WO2019189089A1 - セラミック積層体及びガスセンサ - Google Patents

セラミック積層体及びガスセンサ Download PDF

Info

Publication number
WO2019189089A1
WO2019189089A1 PCT/JP2019/012702 JP2019012702W WO2019189089A1 WO 2019189089 A1 WO2019189089 A1 WO 2019189089A1 JP 2019012702 W JP2019012702 W JP 2019012702W WO 2019189089 A1 WO2019189089 A1 WO 2019189089A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
laminate
ceramic layer
layer
gas
Prior art date
Application number
PCT/JP2019/012702
Other languages
English (en)
French (fr)
Inventor
吉田宗一郎
中垣邦彦
磯村学
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2020510865A priority Critical patent/JP7307718B2/ja
Publication of WO2019189089A1 publication Critical patent/WO2019189089A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells

Definitions

  • the present invention relates to a ceramic laminate and a gas sensor using the same.
  • a gas sensor having a sensor element composed of a solid electrolyte body mainly composed of ZrO 2 has been used.
  • the solid electrolyte body mainly composed of ZrO 2 constitutes the functional part of the sensor element.
  • the thermal conductivity is low and the coefficient of thermal expansion is large, when the heated sensor element is submerged, the temperature of the decrease is reduced. There was a risk that cracks would occur due to the volume change accompanying the increase in thermal shrinkage of the portion where the temperature was not lowered due to insufficient escape.
  • the solid electrolyte body (functional part) mainly composed of ZrO 2 is embedded in the ceramic body mainly composed of Al 2 O 3 , but the electrode lead is ZrO 2 —Al. Since the 2 O 3 boundary line is straddled, the electrode lead may be broken on the boundary line.
  • the ceramic layer mainly composed of Al 2 O 3 has lower mechanical strength than the solid electrolyte layer mainly composed of ZrO 2 .
  • the structure described in Japanese Patent Application Laid-Open No. 2015-137998 is a structure in which a ceramic layer mainly composed of Al 2 O 3 is disposed except for a ZrO 2 portion, that is, a portion requiring O 2 ion conductivity. ing. Therefore, the mechanical strength of the sensor element itself is lower than that of a structure mainly composed of ZrO 2 .
  • the present invention has been made in consideration of such problems, and a functional part such as ZrO 2 through which an ionic current flows is surrounded by a material having a high thermal conductivity such as Al 2 O 3 and a material having a lower thermal expansion than ZrO 2.
  • a material having a high thermal conductivity such as Al 2 O 3
  • Another object of the present invention is to provide a gas sensor having a functional unit having the above-described effects.
  • a first aspect of the present invention is a ceramic laminate having a laminate in which two or more first ceramic layers are laminated, and a second ceramic layer having a higher thermal conductivity than the first ceramic layer.
  • the second ceramic layer is laminated on the upper and lower parts of the laminate, the front end and the side of the laminate are surrounded by the second ceramic layer, and the rear end of the laminate The part is not surrounded by the second ceramic layer.
  • the temperature of the reduced portion is set to the second ceramic layer (having high thermal conductivity) laminated on the upper and lower surfaces of the laminate and the first and side portions of the laminate. 2 Can escape to the surface of the ceramic layer. Thereby, it becomes easy to relieve the thermal shock which arises at the time of cooling like water. That is, it becomes easy to relieve the thermal shock applied to the functional part by the second ceramic layer, the influence of the thermal shock on the laminate can be suppressed, and the life of the functional part can be extended.
  • the electrode lead does not straddle the boundary line between the first ceramic layer and the second ceramic layer even if the electrode lead is wired behind the laminate. Therefore, disconnection of the electrode lead can be avoided.
  • the length in the longitudinal direction of the second ceramic layer on the side portion is shorter than the length in the longitudinal direction of the second ceramic layer on the upper and lower portions of the laminate.
  • At least a plurality of voids and a heater heat generating portion are formed in the laminate, and a longitudinal end of the second ceramic layer on a side portion of the laminate is formed on the laminate. It is located on the rear end side of the laminated body from the rear end portion of all the voids to be formed and the rear end portion of the heater heat generating portion.
  • the electrode leads are wired from various voids.
  • the end in the longitudinal direction of the second ceramic layer on the side of the multilayer body is all formed in the multilayer body. Therefore, the functional part can be surrounded by the second ceramic, the thermal shock due to moisture etc. can be mitigated, and the life of the sensor element can be extended.
  • the range is 1/15 (tm / 2) ⁇ t2 ⁇ 5 (tm / 2). is there.
  • the thickness of the second ceramic layer laminated on the top and bottom of the laminate is too thin, there is a possibility that the thermal shock due to the wetness of the laminate will be insufficient. Conversely, if it is too thick, the surface of the second ceramic layer becomes difficult to receive the compressive stress from the first ceramic layer, and the thermal shock resistance becomes insufficient. Therefore, when the thickness of the laminate is tm and the thickness of the second ceramic layer is t2, it is preferable to satisfy 1/15 (tm / 2) ⁇ t2 ⁇ 5 (tm / 2). In addition, when laminating
  • the width of the second ceramic layer covering the side portion of the multilayer body is W2
  • the width of the multilayer body surrounded by the second ceramic layer is Wm.
  • the width W2 is in the range of 0.2 to 35% of the width Wm at the longitudinal center of the second ceramic layer located on the side. Preferably, it is in the range of 1.2 to 17%.
  • the width Wm of the laminated body surrounded by the second ceramic layer is too wide, there is a risk that the thermal shock due to the wetness of the laminated body will be insufficient. Conversely, if it is too narrow, the surface of the second ceramic layer becomes difficult to receive the compressive stress from the first ceramic layer, and the thermal shock resistance becomes insufficient. Furthermore, when the width Wm of the laminated body is too narrow and the width W2 of the second ceramic layer is too wide, it is difficult to arrange the electrode leads in the sensor element having a plurality of electrodes. The structure straddles the interface between the first ceramic layer and the second ceramic layer, and there is a possibility that the occurrence rate of lead disconnection is increased.
  • the shape of the second ceramic layer covering the side portion of the multilayer body is such that the width of the second ceramic layer gradually decreases toward the rear portion of the multilayer body.
  • corners of the second ceramic layer surrounding the laminate are curved. Generation of cracks and cracks can be suppressed at the corners of the second ceramic layer.
  • the thermal expansion coefficient of the second ceramic layer is smaller than that of the first ceramic layer in an environment of 800 ° C., and the difference in thermal expansion is 1.9 ⁇ 10 ⁇ 6 to 3. 6 ⁇ 10 ⁇ 6 [/ K].
  • the second ceramic layer exerts an action such as diffusing a thermal shock to the functional part.
  • the second ceramic layer has a smaller thermal expansion coefficient than the first ceramic layer in an environment of 800 ° C., and the difference is 1. Since it is 9 ⁇ 10 ⁇ 6 to 3.6 ⁇ 10 ⁇ 6 [/ K], the second ceramic layer receives compressive stress from the first ceramic layer. As a result, the strength of the second ceramic layer is increased, and for example, the rate of occurrence of cracks due to thermal shock accompanying water exposure can be suppressed.
  • the thermal conductivity of the second ceramic layer is higher than that of the first ceramic layer, the thermal shock that occurs during cooling, such as being wet, can be easily mitigated by the second ceramic layer. The influence can be suppressed.
  • the main component of the first ceramic layer is ZrO 2
  • the thermal expansion coefficient of the second ceramic layer is smaller than that of the first ceramic layer under an environment of 800 ° C.
  • the thermal expansion difference is 2.2 ⁇ 10 ⁇ 6 to 3.1 ⁇ 10 ⁇ 6 [/ K].
  • the second ceramic layer is an Al 2 O 3 material or a composite material of Al 2 O 3 / ZrO 2 .
  • the composite material has a volume ratio of Al 2 O 3 to ZrO 2 of 99: 1 to 50:50 (volume%).
  • the first ceramic layer does not contain at least Al 2 O 3 .
  • the disadvantage of containing Al 2 O 3 in the first ceramic layer can be avoided (the internal resistance of the functional part increases and the measurement accuracy may be reduced), and the internal resistance does not change and the measurement accuracy does not change. Is maintained.
  • a gas sensor according to a second aspect of the present invention is characterized by having the ceramic laminate according to the first aspect of the present invention described above.
  • the functional part through which the ionic current flows with a high thermal conductive material such as Al 2 O 3 , it is possible to alleviate the thermal shock caused by water, etc. It is possible to extend the life and prevent disconnection of the electrode lead.
  • the gas sensor according to the second aspect of the present invention by having a ceramic laminate according to the first aspect of the present invention, high thermal conductivity, such as Al 2 O 3 a functional unit that ion current flows to provide a gas sensor that can mitigate thermal shock due to moisture etc. by enclosing with a material, can extend the life of a functional part, and can prevent disconnection of an electrode lead Can do.
  • high thermal conductivity such as Al 2 O 3
  • FIG. 1A is a longitudinal sectional view showing a ceramic laminate according to the present embodiment
  • FIG. 1B is a sectional view taken along line IB-IB in FIG. 1A.
  • It is explanatory drawing which shows the longitudinal cross-section and function of a gas sensor using the ceramic laminated body which concerns on this Embodiment.
  • 3A to 3C are explanatory views showing the dimensional relationship between the first ceramic layer, the second ceramic layer, and the laminate.
  • It is a disassembled perspective view which shows the laminated body of the green sheet used in order to produce a gas sensor.
  • 5A and 5B are diagrams showing examples of the cross-sectional shape of the second ceramic layer surrounding the side portion of the first ceramic layer.
  • FIG. 6A to 6C are explanatory views showing the specification of the width of the side portion of the second ceramic layer.
  • FIG. 7A is a plan view illustrating a wiring configuration of the gas sensor according to the first embodiment
  • FIG. 7B is a plan view illustrating a wiring configuration of the gas sensor according to the first comparative example.
  • FIG. 8A is a longitudinal sectional view showing a gas sensor according to Comparative Example 1
  • FIG. 8B is a sectional view taken along line VIIIB-VIIIB in FIG. 8A.
  • 9A and 9B are explanatory diagrams showing the experimental methods of Example 2 and Comparative Example 2.
  • the ceramic laminate according to the present embodiment (hereinafter referred to as ceramic laminate 10) is composed of one or more first ceramic layers 12A and a main component of the first ceramic layer 12A. It has one or more second ceramic layers 12B different from the main component.
  • the ceramic laminated body 10 has a second ceramic layer 12B laminated on the upper and lower parts of a laminated body 14 (structure) formed by laminating a plurality of first ceramic layers 12A. Further, the front end portion and the side portion of the multilayer body 14 are surrounded by the second ceramic layer 12B, and the length La in the longitudinal direction of the second ceramic layer 12B on the side portion is the longitudinal direction of the upper and lower second ceramic layers 12B. Shorter than the length Lb.
  • the ceramic laminated body 10 has a structure (or a structure in which the upper surface, the lower surface, and the three side surfaces of the laminated body 14 formed by laminating a plurality of first ceramic layers 12A are surrounded by the second ceramic layer 12B. ).
  • the laminate 14 (structure) made of the first ceramic layer 12A is provided with a functional part through which an ionic current flows. Further, when the thickness of the laminate 14 is tm and the thickness of the second ceramic layer 12B is t2, 1/15 (tm / 2) ⁇ t2 ⁇ 5 (tm / 2).
  • the width of the second ceramic layer 12B covering the side portion of the multilayer body 14 is W2
  • the width of the multilayer body 14 surrounded by the second ceramic layer 12B is Wm.
  • the width W2 is in the range of 0.2 to 35%, preferably in the range of 1.2 to 17% with respect to the width Wm.
  • the gas sensor 100 has a sensor element 20 as shown in FIG.
  • the sensor element 20 includes the laminate 14 (structure) made of the first ceramic layer 12A made of an oxygen ion conductive solid electrolyte, and a sensor cell 22 formed in the laminate 14.
  • the sensor cell 22 is formed in the stacked body 14, a gas inlet 24 through which a gas to be measured is introduced, an oxygen concentration adjusting chamber 26 formed in the stacked body 14 and communicating with the gas inlet 24, and in the stacked body 14. And a measurement chamber 28 that communicates with the oxygen concentration adjustment chamber 26.
  • the oxygen concentration adjusting chamber 26 has a main adjusting chamber 26a that communicates with the gas inlet 24 and a sub adjusting chamber 26b that communicates with the main adjusting chamber 26a.
  • the measurement chamber 28 communicates with the auxiliary adjustment chamber 26b.
  • the sensor cell 22 includes a diffusion resistance adjusting chamber 30 that is provided between the gas inlet 24 and the main adjusting chamber 26 a in the stacked body 14 and communicates with the gas inlet 24.
  • the laminate 14 includes five layers including a first substrate layer 32a, a second substrate layer 32b, a first solid electrolyte layer 34, a spacer layer 36, and a second solid electrolyte layer 38. In the drawing, they are stacked in this order from the bottom. Each layer is composed of an oxygen ion conductive solid electrolyte layer such as zirconia (ZrO 2 ).
  • the sensor cell 22 is on the tip end side of the sensor element 20, and between the lower surface of the second solid electrolyte layer 38 and the upper surface of the first solid electrolyte layer 34,
  • the first diffusion rate limiting unit 40a, the diffusion resistance adjusting chamber 30, the second diffusion rate limiting unit 40b, the oxygen concentration adjusting chamber 26, the third diffusion limiting unit 40c, and the measuring chamber 28 are provided.
  • a fourth diffusion rate controlling part 40d is provided between the main adjustment chamber 26a constituting the oxygen concentration adjustment chamber 26 and the sub adjustment chamber 26b.
  • the 3 diffusion rate limiting part 40c and the measurement chamber 28 are adjacently formed in such a manner that they communicate with each other in this order.
  • a portion from the gas inlet 24 to the measurement chamber 28 is also referred to as a gas circulation part.
  • the gas inlet 24, the diffusion resistance adjusting chamber 30, the main adjusting chamber 26a, the sub adjusting chamber 26b, and the measuring chamber 28 are internal spaces provided in a state in which the spacer layer 36 is cut out.
  • each upper portion is a lower surface of the second solid electrolyte layer 38 and each lower portion is an upper surface of the first solid electrolyte layer 34.
  • each side portion is partitioned by the side surface of the spacer layer 36.
  • Each of the first diffusion rate limiting unit 40a, the third diffusion rate limiting unit 40c, and the fourth diffusion rate limiting unit 40d of the sensor cell 22 is provided as two horizontally long slits (the opening has a longitudinal direction in a direction perpendicular to the drawing). ing.
  • the second diffusion control part 40b is provided as one horizontally long slit (the opening has a longitudinal direction in a direction perpendicular to the drawing).
  • a reference gas introduction space (not shown) is provided between the upper surface of the second substrate layer 32b and the lower surface of the spacer layer 36 at positions farther from the front end side than the gas circulation part.
  • the reference gas introduction space is an internal space defined by the upper part being the lower surface of the spacer layer 36, the lower part being the upper surface of the second substrate layer 32 b, and the side parts being the side surfaces of the first solid electrolyte layer 34.
  • oxygen or air is introduced into the reference gas introduction space as a reference gas.
  • the gas introduction port 24 is a part opened to the external space, and the gas to be measured is taken into the sensor cell 22 from the external space through the gas introduction port 24.
  • the first diffusion rate controlling part 40a of the sensor cell 22 is a part that imparts a predetermined diffusion resistance to the gas to be measured introduced into the diffusion resistance adjusting chamber 30 from the gas inlet 24.
  • the second diffusion rate controlling part 40b of the sensor cell 22 is a part that imparts a predetermined diffusion resistance to the gas to be measured introduced from the diffusion resistance adjustment chamber 30 into the main adjustment chamber 26a.
  • the main adjustment chamber 26a is provided as a space for adjusting the oxygen partial pressure in the measurement gas introduced from the gas inlet 24.
  • the oxygen partial pressure is adjusted by operating a main pump cell 42 described later.
  • the main pump cell 42 is an electrochemical pump cell (main electrochemical pumping cell) including a main inner pump electrode 44, an outer pump electrode 46, and an oxygen ion conductive solid electrolyte sandwiched between these electrodes. ).
  • the main inner pump electrode 44 is provided on substantially the entire upper surface of the first solid electrolyte layer 34, the lower surface of the second solid electrolyte layer 38, and the side surfaces of the spacer layer 36 that define the main adjustment chamber 26 a.
  • the outer pump electrode 46 is provided in a region corresponding to the main inner pump electrode 44 in the upper surface of the second solid electrolyte layer 38.
  • the main pump cell 42 applies the first pump voltage Vp1 by the first variable power supply 48A for the sensor cell 22 provided outside the sensor element 20, and the first pump current 42 is between the outer pump electrode 46 and the main inner pump electrode 44.
  • Ip1 oxygen in the main adjustment chamber 26a can be pumped into the external space, or oxygen in the external space can be pumped into the main adjustment chamber 26a.
  • the sensor cell 22 includes a first oxygen partial pressure detection sensor cell 50A which is an electrochemical sensor cell.
  • the first oxygen partial pressure detection sensor cell 50A includes a main inner pump electrode 44, a common reference electrode 52 sandwiched between the upper surface of the second substrate layer 32b and the first solid electrolyte layer 34, and sandwiched between these electrodes. And an oxygen ion conductive solid electrolyte.
  • the reference electrode 52 is made of a porous cermet similar to the outer pump electrode 46 and the like, and is a substantially rectangular electrode in plan view.
  • a reference gas introduction layer 54 made of porous alumina and connected to the reference gas introduction space is provided around the reference electrode 52. That is, the reference gas in the reference gas introduction space is introduced to the surface of the reference electrode 52 through the reference gas introduction layer 54.
  • the first oxygen partial pressure detection sensor cell 50A is provided between the main inner pump electrode 44 and the reference electrode 52 due to an oxygen concentration difference between the atmosphere in the main adjustment chamber 26a and the reference gas in the reference gas introduction space.
  • One electromotive force V1 is generated.
  • the first electromotive force V1 generated in the first oxygen partial pressure detection sensor cell 50A changes according to the oxygen partial pressure of the atmosphere present in the main adjustment chamber 26a.
  • the sensor cell 22 performs feedback control of the first variable power supply 48A of the main pump cell 42 by the first electromotive force V1.
  • the first pump voltage Vp1 applied to the main pump cell 42 by the first variable power supply 48A can be controlled according to the oxygen partial pressure in the atmosphere of the main adjustment chamber 26a.
  • the fourth diffusion control unit 40d gives a predetermined diffusion resistance to the gas to be measured whose oxygen concentration (oxygen partial pressure) is controlled by the operation of the main pump cell 42 in the main adjustment chamber 26a, and makes the gas to be measured a secondary gas. This is the part that leads to the adjustment chamber 26b.
  • the sub-adjustment chamber 26b adjusts the oxygen concentration (oxygen partial pressure) in the main adjustment chamber 26a in advance, and then measures oxygen introduced by the auxiliary pump cell 56, which will be described later, with respect to the gas to be measured introduced through the fourth diffusion rate limiting unit 40d. It is provided as a space for adjusting the partial pressure. As a result, the oxygen concentration in the sub-adjustment chamber 26b can be kept constant with high accuracy, so that the sensor cell 22 can measure the NOx concentration with high accuracy.
  • the auxiliary pump cell 56 is an electrochemical pump cell, and the auxiliary pump electrode 58, the outer pump electrode 46, and the second solid electrolyte provided on substantially the entire lower surface of the second solid electrolyte layer 38 facing the sub-regulation chamber 26b. Layer 38.
  • the auxiliary pump electrode 58 is also formed using a material having a reduced reducing ability for the NOx component in the gas to be measured, like the main inner pump electrode 44.
  • the auxiliary pump cell 56 applies the desired second voltage Vp2 between the auxiliary pump electrode 58 and the outer pump electrode 46, thereby pumping out oxygen in the atmosphere in the auxiliary adjustment chamber 26b to the external space, or Can be pumped into the auxiliary adjustment chamber 26b.
  • auxiliary pump electrode 58 in order to control the oxygen partial pressure in the atmosphere in the sub-adjustment chamber 26b, the auxiliary pump electrode 58, the reference electrode 52, the second solid electrolyte layer 38, the spacer layer 36, and the first solid electrolyte layer 34 are used.
  • an electrochemical sensor cell that is, a second oxygen partial pressure detection sensor cell 50B for auxiliary pump control is configured.
  • the auxiliary pump cell 56 performs pumping with the second variable power supply 48B that is voltage-controlled based on the second electromotive force V2 detected by the second oxygen partial pressure detection sensor cell 50B. Thereby, the oxygen partial pressure in the atmosphere in the sub-adjustment chamber 26b is controlled to a low partial pressure that does not substantially affect the measurement of NOx.
  • the second pump current Ip2 of the auxiliary pump cell 56 is used to control the second electromotive force V2 of the second oxygen partial pressure detection sensor cell 50B.
  • the second pump current Ip2 is input as a control signal to the second oxygen partial pressure detection sensor cell 50B, and the second electromotive force V2 is controlled, whereby the sub-adjustment chamber is passed through the fourth diffusion rate limiting unit 40d.
  • the gradient of the oxygen partial pressure in the gas to be measured introduced into 26b is controlled so as to be always constant.
  • the accuracy of the oxygen partial pressure control in the sub regulation chamber 26b is further improved.
  • the sensor cell 22 is used as a NOx sensor, the oxygen concentration in the auxiliary adjustment chamber 26b is accurately maintained at a predetermined value for each condition by the action of the main pump cell 42 and the auxiliary pump cell 56.
  • the third diffusion control unit 40c gives a predetermined diffusion resistance to the measurement gas whose oxygen concentration (oxygen partial pressure) is controlled by the operation of the auxiliary pump cell 56 in the sub-regulation chamber 26b, and the measurement gas is supplied to the measurement chamber. 28 is a part leading to 28.
  • the NOx concentration is measured mainly by the operation of the measurement pump cell 60 provided in the measurement chamber 28.
  • the measurement pump cell 60 is an electrochemical pump cell constituted by the measurement electrode 62, the outer pump electrode 46, the second solid electrolyte layer 38, the spacer layer 36, and the first solid electrolyte layer 34.
  • the measurement electrode 62 is provided directly on, for example, the upper surface of the first solid electrolyte layer 34 in the measurement chamber 28, and is made of a material that has a reduction capability for the NOx component in the measurement gas higher than that of the main inner pump electrode 44. Porous cermet electrode.
  • the measurement electrode 62 also functions as a NOx reduction catalyst that reduces NOx present in the atmosphere on the measurement electrode 62.
  • the measurement pump cell 60 pumps out oxygen generated by the decomposition of nitrogen oxides in the atmosphere around the measurement electrode 62 (in the measurement chamber 28), and the amount of the generated pump cell 60 is the third pump current Ip3, that is, the sensor of the sensor cell 22. It can be detected as an output (third measurement pump current value Ip3).
  • the first solid electrolyte layer 34, the measurement electrode 62, and the reference electrode 52 constitute an electrochemical sensor cell, that is, a measurement.
  • a third oxygen partial pressure detection sensor cell 50C for controlling the pump is configured.
  • the third variable power supply 48C is controlled based on the third electromotive force V3 detected by the third oxygen partial pressure detection sensor cell 50C.
  • the gas to be measured introduced into the sub-adjustment chamber 26b reaches the measurement electrode 62 in the measurement chamber 28 through the third diffusion rate-determining portion 40c under the condition where the oxygen partial pressure is controlled. Nitrogen oxide in the gas to be measured around the measurement electrode 62 is reduced to generate oxygen.
  • the generated oxygen is pumped by the measurement pump cell 60.
  • the third voltage Vp3 of the third variable power supply 48C is controlled so that the third electromotive force V3 detected by the third oxygen partial pressure detection sensor cell 50C is constant.
  • the amount of oxygen generated around the measurement electrode 62 is proportional to the concentration of nitrogen oxides in the measurement gas. Therefore, the nitrogen oxide concentration in the measurement gas can be calculated using the third measurement pump current value Ip3 of the measurement pump cell 60. That is, the measurement pump cell 60 measures the concentration of the specific component (NO) in the measurement chamber 28.
  • the heater heat generating portion 64 is formed in such a manner that the sensor cell 22 is sandwiched from above and below by the first substrate layer 32a and the second substrate layer 32b.
  • the heater heat generating portion 64 generates heat when power is supplied from outside through a heater electrode (not shown) provided on the lower surface of the second substrate layer 32b.
  • a heater electrode not shown
  • the heater heating section 64 is embedded over the entire region of the diffusion resistance adjustment chamber 30, the oxygen concentration adjustment chamber 26, and the measurement chamber 28, and heats a predetermined location of the sensor cell 22 to a predetermined temperature (for example, 800 ° C.). You can keep warm.
  • a heater insulating layer 66 made of alumina or the like is formed on the upper and lower surfaces of the heater heat generating portion 64 for the purpose of obtaining electrical insulation from the first substrate layer 32a and the second substrate layer 32b.
  • Diffusion resistance adjustment chamber 30 also functions as a buffer space. That is, it is possible to cancel the concentration fluctuation of the measurement gas caused by the pressure fluctuation of the measurement gas in the external space (exhaust pressure pulsation if the measurement gas is an automobile exhaust gas).
  • the sensor cell 22 has an electrochemical oxygen detection cell 70.
  • the oxygen detection cell 70 includes a second solid electrolyte layer 38, a spacer layer 36, a first solid electrolyte layer 34, a second substrate layer 32b, an outer pump electrode 46, and a reference electrode 52.
  • the partial pressure of oxygen in the gas to be measured outside the sensor element 20 can be detected by the electromotive force Vref obtained by the oxygen detection cell 70.
  • the ceramic laminate 10 is formed on the upper surface of the second solid electrolyte layer 38 and the lower surface of the first substrate layer 32a in the laminate 14, and the second ceramic whose main component is different from the second solid electrolyte layer 38 and the first substrate layer 32a.
  • the layer 12B is formed and configured.
  • the total length of the gas sensor 100 is L1
  • the length of the second ceramic layer 12B covering the side portion of the laminate 14 is L2
  • the distance from the front end of the gas sensor 100 to the rear end of the measurement chamber 28 is as follows.
  • the length from the tip of the gas sensor 100 to the heater heat generating portion 64 is L4
  • the following magnitude relationship is established. L1> L2, L2> L3, L2> L4
  • the width of the gas sensor 100 is W1
  • the width (one side) of the second ceramic layer 12B covering the side of the laminated body 14 is W2
  • the width of the laminated body 14 is surrounded by the second ceramic layer 12B.
  • the width W2 is in the range of 0.2 to 35%, preferably in the range of 1.2 to 17% with respect to the width Wm. Further, there is a size relationship of width W1> width Wm> W2.
  • the ceramic laminate 10 described above is manufactured as follows. That is, as shown in FIG. 4, a plurality of green sheets 102 are laminated to produce a green sheet laminate 104.
  • the green sheet 102 is composed of a combination of the first green sheet 102A and the second green sheet 102B.
  • the width is narrowed from the front end portion to the rear portion (the portion that becomes the measurement chamber 28), and for example, a U-shaped second green sheet 102B is fitted around the narrowed portion.
  • a long green sheet 102 is formed as a whole by printing or pouring.
  • a plurality of green sheets 102 are laminated to produce a green sheet laminate 104, but in the previous stage, the gaps and various electrodes constituting the measurement chamber 28 and the like in the first green sheet 102A portion. Has been formed. Thereafter, the sheet-like second green sheet 102 ⁇ / b> C is laminated on the upper and lower surfaces of the green sheet laminate 104 to form the second laminate 106.
  • the second laminated body 106 made of the plurality of green sheets 102 and the second green sheets 102C is fired, so that the whole of the laminated body 14 composed of the first ceramic layer 12A and the rear part is applied to the second portion.
  • the gas sensor 100 surrounded by the ceramic layer 12B can be manufactured.
  • the second ceramic layer 12B of the gas sensor 100 has a smaller coefficient of thermal expansion than the first ceramic layer 12A in an environment of 800 ° C., and the difference (thermal expansion difference) is 1.9 ⁇ 10 ⁇ 6 to 3.6. ⁇ 10 ⁇ 6 [/ K] and the thermal conductivity is larger than that of the first ceramic layer 12A.
  • the main component of the first ceramic layer 12A may be ZrO 2 and the main component of the second ceramic layer 12B may be Al 2 O 3 .
  • the first ceramic layer 12A may not contain at least Al 2 O 3 .
  • the second ceramic layer 12B may be an Al 2 O 3 material or a composite material of Al 2 O 3 / ZrO 2 .
  • the composite material preferably has a volume ratio of Al 2 O 3 and ZrO 2 of 99: 1 to 50:50 (volume%) by volume.
  • the main component of the second ceramic layer 12B may be a material other than the Al 2 O 3 material, such as spinel, magnesia, mullite, etc., as long as the conditions of the thermal expansion coefficient and the thermal conductivity are met.
  • the shape of the second ceramic layer 12B surrounding the multilayer body 14 is arbitrary. As shown in FIG. 5A, the shape of the second ceramic layer 12B covering the side portion of the multilayer body 14 is the same as that of the second ceramic layer 12B.
  • the width W2 may be gradually reduced toward the rear portion of the stacked body 14. In this case, since the contact area between the first ceramic layer 12A (main component: ZrO 2 ) and the second ceramic layer 12B (main component: Al 2 O 3 ) increases, strong bonding is expected, and after shape formation or after firing Peeling can be suppressed.
  • the corners of the second ceramic layer 12B surrounding the laminate 14 may be curved. Also in this case, cracks and the like are difficult to enter at the corners of the second ceramic layer 12B, so that the strength of the gas sensor 100 is increased, and for example, the rate of occurrence of cracks due to thermal shock due to water exposure can be suppressed.
  • the cross section of the second ceramic layer 12B described above is formed in a frame shape surrounding the three ends of the tip portion of the multilayer body 14 made of the first ceramic layer 12A, as shown in the explanatory views of FIGS. 6A to 6C, for example. Yes.
  • FIGS. 6A to 6C hatching showing a cross section is omitted.
  • the width W2 of the side part of the second ceramic layer 12B formed in a frame shape is specified, as shown in FIGS. 6A to 6C, the longitudinal center of the second ceramic layer 12B located on the side part is provided. , I.e., a width at a point that is 1/2 the total length L2 of the second ceramic layer 12B that covers the side portion of the laminate 14.
  • At least Al 2 O 3 is not included in the laminate 14 (ZrO 2 ) which is a functional unit. This is because if Al 2 O 3 is included in the laminate 14 (ZrO 2 ), which is a functional part, the resistance in the laminate 14 increases and the measurement accuracy decreases. However, the impurity level (1 wt% or less) does not matter.
  • the length in the longitudinal direction of the second ceramic layer 12B laminated on the upper surface and the lower surface of the multilayer body 14 in the gas sensor 100 according to the present embodiment is preferably the same length as the first ceramic layer 12A of the multilayer body 14. However, they are not necessarily the same.
  • Example 1 As shown in FIGS. 3A to 3C, the gas sensor 108 according to the first embodiment has the same configuration as the gas sensor 100 according to the present embodiment described above. Therefore, as shown in FIG. 7A, for example, the electrode lead 110 led out from the measurement electrode 62 is wired in the laminated body 14 composed of the first ceramic layer 12A and is electrically connected to an external terminal (not shown). .
  • the gas sensor 200 according to Comparative Example 1 has a structure in which the laminated body 14 of the first ceramic layer 12A is surrounded by the second ceramic layer 12B from above and below and from all sides. That is, it has a structure in which the laminate 14 of the first ceramic layer 12A is embedded in the second ceramic layer 12B. Therefore, as shown in FIG. 7B, for example, the electrode lead 110 derived from the measurement electrode 62 straddles the boundary line 112 between the first ceramic layer 12A and the second ceramic layer 12B.
  • the gas sensor 120 according to Example 2 has the same configuration as the gas sensor 100 according to the present embodiment described above. That is, the second ceramic layer 12B (Al 2 O 3 ) is formed from the front end of the multilayer body 14 of the sensor element 20 to the entire upper surface and the entire lower surface, and the second ceramic layer 12B (Al 2 O 3 ) is formed from the front end of the multilayer body 14 to a part of the side surface. Al 2 O 3 ) is formed.
  • the length L2 (see FIG. 3A) of the second ceramic layer 12B on the side surface is 20 mm or more from the tip.
  • the gas sensor 130 according to Comparative Example 2 is the sensor element 20 in which the base portion is entirely composed of ZrO 2 . That is, the first ceramic layer 12A (ZrO 2 ) is exposed from the tip of the sensor element 20 to the entire side surface.
  • Example 2 Comparative Example 2
  • a water droplet 140 is dropped at a position of about 5 mm from the tip of the element on the side surface of the sensor element 20 during steady driving, It was confirmed whether or not the sensor element 20 was cracked.
  • Example 2 as shown in FIG. 9A, the water droplet 140 is dropped on the portion of the second ceramic layer 12B (Al 2 O 3 ) on the side surface of the sensor element 20, and in Comparative Example 2, as shown in FIG. 9B.
  • the water droplet 140 is dropped on the portion of the first ceramic layer 12A (ZrO 2 ) on the side surface of the sensor element 20.
  • the dropping method of the water droplet 140 was such that the water droplet 140 was dropped from the microsyringe 142 by air pressure, and the dropping amount was adjusted by the dropping time.
  • the crack was detected by observing the current value between the outer pump electrode 46 and the main inner pump electrode 44.
  • a first pump voltage Vp1 (see FIG. 2) is applied between the outer pump electrode 46 and the main inner pump electrode 44 of the sensor element 20 so that oxygen in the main adjustment chamber 26a of the oxygen concentration adjustment chamber 26 is pumped outward.
  • a first pump current Ip1 corresponding to the amount of oxygen drawn flows.
  • outside oxygen O 2 flows into the main adjustment chamber 26a through the crack.
  • first pump current Ip1 the current between the outer pump electrode 46 and the main inner pump electrode 44
  • first pump current Ip1 the current between the outer pump electrode 46 and the main inner pump electrode 44
  • the time when the current between the outer pump electrode 46 and the main inner pump electrode 44 suddenly increased was the time when the current value exceeded a preset threshold value.
  • Example 2 Comparative Example 2
  • the heater element 64 was energized to a temperature of 800 ° C., and the sensor element 20 was heated.
  • the main pump cell 42, the auxiliary pump cell 56, the first oxygen partial pressure detection sensor cell 50A, the second oxygen partial pressure detection sensor cell 50B, etc. are operated in the air atmosphere to set the oxygen concentration in the main adjustment chamber 26a to a predetermined value. Control was made so as to maintain a constant value.
  • the water droplet 140 was dripped at the position of 5 mm from the element front-end
  • the ceramic laminate and the gas sensor according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention.
  • the main material of the second ceramic layer 12B is preferably Al 2 O 3 , but the thermal expansion difference from the first ceramic layer 12A is 1.9 ⁇ 10 ⁇ 6 to 3.6 ⁇ 10 ⁇ 6.
  • Any material may be used as long as it has a thermal conductivity higher than ZrO 2 within the range of [/ K].
  • spinel, mullite, magnesia, etc. can be employed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、セラミック積層体及びガスセンサに関する。セラミック積層体(10)は、2層以上の第1セラミック層(12A)が積層された積層体(14)と、熱伝導率が第1セラミック層(12A)よりも高い第2セラミック層(12B)とを有するセラミック積層体(10)であって、積層体(14)の上部及び下部に、それぞれ第2セラミック層(12B)が積層され、積層体(14)の先端部及び側部が第2セラミック層(12B)で囲まれ、且つ、積層体(14)の後端部は第2セラミック層(12B)で囲まれていない。

Description

セラミック積層体及びガスセンサ
 本発明は、セラミック積層体及びそれを利用したガスセンサに関する。
 従来から、ZrOを主成分とする固体電解質体で構成されたセンサ素子を有するガスセンサが用いられている。ZrOを主成分とする固体電解質体はセンサ素子の機能部を構成するが、熱伝導率が低く、熱膨張率が大きいため、加熱状態のセンサ素子が被水した場合、低下分の温度を十分に逃がせず、温度低下した部分の熱収縮が大きくなり、それに伴う体積変化でクラックが生じるおそれがあった。
 そこで、上記課題を解決するセンサ素子の構造として、特開2015-137998号公報記載のガスセンサがある。このガスセンサは、ZrOを主成分とする固体電解質体(機能部)を、Alを主成分とするセラミックス体に埋込むようにしている。
 上述したように、上記ガスセンサは、ZrOを主成分とする固体電解質体(機能部)を、Alを主成分とするセラミックス体に埋込むようにしているが、電極リードがZrO-Alの境界線を跨ぐため、その境界線上で、電極リードが断線するおそれがある。
 通常、Alを主成分とするセラミック層は、ZrOを主成分とする固体電解質層よりも機械的強度が低い。特開2015-137998号公報記載の構造は、ZrO部、つまり、Oイオン導電性を必要とする部分を除いて、全てAlを主成分とするセラミック層を配置した構造となっている。そのため、センサ素子自体の機械的強度は、ZrOを主体とする構造と比較して低くなる。
 本発明はこのような課題を考慮してなされたものであり、イオン電流が流れるZrOのような機能部をAlのような高熱伝導材でZrOより低熱膨張な材料で囲い込むことにより、Al表面に圧縮応力を発生させて強度を上げさせると共に、被水等による熱衝撃を緩和して、機能部の長寿命化等を図ることができ、しかも、電極リードの断線も防止することができるセラミック積層体を提供することを目的とする。
 また、本発明は、上述した効果を有する機能部を具備したガスセンサを提供することを目的とする。
[1] 本発明の第1の態様は、2層以上の第1セラミック層が積層された積層体と、熱伝導率が前記第1セラミック層よりも高い第2セラミック層とを有するセラミック積層体であって、前記積層体の上部及び下部に、それぞれ前記第2セラミック層が積層され、前記積層体の先端部及び側部が前記第2セラミック層で囲まれ、且つ、前記積層体の後端部は前記第2セラミック層で囲まれていない。
 加熱状態のセラミック積層体が被水した場合、低下分の温度を、積層体の上下面に積層された第2セラミック層(熱伝導率が高い)及び前記積層体の先端部及び側部の第2セラミック層の表面に逃がすことができる。これにより、被水のような冷却の際に生じる熱衝撃を緩和させ易くなる。すなわち、第2セラミック層によって機能部へ加わる熱衝撃を緩和させ易くなり、熱衝撃による積層体への影響を抑えることができ、機能部の長寿命化等を図ることができる。
 また、積層体にイオン電流が流れる機能部を設けた場合、電極リードを積層体の後方に配線しても、電極リードが第1セラミック層と第2セラミック層との境界線を跨ぐことがないため、電極リードの断線を回避することができる。
[2] 第1の態様において、前記側部の前記第2セラミック層の長手方向の長さは、前記積層体の上部及び下部の前記第2セラミック層の長手方向の長さよりも短い。
[3] 第1の態様において、前記積層体は、少なくとも複数の空所とヒータ発熱部が形成され、前記積層体の側部の前記第2セラミック層の長手方向の終端は、前記積層体に形成される全ての前記空所の後端部及び前記ヒータ発熱部の後端部よりも前記積層体の後端部側に位置している。
 積層体にイオン電流が流れる機能部を設けた場合、積層体には様々な濃度調整や測定のための空所が形成される場合がある。このような場合、各種空所から電極リードが配線されることになるが、第1の態様では、積層体の側部の第2セラミック層の長手方向の終端が、積層体に形成される全ての空所の位置よりも後部に位置しているため、機能部を第2セラミックで囲うことができ、被水等による熱衝撃を緩和させ、センサ素子の長寿命化を図ることができる。
[4] 第1の態様において、前記積層体の厚みをtm、前記第2セラミック層の厚みをt2としたとき、1/15(tm/2)≦t2≦5(tm/2)の範囲である。
 積層体の上下に積層する第2セラミック層の厚みが薄すぎると、積層体の被水等による熱衝撃の緩和が不十分になるおそれがある。逆に厚すぎると第2セラミック層の表面が第1セラミックス層からの圧縮応力を受けにくくなり、耐熱衝撃性が不十分となる。そこで、積層体の厚みをtm、第2セラミック層の厚みをt2としたとき、1/15(tm/2)≦t2≦5(tm/2)にすることが好ましい。なお、積層体の上部及び下部に第2セラミック層を積層する場合は、各第2セラミック層の厚みはそれぞれ同じであってもよいし、それぞれ異なっていても構わない。
[5] 第1の態様において、前記積層体の側部を被覆する前記第2セラミック層の幅をW2、前記積層体のうち、前記第2セラミック層にて囲まれた積層体の幅をWmとしたとき、側部に位置する前記第2セラミック層の長手方向中心において、前記幅W2は、前記幅Wmに対して0.2~35%の範囲である。好ましくは、1.2~17%の範囲である。
 第2セラミック層にて囲まれた積層体の幅Wmが広すぎると、積層体の被水等による熱衝撃の緩和が不十分になるおそれがある。逆に狭すぎると第2セラミック層の表面が第1セラミックス層からの圧縮応力を受けにくくなり、耐熱衝撃性が不十分となる。さらに、積層体の幅Wmが狭すぎて、且つ、第2セラミック層の幅W2が広すぎると、複数の電極を有するセンサ素子において、電極リードの配置が困難になり、さらには、電極リードが第1セラミック層と第2セラミック層の界面を跨ぐ構成となり、リード断線の発生率が高くなるおそれがある。
[6] 第1の態様において、前記積層体の側部を被覆する前記第2セラミック層の形状は、前記第2セラミック層の幅が前記積層体の後部に向かって徐々に小さくなっている。
 この場合、積層体と第2セラミック層との接触面積が増えることから、強接合が見込め、形状形成後、もしくは焼成後の剥離を抑制することができる。
[7] 第1の態様において、前記積層体を囲む前記第2セラミック層の角部が湾曲形状である。第2セラミック層の角部で亀裂やクラックの発生を抑制することができる。
[8] 第1の態様において、前記第2セラミック層の熱膨張率は、800℃の環境下で、前記第1セラミック層より小さく、その熱膨張差が1.9×10-6~3.6×10-6[/K]である。
 例えば積層体にイオン電流が流れる機能部を設けた場合、第2セラミック層は機能部への熱衝撃を拡散する等の作用を発揮する。
 また、第1セラミック層と接合する第2セラミック層の熱膨張率を調整して、800℃の環境下で、第2セラミック層は第1セラミック層より熱膨張率が小さく、その差が1.9×10-6~3.6×10-6[/K]であることから、第2セラミック層は第1セラミック層からの圧縮応力を受ける。その結果、第2セラミック層の強度が上がり、例えば被水に伴う熱衝撃によるクラック発生率を抑えることができる。
 また、第2セラミック層の熱伝導率が第1セラミック層より高いことにより、被水のような冷却の際に生じる熱衝撃を第2セラミック層で緩和させ易くなり、熱衝撃による機能部への影響を抑えることができる。
[9] 第1の態様において、前記第1セラミック層の主成分がZrOであり、前記第2セラミック層の熱膨張率は、800℃の環境下で、前記第1セラミック層より小さく、その熱膨張差が2.2×10-6~3.1×10-6[/K]である。
[10] 第1の態様において、前記第2セラミック層は、Al材、もしくはAl/ZrOの複合材である。
[11] 第1の態様において、前記複合材は、AlとZrOの分量比が、体積比で99:1~50:50(体積%)である。
[12] 第1の態様において、前記第1セラミック層に、少なくともAlが含まれていない。
 第1セラミック層にAlを含有させることによる不利益(機能部の内部抵抗が大きくなり、測定精度が低下するおそれがある)を回避することができ、内部抵抗は変わらず、測定精度が維持される。
[13] 本発明の第2の態様に係るガスセンサは、上述した第1の本発明に係るセラミック積層体を有することを特徴とする。
 本発明の第1の態様によれば、イオン電流が流れる機能部をAlのような高熱伝導材で囲い込むことにより、被水等による熱衝撃を緩和することができ、機能部の長寿命化等を図ることができ、しかも、電極リードの断線も防止することができる。
 また、本発明の第2の態様に係るガスセンサによれば、本発明の第1の態様に係るセラミック積層体を具備することで、イオン電流が流れる機能部をAlのような高熱伝導材で囲い込むことにより、被水等による熱衝撃を緩和することができ、機能部の長寿命化等を図ることができ、しかも、電極リードの断線も防止することができるガスセンサを提供することができる。
図1Aは本実施の形態に係るセラミック積層体を示す縦断面図であり、図1Bは図1AにおけるIB-IB線上の断面図である。 本実施の形態に係るセラミック積層体を使用したガスセンサの縦断面及び機能を示す説明図である。 図3A~図3Cは、第1セラミック層、第2セラミック層及び積層体の寸法関係を示す説明図である。 ガスセンサを作製するために使用されるグリーンシートの積層体を示す分解斜視図である。 図5A及び図5Bは、第1セラミック層の側部を囲む第2セラミック層の断面形状の例を示す図である。 図6A~図6Cは、第2セラミック層の側部の幅の特定を示す説明図である。 図7Aは、実施例1に係るガスセンサの配線形態を示す平面図であり、図7Bは比較例1に係るガスセンサの配線形態を示す平面図である。 図8Aは比較例1に係るガスセンサを示す縦断面図であり、図8Bは図8AにおけるVIIIB-VIIIB線上の断面図である。 図9A及び図9Bは実施例2及び比較例2の実験方法を示す説明図である。
 以下、本発明に係るセラミック積層体の実施の形態例と、該セラミック積層体をガスセンサに適用した実施の形態例を図1A~図9Bを参照しながら説明する。
 本実施の形態に係るセラミック積層体(以下、セラミック積層体10と記す)は、図1A及び図1Bに示すように、1以上の第1セラミック層12Aと、主成分が第1セラミック層12Aの主成分と異なる1以上の第2セラミック層12Bとを有する。
 セラミック積層体10は、複数の第1セラミック層12Aを積層することによって構成された積層体14(構造体)の上部及び下部に、それぞれ第2セラミック層12Bが積層されている。また、積層体14の先端部及び側部が第2セラミック層12Bで囲まれ、側部の第2セラミック層12Bの長手方向の長さLaは、上部及び下部の第2セラミック層12Bの長手方向の長さLbよりも短い。
 すなわち、セラミック積層体10は、複数の第1セラミック層12Aを積層することによって構成された積層体14の上面、下面及び3つの側面を第2セラミック層12Bで囲んだ構造(もしくは囲い込んだ構造)を有する。
 セラミック積層体10において、第1セラミック層12Aによる積層体14(構造体)には、イオン電流が流れる機能部が設けられる。また、積層体14の厚みをtm、第2セラミック層12Bの厚みをt2としたとき、1/15(tm/2)≦t2≦5(tm/2)である。また、図1Bにおいて、積層体14の側部を被覆する第2セラミック層12Bの幅をW2、積層体14のうち、第2セラミック層12Bにて囲まれた積層体14の幅をWmとしたとき、幅W2は、幅Wmに対して0.2~35%の範囲、好ましくは1.2~17%の範囲である。
 次に、セラミック積層体10によるガスセンサ100の構成及び機能を図2~図5Bを参照しながら説明する。
 ガスセンサ100は、図2に示すように、センサ素子20を有する。センサ素子20は、酸素イオン伝導性の固体電解質からなる第1セラミック層12Aによる上記積層体14(構造体)と、積層体14に形成されたセンサセル22とを有する。
 センサセル22は、積層体14に形成され、被測定ガスが導入されるガス導入口24と、積層体14内に形成され、ガス導入口24に連通する酸素濃度調整室26と、積層体14内に形成され、酸素濃度調整室26に連通する測定室28とを有する。
 酸素濃度調整室26は、ガス導入口24に連通する主調整室26aと、主調整室26aに連通する副調整室26bとを有する。測定室28は副調整室26bに連通している。
 さらに、このセンサセル22は、積層体14のうち、ガス導入口24と主調整室26aとの間に設けられ、ガス導入口24に連通する拡散抵抗調整室30を有する。
 具体的には、積層体14は、第1基板層32aと、第2基板層32bと、第1固体電解質層34と、スペーサ層36と、第2固体電解質層38との5つの層が、図面視で下側からこの順に積層されて構成されている。各層は、それぞれジルコニア(ZrO)等の酸素イオン伝導性固体電解質層にて構成されている。
 図2に示すように、センサセル22は、センサ素子20の先端部側であって、第2固体電解質層38の下面と第1固体電解質層34の上面との間には、ガス導入口16と、第1拡散律速部40aと、拡散抵抗調整室30と、第2拡散律速部40bと、酸素濃度調整室26と、第3拡散律速部40cと、測定室28とが備わっている。また、酸素濃度調整室26を構成する主調整室26aと、副調整室26bとの間に第4拡散律速部40dが備わっている。
 これらガス導入口24と、第1拡散律速部40aと、拡散抵抗調整室30と、第2拡散律速部40bと、主調整室26aと、第4拡散律速部40dと、副調整室26b、第3拡散律速部40cと、測定室28とは、この順に連通する態様にて隣接形成されている。ガス導入口24から測定室28に至る部位を、ガス流通部とも称する。
 ガス導入口24と、拡散抵抗調整室30と、主調整室26aと、副調整室26bと、測定室28は、スペーサ層36をくり抜いた態様にて設けられた内部空間である。拡散抵抗調整室30と、主調整室26aと、副調整室26bと、測定室28はいずれも、各上部が第2固体電解質層38の下面で、各下部が第1固体電解質層34の上面で、各側部がスペーサ層36の側面で区画されている。
 センサセル22の第1拡散律速部40a、第3拡散律速部40c及び第4拡散律速部40dは、いずれも2本の横長の(図面に垂直な方向に開口が長手方向を有する)スリットとして設けられている。第2拡散律速部40bは、1本の横長の(図面に垂直な方向に開口が長手方向を有する)スリットとして設けられている。
 また、第2基板層32bの上面と、スペーサ層36の下面との間であって、それぞれガス流通部よりも先端側から遠い位置には、図示しない基準ガス導入空間が設けられている。基準ガス導入空間は、上部がスペーサ層36の下面で、下部が第2基板層32bの上面で、側部が第1固体電解質層34の側面で区画された内部空間である。基準ガス導入空間には、基準ガスとして、例えば酸素や大気が導入される。
 ガス導入口24は、外部空間に対して開口している部位であり、該ガス導入口24を通じて外部空間からセンサセル22内に被測定ガスが取り込まれる。
 センサセル22の第1拡散律速部40aは、ガス導入口24から拡散抵抗調整室30に導入される被測定ガスに、所定の拡散抵抗を付与する部位である。
 センサセル22の第2拡散律速部40bは、拡散抵抗調整室30から主調整室26aに導入される被測定ガスに、所定の拡散抵抗を付与する部位である。
 主調整室26aは、ガス導入口24から導入された被測定ガス中の酸素分圧を調整するための空間として設けられる。酸素分圧は、後述する主ポンプセル42が作動することによって調整される。
 主ポンプセル42は、主内側ポンプ電極44と、外側ポンプ電極46と、これらの電極に挟まれた酸素イオン伝導性の固体電解質とを含んで構成される電気化学的ポンプセル(主電気化学的ポンピングセル)である。主内側ポンプ電極44は、主調整室26aを区画する第1固体電解質層34の上面、第2固体電解質層38の下面、及び、スペーサ層36の側面のそれぞれの略全面に設けられている。外側ポンプ電極46は、第2固体電解質層38の上面のうち、主内側ポンプ電極44と対応する領域に設けられている。
 主ポンプセル42は、センサ素子20の外部に備わるセンサセル22用の第1可変電源48Aにより第1ポンプ電圧Vp1を印加して、外側ポンプ電極46と主内側ポンプ電極44との間に第1ポンプ電流Ip1を流すことにより、主調整室26a内の酸素を外部空間に汲み出し、あるいは、外部空間の酸素を主調整室26a内に汲み入れることが可能となっている。
 また、センサセル22は、電気化学的センサセルである第1酸素分圧検出センサセル50Aを有する。この第1酸素分圧検出センサセル50Aは、主内側ポンプ電極44と、第2基板層32bの上面と第1固体電解質層34とに挟まれる共通の基準電極52と、これらの電極に挟まれた酸素イオン伝導性固体電解質とによって構成されている。基準電極52は、外側ポンプ電極46等と同様の多孔質サーメットからなり、平面視で略矩形状の電極である。
 また、基準電極52の周囲には、多孔質アルミナからなり、且つ、基準ガス導入空間につながる基準ガス導入層54が設けられている。すなわち、基準電極52の表面に、基準ガス導入空間の基準ガスが基準ガス導入層54を介して導入されるようになっている。第1酸素分圧検出センサセル50Aは、主調整室26a内の雰囲気と基準ガス導入空間の基準ガスとの間の酸素濃度差に起因して主内側ポンプ電極44と基準電極52との間に第1起電力V1が発生する。
 第1酸素分圧検出センサセル50Aにおいて生じる第1起電力V1は、主調整室26aに存在する雰囲気の酸素分圧に応じて変化する。センサセル22は、上記第1起電力V1によって、主ポンプセル42の第1可変電源48Aをフィードバック制御する。これにより、第1可変電源48Aが主ポンプセル42に印加する第1ポンプ電圧Vp1を、主調整室26aの雰囲気の酸素分圧に応じて制御することができる。
 第4拡散律速部40dは、主調整室26aでの主ポンプセル42の動作により酸素濃度(酸素分圧)が制御された被測定ガスに所定の拡散抵抗を付与して、該被測定ガスを副調整室26bに導く部位である。
 副調整室26bは、予め主調整室26aにおいて酸素濃度(酸素分圧)が調整された後、第4拡散律速部40dを通じて導入された被測定ガスに対して、さらに後述する補助ポンプセル56による酸素分圧の調整を行うための空間として設けられている。これにより、副調整室26b内の酸素濃度を高精度に一定に保つことができるため、このセンサセル22は、精度の高いNOx濃度測定が可能となる。
 補助ポンプセル56は、電気化学的ポンプセルであり、副調整室26bに面する第2固体電解質層38の下面の略全体に設けられた補助ポンプ電極58と、外側ポンプ電極46と、第2固体電解質層38とによって構成される。
 なお、補助ポンプ電極58についても、主内側ポンプ電極44と同様に、被測定ガス中のNOx成分に対する還元能力を弱めた材料を用いて形成される。
 補助ポンプセル56は、補助ポンプ電極58と外側ポンプ電極46との間に所望の第2電圧Vp2を印加することにより、副調整室26b内の雰囲気中の酸素を外部空間に汲み出し、あるいは、外部空間から副調整室26b内に汲み入れることが可能となっている。
 また、副調整室26b内における雰囲気中の酸素分圧を制御するために、補助ポンプ電極58と、基準電極52と、第2固体電解質層38と、スペーサ層36と、第1固体電解質層34とによって電気化学的なセンサセル、すなわち、補助ポンプ制御用の第2酸素分圧検出センサセル50Bが構成されている。
 なお、この第2酸素分圧検出センサセル50Bにて検出される第2起電力V2に基づいて電圧制御される第2可変電源48Bにて、補助ポンプセル56がポンピングを行う。これにより、副調整室26b内の雰囲気中の酸素分圧は、NOxの測定に実質的に影響がない低い分圧にまで制御されるようになっている。
 また、これと共に、補助ポンプセル56の第2ポンプ電流Ip2が、第2酸素分圧検出センサセル50Bの第2起電力V2の制御に用いられるようになっている。具体的には、第2ポンプ電流Ip2は、制御信号として第2酸素分圧検出センサセル50Bに入力され、その第2起電力V2が制御されることにより、第4拡散律速部40dを通じて副調整室26b内に導入される被測定ガス中の酸素分圧の勾配が常に一定となるように制御されている。
 また、第2ポンプ電流Ip2が一定になるように、主ポンプセル42の第1可変電源48Aをフィードバック制御すると、さらに、副調整室26b内の酸素分圧制御の精度が向上する。センサセル22をNOxセンサとして使用する際は、主ポンプセル42と補助ポンプセル56との働きによって、副調整室26b内での酸素濃度は各条件の所定の値に精度良く保たれる。
 第3拡散律速部40cは、副調整室26bで補助ポンプセル56の動作により酸素濃度(酸素分圧)が制御された被測定ガスに所定の拡散抵抗を付与して、該被測定ガスを測定室28に導く部位である。
 センサセル22において、NOx濃度の測定は、主として、測定室28内に設けられた測定用ポンプセル60の動作により行われる。測定用ポンプセル60は、測定電極62と、外側ポンプ電極46と、第2固体電解質層38と、スペーサ層36と、第1固体電解質層34とによって構成された電気化学的ポンプセルである。測定電極62は、測定室28内の例えば第1固体電解質層34の上面に直に設けられ、被測定ガス中のNOx成分に対する還元能力を、主内側ポンプ電極44よりも高めた材料にて構成された多孔質サーメット電極である。測定電極62は、測定電極62上の雰囲気中に存在するNOxを還元するNOx還元触媒としても機能する。
 測定用ポンプセル60は、測定電極62の周囲(測定室28内)の雰囲気中における窒素酸化物の分解によって生じた酸素を汲み出して、その発生量を第3ポンプ電流Ip3、すなわち、センサセル22のセンサ出力(第3測定ポンプ電流値Ip3)として検出することができる。
 また、測定電極62の周囲(測定室28内)の酸素分圧を検出するために、第1固体電解質層34と、測定電極62と、基準電極52とによって電気化学的なセンサセル、すなわち、測定用ポンプ制御用の第3酸素分圧検出センサセル50Cが構成されている。第3酸素分圧検出センサセル50Cにて検出された第3起電力V3に基づいて第3可変電源48Cが制御される。
 副調整室26b内に導かれた被測定ガスは、酸素分圧が制御された状況下で第3拡散律速部40cを通じて測定室28内の測定電極62に到達する。測定電極62の周囲の被測定ガス中の窒素酸化物は還元されて酸素を発生する。
 そして、この発生した酸素は測定用ポンプセル60によってポンピングされる。その際、第3酸素分圧検出センサセル50Cにて検出された第3起電力V3が一定となるように第3可変電源48Cの第3電圧Vp3が制御される。測定電極62の周囲において発生する酸素の量は、被測定ガス中の窒素酸化物の濃度に比例する。従って、測定用ポンプセル60の第3測定ポンプ電流値Ip3を用いて被測定ガス中の窒素酸化物濃度を算出することができる。すなわち、測定用ポンプセル60は、測定室28内の特定成分(NO)の濃度を測定する。
 さらに、センサセル22は、第1基板層32aと第2基板層32bとに上下から挟まれた態様にて、ヒータ発熱部64が形成されている。ヒータ発熱部64は、第2基板層32bの下面に設けられた図示しないヒータ電極を通して外部から給電されることにより発熱する。ヒータ発熱部64が発熱することによって、センサセル22を構成する固体電解質の酸素イオン伝導性が高められる。
 ヒータ発熱部64は、拡散抵抗調整室30と酸素濃度調整室26、及び測定室28の全域に渡って埋設されており、センサセル22の所定の場所を所定の温度(例えば800℃)に加熱、保温することができるようになっている。なお、ヒータ発熱部64の上下面には、第1基板層32a及び第2基板層32bとの電気的絶縁性を得る目的で、アルミナ等からなるヒータ絶縁層66が形成されている。
 拡散抵抗調整室30は、緩衝空間としても機能する。すなわち、外部空間における被測定ガスの圧力変動(被測定ガスが自動車の排気ガスの場合であれば排気圧の脈動)によって生じる被測定ガスの濃度変動を、打ち消すことが可能である。
 また、このセンサセル22は、電気化学的な酸素検出セル70を有する。この酸素検出セル70は、第2固体電解質層38と、スペーサ層36と、第1固体電解質層34と、第2基板層32bと、外側ポンプ電極46と、基準電極52とを有する。この酸素検出セル70によって得られる起電力Vrefによりセンサ素子20の外部における被測定ガス中の酸素分圧を検出可能となっている。
 そして、セラミック積層体10によるガスセンサ100のうち、積層体14を構成する第1基板層32a、第2基板層32b、第1固体電解質層34、スペーサ層36及び第2固体電解質層38は、それぞれ第1セラミック層12Aにて構成されている。すなわち、積層体14は、複数の第1セラミック層12Aにて構成された積層体である。
 さらに、セラミック積層体10は、積層体14における第2固体電解質層38の上面及び第1基板層32aの下面に、主成分が第2固体電解質層38や第1基板層32aと異なる第2セラミック層12Bが形成されて構成されている。
 ここで、第1セラミック層12A、第2セラミック層12B及び積層体14の寸法関係を図3A~図3Cを参照しながら説明する。
 図3A及び図3Cに示すように、ガスセンサ100の全長をL1、積層体14の側部を被覆する第2セラミック層12Bの長さをL2、ガスセンサ100の先端から測定室28の後端までの長さをL3、ガスセンサ100の先端からヒータ発熱部64までの長さをL4としたとき、以下の大小関係を有する。
   L1>L2、L2>L3、L2>L4
 また、ガスセンサ100の幅をW1、第2セラミック層12Bのうち、積層体14の側部を被覆する部分(片側)の幅をW2、積層体14のうち、第2セラミック層12Bで囲まれた部分の幅をWmとしたとき、幅W2は、幅Wmに対して0.2~35%の範囲、好ましくは1.2~17%の範囲である。また、幅W1>幅Wm>W2の大小関係を有する。
 さらに、図3Bに示すように、積層体14の厚みをtm、第2セラミック層12Bの厚みをt2としたとき、1/15(tm/2)≦t2≦5(tm/2)にすることが好ましい。
 上述したセラミック積層体10は、以下のようにして作製される。すなわち、図4に示すように、グリーンシート102を複数積層して、グリーンシート積層体104を作製する。
 グリーンシート102は、第1グリーンシート102Aと第2グリーンシート102Bとの組み合わせで構成されている。例えば第1グリーンシート102Aのうち、先端部から後部(測定室28になる部分)にかけて幅を狭くし、この幅が狭くなった部分の周囲に例えばU字状の第2グリーンシート102Bを嵌め込む、あるいは印刷や流し込み等によって、全体として長尺のグリーンシート102を構成する。
 そして、上述したように、グリーンシート102を複数積層して、グリーンシート積層体104を作製するが、その前段階で、第1グリーンシート102Aの部分に測定室28等を構成する空隙や各種電極が形成済みである。その後、グリーンシート積層体104の上面と下面に、シート状の第2グリーンシート102Cを積層して第2積層体106を構成する。
 その後、複数のグリーンシート102と第2グリーンシート102Cとによる第2積層体106を焼成することによって、第1セラミック層12Aにて構成された積層体14の先端部から後部にかける全体が第2セラミック層12Bで囲い込まれたガスセンサ100を作製することができる。
 そして、ガスセンサ100の第2セラミック層12Bは、800℃の環境下で、第1セラミック層12Aより熱膨張率が小さく、その差(熱膨張差)は1.9×10-6~3.6×10-6[/K]で、且つ、熱伝導率が第1セラミック層12Aよりも大きい。
 この場合、例えば第1セラミック層12Aの主成分はZrOであり、第2セラミック層12Bの主成分はAlであってもよい。第1セラミック層12Aに、少なくともAlが含まれていなくてもよい。また、第2セラミック層12Bは、Al材、もしくはAl/ZrOの複合材であってもよい。複合材は、AlとZrOの分量比が、体積比で99:1~50:50(体積%)であることが好ましい。もちろん、第2セラミック層12Bの主成分は、熱膨張率及び熱伝導率の条件が合えば、Al材以外の材料、例えばスピネル、マグネシア、ムライト等でも構わない。
 なお、積層体14を囲む第2セラミック層12Bの形状は任意であり、図5Aに示すように、積層体14の側部を被覆する第2セラミック層12Bの形状は、第2セラミック層12Bの幅W2が積層体14の後部に向かって徐々に小さくなってもよい。この場合、第1セラミック層12A(主成分:ZrO)と第2セラミック層12B(主成分:Al)との接触面積が増えるため、強接合が見込め、形状形成後もしくは焼成後の剥離を抑制することができる。
 また、図5Bに示すように、積層体14を囲む第2セラミック層12Bの角部を湾曲形状にしてもよい。この場合も、第2セラミック層12Bの角部で亀裂等が入りにくくなるため、ガスセンサ100の強度が上がり、例えば被水に伴う熱衝撃によるクラック発生率を抑えることができる。
 上述した第2セラミック層12Bの横断面は、例えば図6A~図6Cの説明図に示すように、第1セラミック層12Aからなる積層体14の先端部分の三方を囲んだ枠状に形成されている。なお、図6A~図6Cにおいて、断面を示すハッチングの図示を省略している。そして、枠状に形成された第2セラミック層12Bの側部の幅W2を特定していう場合は、図6A~図6Cに示すように、側部に位置する第2セラミック層12Bの長手方向中心における幅、すなわち、積層体14の側部を被覆する第2セラミック層12Bの全長L2の1/2の地点の幅を指す。
 なお、ガスセンサとしての測定精度を下げないため、機能部である積層体14(ZrO)には、少なくともAlは含まれない。機能部である積層体14(ZrO)にAlが含まれると、積層体14内の抵抗が大きくなり、測定精度が下がるからである。ただ、不純物レベル(1wt%以下)は構わない。
 また、本実施の形態に係るガスセンサ100における積層体14の上面及び下面に積層される第2セラミック層12Bの長手方向の長さは、積層体14の第1セラミック層12Aと同じ長さが好ましいが、必ずしも同じではなくてもよい。
[第1実施例]
 第1実施例は、実施例1及び比較例1について、電極リード110の断線率を確認した。
(実施例1)
 実施例1に係るガスセンサ108は、図3A~図3Cに示すように、上述した本実施の形態に係るガスセンサ100と同様の構成を有する。従って、図7Aに示すように、例えば測定電極62から導出された電極リード110は第1セラミック層12Aにて構成された積層体14内を配線されて図示しない外部端子に電気的に接続される。
(比較例1)
 一方、比較例1に係るガスセンサ200は、図8A及び図8Bに示すように、第1セラミック層12Aによる積層体14を第2セラミック層12Bで上下及び四方から囲んだ構造を有する。すなわち、第1セラミック層12Aによる積層体14が第2セラミック層12Bに埋め込まれた構造を有する。従って、図7Bに示すように、例えば測定電極62から導出された電極リード110は第1セラミック層12Aと第2セラミック層12Bとの境界線112を跨ぐことになる。
<試験方法>
 実施例1に係るガスセンサ108のサンプルと比較例1に係るガスセンサ200のサンプルをそれぞれ20個作製し、ガスセンサの製造後と、ガスセンサの耐久試験後の2段階で電極リード110の断線の有無を評価した。
 評価方法は、各ガスセンサの定常駆動において、例えば測定電極62と基準電極52間の電気信号の有無により、電極リード110の接続/断線を評価した。そして、電極リード断線率=断線したサンプルの個数/全サンプルの個数(20個)を求めた。
 その結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
<試験結果>
 上述した試験結果から、比較例1に係る構造と比べ、実施例1に係る構造の方が、リード断線率が低いことがわかった。
 比較例1に係る構造については、図7Bに示すように、第1セラミック層12Aと第2セラミック層12Bとの境界線112での電極リード110をSEM観察したところ、断線していることを確認した。
[第2実施例]
 第2実施例は、実施例2及び比較例2について、被水に対する耐久性を評価した。
(実施例2)
 実施例2に係るガスセンサ120は、図3A~図3C及び図9Aに示すように、上述した本実施の形態に係るガスセンサ100と同様の構成を有する。すなわち、センサ素子20の積層体14の先端から上面全面及び下面全面にかけて第2セラミック層12B(Al)が形成され、積層体14の先端から側面の一部にかけて第2セラミック層12B(Al)が形成された構造を有する。側面における第2セラミック層12Bの長さL2(図3A参照)は、先端から20mm以上である。
(比較例2)
 一方、比較例2に係るガスセンサ130は、基体部が全てZrOで構成されたセンサ素子20である。つまり、センサ素子20の先端から側面全体にかけて第1セラミック層12A(ZrO)がむき出しの構成となっている。
(実験方法)
 具体的には、実施例2及び比較例2共に、図9A及び図9Bに示すように、定常駆動時のセンサ素子20の側面のうち、素子先端から約5mmの位置に水滴140を滴下し、センサ素子20にクラックが生じるかどうかを確認した。
 実施例2では、図9Aに示すように、水滴140は、センサ素子20の側面の第2セラミック層12B(Al)の部分に滴下され、比較例2では、図9Bに示すように、水滴140は、センサ素子20の側面の第1セラミック層12A(ZrO)の部分に滴下される。
 水滴140の滴下方法は、空気圧によりマイクロシリンジ142から水滴140を滴下させ、滴下時間によって滴下量を調整した。
(クラックの検出方法)
 クラックの検出方法は、外側ポンプ電極46と主内側ポンプ電極44間の電流値を観測することによって行った。センサ素子20の外側ポンプ電極46と主内側ポンプ電極44間は、酸素濃度調整室26の主調整室26a内の酸素が外側にくみ出されるように第1ポンプ電圧Vp1(図2参照)が印加されている。その際、酸素の汲み出し量に応じた第1ポンプ電流Ip1が流れる。このとき、水滴140の滴下に伴う熱応力により、センサ素子20の主調整室26a付近にクラックが生じた場合、そのクラックを通じて外側の酸素Oが主調整室26a内に流入する。このとき、汲み出す酸素量が増大するため、外側ポンプ電極46と主内側ポンプ電極44間の電流(第1ポンプ電流Ip1)は急激に増加する。従って、水滴140を所定量(例えば5μL)だけ滴下する時間内に外側ポンプ電極46と主内側ポンプ電極44間の電流が急激に増加した時点をクラックが発生時点とした。なお、外側ポンプ電極46と主内側ポンプ電極44間の電流が急激に増加した時点は、電流値が予め設定したしきい値を超えた時点とした。
(試験方法)
 実施例2及び比較例2共に、まず、ヒータ発熱部64(図2参照)に通電して温度を800℃とし、センサ素子20を加熱した。この状態で、大気雰囲気中で主ポンプセル42、補助ポンプセル56、第1酸素分圧検出センサセル50A、第2酸素分圧検出センサセル50B等を作動させて、主調整室26a内の酸素濃度を所定の一定値に保つように制御した。そして、第1ポンプ電流Ip1が安定するのを待った後、素子側面部のうち素子先端から5mmの位置に水滴140を滴下し、センサ素子20にクラックが生じるかどうかを確認した。0.5μLの水滴140を滴下し、第1ポンプ電流Ip1が所定のしきい値を超えた値に変化したか否かに基づいて、センサ素子20のクラックの有無を判定した。
 上述の試験を実施例2及び比較例2について、それぞれ20本ずつ行った。
(評価結果)
  結果、比較例2のセンサ素子20は、20本中20本にクラックが発生したのに対し、実施例2のセンサ素子20は20本中、クラック発生数は0本であった。
 なお、本発明に係るセラミック積層体及びガスセンサは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
 すなわち、上述した第2セラミック層12Bの主材料はAlであることが好ましいが、第1セラミック層12Aとの熱膨張差が1.9×10-6~3.6×10-6[/K]の範囲内で、且つ、熱伝導率がZrOよりも高ければ、どの材料でも構わない。例えばスピネル、ムライト、マグネシア等を採用することができる。

Claims (13)

  1.  2層以上の第1セラミック層(12A)が積層された積層体(14)と、
     熱伝導率が前記第1セラミック層(12A)よりも高い第2セラミック層(12B)とを有するセラミック積層体であって、
     前記積層体(14)の上部及び下部に、それぞれ前記第2セラミック層(12B)が積層され、
     前記積層体(14)の先端部及び側部が前記第2セラミック層(12B)で囲まれ、且つ、前記積層体(14)の後端部は前記第2セラミック層(12B)で囲まれていない、セラミック積層体。
  2.  請求項1記載のセラミック積層体において、
     前記側部の前記第2セラミック層(12B)の長手方向の長さは、前記積層体(14)の上部及び下部の前記第2セラミック層(12B)の長手方向の長さよりも短いことを特徴とするセラミック積層体。
  3.  請求項1又は2記載のセラミック積層体において、
     前記積層体(14)は、少なくとも複数の空所とヒータ発熱部(64)が形成され、
     前記積層体(14)の側部の前記第2セラミック層(12B)の長手方向の終端は、前記積層体(14)に形成される全ての前記空所の後端部及び前記ヒータ発熱部(64)の後端部よりも前記積層体(14)の後端部側に位置している、セラミック積層体。
  4.  請求項1~3のいずれか1項に記載のセラミック積層体において、
     前記積層体(14)の厚みをtm、前記第2セラミック層(12B)の厚みをt2としたとき、1/15(tm/2)≦t2≦5(tm/2)の範囲である、セラミック積層体。
  5.  請求項1~4のいずれか1項に記載のセラミック積層体において、
     前記積層体(14)の側部を被覆する前記第2セラミック層(12B)の幅をW2、前記積層体(14)のうち、前記第2セラミック層(12B)にて囲まれた積層体(14)の幅をWmとしたとき、側部に位置する前記第2セラミック層(12B)の長手方向中心において、前記幅W2は、前記幅Wmに対して0.2~35%の範囲である、セラミック積層体。
  6.  請求項1~5のいずれか1項に記載のセラミック積層体において、
     前記積層体(14)の側部を被覆する前記第2セラミック層(12B)の形状は、前記第2セラミック層(12B)の幅が前記積層体(14)の後部に向かって徐々に小さくなっている、セラミック積層体。
  7.  請求項1~5のいずれか1項に記載のセラミック積層体において、
     前記積層体(14)を囲む前記第2セラミック層(12B)の角部が湾曲形状である、セラミック積層体。
  8.  請求項1~7のいずれか1項に記載のセラミック積層体において、
     前記第2セラミック層(12B)の熱膨張率は、800℃の環境下で、前記第1セラミック層(12A)より小さく、その熱膨張差が1.9×10-6~3.6×10-6[/K]である、セラミック積層体。
  9.  請求項1~8のいずれか1項に記載のセラミック積層体において、
     前記第1セラミック層(12A)の主成分がZrOであり、
     前記第2セラミック層(12B)の熱膨張率は、800℃の環境下で、前記第1セラミック層(12A)より小さく、その熱膨張差が2.2×10-6~3.1×10-6[/K]であることを特徴とするセラミック積層体。
  10.  請求項1~9のいずれか1項に記載のセラミック積層体において、
     前記第2セラミック層(12B)は、Al材、もしくはAl/ZrOの複合材である、セラミック積層体。
  11.  請求項10記載のセラミック積層体において、
     前記複合材は、AlとZrOの分量比が、体積比で99:1~50:50(体積%)である、セラミック積層体。
  12.  請求項1~11のいずれか1項に記載のセラミック積層体において、
     前記第1セラミック層(12A)に、少なくともAlが含まれていない、セラミック積層体。
  13.  請求項1~12のいずれか1項に記載のセラミック積層体を有する、ガスセンサ。
PCT/JP2019/012702 2018-03-30 2019-03-26 セラミック積層体及びガスセンサ WO2019189089A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020510865A JP7307718B2 (ja) 2018-03-30 2019-03-26 セラミック積層体及びガスセンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018067500 2018-03-30
JP2018-067500 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189089A1 true WO2019189089A1 (ja) 2019-10-03

Family

ID=68061673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012702 WO2019189089A1 (ja) 2018-03-30 2019-03-26 セラミック積層体及びガスセンサ

Country Status (2)

Country Link
JP (1) JP7307718B2 (ja)
WO (1) WO2019189089A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316211A (ja) * 1998-03-05 1999-11-16 Denso Corp 積層型空燃比センサ素子
US20070007136A1 (en) * 2005-07-06 2007-01-11 Ngk Spark Plug Co., Ltd. Lamination-type gas sensor element and gas sensor
JP2016065850A (ja) * 2014-03-28 2016-04-28 日本碍子株式会社 膜接合構造体、その製法及びガスセンサ
JP2018004525A (ja) * 2016-07-06 2018-01-11 日本特殊陶業株式会社 ガスセンサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182156A (en) * 1981-05-01 1982-11-09 Toyota Central Res & Dev Lab Inc Oxygen concentration sensor
JP2001281208A (ja) * 2000-03-31 2001-10-10 Ngk Spark Plug Co Ltd 積層型酸素センサ素子及びその製造方法並びに酸素センサ
US7211180B2 (en) * 2003-02-10 2007-05-01 Robert Bosch Corporation Contamination-resistant gas sensor element
JP4739042B2 (ja) * 2005-02-08 2011-08-03 日本特殊陶業株式会社 ガスセンサ及びその製造方法
JP5638984B2 (ja) * 2010-03-11 2014-12-10 日本特殊陶業株式会社 ガスセンサ
JP6739926B2 (ja) * 2014-12-04 2020-08-12 日本碍子株式会社 ガスセンサ素子及びガスセンサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316211A (ja) * 1998-03-05 1999-11-16 Denso Corp 積層型空燃比センサ素子
US20070007136A1 (en) * 2005-07-06 2007-01-11 Ngk Spark Plug Co., Ltd. Lamination-type gas sensor element and gas sensor
JP2016065850A (ja) * 2014-03-28 2016-04-28 日本碍子株式会社 膜接合構造体、その製法及びガスセンサ
JP2018004525A (ja) * 2016-07-06 2018-01-11 日本特殊陶業株式会社 ガスセンサ

Also Published As

Publication number Publication date
JPWO2019189089A1 (ja) 2021-04-22
JP7307718B2 (ja) 2023-07-12

Similar Documents

Publication Publication Date Title
JP5425833B2 (ja) ガスセンサ
JP6594230B2 (ja) センサ素子及びガスセンサ
JP4999894B2 (ja) ガスセンサ
JP2014209128A (ja) ガスセンサおよびセンサ素子の製造方法
JP2011102797A (ja) ガスセンサおよびセンサ素子の製造方法
JP2009244117A (ja) ガスセンサおよびNOxセンサ
JP2015200642A (ja) センサ素子及びガスセンサ
JP6932666B2 (ja) ガスセンサ
CN110794019B (zh) 气体传感器
JP2011227061A (ja) ガスセンサ
CN108693235B (zh) 传感器元件
CN111380940B (zh) 气体传感器
JP6805033B2 (ja) センサ素子、その製法及びガスセンサ
WO2019189086A1 (ja) セラミック積層体及びガスセンサ
CN114384137A (zh) 传感器元件及气体传感器
WO2018230703A1 (ja) センサ素子及びガスセンサ
JP4093784B2 (ja) 積層型ガスセンサ素子及びその製造方法並びにガスセンサ
JP7339896B2 (ja) ガスセンサ
CN108693233B (zh) 传感器元件
WO2019189089A1 (ja) セラミック積層体及びガスセンサ
JP6573567B2 (ja) センサ素子のライトオフ異常判定方法及びガスセンサの製造方法
JP7187679B2 (ja) ガスセンサ素子及びガスセンサ
JP2018189571A (ja) センサ素子
CN108693234B (zh) 传感器元件
JP6584219B2 (ja) セラミックスヒータ,センサ素子及びガスセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510865

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19777792

Country of ref document: EP

Kind code of ref document: A1