷制御された炭化ケイ素粒子として、水酸化アルミニウム被覆炭化ケイ素粒子以外の、炭化ケイ素粒子の表面に他の電荷制御成分の層を形成した被覆粒子を用いる場合も、炭化ケイ素粒子の平均一次粒子径に対する平均二次粒子径の比率は上記範囲であることが好ましい。
 <電荷制御成分を含む被覆層を有する被覆炭化ケイ素粒子の製造方法>
 一実施形態において、電荷制御成分を含む被覆層を有する被覆炭化ケイ素粒子の製造方法は、炭化ケイ素粒子を含む原料分散体に電荷制御剤および酸を添加して、pHを9.0以上12.0以下の範囲とすることにより、前記炭化ケイ素粒子の表面に電荷制御成分を含む被覆層を有する被覆炭化ケイ素粒子を形成して、炭化ケイ素粒子を含む水分散体を調製する、炭化ケイ素粒子を含む水分散体の調製工程を有する。
 電荷制御剤としては、アルミン酸ナトリウム、カチオン性高分子(好ましくはポリ(ジアリルジメチルアンモニウムクロライド)(PDDA))などが挙げられる。
 上述のとおり、本発明に係る分散体は、酸性下での炭化ケイ素粒子の分散性が向上し、酸性領域において安定性が向上することから、水酸化アルミニウムを含む層で被覆した炭化ケイ素粒子(水酸化アルミニウム被覆炭化ケイ素粒子)を用いることが好ましい。したがって、以下では、水酸化アルミニウム被覆炭化ケイ素粒子の製造方法について、説明する。
 水酸化アルミニウム被覆炭化ケイ素粒子の製造方法は特に制限されないが、例えば、炭化ケイ素粒子、アルカリおよび水を含み、pHが9.0以上12.0以下である原料分散体(1)と、アルミン酸ナトリウム(電荷制御剤)および水を含む原料溶液(2)と、をそれぞれ準備する工程(A)と、前記原料分散体(1)に、前記原料溶液(2)と酸とを添加して、pHを9.0以上12.0以下の範囲に維持し、前記炭化ケイ素粒子の表面に水酸化アルミニウム(電荷制御成分)を含む被覆層を有する被覆粒子を形成する工程(B)と、を有する方法が用いられる。
 ここで、製造される水酸化アルミニウム被覆炭化ケイ素粒子は、分散媒中に分散された状態で製造されてもよく、またはその後分散媒を取り除く工程を経て製造されていてもよい。水(分散媒)中に分散された状態で製造された水酸化アルミニウム被覆炭化ケイ素粒子は、後述の混合工程における炭化ケイ素粒子を含む水分散体として使用できる。
 (工程(A))
 工程(A)は、炭化ケイ素粒子、アルカリおよび水を含み、pHが9.0以上12.0以下である原料分散体(1)と、アルミン酸ナトリウムおよび水を含む原料溶液(2)と、をそれぞれ準備する工程である。
 原料分散体(1)の調製方法としては、特に限定されないが、例えば、炭化ケイ素粒子の水系分散体(分散媒として水を含む分散体、好ましくは水分散体)にアルカリを添加する方法等が挙げられる。
 炭化ケイ素粒子の水系分散体は市販品でもよいし、合成品でもよい。炭化ケイ素粒子の水系分散体を合成(調製)する場合は、特に制限されず、公知の装置および公知の方法を用いることができる。
 炭化ケイ素粒子の水系分散体中の炭化ケイ素粒子の含有量は、特に制限されないが、生産性の観点から、水系分散体の総質量に対して、8質量%以上であることが好ましく、10質量%以上であることがより好ましい。また、分散性の観点から、水系分散体の総質量に対して、50質量%以下であることが好ましく、30質量%以下であることがより好ましい。
 原料分散体(1)の調製方法において、アルカリの使用量は、特に制限されず、分散体のpHが所定の9.0以上12.0以下になるように使用量を調整すればよい。
 用いられるアルカリとしては、例えば、アンモニア、水酸化カリウム、水酸化ナトリウム、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾール、トリアゾール等が挙げられる。これらアルカリは、単独でもまたは2種以上混合しても用いることができる。
 ここで、炭化ケイ素粒子は、特に制限されないが、その生成から、工程(A)で原料分散体(1)が準備されるまで、炭化ケイ素粒子が分散媒中に分散された状態を維持することが好ましい。そして、その生成から、後述する工程(B)において被覆層で被覆されるまで、炭化ケイ素粒子が分散媒中に分散された状態を維持することがより好ましい。炭化ケイ素粒子の生成から被覆層で被覆されるまでの間、分散体中に分散された状態を維持することで、炭化ケイ素粒子は、乾燥による凝集を回避することができる。これより、炭化ケイ素粒子は、生成された時点での高いレベルの分散性が水酸化アルミニウム被覆炭化ケイ素粒子の状態でも維持されることとなる。このため、製造される水酸化アルミニウム被覆炭化ケイ素粒子を水に分散させた際に、極めて高い分散性を有する分散体を得ることができる。
 原料分散体(1)は、分散媒として水を含むことが好ましい。水は、不純物をできる限り含有しない水が好ましい。例えば、遷移金属イオンの合計含有量が100ppb以下である水が好ましい。ここで、水の純度は、例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって高めることができる。具体的には、水としては、例えば、脱イオン水(イオン交換水)、純水、超純水、蒸留水などを用いることが好ましい。
 水に、炭化ケイ素粒子を分散させる手順、方法、およびアルカリを添加する手順、方法としては、特に制限されず、公知の手順、方法を用いることができる。
 原料分散体(1)は、水以外の分散媒を含んでいてもよい。水以外の分散媒は、各成分の分散または溶解のために、水と有機溶媒との混合溶媒であってもよい。この場合、用いられる有機溶媒としては、例えば、水と混和する有機溶媒であるアセトン、アセトニトリル、エタノール、メタノール、イソプロパノール、グリセリン、エチレングリコール、プロピレングリコール等が好ましい例として挙げられる。また、有機溶媒を水と混合せずに用いて、各成分を分散または溶解した後に、水と混合してもよい。これら有機溶媒は、単独でもまたは2種以上組み合わせても用いることができる。
 ここで、原料分散体(1)中の水の含有量は、水酸化アルミニウムによる炭化ケイ素粒子の被覆をより良好に進行させるとの観点から、原料分散媒(1)の総質量に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
 本工程で得られる原料分散体(1)は、pHが9.0以上12.0以下であることが好ましい。pHが9.0以上であれば、酸滴下箇所での局所的な凝集が発生しにくい。一方、pHが12.0以下であれば、水酸化アルミニウム単独粒子の発生が抑制される。被覆層形成の速度を向上させ、生産性を向上させるとの観点から、該pHは9.0を超え12.0以下であることがより好ましい。
 原料溶液(2)の調製方法としては、特に限定されないが、例えば、水にアルミン酸ナトリウムを添加する方法等が挙げられる。原料溶液(2)におけるアルミン酸ナトリウムの含有量は、特に制限されないが、原料溶液(2)の総質量に対して、10質量%以上50質量%以下であることが好ましく、20質量%以上40質量%以下であることがより好ましい。
 (工程(B))
 工程(B)は、工程(A)で準備された原料分散体(1)に、前記原料溶液(2)と酸とを添加して、pHを9.0以上12.0以下の範囲に維持し、前記炭化ケイ素粒子の表面に水酸化アルミニウムを含む被覆層を有する被覆粒子を形成する工程である。工程(B)では、水酸化アルミニウム被覆炭化ケイ素粒子が製造される。
 原料分散体(1)に原料溶液(2)と酸とを添加する方法は、pHを9.0以上12.0以下に維持できれば(すなわち、アルミン酸イオンの濃度が過剰にならなければ)特に制限されず、例えば、原料溶液(2)と酸とを同時に添加する方法や、原料溶液(2)と酸とを少しずつ交互に添加する方法が挙げられる。
 原料溶液(2)の添加量は、特に制限されないが、炭化ケイ素粒子100質量部に対して、アルミン酸ナトリウムが1質量部以上になるように原料溶液(2)を添加することが好ましく、5質量部以上であることがより好ましく、10質量部以上であることがさらに好ましい。原料溶液(2)の添加量がこの範囲であると、炭化ケイ素粒子を水酸化アルミニウム(Al(OH))で十分に被覆することができ、アルミニウム含有化合物に由来する機能を十分に発揮することができるからである。また、原料溶液(2)の添加量は、特に制限されないが、炭化ケイ素粒子100質量部に対して、アルミン酸ナトリウムが800質量部以下になるように原料溶液(2)を添加することが好ましく、400質量部以下であることがより好ましく、100質量部以下であることがさらに好ましい。ある程度被覆が進むと被覆による得られる効果は一定となるため、原料溶液(2)の添加量を所定量以下とすることで、経済性および生産効率が向上するからである。本発明の一実施形態では、炭化ケイ素粒子100質量部に対して、前記アルミン酸ナトリウムの使用量が1~100質量部である。
 酸としては、特に制限されないが、例えば、硝酸、硫酸、リン酸、塩酸等の無機酸(特に硝酸、硫酸、塩酸等の無機強酸)、酢酸、クエン酸、乳酸、シュウ酸、フタル酸等の有機酸等が挙げられる。これらの中でも、より少ない添加量で目的の達成が可能であり、他の元素の混入の可能性が低い高純度品が容易に入手可能であるとの観点から、無機強酸であることが好ましく、硝酸、硫酸、塩酸であることがより好ましい。
 ここで、上記酸は水溶液の形態で添加することが好ましく、その水溶液中の酸の濃度は、特に制限されないが、1.0質量%以上であることが好ましい。酸の濃度がこの範囲であると、添加量が少なくすみ生産性が高くなるからである。同様の観点から、水溶液中の酸の濃度は、1.5質量%以上であることがより好ましく、2.0質量%以上であることがさらに好ましい。また、水溶液中の酸の濃度は、特に制限されないが、30質量%以下であることが好ましい。水溶液中の酸の濃度がこの範囲であると、腐食性が低くなり設備負荷が小さくなるからである。同様の観点から、水溶液中の酸の濃度は、20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましく、10質量%以下であることがさらにより好ましい。
 また、原料溶液(2)と酸とを添加する速度(添加速度)は、特に制限されず、pH9.0以上12.0以下の範囲し、かつその後のpHの維持が容易となるよう適宜調整すればよい。
 また、本工程では、pHを9.0以上12.0以下の範囲とすることにより、炭化ケイ素粒子の表面に水酸化アルミニウムを含む被覆層を有する被覆粒子を形成する段階を含む。
 本段階において、pHが9.0以上12.0以下の範囲である状態の維持時間は1分以上であることが好ましい。維持時間がこの範囲であると、炭化ケイ素粒子を水酸化アルミニウムでより十分に被覆することができ、水酸化アルミニウム被覆炭化ケイ素粒子におけるアルミニウム含有化合物に由来する機能がより向上するからである。また、炭化ケイ素焼結体用分散体の製造において、水酸化アルミニウム被覆炭化ケイ素粒子と窒化ホウ素粒子とを水に分散させる場合、分散体中における凝集が生じ難くなり、高い分散性を有する分散体を得ることが可能となるからである。同様の観点から、維持時間は、30分以上であることが好ましく、50分以上であることがより好ましく、60分以上であることがさらに好ましい。また、本段階における維持時間は200分以下であることが好ましい。ある程度被覆が進むと被覆により得られる効果は一定となるため、維持時間がこの範囲であると、経済性および生産効率がより向上するからである。同様の観点から、維持時間は、150分以下であることが好ましく、120分以下であることがより好ましい。
 本段階におけるpHは、9.0以上12.0以下であることが好ましい。pHが9.0以上であれば、炭化ケイ素粒子の凝集が発生しにくく、均一な分散性を維持することが容易になる。pHが12.0以下であれば、水酸化アルミニウム粒子が多く形成してしまうことを防ぐことができるため好ましい。
 工程(B)を経ることで、水酸化アルミニウム被覆炭化ケイ素粒子および分散媒を含む分散体を得ることができる。すなわち、分散媒中に分散された状態として、水酸化アルミニウム被覆炭化ケイ素粒子を製造することができる。
 (その他の工程)
 水酸化アルミニウム被覆炭化ケイ素粒子の製造方法では、工程(A)および工程(B)以外の他の工程をさらに有していてもよく、工程(A)および工程(B)において、他の操作に係る段階をさらに有していてもよい。
 なお、被覆層の膜厚は、被覆による粒子の存在状態の変化のため直接測定することは困難である場合もありうるが、一般的に被覆層の膜厚が増加するほど、ゼータ電位の等電点のpHが大きくなる傾向がある。これより、被覆層の好ましい膜厚となっていることは、水酸化アルミニウム被覆炭化ケイ素粒子の好ましい等電点のpHの範囲内の値となっていることから判断することができる。
 また、被覆層が水酸化アルミニウムを含むことは、水酸化アルミニウム被覆炭化ケイ素粒子をSEM(Scanning Electron Microscope)-EDX(Energy Dispersive X-ray Spectroscopy)観察およびEELS(Electron Energy Loss Spectroscopy)分析することで確認することができる。
 <炭化ケイ素粒子の等電点>
 炭化ケイ素粒子(電荷制御した場合は、電荷制御した炭化ケイ素粒子)の等電点のpHは、特に制限されないが、4.5以上であることが好ましい。等電点のpHがこの範囲であると、分散媒を含む分散体において、炭化ケイ素粒子と窒化ホウ素粒子とを併用する場合であっても、分散媒中における凝集が生じ難く、良好な分散性が維持される。これより、炭化ケイ素粒子および他の粒子を媒体に分散させた際に、より高い分散性を有する分散体が得られる。同様の観点から、炭化ケイ素粒子の等電点のpHは、5以上であることがより好ましく、5.5以上であることがさらに好ましく、6以上であることが特に好ましい。また、炭化ケイ素粒子の等電点のpHは、特に制限されないが、同様の観点から、9以下であることが好ましい。これより、本発明の好ましい一形態に係る炭化ケイ素粒子の等電点のpHは、例えば、4.5以上9以下である。
 等電点のpHは、1.0刻みのpH、例えば、1.0刻みのpH3.0~10.0の範囲のpHのゼータ電位測定液を調製してデータ電位を測定し、ゼータ電位の符号が変化した前後のpHと、前後のpHにおけるゼータ電位から、以下の式により算出することができる。
Figure JPOXMLDOC01-appb-M000002
 ここで、pHは、株式会社堀場製作所製のpHメーター(型番:F-71)で測定することができる。また、ゼータ電位は、Malvern Instruments製のゼータ電位測定装置(商品名「Zetasizer nano ZSP」)で測定することができる。なお、測定方法の詳細は実施例に記載する。
 <炭化ケイ素焼結体用分散体中の炭化ケイ素粒子のゼータ電位>
 炭化ケイ素焼結体用分散体中の炭化ケイ素粒子(電荷制御した場合は、電荷制御した炭化ケイ素粒子)のゼータ電位は、窒化ホウ素粒子と同符号であれば特に制限されないが、分散性を向上させる観点から、絶対値が10mV以上であることが好ましく、+10mV以上であることがより好ましい。炭化ケイ素焼結体用分散体中の炭化ケイ素粒子のゼータ電位の上限値は特に制限されないが、実質的に、絶対値が50mV以下、例えば、+50mV以下である。
 <炭化ケイ素焼結体用分散体中の炭化ケイ素粒子の含有量>
 本発明に係る炭化ケイ素焼結体用分散体中の炭化ケイ素粒子(電荷制御した場合は、電荷制御した炭化ケイ素粒子)の含有量の下限は、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることがさらに好ましく、5質量%以上であることが最も好ましい。また、炭化ケイ素焼結体用分散体中の炭化ケイ素粒子の含有量の上限は、55質量%以下であることが好ましく、45質量%以下であることがより好ましく、35質量%以下であることがさらに好ましく、25質量%以下であることが最も好ましい。このような範囲であれば、分散体の安定性、取り扱い性が良好になる。また、高品質の炭化ケイ素焼結体が得られうる。
 <窒化ホウ素(BN)粒子>
 窒化ホウ素(BN)は硬質材料であることから、窒化ホウ素(BN)粒子を炭化ケイ素粒子と組み合わせることで、炭化ケイ素を含む焼結体の耐熱衝撃性、機械加工性の向上が期待される。
 窒化ホウ素の結晶構造としては、特に制限されず、六方晶窒化ホウ素および立方晶窒化ホウ素のいずれも採用されうるが、製造が容易であることから六方晶窒化ホウ素が好ましく用いられうる。
 窒化ホウ素粒子の平均一次粒子径は、特に制限されないが、9μm以下であることが好ましい。平均一次粒子径がこの範囲であると、より高い分散性を有する分散体が得られる。同様の観点から、炭化ケイ素粒子の平均一次粒子径は、7μm以下であることがより好ましく、6μm以下であることがさらに好ましい。また、窒化ホウ素粒子の平均一次粒子径は、特に制限されないが、10nm以上であることが好ましい。平均一次粒子径がこの範囲であると、窒化ホウ素粒子の機能をより向上させることができる。同様の観点から、窒化ホウ素粒子の平均一次粒子径は、50nm以上であることがより好ましく、100nm以上であることがさらに好ましい。ここで、窒化ホウ素粒子の平均一次粒子径の値は、BET法で3~5回連続で測定した値から算出した窒化ホウ素粒子の比表面積(SA)の平均値に基づき、窒化ホウ素粒子の真密度の値を使用し、窒化ホウ素粒子の形状が真球であると仮定して算出することができる。窒化ホウ素粒子の比表面積の測定は、例えば、マイクロメリテックス社製のFlow SorbII 2300を用いて行うことができる。
 窒化ホウ素粒子の平均二次粒子径は、20μm未満であることが好ましい。平均二次粒子径がこの範囲であると、より高い分散性を有する分散体が得られる。同様の観点から、窒化ホウ素粒子の平均二次粒子径は、19μm以下であることがより好ましく、18μm以下であることがさらに好ましく、15μm未満であることがよりさらに好ましく、10μm未満であることが特に好ましく、5μm未満であることが最も好ましい。また、窒化ホウ素粒子の平均二次粒子径は、0.3μm以上であることが好ましい。平均二次粒子径がこの範囲であると、被覆層での被覆による電荷制御を高効率で行うことができる。同様の観点から、窒化ホウ素粒子の平均二次粒子径は、0.5μm以上であることがより好ましく、1μm以上であることがさらに好ましい。ここで、窒化ホウ素粒子の平均二次粒子径の値は、株式会社堀場製作所製の散乱式粒子径分布測定装置LA-950により測定することができる。なお、測定方法の詳細は実施例に記載する。
 また、窒化ホウ素粒子は、市販品を用いてもよいし合成品を用いてもよい。市販品としては、特に制限されないが、例えば、株式会社MARUKA製AP-10S、AP-100S、AP-170S、昭和電工株式会社製UHP-1K等を用いることができる。
 窒化ホウ素粒子は、単独でもまたはこれらの複合物でもまたは2種以上混合して用いてもよい。
 <窒化ホウ素粒子を含む水分散体>
 窒化ホウ素粒子を含む水分散体の製造方法、すなわち窒化ホウ素粒子を水を含む分散媒に分散させる手順および方法は、特に制限されず、従来公知の手順および方法を用いることができる。
 窒化ホウ素粒子を含む水分散体の製造方法に使用される水は、不純物をできる限り含有しない水が好ましい。例えば、遷移金属イオンの合計含有量が100ppb以下である水が好ましい。ここで、水の純度は、例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって高めることができる。具体的には、水としては、例えば、脱イオン水(イオン交換水)、純水、超純水、蒸留水などを用いることが好ましい。
 また、後述する機能性高分子を吸着させた窒化ホウ素粒子の製造方法で得られた被覆窒化ホウ素粒子を含む水分散体を使用することができる。
 窒化ホウ素粒子を含む水分散体は、後述のとおり、水以外の分散媒を含むことができる。分散媒は、環境負荷を少なくするとの観点から、好ましくは水のみである。
 <窒化ホウ素粒子の電荷制御>
 窒化ホウ素粒子は、炭化ケイ素粒子と同符号の電荷(ゼータ電位)を有するものであれば、電荷制御されたものであっても、電荷制御されていないものであっても制限なく用いることができる。本発明の分散体においては、炭化ケイ素粒子と同符号の表面電荷とするために、または、炭化ケイ素粒子と同符号であっても炭化ケイ素粒子との反発をより大きくするために、窒化ホウ素粒子は電荷制御されているものを用いることが好ましい。窒化ホウ素粒子の電荷制御としては、特に制限されないが、窒化ホウ素粒子の表面に他成分の層を形成することで、表面電荷を調整する方法が挙げられる。
 具体的には、例えば、窒化ホウ素粒子の表面に表面電荷を調整する機能を有する機能性高分子を吸着させることで表面電荷を調整することができる。本発明の分散体においては、25℃でのpHが7.0以下の条件下で炭化ケイ素粒子とゼータ電位が同符号となるように調整することで分散性および安定性が向上することから、機能性高分子としてカチオン性高分子を吸着させることが好ましい。すなわち、本発明の分散体においては、窒化ホウ素粒子がカチオン性高分子により電荷制御されてなることが好ましい。
 カチオン性高分子としては、所定の分散媒中で正に帯電するものであれば特に制限されず、従来公知の高分子を用いることができる。例えば、ポリ(ジアリルジメチルアンモニウムクロライド)(PDDA)、ポリ(メタクリロイルオキシエチルトリメチルアンモニウムクロライド)、ポリ(アクリルアミド-コ-ジアリルジメチルアンモニウムクロライド)、ポリ(ジメチルアミン-コ-エピクロロヒドリン-コ-エチレンジアミン)、ポリエチレンイミン、エトキシル化ポリエチレンイミン、ポリ(アミドアミン)、ポリ(メタクリロイルオキシエチルジメチルアンモニウムクロライド)、ポリ(ビニルピロリドン)、ポリ(ビニルイミダゾール)、ポリ(ビニルピリジン)、ポリ(ビニルアミン)、ポリアリルアミン及びその4級化物、ポリアリルアミン塩酸塩(PAH)、ポリリジン、ポリアクリルアミド、ポリピロール、ポリアニリン、およびそれらを少なくとも1種以上を含む共重合体や塩の種類を変えたものなどを用いることができる。
 好ましくは、カチオン性高分子としては、ポリ(ジアリルジメチルアンモニウムクロライド)、ポリ(メタクリロイルオキシエチルトリメチルアンモニウムクロライド)、ポリ(アクリルアミド-コ-ジアリルジメチルアンモニウムクロライド)、ポリ(ジメチルアミン-コ-エピクロロヒドリン-コ-エチレンジアミン)、ポリエチレンイミン、エトキシル化ポリエチレンイミン、ポリ(アミドアミン)、ポリ(メタクリロイルオキシエチルジメチルアンモニウムクロライド)、ポリ(ビニルピロリドン)、ポリ(ビニルイミダゾール)、ポリ(ビニルピリジン)、またはポリ(ビニルアミン)が用いられる。
 カチオン性高分子の分子量としては特に制限されないが、例えば、重量平均分子量が20,000~200,000であることが好ましい。上記範囲であると、本発明の効果が特に顕著に得られうる。なお、本明細書において、「重量平均分子量」の値は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定した値を採用するものとする。
 (カチオン性高分子被覆窒化ホウ素粒子)
 本明細書において、カチオン性高分子被覆窒化ホウ素粒子とは、窒化ホウ素粒子と、窒化ホウ素粒子を被覆するカチオン性高分子を含む被覆層と、を有する被覆粒子である。ここで、カチオン性高分子被覆窒化ホウ素粒子とは、窒化ホウ素粒子の少なくとも一部がカチオン性高分子を含む被覆層によって被覆されている粒子であればよい。
 カチオン性高分子被覆窒化ホウ素粒子は、溶剤(好ましくは水)で洗浄した場合や、水中に分散された状態であっても、カチオン性高分子被覆窒化ホウ素粒子としての形態を維持することができることが好ましい。
 (カチオン性高分子被覆窒化ホウ素粒子の平均二次粒子径)
 カチオン性高分子被覆窒化ホウ素粒子の平均二次粒子径は、20μm以下であることが好ましい。この範囲であると、カチオン性高分子被覆窒化ホウ素粒子を分散媒である水に分散させた際に、分散性をより向上させることができる。平均二次粒子径が小さい粒子は、そもそも凝集の度合いが小さく、粒子径のバラツキも小さい。また、粒径が小さい粒子ほど凝集性が低くなる。したがって、平均二次粒子径が20μm以下であるカチオン性高分子被覆窒化ホウ素粒子を水に分散させれば、より高い分散性を有する分散体を得ることができる。同様の観点から、カチオン性高分子被覆窒化ホウ素粒子の平均二次粒子径は、15μm以下であることがより好ましく、10μm以下であることがさらに好ましく、5μm以下であることが特に好ましい。また、カチオン性高分子被覆窒化ホウ素粒子の平均二次粒子径は、特に制限されないが、0.3μm以上であることが好ましい。被覆層の平均膜厚は直接測定することは困難であるが非常に薄いと考えられることから、窒化ホウ素粒子の好ましい平均二次粒子径に対応したものである。同様の観点から、カチオン性高分子被覆窒化ホウ素粒子の平均二次粒子径は、0.3μm超であることがより好ましく、0.5μm以上であることがさらに好ましく、0.5μm超であることがよりさらに好ましく、1μm以上であることが特に好ましく、1μm超であることが最も好ましい。ここで、カチオン性高分子被覆窒化ホウ素粒子の平均二次粒子径の値は、測定の適正濃度となるようカチオン性高分子被覆窒化ホウ素粒子を分散媒に分散させた分散体において、株式会社堀場製作所製の散乱式粒子径分布測定装置LA-950により測定することができる。なお、測定方法の詳細は実施例に記載する。
 なお、電荷制御された窒化ホウ素粒子として、カチオン性高分子被覆窒化ホウ素粒子以外の、窒化ホウ素粒子の表面に他成分の層を形成した被覆粒子を用いる場合も、その平均二次粒子径は上記範囲であることが好ましい。
 (窒化ホウ素粒子の平均二次粒子径に対するカチオン性高分子被覆窒化ホウ素粒子の平均二次粒子径の比率)
 窒化ホウ素粒子(被覆前粒子)の平均二次粒子径に対する、カチオン性高分子被覆窒化ホウ素粒子(被覆後粒子)の平均二次粒子径の比率(以下、窒化ホウ素粒子に対する平均二次粒子径の比率とも称する)は、特に制限されないが、10以下であることが好ましい。この範囲であると、カチオン性高分子被覆窒化ホウ素粒子は、窒化ホウ素粒子の高い分散性を高度に維持したまま生成される。これより、カチオン性高分子被覆窒化ホウ素粒子を水に分散させた際に、より高い分散性を有する分散体が得られる。同様の観点から、窒化ホウ素粒子に対する平均二次粒子径の比率は、5以下であることがより好ましく、3以下であることがさらに好ましく、2以下であることがよりさらに好ましく、1.6以下であることがよりさらに好ましく、1.2以下であることが特に好ましい。また、窒化ホウ素粒子に対する平均二次粒子径の比率は、特に制限されないが、0.9以上であることが好ましい。
 なお、電荷制御された窒化ホウ素粒子として、カチオン性高分子被覆窒化ホウ素粒子以外の、窒化ホウ素粒子の表面に他成分の層を形成した被覆粒子を用いる場合も、窒化ホウ素粒子に対する平均二次粒子径の比率は上記範囲であることが好ましい。
 <機能性高分子を吸着させた窒化ホウ素粒子の製造方法>
 一実施形態において、機能性高分子を吸着させた窒化ホウ素粒子の製造方法は、窒化ホウ素粒子を含む原料分散体に機能性高分子を含む溶液を添加して、前記窒化ホウ素粒子の表面に前記機能性高分子を含む被覆層を有する被覆窒化ホウ素粒子を形成して、窒化ホウ素粒子を含む水分散体を調製する、窒化ホウ素粒子を含む水分散体の調製工程を有する。
 上述のとおり、本発明に係る分散体においては、25℃でのpHが7.0以下の条件下で炭化ケイ素粒子と窒化ホウ素粒子とが同符号の電荷(ゼータ電位)であることにより、分散性および安定性が向上する。よって、機能性高分子としてカチオン性高分子を窒化ホウ素粒子に吸着させることが好ましい。したがって、以下では、カチオン性高分子を吸着させた窒化ホウ素粒子の製造方法について、説明する。
 カチオン性高分子を吸着させた窒化ホウ素粒子(カチオン性高分子被覆窒化ホウ素粒子)は特に制限されないが、例えば、窒化ホウ素粒子および水を含む原料分散体(1)と、カチオン性高分子および水を含む原料溶液(2)と、をそれぞれ準備する工程(A)と、前記原料分散体(1)に、前記原料溶液(2)を添加して混合して、前記窒化ホウ素粒子の表面にカチオン性高分子を含む被覆層を有する被覆粒子を形成する工程(B)と、を有する方法が用いられる。
 ここで、製造されるカチオン性高分子被覆窒化ホウ素粒子は、水中に分散された状態で製造されてもよく、またはその後水を取り除く工程を経て製造されていてもよい。水中に分散された状態で製造されたカチオン性高分子被覆窒化ホウ素粒子は、後述の混合工程における窒化ホウ素粒子を含む水分散体として使用できる。
 (工程(A))
 工程(A)は、窒化ホウ素粒子および水を含む原料分散体(1)と、カチオン性高分子および水を含む原料溶液(2)と、をそれぞれ準備する工程である。
 窒化ホウ素粒子および水を含む原料分散体(1)の調製方法としては、特に限定されない。市販品を用いてもよいし、合成品でもよい。窒化ホウ素粒子および水を含む原料分散体(1)を合成(調製)する場合は、特に制限されず、公知の装置および公知の方法を用いることができる。
 原料分散体(1)中の窒化ホウ素粒子の含有量は、特に制限されないが、生産性の観点から、原料分散体(1)の総質量に対して、8質量%以上であることが好ましく、10質量%以上であることがより好ましい。また、分散性の観点から、原料分散体(1)の総質量に対して、50質量%以下であることが好ましく、30質量%以下であることがより好ましい。
 ここで、窒化ホウ素粒子は、特に制限されないが、その生成から、工程(A)で原料分散体(1)が準備されるまで、炭化ケイ素粒子が分散媒中に分散された状態を維持することが好ましい。そして、その生成から、後述する工程(B)において被覆層で被覆されるまで、窒化ホウ素粒子が分散媒中に分散された状態を維持することがより好ましい。窒化ホウ素粒子の生成から被覆層で被覆されるまでの間、分散体中に分散された状態を維持することで、窒化ホウ素粒子は、乾燥による凝集を回避することができる。これより、窒化ホウ素粒子は、生成された時点での高いレベルの分散性がカチオン性高分子被覆窒化ホウ素粒子の状態でも維持されることとなる。このため、製造されるカチオン性高分子被覆窒化ホウ素粒子を水に分散させた際に、極めて高い分散性を有する分散体を得ることができる。
 原料分散体(1)は、分散媒として水を含むことが好ましい。水は、不純物をできる限り含有しない水が好ましい。例えば、遷移金属イオンの合計含有量が100ppb以下である水が好ましい。ここで、水の純度は、例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって高めることができる。具体的には、水としては、例えば、脱イオン水(イオン交換水)、純水、超純水、蒸留水などを用いることが好ましい。
 水に、窒化ホウ素粒子を分散させる手順、方法は、特に制限されず、公知の手順、方法を用いることができる。
 原料分散体(1)は、水以外の分散媒を含んでいてもよい。水以外の分散媒は、各成分の分散または溶解のために、水と有機溶媒との混合溶媒であってもよい。この場合、用いられる有機溶媒としては、例えば、水と混和する有機溶媒であるアセトン、アセトニトリル、エタノール、メタノール、イソプロパノール、グリセリン、エチレングリコール、プロピレングリコール等が好ましい例として挙げられる。また、有機溶媒を水と混合せずに用いて、各成分を分散または溶解した後に、水と混合してもよい。これら有機溶媒は、単独でもまたは2種以上組み合わせても用いることができる。
 ここで、原料分散体(1)中の水の含有量は、カチオン性高分子による窒化ホウ素粒子の被覆をより良好に進行させるとの観点から、原料分散媒(1)の総質量に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
 本工程で得られる原料分散体(1)は、特に制限されないが、静電凝集の抑制の観点から、pHが5.0以上であることが好ましい。
 原料溶液(2)の調製方法としては、特に限定されないが、例えば、水にカチオン性高分子を添加する方法等が挙げられる。原料溶液(2)におけるカチオン性高分子の含有量は、特に制限されないが、原料溶液(2)の総質量に対して、10質量%以上50質量%以下であることが好ましく、20質量%以上40質量%以下であることがより好ましい。
 (工程(B))
 工程(B)は、工程(A)で準備された原料分散体(1)に、前記原料溶液(2)と酸とを添加して、前記窒化ホウ素粒子の表面にカチオン性高分子を含む被覆層を有する被覆粒子を形成する工程である。工程(B)では、カチオン性高分子が窒化ホウ素粒子の表面に吸着した、カチオン性高分子被覆窒化ホウ素粒子が製造される。
 原料分散体(1)に原料溶液(2)を添加する方法は、特に制限されず、例えば、原料溶液(2)を一度に添加してもよく、原料溶液(2)を少しずつ添加してもよい。
 原料溶液(2)の添加量は、特に制限されないが、窒化ホウ素粒子100質量部に対して、カチオン性高分子が0.1質量部以上になるように原料溶液(2)を添加することが好ましく、0.5質量部以上であることがより好ましく、1質量部以上であることがさらに好ましい。原料溶液(2)の添加量がこの範囲であると、窒化ホウ素粒子をカチオン性高分子で十分に被覆することができ、所望のゼータ電位が得られるように電荷制御することができるからである。また、原料溶液(2)の添加量は、特に制限されないが、窒化ホウ素粒子100質量部に対して、カチオン性高分子が80質量部以下になるように原料溶液(2)を添加することが好ましく、40質量部以下であることがより好ましく、10質量部以下であることがさらに好ましい。ある程度被覆が進むと被覆による得られる効果は一定となるため、原料溶液(2)の添加量を所定量以下とすることで、経済性および生産効率が向上するからである。
 本段階において、原料分散体(1)に原料溶液(2)を添加し、撹拌して反応を進行させることが好ましい。反応時間は特に制限されないが、1分以上であることが好ましい。反応時間がこの範囲であると、窒化ホウ素粒子をカチオン性高分子でより十分に被覆することができ、所望のゼータ電位が得られるように電荷制御することができるからである。また、炭化ケイ素焼結体用分散体の製造において、炭化ケイ素粒子とカチオン性高分子被覆窒化ホウ素粒子とを水に分散させる場合、分散体中における凝集が生じ難くなり、高い分散性を有する分散体を得ることが可能となるからである。同様の観点から、反応時間は、30分以上であることが好ましく、50分以上であることがより好ましく、60分以上であることがさらに好ましい。また、本段階における反応時間は200分以下であることが好ましい。ある程度被覆が進むと被覆により得られる効果は一定となるため、反応時間がこの範囲であると、経済性および生産効率がより向上するからである。同様の観点から、反応時間は、150分以下であることが好ましく、120分以下であることがより好ましく、90分以下であることがさらに好ましい。
 本段階におけるpHは、特に制限されないが、機能性高分子との静電反発抑制の観点から、pHが5.0~11.0であることが好ましい。
 工程(B)を経ることで、カチオン性高分子被覆窒化ホウ素粒子および分散媒を含む分散体を得ることができる。すなわち、分散媒中に分散された状態として、カチオン性高分子被覆窒化ホウ素粒子を製造することができる。
 (その他の工程)
 カチオン性高分子被覆窒化ホウ素粒子の製造方法では、工程(A)および工程(B)以外の他の工程をさらに有していてもよく、工程(A)および工程(B)において、他の操作に係る段階をさらに有していてもよい。
 なお、窒化ホウ素粒子がカチオン性高分子で被覆されていることは、カチオン性高分子被覆窒化ホウ素粒子のゼータ電位を測定することで確認することができる。
 <窒化ホウ素粒子の等電点>
 窒化ホウ素粒子(電荷制御した場合は、電荷制御した窒化ホウ素粒子)は、炭化ケイ素粒子と同符号の電荷を有するものであれば特に制限されないが、等電点のpHが5以上であることが好ましい。このようにすることで、炭化ケイ素粒子および窒化ホウ素粒子を含む炭化ケイ素焼結体用分散体において、凝集が生じ難く、良好な分散性が維持される。これより、高い分散性を有する分散体とすることができる。同様の観点から、窒化ホウ素粒子は、等電点のpHが5以上11以下であることがより好ましい。
 ここで、窒化ホウ素粒子の等電点のpHと、炭化ケイ素粒子の等電点のpHとの差の絶対値は、小さいほど好ましいが、2以下であることが好ましく、1.5以下であることがより好ましく、1以下であることがさらに好ましい(下限0)。等電点のpHが近い粒子同士は凝集が生じ難いからである。
 <炭化ケイ素焼結体用分散体中の窒化ホウ素粒子のゼータ電位>
 炭化ケイ素焼結体用分散体中の窒化ホウ素粒子(電荷制御した場合は、電荷制御した窒化ホウ素粒子)のゼータ電位は、炭化ケイ素粒子と同符号であれば特に制限されないが、分散性を向上させる観点から、絶対値が10mV以上であることが好ましく、+10mV以上であることがより好ましい。炭化ケイ素焼結体用分散体中の窒化ホウ素粒子のゼータ電位の上限値は特に制限されないが、実質的に、絶対値が50mV以下、例えば、+50mV以下である。
 <炭化ケイ素焼結体用分散体中の窒化ホウ素粒子の含有量>
 本発明に係る炭化ケイ素焼結体用分散体中の窒化ホウ素粒子(電荷制御した場合は、電荷制御した窒化ホウ素粒子)の含有量の下限は、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましく、1質量%以上であることが最も好ましい。また、炭化ケイ素焼結体用分散体中の窒化ホウ素粒子の含有量の上限は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましく、20質量%以下であることが最も好ましい。このような範囲であれば、分散体の安定性、取り扱い性が良好になる。また、高品質の炭化ケイ素焼結体が得られうる。
 (水酸基を有する樹脂)
 水酸基を有する樹脂としては、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、グリオキザール樹脂、アクリル樹脂、フェノール樹脂、水酸基含有ポリビニルピロリドン(PVP)、水酸基含有ポリエステル、水酸基含有シリコーン、または水酸基含有ポリカルボン酸が好ましく用いられるが、これらに制限されない。特には、取り扱い易さと粘度調整の容易さの観点から、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)が好ましい。本発明に係る分散体は、水酸基を有する樹脂を用いることで、pH7.0以下の条件下で、優れた分散性、高い経時安定性を得ることができる。
 水酸基を有する樹脂の分子量としては特に制限されないが、取り扱い易さと粘度調整の容易さの観点から、重量平均分子量が500~500000であることが好ましい。上記範囲であると、本発明の効果が特に顕著に得られうる。なお、本明細書において、「重量平均分子量」の値は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定した値を採用するものとする。
 炭化ケイ素焼結体用分散体中の水酸基を有する樹脂の含有量の下限は特に制限されないが、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。また、炭化ケイ素焼結体用分散体中の水酸基を有する樹脂の含有量の上限は、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。このような範囲であれば、分散体の安定性、取り扱い性が良好になる。また、高品質の炭化ケイ素焼結体が得られうる。
 なお、本明細書において、水酸基を有する樹脂は、窒化ホウ素粒子の電荷制御に用いられるカチオン性高分子とは異なるものとして取り扱う。
 (水酸基を有する樹脂を含む水溶液)
 水酸基を有する樹脂を含む水溶液の製造方法は、すなわち水酸基を有する樹脂を水を含む溶媒に溶解させる手順および方法は、特に制限されず、従来公知の手順および方法を用いることができる。
 水酸基を有する樹脂を含む水溶液の製造方法に使用される水は、不純物をできる限り含有しない水が好ましい。例えば、遷移金属イオンの合計含有量が100ppb以下である水が好ましい。ここで、水の純度は、例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって高めることができる。具体的には、水としては、例えば、脱イオン水(イオン交換水)、純水、超純水、蒸留水などを用いることが好ましい。
 (分散媒/溶媒)
 上述の炭化ケイ素粒子を含む水分散体、窒化ホウ素粒子を含む水分散体、および水酸基を有する樹脂を含む水溶液は、分散媒または溶媒として水を含む。分散媒または溶媒は、各成分を分散または溶解させる機能を有する。分散媒または溶媒は、水のみであることが好ましい。また、分散媒または溶媒は、各成分の分散または溶解のために、有機溶媒をさらに含んでもよい。この場合、用いられる有機溶媒としては、水と混和する有機溶媒であるアセトン、アセトニトリル、エタノール、メタノール、イソプロパノール、グリセリン、エチレングリコール、プロピレングリコール等が好ましい例として挙げられる。分散媒または溶媒は、水と有機溶媒との混合物であってもよい。また、有機溶媒を水と混合せずに用いて、各成分を分散または溶解した後に、水と混合してもよい。これら有機溶媒は、単独でもまたは2種以上組み合わせても用いることができる。
 水は、不純物をできる限り含有しない水が好ましい。例えば、遷移金属イオンの合計含有量が100ppb以下である水が好ましい。ここで、水の純度は、例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって高めることができる。具体的には、水としては、例えば、脱イオン水(イオン交換水)、純水、超純水、蒸留水などを用いることが好ましい。
 <他の成分>
 本発明の一形態に係る分散体、および本発明の製造方法によって製造される分散体は、本発明の効果を損なわない限り、他の成分を含んでいてもよい。他の成分としては、特に制限されないが、消泡剤、可塑剤などを用いることができる。
 (可塑剤)
 可塑剤としては、特に制限されないが、ポリエチレングリコール、グリセリン等の水溶性可塑剤、あるいは、水に不溶でエマルジョンに移行するタイプの可塑剤として、フタル酸ジブチルのようなフタル酸エステル系可塑剤等が用いられうる。
 炭化ケイ素焼結体用分散体中の可塑剤の含有量は特に制限されないが、可塑剤の含有量の下限は、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。また、炭化ケイ素焼結体用分散体中の可塑剤の含有量の上限は、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。このような範囲であれば、分散体の安定性、取り扱い性が良好になる。また、高品質の炭化ケイ素焼結体が得られうる。
 (消泡剤)
 消泡剤としては、特に制限されないが、シリコーン系消泡剤、脂肪酸、高級アルコール、ポリアルキレン誘導体、ポリエーテル誘導体などが用いられうる。
 炭化ケイ素焼結体用分散体中の消泡剤の含有量は特に制限されないが、消泡剤の含有量の下限は、0.005質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.05質量%以上であることがさらに好ましい。また、炭化ケイ素焼結体用分散体中の消泡剤の含有量の上限は、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。このような範囲であれば、分散体の安定性、取り扱い性が良好になる。また、高品質の炭化ケイ素焼結体が得られうる。
 (pH)
 本発明の一形態に係る分散体のpHは、25℃でのpHが7.0以下であれば特に制限されないが、高い分散性を有するとの観点から、2.0~7.0の範囲であることが好ましい。
 上記のpHを達成するためのpH調整剤としては、特に制限されず、所望のpHを達成することができる公知のpH調整剤を適宜用いることができる。例えば、公知の酸、塩基、塩、アミン、キレート剤等を用いることが好ましい。
 (粘度)
 本発明の一形態に係る分散体の粘度は、特に制限されないが、分散性および安定性を高める観点から、分散体の作製直後の25℃での粘度が、0.5~100Pa・sであることが好ましく、1~50Pa・sであることがより好ましい。また、分散体の粘度は、時間の経過とともに変動しないことが好ましい。具体的には、25℃で7日間で保存後の粘度は、分散体の作製直後の粘度に対し±20%以内に収まっていることが好ましく、±10%以内であることがより好ましい。なお、分散体の粘度は、後述の実施例に記載の方法で測定することができる。
 (炭化ケイ素焼結体用分散体の製造方法) 
 <混合工程>
 本発明の製造方法は、炭化ケイ素粒子を含む水分散体と、窒化ホウ素粒子を含む水分散体と、水酸基を有する樹脂を含む水溶液と、を混合する混合工程を有する。
 好ましい実施形態では、本発明の製造方法は、前記混合工程の前に、炭化ケイ素粒子を含む原料分散体に電荷制御剤および酸を添加して、pHを9.0以上12.0以下の範囲とすることにより、前記炭化ケイ素粒子の表面に電荷制御成分を含む被覆層を有する被覆炭化ケイ素粒子を形成して、炭化ケイ素粒子を含む水分散体を調製する、炭化ケイ素粒子を含む水分散体の調製工程;および窒化ホウ素粒子を含む原料分散体に機能性高分子を含む溶液を添加して、前記窒化ホウ素粒子の表面に前記機能性高分子を含む被覆層を有する被覆窒化ホウ素粒子を形成して、窒化ホウ素粒子を含む水分散体を調製する、窒化ホウ素粒子を含む水分散体の調製工程の少なくとも一方をさらに有する。
 炭化ケイ素粒子を含む水分散体と、窒化ホウ素粒子を含む水分散体と、水酸基を有する樹脂を含む水溶液と、を混合する方法は特に制限されないが、例えば、炭化ケイ素粒子を含む水分散体(1液)、炭化ケイ素粒子と同符号の電荷を有する窒化ホウ素粒子を含む水分散体(2液)、および水酸基を有する樹脂の水溶液(3液)をそれぞれ準備する工程(1)と、上記1液と上記2液とを混練する工程(2)と、工程(2)で得られた混合液に上記3液を加えてさらに混練する工程(3)を含むことが好ましい。水酸基を有する樹脂を含む水溶液である3液は、通常、1液および2液よりも粘度が高いため、あらかじめ1液および2液を混練して、その後3液を添加すると炭化ケイ素粒子および窒化ホウ素粒子の分散性がより向上するため好ましい。
 (工程(1))
 (工程(1))では、炭化ケイ素粒子を含む水分散体(1液)、炭化ケイ素粒子と同符号の電荷を有する窒化ホウ素粒子を含む水分散体(2液)、および水酸基を有する樹脂の水溶液(3液)をそれぞれ準備する。
 炭化ケイ素粒子を含む水分散体(1液)の調製方法としては、特に限定されない。炭化ケイ素粒子を含む水分散体は市販品を用いてもよいし、合成品を用いてもよい。上記の<電荷制御成分を含む被覆層を有する被覆炭化ケイ素粒子の製造方法>に記載した方法で得られたものを用いて調製してもよい。このとき、最終的な分散体のpHが7.0以下の所望の値となるように、水分散体(1液)のpHを調整することが好ましい。例えば、上記方法により炭化ケイ素粒子に被覆層を形成した後の水分散体のpHを酸またはアルカリを用いて所望のpHに調整することができる。また、必要に応じて、水を添加する、または濃縮する、などの方法で、1液中の炭化ケイ素粒子の濃度が40~60質量%となるように調整することが好ましい。
 窒化ホウ素粒子を含む水分散体(2液)の調製方法としては、特に限定されない。窒化ホウ素粒子を含む水分散体は市販品を用いてもよいし、合成品を用いてもよい。上記の<機能性高分子を吸着させた窒化ホウ素粒子の製造方法>に記載した方法で得られたものを用いて調製してもよい。このとき、最終的な分散体のpHが7.0以下の所望の値となるように、水分散体(2液)のpHを調整することが好ましい。例えば、上記方法により窒化ホウ素粒子に機能性高分子を吸着させた後の水分散体のpHを酸またはアルカリを用いて所望のpHに調整することができる。また、必要に応じて、水を添加する、または濃縮する、などの方法で、2液中の窒化ホウ素粒子の濃度が8~50質量%となるように調整することが好ましい。
 水酸基を有する樹脂の水溶液(3液)の調製方法も特に制限されない。このとき、最終的な分散体のpHが7.0以下の所望の値となるように、水溶液(3液)のpHを調整することが好ましい。3液中の水酸基を有する樹脂の濃度は特に制限されないが、例えば、5~40質量%となるように調整することが好ましい。
 1液、2液、および3液の調製の際に使用される分散媒/溶媒としての水や、pHを調整するために用いられる酸の具体的な形態は上記と同様である。
 (工程(2))
 工程(2)では、上記で準備した1液と2液とを混練する。1液と2液とを混練する方法は特に制限されない。このとき、必要に応じて、可塑剤、消泡剤などの他の成分をさらに添加して混合してもよい。
 混練手段については特に制限されず、例えば、自公転式撹拌機、プラネタリーミキサー等の従来公知の混練撹拌機が用いられうる。混練時間は、例えば、5~30分間程度である。このとき、混練時の気泡発生の抑制の観点から、真空下で混練を行うことが好ましい。
 (工程(3))
 工程(3)では、工程(2)で得られた混合液に上記で準備した3液を加えてさらに混練する。
 3液を添加して混合する方法は特に制限されない。また、混練する方法も特に制限されず、例えば、自公転式撹拌機、プラネタリーミキサー等の従来公知の混練撹拌機が用いられうる。混練時間は、例えば、5~60分間程度である。このとき、混練時の気泡発生の抑制の観点から、真空下で混練を行うことが好ましい。
 (炭化ケイ素焼結体用グリーンシート)
 本発明の一実施形態は、上記の炭化ケイ素焼結体用分散体を用いて形成される、炭化ケイ素焼結体用グリーンシートに関する。また、本発明の他の一実施形態は、上記炭化ケイ素焼結体用分散体の製造方法により炭化ケイ素焼結体用分散体を得、当該炭化ケイ素焼結体用分散体を基材に塗布する工程を有する、炭化ケイ素焼結体用グリーンシートの製造方法に関する。本発明に係る炭化ケイ素焼結体用分散体、および本発明の製造方法により得られた炭化ケイ素焼結体用分散体は炭化ケイ素粒子および窒化ホウ素粒子の分散性に優れ、安定性が高い。そのため、これを用いたグリーンシートは、炭化ケイ素粒子および窒化ホウ素粒子が高密度で均一に存在し、樹脂の分離が生じにくく、空隙が少ない。そのため、高強度の炭化ケイ素焼結体を製造することができる。
 グリーンシートの作製方法は特に制限されず、例えば、基材上に、上記の炭化ケイ素焼結体用分散体を塗布してシートを形成する方法が用いられうる。
 基材としては、特に制限されないが、例えば、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等)、ポリ塩化ビニルなどの樹脂フィルムが好ましく用いられる。
 基材の厚さは特に制限されないが、例えば、10~300μmであり、好ましくは20~150μmである。
 炭化ケイ素焼結体用分散体の塗布方法としては、特に制限されず、任意の公知の方法が使用でき、例えば、バーコート法、ダイコーター法、コンマコーティング法、グラビアロールコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法、転写法等が用いられる。
 炭化ケイ素焼結体用分散体を塗布して得られた層の厚さは特に制限されないが、生産性とひび割れ抑制の観点から、100~2000μmであることが好ましい。
 (炭化ケイ素焼結体用プリプレグ材)
 本発明の一実施形態は、上記の炭化ケイ素焼結体用グリーンシートから形成される、炭化ケイ素焼結体用プリプレグ材である。本発明の他の一実施形態は、上記炭化ケイ素焼結体用グリーンシートの製造方法により炭化ケイ素焼結体用グリーンシートを得、当該炭化ケイ素焼結体用グリーンシートを繊維基材に積層する工程を有する、炭化ケイ素焼結体用プリプレグ材の製造方法に関する。
 プリプレグ材とは、ガラスクロス、炭化ケイ素繊維、炭素繊維等の繊維基材に樹脂を含んだ分散体を含浸させ、乾燥させることで作製した半硬化状態の複合材料のことである。
 一般的な作製方法は、分散体を繊維基材に含浸させ、乾燥工程で溶媒を蒸発させて除去することにより、プリプレグ材を製造する。含浸は、浸漬や塗布等によって行われ、必要に応じて複数回繰り返すことも可能である。
 または、繊維基材にシート状にしたグリーンシートを積層することでプリプレグ材を製造することができる。また、この方法と、上記の分散体を繊維基材に含浸させる方法とを組み合わせることでもプリプレグ材を製造することができる。
 本実施形態のプリプレグ材は、焼結して炭化ケイ素焼結体とすることができ、炭化ケイ素繊維強化炭化ケイ素複合材料(炭化ケイ素/炭化ケイ素複合材料)として使用できる。上記炭化ケイ素/炭化ケイ素複合材料は、軽量、高耐熱性、高硬度、高破壊靭性などの優れた物性を有するものであり、耐熱性・耐環境性材料としての利用が図られる。
 本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。また、下記実施例および比較例において、特記しない限り、操作は室温(25℃)/相対湿度40~50%RHの条件下で行った。
 [実施例1]
 [炭化ケイ素(SiC)粒子の水分散体(1液)の調製]
 炭化ケイ素粒子(GC#40000、平均二次粒子径0.36μm、株式会社フジミインコーポレーテッド製、粉体)の20質量%水分散液を準備し、1M NaOH水溶液をpH10.0となるように添加した。次いでアルミン酸ナトリウムの30質量%水分散液を準備し、炭化ケイ素粒子100質量部に対してアルミン酸ナトリウムが50質量部となる量の前記アルミン酸ナトリウム水分散液と、9.9質量%硝酸とをpHが9.0~11.0を保持するように撹拌しながら45分間かけて添加した。その後さらに45分撹拌した後にpH10.5となるよう9.9質量%硝酸を添加し、水酸化アルミニウムで被覆した炭化ケイ素粒子を含む水分散液を調製した。その後、pH3.0となるように9.9質量%硝酸を添加し、吸引ろ過で濃縮することで、水酸化アルミニウム被覆炭化ケイ素粒子の濃度が50質量%の水分散体(1液)を得た。
 [窒化ホウ素(BN)粒子の水分散体(2液)の調製]
 平均二次粒子径3.07μmの窒化ホウ素粒子の20質量%の水分散液に35質量%のポリ(ジアリルジメチルアンモニウムクロライド)(PDDA、シグマアルドリッチジャパン合同会社製)水溶液を窒化ホウ素粒子100質量部に対しPDDAが2.0質量部となるように添加し、PDDAで被覆した窒化ホウ素粒子を含む分散液を調製した。その後pH3.0になるよう9.9質量%硝酸を添加した。このようにして2液を得た。
 なお、窒化ホウ素粒子のPDDA添加によるゼータ電位の変化を観察することで、PDDAによる被覆が進行していることを確認した。
 [水酸基を有する樹脂の水溶液(3液)の調製]
 20質量%PVB(ポリビニルブチラール、製品名KW-1、積水マテリアルソリューションズ株式会社製)水溶液に対して、pH3.0になるよう9.9質量%硝酸を添加した。このようにして3液を得た。
 [分散体の調製]
 上記で得た1液に2液と可塑剤であるグリセリン(和光純薬工業株式会社製)とを添加し、真空下で15分混練した(ハイビスミックス2P-03型、プライミクス株式会社製使用)。その後、3液を投入し真空下で30分混練して、実施例1の分散体を得た。最終的に得られた分散体の混合質量比は炭化ケイ素粒子:窒化ホウ素粒子:樹脂:可塑剤:水が3:2:3:1:25である。得られた分散体のpHを、株式会社堀場製作所製のpHメーター(型番:F-71)にて測定した。
 [実施例2]
 実施例1において、1液、2液、および3液がそれぞれpH5.0となるように調整した以外は同様にして実施例2の分散体を調製した。
 [実施例3]
 実施例1において、1液、2液、および3液がそれぞれpH7.0となるように調整した以外は同様にして実施例3の分散体を調製した。
 [実施例4]
 実施例1において、1液、2液、および3液の調製における9.9質量%硝酸をそれぞれ9.9質量%塩酸に変更した以外は同様にして実施例4の分散体を調製した。
 [実施例5]
 実施例2において、3液における20質量%PVB水溶液をPVA(ポリビニルアルコール、製品名:PVA-124、株式会社クラレ製)が16質量%となるように希釈した水溶液に変更した以外は同様にして実施例5の分散体を調製した。
 [比較例1]
 実施例2において、炭化ケイ素粒子(GC#40000、平均二次粒子径0.36μm、株式会社フジミインコーポレーテッド製、粉体)の20質量%水分散液を吸引ろ過で濃縮して得た50質量%の水分散体を1液としたこと、20質量%の窒化ホウ素粒子の水分散液を2液としたこと以外は、実施例2と同様にして比較例1の分散体を調製した。
 [比較例2]
 比較例1において、1液、2液、および3液をそれぞれpH9.0となるように調整したこと以外は同様にして比較例2の分散体を調製した。
 [比較例3]
 実施例3において、20質量%の窒化ホウ素粒子の水分散液を2液としたこと以外は同様にして比較例3の分散体を調製した。
 [比較例4]
 実施例3において、炭化ケイ素粒子(GC#40000、平均二次粒子径0.36μm、株式会社フジミインコーポレーテッド製、粉体)の20質量%水分散液を吸引ろ過で濃縮して得た50質量%の水分散体を1液としたこと以外は同様にして比較例4の分散体を調製した。
 [比較例5]
 実施例1において、1液、2液、および3液をそれぞれpH10.0となるように調整したこと以外は同様にして比較例5の分散体を調製した。
 なお、各実施例、比較例において、水分散体(1液、2液、および3液)を酸性側に調整する場合は9.9質量%硝酸(ただし、実施例4では9.9質量%塩酸)、アルカリ性側に調整する場合は1M NaOH水溶液を使用した。
 (組成および構造分析)
 各実施例、比較例で用いた炭化ケイ素粒子の水分散体(1液)を約2mL採取し、フィルタ(ニュークリポア 5μm)(WHATMAN社製)上に滴下した。続いて、吸引濾過を行い、その後、純水10mLを用いてフィルタ上で粉体を洗浄し、炭化ケイ素粒子を乾燥させた。そして、乾燥後の炭化ケイ素粒子をSiウエーハ上に採取して、株式会社日立ハイテクノロジーズ製走査型電子顕微鏡SU-8000を用いて、SEM(Scanning Electron Microscope)-EDX(Energy Dispersive X-ray Spectroscopy)観察を行った。
 また、乾燥後の炭化ケイ素粒子をカーボンテープ上に採取して、FEI社製TITAN80-300を用いて、EELS(Electron Energy Loss Spectroscopy)分析を行った。
 ここで、炭化ケイ素粒子のSEM-EDX観察において、観察対象の元素としてC、Al、Oを選択して、AlのEDXスペクトルが観察され、かつ、C、AlおよびOのEDXスペクトルが観察される位置と、SEM観察像における粒子が観察される位置とが明確に対応することが確認される場合、炭化ケイ素粒子がAlおよびOを含む成分によって被覆されていると判断した。
 また、炭化ケイ素粒子のEELS分析において、観察されたEELSスペクトルが、水酸化アルミニウム(Al(OH))のEELS標準スペクトルに特有のスペクトル形状(Alや他のAlおよびOを含む化合物のスペクトルとは異なる形状)を有することが確認される場合、AlおよびOを含む成分がAl(OH)を含むと判断することができる。
 上記の分析を行った結果、実施例1~5、比較例3、比較例5で用いた炭化ケイ素粒子は、いずれも、被覆層としてAl(OH)を有することが確認された。
 (ゼータ電位測定)
 各実施例、比較例で用いた炭化ケイ素粒子の水分散体(1液)、および窒化ホウ素粒子の水分散体(2液)をそれぞれ、純水で希釈し、pH調整剤として0.01~0.1MのNaOHおよびHClを用いて、任意のpHのゼータ電位測定液を調製した。すなわち、各実施例、比較例において、1液、2液、および3液を混合して最終的に得られる分散体のpHとなるようにゼータ電位測定液のpHを調整した。ここで、pHは、株式会社堀場製作所製のpHメーター(型番:F-71)を用いて、25℃で測定した。
 ゼータ電位は、Malvern Instruments社製のゼータ電位測定装置(商品名「Zetasizer nano ZSP」)で測定した。ここで、ゼータ電位は、測定粒子条件として一般的なアルミナの代表値である屈折率1.760、吸収率0.300を使用し、窒化ホウ素の代表値として屈折率2.170、吸収率0.720、炭化ケイ素の代表値として屈折率2.650、吸収率0.900を使用して測定を行った。
 下記表2に炭化ケイ素粒子および窒化ホウ素粒子のゼータ電位を示す。炭化ケイ素粒子と窒化ホウ素粒子のゼータ電位が同符号であれば、良好な分散性が得られる。なお、表2中の粒子の分散性の判断基準は以下の通りである。
 ○:炭化ケイ素粒子と窒化ホウ素粒子のゼータ電位が同符号である、
 ×:炭化ケイ素粒子と窒化ホウ素粒子のゼータ電位が異符号である。
 また、炭化ケイ素粒子および窒化ホウ素粒子の等電点となるpH(等電点のpH)は、ゼータ電位測定液として、pH3.0~10.0まで1.0刻みのpHの試料を準備して、上記のpH3.0~10.0まで1.0刻みのpHのゼータ電位測定液のpHを測定し、ゼータ電位の符号が変化した前後のpHと、前後のpHにおけるゼータ電位から上記説明した式により算出した。
 各実施例、比較例で用いた炭化ケイ素粒子の等電点となるpHの値は、電荷制御していない炭化ケイ素粒子では5.0であり、水酸化アルミニウムで被覆した炭化ケイ素粒子では8.6であった。また、窒化ホウ素粒子の等電点となるpHは、電荷制御していない窒化ホウ素粒子では4.6であり、PDDAで被覆した窒化ホウ素粒子では8.0であった。
 (平均二次粒子径)
 炭化ケイ素粒子の平均二次粒子径は、株式会社堀場製作所製の散乱式粒子径分布測定装置LA-950により測定した。炭化ケイ素粒子については、各実施例、比較例で用いた炭化ケイ素粒子の水分散体(1液)を希釈して得られた炭化ケイ素粒子10質量%水分散体を用いて測定を行った。水酸化アルミニウムで被覆した炭化ケイ素粒子の平均二次粒子径は、0.42μmであった。
 窒化ホウ素粒子についても、各実施例、比較例で用いた窒化ホウ素粒子の水分散体(2液)を希釈して得られた窒化ホウ素粒子10質量%水分散体を用いて測定を行った。
 PDDAで被覆した窒化ホウ素粒子の平均二次粒子径は、3.06μmであった。
 (分散体の粘度の評価)
 各実施例、比較例で得られた分散体の粘度は、分散体を軽く手攪拌した後、東機産業株式会社製のTVB10H型粘度計にて1.0rpm条件下で測定した。また測定時の環境温度は25℃とした。分散体の作製直後および25℃で7日間で保存後の粘度を測定した。経時安定性の基準として、7日後の粘度が分散体調製直後の粘度に対し±20%以内に収まっていれば実用可能とする。
 ○:7日後の粘度が分散体調製直後の粘度に対し±20%以内である、
 ×:7日後の粘度が分散体調製直後の粘度に対し±20%を超える。
 結果を下記表1、2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2の結果から、実施例1~5で作製した分散体は、分散性が良好であることが確認された。また、粘度の安定性が良好であった。一方、炭化ケイ素粒子と窒化ホウ素粒子とが異符号の電荷を有する比較例1、3、4の分散体では、十分な分散性が得られないことが確認された。また、分散体のpHが7.0を超える比較例2、5の分散体では、分散体の粘度の安定性が不十分であった。
 (グリーンシートの作製)
 [実施例6]
 実施例2の分散体を用い、1000μmギャップのアプリケーターを用いて、PETフィルム(厚さ:100μm)上にシート成形を行いグリーンシートを得た。
 [比較例6]
 上記の実施例6において、実施例2の分散体を比較例5の分散体に変更したことを除いては、同様の手順で、グリーンシートを作製した。
 [実施例7]
 炭化ケイ素繊維織布に実施例6で作製したグリーンシートを積層することでプリプレグ材を得た。
 なお、本出願は、2018年3月30日に出願された日本特許出願第2018-069109号および2018年3月30日に出願された日本特許出願第2018-069128号に基づいており、その開示内容は、参照により全体として引用されている。
 

Claims (18)

  1.  炭化ケイ素粒子と、
     窒化ホウ素粒子と、
     水酸基を有する樹脂と、
     水と、
    を含み、
     25℃でのpHが7.0以下であり、前記炭化ケイ素粒子と前記窒化ホウ素粒子とが同符号の電荷を有する、炭化ケイ素焼結体用分散体。
  2.  前記炭化ケイ素粒子および前記窒化ホウ素粒子の少なくとも一方が電荷制御されてなる、請求項1に記載の分散体。
  3.  前記炭化ケイ素粒子が水酸化アルミニウム被覆により電荷制御されてなる、請求項1または2に記載の分散体。
  4.  前記窒化ホウ素粒子がカチオン性高分子により電荷制御されてなる、請求項1~3のいずれか1項に記載の分散体。
  5.  前記水酸基を有する樹脂は、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、グリオキザール樹脂、アクリル樹脂、フェノール樹脂、水酸基含有ポリビニルピロリドン(PVP)、水酸基含有ポリエステル、水酸基含有シリコーン、および水酸基含有ポリカルボン酸からなる群から選択される、請求項1~4のいずれか1項に記載の分散体。
  6.  前記カチオン性高分子は、ポリ(ジアリルジメチルアンモニウムクロライド)、ポリ(メタクリロイルオキシエチルトリメチルアンモニウムクロライド)、ポリ(アクリルアミド-コ-ジアリルジメチルアンモニウムクロライド)、ポリ(ジメチルアミン-コ-エピクロロヒドリン-コ-エチレンジアミン)、ポリエチレンイミン、エトキシル化ポリエチレンイミン、ポリ(アミドアミン)、ポリ(メタクリロイルオキシエチルジメチルアンモニウムクロライド)、ポリ(ビニルピロリドン)、ポリ(ビニルイミダゾール)、ポリ(ビニルピリジン)、またはポリ(ビニルアミン)である、請求項4に記載の分散体。
  7.  水酸化アルミニウムにより被覆された前記炭化ケイ素粒子の平均二次粒子径が2μm以下である、請求項3に記載の分散体。
  8.  請求項1~7のいずれか1項に記載の分散体から形成される、炭化ケイ素焼結体用グリーンシート。
  9.  請求項8に記載の炭化ケイ素焼結体用グリーンシートから形成される、炭化ケイ素焼結体用プリプレグ材。
  10.  炭化ケイ素粒子を含む水分散体と、
     窒化ホウ素粒子を含む水分散体と、
     水酸基を有する樹脂を含む水溶液と、
    を混合する混合工程を有する、炭化ケイ素焼結体用分散体の製造方法であって、
     前記炭化ケイ素粒子と前記窒化ホウ素粒子とが同符号の電荷を有し、かつ前記炭化ケイ素焼結体用分散体の25℃でのpHが7.0以下である、製造方法。
  11.  前記混合工程の前に、
     炭化ケイ素粒子を含む原料分散体に電荷制御剤および酸を添加して、pHを9.0以上12.0以下の範囲とすることにより、前記炭化ケイ素粒子の表面に電荷制御成分を含む被覆層を有する被覆炭化ケイ素粒子を形成して、炭化ケイ素粒子を含む水分散体を調製する、炭化ケイ素粒子を含む水分散体の調製工程;および
     窒化ホウ素粒子を含む原料分散体に機能性高分子を含む溶液を添加して、前記窒化ホウ素粒子の表面に前記機能性高分子を含む被覆層を有する被覆窒化ホウ素粒子を形成して、窒化ホウ素粒子を含む水分散体を調製する、窒化ホウ素粒子を含む水分散体の調製工程
    の少なくとも一方をさらに有する、請求項10に記載の製造方法。
  12.  前記炭化ケイ素粒子を含む水分散体の調製工程において、前記電荷制御剤がアルミン酸ナトリウムである、請求項11に記載の製造方法。
  13.  前記窒化ホウ素粒子を含む水分散体の調製工程において、前記機能性高分子がカチオン性高分子である、請求項11または12に記載の製造方法。
  14.  前記カチオン性高分子がポリ(ジアリルジメチルアンモニウムクロライド)、ポリ(メタクリロイルオキシエチルトリメチルアンモニウムクロライド)、ポリ(アクリルアミド-コ-ジアリルジメチルアンモニウムクロライド)、ポリ(ジメチルアミン-コ-エピクロロヒドリン-コ-エチレンジアミン)、ポリエチレンイミン、エトキシル化ポリエチレンイミン、ポリ(アミドアミン)、ポリ(メタクリロイルオキシエチルジメチルアンモニウムクロライド)、ポリ(ビニルピロリドン)、ポリ(ビニルイミダゾール)、ポリ(ビニルピリジン)、またはポリ(ビニルアミン)である、請求項13に記載の製造方法。
  15.  前記水酸基を有する樹脂がポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、グリオキザール樹脂、アクリル樹脂、フェノール樹脂、水酸基含有ポリビニルピロリドン(PVP)、水酸基含有ポリエステル、水酸基含有シリコーン、および水酸基含有ポリカルボン酸からなる群から選択される、請求項10~14のいずれか1項に記載の製造方法。
  16.  前記被覆炭化ケイ素粒子の平均二次粒子径が2μm以下である、請求項11または12に記載の製造方法。
  17.  請求項10~16のいずれか1項に記載の製造方法により炭化ケイ素焼結体用分散体を得、当該炭化ケイ素焼結体用分散体を基材に塗布する工程を有する、炭化ケイ素焼結体用グリーンシートの製造方法。
  18.  請求項17に記載の製造方法により炭化ケイ素焼結体用グリーンシートを得、当該炭化ケイ素焼結体用グリーンシートを繊維基材に積層する工程を有する、炭化ケイ素焼結体用プリプレグ材の製造方法。
PCT/JP2019/012991 2018-03-30 2019-03-26 炭化ケイ素焼結体用分散体、これを用いた炭化ケイ素焼結体用グリーンシートおよび炭化ケイ素焼結体用プリプレグ材、ならびにその製造方法 WO2019189254A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020510961A JP7252941B2 (ja) 2018-03-30 2019-03-26 炭化ケイ素焼結体用分散体、これを用いた炭化ケイ素焼結体用グリーンシートおよび炭化ケイ素焼結体用プリプレグ材、ならびにその製造方法
CA3094430A CA3094430A1 (en) 2018-03-30 2019-03-26 Dispersion for silicon carbide sintered body, green sheet for silicon carbide sintered body and prepreg material for silicon carbide sintered body using the same, and manufacturing method thereof
EP19777660.2A EP3778534B1 (en) 2018-03-30 2019-03-26 Dispersion for silicon carbide sintered body, green sheet for silicon carbide sintered body and prepreg material for silicon carbide sintered body using same, and method of producing same
US17/042,404 US11760697B2 (en) 2018-03-30 2019-03-26 Dispersion for silicon carbide sintered body, green sheet for silicon carbide sintered body and prepreg material for silicon carbide sintered body using the same, and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-069128 2018-03-30
JP2018069128 2018-03-30
JP2018-069109 2018-03-30
JP2018069109 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189254A1 true WO2019189254A1 (ja) 2019-10-03

Family

ID=68060087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012991 WO2019189254A1 (ja) 2018-03-30 2019-03-26 炭化ケイ素焼結体用分散体、これを用いた炭化ケイ素焼結体用グリーンシートおよび炭化ケイ素焼結体用プリプレグ材、ならびにその製造方法

Country Status (5)

Country Link
US (1) US11760697B2 (ja)
EP (1) EP3778534B1 (ja)
JP (1) JP7252941B2 (ja)
CA (1) CA3094430A1 (ja)
WO (1) WO2019189254A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202469A1 (ja) * 2021-03-26 2022-09-29 三井金属鉱業株式会社 炭化ケイ素粉末、それを用いた組成物、並びに炭化ケイ素粉末の製造方法
WO2023171181A1 (ja) * 2022-03-11 2023-09-14 株式会社フジミインコーポレーテッド セラミック焼結体形成用分散体、セラミック焼結体形成用グリーンシート、セラミック焼結体形成用プリプレグ材、およびセラミック焼結体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3113924A1 (en) * 2018-09-28 2020-04-02 Fujimi Incorporated Coated silicon carbide particle powder

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296367A (ja) * 1985-10-23 1987-05-02 株式会社日立製作所 炭化珪素質摩擦機構部材
JPH01290560A (ja) * 1988-05-16 1989-11-22 Toshiba Corp 炭化珪素セラミックスの製造方法
JPH0222179A (ja) 1988-07-12 1990-01-25 Nippon Steel Corp 高靭性高硬度セラミック工具材料及びその製造法
JPH05501243A (ja) * 1989-10-26 1993-03-11 アドバンスド マテリアルズ エンタープライズ プロプライエタリー リミテッド 緻密化SiCセラミック物品
JPH05279139A (ja) * 1992-04-01 1993-10-26 Sumitomo Electric Ind Ltd 炭素繊維強化セラミックス複合材料の製造方法
JP2015044147A (ja) * 2013-08-27 2015-03-12 株式会社マキノ 粉体の製造方法
WO2017099250A1 (ja) * 2015-12-11 2017-06-15 国立大学法人豊橋技術科学大学 粉末粒子及びこれを用いたグリーン体の製造方法
JP2018069109A (ja) 2016-10-24 2018-05-10 株式会社クレオ 洗浄機
JP2018069128A (ja) 2016-10-26 2018-05-10 株式会社フジタ 帯電水粒子散布装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267167A (ja) 1989-04-10 1990-10-31 Teijin Ltd 複合セラミックスシート状成形物及びその製造方法
US5165996A (en) * 1990-05-08 1992-11-24 E. I. Du Pont De Nemours And Company Coated refractory compositions and method for preparing the same
JPH05507263A (ja) 1990-05-08 1993-10-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 被覆された耐火性組成物及びその製造方法
US20030109588A1 (en) * 1994-04-06 2003-06-12 Helmut Schmidt Method of producing homogeneous multicomponent dispersions and products derived from such dispersions
US7749931B2 (en) * 2006-02-13 2010-07-06 Fujifilm Corporation Ceramic optical parts and production methods thereof
WO2014132445A1 (ja) 2013-03-01 2014-09-04 国立大学法人京都大学 セラミックス微粒子分散液の製造方法
CN105026312B (zh) * 2013-03-07 2018-03-20 电化株式会社 氮化硼粉末及含有该氮化硼粉末的树脂组合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296367A (ja) * 1985-10-23 1987-05-02 株式会社日立製作所 炭化珪素質摩擦機構部材
JPH01290560A (ja) * 1988-05-16 1989-11-22 Toshiba Corp 炭化珪素セラミックスの製造方法
JPH0222179A (ja) 1988-07-12 1990-01-25 Nippon Steel Corp 高靭性高硬度セラミック工具材料及びその製造法
JPH05501243A (ja) * 1989-10-26 1993-03-11 アドバンスド マテリアルズ エンタープライズ プロプライエタリー リミテッド 緻密化SiCセラミック物品
JPH05279139A (ja) * 1992-04-01 1993-10-26 Sumitomo Electric Ind Ltd 炭素繊維強化セラミックス複合材料の製造方法
JP2015044147A (ja) * 2013-08-27 2015-03-12 株式会社マキノ 粉体の製造方法
WO2017099250A1 (ja) * 2015-12-11 2017-06-15 国立大学法人豊橋技術科学大学 粉末粒子及びこれを用いたグリーン体の製造方法
JP2018069109A (ja) 2016-10-24 2018-05-10 株式会社クレオ 洗浄機
JP2018069128A (ja) 2016-10-26 2018-05-10 株式会社フジタ 帯電水粒子散布装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202469A1 (ja) * 2021-03-26 2022-09-29 三井金属鉱業株式会社 炭化ケイ素粉末、それを用いた組成物、並びに炭化ケイ素粉末の製造方法
WO2023171181A1 (ja) * 2022-03-11 2023-09-14 株式会社フジミインコーポレーテッド セラミック焼結体形成用分散体、セラミック焼結体形成用グリーンシート、セラミック焼結体形成用プリプレグ材、およびセラミック焼結体

Also Published As

Publication number Publication date
EP3778534A1 (en) 2021-02-17
US20210139382A1 (en) 2021-05-13
EP3778534A4 (en) 2021-05-05
CA3094430A1 (en) 2019-10-03
JP7252941B2 (ja) 2023-04-05
US11760697B2 (en) 2023-09-19
JPWO2019189254A1 (ja) 2021-04-15
EP3778534B1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
JP7252941B2 (ja) 炭化ケイ素焼結体用分散体、これを用いた炭化ケイ素焼結体用グリーンシートおよび炭化ケイ素焼結体用プリプレグ材、ならびにその製造方法
JP5261896B2 (ja) コーティング組成物
EP2305402B1 (en) Method for producing silver-containing powder and conductive paste using the same
KR100597335B1 (ko) 안정한 수성 분산액, 이의 제조방법, 및 이를 사용하는 피복 조성물 및 기록 매체
US12043747B2 (en) Coating solution, method for producing coating film, and coating film
TWI674302B (zh) 銀奈米線印墨之製造方法、銀奈米線印墨,以及透明導電塗膜
TW201922961A (zh) 塗液、塗膜的製造方法及塗膜
WO2019069492A1 (ja) 塗液、塗膜の製造方法及び塗膜
JP7466871B2 (ja) 被覆炭化珪素粒子粉体
JP7261570B2 (ja) 中空シリカ粒子及びその製造方法
JP2019519669A (ja) 表面改質銀ナノワイヤーを含む生産物を製造する方法およびその生産物を使用する方法
EP3441982A1 (en) Joining material and joining method using same
CN113365964B (zh) 覆盖颗粒、包含其的分散液和成型体、以及使用其而形成的烧结体
JP5974683B2 (ja) 粒子内部に空隙を有する粒子及びその製造方法
KR20220054333A (ko) 열 전도성 충전제 및 그의 제조 방법
EP4261190A1 (en) Alumina-based composite sol composition, production method therefor, and production method for alumina-based composite thin film
JP3982953B2 (ja) 抗菌性塗膜および塗膜付基材
TW202302456A (zh) 層狀聚矽酸鹽化合物之剝離粒子分散液,及其製造方法
KR102288642B1 (ko) 복합 코팅액, 이를 이용하여 제조된 금속 기판 구조체, 및 그 제조 방법
JP6028420B2 (ja) 中空粒子及びその製造方法
KR20170020763A (ko) 티타늄산바륨 미립자 분말, 분산체 및 도막
US20220406486A1 (en) Paste and conductive film and their production methods
TW201918529A (zh) 塗液、塗膜的製造方法及塗膜
JP6776497B2 (ja) ガスバリア性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510961

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3094430

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2019777660

Country of ref document: EP