WO2019187337A1 - 酸化膜形成方法 - Google Patents

酸化膜形成方法 Download PDF

Info

Publication number
WO2019187337A1
WO2019187337A1 PCT/JP2018/043658 JP2018043658W WO2019187337A1 WO 2019187337 A1 WO2019187337 A1 WO 2019187337A1 JP 2018043658 W JP2018043658 W JP 2018043658W WO 2019187337 A1 WO2019187337 A1 WO 2019187337A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
oxide film
substrate
film formation
ozone
Prior art date
Application number
PCT/JP2018/043658
Other languages
English (en)
French (fr)
Inventor
直人 亀田
敏徳 三浦
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to JP2018567977A priority Critical patent/JP6569831B1/ja
Priority to DE112018007372.6T priority patent/DE112018007372B4/de
Priority to KR1020207025101A priority patent/KR102268455B1/ko
Priority to CN201880091593.3A priority patent/CN111902564B/zh
Priority to US17/041,047 priority patent/US10978293B2/en
Publication of WO2019187337A1 publication Critical patent/WO2019187337A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2

Definitions

  • the present invention relates to a method for forming an oxide film.
  • the present invention relates to an oxide film forming method capable of forming a film on a substrate or film formed of a synthetic resin.
  • an inorganic film is formed to protect the surface and add functionality.
  • flexibilization has been studied in many of various electric devices, and these are required to be formed on an organic film, for example.
  • film forming techniques include chemical vapor deposition (CVD) and physical vapor deposition (PVD). These film forming techniques are used for forming various insulating films, conductive films, and the like in the manufacturing process of fine electronic devices such as semiconductors, sensors, and FPDs (Flat Panel Displays). In general, chemical vapor deposition is superior in terms of film formation speed and coverage.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • a source gas containing a compound having various film-forming elements for example, silane (general name for hydrogen silicide), TEOS (Tetra Ethyl OrthoSilicate), TMA (Trimethyl Aluminum), tungsten fluoride (WF 6 ), etc.
  • various reaction gases are added and reacted to deposit a reaction product on the film formation substrate to form a film.
  • This technique is carried out at a high temperature of several hundred degrees C. or higher in order to promote the reaction between gases and to improve the film quality on the film formation substrate. That is, the chemical vapor deposition method is difficult to lower the temperature, and often exceeds the heat resistance temperature of the organic material.
  • a reaction at room temperature is performed in a technique (for example, Patent Document 2) in which oxidation of a coating film deposited on a deposition target substrate is performed at a temperature of 100 ° C. or lower or an ashing technique for the purpose of removing organic substances.
  • Patent Documents 3 and 4 There are methods (for example, Patent Documents 3 and 4). In these methods, a process at 200 ° C. or lower is realized by using reactive species generated from a reaction between high-concentration ozone and unsaturated hydrocarbons.
  • the reaction rate is low at 200 ° C. or lower, and not only the quality of the obtained oxide film is poor, but also the film formation rate is slow.
  • a high-quality oxide film cannot be formed on a film formation substrate having a heat resistant temperature of 200 ° C. or less, and it has been difficult to produce a device having excellent characteristics.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an oxide film forming method capable of forming an oxide film on a substrate to be formed at 200 ° C. or lower.
  • One aspect of the oxide film forming method of the present invention that achieves the above object is For the substrate on which the oxide film is formed, An ozone gas, an unsaturated hydrocarbon gas, and a raw material gas containing Si or a metal element as an element constituting the oxide film are supplied, and a chemical vapor deposition method is applied to the surface of the deposition substrate. An oxide film is formed.
  • the film formation substrate is a synthetic resin substrate or film
  • the ozone gas, the unsaturated hydrocarbon gas, and the source gas are supplied to the film formation substrate to form the oxide film on the surface of the film formation substrate.
  • oxide film formation method After supplying the ozone gas, the unsaturated hydrocarbon gas, and the source gas to the deposition target substrate to form the oxide film on the deposition target substrate surface, The ozone gas and the unsaturated hydrocarbon gas are supplied to the film formation substrate.
  • the unsaturated hydrocarbon gas is ethylene gas.
  • the supply flow rate of the ozone gas is at least twice the total supply flow rate of the unsaturated hydrocarbon gas and the source gas.
  • oxide film formation method In the step of forming the oxide film on the deposition target substrate, an inert gas that stirs the ozone gas, the unsaturated hydrocarbon gas, the source gas, and the gas supplied onto the deposition target substrate. At least one gas flow rate is periodically changed.
  • oxide film formation method Another aspect of the oxide film formation method of the present invention that achieves the above object is the oxide film formation method,
  • the supply flow rates of the ozone gas and the unsaturated hydrocarbon gas are constant, and the source gas is periodically changed.
  • a shower head is provided at a position away from the film formation substrate, facing the surface of the film formation substrate, The unsaturated hydrocarbon gas and the raw material gas are mixed in advance, and the mixed gas and the ozone gas are supplied to the deposition target substrate from different supply holes of the shower head.
  • a shower head is provided at a position away from the film formation substrate, facing the surface of the film formation substrate, The ozone gas and the source gas are mixed in advance, and the mixed gas and the unsaturated hydrocarbon gas are supplied to the film formation substrate from different supply holes of the shower head.
  • the oxide film formation method of the present invention achieves the above object is the oxide film formation method,
  • the supply flow rate of the ozone gas is 0.2 sccm or more.
  • an oxide film can be formed on a substrate to be deposited at 200 ° C. or lower.
  • a characteristic diagram showing the relationship between the deposition rate and the deposition temperature of SiO 2 (a) characteristic diagram of a case of supplying the TEOS gas from the side of the substrate, (b) TEOS gas from above the surface of the substrate It is a characteristic view at the time of supplying. It is a figure which shows the outline of the oxide film formation processing system which concerns on 2nd Embodiment of this invention.
  • An oxide film forming method supplies ozone gas, source gas containing various film forming elements, and unsaturated hydrocarbon gas to a processing furnace in which a substrate on which an oxide film is to be formed is disposed. Then, an oxide film is formed on the substrate to be deposited by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the substrate to be deposited is a substrate or a film.
  • the oxide film forming method according to the embodiment of the present invention can form an oxide film at a low temperature, not only a relatively high heat resistance substrate such as a Si substrate but also a relatively low heat resistance.
  • An oxide film can be formed on a substrate or film formed of a synthetic resin.
  • the synthetic resin that forms the substrate or film include polyester resin, aramid resin, olefin resin, polypropylene, PPS (polyphenylene sulfide), and PET (polyethylene terephthalate).
  • PE polyethylene
  • POM polyoxymethylene or acetal resin
  • PEEK polyetheretherketone
  • ABS resin acrylonitrile, butadiene, styrene copolymer synthetic resin
  • PA polyamide
  • PFA fluorine (Ethylene fluoride, perfluoroalkoxyethylene copolymer)
  • PI polyimide
  • PVD polyvinyl dichloride
  • Ozone gas is preferred as the ozone concentration is higher.
  • the ozone concentration (volume% concentration) of the ozone gas is preferably 20 to 100 vol%, more preferably 80 to 100 vol%. This is because the closer the ozone concentration is to 100 vol%, the more reactive active species (OH) generated from ozone can reach the deposition target substrate surface at a higher density.
  • this reactive species (OH) reacts with carbon (C) as an impurity in the film, and this carbon (C) can be removed as a gas. Therefore, an oxide film with less impurities can be formed by supplying more reactive species (OH) to the surface of the film formation substrate.
  • the higher the ozone concentration that is, the lower the oxygen concentration
  • the process pressure of the oxide film formation process can be reduced by increasing the ozone concentration, it is preferable to use a high concentration ozone gas from the viewpoint of gas flow controllability and gas flow improvement.
  • the flow rate of ozone gas is preferably 0.2 sccm or more, and more preferably 0.2 to 1000 sccm.
  • the sccm is ccm (cm 3 / min) at 1 atm (1013 hPa) and 25 ° C.
  • the flow rate (supply amount) of the ozone gas is preferably at least twice the flow rate (supply amount) of the unsaturated hydrocarbon gas.
  • the flow rate of the ozone gas is set to at least twice the total flow rate of the unsaturated hydrocarbon gas and the raw material gas, so that the oxide film can be formed at a good film formation rate. Can be formed.
  • High-concentration ozone gas can be obtained by liquefying and separating only ozone from the ozone-containing gas based on the difference in vapor pressure and then vaporizing the liquefied ozone again.
  • An apparatus for obtaining high-concentration ozone gas is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2001-304756 and 2003-20209. These devices that generate high-concentration ozone gas generate high-concentration ozone (ozone concentration ⁇ 100 vol%) by liquefying and separating only ozone based on the difference in vapor pressure between ozone and other gases (for example, oxygen). ing.
  • high-concentration ozone gas can be continuously supplied by individually controlling the temperature of these chambers.
  • An example of a commercially available apparatus that generates high-concentration ozone gas is a pure ozone generator (MPOG-HM1A1) manufactured by Meidensha.
  • the source gas is an element that forms an oxide film (for example, lithium (Li), magnesium (Mg), silicon (Si), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron ( Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), germanium (Ge), yttrium (Y), zirconium (Zr), molybdenum (Mo), ruthenium ( Ru), rhodium (Rh), indium (In), tin (Sn), tungsten (W), iridium (Ir), platinum (Pt), lead (Pb), etc., these elements are hereinafter referred to as metals or metal elements) Is used as a constituent element.
  • oxide film for example, lithium (Li), magnesium (Mg), silicon (Si), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron ( Fe), cobalt (Co
  • a source gas containing organosilicon having a Si—O bond or Si—C bond, or an organic metal having a metal element-oxygen bond or metal element-carbon bond, a metal halide, an organometallic complex, silicon, or a metal A source gas such as hydride is used.
  • silane general name of hydrogen silicide
  • TEOS TetraEthyl OrthoSilicate
  • TMS TriMethoxySilane
  • TES TriEthymyl Aluminum
  • TEMAZ Tetramis (thylozyme)
  • TEMAZ Tetrakis
  • a heterogeneous binuclear complex containing not only one kind of metal element but also a plurality of kinds of metal elements can be used as a source gas.
  • the flow rate of the source gas is preferably 0.1 sccm or more, and more preferably 0.1 to 500 sccm.
  • the unsaturated hydrocarbon a hydrocarbon having a double bond exemplified by ethylene (alkene) or a hydrocarbon having a triple bond exemplified by acetylene (alkyne) is used.
  • a low molecular weight unsaturated hydrocarbon such as butylene (for example, an unsaturated hydrocarbon having 4 or less carbon atoms) is preferably used.
  • the flow rate of the unsaturated hydrocarbon gas is, for example, preferably 0.1 sccm or more, and more preferably 0.1 to 500 sccm.
  • FIG. 1 is a diagram showing a configuration of an oxide film formation processing system 1 according to an embodiment of the present invention.
  • ozone gas having an ozone concentration of 100 vol% ethylene gas is used as the unsaturated hydrocarbon gas, and TEOS gas is used as the raw material gas, but other gases are used as the unsaturated hydrocarbon gas and the raw material gas.
  • an oxide film can be formed when used.
  • the oxide film formation processing system 1 includes an ozone gas generator 2 (or a cylinder filled with high-concentration ozone gas), an ethylene gas cylinder 3, a TEOS gas cylinder 4, and a processing furnace 5 (chamber) for performing process processing.
  • an ozone gas generator 2 or a cylinder filled with high-concentration ozone gas
  • an ethylene gas cylinder 3 or a TEOS gas cylinder 4
  • a processing furnace 5 for performing process processing.
  • the ozone gas generator 2 supplies ozone gas to the processing furnace 5.
  • the ozone gas generator 2 is connected to the processing furnace 5 via a pipe 2a.
  • the pipes 2a, valve V 1 of the variable flow rate is provided, the flow control of the ozone gas is carried out separately.
  • the flow rate of the pipe 2a is calculated based on the cross-sectional area of the differential pressure and the pipe 2a of the primary pressure and the secondary pressure valve V 1.
  • the ethylene gas cylinder 3 supplies ethylene gas to the processing furnace 5.
  • the ethylene gas cylinder 3 is connected to the processing furnace 5 through a pipe 3a.
  • the pipe 3a, the valve V 2 of the variable flow rate is provided, the flow control ethylene gas is performed separately.
  • the pipe 3a is provided with a measuring device for measuring the flow rate of ethylene gas such as a mass flow meter.
  • the TEOS gas cylinder 4 supplies TEOS gas to the processing furnace 5.
  • the TEOS gas cylinder 4 is connected to the processing furnace 5 through a pipe 4a.
  • the pipe 4a the is provided a flow rate variable valve V 3, flow rate control of the TEOS gas is performed separately.
  • the flow rate of the TEOS gas is calculated based on, for example, the differential pressure between the primary pressure and the secondary pressure of the valve V 3 and the cross-sectional area of the pipe 4a.
  • the vaporizing chamber 6 is provided in the piping 4a.
  • TEOS is heated to 70 ° C. or higher, and TEOS that is liquid at normal temperature is vaporized in the vaporization chamber 6 and then supplied to the processing furnace 5.
  • an inert gas such as nitrogen as a carrier gas
  • a pipe for supplying an inert gas (for example, nitrogen gas) for stirring or purging the gas in the processing furnace 5 may be provided in the processing furnace 5.
  • an inert gas for example, nitrogen gas
  • a deposition substrate 7 on which an oxide film is formed is disposed in the processing furnace 5.
  • an oxide film in this embodiment, an SiO 2 film
  • the processing furnace 5 is a cold wall furnace because decomposition of ozone and the like on the wall surface of the processing furnace 5 is suppressed.
  • An exhaust pipe 8 is connected to the processing furnace 5.
  • the exhaust pipe 8 is provided with a vacuum pump 9 and an exclusion cylinder 10 for decomposing residual gas after exhaust, and the gas in the processing furnace 5 is released into the atmosphere through the exclusion cylinder 10.
  • the exhaust pipe 8 is provided with a variable flow rate valve V 4 , and the pressure in the processing furnace 5 during the film forming process is controlled by the valve V 4 .
  • the processing furnace 5 includes a furnace body 5a in which the film formation substrate 7 is disposed.
  • the furnace body 5 a is provided with a sample table 11 (heating susceptor), and the film formation substrate 7 is placed on the sample table 11.
  • a heater (not shown) for heating the sample stage 11, for example, a light source that emits infrared rays, which is used as a heating means in semiconductor manufacturing technology, is applied.
  • the film formation substrate 7 is heated to a predetermined temperature.
  • a pipe 5b to which pipes 3a and 4a for introducing ethylene gas and TEOS gas are connected is provided at one end of the furnace body 5a, and a mixed gas of ethylene gas and TEOS is supplied to the furnace body 5a.
  • the other end of the furnace body 5a is provided with a pipe 5c connected to the exhaust pipe 8, and various gases introduced into the furnace body 5a pass through the vicinity of the surface of the film formation substrate 7 and are then exhausted. It flows through the pipe 8 and is exhausted.
  • the piping 2 a into which ozone gas is introduced is provided in the furnace body 5 a adjacent to the piping 5 b so that ozone can be supplied in parallel with the processing surface of the film formation substrate 7. .
  • pipes 2a to 4a are connected to the processing furnace 5, and ozone gas, ethylene gas, and TEOS gas are supplied in the horizontal direction with respect to the processing surface of the substrate 7 to be deposited.
  • the material of the furnace body 5a, the pipes 2a to 4a, the pipes 5b and 5c, and the exhaust pipe 8 can withstand stress deformation caused by evacuating the interior and does not cause oxidative degradation due to ozone (for example, aluminum or quartz glass Manufactured by the company).
  • FIG. 2 shows a cross section 12 of the sample base 11 portion of the furnace body 5a.
  • a spacer (not shown) is provided at a position away from the surface of the film formation substrate 7 so as to face the surface of the film formation substrate 7, the width of the gas flow path flowing through the surface of the film formation substrate 7 is reduced. Gas flow rate increases.
  • the flow velocity of the gas flowing through the surface of the deposition target substrate 7 is increased, unreacted gas can be supplied also in the downstream portion of the deposition target substrate 7, and the deposition of the downstream portion of the deposition target substrate 7 becomes possible.
  • StepP1 Sample loading
  • Nitrogen gas is fed into the processing furnace 5, the gas staying in the processing furnace 5 is replaced with nitrogen gas, and the gas in the processing furnace 5 is removed (nitrogen purge).
  • the substrate 7 to be deposited is carried into the processing furnace 5, the valve V 4 is opened, and the pressure in the processing furnace 5 is lowered to 1 Pa or less using the vacuum pump 9.
  • the valve V 4 continues to be open and heats the sample stage 11 so that the temperature of the film formation substrate 7 becomes a predetermined temperature.
  • Step2 Pretreatment
  • Valves V 1 and V 2 are opened and ozone gas and ethylene gas are supplied.
  • the oxidation active species (OH) is supplied and adsorbed on the surface of the film formation substrate 7.
  • the flow rate of ozone gas is set within a range of 0.2 to 1000 sccm, for example, and the flow rate of ethylene gas is set within a range of 0.1 to 500 sccm, for example.
  • the process pressure is set to 1000 Pa or less, and the supply of ozone gas and ethylene gas is continued until the next step.
  • the flow rate of ozone gas is preferably at least twice the flow rate of ethylene gas.
  • Valve V 3 is opened and TEOS gas is supplied.
  • the flow rate of the TEOS gas is set in the range of 0.1 to 500 sccm, for example.
  • the flow rate of ozone gas is preferably at least twice the total flow rate of the flow rate of ethylene gas and the flow rate of TEOS gas, for example.
  • the process pressure is, for example, 1000 Pa or less.
  • an inert gas for stirring or purging the gas in the processing furnace 5 is periodically supplied, the inside of the processing furnace 5 is stirred with the inert gas, and the gas distribution in the processing furnace 5 is made uniform. Can also be done.
  • a uniform oxide film can be formed on the deposition target substrate 7 by supplying an inert gas to the processing furnace 5 or changing the flow rate of a gas such as a source gas individually during the process. .
  • the following three process patterns are illustrated with respect to the time change of the gas flow rate during the process.
  • the thickness of the oxide film formed on the deposition target substrate 7 increases at a constant rate during the processing period.
  • the treatment of pattern 2 is to supply TEOS gas into the treatment furnace 5 filled with ozone gas and ethylene gas.
  • TEOS gas By supplying TEOS gas to a space filled with ozone gas and ethylene gas, a high quality oxide film can be formed more uniformly.
  • the number of ozone decreases toward the downstream of the processing furnace 5 due to reaction with ethylene gas or TEOS gas. Further, by circulating the TEOS gas in the processing furnace 5, the amount of active species (OH) that react with TEOS decreases as it goes downstream.
  • the pattern 2 is processed by periodically changing the flow rate of the TEOS gas during the process to form an oxide film on the deposition target substrate 7 and the oxide film formed on the deposition target substrate 7.
  • the step of reforming with a mixed gas (including reactive active species) of ozone gas and ethylene gas is repeated. As a result, a higher quality oxide film can be uniformly formed.
  • the reaction between ozone and TEOS is considered to hardly proceed at a temperature of 200 ° C. or lower compared to the case where ethylene is present. Therefore, the process of forming an oxide film on the deposition target substrate 7 and the process of filling the processing furnace 5 with ozone gas and TEOS gas are repeated by periodically changing the flow rate of ethylene gas during the process. It is. As a result, a higher quality oxide film can be uniformly formed.
  • the distribution in the surface of the film formation substrate 7 due to the film thickness increase due to film formation is changed, and the distribution of the oxide film in the surface of the film formation substrate 7 can be controlled. It becomes possible. In any pattern, an oxide film is formed until a predetermined film thickness is set in advance, and the process proceeds to the next step.
  • the oxide film was formed in the process pattern of pattern 2.
  • the number of OH supplies to the oxide film formed on the substrate 7 is increased, and oxidation described in detail in the next step. A film reforming effect can be expected.
  • Step 4 Post-processing
  • the film formation is stopped by stopping the supply of the TEOS gas, but OH is supplied to the surface of the oxide film formed on the film formation substrate 7 as in STEP2.
  • the supplied OH diffuses in the film, so that it chemically reacts with carbon (C) and hydrogen (H), which are impurities in the film, and these impurities in the film are gasified (CO, CO 2 or H 2 O).
  • CO, CO 2 or H 2 O gasified
  • the flow rate of ozone gas and the flow rate of ethylene gas in step 4 and the pressure range in the processing furnace 5 are the same as in step 2. Since the modification time of the oxide film formed on the deposition target substrate 7 increases as the film thickness increases, the modification time is equal to the thickness of the oxide film formed on the deposition target substrate 7. It is set accordingly.
  • Step 5 Sample removal
  • Valves V 1 and V 2 are closed to stop all gas supply.
  • the pressure in the processing furnace 5 is set to 1 Pa or less, the valve V 4 is closed, and the exhaust is stopped.
  • the processing furnace 5 is filled with an inert gas such as nitrogen gas, the pressure in the processing furnace 5 is set to atmospheric pressure, and the deposition target substrate 7 is transferred to the outside of the processing furnace 5. Thereby, a series of processing processes are completed.
  • FIG. 4 shows an oxide film formed on a substrate 7 (specifically, an 8-inch Si wafer) by chemical vapor deposition at room temperature (25 ° C.) by the oxide film formation processing system 1 according to the embodiment of the present invention.
  • the result of forming SiO 2 film thickness distribution (nm)) is shown.
  • arrow A indicates the supply position of ozone gas
  • arrow B indicates the supply position of ethylene gas and TEOS gas
  • An arrow C indicates the connection position of the exhaust pipe 8.
  • the results shown in FIG. 4 show that the film forming process is performed for 10 minutes at a processing pressure of about 40 Pa in the processing furnace 5 under the gas flow conditions where the flow rate of ozone gas is 200 sccm, the flow rate of ethylene gas is 25 sccm and the flow rate of TEOS gas is 25 sccm. It is what went.
  • the film thickness of the oxide film was maximized near the ozone gas supply location, and the film thickness of the oxide film was reduced at the exhaust location. This shows that the thickness distribution of the oxide film can be controlled by adjusting the gas flow path (or moving the deposition target substrate 7). Further, the maximum value of the thickness of the oxide film was 780 nm, and the maximum value of the film formation rate was 78 nm / min.
  • ethylene gas and TEOS gas are supplied from above the substrate 7 to be deposited, and the substrate 7 (specifically, an 8-inch Si wafer) is deposited by chemical vapor deposition at room temperature (25 ° C.). This is the result (SiO 2 film thickness distribution (nm)) formed on the oxide film.
  • an arrow A indicates a supply position of ozone gas
  • a range B ′ surrounded by a dotted line indicates a supply position of ethylene gas and TEOS gas.
  • Ethylene gas and TEOS gas were supplied from above the processing surface of the substrate 7 to be processed toward the processing surface.
  • An arrow C indicates the connection position of the exhaust pipe 8.
  • the results shown in FIG. 5 show that the flow rate of ozone gas is 100 sccm, the flow rate of ethylene gas is 64 sccm, and the flow rate of TEOS gas is 0.3 sccm.
  • the film was processed.
  • the maximum value of the thickness of the oxide film was 138 nm, and the maximum value of the film formation rate was 46 nm / min.
  • FIGS. 6A and 6B are diagrams showing the relationship between the deposition rate of SiO 2 and the deposition temperature under the processing conditions of the oxide film formation process described with reference to FIGS. 4 and 5, respectively.
  • an oxide film formation method using ozone gas and ethylene gas shown by a plot of ⁇
  • ethylene gas an oxide film formation method using only ozone gas, shown by a plot of ⁇
  • the film formation rate was considerably higher than that.
  • the film formation rate (nm / min) of the oxide film and the film formation temperature have a correlation, and the maximum film formation rate was obtained at room temperature (25 ° C.).
  • the temperature of the film formation substrate 7 is, for example, preferably 200 ° C. or lower, more preferably 150 ° C. or lower, further preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 25 ° C. or lower.
  • An oxide film can be formed at a high film formation rate.
  • damage to the film formation substrate 7 and the thin film formed on the film formation substrate 7 is reduced. Therefore, the lower the temperature of the film formation substrate 7 when forming the oxide film, the better. For example, by setting the temperature of the film formation substrate 7 to ⁇ 10 ° C. or more, damage to the film formation substrate 7 and the thin film formed on the film formation substrate 7 is suppressed, and the film formation rate is sufficient.
  • An oxide film can be formed.
  • FIG. 7 is a diagram for explaining the outline of the oxide film formation processing system 13 according to the second embodiment of the present invention.
  • the oxide film formation processing system 13 according to the second embodiment of the present invention includes a shower head 14 in the processing furnace 5 of the oxide film formation processing system 1 according to the first embodiment of the present invention. Therefore, about the structure similar to the oxide film formation processing system 1 which concerns on 1st Embodiment of this invention, the same code
  • the shower head 14 is provided so as to be separated from the deposition target substrate 7 so that the surface on which the supply hole for gas ejection is formed faces the processing surface of the deposition target substrate 7.
  • An ozone gas generator 2, an ethylene gas cylinder 3, and a TEOS gas cylinder 4 are connected to the shower head 14 via pipes 2a to 4a, respectively. By supplying various gases from the shower head 14, a uniform oxide film can be formed on the deposition target substrate 7.
  • the shower head 14 Although it is desirable to separately supply ozone gas, unsaturated hydrocarbon gas, and raw material gas from the shower head 14, it is difficult to form a supply hole for individually supplying three or more kinds of gases to the shower head 14 due to the structure. It is. Therefore, as the shower head 14, a double shower head as described in JP-A-2009-1441028 is preferably used.
  • the double shower head is a shower head that is individually provided with supply holes through which two different types of gas are ejected.
  • the shower head 14 When the shower head 14 is a double shower head, two kinds of gases among the three kinds of gases are mixed in advance before being supplied to the film formation substrate 7.
  • the shower head 14 is provided with a mixing space for mixing the unsaturated hydrocarbon gas and the raw material gas, and the mixed gas of the unsaturated hydrocarbon gas and the raw material gas and the ozone gas are supplied from different supply holes of the shower head 14. Each is supplied to the film forming substrate 7.
  • the shower head 14 is provided with a mixing space for mixing ozone gas and source gas, and the mixed gas of ozone gas and source gas and unsaturated hydrocarbon gas are supplied to the film formation substrate 7 from different supply holes of the shower head 14. It can also be set as the aspect to do.
  • the process conditions and process steps of the oxide film formation processing system 13 according to the second embodiment are the same as those of the oxide film formation processing system 1 according to the first embodiment, so that the oxide film can be formed at a high film formation rate. Can be formed.
  • an oxide film can be formed on the film formation substrate 7 at a low temperature of 200 ° C. or lower.
  • an oxide film can be formed on the deposition target substrate 7 (substrate or film) formed of a material having a low heat-resistant temperature (for example, an organic material such as a synthetic resin).
  • an oxide film can be formed on the deposition target substrate 7 without using plasma, damage to the deposition target substrate 7 is suppressed.
  • a thin film for example, a base film (mainly an organic thin film) constituting the electronic device
  • an oxide film can be formed on the electronic device or the organic film without damaging the thin film such as dielectric breakdown.
  • an oxide film can be formed at a high film formation rate under processing conditions of 200 ° C. or lower. Further, the oxide film formed in the example has a pressure resistance of 5 MV / cm, and an oxide film having excellent pressure resistance and gas barrier properties is formed by the oxide film forming method according to the embodiment of the present invention. can do.
  • the film forming temperature for materials that require gas barrier properties is 80 ° C. or lower. Therefore, the oxide film formation method according to the embodiment of the present invention can be suitably applied to oxide film formation for materials that require gas barrier properties.
  • the oxide film forming method according to the embodiment of the present invention can be applied not only to enhancement of the function of the organic film but also to techniques such as enhancement of the function of the film layer structure (bulk control) and multi-layering.
  • Highly functional organic films can be applied to fields such as smartphones, tablet terminals, liquid crystal displays, solar panels, automobiles, and the like.
  • electronic devices, wiring, etc. are formed on these organic films, flexible devices that function even on products with deformation are produced, and applied to wearable computers and digital signage that can be attached and installed in various locations. Can do.
  • the oxide film forming method of the present invention has been described by showing specific embodiments.
  • the oxide film forming method of the present invention is not limited to the embodiment, and may be appropriately selected within a range not impairing the characteristics thereof. Design changes are possible, and design changes also belong to the technical scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

減圧された処理炉(5)内に設置された被成膜基体(7)に対して、オゾン濃度が20~100vol%のオゾンガスと、不飽和炭化水素ガスと、原料ガスを供給し、化学気相成長法により、被成膜基体(7)表面に酸化膜を形成する酸化膜形成方法である。不飽和炭化水素ガスは、例えば、エチレンガスであり、原料ガスは、例えば、TEOSガスである。オゾンガスの流量を、不飽和炭化水素ガスと原料ガスの合計流量の2倍以上とする。この酸化膜形成方法では、200℃以下の低温条件であっても高い成膜速度で、被成膜基体(7)上に酸化膜が形成される。

Description

酸化膜形成方法
 本発明は、酸化膜形成方法に関する。特に、合成樹脂により形成された基板やフィルム上へ成膜可能な酸化膜形成方法に関する。
 包装用や電子部品、フレキシブルデバイス等に用いられる有機材料では、表面保護や機能性付加のために無機膜の成膜が行われている。また、各種電気デバイスの多くにおいてフレキブル化が検討されており、これらは、例えば、有機フィルム上での形成が求められる。
 成膜技術としては、化学気相成長(CVD:Chemical Vapor Deposition)や物理気相成長(PVD:Physical Vapor Deposition)等の技術がある。これらの成膜技術は、半導体やセンサ、FPD(Flat Panel Display)等、微細電子デバイスの製造プロセスにおいて、各種絶縁膜や導電膜等の形成に利用されている。一般的に、成膜速度や被覆性の点で、化学気相成長の方が優れている。
 化学気相成長では、各種成膜元素を有する化合物を含む原料ガス(例えば、シラン(ケイ化水素の総称)、TEOS(TetraEthyl OrthoSillicate)、TMA(TriMethyl Alminium)、フッ化タングステン(WF6)等)に、各種反応ガスを加えて反応させ、反応生成物を被成膜基体に堆積させ、膜を形成する。この技術は、ガス間の反応を促進させ、さらに被成膜基体上での膜質向上のために、数百℃以上の高温下で実施される。つまり、化学気相成長法は低温化が難しく、多くの場合、有機材料の耐熱温度を超えてしまう。
 例えば、高濃度のオゾンガスを化学気相成長の技術に適用した場合でも、高濃度のオゾンガスとTEOSガスを用いて、数百℃以上の高温下で基板上にSiO2膜が形成されている(例えば、特許文献1)。
 低温で化学気相成長を行い、良い膜質を得るためには、低温でも化学反応性が高い反応活性種の導入が必要となる。例えば、被成膜基体に堆積された被覆膜の酸化を100℃以下の温度で行う手法(例えば、特許文献2)や、有機物の除去を目的としたアッシング技術において、室温での反応を行う手法がある(例えば、特許文献3、4)。これらの手法では、高濃度のオゾンと不飽和炭化水素の反応から生成される反応活性種を利用して、200℃以下のプロセスを実現している。
 従来の化学気相成長は、200℃以下では反応速度が遅く、得られた酸化膜の膜質が悪いだけでなく、成膜速度が遅い。その結果、耐熱温度が200℃以下の被成膜基体上に良質な酸化膜を形成することができず、優れた特性を有するデバイスを作成することが困難であった。
特開2007-109984号公報 特開2013-207005号公報 特開2008-294170号公報 特開2009-141028号公報
 本発明は、上記事情に鑑みてなされたものであり、200℃以下で被成膜基体上に酸化膜の成膜が可能な酸化膜形成方法を提供することを目的とする。
 上記目的を達成する本発明の酸化膜形成方法の一態様は、
 酸化膜が形成される被成膜基体に対して、
 オゾンガスと、不飽和炭化水素ガスと、前記酸化膜を構成する元素であるSiまたは金属元素を構成元素として含む原料ガスと、を供給し、化学気相成長法により、前記被成膜基体表面に酸化膜を形成する。
 また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
 前記被成膜基体は、合成樹脂製の基板またはフィルムであり、
 前記被成膜基体に対して、前記オゾンガスと前記不飽和炭化水素ガスを供給した後、
 前記被成膜基体に対して、前記オゾンガス、前記不飽和炭化水素ガスおよび前記原料ガスを供給して前記被成膜基体表面に前記酸化膜を形成する。
 また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
 前記被成膜基体に対して、前記オゾンガス、前記不飽和炭化水素ガスおよび前記原料ガスを供給して、前記被成膜基体表面に前記酸化膜を形成した後、
 前記被成膜基体に対して、前記オゾンガスと前記不飽和炭化水素ガスを供給する。
 また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
 前記不飽和炭化水素ガスは、エチレンガスである。
 また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
 前記被成膜基体上に前記酸化膜を形成する工程において、前記オゾンガスの供給流量は、前記不飽和炭化水素ガスと前記原料ガスの合計供給流量の2倍以上である。
 また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
 前記被成膜基体上に前記酸化膜を形成する工程において、前記オゾンガス、前記不飽和炭化水素ガス、前記原料ガス、および前記被成膜基体上に供給されたガスの攪拌を行う不活性ガスのうち少なくとも1つのガス流量を周期的に変化させる。
 また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
 前記オゾンガスと前記不飽和炭化水素ガスの供給流量を一定とし、前記原料ガスを周期的に変化させる。
 また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
 前記被成膜基体から離れた位置に、前記被成膜基体表面と向かい合って、シャワーヘッドを備え、
 予め、前記不飽和炭化水素ガスと前記原料ガスを混合し、この混合したガスと前記オゾンガスを前記シャワーヘッドの異なる供給孔からそれぞれ前記被成膜基体に供給する。
 また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
 前記被成膜基体から離れた位置に、前記被成膜基体表面と向かい合って、シャワーヘッドを備え、
 予め、前記オゾンガスと前記原料ガスを混合し、この混合したガスと前記不飽和炭化水素ガスを前記シャワーヘッドの異なる供給孔からそれぞれ前記被成膜基体に供給する。
 また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
 前記被成膜基体上に前記酸化膜を形成する工程において、前記オゾンガスの供給流量は、0.2sccm以上である。
 以上の発明によれば、200℃以下で被成膜基体上に酸化膜を形成することができる。
本発明の第1実施形態に係る酸化膜形成処理システムの概略を示す図である。 処理炉の詳細を示す図である。 酸化膜形成処理のフローを示す図である。 基板の側方からTEOSガスを供給した酸化膜形成処理の結果を示す図である。 基板の処理面の上方からTEOSガスを供給した酸化膜形成処理の結果を示す図である。 SiO2の成膜速度と成膜温度との関係を示す特性図であり、(a)基板の側方からTEOSガスを供給した場合の特性図、(b)基板の処理面の上方からTEOSガスを供給した場合の特性図である。 本発明の第2実施形態に係る酸化膜形成処理システムの概略を示す図である。
 本発明の実施形態に係る酸化膜形成方法について、図面に基づいて詳細に説明する。
 本発明の実施形態に係る酸化膜形成方法は、酸化膜が形成される被成膜基体が配置された処理炉に、オゾンガス、各種成膜元素を含む原料ガス、不飽和炭化水素ガスを供給し、化学気相成長法(CVD法)により、被成膜基体上に酸化膜を形成するものである。
 被成膜基体は、基板またはフィルム等である。特に、本発明の実施形態に係る酸化膜形成方法は、低温で酸化膜を形成することが可能であるので、Si基板等の比較的耐熱性が高い基板だけでなく、耐熱性が比較的低い合成樹脂で形成された基板またはフィルムに酸化膜を形成することができる。基板またはフィルムを形成する合成樹脂としては、例えば、ポリエステル樹脂、アラミド樹脂、オレフィン樹脂、ポリプロピレン、PPS(ポリフェニレンサルファイド)、PET(ポリエチレンテレフタレート)等がある。その他、PE(ポリエチレン)、POM(ポリオキシメチレン、または、アセタール樹脂)、PEEK(ポリエーテルエーテルケトン)、ABS樹脂(アクリロニトリル、ブタジエン、スチレン共重合合成樹脂)、PA(ポリアミド)、PFA(4フッ化エチレン、パーフルオロアルコキシエチレン共重合体)、PI(ポリイミド)、PVD(ポリ二塩化ビニル)等が用いられる。
 オゾンガスは、オゾン濃度が高いほど好ましい。例えば、オゾンガスのオゾン濃度(体積%濃度)は、20~100vol%が好ましく、80~100vol%がより好ましい。これは、オゾン濃度が100vol%に近いほど、オゾンから生成される反応活性種(OH)をより高密度で被成膜基体表面に到達させることができるためである。この反応活性種(OH)は、化学気相成長に必要な反応に加え、膜中不純物のカーボン(C)と反応し、このカーボン(C)をガスとして除去することができる。したがって、より多くの反応活性種(OH)を被成膜基体表面に供給することで、不純物の少ない酸化膜の形成が可能となる。また、オゾン濃度が高いほど(すなわち、酸素濃度が低いほど)、オゾンが分離して発生する原子状酸素(O)の寿命が長くなる傾向があることからも、高濃度のオゾンガスを用いることが好ましい。すなわち、オゾン濃度を高くすることで、酸素濃度が低くなり、原子状酸素(O)が酸素分子との衝突によって失活することが抑制される。また、オゾン濃度を高くすることで、酸化膜形成プロセスのプロセス圧力を減圧にできるため、ガス流制御性・ガス流向上の観点からも、高濃度のオゾンガスを用いることが好ましい。
 オゾンガスの流量は、例えば、0.2sccm以上が好ましく、0.2~1000sccmがより好ましい。sccmは、1atm(1013hPa)、25℃におけるccm(cm3/min)である。また、オゾンガスの流量(供給量)は、不飽和炭化水素ガスの流量(供給量)の2倍以上が好ましい。不飽和炭化水素ガスがOH基へ分解する分解ステップが複数ステップから成るため、オゾン分子:不飽和炭化水素分子=1:1で供給した場合に、反応に必要なオゾン分子が不足し、OH基が十分な量得られないおそれがあるためである。なお、不飽和炭化水素ガスと原料ガスを供給する際には、オゾンガスの流量を不飽和炭化水素ガスと原料ガスの合計流量の2倍以上とすることで、良好な成膜レートで酸化膜を形成することができる。
 高濃度のオゾンガスは、オゾン含有ガスから蒸気圧の差に基づいてオゾンのみを液化分離した後、再び液化したオゾンを気化させて得ることができる。高濃度のオゾンガスを得るための装置は、例えば、特開2001-304756号公報や特開2003-20209号公報の特許文献に開示されている。これらの高濃度のオゾンガスを生成する装置は、オゾンと他のガス(例えば、酸素)の蒸気圧の差に基づきオゾンのみを液化分離して高濃度のオゾン(オゾン濃度≒100vol%)を生成している。特に、オゾンのみを液化および気化させるチャンバを複数備えると、これらのチャンバを個別に温度制御することにより、連続的に高濃度のオゾンガスを供給することができる。なお、高濃度のオゾンガスを生成する市販の装置として、例えば、明電舎製のピュアオゾンジェネレータ(MPOG-HM1A1)がある。
 原料ガスは、酸化膜を形成する元素(例えば、リチウム(Li)、マグネシウム(Mg)、ケイ素(Si)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、イットリウム(Y)、ジルコニウム(Zr)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、インジウム(In)、錫(Sn)、タングステン(W)、イリジウム(Ir)、白金(Pt)、鉛(Pb)等、以下これらの元素を金属または金属元素という)を構成元素として含む原料ガスが用いられる。例えば、Si-O結合若しくはSi-C結合を有する有機シリコンまたは金属元素-酸素結合若しくは金属元素-炭素結合を有する有機金属を含有する原料ガスや、金属ハロゲン化物や有機金属錯体またはケイ素や金属の水素化物等の原料ガスが用いられる。具体的には、原料ガスとして、シラン(ケイ化水素の総称)、TEOS(TetraEthyl OrthoSillicate)、TMS(TriMthoxySilane)、TES(TriEthoxySilane)、TMA(TriMethyl Alminium)、TEMAZ(Tetrakis(ethylmethylamino)zirconium)、フッ化タングステン(WF6)等が用いられる。また、金属元素1種類だけでなく複数種類の金属元素を含む異種複核錯体(例えば、特開2016-210742等に記載の錯体)を原料ガスとして用いることもできる。原料ガスの流量は、例えば、0.1sccm以上が好ましく、0.1~500sccmがより好ましい。
 不飽和炭化水素は、エチレンに例示される2重結合を有する炭化水素(アルケン)やアセチレンに例示される3重結合を有する炭化水素(アルキン)が用いられる。不飽和炭化水素としては、エチレンやアセチレンの他に、ブチレン等の低分子量の不飽和炭化水素(例えば、炭素数nが4以下の不飽和炭化水素)が好ましく用いられる。不飽和炭化水素ガスの流量は、例えば、0.1sccm以上が好ましく、0.1~500sccmがより好ましい。
 図1は、本発明の実施形態に係る酸化膜形成処理システム1の構成を示す図である。この例では、オゾン濃度が100vol%のオゾンガス、不飽和炭化水素ガスとしてエチレンガスを用い、原料ガスとしてTEOSガスを用いた例を示すが、不飽和炭化水素ガスや原料ガスとして、他のガスを用いた場合も同様に酸化膜を形成することができる。
 酸化膜形成処理システム1は、オゾンガス発生装置2(または、高濃度のオゾンガスが充填されたボンベ)、エチレンガスボンベ3、TEOSガスボンベ4、およびプロセス処理を行う処理炉5(チャンバ)を備える。
 オゾンガス発生装置2は、処理炉5にオゾンガスを供給する。オゾンガス発生装置2は、配管2aを介して処理炉5に接続される。配管2aには、流量可変のバルブV1が設けられ、オゾンガスの流量制御が個別に行われる。配管2aの流量は、例えば、バルブV1の1次圧と2次圧の差圧および配管2aの断面積に基づいて算出される。このようにオゾンガスの流量計測では、圧力差で流量を計測するようなシステムを備えた装置を用いることが好ましい。これは、熱を加える方式の計測装置を用いると、オゾンの分解が起きるためである。
 エチレンガスボンベ3は、処理炉5にエチレンガスを供給する。エチレンガスボンベ3は、配管3aを介して処理炉5に接続される。配管3aには、流量可変のバルブV2が設けられ、エチレンガスの流量制御が個別に行われる。図示していないが、配管3aには、例えば、マスフローメータ等のエチレンガスの流量を計測する計測装置が備えられる。
 TEOSガスボンベ4は、処理炉5にTEOSガスを供給する。TEOSガスボンベ4は、配管4aを介して処理炉5に接続される。配管4aには、流量可変のバルブV3が設けられ、TEOSガスの流量制御が個別に行われる。TEOSガスの流量は、例えば、バルブV3の1次圧と2次圧の差圧および配管4aの断面積に基づいて算出される。また、配管4aには、気化室6が備えられる。例えば、気化室6では、TEOSが70℃以上に加熱され、常温では液体であるTEOSが気化室6で気化されてから処理炉5に供給される。なお、配管4aに、窒素等の不活性ガスをキャリアガスとして流すと、TEOSガスの輸送が改善されるため好ましい。
 図示省略しているが、処理炉5内のガスを攪拌またはパージする不活性ガス(例えば、窒素ガス)を供給する配管を処理炉5に設けることもできる。
 処理炉5には、酸化膜が形成される被成膜基体7が配置される。処理炉5において、化学気相成長法により被成膜基体7上に酸化膜(この実施例では、SiO2膜)が形成される。処理炉5が、コールドウォール炉であると、処理炉5壁面でのオゾン等の分解が抑制されるので好ましい。処理炉5には、排気用配管8が接続される。排気用配管8には、真空ポンプ9および排気後の残留ガスを分解するための除外筒10が備えられ、この除外筒10を介して処理炉5内のガスが大気中に放出される。排気用配管8には、流量可変のバルブV4が設けられ、このバルブV4により成膜プロセス中の処理炉5内の圧力が制御される。
 図2に処理炉5の詳細を示す。処理炉5は、被成膜基体7が配置される炉本体5aを備える。炉本体5aには、試料台11(加熱サセプタ)が備えられ、試料台11の上に被成膜基体7が載置される。試料台11を加熱するヒータ(図示せず)は、例えば、半導体製造技術において加熱手段として用いられている赤外線を発する光源が適用される。試料台11を加熱することで、被成膜基体7が所定の温度に加熱される。
 炉本体5aの一方の端部には、エチレンガス、TEOSガスが導入される配管3a、4aが接続される配管5bが備えられ、エチレンガスとTEOSの混合ガスが炉本体5aに供給される。炉本体5aの他方の端部には、排気用配管8に接続される配管5cが備えられ、炉本体5aに導入された各種ガスは、被成膜基体7表面付近を通過した後、排気用配管8を流れて排気される。図2では、図示されていないが、オゾンガスが導入される配管2aは、被成膜基体7の処理面と平行にオゾンが供給可能なように、配管5bに隣接して炉本体5aに備えられる。
 つまり、処理炉5には、配管2a~4aが接続され、被成膜基体7の処理面に対して水平方向にオゾンガス、エチレンガス、TEOSガスが供給される。炉本体5a、配管2a~4a、配管5b、5cおよび排気用配管8の材質は、内部を真空にすることによる応力変形に耐え、オゾンによる酸化劣化が起きないもの(例えば、アルミニウム製や石英ガラス製のもの)が用いられる。
 また、図2に、炉本体5aの試料台11部分の断面12を示す。炉本体5aにおいて試料台11部分のガスが流通する断面積が小さいほど、被成膜基体7表面近傍を流通するガス流速が上昇する。例えば、被成膜基体7表面から離れた位置に、被成膜基体7表面と向かい合ってスペーサ(図示せず)を備えると、被成膜基体7表面を流通するガスの流路の幅が狭められ、ガス流速が上昇する。被成膜基体7表面を流通するガス流速が上昇すると、被成膜基体7の下流部分においても未反応なガスが供給可能となり、被成膜基体7の下流部分の成膜が可能となる。
 次に、図3のフローを参照して、酸化膜形成処理システム1における酸化膜形成方法について説明する。
 (STEP1:試料の搬入)
 処理炉5内に窒素ガスを送り込み、処理炉5内に滞留するガスを窒素ガスに置き換え、処理炉5内のガスを除去する(窒素パージ)。次に、被成膜基体7を処理炉5内に搬入し、バルブV4を開き、真空ポンプ9を用いて処理炉5内の圧力を1Pa以下に下げる。バルブV4は、開放状態を継続し、被成膜基体7の温度が所定の温度となるように試料台11を加熱する。
 (STEP2:前処理)
 バルブV1、V2を開放し、オゾンガスとエチレンガスを供給する。この処理により、酸化活性種(OH)が被成膜基体7表面に供給・吸着される。その結果、被成膜基体7表面が親水性となり、後に成膜されるSiO2と被成膜基体7表面との密着性が向上する。オゾンガスの流量は、例えば、0.2~1000sccmの範囲内で設定し、エチレンガスの流量は、例えば、0.1~500sccmの範囲内で設定する。オゾンの爆発を防ぐため、例えば、プロセス圧力は1000Pa以下とし、次ステップまで、オゾンガスとエチレンガスの供給を継続する。オゾンガスの流量は、エチレンガスの流量の2倍以上であることが好ましい。
 (STEP3:本処理)
 バルブV3を開放し、TEOSガスを供給する。TEOSガスの流量は、例えば、0.1~500sccmの範囲で設定する。オゾンガスの流量は、例えば、エチレンガスの流量とTEOSガスの流量の合計流量の2倍以上であることが好ましい。プロセス圧力は、例えば、1000Pa以下とする。
 本処理工程では、プロセス中の、オゾンガス、エチレンガス(不飽和炭化水素ガス)、TEOSガス(原料ガス)の流量を一定に固定する処理方法の他に、オゾンガス、エチレンガス(不飽和炭化水素ガス)、TEOSガス(原料ガス)のガスのうち1つまたは複数のガス流量をそれぞれ経時的に変化または周期的に変化させる処理方法が考えられる。ガスの流量を経時的または周期的に変化させる態様としては、ガス流量を絞る態様やガスの供給を一定時間停止する態様がある。また、処理炉5内のガスを攪拌またはパージする不活性ガスを周期的に供給して、不活性ガスにより処理炉5内を攪拌し、処理炉5内のガス分布を均一にする処理を併せて行うこともできる。処理炉5に不活性ガスを供給したり、原料ガス等のガスの流量を個々にプロセス処理中に変化させたりすることで、被成膜基体7上により均一な酸化膜を形成することができる。具体例として、プロセス中のガス流量の時間変化に対して、次の3つのプロセスパターンを例示する。
 <パターン1>
 プロセス中、オゾンガスの流量、エチレンガスの流量およびTEOSガスの流量を一定にする。
 パターン1の処理では、被成膜基体7上に形成される酸化膜の膜厚が、処理期間中、一定速度で増加する。
 <パターン2>
 プロセス中、オゾンガスの流量およびエチレンガスの流量を一定にし、TEOSガスの流量を周期的に変化させる。
 パターン2の処理は、オゾンガスとエチレンガスが満たされた処理炉5内にTEOSガスを供給するものである。オゾンガスとエチレンガスが満たされた空間にTEOSガスを供給することで、質の高い酸化膜をより均一に成膜することができる。
 例えば、オゾンガスの流量を一定とした場合、エチレンガスやTEOSガスとの反応により、処理炉5の下流に行くほどオゾンの数が減少することとなる。また、処理炉5内にTEOSガスを流通させることで、下流に行くほど、TEOSと反応する活性種(OH)の量が少なくなる。
 このように、被成膜基体7上に酸化膜を形成する工程において、処理炉5内のオゾンや活性種の分布に偏りが生じる。そこで、TEOSガスの供給量を減少(または、停止)させることで、処理炉5内に、処理炉5内の反応で生成した不要な生成物を除去し、処理炉5にオゾンガスとエチレンガスを満たす。このオゾンガスとエチレンガスが満たされた処理炉5にTEOSガスを供給することで、被成膜基体7上における酸化膜の厚さや膜質をより均一にすることができる。
 なお、パターン2の処理は、TEOSガスの流量をプロセス中に周期的に変化させることで、被成膜基体7に酸化膜を形成する工程と、被成膜基体7上に形成された酸化膜が、オゾンガスとエチレンガスの混合ガス(反応活性種を含む)により改質される工程と、が繰り返される。その結果、より質の高い酸化膜を均一に成膜することができる。
 <パターン3>
 プロセス中、オゾンガスの流量、TEOSガスの流量を一定にし、エチレンガスの流量を周期的に変化させる。
 オゾンとTEOSの反応は、200℃以下の温度では、エチレンが存在する場合と比較して、ほとんど進まないと考えられる。そこで、エチレンガスの流量をプロセス処理中に周期的に変化させることで、被成膜基体7上に酸化膜を形成する工程と、処理炉5内にオゾンガスとTEOSガスを満たす工程と、が繰り返される。その結果、より質の高い酸化膜を均一に成膜することができる。
 上記に例示したパターンの他に、プロセス中、エチレンガスの流量、TEOSガスの流量を一定にし、オゾンガスの流量を周期的に変化させる態様も同様の効果が得られると考えられる。つまり、オゾンガス、不飽和炭化水素ガス、原料ガスおよび不活性ガスの少なくとも1つのガスを経時的または周期的に変化させることで、酸化膜の成膜速度は経時的または周期的に変化する。そして、これらのガスの少なくとも1つのガスを経時的または周期的に変化させることで、被成膜基体7上に酸化膜を形成する工程における、処理炉5内のオゾンや活性種の分布の偏りによる酸化膜の膜厚の不均一や膜質の低下(偏り)が抑制される。また、処理炉5内のガス流分布を変えることで、成膜による膜厚増加の被成膜基体7面内分布が変化し、酸化膜の被成膜基体7面内分布を制御することが可能となる。いずれのパターンであっても、予め設定された所定の膜厚になるまで酸化膜が形成され、次のステップに移行する。
 なお、この実施例では、パターン2のプロセスパターンで酸化膜の形成を行った。パターン2のように、TEOSガスの流量を一時的に微少とすることで、被成膜基体7上に形成された酸化膜へのOH供給数が多くなり、次のステップで詳細に説明する酸化膜の改質効果が期待できる。
 (ステップ4:後処理)
 バルブV3を閉じて、TEOSガスの供給を止める。TEOSガスの供給を止めることで、成膜が止まるが、STEP2と同様に、被成膜基体7上に成膜された酸化膜表面にOHが供給される。供給されたOHが膜中を拡散することで、膜中不純物であるカーボン(C)や水素(H)と化学反応し、これら膜中不純物がガス化(CO、CO2またはH2O)されて膜外に除去される。ステップ4におけるオゾンガスの流量およびエチレンガスの流量や処理炉5内の圧力範囲は、ステップ2と同様である。被成膜基体7上に成膜された酸化膜の改質時間は、膜厚が厚くなるにしたがって増加するので、改質時間は、被成膜基体7に形成された酸化膜の膜厚に応じて適宜設定される。
 (ステップ5:試料搬出)
 バルブV1、V2を閉じて、すべてのガス供給を停止する。処理炉5内の圧力を1Pa以下にし、バルブV4を閉じて排気を止める。そして、処理炉5内に窒素ガス等の不活性ガスを満たして、処理炉5内の圧力を大気圧にし、被成膜基体7を処理炉5外に搬送する。これにより、一連の処理プロセスが終了する。
 図4は、本発明の実施形態に係る酸化膜形成処理システム1により室温(25℃)で化学気相成長法により被成膜基体7(具体的には、8インチSiウエハ)上に酸化膜を形成した結果(SiO2の膜厚分布(nm))を示す。図中矢印Aは、オゾンガスの供給位置を示し、矢印Bは、エチレンガスおよびTEOSガスの供給位置を示す。また、矢印Cは、排気用配管8の接続位置を示す。
 図4に示した結果は、オゾンガスの流量を200sccm、エチレンガスの流量を25sccm、TEOSガスの流量を25sccmとしたガスの流量条件で、処理炉5の処理圧40Pa程度で、10分間成膜処理を行ったものである。
 図4に示すように、オゾンガスの供給箇所付近で、酸化膜の膜厚が最大となり、排気箇所で酸化膜の膜厚が小さくなった。このことより、ガス流路の調節(または、被成膜基体7の移動)により、酸化膜の膜厚分布の制御が可能となることがわかる。また、酸化膜の膜厚の最大値は、780nmであり、成膜速度の最大値は、78nm/minであった。
 図5は、エチレンガスおよびTEOSガスを被成膜基体7の上方より供給して、室温(25℃)で化学気相成長法により被成膜基体7(具体的には、8インチSiウエハ)上に酸化膜を形成した結果(SiO2の膜厚分布(nm))である。図中矢印Aは、オゾンガスの供給位置を示し、点線で囲った範囲B’は、エチレンガスおよびTEOSガスの供給位置を示す。エチレンガスおよびTEOSガスは、被処理基体7の処理面の上方から処理面に向かうように供給した。また、矢印Cは、排気用配管8の接続位置を示す。
 図5に示した結果は、オゾンガスの流量を100sccm、エチレンガスの流量を64sccm、TEOSガスの流量を0.3sccmとしたガスの流量条件で、処理炉5の処理圧50Pa程度で、3分間成膜処理を行ったものである。酸化膜の膜厚の最大値は、138nmであり、成膜速度の最大値は、46nm/minであった。
 図6(a)、(b)は、それぞれ図4および図5を示して説明した酸化膜形成処理の処理条件におけるSiO2の成膜速度と成膜温度との関係を示す図である。図6に示すように、オゾンガスとエチレンガスを用いた酸化膜形成方法(○のプロットで示す)は、エチレンガスを用いない場合(オゾンガスのみを用いた酸化膜形成方法、□のプロットで示す)よりも成膜速度がかなり大きかった。また、酸化膜の成膜速度(nm/min)と成膜温度には相関性があり、室温(25℃)で最大の成膜速度であった。これは、被成膜基体7を温めることによる熱対流が反応を阻害していることが一因であるものと考えられる。よって、被成膜基体7の温度は、例えば、好ましくは200℃以下、より好ましくは150℃以下、さらに好ましくは100℃以下、さらに好ましくは80℃以下、さらに好ましくは25℃以下とすることで、高い成膜速度で酸化膜を形成することができる。また、被成膜基体7の加熱温度を低くすることにより被成膜基体7および被成膜基体7上に形成された薄膜へのダメージが低減されることとなる。したがって、酸化膜形成時の被成膜基体7の温度は、低いほど好ましい。例えば、被成膜基体7の温度を、-10℃以上とすることで、被成膜基体7や被成膜基体7上に形成された薄膜へのダメージを抑制し、十分な成膜速度で酸化膜を形成することができる。
 図7は、本発明の第2実施形態に係る酸化膜形成処理システム13の概略を説明する図である。本発明の第2実施形態に係る酸化膜形成処理システム13は、本発明の第1実施形態に係る酸化膜形成処理システム1の処理炉5内に、シャワーヘッド14を備えたものである。よって、本発明の第1実施形態に係る酸化膜形成処理システム1と同様の構成については、同じ符号を付して詳細な説明は省略する。
 シャワーヘッド14は、ガスが噴き出す供給孔が形成された面が、被成膜基体7の処理面に対向するように、被成膜基体7から離して備えられる。シャワーヘッド14には、オゾンガス発生装置2、エチレンガスボンベ3、TEOSガスボンベ4がそれぞれ配管2a~4aを介して接続される。シャワーヘッド14から、各種ガスを供給することで、被成膜基体7により均一な酸化膜を形成することができる。
 シャワーヘッド14から、オゾンガス、不飽和炭化水素ガス、原料ガスを個別に供給することが望ましいが、構造上、シャワーヘッド14に3種類以上のガスを個別に供給する供給孔を形成することは困難である。そこで、シャワーヘッド14としては、特開2009-141028号公報に記載されるような、ダブルシャワーヘッドが好適に用いられる。ダブルシャワーヘッドは、異なる2種類のガスが噴き出す供給孔を個別に備えたシャワーヘッドである。
 シャワーヘッド14がダブルシャワーヘッドである場合、3種類のガスのうち、2種類のガスは、予め、被成膜基体7に供給される前に混合されることとなる。例えば、シャワーヘッド14には、不飽和炭化水素ガスと原料ガスを混合する混合空間が設けられ、不飽和炭化水素ガスと原料ガスの混合ガスと、オゾンガスが、シャワーヘッド14の異なる供給孔から被成膜基体7にそれぞれ供給される。また、シャワーヘッド14に、オゾンガスと原料ガスとを混合する混合空間を設け、オゾンガスと原料ガスの混合ガスと、不飽和炭化水素ガスをシャワーヘッド14の異なる供給孔から被成膜基体7に供給する態様とすることもできる。このように、オゾンガスと不飽和炭化水素ガス(または原料ガス)を予め混合せず個別に被成膜基体7に供給することで、寿命の短いラジカル種を被成膜基体7の表面で効率的に発生させることができる。その結果、酸化膜の成膜速度の向上および酸化膜の面内均一性がより向上する。
 なお、第2実施形態に係る酸化膜形成処理システム13のプロセス処理条件や、処理手順は、第1実施形態に係る酸化膜形成処理システム1と同様とすることで、高い成膜速度で酸化膜を形成することができる。
 以上のような、本発明の第1実施形態および第2実施形態に係る酸化膜形成方法によれば、200℃以下の低温で被成膜基体7上に酸化膜を形成することができる。その結果、耐熱温度が低い材料(例えば、合成樹脂等の有機材料)により形成された被成膜基体7(基板やフィルム)上に酸化膜を形成することができる。
 また、プラズマを用いることなく、被成膜基体7上に酸化膜を形成することができるので、被成膜基体7の損傷が抑制される。特に、電子デバイスや有機フィルム上に酸化膜(例えば、SiO2膜)を形成する前に、予め薄膜(例えば、電子デバイスを構成する下地膜(主に有機薄膜)等)が形成されている場合であっても、この薄膜に絶縁破壊等のダメージを与えることなく、電子デバイスや有機フィルム上に酸化膜を形成することができる。
 また、本発明の実施形態に係る酸化膜形成方法によれば、200℃以下の処理条件で、高い成膜速度で酸化膜を形成することができる。また、実施例で形成された酸化膜は、5MV/cmの耐圧性を備えており、本発明の実施形態に係る酸化膜形成方法により、耐圧性に優れ、ガスバリア性に優れた酸化膜を形成することができる。
 従来、ガスバリア性を求められる材料に対する成膜の実施温度は、80℃以下である。したがって、本発明の実施形態に係る酸化膜形成方法は、ガスバリア性を求められる材料に対する酸化膜形成に好適に適用することができる。
 したがって、本発明の実施形態に係る酸化膜形成方法は、有機フィルムの高機能化のみならず、フィルム層構造(バルク制御)の高機能化、多積層化等の技術に適用することができる。高機能化された有機フィルムは、スマートフォン、タブレット端末、液晶ディスプレイ、太陽光パネル、自動車関連等の分野に適用することができる。また、これら有機フィルム上に電子デバイス・配線等を形成し、変形を伴う製品上でも機能するフレキシブルデバイスを作製し、ウェアラブルコンピュータや様々な場所へ張付・設置可能なデジタルサイネージ等に適用することができる。
 以上、具体的な実施形態を示して本発明の酸化膜形成方法にいて説明したが、本発明の酸化膜形成方法は、実施形態に限定されるものではなく、その特徴を損なわない範囲で適宜設計変更が可能であり、設計変更されたものも、本発明の技術的範囲に属する。

Claims (10)

  1.  酸化膜が形成される被成膜基体に対して、
     オゾンガスと、不飽和炭化水素ガスと、前記酸化膜を構成する元素であるSiまたは金属元素を構成元素として含む原料ガスと、を供給し、化学気相成長法により、前記被成膜基体表面に酸化膜を形成する、酸化膜形成方法。
  2.  前記被成膜基体は、合成樹脂製の基板またはフィルムであり、
     前記被成膜基体に対して、前記オゾンガスと前記不飽和炭化水素ガスを供給した後、
     前記被成膜基体に対して、前記オゾンガス、前記不飽和炭化水素ガスおよび前記原料ガスを供給して前記被成膜基体表面に前記酸化膜を形成する、請求項1に記載の酸化膜形成方法。
  3.  前記被成膜基体に対して、前記オゾンガス、前記不飽和炭化水素ガスおよび前記原料ガスを供給して、前記被成膜基体表面に前記酸化膜を形成した後、
     前記被成膜基体に対して、前記オゾンガスと前記不飽和炭化水素ガスを供給する、請求項1または請求項2に記載の酸化膜形成方法。
  4.  前記不飽和炭化水素ガスは、エチレンガスである、請求項1から請求項3のいずれか1項に記載の酸化膜形成方法。
  5.  前記被成膜基体上に前記酸化膜を形成する工程において、前記オゾンガスの供給流量は、前記不飽和炭化水素ガスと前記原料ガスの合計供給流量の2倍以上である、請求項1から請求項4のいずれか1項に記載の酸化膜形成方法。
  6.  前記被成膜基体上に前記酸化膜を形成する工程において、前記オゾンガス、前記不飽和炭化水素ガス、前記原料ガス、および前記被成膜基体上に供給されたガスの攪拌を行う不活性ガスのうち少なくとも1つのガス流量を周期的に変化させる、請求項1から請求項5のいずれか1項に記載の酸化膜形成方法。
  7.  前記オゾンガスと前記不飽和炭化水素ガスの供給流量を一定とし、前記原料ガスを周期的に変化させる、請求項6に記載の酸化膜形成方法。
  8.  前記被成膜基体から離れた位置に、前記被成膜基体表面と向かい合って、シャワーヘッドを備え、
     予め、前記不飽和炭化水素ガスと前記原料ガスを混合し、この混合したガスと前記オゾンガスを前記シャワーヘッドの異なる供給孔からそれぞれ前記被成膜基体に供給する、請求項1に記載の酸化膜形成方法。
  9.  前記被成膜基体から離れた位置に、前記被成膜基体表面と向かい合って、シャワーヘッドを備え、
     予め、前記オゾンガスと前記原料ガスを混合し、この混合したガスと前記不飽和炭化水素ガスを前記シャワーヘッドの異なる供給孔からそれぞれ前記被成膜基体に供給する、請求項1に記載の酸化膜形成方法。
  10.  前記被成膜基体上に前記酸化膜を形成する工程において、前記オゾンガスの供給流量は、0.2sccm以上である、請求項1に記載の酸化膜形成方法。
PCT/JP2018/043658 2018-03-28 2018-11-28 酸化膜形成方法 WO2019187337A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018567977A JP6569831B1 (ja) 2018-03-28 2018-11-28 酸化膜形成方法
DE112018007372.6T DE112018007372B4 (de) 2018-03-28 2018-11-28 Oxidfilmbildungsverfahren
KR1020207025101A KR102268455B1 (ko) 2018-03-28 2018-11-28 산화막 형성 방법
CN201880091593.3A CN111902564B (zh) 2018-03-28 2018-11-28 氧化物膜形成方法
US17/041,047 US10978293B2 (en) 2018-03-28 2018-11-28 Oxide film formation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018060983 2018-03-28
JP2018-060983 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019187337A1 true WO2019187337A1 (ja) 2019-10-03

Family

ID=68061176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043658 WO2019187337A1 (ja) 2018-03-28 2018-11-28 酸化膜形成方法

Country Status (5)

Country Link
US (1) US10978293B2 (ja)
KR (1) KR102268455B1 (ja)
DE (1) DE112018007372B4 (ja)
TW (1) TWI717669B (ja)
WO (1) WO2019187337A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560622B2 (en) 2018-11-30 2023-01-24 Meidensha Corporation Degradable resin molding and production method for degradable resin molding
WO2023013477A1 (ja) * 2021-08-05 2023-02-09 信越化学工業株式会社 撥水撥油表面層を有する物品
WO2024009780A1 (ja) * 2022-07-06 2024-01-11 明電ナノプロセス・イノベーション株式会社 基体の接合方法
WO2024018811A1 (ja) * 2022-07-20 2024-01-25 明電ナノプロセス・イノベーション株式会社 酸化膜形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322979A (ja) * 1998-05-19 1999-11-26 Dainippon Printing Co Ltd 透明バリア性フィルムおよびその製造法
WO2016143897A1 (ja) * 2015-03-12 2016-09-15 株式会社明電舎 樹脂の改質方法及び改質装置
JP2017022294A (ja) * 2015-07-13 2017-01-26 株式会社Flosfia シリコン酸化膜の成膜方法
JP2017121721A (ja) * 2016-01-06 2017-07-13 凸版印刷株式会社 ガスバリアフィルム積層体およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778809A (ja) * 1993-09-07 1995-03-20 Hitachi Ltd 絶縁膜生成方法及び装置
FI118804B (fi) * 1999-12-03 2008-03-31 Asm Int Menetelmä oksidikalvojen kasvattamiseksi
JP4285885B2 (ja) 2000-04-20 2009-06-24 独立行政法人産業技術総合研究所 オゾン生成装置
JP3948913B2 (ja) 2001-07-04 2007-07-25 独立行政法人産業技術総合研究所 オゾン生成装置
FR2879607B1 (fr) 2004-12-16 2007-03-30 Seppic Sa Nouveaux latex inverse concentre, procede pour sa preparation, et utilisation dans l'industrie
US7648927B2 (en) * 2005-06-21 2010-01-19 Applied Materials, Inc. Method for forming silicon-containing materials during a photoexcitation deposition process
JP4849863B2 (ja) 2005-10-14 2012-01-11 株式会社明電舎 酸化膜形成方法
JP5267130B2 (ja) * 2006-12-22 2013-08-21 日本電気株式会社 半導体装置およびその製造方法
JP4905253B2 (ja) 2007-05-23 2012-03-28 株式会社明電舎 レジスト除去方法及びその装置
WO2009072402A1 (ja) 2007-12-04 2009-06-11 Meidensha Corporation レジスト除去方法及びその装置
JP4968028B2 (ja) 2007-12-04 2012-07-04 株式会社明電舎 レジスト除去装置
JP5962124B2 (ja) 2012-03-28 2016-08-03 株式会社明電舎 酸化膜の形成方法
US9922818B2 (en) 2014-06-16 2018-03-20 Versum Materials Us, Llc Alkyl-alkoxysilacyclic compounds
JP5952461B1 (ja) 2015-05-12 2016-07-13 田中貴金属工業株式会社 異種複核錯体からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
KR101777689B1 (ko) 2016-09-21 2017-09-12 에이피시스템 주식회사 복합막 증착장치 및 증착방법
JP7323511B2 (ja) * 2017-08-30 2023-08-08 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー アルコキシシラ環式又はアシルオキシシラ環式化合物を含む組成物及びそれを使用してフィルムを堆積させるための方法
CN111902564B (zh) 2018-03-28 2022-01-11 株式会社明电舍 氧化物膜形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322979A (ja) * 1998-05-19 1999-11-26 Dainippon Printing Co Ltd 透明バリア性フィルムおよびその製造法
WO2016143897A1 (ja) * 2015-03-12 2016-09-15 株式会社明電舎 樹脂の改質方法及び改質装置
JP2017022294A (ja) * 2015-07-13 2017-01-26 株式会社Flosfia シリコン酸化膜の成膜方法
JP2017121721A (ja) * 2016-01-06 2017-07-13 凸版印刷株式会社 ガスバリアフィルム積層体およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560622B2 (en) 2018-11-30 2023-01-24 Meidensha Corporation Degradable resin molding and production method for degradable resin molding
WO2023013477A1 (ja) * 2021-08-05 2023-02-09 信越化学工業株式会社 撥水撥油表面層を有する物品
WO2024009780A1 (ja) * 2022-07-06 2024-01-11 明電ナノプロセス・イノベーション株式会社 基体の接合方法
JP7431895B2 (ja) 2022-07-06 2024-02-15 明電ナノプロセス・イノベーション株式会社 基体の接合方法
WO2024018811A1 (ja) * 2022-07-20 2024-01-25 明電ナノプロセス・イノベーション株式会社 酸化膜形成方法
JP7431897B2 (ja) 2022-07-20 2024-02-15 明電ナノプロセス・イノベーション株式会社 酸化膜形成方法

Also Published As

Publication number Publication date
DE112018007372T5 (de) 2020-12-10
US10978293B2 (en) 2021-04-13
US20210028011A1 (en) 2021-01-28
TWI717669B (zh) 2021-02-01
TW201942407A (zh) 2019-11-01
KR20200111807A (ko) 2020-09-29
DE112018007372B4 (de) 2022-07-14
KR102268455B1 (ko) 2021-06-23

Similar Documents

Publication Publication Date Title
JP6569831B1 (ja) 酸化膜形成方法
WO2019187337A1 (ja) 酸化膜形成方法
US8492258B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
CN108796471B (zh) 成膜方法和成膜装置
US20170309490A1 (en) Method of manufacturing semiconductor device
KR101737215B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP2009054988A (ja) シリコン及びチタン窒化物のインサイチュ蒸着
WO2020170482A1 (ja) 原子層堆積方法および原子層堆積装置
JP6860048B2 (ja) 原子層堆積方法
US20240344200A1 (en) Oxide film forming device
US20220364235A1 (en) Atomic layer deposition method and atomic layer deposition device
JP6702514B1 (ja) 酸化膜形成装置
WO2024018811A1 (ja) 酸化膜形成方法
JP2018188724A (ja) 成膜方法および成膜装置
US12125684B2 (en) Temperature controlled reaction chamber

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018567977

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207025101

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18912954

Country of ref document: EP

Kind code of ref document: A1