WO2024009780A1 - 基体の接合方法 - Google Patents

基体の接合方法 Download PDF

Info

Publication number
WO2024009780A1
WO2024009780A1 PCT/JP2023/023050 JP2023023050W WO2024009780A1 WO 2024009780 A1 WO2024009780 A1 WO 2024009780A1 JP 2023023050 W JP2023023050 W JP 2023023050W WO 2024009780 A1 WO2024009780 A1 WO 2024009780A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrates
joined
bonded
chamber
gas
Prior art date
Application number
PCT/JP2023/023050
Other languages
English (en)
French (fr)
Inventor
敏徳 三浦
満 花倉
Original Assignee
明電ナノプロセス・イノベーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明電ナノプロセス・イノベーション株式会社 filed Critical 明電ナノプロセス・イノベーション株式会社
Publication of WO2024009780A1 publication Critical patent/WO2024009780A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Definitions

  • the present invention relates to a method for joining substrates, and relates to a technique that can contribute to making it easier to join two substrates as desired, for example.
  • a bonding method that does not use an adhesive that is, a direct bonding method
  • electrodes etc. provided on the surfaces of the substrates are A mode in which both can be joined at the same time (hybrid joining) is also beginning to attract attention.
  • direct bonding methods include so-called fusion bonding methods and surface activated bonding methods, of which fusion bonding is widely employed in the field of three-dimensional laminates.
  • the fusion bonding method mainly includes (1) a step of forming a hydroxyl group on the surface to be bonded (the surface to be bonded which has been flattened in advance if necessary) of the substrate to be bonded (hereinafter referred to simply as the hydroxyl group forming step); , (2) a step of overlapping and laminating the two substrates to be joined on which the hydroxyl groups have been formed (hereinafter simply referred to as a lamination step), and (3) a dehydration condensation reaction of the hydroxyl groups in the laminated state.
  • the process includes a step of raising the bonding substrates and bonding the substrates to each other at the surfaces to be bonded (hereinafter simply referred to as a bonding step).
  • techniques related to the substrate itself include surface treatment methods for modifying the surface of the substrate (for example, Patent Documents 1 to 4), and techniques for modifying the surface of the substrate.
  • surface treatment methods for modifying the surface of the substrate for example, Patent Documents 1 to 4
  • techniques for modifying the surface of the substrate There are film forming methods for forming various thin films by CVD (chemical vapor deposition) or ALD (atomic layer deposition) (for example, Patent Documents 5 and 6).
  • hydroxyl groups are formed on the surface of the substrate to be bonded by treatment using water (aqueous solution treatment, water vapor plasma treatment, etc.), so the surface to be bonded is It is thought that moisture tends to remain in the water.
  • the dehydration condensation reaction may be suppressed by the remaining moisture as described above, and it may become difficult to bond the respective substrates to be bonded.
  • the plasma may damage the surfaces to be bonded, and the surface roughness of the surfaces to be bonded may increase.
  • the lamination process and/or the bonding process may not be performed as desired, and it may become difficult to bond the respective substrates to be bonded.
  • the present invention has been made in view of the above-mentioned technical problems, and suppresses moisture from remaining on the surfaces of the substrates to be bonded, thereby making it easier to bond the substrates as desired.
  • Our aim is to provide technology that can contribute to
  • One aspect of the method for joining substrates according to the present invention includes a hydroxyl group forming step of forming hydroxyl groups on the surfaces of the substrates to be bonded housed in a chamber, and a step of forming hydroxyl groups on the surfaces of the two substrates on which the hydroxyl groups have been formed.
  • the method includes a stacking step of stacking the substrates one on top of the other, and a bonding step of heating the stacked substrates to bond the substrates together at the surfaces to be bonded.
  • unsaturated hydrocarbon gas and ozone gas having an ozone concentration of more than 50% by volume are respectively supplied to the surfaces of the substrates to be bonded housed in the chamber.
  • OH radicals generated by a radical reaction between both the gas and the ozone gas are exposed to the surfaces to be bonded to form hydroxyl groups on the surfaces to be bonded, and in the bonding step, the hydroxyl groups are subjected to a dehydration condensation reaction by the heating. It is characterized by causing
  • the chamber also includes an unsaturated hydrocarbon gas supply section that supplies the unsaturated hydrocarbon gas into the chamber, an ozone gas supply section that supplies the ozone gas into the chamber, and an inlet gas supply section that supplies the ozone gas into the chamber. and a gas discharge section for discharging the gas to the outside of the chamber, and the hydroxyl group forming step may be performed with the inside of the chamber in a reduced pressure state.
  • the hydroxyl group forming step may be characterized in that the water contact angle of the surface to be bonded of the substrate to be bonded is within a range of 4° to 10°.
  • the hydroxyl group forming step includes controlling the amount of hydroxyl groups on the surface of the substrate to be bonded by adjusting the flow rate ratio of both the unsaturated hydrocarbon gas and the ozone gas into the chamber. It can also be used as a feature.
  • the hydroxyl group forming step is performed by adjusting the supply flow rate and supply time of both the unsaturated hydrocarbon gas and the ozone gas so that the supply flow rate ratio of both the unsaturated hydrocarbon gas and the ozone gas into the chamber is constant.
  • the method may be characterized by controlling the amount of hydroxyl groups on the surface of the bonding substrate to be bonded.
  • metal wiring made of copper, gold, tungsten, or aluminum is provided on the surface of each of the substrates to be bonded, and in the bonding process, each of the substrates to be bonded is A feature may be that the provided metal wirings are bonded to each other.
  • the chamber includes a support portion that supports each of the substrates to be bonded in the chamber, and the support portion supports each of the substrates to be bonded in a posture such that their surfaces to be bonded face each other. It may also be characterized in that it is supported so as to be movable towards and away from the opposing directions.
  • the surface to be joined of each of the substrates to be bonded is a surface of a silicon oxide film that has been previously provided on one end side surface of each of the substrates to be bonded in an oxide film forming step that is a step prior to the hydroxyl group forming step. It's good as well.
  • the chamber further includes a source gas supply unit that supplies a source gas containing Si, which is an element forming the silicon oxide film, into the chamber, and the oxide film forming step is performed in the step of forming the silicon oxide film.
  • the unsaturated carbonization is applied to one end side of the substrate housed in the chamber by a chemical vapor deposition method or an atomic layer deposition method that utilizes a radical reaction of both the unsaturated hydrocarbon gas and the ozone gas.
  • the silicon oxide film may be formed by supplying hydrogen gas, the ozone gas, and the raw material gas.
  • the unsaturated hydrocarbon gas includes propylene, acetylene, butadiene, benzene, toluene, O-xylene, styrene, ⁇ -butylene, 1,3-butadiene, 1,2-butadiene, 3-methyl-1,2-butadiene, It may be characterized in that it consists of any one of 2-methyl-1,3-butadiene, 1,3-pentadiene, and 2,3-dimethyl-1,3-butadiene.
  • Each of the substrates to be bonded is selected from the group consisting of a silicon substrate, a glass substrate, a GaN substrate, a SiC substrate, a diamond substrate, a substrate in which a silicon oxide film is provided on one end side of the substrate to be bonded, a metal substrate, and a film-like substrate.
  • the feature may be that the substrates are selected from the same type or different types.
  • the source gas may be characterized by comprising one or more types selected from the group of organic gas sources including TEOS, HMDS-O, and HMDS-N.
  • FIG. 1 is a process diagram (schematic diagram) for explaining a method for bonding substrates according to Example 1.
  • FIG. FIG. 3 is a schematic diagram for explaining a radical reaction in the hydroxyl group formation step S1.
  • FIG. 2 is a schematic configuration diagram for explaining a chamber 2A applicable to the substrate bonding method according to Example 1 (a diagram showing the inside of the chamber 2A seen through).
  • FIG. 2 is a schematic configuration diagram (seeing through the inside of chamber 2B) for explaining a chamber 2B applicable to the substrate bonding method according to Example 1.
  • FIG. FIG. 7 is a schematic configuration diagram (a diagram showing the interior of the chamber 2C) for explaining a chamber 2C applicable to the substrate bonding method according to Example 5;
  • the bonding method of the substrates according to the embodiment of the present invention is a method of forming hydroxyl groups by performing a treatment using water as a raw material (aqueous solution treatment, steam plasma treatment, etc.) in the hydroxyl group forming step, as in a general direct bonding method. , simply referred to as the conventional method).
  • the unsaturated hydrocarbon gas and the ozone gas having an ozone concentration of more than 50% by volume are supplied to the surfaces of the substrates to be bonded in the hydroxyl group forming step.
  • OH radicals generated by a radical reaction between both a saturated hydrocarbon gas and the ozone gas are exposed to the surfaces to be joined, thereby forming hydroxyl groups (a molecular layer of hydroxyl groups) on the surfaces to be joined.
  • each of the substrates to be joined is heated to cause the hydroxyl groups to undergo a dehydration condensation reaction.
  • the joining substrates are joined at the surfaces to be joined.
  • the surface roughness of the surface to be bonded is kept sufficiently small (for example, This makes it easier to carry out the lamination process and bonding process as desired. This makes it easier to join the respective substrates to be joined at the surfaces to be joined as desired.
  • the method for joining substrates of this embodiment involves exposing the surfaces of the substrates to be joined to OH radicals generated by the radical reaction of both unsaturated hydrocarbon gas and ozone gas in the hydroxyl group forming step.
  • Any material that can form hydroxyl groups on the surface to be joined may be used.
  • common technical knowledge in various fields for example, direct bonding, chamber, ozone gas, unsaturated hydrocarbon gas, radical reaction, surface treatment, film formation by CVD, ALD, etc.
  • Examples 1 to 5 described below are examples thereof. In Examples 1 to 5, which will be described later, detailed explanations will be omitted as appropriate, for example, by using the same reference numerals for overlapping contents.
  • the resist removal technology using radical reactions as described above is highly effective in removing organic substances from photoresists, etc., and has been put into practical use, for example, for ashing photoresists and removing organic substances from surfaces without thermal damage or plasma damage. There is.
  • a radical reaction the carbon double bond is initially cleaved by ozone molecules, and the unstable methylene peroxide generated along with this acts as an intermediate and causes a further fission reaction, producing OH radicals along with carbon dioxide gas and water. It generates formic acid, etc.
  • An example of this radical reaction can be expressed by a characteristic diagram of ozone gas concentration and OH radical generation efficiency as shown in FIG.
  • ozone gas generators e.g., general discharge type ozonizers
  • the ozone gas that could be supplied was at a low concentration (e.g., the maximum ozone concentration was about 23% by volume), but in recent years, ozone gas has been safely supplied at high concentrations.
  • devices that can generate ozone for example, Meidensha's pure ozone generator
  • various surface treatment techniques that apply radical reactions have begun to be investigated.
  • Patent Documents 3 and 4 the surface of a surface-treated object (modified object) is oxidized using OH radicals, and hydrophilic groups mainly including hydroxyl groups are formed (a molecular layer of hydrophilic groups).
  • hydrophilic groups mainly including hydroxyl groups are formed (a molecular layer of hydrophilic groups).
  • Patent Documents 3 and 4 by supplying unsaturated hydrocarbon gas and ozone gas into a chamber containing an object to be reformed, a radical reaction is caused near the surface of the object to be reformed.
  • a method of modifying the surface of the object to be modified using OH radicals generated by a radical reaction is disclosed.
  • unsaturated hydrocarbon gas and ozone gas are supplied into the chamber via a shower head that integrates an unsaturated hydrocarbon gas supply section and an ozone gas supply section (numeral 9 in Patent Document 3, reference numeral 10 or 15 in Patent Document 4). Also disclosed is a configuration for supplying.
  • the energy (chemical reaction energy) due to the radical reaction may act on the surface of the substrate to be joined, for example, plasma treatment as in the conventional method It is possible to avoid the effects of energy caused by such things (energy that can cause plasma damage). Therefore, the surface roughness of the surface to be joined can be kept sufficiently small.
  • the surface roughness of each substrate to be bonded is kept sufficiently small at the atomic level ( It is desirable to perform the lamination process and bonding process while maintaining good flatness.
  • the hydroxyl group formation process applying the radical reaction as described above, after the hydroxyl group formation process, the surface to be joined of each substrate to be joined maintains a sufficiently small surface roughness at the atomic level (good flatness). It is possible to obtain a desired optical lens by carrying out the lamination process and bonding process as appropriate.
  • Example 1 The bonding method of Example 1 is to sequentially perform the hydroxyl group forming step S1, the laminating step S2, and the bonding step S3 as shown in FIG.
  • the substrates to be bonded 1a and 1b (hereinafter appropriately referred to simply as the substrate to be bonded 1) are bonded at the bonded surface 10, and in the hydroxyl group forming step S1, a radical reaction as shown in the above-mentioned reference example is carried out. This is what was used.
  • unsaturated hydrocarbon gas and ozone gas having an ozone concentration of more than 50% by volume are supplied to the surface 10 of the substrate 1 to be bonded.
  • a radical reaction occurs near the surface 10 of the substrate 1 to be bonded due to both the unsaturated hydrocarbon gas (ethylene in FIG. 3) and the ozone gas (pure ozone in FIG. 3), as shown in FIG. 3, for example.
  • OH radicals (OH + ) generated by the radical reaction are exposed to the surface 10 of the substrate 1 to be bonded, and a hydroxyl group (a molecular layer of hydroxyl groups indicated by the symbol OH in the figure) is formed on the surface 10 to be bonded. will be formed.
  • the two substrates to be joined 1a and 1b on which hydroxyl groups have been formed in the hydroxyl group forming step S1 are laminated (temporarily joined) by overlapping each other on the surfaces to be joined 10. It is preferable that the laminated substrates 1a and 1b are pressed against each other at the surfaces 10 to be joined (for example, pressed under pressure of 1 MPa or more) to be brought into sufficient contact with each other.
  • the hydroxyl groups are subjected to a dehydration condensation reaction by heating each of the substrates 1a and 1b to be bonded that have been laminated in the lamination step S2.
  • the respective substrates 1a and 1b to be joined are joined at the surfaces 10 to be joined.
  • the substrate 1 to be bonded is housed in a chamber, the pressure inside the chamber is reduced, and unsaturated hydrocarbon gas and ozone gas are respectively supplied into the chamber.
  • This chamber may be of any type as long as it can supply unsaturated hydrocarbon gas and ozone gas while accommodating the substrate 1 to be bonded as described above, and can form hydroxyl groups on the surface 10 to be bonded, and various embodiments are applicable. It is.
  • chamber 2 As an example, in the chamber 2 shown in FIG. 4 (chamber 2A in FIG. 4, chambers 2B and 2C in FIGS. 5 and 6 described below; hereinafter referred to simply as chamber 2), there is unsaturated carbonization in the chamber 2.
  • An unsaturated hydrocarbon gas supply section 3 that supplies hydrogen gas
  • an ozone gas supply section 4 that supplies ozone gas into the chamber 2
  • a gas discharge section that takes in the gas in the chamber 2 and discharges it to the outside of the chamber 2.
  • the gas exhaust section 5 not only simply takes in the gas inside the chamber 2 and discharges it outside the chamber 2, but also maintains the inside of the chamber 2 in a reduced pressure state (for example, a state in which the inside of the chamber 2 is in a vacuum environment). Examples include embodiments in which it is possible to maintain
  • a similar configuration of the chamber 2 as described above is disclosed in Patent Documents 1 to 6, and it is also possible to apply the configuration as appropriate.
  • a control unit that can adjust the supply flow rate, supply flow rate ratio, supply time, etc. of unsaturated hydrocarbon gas and ozone gas by the unsaturated hydrocarbon gas supply unit 3 and ozone gas supply unit 4, and the unsaturated hydrocarbon gas and ozone gas
  • a gas supply section (a raw material gas supply section 7 and an inert gas supply section 8 in FIG. 6, which will be described later) that supply gases other than the above.
  • the unsaturated hydrocarbon gas supply section 3 and the ozone gas supply section 4 (for example, in FIG. 6 described later, a raw material gas supply section 7 and an inert gas supply section 8) are integrated to constitute a shower head, and the shower head is It is also possible to supply unsaturated hydrocarbon gas or ozone gas into the chamber 2 through the gas.
  • the substrates to be bonded 1 may be appropriately supported.
  • the support structure and the like are not particularly limited.
  • the chamber 2A shown in FIG. 4 may be configured to support a plurality of substrates 1 to be bonded, thereby making it possible to simultaneously perform the hydroxyl group forming step S1 on each substrate 1 to be bonded.
  • a plurality of substrates 1 to be bonded housed in the chamber 2B may be movably supported, or each substrate 1 to be bonded may be pressurized or heated. It's okay.
  • the chamber 2B includes a support portion 6 capable of supporting the two substrates to be joined 1a and 1b, respectively.
  • the support section 6 includes a pair of support stands 61a, 61b that support the two substrates 1a, 1b, respectively, and are arranged opposite to each other, and the support stands 61a, 61b are arranged in the opposing directions (hereinafter simply referred to as opposite directions).
  • a pair of support arms 62a, 62b that support the outer peripheral edge sides of the support stands 61a, 61b so as to be able to move toward and away from each other with respect to
  • the rotating shaft 63 is rotatably supported.
  • the support section 6 configured in this manner allows the support arms 62a and 62b to be rotated about the rotating shaft 63 by, for example, an operation section outside the chamber 2B (not shown), and the support stands 61a and 61b can be rotated in opposite directions. It is designed to be able to move towards and away from each other. Furthermore, the support stands 61a and 61b are provided with heating units (not shown) capable of heating the substrates to be joined 1a and 1b supported by the support stands 61a and 61b, respectively. .
  • steps S1 to S3 can be performed appropriately on the substrates 1a and 1b to be joined.
  • steps S1 to S3 can be performed appropriately on the substrates 1a and 1b to be joined.
  • step S1 As shown in FIG. , supported on support stands 61a and 61b.
  • unsaturated hydrocarbon gas and ozone gas are supplied from the unsaturated hydrocarbon gas supply section 3 and the ozone gas supply section 4, respectively.
  • a radical reaction as shown in FIG. 3 occurs near the surfaces 10 of each of the substrates 1a and 1b to be joined, and hydroxyl groups are formed on the surfaces 10 to be joined.
  • the lamination step S2 by operating the support part 6 and bringing the support stands 61a and 61b closer in opposite directions, the surfaces 10 of the substrates 1a and 1b to be joined are overlapped and stacked together. Can be pressure-welded.
  • the bonding step S3 the laminated (press-bonded) substrates 1a and 1b to be bonded are heated by the heating section to cause a dehydration condensation reaction of hydroxyl groups, and each of the substrates 1a and 1b to be bonded is heated. They will be joined at the joining surface 10.
  • the steps S1 to S3 of the substrates 1a and 1b to be joined can be performed in-situ in the same chamber 2B.
  • the substrate 1 to be bonded may be taken out from the chamber 2A and the lamination step S2 and the bonding step S3 may be performed. It is conceivable that some moisture may remain.
  • steps S1 to S3 can be performed in-situ as described above, so that it becomes easier to prevent moisture from remaining on the surface to be joined 10.
  • the unsaturated hydrocarbon gas and the ozone gas may each cause a radical reaction in the hydroxyl group forming step S1 and may form hydroxyl groups on the surface to be joined 10, and various embodiments are applicable.
  • Specific examples of the unsaturated hydrocarbon gas include those shown in Table 1 below.
  • ozone gas examples include those having an ozone concentration of more than 50% by volume, more preferably a high concentration (for example, 90% by volume or more).
  • the substrate 1 to be joined can be appropriately applied as long as it can form hydroxyl groups on the surface 10 to be joined in the hydroxyl group forming step S1, and can be directly joined through the subsequent lamination step S2 and bonding step S3.
  • the surface 10 to be joined may be flattened in advance (for example, flattened by CMP or the like so that the surface roughness is sufficiently small at the atomic level). can be mentioned.
  • the hydroxyl group forming step S1 and the bonding step S3 can be performed at relatively low temperatures, for example, when the substrate 1 to be bonded is a substrate or a film, it is possible to use a substrate with relatively high heat resistance such as a silicon substrate.
  • the material is not limited, and may be a substrate made of a synthetic resin with relatively low heat resistance.
  • Examples include various substrates used in MEMS, semiconductors, FPDs, etc., such as silicon substrates, glass substrates, GaN substrates, SiC substrates, and diamond substrates, metal substrates, film-like substrates, and silicon oxide films ( Examples include substrates provided with a SiO 2 film), and examples include selecting and applying the same type or different types of substrates from these substrates.
  • the resin examples include those using polyester resin, aramid resin, olefin resin, polypropylene, PPS (polyphenylene sulfide), PET (polyethylene terephthalate), and the like.
  • PE polyethylene
  • PEN polyethylene naphthalate
  • POM polyoxymethylene or acetal resin
  • PEEK polyetheretherketone
  • ABS resin acrylonitrile, butadiene, styrene copolymer synthetic resin
  • PA examples include those using polyamide), PFA (tetrafluoroethylene, perfluoroalkoxyethylene copolymer), PI (polyimide), PVD (polyvinyl dichloride), acrylic resin, and the like.
  • Example 1 ⁇ Verification> Next, the bonding method according to Example 1 was verified under the verification conditions shown below. First, a case where a substrate 1 to be bonded made of flat alkali-free glass was applied and the hydroxyl group forming step S1 of Example 1 was performed, and a case where a conventional hydroxyl group forming step (O 2 plasma treatment) was performed. When the water contact angle (°) and surface roughness Sq (Rms) of the surface to be joined 10 were observed, the results shown in Table 2 below were obtained. In addition, in the hydroxyl group forming step S1 of Example 1, ethylene was applied as the unsaturated hydrocarbon gas.
  • Example 1 in the hydroxyl group forming step S1, sufficient moisture is applied to the surface to be bonded 10 of the substrate 1 to be bonded while suppressing moisture from remaining on the surface to be bonded. A large amount of hydroxyl groups can be formed, and a dehydration condensation reaction of the hydroxyl groups is likely to occur in the bonding step S3.
  • the surface roughness of the surfaces 10 to be joined can be maintained in a sufficiently small state, and the subsequent lamination process S2 and bonding process S3 can be performed as desired. It becomes easier to do. This shows that it is possible to join each of the substrates 1 to be joined at the surfaces 10 to be joined as desired.
  • unsaturated carbonization which is the supply flow rate ratio of both unsaturated hydrocarbon gas (e.g., ethylene) and ozone gas (e.g., ozone gas with an ozone gas concentration of 90% by volume or more), is The optimal ratio of hydrogen gas to ozone gas is considered to be about 1:3.
  • unsaturated hydrocarbon gas e.g., ethylene
  • ozone gas e.g., ozone gas with an ozone gas concentration of 90% by volume or more
  • the optimum value of the supply flow rate ratio of about 1:3 (hereinafter simply referred to as the general optimum value) is the molar ratio (1:2) when ethylene molecules and ozone molecules undergo a complete oxidation reaction, and the It is a ratio that can be determined empirically by noting that the flow rate ratio and the molar ratio are equivalent and conducting appropriate oxidation reaction experiments.
  • Example 2 it was considered to appropriately set the supply flow rate ratio and the water contact angle of the surface to be joined 10 suitable for the hydroxyl group forming step S1.
  • the radical reaction in the hydroxyl group forming step S1 is a reaction in which OH radicals are generated during the multistage reaction of unsaturated hydrocarbon gas with ozone gas, as described above. Therefore, in a multistage reaction, when the ratio of ozone gas is set to be larger than the general optimum value, although the radical reaction itself can be maintained, the generation of OH radicals can be suppressed in accordance with the increased proportion. As a result, it is conceivable that the amount of hydroxyl groups formed on the surface to be joined 10 can also be suppressed.
  • the supply time of both the unsaturated hydrocarbon gas and the ozone gas in the hydroxyl group forming step S1 was set to 1 minute.
  • the symbol “ ⁇ ” indicates that the substrates 1a and 1b to be bonded were bonded as desired, and the symbol “ ⁇ ” indicates that the substrates 1a and 1b were bonded to a certain extent, although not as desired. If the bonding was successful, an "x" indicates that the substrates 1a and 1b to be bonded could not be bonded.
  • the second embodiment in addition to producing the same effects as in the first embodiment, the following can be said. That is, there is a correlation between the amount of hydroxyl groups formed on the surface 10 to be bonded and the water contact angle of the surface 10, and as the amount of hydroxyl groups increases, the water contact angle decreases. It turns out that it will happen.
  • the supply flow rate ratio unsaturated hydrocarbon gas/ozone gas
  • the water contact angle of the surface to be joined 10 is controlled, that is, the amount of hydroxyl groups formed on the surface to be joined 10 is controlled. I see that it is possible.
  • the amount of hydroxyl groups formed on the surface 10 to be joined can be prevented from becoming too large than necessary, and the generation of moisture can be suppressed, it becomes easier to join the substrates 1a and 1b to be joined as desired. I understand.
  • Example 3 In Example 3, in the hydroxyl group forming step S1, the supply flow rate ratio (unsaturated hydrocarbon gas/ozone gas) of both unsaturated hydrocarbon gas and ozone gas into the chamber 2 is kept constant, and the supply flow rate and supply time of both are kept constant. We considered adjusting the amount as appropriate.
  • the third embodiment in addition to providing the same effects as those of the first and second embodiments, the following can be said. That is, even if the supply flow rate ratio in the hydroxyl group forming step S1 is constant, the amount of hydroxyl groups formed on the surface to be joined 10 can be adjusted by appropriately adjusting the supply flow rates and supply times of the unsaturated hydrocarbon gas and ozone gas. It can be seen that since it is possible to prevent the amount from increasing too much and to suppress the generation of moisture, it becomes easier to bond the substrates 1a and 1b to be bonded as desired.
  • Example 4 hybrid bonding of the substrate 1 to be bonded, in which the metal wiring (electrode) is provided on the surface 10 to be bonded, was performed through steps S1 to S3 was considered.
  • metal wiring area the area where wiring is provided (hereinafter simply referred to as metal wiring area) is bonded (Cu--Cu direct bonding) by the following mechanism.
  • the hydroxyl groups in each metal wiring region are first removed by diffusion, and then the metal wiring regions are interdiffused (interdiffusion of Cu molecules). As a result, they are joined to each other. Therefore, from the viewpoint of bonding the metal wiring regions of each substrate 1 to be bonded, it can be seen that hydroxyl groups can be a factor that inhibits the bonding (hereinafter referred to simply as a metal bonding inhibiting factor).
  • a metal bonding inhibiting factor if an oxide film (Cu oxide film) is formed in the metal wiring area of each substrate 1 to be joined, or if moisture remains in the metal wiring area, the oxide film and moisture will also be removed from the metal bonding area. This can be a hindrance.
  • the amount of hydroxyl groups formed on the surfaces 10 can be reduced by performing hybrid bonding through steps S1 to S3. It can be seen that the substrates 1a and 1b to be bonded can be sufficiently bonded as desired because it is possible to prevent the amount from increasing more than necessary and also to suppress the generation of moisture.
  • Example 5 When a silicon substrate provided with a silicon oxide film (SiO 2 film) is used as the substrate 1 to be bonded, moisture remaining on the surface of the silicon oxide film (surface 10 to be bonded) and dehydration condensation in the bonding step S3 This is expected in the field of direct bonding because the moisture generated by the reaction can be easily diffused into the silicon oxide film in the dehydration condensation reaction, that is, easily removed from the surface 10 to be bonded.
  • SiO 2 film silicon oxide film
  • a silicon oxide film is formed on the side of the surface 10 to be bonded by an oxide film forming process such as a CVD method before performing steps S1 to S3. (forming with a film thickness greater than the unevenness) or, if necessary, by flattening the surface of the silicon oxide film by CMP (chemical mechanical polishing), etc., a flat surface 10 to be bonded is formed on the silicon oxide film.
  • an oxide film forming process such as a CVD method before performing steps S1 to S3. (forming with a film thickness greater than the unevenness) or, if necessary, by flattening the surface of the silicon oxide film by CMP (chemical mechanical polishing), etc.
  • a silicon oxide film formed by a general CVD method or the like is formed at a relatively high temperature (for example, over 200°C), so there is a difference in the coefficient of thermal expansion between the substrate 1 to be bonded and the silicon oxide film. exists, thermal distortion (warpage) of both is likely to occur. That is, if a silicon oxide film is formed on the substrate 1 to be bonded in a high-temperature atmosphere as described above and then the substrate 1 to be bonded is moved to a room temperature atmosphere, thermal distortion will occur due to temperature changes.
  • the CVD method and ALD method shown in Patent Documents 5 and 6 utilize a radical reaction at a relatively lower temperature (for example, about room temperature to 100° C.) than the general CVD method etc. to Taking note of the fact that a gas supply system capable of forming an oxide film and applicable to the hydroxyl group forming step S1 was used, a chamber 2C as shown in FIG. 6 was constructed.
  • the chamber 2C shown in FIG. 6 has the same configuration as the chambers 2A and 2B, except that the chamber 2C has a raw material gas supply section 7 so as to be able to supply the raw material gas for forming a silicon oxide film in the chamber 2C. It is important to have the following.
  • the chamber 2C is supported by an inert gas supply section 8 that supplies inert gas into the chamber 2C as shown in FIG. 6, a support section 6 as shown in FIG.
  • a heating section capable of heating the substrate 1 to be joined may be provided.
  • the raw material gas may be any gas containing Si, which is an element that forms a silicon oxide film, as a constituent element, and various embodiments can be applied.
  • organic gas sources appropriately selected from the group of organic gas sources including TEOS (TetraEthyl OrthoSillicate), HMDS-O (hexamethyldisiloxane), HMDS-N (hexamethyldisilazane), etc. may be applied. It will be done.
  • any inert gas may be used as long as it is applicable to, for example, purging the inside of the chamber 2, and examples thereof include inert gases such as N 2 , Ar, and He.
  • an oxide film is formed in the chamber 2C by the oxide film forming process of the CVD method or ALD method that utilizes the radical reaction of both unsaturated hydrocarbon gas and ozone gas.
  • a silicon oxide film (not shown) can be provided on the one end side surface.
  • unsaturated hydrocarbon gas and ozone gas are appropriately supplied to the surface of the silicon oxide film of the substrate 1 to be bonded (surface 10 to be bonded) of the substrate 1 to be bonded housed in the chamber 2C in the hydroxyl group forming step S1. Hydroxyl groups can be formed on the surface.
  • an oxide film forming step is performed on one end side surface (the surface to be joined 10 side) of each of the two substrates 1a and 1b. Not only can the hydroxyl group forming step S1 be performed, but also the laminating step S2 and the bonding step S3 can be performed.
  • the oxide film forming step and steps S1 to S3 of the substrates 1a and 1b to be bonded can be performed in-situ in the same chamber 2C, and the steps S1 to S3 of the substrates 1a and 1b to be bonded can be performed in-situ. It becomes possible to suppress thermal distortion.
  • silicon substrates are housed as substrates 1a and 1b to be bonded in a chamber 2C equipped with a support section 6 and a heating section, and CVD is performed using a radical reaction of both unsaturated hydrocarbon gas and ozone gas as described above.
  • a silicon oxide film was formed on the bonding surface 10 side of the substrates 1a and 1b to be bonded by performing an oxide film forming step using a method or an ALD method.
  • the following can be said. That is, it can be seen that since the step of forming an oxide film on the substrate 1 to be bonded 1 and steps S1 to S3 can be performed in-situ, the substrates 1a and 1b to be bonded can be bonded as desired and efficiently.
  • the metal wiring provided on the substrates 1a and 1b to be bonded is not limited to those made of copper or gold, but may also be made of metals appropriately selected from the group of various metals such as tungsten and aluminum. There are also things that consist of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

水酸基形成工程(S1)において、被接合基体(1a,1b)の被接合面(10)に対し、不飽和炭化水素ガスおよびオゾン濃度50体積%超のオゾンガスをそれぞれ供給することにより、当該不飽和炭化水素ガスおよび当該オゾンガスの両者のラジカル反応により発生するOHラジカルを当該被接合面(10)に曝露して、当該被接合面(10)に対して水酸基(水酸基による分子層)OHを形成する。そして、積層工程(S2)において、各被接合基体(1a,1b)を被接合面(10)にて重ね合わせて積層した状態にし、接合工程(S3)において、各被接合基体(1a,1b)を加熱し水酸基OHを脱水縮合反応させることにより、当該各被接合基体(1a,1b)を被接合面(10)にて接合する。

Description

基体の接合方法
 本発明は、基体の接合方法に係るものであって、例えば2つの基体を所望通りに接合し易くすること貢献可能な技術に関するものである。
 例えばIoT化に伴う近年の電子デバイスを介した情報量の増大により、半導体デバイスの更なる高度化の要求が高まっている。従来から、半導体デバイスの微細化・集積化の技術開発(Moore’s Law)は進められてきたが、更なる技術進歩(More Than Moore)を図ることが要求され始めており、その一例として3次元積層体(3D-IC)の開発・実用化が挙げられる。
 例えばデザインルールや機能等の異なる複数個の基体(半導体基板等の被接合基体)を重ね合わせて接合した3次元積層体の場合、単に半導体デバイスの集積度が高められるだけでなく、各基体それぞれが持っている機能(異なる機能)を集積でき、さらに配線距離の低減を図ることにも貢献可能であることから、種々の特長(新たなメリット等)が得られるとされている。
 3次元積層体の被接合基体の接合においては、接着剤等を用いない接合方法、すなわち直接接合方法が適用されており、近年は、当該被接合基体の被接合面に設けられている電極等も同時に接合可能な態様(ハイブリッド接合)も注目され始めている。直接接合方法の具体例としては、いわゆるフュージョン接合方法や表面活性化接合方法が挙げられ、そのうちフュージョン接合は、3次元積層体の分野において広く採用されている。
 フュージョン接合方法は、主に、(1)被接合基体の被接合面(必要に応じて予め平坦化された被接合面)に水酸基を形成する工程(以下、単に水酸基形成工程と適宜称する)と、(2)前記水酸基を形成した2個の被接合基体を被接合面にて重ね合わせ積層する工程(以下、単に積層工程と適宜称する)と、(3)前記積層状態において水酸基の脱水縮合反応を起こし当該各被接合基体を被接合面にて互いに接合する工程(以下、単に接合工程と適宜称する)と、を有したものが挙げられる。
 なお、前記基体自体に係る技術として、前記のような直接接合方法の他には、当該基体の表面の改質等を行う表面処理方法(例えば特許文献1~4)や、当該基体の表面にCVD法(化学気相成長法)またはALD法(原子層堆積法)により各種薄膜を形成する成膜方法(例えば特許文献5,6)等が存在している。
特許4905253号公報 特許5217951号公報 特許6052470号公報 特許6057030号公報 特許6569831号公報 特許7056710号公報
 一般的な直接接合方法の水酸基形成工程では、被接合基体の被接合面に対し、水を原料とする処理(水溶液処理や水蒸気プラズマ処理等)によって水酸基を形成しているため、当該被接合面に水分が残存し易いことが考えられる。
 この場合、接合工程においては、前記のように残存した水分によって脱水縮合反応が抑制され、各被接合基体を接合することが困難となるおそれがある。
 また、水酸基形成工程において、水蒸気プラズマ処理を適用して水酸基を形成すると、被接合面にプラズマによるダメージを与えてしまい、当該被接合面の表面粗度が大きくなってしまうことも考えられる。この場合、積層工程または/および接合工程を所望通りに行うことができず、各被接合基体を接合することが困難となるおそれがある。
 本発明は、前述のような技術的課題に鑑みてなされたものであって、各被接合基体の被接合面に水分が残存しないように抑制し、当該各被接合基体を所望通り接合し易くすることに貢献可能な技術を提供することにある。
 この発明による基体の接合方法の一態様は、チャンバ内に収容した被接合基体の被接合面に水酸基を形成する水酸基形成工程と、前記水酸基を形成した2個の前記被接合基体を被接合面にて重ね合わせて積層する積層工程と、前記積層した状態の各被接合基体を加熱することにより、当該各被接合基体を被接合面にて接合する接合工程と、を有するものである。
 そして、前記水酸基形成工程は、前記チャンバ内に収容した被接合基体の被接合面に対し、不飽和炭化水素ガスおよびオゾン濃度50体積%超のオゾンガスをそれぞれ供給することにより、当該不飽和炭化水素ガスおよび当該オゾンガスの両者のラジカル反応により発生するOHラジカルを当該被接合面に曝露して、当該被接合面に対して水酸基を形成し、前記接合工程は、前記加熱によって前記水酸基を脱水縮合反応させることを特徴とする。
 また、前記チャンバには、前記チャンバ内に前記不飽和炭化水素ガスを供給する不飽和炭化水素ガス供給部と、前記チャンバ内に前記オゾンガスを供給するオゾンガス供給部と、前記チャンバ内のガスを吸気して当該チャンバ外に排出するガス排出部と、が備えられており、前記水酸基形成工程は、前記チャンバ内を減圧状態にして行うことを特徴としても良い。
 また、前記水酸基形成工程により、前記被接合基体の被接合面の水接触角を4°~10°の範囲内にすることを特徴としても良い。
 また、前記水酸基形成工程は、前記チャンバ内に対する前記不飽和炭化水素ガスおよび前記オゾンガスの両者の供給流量比を調整することにより、前記被接合基体の被接合面に対する水酸基の量を制御することを特徴としても良い。
 また、前記水酸基形成工程は、前記チャンバ内に対する前記不飽和炭化水素ガスおよび前記オゾンガスの両者の供給流量比が一定となるように、当該両者の供給流量および供給時間を調整することにより、前記被接合基体の被接合面に対する水酸基の量を制御することを特徴としても良い。
 また、前記各被接合基体の被接合面には、銅,金,タングステン,アルミニウムのうち何れかを用いてなる金属配線がそれぞれ設けられており、前記接合工程により、前記各被接合基体それぞれに設けられた金属配線を互いに接合することを特徴としても良い。
 また、前記チャンバは、当該チャンバ内に前記各被接合基体をそれぞれ支持する支持部を、備え、前記支持部は、前記各被接合基体を、それぞれの被接合面が互いに対向した姿勢で、当該対向する方向に対して接離自在に移動できるように支持することを特徴としても良い。
 前記各被接合基体の被接合面は、前記水酸基形成工程よりも前工程である酸化膜形成工程によって予め当該各被接合基体それぞれの一端側面に設けられたシリコン酸化膜の表面であることを特徴としても良い。
 また、前記チャンバは、前記シリコン酸化膜を形成する元素であるSiを構成元素として含んでいる原料ガスを前記チャンバ内に供給する原料ガス供給部を、更に備えており、前記酸化膜形成工程は、前記不飽和炭化水素ガスおよび前記オゾンガスの両者のラジカル反応を利用した化学気相成長法または原子層堆積法により、前記チャンバ内に収容した前記被接合基体の一端側面に対し、前記不飽和炭化水素ガスと、前記オゾンガスと、前記原料ガスと、を供給して前記シリコン酸化膜を設けたことを特徴としても良い。
 前記不飽和炭化水素ガスは、プロピレン、アセチレン、ブタジエン、ベンゼン、トルエン、O-キシレン、スチレン、α-ブチレン、1,3-ブタジエン、1,2-ブタジエン、3-メチル-1,2-ブタジエン、2-メチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエンのうち何れかから成ることを特徴としても良い。
 前記各被接合基体それぞれは、シリコン基板,ガラス基板,GaN基板,SiC基板,ダイヤモンド基板,前記被接合基体の一端側面にシリコン酸化膜が設けられている基板,金属基板,フィルム状基板の群から選択された同種または異種の基板であることを特徴としても良い。
 前記原料ガスは、TEOS,HMDS-O,HMDS-Nを含む有機ガスソースの群から選択された一種以上から成ることを特徴としても良い。
 以上示したように本発明によれば、各被接合基体の被接合面に水分が残存しないように抑制し、当該各被接合基体を所望通り接合し易くすることに貢献可能となる。
オゾンガスの濃度とOHラジカルの発生効率との特性図(Siウェハ上のフォトレジストのアッシング効果を指標に、オゾン濃度約100体積%とした場合のアッシングレートを1として規格化した図)。 実施例1による基体の接合方法を説明するための工程図(模式図)。 水酸基形成工程S1におけるラジカル反応を説明するための模式図。 実施例1による基体の接合方法に適用可能なチャンバ2Aを説明するための概略構成図(チャンバ2A内を透視している図)。 実施例1による基体の接合方法に適用可能なチャンバ2Bを説明するための概略構成図(チャンバ2B内を透視している図)。 実施例5による基体の接合方法に適用可能なチャンバ2Cを説明するための概略構成図(チャンバ2C内を透視している図)。
 本発明の実施形態の基体の接合方法は、一般的な直接接合方法のように水酸基形成工程において水を原料とする処理(水溶液処理や水蒸気プラズマ処理等)を行って水酸基を形成する方法(以下、単に従来法と適宜称する)とは、全く異なるものである。
 すなわち、本実施形態の基体の接合方法は、水酸基形成工程において、被接合基体の被接合面に対し、不飽和炭化水素ガスおよびオゾン濃度50体積%超のオゾンガスをそれぞれ供給することにより、当該不飽和炭化水素ガスおよび当該オゾンガスの両者のラジカル反応により発生するOHラジカルを当該被接合面に曝露して、当該被接合面に対して水酸基(水酸基による分子層)を形成するものである。
 そして、積層工程において、前記各被接合基体を被接合面にて重ね合わせて積層した状態にし、接合工程において、前記各被接合基体を加熱し前記水酸基を脱水縮合反応させることにより、当該各被接合基体を被接合面にて接合するものである。
 このような本実施形態によれば、水酸基形成工程において、被接合基体の被接合面に水分が残存しないように抑制することができる。これにより、接合工程においては、水酸基の脱水縮合反応が起こり易くなる。また、従来法のような水蒸気プラズマ処理等が不要であるため(被接合基体の被接合面にプラズマによるダメージを与えることがないため)、当該被接合面の表面粗度を十分小さい状態(例えば原子レベルで小さい状態)で保持することができ、積層工程、接合工程を所望通りに行い易くなる。これにより、各被接合基体を被接合面にて所望通りに接合し易くなる。
 本実施形態の基体の接合方法は、前述のように水酸基形成工程において不飽和炭化水素ガスおよびオゾンガスの両者のラジカル反応により発生するOHラジカルを被接合基体の被接合面に曝露することにより、当該被接合面に対して水酸基を形成できるものであれば良い。すなわち、種々の分野(例えば、直接接合分野,チャンバ分野,オゾンガス分野,不飽和炭化水素ガス分野,ラジカル反応分野,表面処理分野や、CVD,ALD等による成膜分野等)の技術常識を適宜適用し、必要に応じて先行技術文献等を適宜参照して設計変形することが可能であり、その一例として後述の実施例1~5が挙げられる。なお、後述の実施例1~5では、例えば重複する内容について同一符号を適用する等により、詳細な説明を適宜省略しているものとする。
 ≪ラジカル反応に係る参考例≫
 例えば特許文献1,2では、不飽和炭化水素ガスとオゾンガスとのラジカル反応により発生するOHラジカル等の活性種(酸化種)を利用して、表面処理対象物の表面に付着しているレジストを除去する技術が開示されている。このレジスト除去技術は、オゾンの特性を利用したものであって、例えば熱エネルギー(加熱)やUV照射を施さなくても、当該オゾンが不飽和炭化水素の炭素の2重結合と反応し易いことを利用したものである。
 前記のようなラジカル反応を利用したレジスト除去技術は、フォトレジスト等の有機物を除去する効果が高く、例えば熱ダメージ無し,プラズマダメージ無しでフォトレジストのアッシングや表面の有機物除去などに実用化されている。
 ラジカル反応では、まず初期において炭素の2重結合がオゾン分子によって開裂し、これに伴って発生する不安定なメチレン過酸化物が中間体として、さらに分裂反応を起こし、炭酸ガスや水と共にOHラジカルやギ酸等を発生する。このラジカル反応の一例としては、図1のようにオゾンガスの濃度とOHラジカルの発生効率との特性図で表すことができる。
 この図1によると、オゾンガスが低濃度(例えば50体積%以下)の場合には、OHラジカルの発生効率も低くなってしまうため、当該OHラジカル等は中間反応において消費され易い。すなわち、OHラジカルの発生が増幅される多段反応パスが少なくなってしまい、所望の表面処理をすることが困難になることが読み取れる。一方、オゾンガスが高濃度の場合には、OHラジカルが高濃度で発生し、さらに多段反応の過程でも多量のOHラジカルが発生し易くなることが読み取れる。
 また、従来のオゾンガス発生装置(例えば一般的な放電方式のオゾナイザ)では、供給可能なオゾンガスが低濃度(例えば最大オゾン濃度が23体積%程度)であったが、近年、オゾンガスを高濃度で安全に発生させることが可能な装置(例えば、明電舎製のピュアオゾンジェネレータ)が出現したことにより、ラジカル反応を応用した表面処理技術が種々検討され始めている。
 例えば特許文献3,4では、OHラジカルを利用して表面処理対象物(改質対象物)の表面を酸化し、さらに水酸基を主とする親水基を形成(親水基による分子層)して、当該表面を改質する技術が開示されている。この改質技術では、改質対象物に物理的ダメージ等を与えることなく、当該改質対象物の表面を改質できることとされている。
 具体的に、特許文献3,4では、改質対象物を収容したチャンバ内に不飽和炭化水素ガスおよびオゾンガスを供給することにより、当該改質対象物の表面付近にてラジカル反応を起こし、当該ラジカル反応で発生したOHラジカル等によって当該改質対象物の表面を改質する方法が開示されている。また、不飽和炭化水素ガス供給部およびオゾンガス供給部を一体化したシャワーヘッド(特許文献3では符号9、特許文献4では符号10または15)を介して、チャンバ内に不飽和炭化水素ガスおよびオゾンガスを供給する構成も開示されている。
 以上のようなラジカル反応を直接接合方法の水酸基形成工程に適用することにより、例えば従来法のように水を原料とする処理を行わなくても、被接合基体の被接合面に対して十分な量の水酸基を形成することが可能となる。また、各被接合基体の被接合面に水分が残存しないように抑制することが可能となる。
 このラジカル反応を適用した水酸基形成工程によれば、被接合基体の被接合面に対し、例えば当該ラジカル反応によるエネルギー(化学反応エネルギー)が作用することはあっても、従来法のようなプラズマ処理等によるエネルギー(プラズマダメージを与え得るエネルギー)が作用することは回避できる。このため、当該被接合面の表面粗度を十分小さく保持できる。
 例えば、複数個のガラス基板等の被接合基体を直接接合方法により接合して光学レンズを構成するような場合、当該各被接合基体の被接合面を原子レベルで十分小さい表面粗度を保持(良好な平坦度を保持)した状態で、積層工程,接合工程を行うことが望ましい。ここで、前記のようなラジカル反応を適用した水酸基形成工程によれば、当該水酸基形成工程後の各被接合基体の被接合面においては、原子レベルで十分小さい表面粗度を保持(良好な平坦度を保持)でき、積層工程,接合工程を適宜行って所望の光学レンズを得ること可能となる。
 ≪実施例1≫
 本実施例1の接合方法は、図2に示したような水酸基形成工程S1,積層工程S2,接合工程S3を順に行うことにより、複数個の被接合基体1(図2では2個の平板状の被接合基体1a,1b;以下、適宜纏めて単に被接合基体1と称する)を被接合面10にて接合するものであって、当該水酸基形成工程S1において前記参考例に示すようなラジカル反応を利用したものである。
 図2に示す水酸基形成工程S1では、被接合基体1の被接合面10に不飽和炭化水素ガスおよびオゾン濃度50体積%超のオゾンガスを供給する。これにより、被接合基体1の被接合面10付近においては、例えば図3に示すように不飽和炭化水素ガス(図3ではエチレン)およびオゾンガス(図3ではピュアオゾン)の両者によってラジカル反応が起こり、当該ラジカル反応により発生するOHラジカル(OH)が被接合基体1の被接合面10に曝露されて、当該被接合面10に対して水酸基(図中では符号OHで示す水酸基による分子層)が形成されることとなる。
 次に、積層工程S2では、前記水酸基形成工程S1により水酸基を形成した2個の被接合基体1a,1bを、被接合面10にて重ね合わせて積層(仮接合)する。この積層状態にした被接合基体1a,1bは、被接合面10にて互いに圧接(例えば1MPa以上で圧接)し、十分密着させておくことが好ましい。
 そして、接合工程S3では、前記積層工程S2にて積層状態にした各被接合基体1a,1bを加熱することにより、前記水酸基を脱水縮合反応させる。これにより、各被接合基体1a,1bが、被接合面10にて接合されることとなる。
 <水酸基形成工程S1で適用可能なチャンバの一例>
 水酸基形成工程S1では、例えばチャンバ内に被接合基体1を収容して当該チャンバ内を減圧状態にし、当該チャンバ内に不飽和炭化水素ガスおよびオゾンガスをそれぞれ供給することにより、当該被接合基体1の被接合面10に水酸基を形成することが挙げられる。このチャンバは、前記のように被接合基体1を収容した状態で不飽和炭化水素ガスおよびオゾンガスを供給でき、当該被接合面10に水酸基を形成できるものであれば良く、種々の態様が適用可能である。
 一例として、図4に示すチャンバ2(図4ではチャンバ2A、後述の図5,図6ではチャンバ2B,2C;以下、適宜纏めて単にチャンバ2と称する)では、当該チャンバ2内に不飽和炭化水素ガスを供給する不飽和炭化水素ガス供給部3と、当該チャンバ2内にオゾンガスを供給するオゾンガス供給部4と、当該チャンバ2内のガスを吸気して当該チャンバ2外に排出するガス排出部5と、を備えたものとなっている。ガス排出部5においては、単にチャンバ2内のガスを吸気して当該チャンバ2外に排出するだけでなく、当該チャンバ2内を減圧状態(例えばチャンバ2内が真空環境下となるような状態)に維持することが可能な態様が挙げられる。
 以上のようなチャンバ2は、特許文献1~6にも同様の構成が開示されており、当該構成を適宜適用することも可能である。例えば、不飽和炭化水素ガス供給部3,オゾンガス供給部4による不飽和炭化水素ガス,オゾンガスの供給流量,供給流量比,供給時間等を調整可能な制御部や、当該不飽和炭化水素ガスやオゾンガス以外のガスを供給するガス供給部(後述図6では原料ガス供給部7,不活性ガス供給部8)等を、更に備えることが挙げられる。また、前記不飽和炭化水素ガス供給部3,オゾンガス供給部4(例えば後述の図6では更に原料ガス供給部7,不活性ガス供給部8)を一体化してシャワーヘッドを構成し、当該シャワーヘッドを介してチャンバ2内に不飽和炭化水素ガス,オゾンガスを供給することも挙げられる。
 <被接合基体1の支持構成等の一例>
 図2に示した水酸基形成工程S1,積層工程S2,接合工程S3(以下、適宜纏めて単に工程S1~S3と称する)においては、被接合基体1を適宜支持して行うことが挙げられるが、当該支持構成等は特に限定されるものではない。例えば、図4に示したチャンバ2Aにおいて、複数個の被接合基体1を支持する支持構成としても良く、これにより当該各被接合基体1において同時に水酸基形成工程S1を行うことが可能となる。
 また、図5に示すチャンバ2Bのように、当該チャンバ2B内に収容した複数個の被接合基体1を移動自在に支持した態様や、当該各被接合基体1を加圧や加温できる態様にしても良い。
 図5に示すチャンバ2Bの場合、当該チャンバ2B内において2つの被接合基体1a,1bをそれぞれ支持することが可能な支持部6を、備えている。支持部6は、2つの被接合基体1a,1bそれぞれを支持し互いに対向して配置されている一対の支持台61a,61bと、当該支持台61a,61bが前記対向する方向(以下、単に対向方向と適宜称する)に対して接離自在に移動できるように当該支持台61a,61bそれぞれの外周縁側を支持する一対の支持アーム62a,62bと、当該支持アーム62a,62bを前記対向方向に沿って回転自在に支持する回転軸63と、を備えたものとなっている。
 このように構成された支持部6は、例えばチャンバ2B外の操作部(図示省略)により、回転軸63を軸にして支持アーム62a,62bを回転操作でき、支持台61a,61bを対向方向に接離するように移動できるものとなっている。また、支持台61a,61bには、当該支持台61a,61bに支持された被接合基体1a,1bをそれぞれ加温することが可能な加温部(図示省略)が備えられているものとする。
 このチャンバ2Bによれば、被接合基体1a,1bにおいて工程S1~S3を適宜行うことができる。まず、水酸基形成工程S1を行う場合、図5に示すように、2つの被接合基体1a,1bを、それぞれの一端側面である被接合面10が互いに対向した姿勢で離反して位置するように、支持台61a,61bに支持する。そして、当該支持状態において、不飽和炭化水素ガス供給部3,オゾンガス供給部4から、それぞれ不飽和炭化水素ガス,オゾンガスを供給する。これにより、被接合基体1a,1bそれぞれの被接合面10付近においては、図3に示したようなラジカル反応が起こり、当該被接合面10に水酸基が形成されることとなる。
 この後、積層工程S2においては、支持部6を操作して、支持台61a,61bを対向方向に接近させることにより、被接合基体1a,1bそれぞれの被接合面10を重ね合わせて積層し互いに圧接することができる。そして、接合工程S3においては、前記積層(圧接)した状態の被接合基体1a,1bを加温部によって加温することにより、水酸基の脱水縮合反応が起こり、各被接合基体1a,1bが被接合面10にて接合されることとなる。
 したがって、以上のようなチャンバ2Bによれば、同一のチャンバ2B内において、いわゆるin-situで被接合基体1a,1bの工程S1~S3を行うことができる。
 例えば、チャンバ2Aにより水酸基形成工程S1を行った場合、当該チャンバ2Aから被接合基体1を取り出して積層工程S2,接合工程S3を行うことが挙げられるが、この場合、被接合面10には少なからず水分が残存し得ることが考えられる。一方、チャンバ2Bによれば、前記のように工程S1~S3をin-situで行うことができるため、被接合面10に水分が残存しないように抑制し易くなる。
 <不飽和炭化水素ガス,オゾンガスの一例>
 不飽和炭化水素ガス,オゾンガスは、それぞれ水酸基形成工程S1においてラジカル反応を起こし、被接合面10に対して水酸基を形成し得るものであれば良く、種々の態様が適用可能である。不飽和炭化水素ガスの具体例としては、下記表1に示すものが挙げられる。
Figure JPOXMLDOC01-appb-T000001
 オゾンガスの具体例としては、オゾン濃度が50体積%超、より好ましくは高濃度(例えば90体積%以上)のものが挙げられる。
 <被接合基体1の一例>
 被接合基体1は、水酸基形成工程S1によって被接合面10に水酸基を形成できるものであって、その後の積層工程S2,接合工程S3を経て直接接合できるものであれば適宜適用可能で有り、特に限定されるものではないが、必要に応じて、予め当該被接合面10を平坦化処理(例えば、CMP等により、原子レベルで十分小さい表面粗度となるように平坦化処理)しておくことが挙げられる。
 また、水酸基形成工程S1や接合工程S3がそれぞれ比較的低温で行うことが可能であるため、例えば被接合基体1が基板またはフィルム等の場合、シリコン基板等の比較的耐熱性が高い基板等に限定されることはなく、耐熱性が比較的低い合成樹脂で形成された基板等であっても良い。
 一例としては、シリコン基板,ガラス基板,GaN基板,SiC基板,ダイヤモンド基板等のようにMEMS,半導体,FPD等に適用されている各種基板や、金属基板,フィルム状基板等や、シリコン酸化膜(SiO膜)が設けられている基板も挙げられ、これらの基板から同種または異種のものを選択して適用することが挙げられる。
 被接合基体1が樹脂を用いてなる場合、当該樹脂としては、例えば、ポリエステル樹脂、アラミド樹脂、オレフィン樹脂、ポリプロピレン、PPS(ポリフェニレンサルファイド)、PET(ポリエチレンテレフタレート)等を用いたものが挙げられる。
 その他、PE(ポリエチレン)、PEN(ポリエチレンナフタレート)、POM(ポリオキシメチレン、または、アセタール樹脂)、PEEK(ポリエーテルエーテルケトン)、ABS樹脂(アクリロニトリル、ブタジエン、スチレン共重合合成樹脂)、PA(ポリアミド)、PFA(4フッ化エチレン、パーフルオロアルコキシエチレン共重合体)、PI(ポリイミド)、PVD(ポリ二塩化ビニル),アクリル樹脂等を用いたものも挙げられる。
 <検証>
 次に、以下に示す検証条件により、実施例1による接合方法の検証を行った。まず、平板状の無アルカリガラスから成る被接合基体1を適用し、実施例1の水酸基形成工程S1を行った場合と、従来法の水酸基形成工程(Oプラズマ処理)を行った場合と、における被接合面10の水接触角(°),表面粗度Sq(Rms)を観察したところ、下記表2に示すような結果が得られた。なお、実施例1の水酸基形成工程S1では、エチレンを不飽和炭化水素ガスとして適用した。
Figure JPOXMLDOC01-appb-T000002
 表2によると、従来法の水酸基形成工程を行った場合における被接合面10は、水接触角が小さく抑えられ、水酸基が形成されていることを読み取れるものの、表面粗度が大きくなってしまっている。一方、実施例1の水酸基形成工程S1を行った場合における被接合面10は、水接触角が小さく抑えられ、水酸基が形成されているだけでなく、表面粗度を十分小さく抑制できていることが読み取れる。
 したがって、以上のような実施例1によれば、水酸基形成工程S1において、被接合基体1の被接合面10に対して水分が残存しないように抑制しながら、当該被接合面10に対して十分な量の水酸基を形成でき、接合工程S3においては、当該水酸基の脱水縮合反応が起こり易くなる。また、従来法のような水蒸気プラズマ処理等が不要であるため、被接合面10の表面粗度を十分小さい状態で保持することができ、後工程の積層工程S2、接合工程S3を所望通りに行い易くなる。これにより、各被接合基体1を被接合面10にて所望通りに接合可能であることが判る。
 ≪実施例2≫
 例えば、特許文献1,2に示すような表面処理技術においては、不飽和炭化水素ガス(例えばエチレン)およびオゾンガス(例えばオゾンガス濃度90体積%以上のオゾンガス)の両者の供給流量比である不飽和炭化水素ガス:オゾンガスの最適値は、約1:3となることが考えられる。この約1:3という供給流量比の最適値(以下、単に一般的最適値と称する)は、エチレン分子とオゾン分子が完全に酸化反応する場合のモル比(1:2)であり、前記供給流量比と前記モル比とが等価であることに着目し、酸化反応実験等を適宜行うことにより経験的に条件出しできる比率である。
 そこで、本実施例2では、水酸基形成工程S1に適した供給流量比および被接合面10の水接触角を適宜設定することを検討した。
 まず、水酸基形成工程S1のラジカル反応は、前述したとおり、不飽和炭化水素ガスがオゾンガスと多段反応する過程で、OHラジカルを発生させる反応である。このため、多段反応において、オゾンガスの比率を一般的最適値よりも大きくなるように設定した場合、ラジカル反応自体は維持できるものの、当該大きくした分に応じてOHラジカルの発生が抑制され得る。その結果、被接合面10に形成される水酸基の量も抑制され得ることが考えられる。
 ただし、従来法の水酸基形成工程の場合と比較したところ、たとえ前記のようにOHラジカルの発生が抑制された水酸基形成工程S1であっても、被接合面10には十分な量の水酸基を形成できることが判った。また、ラジカル反応においては、少なからず水分が発生し得るが、前記のようにOHラジカルの発生が抑制された場合には、当該水分の発生も抑制されることが判った。
 したがって、水酸基形成工程S1のラジカル反応においては、被接合面10に形成する水酸基の量が必要以上に多くなり過ぎないように適宜設定し、水分の発生を抑制することが好ましいことが判る。
 <検証>
 次に、以下に示す検証条件により、本実施例2による接合方法の検証を行った。まず、シリコン酸化膜(SiO膜)が設けられているシリコン基板を被接合基体1a,1bとして適用し、不飽和炭化水素ガスとしてエチレンガスを適用した。そして、水酸基形成工程S1において供給流量比の不飽和炭化水素ガス:オゾンガスを適宜設定して行った後、被接合面10(シリコン酸化膜表面)の水接触角(°)を観察したところ、下記表3に示す結果が得られた。更に、当該水酸基形成工程S1を行った後の被接合基体1a,1bにおいて、積層工程S2,接合工程S3を経て接合した場合の接合状況も観察したところ、下記表3に示すような結果が得られた。
 なお、水酸基形成工程S1による不飽和炭化水素ガスおよびオゾンガスの両者の供給時間は1分に設定した。また、表3の接合状況の項目において、記号「◎」は所望通りに被接合基体1a,1bを接合できた場合、記号「△」は所望通りではないが被接合基体1a,1bを有る程度接合できた場合、「×」は被接合基体1a,1bを接合できなかった場合を示すものとする。
Figure JPOXMLDOC01-appb-T000003
 表3によると、供給流量比においてオゾンガスの比率が一般的最適値よりも大きくなるに連れて、被接合面10の水接触角が大きくなっているものの、被接合基体1a,1bを所望通り接合できていることが読み取れる。そこで、表3と同様の検証条件により、被接合面10の水接触角が4°~10°の範囲内となるように適宜設定し、工程S1~S3を経て接合した被接合基体1a,1bの接合状況を観察したところ、当該被接合基体1a,1bを所望通り十分接合できることを確認できた。
 したがって、以上のような実施例2によれば、実施例1と同様の作用効果を奏する他に、以下に示すことが言える。すなわち、被接合面10に形成される水酸基の量と、当該被接合面10の水接触角と、の両者には相関性があり、当該水酸基の量が多くなるに連れて水接触角が小さくなることが判る。また、水酸基形成工程S1の供給流量比(不飽和炭化水素ガス/オゾンガス)を適宜調整することにより、被接合面10の水接触角を制御、すなわち被接合面10に形成する水酸基の量を制御できることが判る。
 そして、被接合面10に形成する水酸基の量が必要以上に多くなり過ぎないようにでき、水分の発生を抑制することもできることから、被接合基体1a,1bを所望通りに接合し易くなることが判る。
 ≪実施例3≫
 本実施例3では、水酸基形成工程S1において、チャンバ2内に対する不飽和炭化水素ガスおよびオゾンガスの両者の供給流量比(不飽和炭化水素ガス/オゾンガス)を一定にし、当該両者の供給流量,供給時間を適宜調整することを検討した。
 <検証>
 実施例2と同様の検証条件であって、水酸基形成工程S1においては、供給流量比の不飽和炭化水素ガス:オゾンガスを一般的最適値よりもオゾンガスの比率が大きい値で一定とし、不飽和炭化水素ガスおよびオゾンガスの供給流量,供給時間を適宜設定して行った後、被接合面10(シリコン酸化膜表面)の水接触角(°)を観察したところ、実施例2と同様の結果が得られた。更に、当該水酸基形成工程S1を行った後の被接合基体1a,1bにおいて、積層工程S2,接合工程S3を経て接合した場合の接合状況も観察したところ、実施例2と同様の結果が得られた。
 したがって、以上のような実施例3によれば、実施例1,2と同様の作用効果を奏する他に、以下に示すことが言える。すなわち、たとえ水酸基形成工程S1の供給流量比が一定であっても、不飽和炭化水素ガスおよびオゾンガスの供給流量,供給時間を適宜調整することにより、被接合面10に形成する水酸基の量が必要以上に多くなり過ぎないようにでき、水分の発生を抑制することもできることから、被接合基体1a,1bを所望通りに接合し易くなることが判る。
 ≪実施例4≫
 本実施例4では、被接合面10に金属配線(電極)が設けられている被接合基体1について、工程S1~S3を経てハイブリッド接合することを検討した。
 例えば、銅を用いて成る金属配線が被接合面10に設けられている被接合基体1において、工程S1~S3を経てハイブリッド接合しようとする場合、各被接合基体1の被接合面10の金属配線が設けられている領域(以下、単に金属配線領域)は、以下に示すようなメカニズムで接合(Cu-Cu直接接合)されるものと考えられる。
 すなわち、各被接合基体1の金属配線領域は、接合工程S3において、まず各金属配線領域の水酸基が拡散によって除去され、その後に当該各金属配線領域が相互拡散(Cu分子の相互拡散)することにより、互いに接合することとなる。したがって、各被接合基体1の金属配線領域を接合するという観点では、水酸基は、当該接合を阻害する要因(以下、単に金属接合阻害要因と適宜称する)となり得ることが判る。また、各被接合基体1の金属配線領域に酸化膜(Cu酸化膜)が形成されている場合や、当該金属配線領域に水分が残存している場合には、当該酸化膜や水分も金属接合阻害要因となり得る。
 一方、金を用いて成る金属配線が被接合面10に設けられている被接合基体1の場合には、当該金属配線の酸化が起こり難く、比較的にハイブリッド接合に適しており、接合工程S3の脱水縮合反応に係る加熱を省略できる可能性もある。しかしながら、各被接合基体1の金属配線領域に水酸基や水分が残存している場合には、当該水酸基や水分が金属接合阻害要因となってしまう。
 <検証>
 そこで、前記のように銅または金を用いて成る金属配線が設けられている被接合基体1a,1bにおいて、実施例2,3の検証条件と同様の工程S1~S3を経て接合した場合の接合状況を観察したところ、当該実施例2,3と同様の結果が得られた。この結果により、水酸基形成工程S1のラジカル反応においては、被接合面10に形成する水酸基の量が必要以上に多くなり過ぎず、水分の発生が抑制されていることが判る。
 したがって、被接合基体1a,1bの被接合面10に金属配線が設けられている場合であっても、工程S1~S3を経てハイブリッド接合することにより、被接合面10に形成する水酸基の量が必要以上に多くなり過ぎないようにでき、水分の発生を抑制することもできることから、当該被接合基体1a,1bを所望通りに十分接合できることが判る。
 ≪実施例5≫
 シリコン酸化膜(SiO膜)が設けられているシリコン基板は、被接合基体1として適用した場合、当該シリコン酸化膜の表面(被接合面10)に残存する水分や、接合工程S3の脱水縮合反応により発生する水分を、当該脱水縮合反応においてシリコン酸化膜中に拡散、すなわち被接合面10から除去し易くなる可能性があるため、直接接合分野では期待されている。
 例えば、被接合基体1の被接合面10側が凹凸状の場合には、工程S1~S3を行う前に、予めCVD法等の酸化膜形成工程により当該被接合面10側にシリコン酸化膜を形成(凹凸以上の膜厚で形成)したり、必要に応じて当該シリコン酸化膜表面をCMP(化学的機械研磨)等で平坦化処理することにより、当該シリコン酸化膜に平坦な被接合面10を設けることが可能となる。
 ところで、被接合基体1の被接合面10側が平坦状であっても、その被接合面10側にCVD法等によりシリコン酸化膜を形成する場合には、当該形成後のシリコン酸化膜表面において平坦化処理が必要になる場合がある。
 例えば、一般的なCVD法等によるシリコン酸化膜は、比較的高温下(例えば200℃超)で形成されるものであるため、被接合基体1とシリコン酸化膜との両者において熱膨張係数の差が存在している場合には、当該両者の熱歪(反り)が起こり易い。すなわち、前記のような高温雰囲気下で被接合基体1にシリコン酸化膜を形成した後、その被接合基体1を室温雰囲気下に移動させると、温度変化による熱歪が生じてしまう。
 そこで、本実施例5では、特許文献5,6に示すCVD法やALD法が、一般的なCVD法等よりも比較的低温(例えば、室温程度~100℃)でラジカル反応を利用してシリコン酸化膜を形成できるものであって、水酸基形成工程S1に適用可能なガス供給系を利用していることに着目し、図6に示すようなチャンバ2Cを構成した。
 図6に示すチャンバ2Cは、チャンバ2A,2Bと同様の構成であって、異なる点は、当該チャンバ2C内にシリコン酸化膜を形成するための原料ガスを供給できるように、原料ガス供給部7を備えていることである。このチャンバ2Cは、その他に、図6に示すようにチャンバ2C内に不活性ガスを供給する不活性ガス供給部8や、図5に示すような支持部6や、当該支持部6に支持された被接合基体1を加温可能な加温部を備えていても良い。
 原料ガスは、シリコン酸化膜を形成する元素であるSiを構成元素として含んでいるものであれば良く、種々の態様を適用することが可能である。一例としては、TEOS(TetraEthyl OrthoSillicate),HMDS-O(ヘキサメチルジシロキサン),HMDS-N(ヘキサメチルジシラザン)等を含む有機ガスソースの群から適宜選択された一種以上を適用することが挙げられる。
 不活性ガスにおいては、例えばチャンバ2内をガスパージ等する場合に適用可能なものであれば良く、その一例としてはN,Ar,He等の不活性ガスが挙げられる。
 このようなチャンバ2Cによれば、特許文献5,6と同様に、不飽和炭化水素ガスおよびオゾンガスの両者のラジカル反応を利用したCVD法またはALD法の酸化膜形成工程により、当該チャンバ2C内に収容した被接合基体1の一端側面(被接合面10側)に対し不飽和炭化水素ガス,オゾンガス,原料ガスを適宜供給して、当該一端側面にシリコン酸化膜(図示省略)を設けることができる。そして、引き続きチャンバ2C内に収容した状態の被接合基体1のシリコン酸化膜の表面(被接合面10)に対し、水酸基形成工程S1により不飽和炭化水素ガス,オゾンガスを適宜供給することにより、当該表面に水酸基を形成することができる。
 前記のようにチャンバ2Cに支持部6や加温部が備えられている場合には、2つの被接合基体1a,1bそれぞれの一端側面(被接合面10側)に対して酸化膜形成工程,水酸基形成工程S1を行うことができるだけでなく、積層工程S2,接合工程S3も行うことができる。
 したがって、以上のようなチャンバ2Cによれば、同一のチャンバ2C内において、in-situで被接合基体1a,1bの酸化膜形成工程,工程S1~S3を行うことができ、被接合基体1の熱歪を抑制することが可能となる。
 <検証>
 まず、支持部6や加温部を備えたチャンバ2C内に、シリコン基板を被接合基体1a,1bとして収容し、前記のように不飽和炭化水素ガスおよびオゾンガスの両者のラジカル反応を利用したCVD法またはALD法の酸化膜形成工程を行うことにより、当該被接合基体1a,1bの被接合面10側にシリコン酸化膜を形成した。そして、当該シリコン酸化膜を形成した被接合基体1a,1bにおいて、実施例2,3の検証条件と同様の工程S1~S3を経て接合した場合の接合状況を観察したところ、当該実施例2,3と同様の結果が得られ、当該被接合基体1a,1bの熱歪による影響は観られなかった。
 したがって、以上のような実施例5によれば、実施例2~4と同様の作用効果を奏する他に、以下に示すことが言える。すなわち、in-situで被接合基体1の酸化膜形成工程,工程S1~S3を行うことができるため、被接合基体1a,1bを所望通りに、かつ効率良く接合できることが判る。
 以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変更等が可能であることは、当業者にとって明白なことであり、このような変更等が特許請求の範囲に属することは当然のことである。例えば、実施例1~5に示した接合方法は、それぞれ別々に適用しても良く、互いに適宜組み合わせて適用しても良い。
 また、被接合基体1a,1bに設けられる金属配線においては、銅または金を用いて成るものに限定されず、その他に、タングステンやアルミニウム等の種々の金属の群から適宜選択されたものを用いて成るものも挙げられる。

Claims (14)

  1.  チャンバ内に収容した被接合基体の被接合面に水酸基を形成する水酸基形成工程と、
    前記水酸基を形成した2個の前記被接合基体を被接合面にて重ね合わせて積層する積層工程と、
    前記積層した状態の各被接合基体を加熱することにより、当該各被接合基体を被接合面にて接合する接合工程と、
     を有し、
     前記水酸基形成工程は、前記チャンバ内に収容した被接合基体の被接合面に対し、不飽和炭化水素ガスおよびオゾン濃度50体積%超のオゾンガスをそれぞれ供給することにより、当該不飽和炭化水素ガスおよび当該オゾンガスの両者のラジカル反応により発生するOHラジカルを当該被接合面に曝露して、当該被接合面に対して水酸基を形成し、
     前記接合工程は、前記加熱によって前記水酸基を脱水縮合反応させることを特徴とする基体の接合方法。
  2.  前記チャンバには、
    前記チャンバ内に前記不飽和炭化水素ガスを供給する不飽和炭化水素ガス供給部と、
    前記チャンバ内に前記オゾンガスを供給するオゾンガス供給部と、
    前記チャンバ内のガスを吸気して当該チャンバ外に排出するガス排出部と、
     が備えられており、
     前記水酸基形成工程は、前記チャンバ内を減圧状態にして行うことを特徴とする請求項1記載の基体の接合方法。
  3.  前記水酸基形成工程により、前記被接合基体の被接合面の水接触角を4°~10°の範囲内にすることを特徴とする請求項1または2記載の基体の接合方法。
  4.  前記水酸基形成工程は、前記チャンバ内に対する前記不飽和炭化水素ガスおよび前記オゾンガスの両者の供給流量比を調整することにより、前記被接合基体の被接合面に対する水酸基の量を制御することを特徴とする請求項3記載の基体の接合方法。
  5.  前記水酸基形成工程は、前記チャンバ内に対する前記不飽和炭化水素ガスおよび前記オゾンガスの両者の供給流量比が一定となるように、当該両者の供給流量および供給時間を調整することにより、前記被接合基体の被接合面に対する水酸基の量を制御することを特徴とする請求項3記載の基体の接合方法。
  6.  前記各被接合基体の被接合面には、銅,金,タングステン,アルミニウムのうち何れかを用いてなる金属配線がそれぞれ設けられており、
     前記接合工程により、前記各被接合基体それぞれに設けられた金属配線を互いに接合することを特徴とする請求項1または2記載の基体の接合方法。
  7.  前記チャンバは、当該チャンバ内に前記各被接合基体をそれぞれ支持する支持部を、備え、
     前記支持部は、前記各被接合基体を、それぞれの被接合面が互いに対向した姿勢で、当該対向する方向に対して接離自在に移動できるように支持することを特徴とする請求項1または2記載の基体の接合方法。
  8.  前記各被接合基体の被接合面は、前記水酸基形成工程よりも前工程である酸化膜形成工程によって予め当該各被接合基体それぞれの一端側面に設けられたシリコン酸化膜の表面であることを特徴とする請求項1または2記載の基体の接合方法。
  9.  前記水酸基形成工程により、前記被接合基体の被接合面の水接触角を4°~10°の範囲内にすることを特徴とする請求項8記載の基体の接合方法。
  10.  前記チャンバは、前記シリコン酸化膜を形成する元素であるSiを構成元素として含んでいる原料ガスを前記チャンバ内に供給する原料ガス供給部を、更に備えており、
     前記酸化膜形成工程は、
    前記不飽和炭化水素ガスおよび前記オゾンガスの両者のラジカル反応を利用した化学気相成長法または原子層堆積法により、前記チャンバ内に収容した前記被接合基体の一端側面に対し、前記不飽和炭化水素ガスと、前記オゾンガスと、前記原料ガスと、を供給して前記シリコン酸化膜を設けたことを特徴とする請求項8記載の基体の接合方法。
  11.  前記チャンバは、当該チャンバ内に前記各被接合基体をそれぞれ支持する支持部を、備え、
     前記支持部は、前記各被接合基体を、それぞれの被接合面が互いに対向した姿勢で、当該対向する方向に対して接離自在に移動できるように支持することを特徴とする請求項10記載の基体の接合方法。
  12.  前記不飽和炭化水素ガスは、プロピレン、アセチレン、ブタジエン、ベンゼン、トルエン、O-キシレン、スチレン、α-ブチレン、1,3-ブタジエン、1,2-ブタジエン、3-メチル-1,2-ブタジエン、2-メチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエンのうち何れかから成ることを特徴とする請求項1または2記載の基体の接合方法。
  13.  前記各被接合基体それぞれは、シリコン基板,ガラス基板,GaN基板,SiC基板,ダイヤモンド基板,前記被接合基体の一端側面にシリコン酸化膜が設けられている基板,金属基板,フィルム状基板の群から選択された同種または異種の基板であることを特徴とする請求項1または2記載の基体の接合方法。
  14.  前記原料ガスは、TEOS,HMDS-O,HMDS-Nを含む有機ガスソースの群から選択された一種以上から成ることを特徴とする請求項10または11記載の基体の接合方法。
PCT/JP2023/023050 2022-07-06 2023-06-22 基体の接合方法 WO2024009780A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-108755 2022-07-06
JP2022108755A JP7431895B2 (ja) 2022-07-06 2022-07-06 基体の接合方法

Publications (1)

Publication Number Publication Date
WO2024009780A1 true WO2024009780A1 (ja) 2024-01-11

Family

ID=89453301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023050 WO2024009780A1 (ja) 2022-07-06 2023-06-22 基体の接合方法

Country Status (2)

Country Link
JP (1) JP7431895B2 (ja)
WO (1) WO2024009780A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018125325A (ja) * 2017-01-30 2018-08-09 パナソニック・タワージャズセミコンダクター株式会社 半導体装置及びその製造方法
WO2019187337A1 (ja) * 2018-03-28 2019-10-03 株式会社明電舎 酸化膜形成方法
WO2020170482A1 (ja) * 2019-02-19 2020-08-27 株式会社明電舎 原子層堆積方法および原子層堆積装置
WO2021053904A1 (ja) * 2019-09-20 2021-03-25 株式会社明電舎 酸化膜形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018125325A (ja) * 2017-01-30 2018-08-09 パナソニック・タワージャズセミコンダクター株式会社 半導体装置及びその製造方法
WO2019187337A1 (ja) * 2018-03-28 2019-10-03 株式会社明電舎 酸化膜形成方法
WO2020170482A1 (ja) * 2019-02-19 2020-08-27 株式会社明電舎 原子層堆積方法および原子層堆積装置
WO2021053904A1 (ja) * 2019-09-20 2021-03-25 株式会社明電舎 酸化膜形成装置

Also Published As

Publication number Publication date
JP2024007593A (ja) 2024-01-19
JP7431895B2 (ja) 2024-02-15

Similar Documents

Publication Publication Date Title
TW393671B (en) Semiconductor device and its manufacturing method
JP6290544B2 (ja) 二酸化珪素フィルムを付着させる方法
US8187389B2 (en) Method of removing resist and apparatus therefor
TWI774662B (zh) 基板之汽相氫氧自由基處理用系統及方法
JP2009033179A5 (ja)
US20100101719A1 (en) Optical element and method for producing same
JP6030589B2 (ja) ハードマスク形成方法及びハードマスク形成装置
JP2010027788A (ja) 銅の異方性ドライエッチング方法および装置
US10043975B2 (en) Thin substrate, method for manufacturing same, and method for transporting substrate
US20230340220A1 (en) Fluorine resin surface modification method, surface-modified fluorine resin production method, joining method, material having surface-modified fluorine resin, and joined body
JP2009016447A (ja) 半導体製造装置、半導体装置の製造方法及び記憶媒体
WO2024009780A1 (ja) 基体の接合方法
JP2006270004A (ja) レジスト膜の除去方法および除去装置
JP6008095B2 (ja) チップの表面処理方法、接合方法、及び表面処理装置
JP2006258958A (ja) 基板接着方法及び基板接着装置
US9177789B2 (en) Semiconductor process
WO2016047493A1 (ja) 基板処理方法、コンピュータ記憶媒体及び基板処理システム
US20150371855A1 (en) Apparatus for etching two-dimensional material and method of patterning two-dimensional material using the same
JP2019114628A (ja) エッチング方法および半導体デバイス製造方法
JP2008210930A (ja) 半導体装置の製造方法
JP5024925B2 (ja) 大気圧プラズマ処理方法
JP4538259B2 (ja) 層間絶縁膜の表面改質方法及び表面改質装置
JP2008075030A (ja) 接着装置及び接着方法
JP2005179743A (ja) 触媒cvd装置及び触媒cvd法
TWI834388B (zh) 層狀構造之製造方法、電子裝置之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835314

Country of ref document: EP

Kind code of ref document: A1