WO2019187058A1 - キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキ - Google Patents

キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキ Download PDF

Info

Publication number
WO2019187058A1
WO2019187058A1 PCT/JP2018/013788 JP2018013788W WO2019187058A1 WO 2019187058 A1 WO2019187058 A1 WO 2019187058A1 JP 2018013788 W JP2018013788 W JP 2018013788W WO 2019187058 A1 WO2019187058 A1 WO 2019187058A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid solution
pigment
quinacridone solid
quinacridone
crude
Prior art date
Application number
PCT/JP2018/013788
Other languages
English (en)
French (fr)
Inventor
尚人 鎌田
吉川 幸男
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Priority to EP18912892.9A priority Critical patent/EP3778784A4/en
Priority to KR1020207030088A priority patent/KR102525365B1/ko
Priority to PCT/JP2018/013788 priority patent/WO2019187058A1/ja
Priority to AU2018416405A priority patent/AU2018416405B2/en
Priority to JP2020508831A priority patent/JP7066828B2/ja
Priority to US16/976,169 priority patent/US11926741B2/en
Priority to CN201880091753.4A priority patent/CN111902490A/zh
Priority to CA3101167A priority patent/CA3101167C/en
Publication of WO2019187058A1 publication Critical patent/WO2019187058A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0017Influencing the physical properties by treatment with an acid, H2SO4
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • C09B67/0034Mixtures of two or more pigments or dyes of the same type
    • C09B67/0036Mixtures of quinacridones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B48/00Quinacridones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0025Crystal modifications; Special X-ray patterns
    • C09B67/0027Crystal modifications; Special X-ray patterns of quinacridones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • C09B67/0066Aqueous dispersions of pigments containing only dispersing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0092Dyes in solid form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints

Definitions

  • the present invention relates to a method for producing a quinacridone solid solution pigment, a pigment dispersion, and an inkjet ink. Specifically, when applied to a colorant, the obtained colored product has a high saturation and a quinacridone solid solution pigment that has a desired yellowish hue, and is suitable for an inkjet ink.
  • a method for producing a quinacridone solid solution pigment capable of obtaining a quinacridone solid solution pigment with a controlled particle size, a pigment dispersion containing a quinacridone solid solution pigment having a specific hue obtainable by the production method, and an inkjet The present invention relates to a technique for providing ink.
  • Quinacridone is a high-performance synthetic pigment with vivid color and weather resistance, typically red to purple, and its hue can be affected by substituents on the conjugated ring and crystal structure.
  • Quinacridone solid solution pigments in one field of quinacridone pigments have been studied in the organic pigment field.
  • C.I. is a quinacridone pigment composed of a solid solution of unsubstituted quinacridone and 2,9-dimethylquinacridone, or a quinacridone pigment composed of a solid solution of unsubstituted quinacridone and quinacridonequinone.
  • I. Pigment Red 207 and the like are known (see Patent Documents 1 and 2).
  • an object of the present invention is to provide a quinacridone solid solution pigment which, when applied to a colorant, forms a colored product having a high saturation and a desired yellowish hue, more preferably, the particle size is controlled.
  • Another object of the present invention is to provide a technique capable of producing a quinacridone solid solution pigment having a desired particle size.
  • an object of the present invention is to provide a color product having a high chroma and a yellowish hue by realizing a technique capable of providing the above-described excellent quinacridone solid solution pigment suitable as a colorant for an ink jet ink, for example. It is an object of the present invention to provide a pigment dispersion and an ink jet ink that can be formed.
  • the present invention includes [1] a process for producing a crude quinacridone solid solution, a drying process for drying the crude quinacridone solid solution, and a pigmentation process for heating the dried crude quinacridone solid solution in a solvent to form a pigment.
  • diarylaminoterephthalic acid and dialkylarylaminoterephthalic acid are co-cyclized in polyphosphoric acid, and the mass ratio of unsubstituted quinacridone and 2,9-dialkylquinacridone is 85:
  • a water-containing crude quinacridone solid solution containing water in a solid solution of 15 to 60:40 was obtained, and in the drying step, the water-containing crude quinacridone solid solution was dried to reduce the water content to less than 1%.
  • a crude quinacridone solid solution is obtained, and in the pigmentation step, the powdery crude quinacridone solid solution is converted into the crude quinacridone.
  • a quinacridone solid solution pigment which comprises heating in a liquid medium which does not dissolve the solid solution.
  • the present invention provides the following pigment dispersion as another embodiment.
  • the quinacridone solid solution pigment is subjected to Bragg angle ( ⁇ ) by powder X-ray diffraction. (2 ⁇ ⁇ 0.2 °) having a specific diffraction peak with 2 ⁇ values of 27.5 °, 13.8 ° and 6.0 ° .
  • the present invention provides the following ink-jet ink as another embodiment.
  • An ink jet ink comprising a solid solution of unsubstituted quinacridone and 2,9-dialkylquinacridone, comprising a quinacridone solid solution pigment having a major axis particle diameter of 20 to 80 nm, a pigment dispersant, and water. Because The quinacridone solid solution pigment has a 2 ⁇ value of 27.5 °, 13.8 ° and 6.0 ° using a Bragg angle ( ⁇ ) of 27.5 °, 13.8 ° and 6.0 ° by powder X-ray diffraction. An ink jet ink characterized by having an intrinsic diffraction peak.
  • a quinacridone solid solution pigment of unsubstituted quinacridone and 2,9-dialkylquinacridone in which the formed color product has a high saturation and a desired yellowish hue Furthermore, in addition to the above effects, according to a preferred embodiment of the present invention, it is possible to provide a quinacridone solid solution pigment whose particle size is controlled to an appropriate size, which is an important requirement for practical use. In addition, according to the present invention, by applying the above-described excellent quinacridone solid solution pigment to a colorant, it is possible to realize formation of a colored product having a high chroma and a desired yellowish hue. In addition, it is possible to provide ink-jet ink.
  • a crude quinacridone solid solution containing water in a solid solution of unsubstituted quinacridone and 2,9-dialkylquinacridone in the above-mentioned mass ratio is obtained by co-distilling diarylaminoterephthalic acid and dialkylarylaminoterephthalic acid in polyphosphoric acid. Obtained by cyclization reaction.
  • the water-containing crude quinacridone solid solution produced in this way is heated to a pigment in a solvent while being water-containing. It was.
  • the pigment obtained by pigmentation by such a conventional production method becomes more yellowish than the crude quinacridone solid solution used as a raw material, and the present invention has the object. It has been found that the color of the obtained colored product is high and does not have the desired moderately yellowish hue. In order to find out a method for producing a quinacridone solid solution pigment, the present inventors can improve this point, and the colored product is desired in the market, and has a high color saturation and moderately yellowish hue. Further study was conducted.
  • the present inventors newly provided a drying step for making a powdery crude quinacridone solid solution before the step of pigmentation, compared with the conventional method for producing a quinacridone solid solution pigment described above.
  • the dried product is dried until the water content is less than 1%, and then the dried powdery crude quinacridone solid solution is pigmented, whereby the colored product formed by the quinacridone solid solution pigment obtained is a conventional product. It has been found that it has a good hue with high saturation and moderate yellowishness compared to a colored product formed using a solid solution pigment obtained by the production method.
  • the particle diameter of the obtained quinacridone solid solution pigment can be controlled to a desired fine size by making the production method of the present invention suitable. I found out.
  • the method for producing a quinacridone solid solution pigment of the present invention includes a production step for obtaining a crude quinacridone solid solution in a water-containing state having a specific composition, a drying step for drying the crude quinacridone solid solution in a water-containing state, and a dry powdery crude quinacridone solid solution as a solvent.
  • a drying process for drying the crude quinacridone solid solution in a water-containing state having a specific composition to reduce the water content to less than 1% is provided. It is characterized by that.
  • the weight ratio of unsubstituted quinacridone to 2,9-dialkylquinacridone is 85:15 to 60:40, and the water content is yellowish.
  • a crude quinacridone solid solution is obtained.
  • the crude quinacridone solid solution in a water-containing state having the specific composition obtained above is dried until the water content is less than 1%, and the powdery crude quinacridone solid solution is obtained. Get.
  • the powdery crude quinacridone solid solution having a water content of less than 1% is pigmented.
  • the crude quinacridone solid solution is heated in a liquid medium that does not dissolve and pigmented.
  • the crude quinacridone solid solution having a specific composition in a water-containing state is dried until the water content is less than 1% in the above-described production method of the present invention, it is compared with that in a water-containing state.
  • the hue becomes slightly bluish yellow.
  • the quinacridone solid solution pigment finally obtained by pigmentation has a good hue with high saturation and moderate yellowishness.
  • the particle size of the obtained quinacridone solid solution pigment is adjusted by setting the heating temperature within the range of 60 ° C. or more and 120 ° C. or less. It was found that it was possible to stably control the size suitable for the device.
  • ⁇ quinacridone solid solution pigment '' is a pigment that exists in a uniform solid state in a mixed state in which a plurality of different quinacridone pigment molecules are dissolved, and is simply a mixture of a plurality of different quinacridone pigments. Absent. It is known that characteristics such as color change by generating a solid solution.
  • the object of the present invention is to produce a “solid solution of unsubstituted quinacridone and 2,9-dialkylquinacridone”. In addition, these are independent, and unsubstituted quinacridone is C.I. I. Pigment Violet 19, and 2,9-dialkylquinacridone is C.I. I. It corresponds to Pigment Red 122, respectively.
  • each process of the manufacturing method of this invention is demonstrated.
  • a crude quinacridone solid solution containing a specific proportion of unsubstituted quinacridone, 2,9-dialkylquinacridone, and water is obtained in the production process of the crude quinacridone solid solution.
  • the diquinylaminoterephthalic acid and dialkylarylaminoterephthalic acid are co-cyclized in polyphosphoric acid to easily obtain a water-containing crude quinacridone solid solution containing water having the above structure.
  • This step is the same as the conventional method for obtaining a quinacridone solid solution pigment.
  • the crude quinacridone solid solution is pigmented in this water-containing state.
  • diarylaminoterephthalic acid used in the above step for example, 2,5-dianilinoterephthalic acid is preferable.
  • dialkylarylaminoterephthalic acid for example, 2,5-di (p-toluidino) terephthalic acid is preferable.
  • the colored product has a high hue and a good hue with moderate yellowishness, these compounds are used. It is preferable to use it.
  • the mass ratio of unsubstituted quinacridone and 2,9-dialkylquinacridone constituting the crude quinacridone solid solution obtained by the reaction needs to be 85:15 to 60:40.
  • the production method of the present invention is a newly provided drying step, drying the crude quinacridone solid solution having the above-described structure obtained in the production step of the crude quinacridone solid solution, A powdery crude quinacridone solid solution having a water content of less than 1% is obtained, and then the dried crude quinacridone solid solution is pigmented.
  • the mass ratio of unsubstituted quinacridone and 2,9-dialkylquinacridone is 85:15 to 60: Get what is 40.
  • this water-containing crude quinacridone solid solution is used as a colorant by making the water content less than 1% in the drying step prescribed in the present invention and then pigmenting it, the formed colored product is Thus, it is possible to obtain a useful quinacridone solid solution pigment having a high color saturation and an appropriate yellowish hue.
  • What is important in the present invention is to obtain a crude quinacridone solid solution in a water-containing state having the above-mentioned specific composition, which is sufficiently dried to obtain a powdery crude quinacridone solid solution having a water content of less than 1%. This is because the crude quinacridone solid solution is pigmented.
  • the technical feature of the present invention is that the mass ratio of unsubstituted quinacridone and 2,9-dialkylquinacridone constituting the crude quinacridone solid solution has a specific composition, and in addition, it has not been performed in the conventional production method.
  • the present invention is to provide a drying step for the hydrated crude quinacridone solid solution so that the moisture content of the hydrated crude quinacridone solid solution is less than 1%. As a result of the above configuration, it is possible to stably obtain a quinacridone solid solution pigment having a high chroma and a colored product having a good hue with moderate yellowness.
  • the formed colored product is aimed at by the present invention when the water content is 1% or more.
  • it is not a pigment having a high hue and a good hue with moderate yellowness.
  • the b * of the formed color product becomes too large, and the color of the color product formed with the finally obtained quinacridone solid solution pigment becomes yellowish than the target color. It does not result in a colored product with a good yellowish hue as required by. This point will be described later.
  • the “powdered crude quinacridone solid solution having a water content of less than 1%” obtained in the pigmentation step is pigmented by heating in a liquid medium that does not dissolve the crude quinacridone solid solution.
  • This step may be basically the same as the pigmentation method performed by a conventional method.
  • liquid medium that does not dissolve the crude quinacridone solid solution used for pigmentation examples include dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, ethanol, propanol, butanol, and ethylene glycol.
  • dimethylformamide and butanol are preferred among the above.
  • any heating temperature of 25 to 140 ° C. can be adopted.
  • the present inventors have also intensively studied the pigmentation step constituting the production method of the present invention.
  • the type of liquid medium to be used and further to devise the temperature to be heated in the liquid medium. That is, when dimethyl sulfoxide is used as a liquid medium that does not dissolve the crude quinacridone solid solution, or when the heating temperature in the pigmentation step is 60 ° C. or higher and 120 ° C. or lower, a more preferable quinacridone solid solution pigment can be obtained. I found it.
  • the present inventors dried the crude quinacridone solid solution obtained in a water-containing state in a newly provided drying process until the water content was less than 1%, and this powdery form
  • the particle size of the resulting quinacridone solid solution pigment is appropriately adjusted. It has been found that the desired size can be controlled.
  • the heating temperature at that time within a specific temperature range of 60 ° C. or more and 120 ° C. or less, the particle diameter of the obtained quinacridone solid solution pigment is more stably set to a desired size suitable for the application. I found out that I could control it.
  • a fine quinacridone solid solution pigment to be used as a colorant for an inkjet ink in which a colorant is dispersed in an aqueous medium if the heating temperature exceeds 120 ° C., the particle size of the quinacridone solid solution pigment becomes too large. End up. On the other hand, when the heating temperature is less than 60 ° C., the particle size of the quinacridone solid solution pigment becomes too small, and in any case, the resulting quinacridone solid solution pigment is difficult to be well dispersed in an aqueous medium. .
  • the effect of controlling the particle size of the obtained quinacridone solid solution pigment described above is particularly remarkable when dimethyl sulfoxide is used as a solvent used in the pigmentation step.
  • a quinacridone pigment derivative is further added to form a quinacridone pigment. It is effective to form a pigment in the presence of the derivative. By comprising in this way, the effect that the particle
  • the quinacridone pigment derivative used above include 2-phthalimidomethylquinacridone.
  • the quinacridone solid solution pigment obtained by the production method of the present invention has an unsubstituted quinacridone and 2,9-dialkylquinacridone as essential components, and these are constituted so as to have a specific mass ratio.
  • a mixed phase in which 2,9-dialkylquinacridone is considered to be dissolved in the crystalline phase of quinacridone is formed. Therefore, it has a unique diffraction peak represented by (2 ⁇ ) using a Bragg angle ( ⁇ ) by powder X-ray diffraction, which does not exist in an unsubstituted quinacridone single crystal or a 2,9-dialkylquinacridone single crystal. It will be a thing. Accordingly, whether the pigment is a solid solution or a mixture of these single crystals can be easily determined by powder X-ray diffraction.
  • the quinacridone solid solution pigment obtained by the production method of the present invention and capable of providing a high-saturation and moderately yellowish colored product having a good hue has a Bragg angle ( ⁇ ) in powder X-ray diffraction.
  • Bragg angle
  • 2 ⁇ of (2 ⁇ ⁇ 0.2 °) there was a characteristic that it had intrinsic diffraction peaks at 27.5 °, 13.8 ° and 6.0 °. More specifically, it has an intrinsic diffraction peak at a position where the value of 2 ⁇ is 27.3 ° to 27.7 °, 13.6 ° to 14.0 °, and 5.8 ° to 6.2 °. It is characterized by that.
  • the 6.0 ° peak intensity defined in the present invention is defined as 100
  • the peak intensity ratio at 13.8 ° is 70 to 80
  • the peak intensity ratio at 27.5 ° is 55 to 70.
  • the particle size of the quinacridone solid solution pigment obtained by the production method of the present invention is not particularly limited, and an appropriate one may be produced according to the application.
  • a quinacridone solid solution pigment for use as a colorant for an inkjet ink of the present invention it is manufactured under the condition that the major axis particle diameter is 20 to 80 nm in consideration of its discharge stability and the like. Is used.
  • the long axis particle diameter of the quinacridone solid solution pigment is more preferably about 30 nm.
  • the major axis particle diameter is an average value observed with a transmission electron microscope.
  • the ink-jet ink of the present invention has a 2 ⁇ value of (2 ⁇ ⁇ 0.2 °) using a Bragg angle ( ⁇ ) in powder X-ray diffraction with a major axis particle diameter of 20 to 80 nm as a colorant.
  • a quinacridone solid solution pigment having intrinsic diffraction peaks of 27.5 °, 13.8 ° and 6.0 °.
  • Such a quinacridone solid solution pigment can be easily obtained by the production method of the present invention described above.
  • the inkjet ink of the present invention contains a pigment dispersant in order to improve the dispersibility, dispersion stability, and ink storage stability over time of the quinacridone solid solution pigment.
  • the pigment dispersant those used in conventionally known aqueous pigment inks for inkjet can be appropriately used.
  • the ink-jet ink of the present invention may contain additives such as surfactants, organic solvents and humectants, if necessary, and these are also known techniques related to water-based pigment inks for ink-jet. Is applicable.
  • the ink-jet ink of the present invention contains a quinacridone solid solution pigment that has a high color saturation and a good hue with moderate yellowness.
  • the addition amount of the quinacridone solid solution pigment is not particularly limited, and may be contained within a conventionally known range. Specifically, it may be about 0.5 to 30% by mass in 100% by mass of the ink, and more preferably about 4 to 10% by mass. If the addition amount is less than 0.5% by mass, the print density may not be ensured. On the other hand, if the addition amount exceeds 30% by mass, the viscosity of the ink increases and structural viscosity is generated in the viscosity characteristics. In some cases, the ejection stability of the ink becomes poor.
  • reaction solution was charged into 400 ml of normal temperature water in a 1 L beaker. After filtration and washing with water, the mixture was transferred to a 1 L beaker, 800 ml of water was added and stirred, and caustic soda was added to adjust the pH to 7-8. This was filtered and washed with hot water to obtain a crude quinacridone solid solution containing water. In this crude quinacridone solid solution, the mass ratio of unsubstituted quinacridone and 2,9-dialkylquinacridone was 7: 3.
  • the water-containing crude quinacridone solid solution obtained above was dried at 80 ° C. overnight to make the water content less than 1%. After drying, it was pulverized to obtain 18.0 g of a crude quinacridone solid solution powder. When the obtained powder was observed with a transmission electron microscope, the average particle diameter of the long axis was about 20 nm.
  • crude quinacridone solid solution was pigmented using dimethyl sulfoxide (DMSO) as a liquid medium not dissolving the above powder.
  • DMSO dimethyl sulfoxide
  • 7.0 g of the crude quinacridone solid solution powder obtained above and 70.0 g of dimethyl sulfoxide were charged into a 100 ml separable flask, heated to 80 ° C. over 30 minutes, Heat-treated for hours. And after cooling to 70 degrees C or less, it filtered, washed with hot water and water until the filtrate became colorless, and dried at 80 degreeC after that, and obtained the powder of the quinacridone solid solution pigment of a present Example.
  • the pigment obtained above was the quinacridone solid solution intended by the present invention.
  • a quinacridone solid solution pigment powder to be measured is packed in a predetermined holder, and measured using a powder X-ray diffractometer mini Flex600 (trade name, manufactured by Rigaku Corporation, the same apparatus is used in other examples). did.
  • the quinacridone solid solution pigment obtained above had peaks at 27.5 °, 13.8 ° and 6.0 ° as measured by powder X-ray diffraction.
  • the peak intensity ratio was about 63: about 78: 100.
  • the average particle diameter of the major axis was about 30 nm. This is called quinacridone solid solution pigment 1 or simply solid solution pigment 1.
  • quinacridone solid solution pigment 1 simply solid solution pigment 1.
  • Example 2 the powdery crude quinacridone solid solution obtained in Example 1 was used, and further, pigmentation was performed by heating in the presence of a quinacridone pigment derivative. Specifically, 7.0 g of the crude quinacridone solid solution powder obtained in Example 1, 70.0 g of dimethyl sulfoxide (DMSO) as a liquid medium, and 2-phthalimidomethylquinacridone powder, which is a quinacridone pigment derivative, were added in an amount of 0. 35 g was charged into a 100 ml separable flask, heated to 80 ° C. over 30 minutes, and treated at the same temperature for 3 hours. And after cooling to 70 degrees C or less, it filtered, washed with hot water and water until the filtrate became colorless, and dried at 80 degreeC after that, and obtained the powder of the quinacridone solid solution pigment of a present Example.
  • DMSO dimethyl sulfoxide
  • Example 3 In a 100 ml separable flask, 65.6 g of 85% phosphoric acid was weighed and 98.7 g of phosphoric anhydride was added to prepare 84.0% polyphosphoric acid. When the internal temperature is lowered to about 100 ° C., 4.08 g of 2,5-di (p-toluidino) terephthalic acid (DM-DATA) and then 16.32 g of 2,5-dianilinoterephthalic acid (DATA) are gradually added. Added to. After completion of the addition, a cocyclization reaction was carried out at 120 ° C. for 4 hours. After completion of the reaction, the reaction solution was charged into 400 ml of normal temperature water in a 1 L beaker.
  • DM-DATA 2,5-di (p-toluidino) terephthalic acid
  • DATA 2,5-dianilinoterephthalic acid
  • the crude quinacridone solid solution had a mass ratio of unsubstituted quinacridone to 2,9-dialkylquinacridone of 8: 2.
  • the water-containing crude quinacridone solid solution obtained above was dried at 80 ° C. overnight to make the water content less than 1%. After drying, it was pulverized to obtain 17.9 g of a crude quinacridone solid solution powder. When the obtained powder was observed with a transmission electron microscope, the average particle diameter of the long axis was about 20 nm.
  • the pigment obtained above has peaks at 27.6 °, 13.8 °, and 6.1 ° as 2 ⁇ values by powder X-ray diffraction, and the peak intensity ratio is about 57: about 77: 100. Further, as in Example 1, when the pigment particles were observed with a transmission electron microscope, the average particle diameter of the major axis was about 30 nm. This is called quinacridone solid solution pigment 3 or simply solid solution pigment 3.
  • Example 4 In a 100 ml separable flask, 65.6 g of 85% phosphoric acid was weighed and 98.7 g of phosphoric anhydride was added to prepare 84.0% polyphosphoric acid. When the internal temperature drops to about 100 ° C., gradually, 8.16 g of 2,5-di (p-toluidino) terephthalic acid (DM-DATA) and then 12.24 g of 2,5-dianilinoterephthalic acid (DATA) are gradually added. Added to. After completion of the addition, a cocyclization reaction was carried out at 120 ° C. for 4 hours. After completion of the reaction, the reaction solution was charged into 400 ml of normal temperature water in a 1 L beaker.
  • DM-DATA 2,5-di (p-toluidino) terephthalic acid
  • DATA 2,5-dianilinoterephthalic acid
  • the crude quinacridone solid solution had a mass ratio of unsubstituted quinacridone and 2,9-dialkylquinacridone of 6: 4.
  • the water-containing crude quinacridone solid solution obtained above was dried at 80 ° C. overnight to make the water content less than 1%. After drying, it was pulverized to obtain 18.1 g of a crude quinacridone solid solution powder. When the obtained powder was observed with a transmission electron microscope, the average particle diameter of the long axis was about 20 nm.
  • the pigment obtained above has peaks at 27.4 °, 13.8 °, and 5.9 ° as 2 ⁇ values by powder X-ray diffraction, and the peak intensity ratio is about 71: about 76: 100. Further, as in Example 1, when the pigment particles were observed with a transmission electron microscope, the average particle diameter of the major axis was about 30 nm. This is called quinacridone solid solution pigment 4 or simply solid solution pigment 4.
  • ⁇ Comparative Example 1> In a 100 ml separable flask, 65.6 g of 85% phosphoric acid was weighed and 98.7 g of phosphoric anhydride was added to prepare 84.0% polyphosphoric acid. When the internal temperature decreased to about 100 ° C., gradually added 14.28 g of 2,5-di (p-toluidino) terephthalic acid (DM-DATA) and then 6.12 g of 2,5-dianilinoterephthalic acid (DATA). Added to. After completion of the addition, a cocyclization reaction was carried out at 120 ° C. for 4 hours. After completion of the reaction, the reaction solution was charged into 400 ml of normal temperature water in a 1 L beaker.
  • DM-DATA 2,5-di (p-toluidino) terephthalic acid
  • DATA 2,5-dianilinoterephthalic acid
  • the crude quinacridone solid solution had a mass ratio of unsubstituted quinacridone to 2,9-dialkylquinacridone of 3: 7, which was outside the range defined in the present invention.
  • the water-containing crude quinacridone solid solution obtained above was dried at 80 ° C. overnight to make the water content less than 1%. After drying, it was pulverized to obtain 18.0 g of a crude quinacridone solid solution powder. When the obtained powder was observed with a transmission electron microscope, the average particle diameter of the long axis was about 20 nm.
  • the crude quinacridone solid solution was pigmented using dimethyl sulfoxide as a liquid medium that did not dissolve the above powder.
  • 7.0 g of the crude quinacridone solid solution powder obtained above and 70.0 g of dimethyl sulfoxide were charged into a 100 ml separable flask and heated to 105 ° C. over 1 hour. Heat-treated for hours. And after cooling to 70 degrees C or less, it filtered, washed with hot water and water until the filtrate became colorless, and dried at 80 degreeC after that, and obtained the powder of the quinacridone solid solution pigment of this comparative example.
  • the pigment obtained as described above has peaks at 27.3 °, 13.9 °, and 5.6 ° in terms of 2 ⁇ by powder X-ray diffraction, and has the intrinsic diffraction peak defined in the present invention. It was confirmed that it was different from the combination. Moreover, these peak intensity ratios were about 75: about 65: 100. Further, when the pigment particles were observed with a transmission electron microscope, the average particle diameter of the long axis was about 50 nm. This is called comparative quinacridone solid solution pigment 1 or simply comparative solid solution pigment 1.
  • quinacridone which is a mixture of two different quinacridone pigments of this comparative example.
  • a pigment powder was obtained. Further, when the pigment particles were observed with a transmission electron microscope, the average particle diameter of the major axis was about 30 nm. This is called comparative quinacridone pigment 2 or simply comparative pigment 2.
  • Table 1 shows the colorimetric values measured using a colorimeter for the primary color coatings and light color coatings of Examples 1 to 4 and Comparative Examples 1 and 2 prepared above. At that time, color measurement was performed using a spectrocolorimeter CM-3600d (trade name, manufactured by Konica Minolta). L * is lightness, C * is saturation, and saturation C * is obtained by ⁇ (a * ) 2 + (b * ) 2 .
  • Example 1 The difference between Example 1 and Comparative Example 1 is only the difference in the mass ratio between unsubstituted quinacridone and 2,9-dialkylquinacridone, but as shown in Table 1, there is a significant difference especially in the value of b *.
  • Table 1 shows that the smaller the value of b * is, the blue shift is and the hue becomes bluish, and the larger the value of b * is, the hue is yellowish. ing. It was confirmed that the solid solution pigments obtained in other examples also had a large b * value and a yellow hue.
  • magenta Aqueous Pigment Dispersion 1 As a magenta pigment, 200 parts of the quinacridone solid solution pigment 1 obtained in Example 1, 200 parts of a pigment dispersant, 30 parts of diethylene glycol monobutyl ether (also called butyl diglycol, hereinafter abbreviated as BDG) as a liquid medium, and A premill base was prepared by blending 340 parts of water and peptizing with a disper.
  • BDG diethylene glycol monobutyl ether
  • the pigment dispersant includes an ammonia neutralized product of a styrene / 2-ethylhexyl acrylate / acrylic acid (mass ratio: 50/30/20) copolymer having a number average molecular weight of 7000 and an acid value of 155 mgKOH / g. Was used (solid content 30%).
  • the obtained pre-mill base was used with a horizontal medium disperser “Dynomill 0.6 liter ECM type” (trade name, manufactured by Shinmaru Enterprises Co., Ltd., zirconia bead diameter 0.3 mm) at a peripheral speed of 7 m / s. Distributed processing was performed. When dispersed for 1 hour, the dispersion was terminated to obtain a mill base.
  • the obtained mill base was diluted with ion-exchanged water so as to have a pigment content of 15%, and then centrifuged to obtain a pigment dispersion in which the quinacridone solid solution pigment 1 was dispersed.
  • the obtained pigment dispersion is filtered through a 10 ⁇ m membrane filter, and ion exchange water, preservative, and glycerin are added in predetermined amounts to obtain a magenta pigment dispersion 1 having a pigment concentration of 12%. It was.
  • the magenta pigment dispersion 1 obtained above was measured for an average particle size (25 ° C.) with a particle size measuring device “NICOMP 380ZLS-S” (particle sizing system, manufactured by PSS). The average particle size was 126 nm. there were. The viscosity was 4.03 mPa ⁇ s, the surface tension was 44.0 mN / m, and the pH was 9.6. Table 2 summarizes the results of blending and physical properties of the magenta pigment dispersion 1.
  • magenta aqueous pigment dispersions 2 to 6 instead of the quinacridone solid solution pigment 1 used in the preparation of the magenta-color aqueous pigment dispersion 1, the quinacridone solid solution pigments 2 to 4, the comparative quinacridone solid solution pigment 1 and the comparative quinacridone pigment 2 obtained in Examples and Comparative Examples are used, respectively. Except for this, magenta pigment dispersions 2 to 6 were obtained in the same manner as magenta aqueous pigment dispersion 1. Table 2 summarizes the results of blending and physical properties of pigment dispersions 2 to 6.
  • the particle diameter of the pigment in the obtained ink was 124 nm when the average particle diameter was measured (25 ° C.) with a particle size measuring instrument “NICOMP 380ZLS-S” (trade name, Particle Sizing System, manufactured by PSS).
  • the viscosity was 3.41 mPa ⁇ s, and the pH was 9.5.
  • the particle diameter of the pigment in the ink is an average particle diameter value based on the scattered light intensity standard measured with a particle size measuring instrument “NICOMP 380ZLS-S”.
  • the ink viscosity is a value measured with a particle size measuring instrument “NICOMP 380ZLS-S”.
  • Magenta ink-jet aqueous pigment inks 2 to 6 were prepared in the same manner as described above except that the aqueous pigment dispersions 2 to 6 were used instead of the aqueous pigment dispersion 1.
  • Table 3 summarizes the physical properties of each prepared ink.
  • ⁇ Evaluation 2 Evaluation of pigment dispersion and ink> 1. Evaluation of dispersion stability / storage stability The magenta aqueous pigment dispersions 1 to 6 and the magenta aqueous inkjet pigment inks 1 to 6 prepared above were left at the initial stage and 70 ° C. for 7 days, respectively. Viscosity and particle diameter were measured respectively. Using these measured values, the rate of change in viscosity (%) and the rate of change in particle size (%) were calculated, and the dispersion stability and storage stability of the ink were evaluated according to the following criteria. Note that the rate of change was calculated from 100% (%) of (value after 7 days) / (initial value) -1 and evaluated according to the following criteria. The results obtained are shown in Table 4.
  • Viscosity change A: Initial viscosity is low and rate of change is less than ⁇ 10%
  • a viscosity of “4 mPa ⁇ s or more” was designated as “high viscosity”
  • a viscosity of “less than 4 mPa ⁇ s” was designated as “low viscosity”.
  • the quality of the obtained printed matter was evaluated using a spectrocolorimeter “i1 Basic Pro” (trade name, manufactured by X-rite). Specifically, for each of the obtained printed materials, the chroma C * and the optical density (OD value) were measured and evaluated with a spectrocolorimeter. The measurement results are shown in Table 5. Moreover, the observation result of visual tint was also shown. In addition, it can be evaluated that both the optical density (OD value) and the saturation C * are superior when the numerical value is large.
  • the printed matter printed with the magenta ink-jet aqueous pigment ink 1 to which the quinacridone solid solution pigment 1 of Example 1 was applied was produced in the conventional manner regardless of whether it was printed on plain paper or glossy paper. It was superior in color developability (OD value) and chroma (C * ) as compared with the printed matter using the magenta water-based inkjet pigment ink 6 using the PV19 pigment of Comparative Example 2 and PR122 mixed pigment obtained by the method. Further, as a result of visual observation of these printed matter, it was confirmed that the printed matter printed with the aqueous pigment ink 1 had a clear yellowish hue as compared with the printed matter printed with the aqueous pigment ink 5 of Comparative Example 1.
  • the obtained printed matter is excellent in color development that maintains the saturation and printing density at a high level compared to the conventional printed matter, It has been confirmed that the ink jet characteristics have an image with a yellowish hue sufficiently satisfying the market demand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

着色物が高彩度で、且つ、程よい黄味の色相を有するものになる、好適には、粒子径がコントロールされた所望する上記色相のキナクリドン固溶体顔料を得ることができるキナクリドン固溶体顔料を提供する技術に関する。ポリリン酸中で、ジアリールアミノテレフタル酸とジアルキルアリールアミノテレフタル酸とを共環化反応させ、無置換キナクリドンと2,9-ジアルキルキナクリドンとの質量割合が85:15~60:40の固溶体に水を含んだ含水状態の粗製キナクリドン固溶体を得、乾燥工程で、前記で得た含水状態の粗製キナクリドン固溶体を乾燥して、水分含有量を1%未満の粉状の粗製キナクリドン固溶体を得、顔料化工程で、前記粉状の粗製キナクリドン固溶体を、該粗製キナクリドン固溶体を溶解しない液媒体中で加熱するキナクリドン固溶体顔料の製造方法、得られたキナクリドン固溶体顔料を含む、顔料分散液及びインクジェット用インキを提供する。

Description

キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキ
 本発明は、キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキに関する。詳しくは、着色剤に適用した場合に、得られた着色物の彩度が高く、且つ、所望する程よい黄味がかった色相を有するものになるキナクリドン固溶体顔料、更には、インクジェット用インキに好適な、粒子径がコントロールされたキナクリドン固溶体顔料を得ることも可能なキナクリドン固溶体顔料の製造方法、該製造方法で得ることのできる特有の色相のキナクリドン固溶体顔料を含有してなる、顔料分散液及びインクジェット用インキを提供する技術に関する。
 キナクリドンは、鮮やかな色と耐候性を具えた性能のよい合成顔料であり、典型的には赤から紫を呈し、その色相は、共役環上の置換基や、結晶構造によって影響されることが知られている。キナクリドン系顔料の一分野のキナクリドン固溶体顔料は、有機顔料分野において多くの研究がなされている。例えば、無置換キナクリドンと2,9-ジメチルキナクリドンとの固溶体からなるキナクリドン顔料や、無置換キナクリドンとキナクリドンキノンとの固溶体からなるキナクリドン顔料であるC.I.ピグメントレッド206や、無置換キナクリドンと4,11-ジクロロキナクリドンとの固溶体からなるキナクリドン顔料であるC.I.ピグメントレッド207等が知られている(特許文献1、2参照)。
特開2000-281930号公報 特開2002-146224号公報
 しかしながら、従来のキナクリドン固溶体顔料から得られる着色物の彩度は、未だ不十分であるという課題があった。また、近年、市場においては、黄味の色相を有するキナクリドン固溶体が求められているが、この市場の要求を十分に満足できる、高彩度で、且つ、所望する程よい黄味がかった色相を有するキナクリドン固溶体は、未だ提供できていなかった。また、例えば、インクジェット用インキの着色剤に使用される顔料は、微細で且つ粒子径が均一に揃ったものであることが要求されるが、固溶体顔料においては、微細な粒子径の大きさを均一にコントロールすることは難しいという課題がある。
 したがって、本発明の目的は、着色剤に適用した場合に、高彩度で、且つ、所望する程よい黄味がかった色相を有する着色物が形成されるキナクリドン固溶体顔料、より好適には、粒子径がコントロールされた、所望の粒子径のキナクリドン固溶体顔料を得ることも可能なキナクリドン固溶体顔料を製造できる技術を提供することにある。また、本発明の目的は、例えば、インクジェット用インキの着色剤として好適な、上記したような優れたキナクリドン固溶体顔料を提供できる技術を実現することで、高彩度で且つ黄味の色相を有する着色物の形成を可能にできる、顔料分散液及びインクジェット用インキを提供することにある。
 上記した従来技術の課題は、下記の本発明によって達成される。すなわち、本発明は、[1]粗製キナクリドン固溶体の製造工程と、粗製キナクリドン固溶体を乾燥する乾燥工程と、乾燥した粗製キナクリドン固溶体を溶媒中で加熱して顔料化する顔料化工程とを有し、前記粗製キナクリドン固溶体の製造工程で、ポリリン酸中で、ジアリールアミノテレフタル酸とジアルキルアリールアミノテレフタル酸とを共環化反応させて、無置換キナクリドンと2,9-ジアルキルキナクリドンとの質量割合が85:15~60:40の固溶体に水を含んだ含水状態の粗製キナクリドン固溶体を得、前記乾燥工程で、前記含水状態の粗製キナクリドン固溶体を乾燥して、水分含有量を1%未満にして粉状の粗製キナクリドン固溶体を得、前記顔料化工程で、前記粉状の粗製キナクリドン固溶体を、該粗製キナクリドン固溶体を溶解しない液媒体中で加熱することを特徴とするキナクリドン固溶体顔料の製造方法を提供する。
 上記した本発明のキナクリドン固溶体顔料の製造方法の好ましい形態としては、下記のものが挙げられる。
[2]前記ジアリールアミノテレフタル酸が、2,5-ジアニリノテレフタル酸であり、前記ジアルキルアリールアミノテレフタル酸が、2,5-ジ(p-トルイジノ)テレフタル酸である[1]に記載のキナクリドン固溶体顔料の製造方法。
[3]前記顔料化工程で、前記粉状の粗製キナクリドン固溶体を、前記液媒体中で加熱する際に、キナクリドン系顔料誘導体を存在させる[1]又は[2]に記載のキナクリドン固溶体顔料の製造方法。
[4]前記キナクリドン系顔料誘導体が、2-フタルイミドメチルキナクリドンである[3]に記載のキナクリドン固溶体顔料の製造方法。
[5]前記粗製キナクリドン固溶体を溶解しない液媒体が、ジメチルスルホキシドである[1]~[4]のいずれかに記載のキナクリドン固溶体顔料の製造方法。
[6]前記顔料化工程における加熱温度が、60℃以上、120℃以下である[5]に記載のキナクリドン固溶体顔料の製造方法。
[7]長軸の粒子径が20~80nmであるキナクリドン固溶体顔料を得るためのものである[1]~[6]のいずれかに記載のキナクリドン固溶体顔料の製造方法。
 本発明は、別の実施形態として、下記の顔料分散液を提供する。
[8]無置換キナクリドンと2,9-ジアルキルキナクリドンとのキナクリドン固溶体顔料と、顔料分散剤と、水とを含有してなり、前記キナクリドン固溶体顔料が、粉末X線回折で、ブラッグ角(θ)を用いた(2θ±0.2゜)の2θの値が、27.5°、13.8°及び6.0°である固有の回折ピークを有するものであることを特徴とする顔料分散液。
 本発明は、別の実施形態として、下記のインクジェット用インキを提供する。
[9]無置換キナクリドンと2,9-ジアルキルキナクリドンとの固溶体からなる、長軸の粒子径が20~80nmであるキナクリドン固溶体顔料と、顔料分散剤と、水とを含有してなるインクジェット用インキであって、
 前記キナクリドン固溶体顔料が、粉末X線回折で、ブラッグ角(θ)を用いた(2θ±0.2゜)の2θの値が、27.5°、13.8°及び6.0°である固有の回折ピークを有するものであることを特徴とするインクジェット用インキ。
 本発明によれば、形成した着色物が、高彩度で、且つ、所望する程よい黄味がかった色相を有するものになる無置換キナクリドンと2,9-ジアルキルキナクリドンとのキナクリドン固溶体顔料が提供される。更に、上記の効果に加えて、本発明の好ましい形態によれば、実用化において重要な要件となる、適切な大きさに粒子径がコントロールされたキナクリドン固溶体顔料を提供することが可能になる。また、本発明によれば、上記した優れたキナクリドン固溶体顔料を着色剤に適用することで、高彩度で、且つ、所望する程よい黄味がかった色相を有する着色物の形成が実現できる、顔料分散液及びインクジェット用インキの提供が可能になる。
 次に、発明を実施するための好ましい形態を挙げて、本発明を更に詳しく説明する。本発明者らは、前記した従来技術における課題を解決すべく鋭意検討した結果、下記の知見を得、本発明を完成するに至った。まず、無置換キナクリドンと2,9-ジアルキルキナクリドンとの固溶体顔料とする場合に、得られる顔料の色相を黄味がかったものにするためには、その質量割合を85:15~60:40とする必要があることがわかった。そのため、上記した質量割合の無置換キナクリドンと2,9-ジアルキルキナクリドンとの固溶体に水を含んだ含水状態の粗製キナクリドン固溶体を得、これを顔料化することで、黄味がかったキナクリドン固溶体顔料を製造することが可能になる。
 本発明者らは、本発明の前記した目的を達成するため、更なる検討を行った。まず、上記質量割合の無置換キナクリドンと2,9-ジアルキルキナクリドンとの固溶体に水を含んだ含水状態の粗製キナクリドン固溶体は、ポリリン酸中で、ジアリールアミノテレフタル酸とジアルキルアリールアミノテレフタル酸とを共環化反応させることで得られる。従来の、無置換キナクリドンと2,9-ジアルキルキナクリドンとのキナクリドン固溶体顔料の製造方法では、このようにして製造した含水状態の粗製キナクリドン固溶体を、含水状態のまま溶媒中で加熱して顔料化していた。本発明者らの検討によれば、このような従来の製造方法で顔料化して得られた顔料は、原料とした粗製キナクリドン固溶体よりもより黄味強いものになってしまい、本発明が目的とする、得られた着色物の彩度が高く、且つ、所望する、程よい黄味がかった色相とならないことがわかった。本発明者らは、この点を改良でき、着色物が、市場で所望されている、彩度が高く、且つ、程よい黄味がかった良好な色相となるキナクリドン固溶体顔料の製造方法を見出すべく、更なる検討を行った。
 その結果、本発明者らは、上記した従来のキナクリドン固溶体顔料の製造方法に対し、顔料化する工程の前に、新たに、粉状の粗製キナクリドン固溶体にするための乾燥工程を設け、この乾燥工程で、水分含有量が1%未満となるまで乾燥し、その後に、乾燥した粉状の粗製キナクリドン固溶体の顔料化を行うことで、得られるキナクリドン固溶体顔料によって形成される着色物が、従来の製造方法で得た固溶体顔料を用いて形成した着色物に比較して、高彩度で、且つ、程よい黄味がかった良好な色相を有するものになることを見い出した。また、本発明者らの検討によれば、本発明の製造方法を好適な構成にすることで、得られるキナクリドン固溶体顔料の粒子径を所望する微細な大きさにコントロールすることができるようになることを見出した。特に、本発明の好ましい形態によれば、インキの吐出安定性が要望されるインクジェット用インキに適した粒子径のキナクリドン固溶体顔料を提供することも可能になる。
<キナクリドン固溶体顔料の製造方法>
 本発明のキナクリドン固溶体顔料の製造方法は、特定の組成の含水状態の粗製キナクリドン固溶体を得る製造工程と、含水状態の粗製キナクリドン固溶体を乾燥する乾燥工程と、乾燥した粉状の粗製キナクリドン固溶体を溶媒中で加熱して顔料化する顔料化工程とを有し、特に、特定の組成の含水状態の粗製キナクリドン固溶体を乾燥して、水分含有量を1%未満にするための乾燥工程を新たに設けたことを特徴とする。具体的には、まず、従来の粗製キナクリドン固溶体の製造方法と同様にして、無置換キナクリドンと2,9-ジアルキルキナクリドンとの質量割合が85:15~60:40の、色相が黄味の含水状態の粗製キナクリドン固溶体を得る。そして、次の、本発明を特徴づける乾燥工程で、上記で得られた特定の組成の含水状態の粗製キナクリドン固溶体を、水分含有量が1%未満になるまで乾燥し、粉状の粗製キナクリドン固溶体を得る。そして、その後に行う顔料化工程で、水分含有量が1%未満の粉状の粗製キナクリドン固溶体を顔料化する。顔料化工程では、従来の製造方法で行うと同様に、粗製キナクリドン固溶体を溶解しない液媒体中で加熱して顔料化する。本発明者らの検討によれば、上記した本発明の製造方法で、特定の組成の含水状態の粗製キナクリドン固溶体を、水分含有量が1%未満になるまで乾燥すると、含水状態のものに比べて、色相が、若干青味を帯びた黄味になる。その結果、顔料化して最終的に得られるキナクリドン固溶体顔料が、高彩度で、且つ、程よい黄味がかった良好な色相を有するものになることがわかった。
 また、本発明者らの検討によれば、上記顔料化工程で、液媒体として、ジメチルスルホキシドを用いることで、得られるキナクリドン固溶体顔料の粒子径を適切な大きさにコントロールすることが安定してできるようになる。更に、特に、これらの液媒体中で加熱して顔料化する際に、その加熱温度を、60℃以上、120℃以下の範囲内とすることで、得られるキナクリドン固溶体顔料の粒子径を、用途に適した大きさに安定してコントロールすることが可能になることがわかった。
 また、本発明者らの検討によれば、乾燥した粉状の粗製キナクリドン固溶体を液媒体中で加熱して顔料化する際に、キナクリドン系顔料誘導体を存在させることで、得られるキナクリドン固溶体顔料の粒子が均一になる効果や、着色物の彩度が高くなる効果を、更に高めることができることがわかった。
 ここで、「キナクリドン固溶体顔料」とは、複数の異なるキナクリドン顔料分子が溶け合った混合状態で、均一の固相状態で存在する顔料のことであり、複数の異なるキナクリドン顔料を単純に混ぜたものではない。固溶体を生成することで、色等の特性が変化することが知られている。本発明では、「無置換キナクリドンと2,9-ジアルキルキナクリドンとの固溶体」の製造を目的とする。なお、これらは単独で、無置換キナクリドンは、C.I.Pigment Violet 19に該当し、2,9-ジアルキルキナクリドンは、C.I.Pigment Red 122に、それぞれ該当する。以下、本発明の製造方法の各工程について説明する。
(粗製キナクリドン固溶体の製造工程)
 本発明の製造方法では、まず、粗製キナクリドン固溶体の製造工程で、特定の割合の無置換キナクリドンと2,9-ジアルキルキナクリドンと、水を含む含水状態の粗製キナクリドン固溶体を得る。具体的には、ポリリン酸中で、ジアリールアミノテレフタル酸と、ジアルキルアリールアミノテレフタル酸とを共環化反応させることで、上記構成の水を含んだ含水状態の粗製キナクリドン固溶体が容易に得られる。この工程は、従来のキナクリドン系固溶体顔料を得る方法と同様である。なお、従来の製造方法では、この含水状態のまま、粗製キナクリドン固溶体の顔料化が行われている。
 上記工程で用いるジアリールアミノテレフタル酸としては、例えば、2,5-ジアニリノテレフタル酸が好ましい。また、ジアルキルアリールアミノテレフタル酸としては、例えば、2,5-ジ(p-トルイジノ)テレフタル酸が好ましい。本発明で最終的な目的としている、その着色物が、高彩度で、且つ、程よい黄味がかった良好な色相を有するものになるキナクリドン固溶体顔料をより安定して得るためには、これらの化合物を使用することが好ましい。
 本発明者らの検討によれば、市場で要求される、その着色物が、高彩度で、且つ、程よい黄味がかった良好な色相を有するキナクリドン固溶体顔料を得るためには、上記した共環化反応で得られる粗製キナクリドン固溶体を構成する、無置換キナクリドンと2,9-ジアルキルキナクリドンとの質量割合が、85:15~60:40であることを要する。
(乾燥工程)
 本発明の製造方法は、従来のキナクリドン固溶体顔料の製造方法と異なり、新たに設けた乾燥工程で、粗製キナクリドン固溶体の製造工程で得られる上記した構成の含水状態の粗製キナクリドン固溶体を乾燥して、水分含有量が1%未満の粉状の粗製キナクリドン固溶体を得、その後に、乾燥させた粗製キナクリドン固溶体を顔料化することを特徴とする。先に述べたように、本発明では、まず、原料となる、含水状態の黄味の粗製キナクリドン固溶体として、無置換キナクリドンと2,9-ジアルキルキナクリドンとの質量割合が、85:15~60:40であるものを得る。そして、この含水状態の粗製キナクリドン固溶体を、本発明で規定する乾燥工程で、水分含有量を1%未満にし、その後に顔料化することで、着色剤として用いた場合に、形成した着色物が、高彩度で、且つ、程よい黄味がかった良好な色相を有する有用なキナクリドン固溶体顔料を得ることを実現している。本発明で重要なことは、上記特有の組成の含水状態の粗製キナクリドン固溶体を得、これを十分に乾燥して、水分含有量が1%未満の粉状の粗製キナクリドン固溶体にし、この粉状の粗製キナクリドン固溶体を顔料化したことにある。
 本発明の技術的特徴は、粗製キナクリドン固溶体を構成する無置換キナクリドンと2,9-ジアルキルキナクリドンの質量割合が特定の組成となるようにし、加えて、従来の製造方法では行うことのなかった、含水状態の粗製キナクリドン固溶体の乾燥工程を新たに設け、含水状態の粗製キナクリドン固溶体の水分含有量を1%未満にしたことにある。上記のように構成した結果、高彩度で、且つ、程よい黄味がかった良好な色相を有する着色物が得られるキナクリドン固溶体顔料を安定して得ることができる。
 これに対し、先に述べたように、黄味の含水状態の粗製キナクリドン固溶体をそのまま顔料化した場合には、黄味が強くなってしまい、所望の色相の顔料にならない。また、本発明者らの検討によれば、乾燥させたとしても、十分に乾燥させない場合、具体的には水分含有量が1%以上であると、本発明が目的とする、形成した着色物が、彩度が高く、且つ、程よい黄味がかった良好な色相の顔料にはならない。具体的には、形成した着色物のb*が大きくなりすぎてしまい、最終的に得られるキナクリドン固溶体顔料で形成した着色物の色相が、目的の色相よりも黄味となってしまい、近年市場で要求される程よい黄味がかった色相の着色物とはならない。この点については後述する。
(顔料化工程)
 本発明の製造方法では、顔料化工程で得た「水分含有量を1%未満にした粉状の粗製キナクリドン固溶体」を、粗製キナクリドン固溶体を溶解しない液媒体中で加熱することで顔料化する。この工程は、基本的には、従来の方法で行われている顔料化方法と同様であればよい。
 顔料化する際に用いる粗製キナクリドン固溶体を溶解しない液媒体としては、例えば、ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、エタノール、プロパノール、ブタノール及びエチレングリコールのようなものが挙げられる。先に従来技術として挙げた特許文献2では、上記した中でもジメチルホルムアミドやブタノールが好ましいとしている。また、特許文献2では、加熱温度は、25~140℃の任意の温度が採用できるとしている。
 本発明者らは、本発明の目的を達成し、より顕著な効果を得るため、本発明の製造方法を構成する顔料化工程についても鋭意検討した。その結果、まず、使用する液媒体の種類を工夫すること、更には、該液媒体中で加熱する温度を工夫することが、より有効であることを見出した。すなわち、粗製キナクリドン固溶体を溶解しない液媒体として、ジメチルスルホキシドを用いた場合や、顔料化工程における加熱温度を、60℃以上、120℃以下とした場合に、より好ましいキナクリドン固溶体顔料が得られることを見出した。
 具体的には、本発明者らは、前記したように、含水状態で得られる粗製キナクリドン固溶体を、新たに設けた乾燥工程で、水分含有量が1%未満となるまで乾燥し、この粉状の粗製キナクリドン固溶体を顔料化することが有効であることに加えて、顔料化工程で、粗製キナクリドン固溶体の粉末を、ジメチルスルホキシドの溶媒中で加熱すると、得られるキナクリドン固溶体顔料の粒子径を、適切な所望の大きさにコントロールできるようになることを見出した。更に、その際の加熱温度を、60℃以上、120℃以下の特定の温度範囲内とすることで、得られるキナクリドン固溶体顔料の粒子径を、用途に適した所望の大きさに、より安定してコントロールすることができるようになることを見出した。
 例えば、水系媒体中に着色剤を分散させてなるインクジェット用インキの着色剤に用いる微細なキナクリドン固溶体顔料を得る場合、加熱温度が120℃を超えると、キナクリドン固溶体顔料の粒子径が大きくなり過ぎてしまう。一方、加熱温度が60℃未満であるとキナクリドン固溶体顔料の粒子径が小さくなり過ぎてしまい、いずれの場合も、得られるキナクリドン固溶体顔料は、水系媒体中に良好に分散させることが難しいものになる。
 本発明者らの検討によれば、上述した、得られるキナクリドン固溶体顔料の粒子径のコントロール効果は、顔料化工程で使用する溶媒として、ジメチルスルホキシドを用いた場合に特に顕著である。
 また、本発明者らの検討によれば、顔料化工程で、乾燥させた粉状の粗製キナクリドン固溶体を、ジメチルスルホキシド中で加熱する際に、更に、キナクリドン系顔料誘導体を添加し、キナクリドン系顔料誘導体を存在させた状態で顔料化することが有効である。このように構成することで、得られるキナクリドン固溶体顔料の粒子が均一になる効果や、形成した着色物の彩度が高くなるといった効果をより向上させることができる。上記で用いるキナクリドン系顔料誘導体としては、例えば、2-フタルイミドメチルキナクリドンが挙げられる。
<キナクリドン固溶体顔料>
 本発明の製造方法によって得られるキナクリドン固溶体顔料は、先述したように、無置換キナクリドンと、2,9-ジアルキルキナクリドンとを必須成分とし、これらが特定の質量割合となるように構成した、無置換キナクリドンの結晶相に、2,9-ジアルキルキナクリドンが溶け込んだとみなされる混合相を形成しているものである。そのため、無置換キナクリドンの単結晶や、2,9-ジアルキルキナクリドンの単結晶には存在しない、粉末X線回折によるブラッグ角(θ)を用いた(2θ)で示される、固有の回折ピークを有するものとなる。したがって、顔料が、固溶体であるか、これらの単結晶の混合物であるかについては、粉末X線回折によって容易に判定することができる。
 本発明の製造方法によって得た、高彩度で、且つ、程よい黄味がかった良好な色相の着色物の提供を可能にするキナクリドン固溶体顔料は、粉末X線回折で、ブラッグ角(θ)を用いた(2θ±0.2゜)の2θの値として、27.5°、13.8°及び6.0°に固有の回折ピークを有するという特徴があった。より具体的には、2θの値が、27.3°~27.7°、13.6°~14.0°及び5.8°~6.2°である位置に固有の回折ピークを有することを特徴とする。また、本発明で規定する上記6.0゜のピーク強度を100としたとき、13.8゜のピーク強度比率は70~80、27.5°のピーク強度比率は55~70であった。
 本発明の製造方法によって得られるキナクリドン固溶体顔料の粒子径は、特に限定されず、用途に応じて適宜なものを製造すればよい。例えば、本発明のインクジェット用インキの着色剤として使用するためのキナクリドン固溶体顔料の場合は、その吐出安定性等を考慮して、長軸の粒子径が20~80nmとなる条件で製造されたものを用いる。更には、キナクリドン固溶体顔料の長軸の粒子径が、30nm程度のものであることがより好ましい。なお、上記の長軸の粒子径は、透過型電子顕微鏡で観察した場合の平均値である。
<インクジェット用インキ>
 本発明のインクジェット用インキは、着色剤として、長軸の粒子径が20~80nmである、粉末X線回折で、ブラッグ角(θ)を用いた(2θ±0.2゜)の2θの値が、27.5°、13.8°及び6.0°である固有の回折ピークを有するキナクリドン固溶体顔料を含有してなる。このようなキナクリドン固溶体顔料は、先に説明した本発明の製造方法で容易に得ることができる。更に、本発明のインクジェット用インキは、キナクリドン固溶体顔料の、分散性、分散安定性、経時でのインキ保存安定性を向上させるため、顔料分散剤を含有してなる。顔料分散剤としては、従来公知のインクジェット用の水性顔料インキに用いられているものを適宜に使用することができる。本発明のインクジェット用インキは、その他、必要に応じて、界面活性剤、有機溶剤及び保湿剤等の添加剤が添加されていてもよく、これらについても、インクジェット用の水性顔料インキに関する公知の技術が適用できる。
 本発明のインクジェット用インキは、その着色物の彩度が高く、且つ、程よい黄味がかった良好な色相を有するものになるキナクリドン固溶体顔料を含有してなる。キナクリドン固溶体顔料の添加量は特に限定されず、従来公知の範囲で含有させればよい。具体的には、インキ100質量%中に、0.5~30質量%程度であればよく、より好ましくは、4~10質量%程度である。0.5質量%未満の添加量では、印字濃度が確保できなくなる場合があり、一方、30質量%を超える添加量では、インキの粘度増加や粘度特性に構造粘性が生じ、インクジェットヘッドからのインキの吐出安定性が悪くなる場合がある。
 以下、実施例及び比較例を挙げて本発明を更に説明する。なお、以下における「%」及び「部」は、特に断りのない限りいずれも質量基準である。
〔キナクリドン固溶体顔料〕
<実施例1>
 100mlのセパラブルフラスコに、85%リン酸65.6gを秤採り、無水リン酸98.7gを加え、84.0%ポリリン酸を作製した。内温が100℃程度まで低下したら、2,5-ジ(p-トルイジノ)テレフタル酸(DM-DATA)を6.12g、次いで、2,5-ジアニリノテレフタル酸(DATA)14.28gを徐々に加えた。添加終了後、120℃で4時間、共環化反応を行った。反応終了後、1Lビーカーに常温の水400mlを張った中に上記反応液を投入した。濾過、水洗した後、1Lのビーカーに移し、水800mlを加えて撹拌し、苛性ソーダを加えてpHを7~8に調整した。これを、濾過、湯洗して、含水状態の粗製キナクリドン固溶体を得た。この粗製キナクリドン固溶体は、無置換キナクリドンと、2,9-ジアルキルキナクリドンとの質量割合が、7:3であった。
 上記で得た含水状態の粗製キナクリドン固溶体を、80℃で一晩乾燥して、水分含有量を1%未満にした。乾燥後、粉砕して粗製キナクリドン固溶体の粉末18.0gを得た。得られた粉末を透過型電子顕微鏡で観察したところ、長軸の平均粒子径は、約20nmであった。
 次に、上記の粉末を溶解しない液媒体としてジメチルスルホキシド(DMSO)を用い、粗製キナクリドン固溶体を顔料化した。具体的には、上記で得た粗製キナクリドン固溶体の粉末を7.0gと、ジメチルスルホキシド70.0gとを100mlのセパラブルフラスコに仕込み、30分かけて80℃まで昇温し、同温度で1時間加熱処理した。そして、70℃以下に冷却した後、濾過し、濾液が無色となるまで湯洗及び水洗し、その後80℃で乾燥して、本実施例のキナクリドン固溶体顔料の粉末を得た。
 上記で得られた顔料が、本発明が目的とするキナクリドン固溶体であることについては、粉末X線回折で確認した。具体的には、測定対象のキナクリドン固溶体顔料の粉末を所定のホルダーに詰め、粉末X線回折装置のmini Flex600(商品名、リガク社製、他の例でも同様の装置を使用)を用いて測定した。その結果、上記で得たキナクリドン固溶体顔料の粉末X線回折による2θの値で、27.5°、13.8°及び6.0°にピークを有していた。また、そのピーク強度比は、約63:約78:100であった。
 また、透過型電子顕微鏡で、上記で得たキナクリドン固溶体顔料の顔料粒子を観察したところ、長軸の平均粒子径は約30nmであった。これをキナクリドン固溶体顔料1又は単に固溶体顔料1と呼ぶ。上記で得たキナクリドン固溶体顔料1を用いた場合に得られる着色物における色の評価結果については、他の例と共にまとめて後述する。
<実施例2>
 本実施例では、実施例1で得た粉状の粗製キナクリドン固溶体を用い、更に、キナクリドン系顔料誘導体の存在下で加熱して顔料化を行った。具体的には、実施例1で得た粗製キナクリドン固溶体の粉末を7.0gと、液媒体としてジメチルスルホキシド(DMSO)を70.0gと、キナクリドン系顔料誘導体である2-フタルイミドメチルキナクリドン粉末0.35gとを、100mlのセパラブルフラスコに仕込み、30分かけて80℃まで昇温し、同温度で3時間処理した。そして、70℃以下に冷却した後、濾過し、濾液が無色となるまで湯洗及び水洗し、その後80℃で乾燥し、本実施例のキナクリドン固溶体顔料の粉末を得た。
 上記で得られた顔料が、本発明が目的とするキナクリドン固溶体であることについては、粉末X線回折で確認した。その結果、粉末X線回折による2θの値で、27.5°、13.8°及び6.0°にそれぞれピークを有していた。また、そのピーク強度比は、約64:約77:100であった。また、実施例1と同様に、透過型電子顕微鏡で顔料粒子を観察したところ、長軸の平均粒子径は約25nmであった。これをキナクリドン固溶体顔料2又は単に固溶体顔料2と呼ぶ。
<実施例3>
 100mlのセパラブルフラスコに、85%リン酸65.6gを秤採り、無水リン酸98.7gを加え、84.0%ポリリン酸を作製した。内温が100℃程度まで低下したら、2,5-ジ(p-トルイジノ)テレフタル酸(DM-DATA)を4.08g、次いで、2,5-ジアニリノテレフタル酸(DATA)16.32gを徐々に加えた。添加終了後、120℃で4時間、共環化反応を行った。反応終了後、1Lビーカーに常温の水400mlを張った中に上記反応液を投入した。濾過、水洗した後、1Lのビーカーに移し、水800mlを加えて撹拌し、苛性ソーダを加え、pHを7~8に調整した。これを、濾過、湯洗して、含水状態の粗製キナクリドン固溶体を得た。該粗製キナクリドン固溶体は、無置換キナクリドンと、2,9-ジアルキルキナクリドンとの質量割合が、8:2であった。
 上記で得た含水状態の粗製キナクリドン固溶体を、80℃で一晩乾燥して、水分含有量を1%未満にした。乾燥後、粉砕して粗製キナクリドン固溶体の粉末17.9gを得た。得られた粉末を透過型電子顕微鏡で観察したところ、長軸の平均粒子径は、約20nmであった。
 次に、実施例1と同様の操作で粗製キナクリドン固溶体を顔料化し、本実施例のキナクリドン固溶体顔料の粉末を得た。
 上記で得られた顔料は、粉末X線回折による2θの値で、27.6°、13.8°及び6.1°にピークを有しており、そのピーク強度比は、約57:約77:100であった。また、実施例1と同様に、透過型電子顕微鏡で顔料粒子を観察したところ、長軸の平均粒子径は約30nmであった。これをキナクリドン固溶体顔料3又は単に固溶体顔料3と呼ぶ。
<実施例4>
 100mlのセパラブルフラスコに、85%リン酸65.6gを秤採り、無水リン酸98.7gを加え、84.0%ポリリン酸を作製した。内温が100℃程度まで低下したら、2,5-ジ(p-トルイジノ)テレフタル酸(DM-DATA)を8.16g、次いで、2,5-ジアニリノテレフタル酸(DATA)12.24gを徐々に加えた。添加終了後、120℃で4時間、共環化反応を行った。反応終了後、1Lビーカーに常温の水400mlを張った中に上記反応液を投入した。濾過、水洗した後、1Lのビーカーに移し、水800mlを加えて撹拌し、苛性ソーダを加え、pHを7~8に調整した。これを、濾過、湯洗して、含水状態の粗製キナクリドン固溶体を得た。該粗製キナクリドン固溶体は、無置換キナクリドンと、2,9-ジアルキルキナクリドンとの質量割合が、6:4であった。
 上記で得た含水状態の粗製キナクリドン固溶体を、80℃で一晩乾燥して、水分含有量を1%未満にした。乾燥後、粉砕して粗製キナクリドン固溶体の粉末18.1gを得た。得られた粉末を透過型電子顕微鏡で観察したところ、長軸の平均粒子径は、約20nmであった。
 次に、実施例1と同様の操作で粗製キナクリドン固溶体を顔料化し、本実施例のキナクリドン固溶体顔料の粉末を得た。
 上記で得られた顔料は、粉末X線回折による2θの値で、27.4°、13.8°及び5.9°にピークを有しており、そのピーク強度比は、約71:約76:100であった。また、実施例1と同様に、透過型電子顕微鏡で顔料粒子を観察したところ、長軸の平均粒子径は約30nmであった。これをキナクリドン固溶体顔料4又は単に固溶体顔料4と呼ぶ。
<比較例1>
 100mlのセパラブルフラスコに、85%リン酸65.6gを秤採り、無水リン酸98.7gを加え、84.0%ポリリン酸を作製した。内温が100℃程度まで低下したら、2,5-ジ(p-トルイジノ)テレフタル酸(DM-DATA)を14.28g、次いで、2,5-ジアニリノテレフタル酸(DATA)6.12gを徐々に加えた。添加終了後、120℃で4時間、共環化反応を行った。反応終了後、1Lビーカーに常温の水400mlを張った中に上記反応液を投入した。濾過、水洗した後、1Lのビーカーに移し、水800mlを加えて撹拌し、苛性ソーダを加えpHを7~8に調整した。これを、濾過、湯洗して、含水状態の粗製キナクリドン固溶体を得た。該粗製キナクリドン固溶体は、無置換キナクリドンと、2,9-ジアルキルキナクリドンとの質量割合が3:7であり、本発明で規定する範囲から外れていた。
 上記で得た含水状態の粗製キナクリドン固溶体を、80℃で一晩乾燥して、水分含有量を1%未満にした。乾燥後、粉砕して粗製キナクリドン固溶体の粉末18.0gを得た。得られた粉末を透過型電子顕微鏡で観察したところ、長軸の平均粒子径は、約20nmであった。
 次に、上記の粉末を溶解しない液媒体としてジメチルスルホキシドを用い、粗製キナクリドン固溶体を顔料化した。具体的には、上記で得た粗製キナクリドン固溶体の粉末を7.0gと、ジメチルスルホキシド70.0gとを100mlのセパラブルフラスコに仕込み、1時間かけて105℃まで昇温し、同温度で6時間加熱処理した。そして、70℃以下に冷却した後、濾過し、濾液が無色となるまで湯洗及び水洗し、その後80℃で乾燥して、本比較例のキナクリドン固溶体顔料の粉末を得た。
 上記で得られた顔料は、粉末X線回折による2θの値で、27.3°、13.9°及び5.6°にピークを有しており、本発明で規定する固有の回折ピークの組み合わせとは異なることが確認された。また、これらのピーク強度比は、約75:約65:100であった。また、透過型電子顕微鏡で顔料粒子を観察したところ、長軸の平均粒子径は約50nmであった。これを比較キナクリドン固溶体顔料1又は単に比較固溶体顔料1と呼ぶ。
<比較例2>
 粗製無置換キナクリドンと粗製2,9-ジメチルキナクリドンの2種の異なるキナクリドン顔料を、実施例1の固溶体顔料と同様の質量割合となるように、7:3の組成比で混合した後、ジメチルスルホキシドで顔料化した。具体的には、粗製混合キナクリドンの粉末を7.0gと、ジメチルスルホキシド70.0gとを100mlのセパラブルフラスコに仕込み、30分かけて80℃まで昇温し、同温度で1時間加熱処理した。そして、70℃以下に冷却した後、濾過し、濾液が無色となるまで湯洗及び水洗し、その後80℃で乾燥して、本比較例の、2種の異なるキナクリドン顔料の混合体であるキナクリドン顔料の粉末を得た。また、透過型電子顕微鏡で顔料粒子を観察したところ、長軸の平均粒子径は約30nmであった。これを比較キナクリドン顔料2又は単に比較顔料2と呼ぶ。
<評価1>
 実施例1~4及び比較例1で得た各キナクリドン固溶体顔料と、比較例2で得た混合顔料を用い、下記のようにしてそれぞれに得た2種類の塗料で、原色塗膜と淡色塗膜とを作製した。そして、それぞれの塗膜についてL***値を測定して色味を評価した。得られた結果を表1に示した。
1.塗料の作製
(1)ベース塗料の作製
 実施例及び比較例の各顔料を0.8g、アルキッド-メラミン樹脂(商品名:106-3700 ラッカークリヤー アートクリヤー;イサム塗料社製)を5.0g、トルエン、酢酸エチルとブタノールが主成分であるシンナー(商品名:ニッペ2500シンナー、日本ペイント社製)を5.0g、及び、ガラスビーズ50.0gをポリ容器に仕込んだ。そして、この混合物をペイントシェーカーで1時間分散した後、上記アルキッド-メラミン樹脂を35.0gと、上記シンナー4.0gとを追加し、10分間分散して各顔料の分散液を得た。得られた各分散液10.0gと、上記アルキッド-メラミン樹脂20.0gをポリ容器に仕込みマゼルスター(商品名、クラボウ社製)で分散混合し、それぞれの顔料を含有するベース塗料とした。
(2)淡色塗料の作製
 実施例及び比較例の各顔料を0.8g、前記したアルキッド-メラミン樹脂を5.0g、前記したシンナーを5.0g、及び、ガラスビーズ50gをポリ容器に仕込んだ。そして、この混合物をペイントシェーカーで1時間分散した後、前記したアルキッド-メラミン樹脂を35.0gと、前記したシンナー4.0gとを追加し、10分間分散して各顔料の分散液を得た。得られた各分散液10.0gと、酸化チタンを主成分とする白インキ(商品名:10スーパー 300 ホワイト、日本ペイント社製)20.0gをポリ容器に仕込み、マゼルスターで分散混合し、それぞれの顔料を含有する淡色塗料とした。
2.展色物の作製と色相評価
(1)作製したベース塗料を、6milのアプリケーター(塗布機)を用い展色紙上に展色し、この展色紙を室温において数時間乾燥した。このようにして作製した実施例及び比較例の各顔料を含有する塗料を用いて展色した展色紙(以下、原色塗膜と呼ぶ)を、目視観察及び測色機を用いて色相を比較評価した。その結果を表1に示した。なお、目視観察は、相対評価である。
(2)作製した淡色塗料を、6milのアプリケーターを用い展色紙上に展色し、この展色紙を室温において数時間乾燥した。このようにして作製した展色物(以下、淡色塗膜と呼ぶ)の色相についても、上記と同様にして評価を行い、その結果を表1に示した。
(3)上記で作製した実施例1~4と比較例1、2の原色塗膜及び淡色塗膜について、それぞれ測色機を用いて測色した測色値を表1に示した。その際、分光測色計のCM-3600d(商品名、コニカミノルタ社製)を用いて測色した。L*は明度、C*は彩度であり、彩度C*は、√(a*2+(b*2で求めた。
Figure JPOXMLDOC01-appb-I000001
 実施例1と、比較例1との違いは、無置換キナクリドンと2,9-ジアルキルキナクリドンとの質量割合の違いだけであるが、表1に示したように、特にb*の値に大きな違いがみられた。目視観察の結果とも一致したが、b*の値が小さいほど、ブルーシフトして色相が青味となることを示しており、b*の値が大きいほど、色相が黄味となることを示している。その他の実施例で得た固溶体顔料も、b*の値が大きく、色相が黄味となることが確認できた。また、2種のキナクリドン顔料の混合物からなる比較例2の比較キナクリドン顔料2の場合は、色相は黄味となるものの、目視観察での鮮明性が、実施例の場合と明らかに劣ることが確認できた。
〔インクジェット用インキ〕
<マゼンタ色の水性顔料分散液1の作製>
 マゼンタ顔料として、実施例1で得たキナクリドン固溶体顔料1を200部、顔料分散剤を200部、液媒体として、ジエチレングリコールモノブチルエーテル(別称:ブチルジグリコール、以下、BDGと略)を30部、及び水を340部で配合し、ディスパーで解膠してプレミルベースを調製した。上記の顔料分散剤には、数平均分子量が7000、酸価が155mgKOH/gの、スチレン/アクリル酸2-エチルヘキシル/アクリル酸(質量比:50/30/20)共重合体のアンモニア中和物の水溶液(固形分30%)を使用した。次いで、得られたプレミルベースを横型媒体分散機「ダイノミル0.6リットルECM型」(商品名、シンマルエンタープライゼス社製、ジルコニア製ビーズ径0.3mm)を使用し、周速7m/sで分散処理を行った。1時間分散したところで分散を終了し、ミルベースを得た。
 得られたミルベースを顔料分15%になるようにイオン交換水にて希釈し、次いで、遠心分離処理し、キナクリドン固溶体顔料1が分散されてなる顔料分散液を得た。そして、得られた顔料分散液を、10μmのメンブレンフィルターでろ過して、イオン交換水、防腐剤、グリセリンを所定量添加して、顔料濃度が12%であるマゼンタ色の顔料分散液1を得た。
 上記で得たマゼンタ色の顔料分散液1を、粒度測定器「NICOMP 380ZLS-S」(パーティクルサイジングシステム、PSS社製)で平均粒子径を測定(25℃)したところ、平均粒子径が126nmであった。また、粘度は4.03mPa・s、表面張力は44.0mN/m、pHは9.6であった。表2に、マゼンタ色の顔料分散液1の配合、物性の結果をまとめて示した。
<マゼンタ色の水性顔料分散液2~6の作製>
 マゼンタ色の水性顔料分散液1の作製で使用したキナクリドン固溶体顔料1に替えて、それぞれ、実施例及び比較例で得たキナクリドン固溶体顔料2~4、比較キナクリドン固溶体顔料1、比較キナクリドン顔料2を使用したこと以外は、マゼンタ色の水性顔料分散液1と同様にして、マゼンタ色の顔料分散液2~6を得た。表2に、顔料分散液2~6の配合、物性の結果をまとめて示した。
Figure JPOXMLDOC01-appb-I000002
<マゼンタ色のインクジェット用水性顔料インキ1~6の作製>
 次に、上記で得たマゼンタ色の水性顔料分散液1を使い、該水性顔料分散液1の41.7部に対し、BDGを5.0部、トリエチレングリコールモノブチルエーテル(BTG)を2.5部、グリセリンを18部、「サーフィノール465」(商品名、エア・プロダクツ社製)1部、水を加えて全量が100部になるように調整し、十分撹拌した。その後、ポアサイズ10μmのメンブランフィルターで濾過を行い、大きな顔料粒子を除いて、マゼンタ色のインクジェット用水性顔料インキ1を得た。
 得られたインキ中の顔料の粒子径は粒度測定器「NICOMP 380ZLS-S」(商品名、パーティクルサイジングシステム、PSS社製)で平均粒子径を測定(25℃)したところ124nmであり、インキの粘度は3.41mPa・s、pHは9.5であった。インキ中の顔料の粒子径は、粒度測定器「NICOMP 380ZLS-S」で測定した散乱光強度基準による平均粒子径の値である。また、インキの粘度は、粒度測定器「NICOMP 380ZLS-S」で測定した値である。
 水性顔料分散液1に替えて、水性顔料分散液2~6を用いた以外は上記したと同様の手法で、マゼンタ色のインクジェット用水性顔料インキ2~6を作製した。表3に、調製した各インクの物性をまとめて示した。
Figure JPOXMLDOC01-appb-I000003
<評価2:顔料分散液及びインキの評価>
1.分散安定性・保存性安定性の評価
 上記で作製したマゼンタ色の水性顔料分散液1~6と、マゼンタ色のインクジェット用水性顔料インキ1~6について、それぞれ、初期及び70℃で7日放置したときにおける、粘度及び粒子径をそれぞれ測定した。これらの測定値を用いて、粘度変化率(%)及び粒子径変化率(%)をそれぞれ算出し、インキの分散安定性・保存性安定性を、下記の基準で、それぞれ評価した。なお、変化率は、いずれも、(7日後の値)/(初期の値)-1の100分率(%)より求め、以下の規準で評価した。得られた結果を表4に示した。
[評価基準]
(粒子径の変化)
 A:粒子径の変化率が、±5%未満
 B:粒子径の変化率が、±5%以上10%未満
 C:粒子径の変化率が、±10%以上15%未満
 D:粒子径の変化率が、±15%以上
(粘度変化)
 A:初期粘度が低く、且つ、変化率±10%未満
 B:初期粘度が高く、且つ、変化率±10%未満
 C:初期粘度が低く、且つ、変化率±10%以上
 D:初期粘度が高く、且つ、変化率±10%以上
 なお、粘度が「4mPa・s以上」のものを「粘度が高い」とし、「4mPa・s未満」のものを「粘度が低い」とした。
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
(印刷物の品質評価)
 上記で作製したマゼンタ色のインクジェット用水性顔料インキ1~6を、それぞれカートリッジに充填し、インクジェットプリンタを使用して、(i)専用写真用光沢紙(PGPP)と、(ii)普通紙の2種類の紙に、フォトモードで印刷してそれぞれ印刷物を得た。インクジェットプリンタには、「PM4000PX」(商品名、セイコーエプソン社製)を使用した。また、普通紙には、「Xerox Business 4200紙」(商品名米国Xerox社製)を使用した。その結果、いずれの水性顔料インキも、インクジェットのノズルから問題なく吐出可能であることを確認した。
 得られた印刷物の品質を、分光測色計「i1ベーシックPro」(商品名、X-rite社製)を使用して評価した。具体的には、得られた各印刷物について、分光測色計で、彩度C*と光学濃度(OD値)を以下の条件で測定し、評価した。そして、測定結果を表5に示した。また、目視による色味の観察結果を併せて示した。なお、光学濃度(OD値)及び彩度C*は、いずれも数値が大きい方が優れると評価できる。
[測定条件]
 普通紙光学濃度(OD値):6箇所各3回の測定平均値
 普通紙光学特性(彩度C*):6箇所各1回の測定平均値
 専用写真用光沢紙濃度(OD値):3箇所各1回の測定平均値
 専用写真用光沢紙特性(彩度C*):3箇所各1回の測定平均値
Figure JPOXMLDOC01-appb-I000006
 表5に示した結果から、実施例1のキナクリドン固溶体顔料1を適用したマゼンタ色のインクジェット用水性顔料インキ1で印刷した印刷物は、普通紙、光沢紙のいずれに印刷した場合も、従来の製造方法で得た比較例2のPV19顔料とPR122混合顔料を使用したマゼンタ色のインクジェット用水性顔料インキ6での印刷物よりも、発色性(OD値)及び彩度(C*)に優れていた。また、これらの印刷物を目視観察した結果、水性顔料インキ1で印刷した印刷物は、比較例1の水性顔料インキ5で印刷した印刷物と比較し、明らかに黄味の色相を有することを確認した。このことから、本発明の製造方法で得たキナクリドン固溶体顔料を適用することで、得られる印刷物は、従来の印刷物と比較し、彩度と印刷濃度を高いレベルに保つ発色性が優れ、しかも、市場の要求を十分に満足できる黄味の色相の画像になるインクジェット特性を有したものになることが確認できた。

Claims (9)

  1.  粗製キナクリドン固溶体の製造工程と、粗製キナクリドン固溶体を乾燥する乾燥工程と、乾燥した粗製キナクリドン固溶体を溶媒中で加熱して顔料化する顔料化工程とを有し、
     前記粗製キナクリドン固溶体の製造工程で、ポリリン酸中で、ジアリールアミノテレフタル酸とジアルキルアリールアミノテレフタル酸とを共環化反応させて、無置換キナクリドンと2,9-ジアルキルキナクリドンとの質量割合が85:15~60:40の固溶体に水を含んだ含水状態の粗製キナクリドン固溶体を得、
     前記乾燥工程で、前記含水状態の粗製キナクリドン固溶体を乾燥して、水分含有量を1%未満にして粉状の粗製キナクリドン固溶体を得、
     前記顔料化工程で、前記粉状の粗製キナクリドン固溶体を、該粗製キナクリドン固溶体を溶解しない液媒体中で加熱することを特徴とするキナクリドン固溶体顔料の製造方法。
  2.  前記ジアリールアミノテレフタル酸が、2,5-ジアニリノテレフタル酸であり、前記ジアルキルアリールアミノテレフタル酸が、2,5-ジ(p-トルイジノ)テレフタル酸である請求項1に記載のキナクリドン固溶体顔料の製造方法。
  3.  前記顔料化工程で、前記粉状の粗製キナクリドン固溶体を、前記液媒体中で加熱する際に、キナクリドン系顔料誘導体を存在させる請求項1又は2に記載のキナクリドン固溶体顔料の製造方法。
  4.  前記キナクリドン系顔料誘導体が、2-フタルイミドメチルキナクリドンである請求項3に記載のキナクリドン固溶体顔料の製造方法。
  5.  前記粗製キナクリドン固溶体を溶解しない液媒体が、ジメチルスルホキシドである請求項1~4のいずれか1項に記載のキナクリドン固溶体顔料の製造方法。
  6.  前記顔料化工程における加熱温度が、60℃以上、120℃以下である請求項5に記載のキナクリドン固溶体顔料の製造方法。
  7.  長軸の粒子径が20~80nmであるキナクリドン固溶体顔料を得るためのものである請求項1~6のいずれか1項に記載のキナクリドン固溶体顔料の製造方法。
  8.  無置換キナクリドンと2,9-ジアルキルキナクリドンとのキナクリドン固溶体顔料と、顔料分散剤と、水とを含有してなり、
     前記キナクリドン固溶体顔料が、粉末X線回折で、ブラッグ角(θ)を用いた(2θ±0.2゜)の2θの値が、27.5°、13.8°及び6.0°である固有の回折ピークを有することを特徴とする顔料分散液。
  9.  無置換キナクリドンと2,9-ジアルキルキナクリドンとの固溶体からなる、長軸の粒子径が20~80nmであるキナクリドン固溶体顔料と、顔料分散剤と、水とを含有してなるインクジェット用インキであって、
     前記キナクリドン固溶体顔料が、粉末X線回折で、ブラッグ角(θ)を用いた(2θ±0.2゜)の2θの値が、27.5°、13.8°及び6.0°である固有の回折ピークを有するものであることを特徴とするインクジェット用インキ。
PCT/JP2018/013788 2018-03-30 2018-03-30 キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキ WO2019187058A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP18912892.9A EP3778784A4 (en) 2018-03-30 2018-03-30 PROCESS FOR MAKING A CHINACRIDONE MIXED CRYSTAL PIGMENT, PIGMENT DISPERSION AND INKJET INK
KR1020207030088A KR102525365B1 (ko) 2018-03-30 2018-03-30 퀴나크리돈 고용체 안료의 제조 방법, 안료 분산액 및 잉크젯용 잉크
PCT/JP2018/013788 WO2019187058A1 (ja) 2018-03-30 2018-03-30 キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキ
AU2018416405A AU2018416405B2 (en) 2018-03-30 2018-03-30 Method for producing quinacridone solid-solution pigment, pigment dispersion, and ink-jet ink
JP2020508831A JP7066828B2 (ja) 2018-03-30 2018-03-30 キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキ
US16/976,169 US11926741B2 (en) 2018-03-30 2018-03-30 Method for producing quinacridone solid-solution pigment, pigment dispersion, and ink-jet ink
CN201880091753.4A CN111902490A (zh) 2018-03-30 2018-03-30 喹吖啶酮固溶体颜料的制造方法、颜料分散液和喷墨用墨
CA3101167A CA3101167C (en) 2018-03-30 2018-03-30 Method for producing quinacridone solid-solution pigment, pigment dispersion, and ink-jet ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013788 WO2019187058A1 (ja) 2018-03-30 2018-03-30 キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキ

Publications (1)

Publication Number Publication Date
WO2019187058A1 true WO2019187058A1 (ja) 2019-10-03

Family

ID=68059646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013788 WO2019187058A1 (ja) 2018-03-30 2018-03-30 キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキ

Country Status (8)

Country Link
US (1) US11926741B2 (ja)
EP (1) EP3778784A4 (ja)
JP (1) JP7066828B2 (ja)
KR (1) KR102525365B1 (ja)
CN (1) CN111902490A (ja)
AU (1) AU2018416405B2 (ja)
CA (1) CA3101167C (ja)
WO (1) WO2019187058A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7112578B1 (ja) 2021-10-05 2022-08-03 大日精化工業株式会社 キナクリドン固溶体顔料の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109890908B (zh) 2016-10-28 2021-05-11 大日精化工业株式会社 喹吖啶酮固溶体颜料的制造方法、颜料分散液和喷墨用墨
WO2023208924A1 (en) 2022-04-26 2023-11-02 Sun Chemical Corporation Mixed crystal composition of quinacridones with diketopyrrolopyrroles and manufacturing process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823858A (ja) * 1981-07-07 1983-02-12 チバ・ガイギ−・アクチェンゲゼルシャフト 顔料形態のキナクリドン顔料の製造方法
JPS6035055A (ja) * 1983-08-05 1985-02-22 Toyo Soda Mfg Co Ltd キナクリドン系固溶体顔料の製造法
JPH1030062A (ja) * 1996-05-17 1998-02-03 Dainippon Ink & Chem Inc キナクリドン系化合物顔料の製造法
JP2000281930A (ja) 1999-01-14 2000-10-10 Clariant Gmbh ガンマ相のキナクリドン混晶顔料
JP2002146224A (ja) 2000-08-29 2002-05-22 Dainippon Ink & Chem Inc キナクリドン固溶体顔料およびその製造方法
JP2005255880A (ja) * 2004-03-12 2005-09-22 Dainippon Ink & Chem Inc 樹脂着色用キナクリドン顔料組成物、その製造方法および該顔料組成物を含有する樹脂着色組成物
JP2007119774A (ja) * 2005-09-30 2007-05-17 Dainippon Ink & Chem Inc 水性顔料分散液及びインクジェット記録用インク組成物
WO2018079239A1 (ja) * 2016-10-28 2018-05-03 大日精化工業株式会社 キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160510A (en) * 1960-04-25 1964-12-08 Du Pont Quinacridone pigment compositions
US4455173A (en) 1981-07-07 1984-06-19 E. I. Du Pont De Nemours And Company Preparation of pigmentary form of quinacridone pigments
US4895949A (en) * 1988-06-20 1990-01-23 Ciba-Geigy Corporation Process for preparation of quinacridone solid solutions
JP2910364B2 (ja) 1991-11-07 1999-06-23 東洋インキ製造株式会社 2,9−ジメチルキナクリドン顔料の製造方法
DE19613186A1 (de) * 1996-04-02 1997-10-09 Hoechst Ag Verfahren zur Herstellung von Chinacridonpigmenten
JPH10219166A (ja) 1997-02-05 1998-08-18 Dainippon Ink & Chem Inc ジェットプリンター用インキ
JP3556835B2 (ja) 1997-06-02 2004-08-25 大日精化工業株式会社 画像記録用着色組成物及びその製造方法
DE19733642A1 (de) * 1997-08-04 1999-02-11 Clariant Gmbh Mischkristallpigmente der Chinacridonreihe
US5972099A (en) 1997-12-17 1999-10-26 Bayer Corporation Process for preparing organic pigment compositions
DE19854571A1 (de) 1998-11-26 2000-05-31 Clariant Gmbh Verwendung von Mischkristallpigmenten der Chinacridonreihe in elektrophotographischen Tonern und Entwicklern, Pulverlacken und Ink-Jet-Tinten
US6284890B1 (en) * 1999-02-26 2001-09-04 Ciba Specialty Chemicals Corp. Aqueous process for the preparation of linear quinacridones having a reduced particle size
JP2000319534A (ja) 1999-05-06 2000-11-21 Dainippon Ink & Chem Inc キナクリドン固溶体の製造方法
CN100513491C (zh) * 2003-07-18 2009-07-15 西巴特殊化学品控股有限公司 包括不对称取代的组分的喹吖啶酮颜料组合物
EP1646691B2 (en) 2003-07-18 2018-03-07 Basf Se Quinacridone pigment compositions comprising unsymmetrically substituted components
JP2006096927A (ja) 2004-09-30 2006-04-13 Dainippon Ink & Chem Inc グラビアインキ用キナクリドン顔料組成物、その製造方法および該顔料組成物を含有するグラビアインキ
EP2374848B1 (en) * 2010-04-09 2013-01-16 Clariant Finance (BVI) Limited New magenta quinacridone pigments
JP5591773B2 (ja) * 2011-08-31 2014-09-17 富士フイルム株式会社 インク組成物、インクセット、及び画像形成方法
EP3323858B1 (en) * 2015-06-24 2022-08-17 DIC Corporation Process for producing quinacridone pigment composition
JP2017222842A (ja) 2016-05-11 2017-12-21 日本化薬株式会社 インク、インクジェット記録方法及びモットリングの改善方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823858A (ja) * 1981-07-07 1983-02-12 チバ・ガイギ−・アクチェンゲゼルシャフト 顔料形態のキナクリドン顔料の製造方法
JPS6035055A (ja) * 1983-08-05 1985-02-22 Toyo Soda Mfg Co Ltd キナクリドン系固溶体顔料の製造法
JPH1030062A (ja) * 1996-05-17 1998-02-03 Dainippon Ink & Chem Inc キナクリドン系化合物顔料の製造法
JP2000281930A (ja) 1999-01-14 2000-10-10 Clariant Gmbh ガンマ相のキナクリドン混晶顔料
JP2002146224A (ja) 2000-08-29 2002-05-22 Dainippon Ink & Chem Inc キナクリドン固溶体顔料およびその製造方法
JP2005255880A (ja) * 2004-03-12 2005-09-22 Dainippon Ink & Chem Inc 樹脂着色用キナクリドン顔料組成物、その製造方法および該顔料組成物を含有する樹脂着色組成物
JP2007119774A (ja) * 2005-09-30 2007-05-17 Dainippon Ink & Chem Inc 水性顔料分散液及びインクジェット記録用インク組成物
WO2018079239A1 (ja) * 2016-10-28 2018-05-03 大日精化工業株式会社 キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778784A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7112578B1 (ja) 2021-10-05 2022-08-03 大日精化工業株式会社 キナクリドン固溶体顔料の製造方法
JP2023055068A (ja) * 2021-10-05 2023-04-17 大日精化工業株式会社 キナクリドン固溶体顔料の製造方法

Also Published As

Publication number Publication date
US11926741B2 (en) 2024-03-12
JP7066828B2 (ja) 2022-05-13
KR20200133779A (ko) 2020-11-30
EP3778784A4 (en) 2022-04-27
AU2018416405A1 (en) 2020-09-17
JPWO2019187058A1 (ja) 2021-03-18
KR102525365B1 (ko) 2023-04-26
CA3101167A1 (en) 2019-10-03
CA3101167C (en) 2022-09-06
CN111902490A (zh) 2020-11-06
EP3778784A1 (en) 2021-02-17
AU2018416405B2 (en) 2021-05-06
US20200407563A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
JP6697571B2 (ja) キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキ
JP5244323B2 (ja) Py155に基づく顔料調製品
KR101685774B1 (ko) 녹미 청색 안료, 상기 안료를 포함하는 착색제 조성물 및 화상 기록제
KR20060037374A (ko) 비대칭으로 치환된 성분을 포함하는 퀴나크리돈 안료조성물
KR20060127167A (ko) 색지수 황색 안료 74에 기초한 혼합된 결정을 포함하는안료 조성물의 용도
JP7066828B2 (ja) キナクリドン固溶体顔料の製造方法、顔料分散液及びインクジェット用インキ
US8361218B2 (en) Coloring composition, method for production thereof, and coloring method
JP4798458B2 (ja) インク組成物およびカラー画像形成方法
TWI772405B (zh) 喹吖酮固溶體顏料之製造方法、顏料分散液及噴墨用墨水
JP7112578B1 (ja) キナクリドン固溶体顔料の製造方法
Biry et al. Organic pigments for ink jet applications: key properties and impact on ink performance
JP2005179489A (ja) 顔料分散剤、及びそれを含有する顔料組成物
JP2003292812A (ja) 顔料組成物、水性顔料分散体及び水性顔料記録液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508831

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018416405

Country of ref document: AU

Date of ref document: 20180330

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3101167

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20207030088

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018912892

Country of ref document: EP