WO2019189143A1 - 電動機および界磁子 - Google Patents

電動機および界磁子 Download PDF

Info

Publication number
WO2019189143A1
WO2019189143A1 PCT/JP2019/012801 JP2019012801W WO2019189143A1 WO 2019189143 A1 WO2019189143 A1 WO 2019189143A1 JP 2019012801 W JP2019012801 W JP 2019012801W WO 2019189143 A1 WO2019189143 A1 WO 2019189143A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
electric motor
compression
bonded magnet
bonded
Prior art date
Application number
PCT/JP2019/012801
Other languages
English (en)
French (fr)
Inventor
篤史 成田
亜起 度會
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Priority to US16/981,518 priority Critical patent/US11362557B2/en
Priority to EP19777280.9A priority patent/EP3780351A4/en
Priority to CN201980018857.7A priority patent/CN111886779B/zh
Publication of WO2019189143A1 publication Critical patent/WO2019189143A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an electric motor that can reduce eddy current loss.
  • motors including generators
  • winding field motors and induction machines that do not use a permanent magnet as a magnetic source (field source).
  • field source a magnetic source
  • high-performance motors using permanent magnets as field sources have been frequently used.
  • the motor obtains the rotational force by utilizing the change of the interlinkage magnetic flux. For this reason, when the motor rotates, naturally, a change in magnetic flux also occurs in each part of the armature and the field element. An eddy current corresponding to the rate of change with time is generated in the direction to cancel the change in magnetic flux. The generation of eddy current results in energy loss (so-called “eddy current loss”).
  • the rotor (rotor) and stator (stator) casings (core, yoke, housing, etc.) that make up the motor are usually made of thin magnetic steel sheets with insulation coating in the axial direction. It is formed of a laminated body.
  • a rare earth sintered magnet is formed by directly bonding magnet particles made of an alloy and has an extremely low electrical resistivity. For this reason, when a motor using a rare earth sintered magnet as a field source is operated, a large eddy current loss may occur in the rare earth sintered magnet.
  • the rare earth sintered magnet may be arranged in several parts through an insulator. There is a description related to this in the following literature, for example.
  • bonded magnets having a high degree of freedom in shape and excellent in productivity and yield have been used instead of sintered magnets.
  • a resin that binds each magnet particle (simply referred to as “binder resin”) also serves as an insulating material between adjacent magnet particles.
  • the bond magnet has an electrical resistivity that is orders of magnitude greater and the eddy current loss is very small.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an electric motor equipped with a bond magnet that is effective in further reducing eddy current loss.
  • An electric motor of the present invention is an electric motor including an armature, a field element using a permanent magnet as a magnetic force source, and a rotating shaft that rotates together with the armature or the field element.
  • a bonded magnet made of a magnet particle and a binder resin that binds the magnet particles, and the bonded magnet has a first electric resistivity ( ⁇ 1) in the axial direction and a second in the direction perpendicular to the axial direction.
  • the electrical resistance anisotropy ( ⁇ 1 / ⁇ 2) which is a ratio to the electrical resistivity ( ⁇ 2), is 2 or more.
  • the electric motor of the present invention uses, as a field source, a bond magnet having a considerably large electric resistivity in the axial direction in which eddy current loss occurs. For this reason, even if the rotation speed of an electric motor increases, the increase in the eddy current loss which arises in a permanent magnet can be suppressed. Thus, according to the present invention, it is possible to provide an electric motor that achieves higher output and higher efficiency at a higher level.
  • the present invention can also be grasped as a field element used in the above-described electric motor. That is, the present invention is a field element having a permanent magnet as a magnetic source, wherein the permanent magnet is a bonded magnet composed of magnet particles and a binder resin that binds the magnet particles.
  • a field whose electrical resistance anisotropy ( ⁇ 1 / ⁇ 2), which is a ratio of the first electrical resistivity ( ⁇ 1) in the axial direction and the second electrical resistivity ( ⁇ 2) in the direction perpendicular to the axial direction, is 3 or more Magnetic elements may be used.
  • the type of electric motor (including a generator) in this specification is not limited as long as a permanent magnet is used as a magnetic source (field source).
  • Either the armature or the field element may be a rotor (rotor) or a stator (stator).
  • the electric motor may be a DC motor or an AC motor.
  • the rotor may be an inner rotor or an outer rotor.
  • Axial direction as used herein is the direction in which the rotating shaft of the motor extends.
  • the axial direction is also the direction in which the axial center of the substantially columnar or substantially cylindrical field element extends.
  • the “circumferential direction” is a direction around the axis, and the “radial direction” is a direction extending radially from the axis.
  • x to y in this specification includes the lower limit value x and the upper limit value y.
  • a range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.
  • a component related to a manufacturing method can be a component related to an object. Which embodiment is the best depends on the target, required performance, and the like.
  • the bonded magnet according to the present invention has an electrical resistance anisotropy ( ⁇ 1) that is a ratio of a first electrical resistivity ( ⁇ 1) measured in the axial direction to a second electrical resistivity ( ⁇ 2) measured in a direction perpendicular to the axial direction.
  • ⁇ 1 electrical resistance anisotropy
  • ⁇ 2 electrical resistivity measured in the axial direction
  • ⁇ 2 electrical resistivity measured in a direction perpendicular to the axial direction.
  • / ⁇ 2) is preferably 2 or more, 2.5 or more, 3 or more, 3.1 or more, and more preferably 3.2 or more.
  • the electrical resistivity referred to in this specification can be obtained by measurement by the 4-terminal method.
  • the average value of the electrical resistivity values obtained by measuring in at least two directions (for example, two directions perpendicular to each other) in the perpendicular direction is 2 Electric resistivity.
  • the bonded magnet is an anisotropic bonded magnet molded in an orientation magnetic field
  • the orientation magnetic field is usually applied from a direction perpendicular to the compression direction (the compression direction is the axial direction when assembled to the motor). Is done.
  • the electrical resistivity in the direction perpendicular to the compression direction axial direction
  • the electrical resistivity in the orientation direction eg radial direction
  • the electrical resistivity in the direction orthogonal to the orientation direction eg circumferential direction
  • the average value thereof may be the second electrical resistivity
  • the bonded magnet according to the present invention has, for example, a first electrical resistivity of 300 ⁇ m or more, 500 ⁇ m or more, 1000 ⁇ m or more, 2000 ⁇ m or more, 3000 ⁇ m or more, or even 7000 ⁇ m or more. It is preferable because current loss can be further reduced.
  • the bonded magnet is composed of magnet particles and a binder resin.
  • the magnet particles are preferably rare earth magnet particles having excellent magnetic properties, but may be other magnet particles (for example, ferrite particles).
  • the magnet particles are not limited to one type, and may be a mixture of a plurality of types having different compositions and particle size distributions.
  • the magnet particles may be isotropic magnet particles or anisotropic magnet particles. When using anisotropic magnet particles, the bonded magnet is preferably formed in an orientation magnetic field.
  • the binder resin may be a thermoplastic resin or a thermosetting resin.
  • a thermosetting resin it is preferable that a thermosetting treatment (curing treatment) is performed after molding.
  • the bonded magnet may be an injection molded bonded magnet, but is preferably a compression molded bonded magnet.
  • the amount of binder particles can be reduced to increase the amount of magnet particles.
  • a compression-molded bond magnet usually has a larger magnetic flux density than an injection-molded bond magnet, and is suitable for increasing the output of an electric motor.
  • the compression molded bond magnet may be compression molded by adding (liquid) lubricant to magnet particles and binder resin.
  • the lubricant mixed or added before the compression molding may leak to the outside during the compression molding or may be released during the curing process. The reason is not clear, but if such lubricants remain in the bonded magnet, the behavior increases the electrical resistivity in the compression direction more than the electrical resistivity in the other direction, and the electrical resistance anisotropy described above. It is thought that it contributes to the expression of.
  • the lubricant is contained in the inside of more than 0% and 2.5% or less, 0.02 to 2.0%, 0.1 to 1.8%, 0 .3 to 1.5%, 0.5 to 1.2%, or even 0.6 to 1% may remain. If the residual lubricant is small, the first electrical resistivity can be improved. However, if the remaining amount is excessive, the magnetic characteristics are deteriorated.
  • a lubricating oil that is liquid at room temperature (for example, a melting point of 15 ° C. or lower), a solid that is solid at room temperature (wax, an internal lubricant for molding such as zinc stearate or zinc stearate), and the like.
  • Lubricating oil is excellent in dispersibility in the entire raw material (mixed raw material of magnet powder and binder resin), and thus in the entire molded body, and easily exhibits electrical resistance anisotropy.
  • various esters fatty acid ester, polyol ester, etc.
  • the lubricant adhering to the surface of the molded body may be appropriately removed by degreasing treatment.
  • the compression-molded bonded magnet is obtained as follows as a specific example. 100% by mass as a whole (simply referred to as “%”), Binder resin: 1.5 to 5%, Lubricant: 2 to 15%, Remaining: Magnet powder (Furthermore, a trace amount of processing agent (surfactant, etc.) And a mixture of impurities) into a mold. Warm compression molding is performed at a molding temperature (mold temperature) of 100 to 150 ° C., a molding pressure of 49 to 490 MPa, and an orientation magnetic field of 0.5 to 3 T. When a thermosetting resin such as an epoxy resin is used as the binder resin, a high-strength bonded magnet can be obtained by heating the molded body to 100 to 180 ° C.
  • Magnetization magnetization magnetic field: 2 to 6 T
  • the compression-molded bonded magnet may be arranged so that the compression direction is along the axial direction of the field element.
  • the bonded magnet has the following specifications and characteristics. Magnet particles: 93-98.5% or even 95-97%, bond magnet density: 5.5-6.3 g / cm 3 or 5.7-6.1 g / cm 3.
  • the first electrical resistivity 1000 to 12000 ⁇ m and the magnetic flux density (Br): 0.8 to 0.9 T because both the first electrical resistivity and the magnetic flux density (Br) can be achieved at a high level. .
  • Electric motor The electric motor may be used for any purpose, but is suitable for, for example, a motor for driving a vehicle used for an electric vehicle, a hybrid vehicle, a railway vehicle, or the like, a motor for home appliances used for an air conditioner, a refrigerator, a washing machine or the like.
  • an electric motor can be paraphrased as a rotary machine including a generator (generator).
  • sample (1) Raw material As magnetic powder, commercially available NdFeB system anisotropic magnet powder (magfine / Br: 1.28T, iHc: 1313 kA / m, average particle size) which is Nd system magnetic powder (coarse powder) Diameter: 100 ⁇ m) and commercially available SmFeN-based anisotropic magnet powder (SmFeN alloy fine powder D / Br: 1.10T, iHc: 1170 kA / m, manufactured by Sumitomo Metal Mining Co., Ltd.) (Particle diameter: 3 ⁇ m) was prepared.
  • NdFeB system anisotropic magnet powder magfine / Br: 1.28T, iHc: 1313 kA / m, average particle size
  • SmFeN-based anisotropic magnet powder SmFeN alloy fine powder D / Br: 1.10T, iHc: 1170 kA / m, manufactured by Sumitomo Metal Mining Co.,
  • thermosetting resin an epoxy resin (K-60 manufactured by Nippon Kayaku Co., Ltd.) as a thermosetting resin and PPS (polyphenylene sulfide) as a thermoplastic resin were prepared.
  • the compound charged into the mold cavity was warm-formed in a magnetic field (1.5 T). At this time, the molding temperature was 120 ° C. for all.
  • the molding pressure for samples 1 and 2 was 196 MPa, and the molding pressure for sample 3 was 98 MPa. In this way, a 14 ⁇ 14 ⁇ 14 mm cube-shaped compact was obtained.
  • the molded body was heated in the atmosphere at 150 ° C. for 1 hour (curing treatment) to thermally cure the binder resin (epoxy resin).
  • the cured molded body was magnetized in a magnetic field of about 6T.
  • Sample 2 and Sample 3 had a polyol ester (Unistar H-482R manufactured by NOF Corporation) added as a lubricating oil (lubricant) from the top of the filled compound before compression molding.
  • the addition amount was 9 mass% (10 mass parts) with respect to the whole compound (100 mass parts).
  • Sample 1 was compression molded without adding lubricating oil.
  • Sample 2 and sample 3 have different molding pressures. The lower the molding pressure, the lower the density of the molded body and the greater the amount of lubricating oil remaining inside. This is the same even after the curing process.
  • Lubricating oil amount (residual lubricant amount) remaining inside the bonded magnet after the curing treatment is as follows: Sample 2: 0.5% by mass, Sample 3: 1.0% by mass with respect to the entire bonded magnet (100% by mass). Met.
  • the residual lubricant amount is the mass difference obtained by subtracting the total mass of the compound (the total mass of the magnet powder and the binder resin before compression molding) charged into the mold cavity from the mass of the bonded magnet after the curing treatment. The amount of remaining lubricant was used.
  • Sample C1 is a conventional general compression molded bond magnet. Sample C1 was manufactured by changing the following points from Sample 1.
  • a commercially available NdFeB anisotropic magnet powder (magfine / Br: 1.36T, iHc: 1075 kA / m, average particle diameter: 100 ⁇ m) manufactured by Aichi Steel Co., Ltd., which is an Nd magnet powder (coarse powder).
  • SmFeN-based anisotropic magnet powder SmFeN alloy fine powder C / Br: 1.38T, iHc: 852 kA / m, average particle diameter: 3 ⁇ m, which is an Sm-based magnet powder (fine powder). )It was used.
  • Bisphenol A (Epicoat 1004), which is a thermosetting resin, was used as the binder resin. The ratio was 2.0 mass% with respect to the whole compound (100 mass%). Compression molding was warm molding (molding temperature: 120 ° C., molding pressure: 882 MPa) in a magnetic field (1.5 T). Of course, compression molding was performed without adding any of the lubricating oils used in Samples 2 and 3.
  • Sintered magnet (sample C0) A commercially available rare earth anisotropic sintered magnet (N40SH manufactured by NeoMag) was also prepared as a reference comparative sample.
  • Sample C2 had the highest electrical resistivity in the injection direction (flow direction of the molten mixture) among the electrical resistivity in the three directions. Therefore, the electrical resistivity was defined as the first electrical resistivity. The remaining two directions are the orientation direction and the direction perpendicular to the emission direction and the orientation direction. The average value of the electrical resistivity measured in both directions was defined as the second electrical resistivity.
  • Simulation (1) Setting model The eddy current loss when the permanent magnet which concerns on each sample mentioned above was used was computed by simulation. This calculation was performed using the model shown in FIG.
  • the model is an IPM motor having a 4-pole (inner) rotor (field element) made of permanent magnets loaded in an embedded slot, a stator (armature) having 24 coil slots, and a rotating shaft in the center. (Simply called “motor”).
  • Stator outer diameter ⁇ 112 mm
  • rotor outer diameter ⁇ 55 mm
  • rotor axial length 60 mm
  • current 3-arm sine wave current of 5 Arms
  • number of coil turns 35 turns / slot
  • motor speed 6000 rpm, 30000 rpm Or 60000 rpm
  • the casing (core) of the rotor and the stator were both laminated bodies of electromagnetic steel plates (JFE steel non-oriented electromagnetic steel strip JNEH2000, plate thickness: 0.2 mm).
  • the permanent magnet loaded in the slot of the rotor was a rectangular parallelepiped shape (plate shape) of 2.5 ⁇ 21.8 ⁇ 60 mm.
  • the first electrical resistivity and the second electrical resistivity shown in Table 1 were adopted, respectively.
  • the permanent magnet of the actual motor is fixed to the slot using an adhesive or the like, but this simulation assumed that the permanent magnet was inserted into the slot without any gap.
  • FIG. 2 shows the relationship between the motor rotational speed and the eddy current loss generated in the permanent magnet.
  • FIG. 2 also shows the sample C0 (sintered magnet) by changing the scale width of the vertical axis.
  • magnetic field analysis software JMAG-Designer manufactured by JSOL was used for calculation of eddy current loss.
  • sample C2 also had a relatively small electrical resistivity and an almost isotropic electrical resistance. Since sample C2 has a larger amount of resin than sample C1, the electrical resistivity is also increased accordingly. It should be noted that the sample C0 naturally has an electrical resistivity that is orders of magnitude smaller and the electrical resistance is almost isotropic.
  • the eddy current loss of the permanent magnet basically reflected the electrical characteristics of each permanent magnet. That is, when a compression-bonded bonded magnet (samples 1 to 3, especially samples 2 and 3) having a large first electric resistivity and electric resistance anisotropy is used, the eddy current loss results in a motor rotation speed of 60,000 rotations. However, it was so small that it was less than 0.05W.
  • the eddy current loss (for example, at the time of 30,000 revolutions of the motor) is greatly reduced to about 120 to 1400. It was found that it can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本発明は、渦電流損の低減に有効なボンド磁石を備えた電動機を提供する。 本発明は、電機子と、永久磁石を磁力源とする界磁子と、電機子または界磁子と共に回転する回転軸とを備える電動機である。永久磁石は、磁石粒子と磁石粒子同士を結着するバインダ樹脂とからなるボンド磁石である。ボンド磁石は、軸方向に測定した第1電気抵抗率(ρ1)と軸方向に垂直な方向に測定した第2電気抵抗率(ρ2)との比率である電気抵抗異方度(ρ1/ρ2)が2以上である。ボンド磁石は、例えば、磁石粒子を93~98.5%含む圧縮成形ボンド磁石であり、その第1電気抵抗率は300μΩm以上となる。圧縮方向を軸方向に沿って配設した圧縮成形ボンド磁石を界磁源として用いると、その圧縮成形ボンド磁石に生じる渦電流損を効率的に低減できる。

Description

電動機および界磁子
 本発明は、渦電流損の低減を図れる電動機等に関する。
 電動機(発電機を含めて単に「モータ」という。)には種々のタイプがある。例えば、永久磁石を磁力源(界磁源)としない巻線界磁式モータや誘導機等もある。しかし、磁気特性に優れた希土類磁石の出現により、永久磁石を界磁源とする高性能なモータが多用されるようになっている。
 ところで、モータは、鎖交磁束の変化を利用して回転力を得ている。このため、モータが回転すると、当然、電機子や界磁子の各部にも磁束の変化が生じる。この磁束の変化を打ち消す向きに、その時間変化率に応じた渦電流が発生する。渦電流の発生はエネルギー損失(いわゆる「渦電流損」)となる。この渦電流損を低減するため、通常、モータを構成する回転子(ロータ)や固定子(ステータ)の筐体(コア、ヨーク、ハウジング等)は、絶縁被覆された薄い電磁鋼板を軸方向に積層した積層体で形成される。
 このような事情は、界磁源である永久磁石についてもあてはまる。例えば、希土類焼結磁石は、合金からなる各磁石粒子が直接結合してなり、電気抵抗率が非常に低い。このため、希土類焼結磁石を界磁源とするモータを稼働させると、大きな渦電流損が希土類焼結磁石にも生じ得る。希土類焼結磁石に生じる渦電流損を低減するため、希土類焼結磁石は、絶縁体を介して数分割して配設されることがある。これに関連する記載が、例えば、下記の文献にある。
特許第3690067号公報
 ところで、最近、形状自由度が大きく生産性や歩留まりに優れるボンド磁石が焼結磁石に替えて用いられるようになってきた。ボンド磁石の場合、各磁石粒子を結着する樹脂(単に「バインダ樹脂」という。)が、隣接する磁石粒子間の絶縁材も兼ねる。このため、焼結磁石と比較すると、ボンド磁石は電気抵抗率が桁違いに大きくて渦電流損が非常に小さい。
 しかし、最近、モータのさらなる高出力化が求められており、その回転数も増加傾向にある。渦電流損は、磁束が変化する周波数の2乗に比例して大きくなるため、仮に、モータの回転数がN倍になると、渦電流損はN倍となり急増する。従って、モータの高性能化と高効率化をより高次元で両立するためには、ボンド磁石自体の渦電流損をさらに低減できると好ましい。
 本発明はこのような事情に鑑みて為されたものであり、渦電流損のさらなる低減に有効なボンド磁石を備えた電動機等を提供することを目的とする。
 本発明者はこの課題を解決すべく鋭意研究した結果、特定方向の電気抵抗率が他方向の電気抵抗率よりもかなり大きいボンド磁石を得ることに成功した。このボンド磁石を電動機の界磁源として用いて渦電流損の低減を図ることを着想し、その効果を確認した。これらの成果を発展させることにより、以降に述べる本発明を完成するに至った。
《電動機》
(1)本発明の電動機は、電機子と、永久磁石を磁力源とする界磁子と、該電機子または該界磁子と共に回転する回転軸と、を備える電動機であって、前記永久磁石は、磁石粒子と該磁石粒子同士を結着するバインダ樹脂とからなるボンド磁石であり、該ボンド磁石は、軸方向の第1電気抵抗率(ρ1)と該軸方向に垂直な方向の第2電気抵抗率(ρ2)との比率である電気抵抗異方度(ρ1/ρ2)が2以上である。
(2)本発明の電動機は、渦電流損が生じる軸方向に関して電気抵抗率が相当大きいボンド磁石を界磁源としている。このため、電動機の回転数が増加しても、永久磁石に生じる渦電流損の増加を抑制できる。こうして本発明によれば、高出力化と高効率化をより高次元で両立した電動機の提供が可能となる。
《界磁子》
 本発明は、上述した電動機に用いられる界磁子としても把握できる。すなわち、本発明は、永久磁石を磁力源とする界磁子であって、前記永久磁石は、磁石粒子と該磁石粒子同士を結着するバインダ樹脂とからなるボンド磁石であり、該ボンド磁石は、軸方向の第1電気抵抗率(ρ1)と該軸方向に垂直な方向の第2電気抵抗率(ρ2)との比率である電気抵抗異方度(ρ1/ρ2)が3以上である界磁子でもよい。
《その他》
(1)本明細書でいう電動機(発電機を含む。)は、永久磁石を磁力源(界磁源)とする限り、その種類は問わない。該電機子と界磁子のいずれが、回転子(ロータ)でも固定子(ステータ)でもよい。電動機は、直流電動機でも交流電動機でもよい。ロータは、インナーロータでもアウターロータでもよい。
 本明細書でいう「軸方向」は、電動機の回転軸の延在方向である。軸方向は、略円柱状または略円筒状の界磁子の軸心が延在する方向でもある。「周方向」は、その軸心周りの方向であり、「径方向」はその軸心から放射状に延びる方向である。
(2)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。
渦電流損の解析に用いたモデル(電動機)の断面図である。 モータ回転数と各種永久磁石に生じる渦電流損との関係を示す散布図である。
 本明細書中に記載した事項から任意に選択した一つまたは二つ以上の構成要素を上述した本発明の構成に付加し得る。製造方法に関する構成要素も物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。
《電気抵抗率/電気抵抗異方度》
 本発明に係るボンド磁石は、軸方向に垂直な方向に測定した第2電気抵抗率(ρ2)に対する軸方向に測定した第1電気抵抗率(ρ1)の割合である電気抵抗異方度(ρ1/ρ2)が2以上、2.5以上、3以上、3.1以上さらには3.2以上であると好ましい。
 本明細書でいう電気抵抗率は、4端子法による測定で求まる。軸方向に垂直な方向の電気抵抗率が測定方向により異なるとき、垂直な方向の内で少なくとも2つの方向(例えば直交する2方向)について測定し得られた各電気抵抗率値の平均値を第2電気抵抗率とする。ボンド磁石が配向磁場中で成形された異方性ボンド磁石である場合なら、通常、圧縮方向(この圧縮方向が電動機への組み付け時の軸方向となる。)に垂直な方向から配向磁場が印加される。この場合、その圧縮方向(軸方向)に垂直な方向の電気抵抗率として、配向方向(例えば半径方向)の電気抵抗率と配向方向に直交する方向(例えば周方向)の電気抵抗率を測定し、それらの平均値を第2電気抵抗率とするとよい。
 本発明に係るボンド磁石は、高電気抵抗異方度に加えて、例えば、第1電気抵抗率が300μΩm以上、500μΩm以上、1000μΩm以上、2000μΩm以上、3000μΩm以上、さらには7000μΩm以上であると、渦電流損をより低減できて好ましい。
《ボンド磁石》
(1)ボンド磁石は、磁石粒子とバインダ樹脂からなる。磁石粒子は、磁気特性に優れる希土類磁石粒子が好ましいが、それ以外の磁石粒子(例えばフェライト粒子等)であってもよい。磁石粒子は、一種類に限らず、組成や粒度分布が異なる複数種が混在したものでもよい。磁石粒子は、等方性磁石粒子でも異方性磁石粒子でもよい。異方性磁石粒子を用いるとき、ボンド磁石は配向磁場中で成形されたものであると好ましい。
 バインダ樹脂は、熱可塑性樹脂でも熱硬化性樹脂でもよい。熱硬化性樹脂を用いるとき、成形後に熱硬化処理(キュア処理)がなされると好ましい。
(2)ボンド磁石は、射出成形ボンド磁石でもよいが、圧縮成形ボンド磁石が好ましい。圧縮成形ボンド磁石の場合、バインダ樹脂量を少なくして磁石粒子量を多くできる。このため圧縮成形ボンド磁石は、通常、射出成形ボンド磁石よりも磁束密度が大きく、電動機の高出力化に好適である。
 圧縮成形ボンド磁石は、磁石粒子とバインダ樹脂に、(液状)潤滑剤を加えて圧縮成形したものでもよい。圧縮成形前に混合または添加等した潤滑剤は、圧縮成形中に外部へ漏出したり、キュア処理を行う場合はその処理中に放出されたりし得る。理由は定かではないが、そのような潤滑剤がわずかでもボンド磁石内に残存すると、その挙動が、圧縮方向の電気抵抗率を他方向の電気抵抗率よりも高め、上述した電気抵抗異方度の発現に寄与すると考えられる。
 圧縮成形前に潤滑剤を多く加えても、圧縮成形後さらにはキュア処理後のボンド磁石中に残存する潤滑剤はさほど多くない。例えば、ボンド磁石全体(100質量%)に対して、その内部に潤滑剤が、0%を超え2.5%以下、0.02~2.0%、0.1~1.8%、0.3~1.5%、0.5~1.2%さらには0.6~1%残存していてもよい。残存潤滑剤がわずかでもあれば第1電気抵抗率を向上させ得る。但し、その残存量が過多になると磁気特性の低下を招く。
 潤滑剤として、室温で液体状の潤滑油(例えば、融点が15℃以下)、室温で固体状の固形物(ワックス、ステアリン酸亜鉛やステアリン酸亜鉛等の成形用内部潤滑剤)等を用いることができる。潤滑油は、原料(磁石粉末とバインダ樹脂の混合原料)全体、ひいては成形体全体への分散性に優れ、電気抵抗異方度を発現し易い。潤滑油として、例えば、各種のエステル(脂肪酸エステル、ポリオールエステル等)を用いることができる。なお、成形体の表面に付着等している潤滑剤は、適宜、脱脂処理により除去されてもよい。
(3)圧縮成形ボンド磁石は、一具体例として、次のようにして得られる。全体を100質量%(単に「%」という。)として、バインダ樹脂:1.5~5%、潤滑剤:2~15%、残部:磁石粉末(さらには微量な処理剤(界面活性剤等)と不純物)とする混合物を成形型に充填する。成形温度(型温度):100~150℃、成形圧力:49~490MPa、配向磁場:0.5~3Tとして温間圧縮成形する。バインダ樹脂としてエポキシ樹脂等の熱硬化性樹脂を用いる場合は、成形体を100~180℃に加熱して硬化処理(キュア処理)を行うことで、高強度なボンド磁石を得ることができる。成形後、さらには界磁子の筐体(界磁コア)への組付後に、着磁(着磁磁場:2~6T)がなされるとよい。なお、圧縮成形ボンド磁石は、当然、その圧縮方向が界磁子の軸心方向に沿うように配設されるとよい。
(4)希土類異方性磁石粉末(Nd-Fe-B系磁石粉末、Sm-Fe-N系磁石粉末、Sm-Co系磁石粉末等)を用いて配向磁場中で圧縮成形して得られたボンド磁石は、例えば、次のような諸元、特性となる。ボンド磁石全体を100質量%として磁石粒子:93~98.5%さらには95~97%、ボンド磁石の密度:5.5~6.3g/cmさらには5.7~6.1g/cm、磁束密度(Br):0.7~0.95Tさらには0.8~0.9T、角型性の指標であるHk値(Brの90%に相当するときの減磁曲線における磁界の値):398~597kA/mさらには478~557kA/m、最大エネルギー積(BHmax):111~151kJ/mさらには115~147kJ/m、第1電気抵抗率(ρ):第1電気抵抗率(ρ):300~20000μΩm、500~20000μΩm、1000~20000μΩm、3000~20000μΩm(圧縮方向)。一例として、第1電気抵抗率:1000~12000μΩm、かつ磁束密度(Br):0.8~0.9Tであると、第1電気抵抗率と磁束密度(Br)を高次元で両立できて好ましい。
《電動機》
 電動機は、その用途を問わないが、例えば、電気自動車、ハイブリッド車若しくは鉄道車両等に用いられる車両駆動用モータ、エアコン、冷蔵庫若しくは洗濯機等に用いられる家電製品用モータなどに好適である。なお、電動機は、発電機(ジェネレータ)も含めて回転機と換言できる。
 種々の永久磁石(希土類磁石)を製造し、それらの電気特性(電気抵抗率)と磁気特性(磁束密度、比透磁率)を測定した。その結果を踏まえて、永久磁石内包(埋込)型モータ(Interior Permanent Magnet Synchronous Motor/単に「IPMモータ」という。)のロータコアのスロットへ各永久磁石を装填したときの渦電流損をシミュレーションにより求めた。これらの具体例に基づいて、本発明を以下に詳しく説明する。
《試料》
(1)原料
 磁石粉末として、Nd系磁石粉末(粗粉末)である市販のNdFeB系異方性磁石粉末(愛知製鋼株式会社製マグファイン/Br:1.28T、iHc:1313kA/m、平均粒径:100μm)と、Sm系磁石粉末(微粉末)である市販のSmFeN系異方性磁石粉末(住友金属鉱山株式会社製SmFeN合金微粉D /Br:1.10T、iHc:1170kA/m、平均粒径:3μm)を用意した。
 バインダ樹脂として、熱硬化性樹脂であるエポキシ樹脂(日本化薬株式会社製K-60)と、熱可塑性樹脂であるPPS(ポリフェニレンサルファイド)を用意した。
(2)圧縮成形ボンド磁石の製造(試料1、2、3、C1)
 試料1~3については、質量比で8:2に秤量したNd系磁石粉末とSm系磁石粉末をヘンシェエルミキサーでよく混合した。混合した磁石粉末へ、固形のエポキシ樹脂を加えて、バンバリーミキサーで加熱混練(110℃)した。こうして原料粉末となるコンパウンドを得た。コンパウンド全体(100質量%)に対して熱硬化性樹脂の割合は2.75質量%とした。
 各試料毎に、成形型のキャビティへ投入したコンパウンドを、磁場中(1.5T)で温間成形した。この際、成形温度はいずれも120℃とした。試料1、2の成形圧力は196MPa、試料3の成形圧力は98MPaとした。こうして、14×14×14mmの立方体形状の成形体を得た。
 この成形体を大気中で150℃×1時間加熱して(キュア処理)、バインダ樹脂(エポキシ樹脂)を熱硬化させた。この硬化処理した成形体を約6Tの磁場中で着磁した。こうして、各試料に係る圧縮成形ボンド磁石(供試材)を得た。
 なお、試料2と試料3は、圧縮成形前に、充填したコンパウンド上から、潤滑油(潤滑剤)であるポリオールエステル(日油株式会社社製ユニスターH-481R)を添加しておいた。その添加量は、コンパウンド全体(100質量部)に対して9質量%(10質量部)とした。なお、試料1は、潤滑油の添加を行わずに圧縮成形を行った。
 試料2と試料3は成形圧力が異なる。成形圧力が低いほど、成形体の密度が低下し、その内部に残存する潤滑油量も増加する。これはキュア処理後でも同様である。キュア処理後のボンド磁石内部に残存する潤滑油量(残存潤滑剤量)は、ボンド磁石全体(100質量%)に対して、試料2:0.5質量%、試料3:1.0質量%であった。
 なお、残存潤滑剤量は、キュア処理後のボンド磁石の質量から、成形型のキャビティへ投入したコンパウンドの総質量(圧縮成形前における磁石粉末とバインダ樹脂との合計質量)を差し引いた質量差を残存潤滑剤量とした。
 試料C1は、従来からある一般的な圧縮成形ボンド磁石である。試料C1は、試料1に対して、以下の点を変更して製造した。磁石粉末として、Nd系磁石粉末(粗粉末)である市販のNdFeB系異方性磁石粉末(愛知製鋼株式会社製マグファイン/Br:1.36T、iHc:1075kA/m、平均粒径:100μm)と、Sm系磁石粉末(微粉末)である市販のSmFeN系異方性磁石粉末(住友金属鉱山株式会社製SmFeN合金微粉C /Br:1.38T、iHc:852kA/m、平均粒径:3μm)を使用した。
 バインダ樹脂として、熱硬化性樹脂であるビスフェノールA(エピコート1004)を使用した。その割合は、コンパウンド全体(100質量%)に対して2.0質量%とした。圧縮成形は、磁場中(1.5T)で温間成形(成形温度:120℃、成形圧力:882MPa)した。勿論、試料2、3で用いた潤滑油等は一切添加せずに圧縮成形した。
(3)射出成形ボンド磁石の製造(試料C2)
 質量比7:3に秤量したNd系磁石粉末およびSm系磁石粉末と熱可塑性樹脂を二軸混練機で加熱(300℃)しつつ混練した。得られた混練物を分断してペレット(一粒:φ1~2mm×2~3mm)にした。ペレット全体(100質量%)に対する熱可塑性樹脂の割合は10質量%とした。
 ペレットを射出成形機のホッパーへ投入して加熱し、溶融混合物を金型のキャビティへ充填した。こうして、既述した圧縮成形ボンド磁石と同形状な射出成形ボンド磁石を得た。なお、射出成形は、金型のキャビティに配向磁場(1.7T)を印加しつつ、金型温度:140℃、ノズル温度:300℃として行い、φ20mm×高さ13mmの円柱形状の成形体を得た。その後、磁気特性を測定後、11×11×11mmの立方体形状に加工し、電気抵抗率の測定を行った。なお、射出成形に際して、既述した潤滑油は添加しなかった。
(4)焼結磁石(試料C0)
 基準となる比較試料として、市販の希土類異方性焼結磁石(NeoMag社製N40SH)も用意した。
《測定》
(1)電気特性
 各試料(永久磁石)について、直交する3方向の電気抵抗を4端子法により測定し、各方向の電気抵抗率を求めた。各試料毎に、3方向の電気抵抗率の最大値を第1電気抵抗率(ρ1)とした。残りの2方向の電気抵抗率の平均値を第2電気抵抗率とした。こうして得られた各試料に係る第1電気抵抗率と第2電気抵抗率を表1に示した。
 なお、試料1~3、C1はいずれも、圧縮方向に沿って測定した電気抵抗率が、3方向の電気抵抗率中で最大であった。従って、それら試料の第1電気抵抗率は、圧縮方向に沿った電気抵抗率となっている。
 試料C2は、射出方向(溶融混合物の流動方向)の電気抵抗率が3方向の電気抵抗率中で最大であった。従って、その電気抵抗率を第1電気抵抗率とした。残り2方向は、配向方向と、射出方向および配向方向に垂直な方向である。両方向に関して測定した電気抵抗率の平均値を第2電気抵抗率とした。
(2)磁気特性
 各試料について、磁気特性を直流BHトレーサー(東英工業株式会社製TRF-5BH-25Auto)を用いて常温で測定した。得られた残留磁束密度(Br)と比透磁率を表1に併せて示した。
《シミュレーション》
(1)設定モデル
 上述した各試料に係る永久磁石を用いたときの渦電流損をシミュレーションにより算出した。この算出は、図1に示すモデルを用いて行った。モデルは、埋込型のスロットへ装填された永久磁石からなる4磁極の(インナー)ロータ(界磁子)と、24コイルスロットを備えるステータ(電機子)と、中央に回転軸を備えるIPMモータ(単に「モータ」という。)とした。
 その各諸元は次の通りとした。ステータ外径:φ112mm、ロータ外径:φ55mm、ロータの軸方向長さ(モータ軸長):60mm、電流:5Armsの3相正弦波電流、コイル巻数:35turns/slot、モータ回転数:6000rpm、30000rpmまたは60000rpm
 ロータとステータの筐体(コア)は、いずれも電磁鋼板(JFEスチール製無方向性電磁鋼帯JNEH2000、板厚:0.2mm)の積層体とした。ロータのスロットに装填される永久磁石は2.5×21.8×60mmの直方体状(板状)とした。軸方向の電気抵抗率と軸方向に直交する方向の電気抵抗率とには、それぞれ、表1に示した第1電気抵抗率と第2電気抵抗率を採用した。なお、実物のモータの永久磁石は接着剤等を用いてスロットに固定されるが、本シミュレーションは、永久磁石がスロットに隙間なく嵌挿されていると仮定した。
(2)解析
 各試料に係る永久磁石を用いたモータを上述した回転数で運転したときのモータトルクとモータ出力P(kw)を算出すると同時に、そのときの各永久磁石に生じる渦電流損w(W)を算出した。各永久磁石のBrが相違すると、発生するトルクが異なり、回転数は同じでも出力が異なる。そこで、各永久磁石に生じる渦電流損w(W)を、各永久磁石を用いたモータの出力Pで規格化すると共に、モータ出力を10kW(高出力モータレベル)に固定したときの各永久磁石の渦電流損We(W)を算出した。こうして得られた結果を表1に併せて示した。
 具体的には、We(W)=w(W)×10(kW)/P(kW))により、10kW時における各永久磁石の渦電流損Weを算出した。また、モータ回転数と永久磁石に生じる渦電流損の関係を図2に示した。なお、図2には、縦軸の目盛幅を変更して、試料C0(焼結磁石)についても併せて示した。ちなみに、渦電流損の算出には磁界解析ソフトJMAG-Designer(JSOL社製)を用いた。
《評価》
(1)表1から明らかなように、試料1~3の圧縮成形ボンド磁石は、電気抵抗率が大きく、電気抵抗異方度も大きい。試料C1は、同じ圧縮成形ボンド磁石であるものの、電気抵抗率が小さく、で電気抵抗が等方的(電気抵抗異方度が1)であった。
 試料C2の射出成形ボンド磁石も、電気抵抗率が比較的小さく、電気抵抗もほぼ等方的に近かった。なお、試料C2は、試料C1よりも樹脂量が多いため、その分、電気抵抗率も高くなっている。なお、試料C0は、当然ながら、電気抵抗率が桁違いに小さく、電気抵抗もはほぼ等方的であった。
(2)表1および図2から明らかなように、永久磁石の渦電流損は、基本的に、各永久磁石の電気特性を反映した結果となった。つまり、第1電気抵抗率および電気抵抗異方度が大きい圧縮成形ボンド磁石(試料1~3、特に試料2、3)を用いた場合、その渦電流損はモータ回転数が6万回転になっても0.05Wにも満たないほど小さくなった。
 従来の希土類焼結磁石に替えて圧縮成形ボンド磁石(試料1~3)を用いることにより、渦電流損(例えば、モータの3万回転時)を約120~1400分の1程度にまで大幅に低減できることがわかった。
Figure JPOXMLDOC01-appb-T000001

Claims (7)

  1.  電機子と、
     永久磁石を磁力源とする界磁子と、
     該電機子または該界磁子と共に回転する回転軸と、
     を備える電動機であって、
     前記永久磁石は、磁石粒子と該磁石粒子同士を結着するバインダ樹脂とからなるボンド磁石であり、
     該ボンド磁石は、軸方向の第1電気抵抗率(ρ1)と該軸方向に垂直な方向の第2電気抵抗率(ρ2)との比率である電気抵抗異方度(ρ1/ρ2)が2以上である電動機。
  2.  前記第1電気抵抗率は、300μΩm以上である請求項1に記載の電動機。
  3.  前記ボンド磁石は、該ボンド磁石全体を100質量%(単に「%」という。)として前記磁石粒子を93~98.5%含む圧縮成形ボンド磁石である請求項1または2に記載の電動機。
  4.  前記圧縮成形ボンド磁石は、さらに、潤滑剤を含む請求項3に記載の電動機。
  5.  前記潤滑剤は、前記圧縮成形ボンド磁石全体に対して0.02~2.5%含まれる請求項4に記載の電動機。
  6.  前記バインダ樹脂は、熱硬化性樹脂である請求項1~5のいずれかに記載の電動機。
  7.  請求項1~6のいずれかに記載の電動機に用いられる界磁子。
PCT/JP2019/012801 2018-03-30 2019-03-26 電動機および界磁子 WO2019189143A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/981,518 US11362557B2 (en) 2018-03-30 2019-03-26 Electric motor and field element
EP19777280.9A EP3780351A4 (en) 2018-03-30 2019-03-26 ELECTRIC MOTOR AND FIELD ELEMENT
CN201980018857.7A CN111886779B (zh) 2018-03-30 2019-03-26 电动机及励磁元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069541A JP6544455B1 (ja) 2018-03-30 2018-03-30 電動機および界磁子
JP2018-069541 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189143A1 true WO2019189143A1 (ja) 2019-10-03

Family

ID=67297647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012801 WO2019189143A1 (ja) 2018-03-30 2019-03-26 電動機および界磁子

Country Status (5)

Country Link
US (1) US11362557B2 (ja)
EP (1) EP3780351A4 (ja)
JP (1) JP6544455B1 (ja)
CN (1) CN111886779B (ja)
WO (1) WO2019189143A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114153A1 (ja) * 2020-11-30 2022-06-02 株式会社アイシン ロータコアおよびロータコアの製造方法
EP4131747A4 (en) * 2020-03-31 2023-10-11 Aichi Steel Corporation COMPRESSED COMPOSITE MAGNET, PROCESS OF PRODUCTION THEREOF AND FIELD COIL

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220103036A1 (en) * 2020-09-29 2022-03-31 Nichia Corporation Yoke for rotor of axial gap motor
JP7492165B2 (ja) 2020-12-07 2024-05-29 愛知製鋼株式会社 電気駆動移動体用ギアードモータ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199686A (ja) * 1992-01-17 1993-08-06 Matsushita Electric Ind Co Ltd モータの磁石積層型回転子
JP3690067B2 (ja) 1997-06-11 2005-08-31 株式会社日立製作所 永久磁石回転電機
JP2011259701A (ja) * 2007-06-29 2011-12-22 Nissan Motor Co Ltd 界磁極用磁石体、この界磁用磁石体の作製方法、及び永久磁石型回転電機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833980A (en) * 1987-08-31 1989-05-30 Mannesmann Tally Corporation High efficiency coil posts for print hammer actuators
JPH10340808A (ja) * 1997-06-10 1998-12-22 Hitachi Metals Ltd ボンド軟磁性体及びそれを用いた点火コイル
WO2008062543A1 (fr) * 2006-11-20 2008-05-29 Hitachi, Ltd. Machine électrique rotative à aimant permanent
JP5094111B2 (ja) * 2006-12-28 2012-12-12 日立オートモティブシステムズ株式会社 永久磁石回転電機とその製造方法及び永久磁石式回転電機を備えた自動車
JP2008236844A (ja) 2007-03-19 2008-10-02 Hitachi Ltd 回転電機とその製造方法及び回転電機を備えた自動車
JP5468215B2 (ja) * 2008-06-09 2014-04-09 ダイキン工業株式会社 空気調和機及び空気調和機の製造方法
JP5365074B2 (ja) * 2008-06-19 2013-12-11 ダイキン工業株式会社 アキシャルギャップ型回転電機
KR101407837B1 (ko) * 2010-04-05 2014-06-16 아이치 세이코우 가부시키가이샤 이방성 본드 자석의 제조 방법 및 그 제조 장치
CN101853729A (zh) * 2010-07-06 2010-10-06 福州大学 具有永磁偏磁的磁性元件
WO2012101896A1 (ja) * 2011-01-26 2012-08-02 株式会社マキタ 電動工具用ブラシレスモータ
CN102969111B (zh) * 2012-11-30 2015-09-30 钢铁研究总院 低成本高电阻率铈磁体及其制备方法
JP6788779B2 (ja) * 2015-10-01 2020-11-25 パナソニックIpマネジメント株式会社 電動機要素、電動機、装置
JP2017107889A (ja) * 2015-12-07 2017-06-15 パナソニックIpマネジメント株式会社 等方性ボンド磁石、電動機要素、電動機、装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199686A (ja) * 1992-01-17 1993-08-06 Matsushita Electric Ind Co Ltd モータの磁石積層型回転子
JP3690067B2 (ja) 1997-06-11 2005-08-31 株式会社日立製作所 永久磁石回転電機
JP2011259701A (ja) * 2007-06-29 2011-12-22 Nissan Motor Co Ltd 界磁極用磁石体、この界磁用磁石体の作製方法、及び永久磁石型回転電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780351A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131747A4 (en) * 2020-03-31 2023-10-11 Aichi Steel Corporation COMPRESSED COMPOSITE MAGNET, PROCESS OF PRODUCTION THEREOF AND FIELD COIL
WO2022114153A1 (ja) * 2020-11-30 2022-06-02 株式会社アイシン ロータコアおよびロータコアの製造方法
JP7456519B2 (ja) 2020-11-30 2024-03-27 株式会社アイシン ロータコアおよびロータコアの製造方法

Also Published As

Publication number Publication date
US20210013755A1 (en) 2021-01-14
US11362557B2 (en) 2022-06-14
CN111886779A (zh) 2020-11-03
JP6544455B1 (ja) 2019-07-17
JP2019180180A (ja) 2019-10-17
EP3780351A4 (en) 2021-12-22
CN111886779B (zh) 2023-03-03
EP3780351A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2019189143A1 (ja) 電動機および界磁子
JP5662305B2 (ja) 永久磁石ロータとその製造方法
CN105590714B (zh) 用于形成对齐的磁芯的夹具和方法
JP2005064448A (ja) 積層極異方複合磁石の製造方法
KR100981218B1 (ko) 영구자석 회전자 및 이것을 사용한 모터
JP2017107889A (ja) 等方性ボンド磁石、電動機要素、電動機、装置
Ferraris et al. Comparison between parallel and radial magnetization in PM fractional machines
JP2017055509A (ja) 電動機要素の製造方法、電動機要素、電動機、装置
JP2017070031A (ja) ロータ
JP4478869B2 (ja) 異方性ボンド磁石の製造方法
WO2008065898A1 (fr) Moteur à aimant de type à espace dans la direction radiale
JP6862725B2 (ja) 希土類磁石粉末、希土類ボンド磁石、電動機要素及び電動機
JP6393737B2 (ja) 希土類ボンド磁石
JP2006180677A (ja) 鉄心一体型スキュー磁石回転子およびその製造方法
Ferraris et al. Theoretic and experimental preliminary approach to the adoption of bonded magnets in fractional machines
US20160027567A1 (en) Manufacturing Method for Bonded Magnet and Motor Using the Magnet
JP2017085837A (ja) 電動機要素、電動機要素の製造方法、電動機、装置
WO2021200517A1 (ja) 圧縮ボンド磁石とその製造方法および界磁子
JP2005317845A (ja) 異方性ボンド磁石およびその製造方法
WO2023053307A1 (ja) 回転子および電動機
JP2017046409A (ja) 電動機要素、電動機要素の製造方法、電動機、装置
JP2006013055A (ja) 異方性ボンド磁石の製造方法
JP4089705B2 (ja) 多層構造多極磁石ロータ
JP2005294757A (ja) 異方性希土類ボンド磁石
JP2015198550A (ja) 円筒状の磁石組立体、磁石組立体、電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019777280

Country of ref document: EP