WO2019186798A1 - 表示装置及び表示装置の製造方法 - Google Patents

表示装置及び表示装置の製造方法 Download PDF

Info

Publication number
WO2019186798A1
WO2019186798A1 PCT/JP2018/012873 JP2018012873W WO2019186798A1 WO 2019186798 A1 WO2019186798 A1 WO 2019186798A1 JP 2018012873 W JP2018012873 W JP 2018012873W WO 2019186798 A1 WO2019186798 A1 WO 2019186798A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
oxide semiconductor
semiconductor layer
regions
gate
Prior art date
Application number
PCT/JP2018/012873
Other languages
English (en)
French (fr)
Inventor
正智 本城
悠二郎 武田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2018/012873 priority Critical patent/WO2019186798A1/ja
Publication of WO2019186798A1 publication Critical patent/WO2019186798A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a display device and a method for manufacturing the display device.
  • Display devices such as organic EL displays and inorganic EL displays include pixel circuits including thin film transistors.
  • An amorphous silicon layer, a low-temperature polysilicon layer, or an oxide semiconductor layer is used in a region where current flows between the source and the drain of the thin film transistor.
  • a thin film transistor structure a top gate structure, a bottom gate structure, and a double gate structure are known.
  • a thin film transistor using an oxide semiconductor layer usually has a bottom gate structure.
  • the oxide semiconductor layer in which the channel of the thin film transistor is formed is usually formed by a sputtering method.
  • the oxide semiconductor layer immediately after film formation has many oxygen vacancies and low electrical resistivity (in the oxide semiconductor, oxygen vacancies act as a donor).
  • oxygen vacancies act as a donor.
  • the entire oxide semiconductor layer is heat-treated, so that the amount of oxygen vacancies is reduced and the resistance of the oxide semiconductor layer is increased.
  • the electrical resistivity of an oxide semiconductor layer increases due to effects such as crystallinity change and oxygen deficiency repair by annealing treatment.
  • the bottom gate thin film transistor has a problem in that a parasitic capacitance is generated between the source electrode and the bottom gate electrode, causing a decrease in operating frequency.
  • a top-gate or double-gate thin film transistor using an oxide semiconductor layer is a promising device for realizing a next-generation display characterized by high-frequency driving such as an organic EL display.
  • it is necessary to form low, medium, and high resistivity regions in the oxide semiconductor layer.
  • it is difficult to form the middle resistivity region or the low resistivity region in the region of the oxide semiconductor layer immediately below the top gate.
  • the present invention has been made in view of such circumstances, and provides a display device including a thin film transistor having stable characteristics.
  • the present invention includes a substrate, a thin film transistor provided on the substrate, and a second insulating film provided on the thin film transistor, wherein the thin film transistor includes a first insulating film provided on the substrate, One oxide semiconductor layer provided on one insulating film, a gate insulating layer provided on the oxide semiconductor layer, a first gate electrode provided on the gate insulating layer, a source electrode, and a drain electrode
  • the oxide semiconductor layer includes: a first region that contacts the source electrode; a second region that contacts the drain electrode; and a third region disposed between the first region and the second region.
  • the first and second regions have a lower electrical resistivity than the third and fourth regions.
  • the fifth and sixth regions are regions having lower electrical resistivity than the seventh region and higher electrical resistivity than the third region and fourth region when the thin film transistor is in an off state.
  • the seventh region is provided so as to overlap with the first gate electrode.
  • the oxide semiconductor layer included in the thin film transistor of the display device of the present invention has fifth and sixth regions having higher electrical resistivity than the third and fourth regions, and higher electrical resistivity than the fifth and sixth regions. Since the fifth region, the sixth region, and the seventh region are provided so as to overlap with the first gate electrode, the current flowing between the source and the drain can be increased when the thin film transistor is in the on state. The characteristics of the thin film transistor can be stabilized. As a result, high-speed operation of the display device can be realized.
  • FIG. 10 is an explanatory diagram of a method for forming a high resistivity region, a middle resistivity region, and a low resistivity region by irradiating an oxide semiconductor layer with laser light.
  • FIG. 11 is an explanatory diagram of a method for forming a high resistivity region, a middle resistivity region, and a low resistivity region in an oxide semiconductor layer using annealing treatment and plasma ashing. It is a schematic sectional drawing of the thin-film transistor contained in the display apparatus of one Embodiment of this invention. It is a schematic top view which shows the structure of the thin-film transistor contained in the display apparatus of one Embodiment of this invention.
  • FIG. 10 is a schematic cross-sectional view of the thin film transistor taken along broken line BB in FIG. 9.
  • FIG. 11 is a schematic enlarged view of the thin film transistor in a range C surrounded by an alternate long and short dash line in FIG. 10.
  • FIG. 10 is a schematic cross-sectional view of the thin film transistor taken along broken line BB in FIG. 9.
  • FIG. 10 is an explanatory diagram of a method for forming a high resistivity region, a middle resistivity region, and a low resistivity region by irradiating an oxide semiconductor layer with laser light.
  • FIG. 11 is an explanatory diagram of a method for forming a high resistivity region, a middle resistivity region, and a low resistivity region in an oxide semiconductor layer using annealing treatment and plasma ashing. It is explanatory drawing of the method of forming a high-resistivity area
  • the display device of the present invention includes a substrate, a thin film transistor provided on the substrate, and a second insulating film provided on the thin film transistor, wherein the thin film transistor is a first insulating film provided on the substrate.
  • An oxide semiconductor layer provided on the first insulating film, a gate insulating layer provided on the oxide semiconductor layer, a first gate electrode provided on the gate insulating layer, a source electrode, The oxide semiconductor layer is disposed between the first region contacting the source electrode, the second region contacting the drain electrode, and the first region and the second region.
  • the third and fourth regions, the fifth and sixth regions disposed between the third region and the fourth region, and the seventh region disposed between the fifth region and the sixth region are provided.
  • the first and second regions are more electrically conductive than the third and fourth regions.
  • a region having a low resistivity, and the fifth and sixth regions have a lower electrical resistivity than the seventh region and a higher electrical resistivity than the third and fourth regions when the thin film transistor is in an off state.
  • the fifth, sixth and seventh regions are provided so as to overlap the first gate electrode.
  • the display device of the present invention is not particularly limited as long as it is a display panel provided with a display element.
  • the display element includes a display element whose brightness and transmittance are controlled by current and a display element whose brightness and transmittance are controlled by voltage.
  • a current control display element an EL display QLED (Quantum) such as an organic EL (Electro Luminescence) display provided with an OLED (Organic Light Emitting Diode) or an inorganic EL display provided with an inorganic light emitting diode.
  • QLED displays equipped with dot-light-emitting diodes there is a voltage-controlled display element, there is a liquid crystal display element or the like.
  • the fifth, sixth, and seventh regions of the oxide semiconductor layer included in the display device of the present invention are preferably provided so that all of these regions overlap with the first gate electrode. Thus, the current flowing between the source and the drain when the thin film transistor is on can be increased. It is preferable that the third and fourth regions are provided so that a part of the third region and a part of the fourth region overlap with the first gate electrode. Thus, the current flowing between the source and the drain when the thin film transistor is on can be increased.
  • the gate insulating layer is preferably in an island shape and provided so as to cross the first gate electrode, and the fifth, sixth, and seventh regions are provided so that all the regions overlap the gate insulating layer. It is preferable. Thus, the current flowing between the source and the drain when the thin film transistor is on can be increased.
  • the source electrode is preferably provided in a first contact hole penetrating the gate insulating layer and the second insulating film, and the drain electrode is provided in a second contact hole penetrating the gate insulating layer and the second insulating film. Is preferred.
  • the first contact hole is preferably provided so that a through hole penetrating the gate insulating layer and a through hole penetrating the second insulating film are aligned, and the second contact hole is formed of the gate insulating layer. It is preferable that the through hole penetrating through and the through hole penetrating through the second insulating film are aligned.
  • the thin film transistor preferably includes a second gate electrode provided between the substrate and the first insulating film, and the fifth, sixth, and seventh regions are provided so that all regions overlap the second gate electrode. Preferably.
  • the thin film transistor can have a double gate structure.
  • the source-drain current when the thin film transistor is on can be increased.
  • the display device of the present invention preferably includes a light emitting element provided on the second insulating film, and the light emitting element is preferably an organic light emitting diode or an inorganic light emitting diode.
  • the present invention includes a step of forming a thin film transistor on a substrate, and the step of forming the thin film transistor includes a step of forming a first insulating film on the substrate, and a step of forming an oxide semiconductor layer on the first insulating film. And a step of locally heating the oxide semiconductor layer by irradiating the oxide semiconductor layer with a laser beam, and the electrical resistivity of a part of the oxide semiconductor layer is increased by heat generated by irradiating the laser beam.
  • a method for manufacturing a display device in which a region having higher electrical resistivity than other regions is formed in the oxide semiconductor layer is also provided.
  • a high resistivity region (seventh region) and a middle resistivity region (fifth and sixth regions) can be formed in a desired region of the oxide semiconductor layer.
  • the current between the source and the drain in the on state can be increased, and the characteristics of the thin film transistor can be improved.
  • the step of forming a thin film transistor preferably includes a step of forming a gate insulating layer on the oxide semiconductor layer, and the step of locally heating the oxide semiconductor layer includes laser light that has passed through the gate insulating layer. A step of irradiating the oxide semiconductor layer is preferable.
  • the step of forming the thin film transistor preferably includes a step of forming a first gate electrode over the gate insulating layer, and the first gate electrode is preferably formed after locally heating the oxide semiconductor layer. Accordingly, the high resistivity region (seventh region) and the middle resistivity region (fifth and sixth regions) can be formed in the oxide semiconductor layer without being affected by the shape of the first gate electrode.
  • the step of locally heating the oxide semiconductor layer is preferably a step of irradiating the oxide semiconductor layer with laser light condensed by a microlens. Thus, a part of the oxide semiconductor layer can be locally irradiated with laser light.
  • the step of locally heating the oxide semiconductor layer is preferably a step of irradiating the oxide semiconductor layer with laser light that has passed through the mask pattern.
  • a part of the oxide semiconductor layer can be locally irradiated with laser light.
  • the manufacturing method of the present invention preferably includes a step of forming a mask pattern on the oxide semiconductor layer.
  • the step of forming the thin film transistor preferably includes the step of forming the second gate electrode on the substrate, and the step of forming the first insulating film is a step of forming the first insulating film on the second gate electrode. It is preferable.
  • FIG. 1 is a schematic sectional view of a display device according to the present embodiment.
  • FIG. 2 is a schematic top view showing the configuration of the thin film transistor included in the display device of this embodiment.
  • FIG. 3 is a schematic cross-sectional view of the thin film transistor taken along one-dot chain line AA in FIG.
  • FIG. 4 is a schematic circuit diagram of the pixel circuit of the display device of this embodiment.
  • the display device 40 includes a substrate 2, a thin film transistor 10 provided on the substrate 2, and a second insulating film 9 provided on the thin film transistor 10, and the thin film transistor 10 is provided with a first insulation provided on the substrate 2.
  • oxide semiconductor layer 4 provided on first insulating film 3, gate insulating layer 5 provided on oxide semiconductor layer 4, and first gate electrode provided on gate insulating layer 5 6, a source electrode 7, and a drain electrode 8.
  • the oxide semiconductor layer 4 includes a first region 14 a that contacts the source electrode 7, a second region 14 b that contacts the drain electrode 8, and a first region 14 a.
  • the first region 14a and the second region 14b are regions having lower electrical resistivity than the third region 13a and the fourth region 13b, and the fifth region 11
  • the 12a and the sixth region 12b are regions having lower electrical resistivity than the seventh region 11 and higher electrical resistivity than the third region 13a and the fourth region 13b when the thin film transistor 10 is in the OFF state.
  • the region 12a, the sixth region 12b, and the seventh region 11 are provided so as to overlap the first gate electrode 6.
  • the display device 40 includes the light emitting layer 21 provided on the second insulating film 9, the sealing layer 24 provided on the light emitting layer 21, the functional layer 26 provided on the sealing layer 24, or the functional layer 26. It can have a cover film 28 provided thereon.
  • the manufacturing method of the display device 40 of the present embodiment includes a step of forming the thin film transistor 10 on the substrate 2, and the step of forming the thin film transistor 10 includes a step of forming the first insulating film 3 on the substrate 2, and a first step. Irradiating the laser beam with a step of forming the oxide semiconductor layer 4 over the insulating film 3 and a step of locally heating the oxide semiconductor layer 4 by irradiating the oxide semiconductor layer 4 with a laser beam.
  • the electrical resistivity of part of the oxide semiconductor layer 4 is increased by the heat generated by the above, and regions 12 a, 12 b, 11 having higher electrical resistivity than other regions are formed in the oxide semiconductor layer 4.
  • the display device 40 is, for example, an organic EL display or an inorganic EL display.
  • the substrate 2 is, for example, a flexible substrate or a glass substrate.
  • the substrate 2 is a polyimide substrate, for example.
  • the display device 40 includes a plurality of display elements 20 provided on the substrate 2.
  • the thin film transistor 10 is included in the pixel circuit 31 of the display element 20. More specifically, the display device 40 includes a plurality of display elements 20 arranged in a matrix.
  • Each display element 20 includes a light emitting layer 21 and a pixel circuit 31.
  • the light emitting layer 21 is provided on the second insulating film 9 and can include a red EL layer, a blue EL layer, and a green EL layer (sub-pixel).
  • the EL layers may be organic EL layers or inorganic EL layers.
  • the organic EL layer is, for example, an organic light emitting diode (OLED).
  • the inorganic EL layer is, for example, a quantum dot light emitting diode (QLED).
  • the pixel circuit 31 is an electric circuit that drives the display element 20, and can include the thin film transistor 10 and capacitors 32a and 32b as shown in FIG.
  • the thin film transistor 10 includes a first insulating film 3 provided on the substrate 2, an oxide semiconductor layer 4 provided on the first insulating film 3, and a gate insulating layer 5 provided on the oxide semiconductor layer 4. , A first gate electrode 6 provided on the gate insulating layer 5, a source electrode 7, and a drain electrode 8.
  • the first insulating film 3 is a base insulating film.
  • the first insulating film 3 can be formed on the substrate 2 by the CVD method.
  • silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ) (x> y), silicon nitride oxide (SiN x O y ) (x> y) Etc. can be used as appropriate.
  • the thickness of the first insulating film 3 is, for example, 375 nm.
  • the oxide semiconductor layer 4 is a layer in which a channel of the thin film transistor 10 is formed, and a current between the source and the drain flows in the oxide semiconductor layer 4. This current is controlled by the first gate electrode 6.
  • the oxide semiconductor layer 4 has an oxygen defect, and this oxygen defect functions as a donor. The plurality of regions of the oxide semiconductor layer 4 will be described later.
  • the thickness of the oxide semiconductor layer 4 is not less than 30 nm and not more than 100 nm, for example.
  • an oxide semiconductor film (thickness: for example, 30 nm to 100 nm) (for example, an In—Ga—Zn—O-based semiconductor film) is formed on the first insulating film 3 by, for example, sputtering.
  • a pattern can be formed on the oxide semiconductor film by a photolithography method, and the pattern of the oxide semiconductor film can be subjected to laser annealing treatment.
  • the laser annealing treatment may be performed before forming the gate insulating layer 5 (or gate insulating film) over the oxide semiconductor film, and the gate insulating layer 5 (or gate insulating film) is formed over the oxide semiconductor film. It may be done later.
  • the oxide semiconductor included in the oxide semiconductor layer 4 may be an amorphous oxide semiconductor or a crystalline oxide semiconductor having a crystalline portion.
  • Examples of the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface.
  • the oxide semiconductor layer 4 may have a stacked structure of two or more layers.
  • the oxide semiconductor layer 4 may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer.
  • a plurality of crystalline oxide semiconductor layers having different crystal structures may be included.
  • a plurality of amorphous oxide semiconductor layers may be included.
  • Patent Document 3 discloses a material, a structure, a film formation method, a structure of an oxide semiconductor layer having a stacked structure, and the like of the amorphous oxide semiconductor and each crystalline oxide semiconductor described above. It is described in. For reference, the entire disclosure of Japanese Patent Application Laid-Open No. 2014-007399 is incorporated herein by reference.
  • the oxide semiconductor layer 4 may include at least one metal element of In, Ga, and Zn, for example.
  • the oxide semiconductor layer 4 includes, for example, an In—Ga—Zn—O-based semiconductor (eg, indium gallium zinc oxide).
  • Such an oxide semiconductor layer 4 can be formed of an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor may be amorphous or crystalline.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • the crystal structure of a crystalline In—Ga—Zn—O-based semiconductor is, for example, the above-described Japanese Patent Application Laid-Open Nos. 2014-007399, 2012-134475 (Patent Document 4), and 2014-209727. It is disclosed in the gazette (patent document 5) etc. For reference, the entire contents disclosed in Japanese Patent Application Laid-Open Nos. 2012-134475 and 2014-209727 are incorporated herein by reference.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT).
  • the TFT is suitably used as a driving TFT (for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels) and a pixel TFT (a TFT provided in the pixel).
  • a driving TFT for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels
  • a pixel TFT a TFT provided in the pixel
  • the oxide semiconductor layer 4 may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
  • an In—Sn—Zn—O-based semiconductor eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO
  • the In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • the oxide semiconductor layer 4 includes an In—Al—Zn—O based semiconductor, an In—Al—Sn—Zn—O based semiconductor, a Zn—O based semiconductor, an In—Zn—O based semiconductor, and a Zn—Ti—O semiconductor.
  • ZnO is amorphous in which one or more impurity elements of Group 1 element, Group 13 element, Group 14 element, Group 15 element or Group 17 element are added.
  • a state, a polycrystalline state, a microcrystalline state in which an amorphous state and a polycrystalline state are mixed, or a state in which no impurity element is added can be used.
  • the oxide semiconductor layer 4 includes a first region 14a (source side contact region), a third region 13a (source side low resistivity region), a fifth region 12a (source side middle resistivity region), and a seventh region 11 (high Resistivity region), sixth region 12b (drain side middle resistivity region), fourth region 13b (drain side low resistivity region), and second region 14b (drain side contact region).
  • the first and second regions 14a and 14b, the third and fourth regions 13a and 13b, the fifth and sixth regions 12a and 12b, and the seventh region 11 have an electrical resistivity of the oxide semiconductor layer 4. It is a different region and mainly has different oxygen defect densities.
  • the sheet resistance of the seventh region 11 is, for example, 10 5 ⁇ / ⁇ or more.
  • the sheet resistance of the fifth and sixth regions 12a and 12b is, for example, 10 3 ⁇ / ⁇ or more and 10 5 ⁇ / ⁇ or less.
  • the sheet resistance of the third and fourth regions 13a and 13b is, for example, 5 ⁇ 10 2 ⁇ / ⁇ or more and less than 10 3 ⁇ / ⁇ .
  • the sheet resistance of the first and second regions 14a, 14b is, for example, less than 5 ⁇ 10 2 ⁇ / ⁇ .
  • the first region 14 a (source side contact region) is a region in contact with the source electrode 7. Further, the first region 14a is a region having an electrical resistivity smaller than that of the third region 13a.
  • the second region 14 b (drain side contact region) is a region in contact with the drain electrode 8. Further, the second region 14b is a region having an electrical resistivity smaller than that of the fourth region 13b.
  • the first region 14a and the second region 14b are regions in which oxygen vacancies increase and electrical resistivity decreases when the source electrode 7 or the drain electrode 8 is formed.
  • the third region 13a (source-side low resistivity region) is a region adjacent to the first region 14a.
  • the fourth region 13b (drain-side low resistivity region) is a region adjacent to the second region 14b.
  • the third region 13a and the fourth region 13b are located between the first region 14a and the second region 14b.
  • the fifth region 12 a (source side middle resistivity region) is a region between the third region 13 a and the seventh region 11.
  • the sixth region 12 b (drain side middle resistivity region) is a region between the fourth region 13 b and the seventh region 11.
  • the source electrode 7 ⁇ the first region 14a ⁇ the third region 13a ⁇ the fifth region 12a ⁇ A current can flow between the source and the drain in the order of the seventh region 11 ⁇ the sixth region 12 b ⁇ the fourth region 13 b ⁇ the second region 14 b ⁇ the drain electrode 8.
  • the fifth region 12a and the sixth region 12b have an electrical resistivity lower than that of the seventh region 11 (high resistivity region) and lower than that of the third region 13a and fourth region 13b when the thin film transistor 10 is in an off state. This is a high rate area. Further, the seventh region 11, the fifth region 12 a, and the sixth region 12 b are provided so as to overlap the first gate electrode 6. Further, a part of the third region 13 a and a part of the fourth region 13 b may be provided immediately below the first gate electrode 6.
  • the seventh region 11 high resistivity region immediately below the first gate electrode 6, it is possible to suppress current from flowing between the source and the drain when the thin film transistor 10 is in the off state.
  • a channel can be formed in a region adjacent to the gate insulating layer 5 in the seventh region 11 by an electric field formed by the charge of the first gate electrode 6, and between the source and drain. Current can flow.
  • the fifth and sixth regions 12a and 12b between the seventh region 11 and the third and fourth regions 13a and 13b, a region having a sharp electrical resistivity change is formed in the oxide semiconductor layer 4. That can be suppressed, and transistor characteristics can be stabilized.
  • the current between the source and the drain can be increased when the thin film transistor 10 is on.
  • the current between the source and the drain can be further increased when the thin film transistor 10 is in the on state.
  • FIG. 5 is an explanatory diagram of the characteristics of the pixel circuit.
  • the V g -I d characteristic of the thin film transistor 10 driving transistor
  • the voltage storage characteristics of the capacitors 32a and 32b connected to the thin film transistor 10 change from, for example, FIG. 5B to FIG. Voltage can be stored. As a result, high speed operation of the display device 40 can be realized.
  • the seventh region 11, the fifth and sixth regions 12a and 12b, and the third and fourth regions 13a and 13b can be formed by subjecting the oxide semiconductor layer 4 to laser annealing treatment.
  • a laser a YAG laser, an excimer laser, a blue semiconductor laser, or the like can be used. Further, laser light can be irradiated so that the region of the oxide semiconductor layer 4 to be annealed is focused using a microlens. Thus, a partial region of the oxide semiconductor layer 4 can be locally annealed.
  • the required region of the oxide semiconductor layer 4 can be increased in resistance.
  • the oxide semiconductor layer 4 can be irradiated with laser light through the gate insulating layer 5 (or the gate insulating film).
  • the seventh region 11, the fifth and sixth regions 12a, 12b are not limited to the shape of the gate insulating layer 5.
  • the third and fourth regions 13a and 13b can be formed.
  • by changing the wavelength and intensity of the laser light it is possible to form regions in which the resistance values are slightly different in the oxide semiconductor layer 4.
  • FIG. 6 is an explanatory diagram of a method for forming a plurality of regions in the oxide semiconductor layer 4 by laser annealing.
  • the oxide semiconductor layer 4 is formed on the first insulating film 3.
  • the oxide semiconductor layer 4 can be formed by a sputtering method, for example.
  • the oxide semiconductor layer 4 immediately after film formation has many oxygen defects, and thus has a relatively low electrical resistivity.
  • a gate insulating layer 5 (or a gate insulating film) is formed over the oxide semiconductor layer 4.
  • the portion of the oxide semiconductor layer 4 where the seventh region 11 is formed is irradiated with laser light through the gate insulating layer 5 (or gate insulating film). Layer 4 is locally heated.
  • the region of the oxide semiconductor layer 4 heated by irradiation with laser light the amount of oxygen defects is reduced, so that the electrical resistivity is increased and the seventh region 11 is formed. Further, in the oxide semiconductor layer 4, in the region adjacent to the region irradiated with the laser light, the temperature rises to some extent due to heat conduction, and thus the fifth region 12 a in which the electrical resistivity slightly increases around the seventh region 11. The sixth region 12b is formed. In addition, in the oxide semiconductor layer 4 in a region away from the region irradiated with the laser light, the electric resistivity is almost the same as that in the film formation, so that the third region 13a and the fourth region 13b are formed. In addition, the region where the fifth region 12a and the sixth region 12b are formed may be irradiated with laser light with the laser output reduced or the wavelength changed.
  • the seventh region 11, the fifth region 12a, and the sixth region 12b can be formed in desired regions.
  • the seventh region 11, the fifth region 12 a, and the sixth region 12 b are formed so that these regions are located immediately below the first gate electrode 6.
  • the seventh region 11, the fifth region 12 a, and the sixth region 12 b may be formed so that all of these regions are located immediately below the first gate electrode 6.
  • the seventh region 11, the fifth region 12 a, and the sixth region 12 b may be formed so that all of these regions are located immediately below the gate insulating layer 5.
  • a part of the third region 13 a and a part of the fourth region 13 b may be formed so as to be located immediately below the first gate electrode 6.
  • the laser annealing treatment is performed before the first gate electrode 6 (or the gate conductive film) is formed on the gate insulating layer 5 (or the gate insulating film).
  • the laser annealing treatment may be performed before the gate insulating layer 5 (or the gate insulating film) is formed over the oxide semiconductor layer 4.
  • the first gate electrode 6 is formed on the gate insulating layer 5 (or gate insulating film) immediately above the seventh region 11 and the fifth and sixth regions 12a and 12b. Form. In this manner, the seventh region 11 and the fifth and sixth regions 12a and 12b can be formed immediately below the first gate electrode 6.
  • the gate insulating layer 5 is an insulating layer for electrically insulating the oxide semiconductor layer 4 and the first gate electrode 6.
  • the gate insulating layer 5 is, for example, a SiO x film.
  • the gate insulating layer 5 may have an island shape. Further, the gate insulating layer 5 can be provided so as to cross the first gate electrode 5.
  • the gate insulating layer 5 may have a stacked structure in which a plurality of insulating films are overlapped.
  • the gate insulating layer 5 can be formed so as to cover the oxide semiconductor layer 5.
  • the gate insulating layer 5 may be formed by forming an insulating film on the oxide semiconductor layer 5 and forming a pattern on the insulating film by a photolithography method.
  • a silicon oxide (SiO 2 ) layer (thickness: 80 nm to 250 nm, for example, 150 nm) can be formed as a gate insulating film by a CVD method.
  • the pattern of the gate insulating layer 5 may be formed using the same resist mask when the pattern of the first gate electrode 6 is formed.
  • the first gate electrode 6 (top gate electrode) is an electrode for forming a source-drain channel (electron high density region) in the oxide semiconductor layer 4. Specifically, by applying a voltage to the first gate electrode 6, an electric field is generated in the oxide semiconductor layer 4 through the gate insulating layer 5, and the electric field between the source and drain is generated in the oxide semiconductor layer 4 by this electric field. A channel through which current flows is formed. For example, when a gate voltage is applied to the first gate electrode 6, a current flows between the source and the drain, and the thin film transistor 10 is turned on. For example, when no gate voltage is applied to the first gate electrode 6, no channel is formed in the oxide semiconductor layer 4, almost no current flows between the source and the drain, and the thin film transistor 10 is turned off.
  • the first gate electrode 5 is, for example, a titanium electrode, an aluminum electrode, a molybdenum electrode, or the like. The material of the first gate electrode 5 can be different from the material of the source electrode 7 and the material of the drain electrode 8.
  • the first gate electrode 6 can be formed by forming a gate conductive film on the gate insulating layer 5 (or gate insulating film) and forming a pattern on the gate conductive film by photolithography.
  • the pattern of the first gate electrode 6 and the pattern of the gate insulating layer 5 may be formed using the same resist mask.
  • a conductive film for a gate a stacked film having an Al film (thickness: 350 nm) as a lower layer and a MoN film (thickness: 50 nm) as an upper layer is formed by a sputtering method.
  • a conductive film for a gate for example, a metal film containing an element selected from aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), and copper (Cu)
  • an alloy film containing these elements as a component can be used.
  • a laminated film including a plurality of films may be used.
  • the gate insulating film By simultaneously etching the gate insulating film and the gate conductive film using the same resist mask, the portion of the gate insulating film not covered with the gate conductive film is removed, and the gate conductive film (first gate) is removed.
  • the patterning shape of the electrode 6) matches the patterning shape of the gate insulating film (gate insulating layer 5). Note that “matching” does not mean exact matching, but also includes a difference of about several ⁇ m such as a difference in etching rate.
  • a gate insulating film is formed using a CVD method and patterned by a photolithography method to form the gate insulating layer 5, and then a gate conductive film is formed on the gate insulating layer 5 by a sputtering method,
  • the first gate electrode 6 may be formed by patterning the gate conductive film by lithography.
  • a second insulating film 9 is formed so as to cover the oxide semiconductor layer 4, the gate insulating layer 5, and the first gate electrode 6.
  • the second insulating film 9 is an insulating layer interposed between the thin film transistor 10 and the light emitting layer 21.
  • the second insulating film 9 includes a silicon oxide film (SiO x ), a silicon nitride film (SiN x ), a silicon oxynitride film (SiO x N y ) (x> y), and a silicon nitride oxide film (SiN x O y ) ( It can be a single layer of x> y) or a laminated film thereof.
  • the thickness of the second insulating film 9 is, for example, not less than 100 nm and not more than 500 nm.
  • the first opening 17 reaching the one end of the oxide semiconductor layer 4 and the second opening 18 reaching the other end of the oxide semiconductor layer 4 are formed in the second insulating film 9 by a known photolithography method
  • a source / drain conductive film is formed on the second insulating film 9 in the first opening 17 and the second opening 18 and patterned by photolithography to obtain the source electrode 7 and the drain electrode 8.
  • the source electrode 7 and the drain electrode 8 are electrodes in contact with the oxide semiconductor layer 4 respectively.
  • the source electrode 7 and the drain electrode 8 are connected to the oxide semiconductor layer 4 between the source electrode 7 and the drain electrode 8.
  • a voltage is applied so that a current flows.
  • Each of the source electrode 7 and the drain electrode 8 is, for example, a titanium electrode, an aluminum electrode, or a copper electrode.
  • the first region 14a (source-side contact region) in which the oxygen defect in the portion in contact with the source electrode 7 of the oxide semiconductor layer 4 increases and the electrical resistivity decreases is formed. It is formed. In addition, oxygen defects in the portion of the oxide semiconductor layer 4 that contacts the drain electrode 8 are increased, and a second region 14b (drain-side contact region) having a reduced electrical resistivity is formed.
  • the source / drain conductive film the conductive film exemplified as the gate electrode conductive film can be used.
  • a laminated film having a Ti film (thickness: 30 nm) as a lower layer, an Al film (thickness: 300 nm) as a main layer, and a Ti film (thickness: 50 nm) as an upper layer is used as a source / drain conductive film. It can.
  • the thin film transistor 10 is manufactured as described above.
  • the functional layer 26 can include a touch panel and a polarizing plate.
  • FIG. 7 is an explanatory diagram of a method for forming a high resistivity region 110, a middle resistivity region 120, and a low resistivity region 130 in an oxide semiconductor layer 400 of a top gate thin film transistor by using plasma ashing. It is. Similar to the above description, as illustrated in FIG. 7A, the oxide semiconductor layer 400 is formed over the first insulating film 300. Since the oxide semiconductor layer 400 immediately after film formation has low electrical conductivity, the oxide semiconductor layer 400 is heated and oxidized to form the high resistivity region 110 as shown in FIG. The resistance of the entire physical semiconductor layer 400 is increased (annealing treatment). In the first embodiment, since the high resistivity region is formed by laser irradiation, such heat treatment is unnecessary.
  • the gate insulating layer 500 and the first gate electrode 600 are formed over the oxide semiconductor layer 400.
  • the oxide semiconductor layer 400 is subjected to plasma treatment.
  • the plasma processing is, for example, Ar plasma processing.
  • Ar plasma processing By this plasma treatment, in the region where the oxide semiconductor layer 400 is exposed, a low resistivity region 130 in which oxygen defects are increased by the invaded plasma and the electrical resistivity is decreased is formed.
  • plasma cannot pass through the first gate electrode 600 and does not enter the oxide semiconductor layer 400, so that the high resistivity region 110 remains. .
  • FIG. 8 is a schematic cross-sectional view of a thin film transistor 10 included in a display device 40 of a second embodiment.
  • the gate insulating layer 5 is formed only on a part of the oxide semiconductor layer 4, but in the second embodiment, the gate insulating layer 5 is formed in a wider range.
  • the contact hole provided with the source electrode 7 and the contact hole provided with the drain electrode 8 are contact holes penetrating the second insulating film 9, but in the second embodiment, the source electrode is provided.
  • the first contact hole 37 provided with 7 and the second contact hole 38 provided with the drain electrode 8 are contact holes penetrating the second insulating film 9 and the gate insulating layer 5.
  • the first contact hole 37 can be provided so that the through hole penetrating the gate insulating layer 5 and the through hole penetrating the second insulating film 9 are aligned.
  • the second contact hole 38 can be provided so that the through hole penetrating the gate insulating layer 5 and the through hole penetrating the second insulating film 9 are aligned.
  • the openings for providing the first and second contact holes 37 and 38 are formed by etching the gate insulating layer 5 and the second insulating film 9 together using a resist mask provided on the second insulating film 9. be able to.
  • Other configurations and processes are the same as those in the first embodiment. Further, the description of the first embodiment is applicable to the second embodiment as long as there is no contradiction.
  • FIG. 9 is a schematic top view showing the configuration of a thin film transistor included in the display device of this embodiment.
  • FIG. 10 is a schematic cross-sectional view of the thin film transistor taken along broken line BB in FIG.
  • FIG. 11 is a schematic enlarged view of the thin film transistor in a range C surrounded by an alternate long and short dash line in FIG.
  • the thin film transistor 10 included in the display device 40 of the present embodiment has a double gate structure.
  • the thin film transistor 10 includes a first gate electrode 6 that is a top gate electrode and a second gate electrode 16 that is a bottom gate electrode.
  • the second gate electrode 16 can be provided between the substrate 2 and the first insulating film 3.
  • the material of the second gate electrode 16 is, for example, W, TaN, Ti, or Cu.
  • the first insulating film 3 functions as a bottom gate insulating film.
  • the first gate electrode 6 (top gate electrode) and the second gate electrode (bottom gate electrode) are electrodes for forming a source-drain channel in the oxide semiconductor layer 4. Specifically, by applying a voltage to the first gate electrode 6, an electric field is generated in the oxide semiconductor layer 4 through the gate insulating layer 5, and a channel (top gate side) is formed by this electric field. A current path 39 a through which a current between the source and the drain flows is formed in the physical semiconductor layer 4. Further, by applying a voltage to the second gate electrode 16, an electric field is generated in the oxide semiconductor layer 4 through the first insulating film 3, and a channel (bottom gate side) is formed by this electric field, whereby the oxide semiconductor A current path 39b through which a current between the source and the drain flows is formed in the layer 4.
  • the thin film transistor 10 when a gate voltage is applied to the first gate electrode 6 and the second gate electrode 16, a current passing through the current paths 39a and 39b flows between the source and the drain, and the thin film transistor 10 is turned on.
  • the thin film transistor 10 when no gate voltage is applied to the first gate electrode 6 and the second gate electrode 16, no channel is formed in the oxide semiconductor layer 4, and almost no current flows between the source and drain, and the thin film transistor 10 Is turned off.
  • the thin film transistor 10 may be turned on by applying a gate voltage so that the potential of the first gate electrode 6 and the potential of the second gate electrode 16 are substantially the same.
  • the thin film transistor 10 may be turned on by applying a gate electrode so that the potential of the first gate electrode 6 and the potential of the second gate electrode 16 are different.
  • the two current paths 39a and 39b are formed in the oxide semiconductor layer 4 when the thin film transistor 10 is in the ON state. For this reason, when the thin film transistor 10 is in the ON state, the current between the source and the drain can be increased, and the display device 40 can be operated at high speed.
  • the distance between the second gate electrode 16 and the source electrode 7 or the drain electrode 8 can be larger than the distance between the first gate electrode 6 and the source electrode 7 or the drain electrode 8. As a result, parasitic capacitance can be reduced, and degradation of characteristics such as a decrease in operating frequency of the thin film transistor 10 can be suppressed.
  • the thickness of the oxide semiconductor layer 4 needs to be thicker than that of the thin film transistor 10 having the top gate structure.
  • the seventh region 11, the fifth region 12 a, and the sixth region 12 b of the oxide semiconductor layer 4 can be provided so as to overlap with the second gate electrode 16. Further, the seventh region 11, the fifth region 12 a, and the sixth region 12 b of the oxide semiconductor layer 4 can be provided so that all of these regions overlap with the second gate electrode 16. Further, a part of the third region 13 a and a part of the fourth region 13 b of the oxide semiconductor layer 4 may be provided immediately above the second gate electrode 16.
  • FIG. 12 is an explanatory diagram of a method of forming a plurality of regions having different electric resistivity by laser annealing treatment in the oxide semiconductor layer 4 of the thin film transistor 10 having a double gate structure.
  • the seventh region 11, the fifth region, and the sixth region are formed in desired regions of the oxide semiconductor layer 4 by laser annealing even when the thickness of the oxide semiconductor layer 4 is increased.
  • 12a, 12b, third and fourth regions 13a, 13b can be formed.
  • the required region of the oxide semiconductor layer 4 can be increased in resistance.
  • Other configurations and processes are the same as those in the first or second embodiment.
  • the description of the first or second embodiment is also applicable to the third embodiment as long as there is no contradiction. Also, the second embodiment and the third embodiment can be combined.
  • FIG. 13 is an explanatory view of a method of the high resistivity region 110, a medium resistivity region 120, forming a low-resistivity region 130 in the oxide semiconductor layer 400 of the thin film transistor of a double gate structure using plasma ashing It is.
  • An oxide semiconductor layer 400 is formed over the first insulating film 300.
  • the oxide semiconductor layer 400 is thicker than the thin film transistor having a top-gate structure. Since the oxide semiconductor layer 400 immediately after film formation has low electrical conductivity, in order to form the high resistivity region 400, the entire oxide semiconductor layer 400 is heated and the entire oxide semiconductor layer 400 is heated to high resistance. (Annealing) After that, the gate insulating layer 500 and the first gate electrode 600 are formed over the oxide semiconductor layer 400.
  • the oxide semiconductor layer 400 is subjected to plasma treatment.
  • the plasma processing is, for example, Ar plasma processing.
  • FIG. 13B by this plasma treatment, in the region where the oxide semiconductor layer 400 is exposed, a low resistivity region 130 in which oxygen defects increase due to the invaded plasma and the electrical resistivity decreases is formed.
  • the oxide semiconductor layer 400 is thick, plasma cannot penetrate to the lower part of the oxide semiconductor layer 400, and the low resistivity region 130 is formed only on the upper part of the oxide semiconductor layer 400.
  • the region of the oxide semiconductor layer 400 below the low resistivity region 130 remains the high resistivity region 110.
  • the middle resistivity region 120 and the low resistivity region 130 are not formed below the thick oxide semiconductor layer 400. For this reason, the electrical resistivity of the current path between the source and drain flowing in the bottom channel increases, and the current between the source and drain decreases when the thin film transistor is in an on state as compared with the third embodiment.
  • the seventh region 11, the fifth and sixth regions 12a and 12b, and the third and fourth regions 13a and 13b are formed in the oxide semiconductor layer 4 by laser irradiation using a mask pattern. It is explanatory drawing of a method.
  • the laser annealing process is performed on the oxide semiconductor layer 4 by laser irradiation using a microlens.
  • the laser annealing process is performed on the oxide semiconductor layer 4 by laser irradiation using a mask pattern. Apply.
  • laser irradiation may be performed by combining a mask pattern and a microlens.
  • the material of the mask 34 may be a material that shields laser light such as metal.
  • a mask 34 having an opening in a portion of the oxide semiconductor layer 4 to be irradiated with laser. are formed on the gate insulating layer 5, the oxide semiconductor layer 4, and the first insulating film 3.
  • laser annealing is performed by irradiating the oxide semiconductor layer 4 with laser light through a mask pattern. Accordingly, the oxide semiconductor layer 4 can be locally heated, and as shown in FIG. 14C, the seventh region 11 can be formed in a portion heated by laser light irradiation.
  • the fifth and sixth regions 12 a and 12 b can be formed immediately below the mask 34 using the thermal conduction of the oxide semiconductor layer 4.
  • the mask 34 may be arranged away from the gate insulating layer 5, the oxide semiconductor layer 4, and the first insulating film 3. In this manner, by irradiating the oxide semiconductor layer 4 with laser light using the mask pattern, a desired region of the oxide semiconductor layer 4 can be locally laser-annealed.
  • the seventh region 11, the fifth and sixth regions 12a and 12b, and the third and fourth regions 13a and 13b can be formed in this region.
  • Other configurations and processes are the same as those in the first, second, or third embodiment.
  • the description about 1st, 2nd or 3rd embodiment is applicable also about 4th Embodiment, as long as there is no contradiction.
  • Second insulating film 10 Thin film transistors 11, 110: seventh region (high resistivity region) 12a: fifth region (source side middle resistivity region) 12b, 120b: sixth region (drain side middle resistivity region) 13a: third region (source side) Low resistivity region) 13b, 130b: Fourth region (drain side low resistivity region) 14a: First region (source side contact region) 14b: Second region (drain side contact region) 16, 160: Second gate electrode 17: 1st opening 18: 2nd opening 20: Display element 21: Light emitting layer 22: Bank 4: Sealing layer 26: Functional layer 28: Cover film 31: Pixel circuit 32a, 32b: Capacitor 34: Mask 35: Source line 36: Gate line 37: First contact hole 38: Second contact hole 39a, 39b: Current Pass 40: Display device

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

本発明の表示装置は、基板と、基板上に設けられた薄膜トランジスタとを備える。薄膜トランジスタは、基板上に設けられた第1絶縁膜と、第1絶縁膜上に設けられた酸化物半導体層と、酸化物半導体層上に設けられたゲート絶縁層と、ゲート絶縁層上に設けられた第1ゲート電極と、ソース電極と、ドレイン電極とを備える。酸化物半導体層は、ソース電極に接触する第1領域と、ドレイン電極に接触する第2領域と、第1領域と第2領域との間に配置された第3及び第4領域と、第3領域と第4領域との間に配置された第5及び第6領域と、第5領域と第6領域との間に配置された第7領域とを有する。第5及び第6領域は、前記薄膜トランジスタがオフ状態のとき、第7領域よりも電気抵抗率が低く、第3領域及び第4領域よりも電気抵抗率が高い領域である。第5、第6及び第7領域は、第1ゲート電極と重なるように設けられる。

Description

表示装置及び表示装置の製造方法
 本発明は、表示装置及び表示装置の製造方法に関する。
 有機ELディスプレイ、無機ELディスプレイなどの表示装置は、薄膜トランジスタを含む画素回路を備える。薄膜トランジスタのソース-ドレイン間の電流が流れる領域には、アモルファスシリコン層、低温ポリシリコン層、又は酸化物半導体層が用いられる。また、薄膜トランジスタの構造として、トップゲート構造、ボトムゲート構造、ダブルゲート構造が知られている。酸化物半導体層を用いる薄膜トランジスタは通常ボトムゲート構造を有する。
 薄膜トランジスタのチャネルが形成される酸化物半導体層は、通常スパッタ法により成膜される。成膜直後の酸化物半導体層は、多くの酸素欠損を有し、低い電気抵抗率を有する(酸化物半導体では酸素欠損はドナーとして作用する)。しかし、酸化物半導体層の電気抵抗率が低いと、薄膜トランジスタがオフ状態のときソース-ドレイン間に大きな電流が流れる。このため、酸化物半導体層の全体を熱処理することにより、酸素欠損の量を低下させ酸化物半導体層を高抵抗化する。しかし、酸化物半導体層の全体を高抵抗化すると、薄膜トランジスタがオン状態のときソース-ドレイン間に流れる電流が小さくなるという問題がある。また、酸化物半導体層は、アニール処理により結晶性の変化、酸素欠損の修復などの効果により電気抵抗率が上昇することが知られている。
 ボトムゲート構造の薄膜トランジスタの酸化物半導体層の一部にプラズマ処理を施すことにより、酸化物半導体層の一部に酸素欠損の密度を増加させた低抵抗率領域を形成することが知られている(例えば、特許文献1、2参照)。この低抵抗率領域を形成することにより、薄膜トランジスタがオン状態のときソース-ドレイン間に流れる電流を大きくすることができ、薄膜トランジスタの特性を安定化することができる。
WO2012/020525A1 特開2008-040343号公報 特開2014-007399号公報 特開2012-134475号公報 特開2014-209727号公報
 ボトムゲート構造の薄膜トランジスタはソース電極とボトムゲート電極との間に寄生容量が発生し、動作周波数の低下などを引き起こすという問題がある。また、酸化物半導体層を用いるトップゲート構造又はダブルゲート構造の薄膜トランジスタは、有機ELディスプレイなどの高周波駆動を特徴とする次世代のディスプレイの実現において有望なデバイスである。この薄膜トランジスタの特性を安定させるためには、酸化物半導体層中に低・中・高抵抗率領域をそれぞれ形成する必要がある。しかし、プラズマ処理により低抵抗率領域を形成する従来の方法ではトップゲート直下の酸化物半導体層の領域に中抵抗率領域や低抵抗率領域を形成することは困難である。
 本発明は、このような事情に鑑みてなされたものであり、安定した特性を有する薄膜トランジスタを備えた表示装置を提供する。
 本発明は、基板と、前記基板上に設けられた薄膜トランジスタと、前記薄膜トランジスタ上に設けられた第2絶縁膜とを備え、前記薄膜トランジスタは、前記基板上に設けられた第1絶縁膜と、第1絶縁膜上に設けられた酸化物半導体層と、前記酸化物半導体層上に設けられたゲート絶縁層と、前記ゲート絶縁層上に設けられた第1ゲート電極と、ソース電極と、ドレイン電極とを備え、前記酸化物半導体層は、前記ソース電極に接触する第1領域と、前記ドレイン電極に接触する第2領域と、第1領域と第2領域との間に配置された第3及び第4領域と、第3領域と第4領域との間に配置された第5及び第6領域と、第5領域と第6領域との間に配置された第7領域とを有し、第1及び第2領域は、第3及び第4領域よりも電気抵抗率が低い領域であり、
第5及び第6領域は、前記薄膜トランジスタがオフ状態のとき、第7領域よりも電気抵抗率が低く、第3領域及び第4領域よりも電気抵抗率が高い領域であり、第5、第6及び第7領域は、第1ゲート電極と重なるように設けられたことを特徴とする表示装置を提供する。
 本発明の表示装置の薄膜トランジスタに含まれる酸化物半導体層は、第3及び第4領域よりも電気抵抗率の高い第5及び第6領域と、第5及び第6領域よりも電気抵抗率の高い第7領域とを有し、第5、第6及び第7領域は、第1ゲート電極と重なるように設けられるため、薄膜トランジスタがオン状態のときソース-ドレイン間に流れる電流を大きくすることができ、薄膜トランジスタの特性を安定化することができる。このことにより、表示装置の高速動作化を実現することができる。
本発明の一実施形態の表示装置の概略断面図である。 本発明の一実施形態の表示装置に含まれる薄膜トランジスタの構成を示す概略上面図である。 図2の一点鎖線A-Aにおける薄膜トランジスタの概略断面図である。 本発明の一実施形態の表示装置の画素回路の概略回路図である。 本発明の一実施形態の表示装置の画素回路の特性の説明図である。 酸化物半導体層にレーザ光を照射することにより高抵抗率領域、中抵抗率領域及び低抵抗率領域を形成する方法の説明図である。 アニール処理及びプラズマアッシングを用いて酸化物半導体層に高抵抗率領域、中抵抗率領域及び低抵抗率領域を形成する方法の説明図である。 本発明の一実施形態の表示装置に含まれる薄膜トランジスタの概略断面図である。 本発明の一実施形態の表示装置に含まれる薄膜トランジスタの構成を示す概略上面図である。 図9の破線B-Bにおける薄膜トランジスタの概略断面図である。 図10の一点鎖線で囲んだ範囲Cにおける薄膜トランジスタの概略拡大図である。 酸化物半導体層にレーザ光を照射することにより高抵抗率領域、中抵抗率領域及び低抵抗率領域を形成する方法の説明図である。 アニール処理及びプラズマアッシングを用いて酸化物半導体層に高抵抗率領域、中抵抗率領域及び低抵抗率領域を形成する方法の説明図である。 マスクパターンを通過させたレーザ光を酸化物半導体層に照射することにより高抵抗率領域、中抵抗率領域及び低抵抗率領域を形成する方法の説明図である。
 本発明の表示装置は、基板と、前記基板上に設けられた薄膜トランジスタと、前記薄膜トランジスタ上に設けられた第2絶縁膜とを備え、前記薄膜トランジスタは、前記基板上に設けられた第1絶縁膜と、第1絶縁膜上に設けられた酸化物半導体層と、前記酸化物半導体層上に設けられたゲート絶縁層と、前記ゲート絶縁層上に設けられた第1ゲート電極と、ソース電極と、ドレイン電極とを備え、前記酸化物半導体層は、前記ソース電極に接触する第1領域と、前記ドレイン電極に接触する第2領域と、第1領域と第2領域との間に配置された第3及び第4領域と、第3領域と第4領域との間に配置された第5及び第6領域と、第5領域と第6領域との間に配置された第7領域とを有し、第1及び第2領域は、第3及び第4領域よりも電気抵抗率が低い領域であり、第5及び第6領域は、前記薄膜トランジスタがオフ状態のとき、第7領域よりも電気抵抗率が低く、第3領域及び第4領域よりも電気抵抗率が高い領域であり、第5、第6及び第7領域は、第1ゲート電極と重なるように設けられたことを特徴とする。
 本発明の表示装置は、表示素子を備えた表示パネルであれば、特に限定されるものではない。上記表示素子は、電流によって輝度や透過率が制御される表示素子と、電圧によって輝度や透過率が制御される表示素子とがある。電流制御の表示素子としては、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機EL(Electro Luminescence:エレクトロルミネッセンス)ディスプレイ、又は無機発光ダイオードを備えた無機ELディスプレイ等のELディスプレイQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えたQLEDディスプレイ等がある。また、電圧制御の表示素子としては、液晶表示素子等がある。
 本発明の表示装置に含まれる酸化物半導体層の第5、第6及び第7領域は、それらのすべての領域が第1ゲート電極と重なるように設けられたことが好ましい。このことにより、薄膜トランジスタがオン状態のときソース-ドレイン間に流れる電流を大きくすることができる。
 第3及び第4領域は、第3領域の一部及び第4領域の一部が第1ゲート電極と重なるように設けられたことが好ましい。このことにより、薄膜トランジスタがオン状態のときソース-ドレイン間に流れる電流を大きくすることができる。
 ゲート絶縁層は、島状であり、かつ、第1ゲート電極を横切るように設けられることが好ましく、第5、第6及び第7領域は、すべての領域がゲート絶縁層と重なるように設けられたことが好ましい。このことにより、薄膜トランジスタがオン状態のときソース-ドレイン間に流れる電流を大きくすることができる。
 ソース電極は、ゲート絶縁層及び第2絶縁膜を貫通する第1コンタクトホールに設けられることが好ましく、ドレイン電極は、前記ゲート絶縁層及び第2絶縁膜を貫通する第2コンタクトホールに設けられることが好ましい。また、第1コンタクトホールは、前記ゲート絶縁層を貫通する貫通孔と、第2絶縁膜を貫通する貫通孔とが整合するように設けられることが好ましく、第2コンタクトホールは、前記ゲート絶縁層を貫通する貫通孔と、第2絶縁膜を貫通する貫通孔とが整合するように設けられることが好ましい。
 薄膜トランジスタは、基板と第1絶縁膜との間に設けられた第2ゲート電極を備えることが好ましく、第5、第6及び第7領域は、すべての領域が第2ゲート電極と重なるように設けられたことが好ましい。このことにより、薄膜トランジスタをダブルゲート構造とすることができる。また、薄膜トランジスタがオン状態のときのソース-ドレイン電流を大きくすることができる。
 本発明の表示装置は、第2絶縁膜上に設けられた発光素子を備えることが好ましく、発光素子は、有機発光ダイオード又は無機発光ダイオードであることが好ましい。
 本発明は、基板上に薄膜トランジスタを形成する工程を備え、薄膜トランジスタを形成する工程は、基板上に第1絶縁膜を形成する工程と、第1絶縁膜上に酸化物半導体層を形成する工程と、レーザ光を酸化物半導体層に照射し酸化物半導体層を局所的に加熱する工程とを備え、レーザ光を照射することにより生じた熱により酸化物半導体層の一部の電気抵抗率が上昇し、酸化物半導体層に電気抵抗率が他の領域よりも高い領域が形成される表示装置の製造方法も提供する。
 本発明の製造方法によれば、酸化物半導体層の所望の領域に高抵抗率領域(第7領域)及び中抵抗率領域(第5及び第6領域)を形成することができるため、薄膜トランジスタがオン状態のときのソース-ドレイン間の電流を増加させることができ、薄膜トランジスタの特性を向上させることができる。
 薄膜トランジスタを形成する工程は、前記酸化物半導体層上にゲート絶縁層を形成する工程を備えることが好ましく、酸化物半導体層を局所的に加熱する工程は、ゲート絶縁層を通過させたレーザ光を酸化物半導体層に照射する工程であることが好ましい。
 薄膜トランジスタを形成する工程は、ゲート絶縁層上に第1ゲート電極を形成する工程を備えることが好ましく、第1ゲート電極は、酸化物半導体層を局所的に加熱した後に形成されることが好ましい。このことにより、第1ゲート電極の形状に影響されず酸化物半導体層に高抵抗率領域(第7領域)および中抵抗率領域(第5及び第6領域)を形成することができる。
 酸化物半導体層を局所的に加熱する工程は、マイクロレンズにより集光したレーザ光を酸化物半導体層に照射する工程であることが好ましい。このことにより酸化物半導体層の一部に局所的にレーザ光を照射することができる。
 酸化物半導体層を局所的に加熱する工程は、マスクパターンを通過したレーザ光を酸化物半導体層に照射する工程であることが好ましい。このことにより酸化物半導体層の一部に局所的にレーザ光を照射することができる。
 本発明の製造方法は、マスクパターンを酸化物半導体層上に形成する工程を含むことが好ましい。
 薄膜トランジスタを形成する工程は、基板上に第2ゲート電極を形成する工程を備えることが好ましく、第1絶縁膜を形成する工程は、第2ゲート電極上に第1絶縁膜を形成する工程であることが好ましい。
 以下、複数の実施形態を参照して本発明をより詳細に説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。
第1実施形態
 図1は、本実施形態の表示装置の概略断面図である。図2は、本実施形態の表示装置に含まれる薄膜トランジスタの構成を示す概略上面図である。図3は、図2の一点鎖線A-Aにおける薄膜トランジスタの概略断面図である。図4は、本実施形態の表示装置の画素回路の概略回路図である。
 表示装置40は、基板2と、基板2上に設けられた薄膜トランジスタ10と、薄膜トランジスタ10上に設けられた第2絶縁膜9とを備え、薄膜トランジスタ10は、基板2上に設けられた第1絶縁膜3と、第1絶縁膜3上に設けられた酸化物半導体層4と、酸化物半導体層4上に設けられたゲート絶縁層5と、ゲート絶縁層5上に設けられた第1ゲート電極6と、ソース電極7と、ドレイン電極8とを備え、酸化物半導体層4は、ソース電極7に接触する第1領域14aと、ドレイン電極8に接触する第2領域14bと、第1領域14aと第2領域14bとの間に配置された第3領域13a及び第4領域13bと、第3領域13aと第4領域13bとの間に配置された第5領域12a及び第6領域12bと、第5領域12aと第6領域12bとの間に配置された第7領域11とを有し、第1領域14a及び第2領域14bは、第3領域13a及び第4領域13bよりも電気抵抗率が低い領域であり、第5領域12a及び第6領域12bは、薄膜トランジスタ10がオフ状態のとき、第7領域11よりも電気抵抗率が低く、第3領域13a及び第4領域13bよりも電気抵抗率が高い領域であり、第5領域12a、第6領域12b及び第7領域11は、第1ゲート電極6と重なるように設けられたことを特徴とする。
 また、表示装置40は、第2絶縁膜9上に設けられた発光層21、発光層21上に設けられた封止層24、封止層24上に設けられた機能層26又は機能層26上に設けられたカバーフィルム28を有することができる。
 本実施形態の表示装置40の製造方法は、基板2上に薄膜トランジスタ10を形成する工程を備え、薄膜トランジスタ10を形成する工程は、基板2上に第1絶縁膜3を形成する工程と、第1絶縁膜3上に酸化物半導体層4を形成する工程と、レーザ光を酸化物半導体層4に照射し酸化物半導体層4を局所的に加熱する工程とを備え、前記レーザ光を照射することにより生じた熱により酸化物半導体層4の一部の電気抵抗率が上昇し、酸化物半導体層4に電気抵抗率が他の領域よりも高い領域12a、12b、11が形成される。
 表示装置40は、例えば、有機ELディスプレイ、無機ELディスプレイなどである。
 基板2は、例えば、フレキシブル基板、ガラス基板などである。また、基板2は、例えばポリイミド基板である。
 表示装置40は、基板2上に設けられた複数の表示素子20を備える。薄膜トランジスタ10は、表示素子20の画素回路31に含まれる。より具体的には、表示装置40は、マトリックス状に配列された複数の表示素子20を有する。各表示素子20は、発光層21と画素回路31とを有する。発光層21は、第2絶縁膜9上に設けられ、かつ、赤色用EL層、青色用EL層、緑色用EL層(サブ画素)を有することができる。これらのEL層は、有機EL層であってもよく、無機EL層であってもよい。有機EL層は、例えば、有機発光ダイオード(OLED)である。無機EL層は、例えば、量子ドット発光ダイオード(QLED)である。
 画素回路31は、表示素子20を駆動する電気回路であり、図4に示すように、薄膜トランジスタ10及びコンデンサ32a、32bを有することができる。
 薄膜トランジスタ10は、基板2上に設けられた第1絶縁膜3と、第1絶縁膜3上に設けられた酸化物半導体層4と、酸化物半導体層4上に設けられたゲート絶縁層5と、ゲート絶縁層5上に設けられた第1ゲート電極6と、ソース電極7と、ドレイン電極8とを備える。
 第1絶縁膜3は、下地絶縁膜である。CVD法により基板2上に第1絶縁膜3を成膜することができる。第1絶縁膜3として、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(SiOxy)(x>y)、窒化酸化珪素(SiNxy)(x>y)等を適宜用いることができる。第1絶縁膜3の厚さは、例えば、375nmである。
 酸化物半導体層4は、薄膜トランジスタ10のチャネルが形成される層であり、ソース-ドレイン間の電流が酸化物半導体層4に流れる。この電流は第1ゲート電極6により制御される。酸化物半導体層4は酸素欠陥を有し、この酸素欠陥がドナーとして機能する。酸化物半導体層4の複数の領域については後述する。酸化物半導体層4の厚さは、例えば、30nm以上100nm以下である。
 酸化物半導体層4は、第1絶縁膜3上に例えばスパッタリング法で酸化物半導体膜(厚さ:例えば30nm以上100nm以下)(例えばIn-Ga-Zn-O系半導体膜)を成膜し、酸化物半導体膜にフォトリソグラフィ法によってパターンを形成し、酸化物半導体膜のパターンにレーザアニール処理を施すことにより形成することができる。レーザアニール処理は、酸化物半導体膜上にゲート絶縁層5(又はゲート絶縁膜)を形成する前に行ってもよく、酸化物半導体膜上にゲート絶縁層5(又はゲート絶縁膜)を形成した後に行ってもよい。
 酸化物半導体層4に含まれる酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。
 酸化物半導体層4は、2層以上の積層構造を有していてもよい。酸化物半導体層4が積層構造を有する場合には、酸化物半導体層4は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。あるいは、結晶構造の異なる複数の結晶質酸化物半導体層を含んでいてもよい。また、複数の非晶質酸化物半導体層を含んでいてもよい。
 非晶質酸化物半導体および上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体層の構成などは、例えば特開2014-007399号公報(特許文献3)に記載されている。参考のために、特開2014-007399号公報の開示内容の全てを本明細書に援用する。
 酸化物半導体層4は、例えば、In、GaおよびZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、酸化物半導体層4は、例えば、In-Ga-Zn-O系の半導体(例えば酸化インジウムガリウム亜鉛)を含む。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような酸化物半導体層4は、In-Ga-Zn-O系の半導体を含む酸化物半導体膜から形成され得る。
 In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。
 なお、結晶質In-Ga-Zn-O系の半導体の結晶構造は、例えば、上述した特開2014-007399号公報、特開2012-134475号公報(特許文献4)、特開2014-209727号公報(特許文献5)などに開示されている。参考のために、特開2012-134475号公報および特開2014-209727号公報の開示内容の全てを本明細書に援用する。In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、駆動TFT(例えば、複数の画素を含む表示領域の周辺に、表示領域と同じ基板上に設けられる駆動回路に含まれるTFT)および画素TFT(画素に設けられるTFT)として好適に用いられる。
 酸化物半導体層4は、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばIn-Sn-Zn-O系半導体(例えばIn23-SnO2-ZnO;InSnZnO)を含んでもよい。In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)およびZn(亜鉛)の三元系酸化物である。あるいは、酸化物半導体層4は、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体、Al-Ga-Zn-O系半導体、Ga-Zn-O系半導体、In-Ga-Zn-Sn-O系半導体、InGaO3(ZnO)5、酸化マグネシウム亜鉛(MgxZn1-xO)、酸化カドミウム亜鉛(CdxZn1-xO)などを含んでいてもよい。Zn-O系半導体としては、1族元素、13族元素、14族元素、15族元素または17族元素等のうち一種、または複数種の不純物元素が添加されたZnOの非晶質(アモルファス)状態、多結晶状態または非晶質状態と多結晶状態が混在する微結晶状態のもの、または何も不純物元素が添加されていないものを用いることができる。
 酸化物半導体層4は、第1領域14a(ソース側コンタクト領域)、第3領域13a(ソース側低抵抗率領域)、第5領域12a(ソース側中抵抗率領域)、第7領域11(高抵抗率領域)、第6領域12b(ドレイン側中抵抗率領域)、第4領域13b(ドレイン側低抵抗率領域)及び第2領域14b(ドレイン側コンタクト領域)を有する。第1及び第2領域14a、14bと、第3及び第4領域13a、13bと、第5及び第6領域12a、12bと、第7領域11は、酸化物半導体層4のうち電気抵抗率が異なる領域であり、主に酸素欠陥密度が異なる。
 第7領域11のシート抵抗は、例えば、105Ω/□以上である。第5及び第6領域12a、12bのシート抵抗は、例えば103Ω/□以上105Ω/□以下である。第3及び第4領域13a、13bのシート抵抗は、例えば5×102Ω/□以上103Ω/□未満である。また、第1及び第2領域14a、14bのシート抵抗は、例えば、5×102Ω/□未満である。
 第1領域14a(ソース側コンタクト領域)は、ソース電極7と接触する領域である。また、第1領域14aは、第3領域13aよりも電気抵抗率が小さい領域である。また、第2領域14b(ドレイン側コンタクト領域)は、ドレイン電極8と接触する領域である。また、第2領域14bは、第4領域13bよりも電気抵抗率が小さい領域である。
 第1領域14a、第2領域14bは、ソース電極7又はドレイン電極8を形成する際に酸素欠損が増加し電気抵抗率が低下した領域である。
 第3領域13a(ソース側低抵抗率領域)は、第1領域14aに隣接する領域である。第4領域13b(ドレイン側低抵抗率領域)は、第2領域14bに隣接する領域である。第3領域13a及び第4領域13bは、第1領域14aと第2領域14bとの間に位置する。第5領域12a(ソース側中抵抗率領域)は、第3領域13aと第7領域11との間の領域である。第6領域12b(ドレイン側中抵抗率領域)は、第4領域13bと第7領域11との間の領域である。このように酸化物半導体層4に電気抵抗率の異なる複数の領域を形成することにより、薄膜トランジスタ10がオン状態のとき、ソース電極7→第1領域14a→第3領域13a→第5領域12a→第7領域11→第6領域12b→第4領域13b→第2領域14b→ドレイン電極8の順又は逆の順でソース-ドレイン間に電流を流すことができる。
 第5領域12a及び第6領域12bは、薄膜トランジスタ10がオフ状態のとき、第7領域11(高抵抗率領域)よりも電気抵抗率が低く、第3領域13a及び第4領域13bよりも電気抵抗率が高い領域である。また、第7領域11、第5領域12a及び第6領域12bは、第1ゲート電極6と重なるように設けられる。また、第3領域13aの一部及び第4領域13bの一部が第1ゲート電極6の直下に設けられてもよい。
 第7領域11(高抵抗率領域)を第1ゲート電極6の直下に設けることにより、薄膜トランジスタ10がオフ状態のとき、ソース-ドレイン間に電流が流れることを抑制することができる。また、薄膜トランジスタ10がオン状態のとき、第1ゲート電極6の電荷により形成される電界により第7領域11のゲート絶縁層5に隣接した領域にチャネルを形成することができ、ソース-ドレイン間に電流を流すことができる。
 第7領域11と第3及び第4領域13a、13bとの間に第5及び第6領域12a、12bを設けることにより、酸化物半導体層4に急峻な電気抵抗率の変化のある領域が形成されることを抑制することができ、トランジスタ特性を安定化することができる。また、第5及び第6領域12a、12bを第1ゲート電極6の直下に設けることにより、薄膜トランジスタ10がオン状態のとき、ソース-ドレイン間の電流を増加させることができる。
 第3及び第4領域13a、13bの一部を第1ゲート電極6の直下に設けることにより、薄膜トランジスタ10がオン状態のとき、ソース-ドレイン間の電流をさらに増加させることができる。
 図5は画素回路の特性の説明図である。薄膜トランジスタ10がオン状態のときのソース-ドレイン間の電流を増加させると、薄膜トランジスタ10(駆動トランジスタ)のVg-Id特性は、図5(a)のように変化する。また、図4に示した画素回路31において薄膜トランジスタ10に接続するコンデンサ32a、32bの電圧蓄積特性は、例えば、図5(b)から図5(c)へと変化し、コンデンサ32a、32bに素早く電圧を蓄積することができる。この結果、表示装置40の高速動作化を実現することができる。
 第7領域11、第5及び第6領域12a、12b並びに第3及び第4領域13a、13bは、酸化物半導体層4にレーザアニール処理を施すことにより形成することができる。レーザには、YAGレーザ、エキシマレーザ、青色半導体レーザなどを用いることができる。また、マイクロレンズを用いて酸化物半導体層4のアニール処理する領域にレーザ光の焦点が合うようにレーザ光を照射することができる。このことにより、酸化物半導体層4の一部の領域を局所的にアニール処理することができる。また、レーザ照射時の焦点位置を制御することで酸化物半導体層4の必要な領域を隈なく高抵抗化することが可能である。
 また、ゲート絶縁層5(又はゲート絶縁膜)を介して酸化物半導体層4にレーザ光を照射することができる。ゲート絶縁層5(又はゲート絶縁膜)に影響を与えない波長のレーザ光を用いることにより、ゲート絶縁層5の形状に制限されることなく第7領域11、第5及び第6領域12a、12b並びに第3及び第4領域13a、13bを形成することができる。また、レーザ光の波長や強度を変更することにより、酸化物半導体層4に抵抗値が少しずつ異なる領域を形成することも可能である。
 図6は、レーザアニール処理により酸化物半導体層4に複数の領域を形成する方法の説明図である。まず、図6(a)に示したように、第1絶縁膜3上に酸化物半導体層4を成膜する。酸化物半導体層4は、例えば、スパッタリング法により成膜することができる。成膜直後の酸化物半導体層4は、多くの酸素欠陥を有するため、比較的低い電気抵抗率を有する。
 次に酸化物半導体層4上にゲート絶縁層5(又はゲート絶縁膜)を成膜する。その後、図6(b)に示したように、酸化物半導体層4の第7領域11を形成する部分にゲート絶縁層5(又はゲート絶縁膜)を介してレーザ光を照射し、酸化物半導体層4を局所的に加熱する。レーザ光を照射することにより加熱された酸化物半導体層4の領域では、酸素欠陥の量が減少するため、電気抵抗率が上昇し、第7領域11が形成される。また、酸化物半導体層4のうち、レーザ光を照射した領域に隣接した領域では、熱伝導により温度がある程度上昇するため、第7領域11の周りに電気抵抗率が少し上昇した第5領域12a、第6領域12bが形成される。また、酸化物半導体層4のうちレーザ光を照射した領域から離れた領域では、電気抵抗率は成膜時とほとんど変わらないため、第3領域13a、第4領域13bが形成される。
 また、第5領域12a、第6領域12bを形成する領域に、レーザの出力を低下させて又は波長を変えてレーザ光を照射してもよい。
 このようにレーザアニール処理を用いることにより、所望の領域に第7領域11、第5領域12a及び第6領域12bを形成することができる。
 第7領域11、第5領域12a及び第6領域12bは、これらの領域が第1ゲート電極6の直下に位置するように形成される。また、第7領域11、第5領域12a及び第6領域12bは、これらのすべての領域が第1ゲート電極6の直下に位置するように形成されてもよい。また、第7領域11、第5領域12a及び第6領域12bは、これらのすべての領域がゲート絶縁層5の直下に位置するように形成されてもよい。さらに、第3領域13aの一部及び第4領域13bの一部が第1ゲート電極6の直下に位置するように形成されてもよい。
 レーザアニール処理は、ゲート絶縁層5(又はゲート絶縁膜)上に第1ゲート電極6(又はゲート用導電膜)を形成する前に行われる。また、レーザアニール処理は、酸化物半導体層4上にゲート絶縁層5(又はゲート絶縁膜)を形成する前に行ってもよい。
 レーザアニール処理の後、例えば、図6(c)のように第7領域11及び第5及び第6領域12a、12bの直上でゲート絶縁層5(又はゲート絶縁膜)上に第1ゲート電極6を形成する。このようにして、第1ゲート電極6の直下に第7領域11及び第5及び第6領域12a、12bを形成することができる。
 ゲート絶縁層5は、酸化物半導体層4と第1ゲート電極6とを電気的に絶縁するための絶縁層である。ゲート絶縁層5は、例えば、SiOx膜である。ゲート絶縁層5は、島状であってもよい。また、ゲート絶縁層5は、第1ゲート電極5を横切るように設けることができる。ゲート絶縁層5は、複数の絶縁膜が重なった積層構造を有してもよい。
 ゲート絶縁層5は、酸化物半導体層5を覆うように成膜することができる。また、ゲート絶縁層5は、酸化物半導体層5上に絶縁膜を形成し、この絶縁膜にフォトリソグラフィ法によりパターンを形成することにより形成されてもよい。例えば、ゲート絶縁膜として、CVD法を用いて、酸化シリコン(SiO2)層(厚さ:80nm以上250nm以下、例えば150nm)を成膜することができる。ゲート絶縁層5のパターンは、第1ゲート電極6のパターンを形成する際に同じレジストマスクを用いて形成してもよい。
 第1ゲート電極6(トップゲート電極)は、酸化物半導体層4にソース-ドレイン間のチャネル(電子高密度領域)を形成するための電極である。具体的には、第1ゲート電極6に電圧を印加することにより、ゲート絶縁層5を介して酸化物半導体層4に電界が発生し、この電界により酸化物半導体層4にソース-ドレイン間の電流が流れるチャネルが形成される。例えば、第1ゲート電極6にゲート電圧を印加すると、ソース-ドレイン間に電流が流れ薄膜トランジスタ10がオンとなる。また、例えば、第1ゲート電極6にゲート電圧を印加していない場合、酸化物半導体層4にチャネルが形成されず、ソース-ドレイン間にほとんど電流は流れず、薄膜トランジスタ10はオフとなる。
 第1ゲート電極5は、例えば、チタン電極、アルミニウム電極、モリブデン電極などである。第1ゲート電極5の材料は、ソース電極7の材料及びドレイン電極8の材料と異なる材料とすることができる。
 第1ゲート電極6は、ゲート絶縁層5(又はゲート絶縁膜)上にゲート用導電膜を形成し、フォトリソグラフィ法によりゲート導電膜にパターンを形成することにより形成することができる。第1ゲート電極6のパターンとゲート絶縁層5のパターンは、同じレジストマスクを用いて形成されてもよい。
 例えば、ゲート用導電膜として、Al膜(厚さ:350nm)を下層、MoN膜(厚さ:50nm)を上層とする積層膜をスパッタリング法で成膜する。ゲート用導電膜として、例えばアルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)から選ばれた元素を含む金属膜、またはこれらの元素を成分とする合金膜などを用いることができる。これらのうち複数の膜を含む積層膜を用いてもよい。その後、ゲート用導電膜上にレジストマスクを形成し、レジストマスクを用いて、ゲート用導電膜およびゲート絶縁膜のエッチング(ここではドライエッチング)を同時に行い、パターンを有する第1ゲート電極6及びパターンを有するゲート絶縁層5を形成する。同じレジストマスクを用いてゲート絶縁膜とゲート用導電膜とを同時にエッチングを行うことで、ゲート絶縁膜のうちゲート用導電膜で覆われていない部分は除去され、ゲート用導電膜(第1ゲート電極6)のパターニング形状とゲート絶縁膜(ゲート絶縁層5)のパターニング形状とが整合する。なお、整合するとは、厳密に一致することを意味せず、エッチングレートの違いなどの数μm程度の違いも含まれる。
 また、CVD法を用いてゲート絶縁膜を成膜し、フォトリソグラフィ法でパターニングしてゲート絶縁層5を形成した後、ゲート絶縁層5上にゲート用導電膜をスパッタ法で成膜し、フォトリソグラフィ法でゲート用導電膜をパターニングして第1ゲート電極6を形成してもよい。
 次に、酸化物半導体層4、ゲート絶縁層5および第1ゲート電極6を覆うように、第2絶縁膜9を形成する。第2絶縁膜9は、薄膜トランジスタ10と発光層21との間に介在させる絶縁層である。第2絶縁膜9は、酸化珪素膜(SiOx)、窒化珪素膜(SiNx)、酸化窒化珪素膜(SiOxy)(x>y)、窒化酸化珪素膜(SiNxy)(x>y)の単層またはこれらの積層膜とすることができる。第2絶縁膜9の厚さは、例えば、100nm以上500nm以下である。例えば、第2絶縁膜9として、SiNx(厚さ:100nm)およびSiO2膜(厚さ:300nm)をCVD法で連続して成膜する。
 その後、公知のフォトリソグラフィ法により、第2絶縁膜9に酸化物半導体層4の一方の端まで届く第1開口17及び酸化物半導体層4の他方の端まで届く第2開口18を形成し、第2絶縁膜9上、第1開口17内および第2開口18内に、ソース・ドレイン用導電膜を成膜し、フォトリソグラフィ法によりパターニングを行うことで、ソース電極7およびドレイン電極8を得る。ソース電極7及びドレイン電極8は、それぞれ酸化物半導体層4に接触する電極であり、薄膜トランジスタ10がオン状態のとき、ソース電極7とドレイン電極8との間の酸化物半導体層4にソース-ドレイン電流が流れるように電圧が印加されている。ソース電極7及びドレイン電極8のそれぞれは、例えば、チタン電極、アルミニウム電極又は銅電極である。
 ソース電極7及びドレイン電極8を形成する際に、酸化物半導体層4のソース電極7と接触する部分の酸素欠陥が増加し、電気抵抗率が低下した第1領域14a(ソース側コンタクト領域)が形成される。また、酸化物半導体層4のドレイン電極8と接触する部分の酸素欠陥が増加し、電気抵抗率が低下した第2領域14b(ドレイン側コンタクト領域)が形成される。
 ソース・ドレイン用導電膜として、ゲート電極用導電膜として例示した導電膜を用いることができる。例えば、Ti膜(厚さ:30nm)を下層、Al膜(厚さ:300nm)を主層およびTi膜(厚さ:50nm)を上層とする積層膜をソース・ドレイン用導電膜に用いることができる。
 以上のように薄膜トランジスタ10が製造される。
 次に、第2絶縁膜9上にバンク22、アノード電極、発光層21、カソード電極を形成する。そして、発光層21上に封止層24を形成する。
 次に、封止層24上に、機能層26及びカバーフィルム28を形成して表示装置40が完成する。機能層26は、タッチパネル、偏光板を含むことができる。
第1比較実施形態
 図7は、プラズマアッシングを用いてトップゲート構造の薄膜トランジスタの酸化物半導体層400に高抵抗率領域110、中抵抗率領域120、低抵抗率領域130を形成する方法の説明図である。上述の記載と同様に、図7(a)に示したように、第1絶縁膜300上に酸化物半導体層400を成膜する。成膜直後の酸化物半導体層400は低い電気伝導率を有するため、高抵抗率領域110を形成するために、図7(b)に示したように、酸化物半導体層400を加熱し、酸化物半導体層400の全体を高抵抗化する(アニール処理)。第1実施形態では、レーザ照射により高抵抗率領域を形成するため、このような熱処理は不要である。
 その後、酸化物半導体層400上にゲート絶縁層500及び第1ゲート電極600を形成する。そして、図7(c)に示したように、酸化物半導体層400にプラズマ処理を施す。プラズマ処理は、例えばArプラズマ処理である。このプラズマ処理により、酸化物半導体層400が露出した領域では、侵入したプラズマにより酸素欠陥が増加し電気抵抗率が低下した低抵抗率領域130が形成される。第1ゲート電極600の直下の酸化物半導体層400の領域では、プラズマが第1ゲート電極600を通過することができず酸化物半導体層400に侵入しないので、高抵抗率領域110のままである。また、酸化物半導体層400のゲート絶縁層500の直下の領域で、直上に第1ゲート電極600が形成されていない領域では、プラズマの一部がゲート絶縁層500を通過し酸化物半導体層400に侵入する。このため、この領域では侵入したプラズマにより酸素欠陥が少し増加した中抵抗率領域120が形成される。
 このように、酸化物半導体層400に高抵抗率領域110、中抵抗率領域120、低抵抗率領域130を形成することができる。しかし、第1ゲート電極600の直下の酸化物半導体層400の領域はすべて高抵抗率領域110となるため、第1実施形態と比べ、薄膜トランジスタがオン状態のとき、ソース-ドレイン間の電流は少なくなる。
第2実施形態
 図8は、第2実施形態の表示装置40に含まれる薄膜トランジスタ10の概略断面図である。
 第1実施形態では、酸化物半導体層4の一部の上にだけゲート絶縁層5を形成しているが、第2実施形態では、より広い範囲にゲート絶縁層5を形成している。
 また、第1実施形態では、ソース電極7を設けたコンタクトホール及びドレイン電極8を設けたコンタクトホールは、第2絶縁膜9を貫通するコンタクトホールであったが、第2実施形態では、ソース電極7を設けた第1コンタクトホール37及びドレイン電極8を設けた第2コンタクトホール38は、第2絶縁膜9及びゲート絶縁層5を貫通するコンタクトホールである。第1コンタクトホール37は、ゲート絶縁層5を貫通する貫通孔と、第2絶縁膜9を貫通する貫通孔とが整合するように設けることができる。第2コンタクトホール38は、ゲート絶縁層5を貫通する貫通孔と、第2絶縁膜9を貫通する貫通孔とが整合するように設けることができる。第1及び第2コンタクトホール37、38を設ける開口は、第2絶縁膜9上に設けたレジストマスクを利用してゲート絶縁層5と第2絶縁膜9とをまとめてエッチングすることにより形成することができる。
 その他の構成及び工程は第1実施形態と同様である。また、第1実施形態についての記載は矛盾がない限り第2実施形態についても当てはまる。
第3実施形態
 図9は、本実施形態の表示装置に含まれる薄膜トランジスタの構成を示す概略上面図である。図10は、図9の破線B-Bにおける薄膜トランジスタの概略断面図である。図11は、図10の一点鎖線で囲んだ範囲Cにおける薄膜トランジスタの概略拡大図である。
 本実施形態の表示装置40に含まれる薄膜トランジスタ10は、ダブルゲート構造を有する。薄膜トランジスタ10は、トップゲート電極である第1ゲート電極6とボトムゲート電極である第2ゲート電極16とを有する。第2ゲート電極16は、基板2と第1絶縁膜3との間に設けることができる。第2ゲート電極16の材料は、例えば、W、TaN、Ti、Cuである。また、第1絶縁膜3は、ボトムゲートのゲート絶縁膜として機能する。
 第1ゲート電極6(トップゲート電極)及び第2ゲート電極(ボトムゲート電極)は、酸化物半導体層4にソース-ドレイン間のチャネルを形成するための電極である。具体的には、第1ゲート電極6に電圧を印加することにより、ゲート絶縁層5を介して酸化物半導体層4に電界が発生し、この電界によりチャネル(トップゲート側)が形成され、酸化物半導体層4にソース-ドレイン間の電流が流れる電流パス39aが形成される。また、第2ゲート電極16に電圧を印加することにより、第1絶縁膜3を介して酸化物半導体層4に電界が発生し、この電界によりチャネル(ボトムゲート側)が形成され、酸化物半導体層4にソース-ドレイン間の電流が流れる電流パス39bが形成される。例えば、第1ゲート電極6及び第2ゲート電極16にゲート電圧を印加すると、ソース-ドレイン間に電流パス39a、39bを通る電流が流れ薄膜トランジスタ10がオンとなる。また、例えば、第1ゲート電極6及び第2ゲート電極16にゲート電圧を印加していない場合、酸化物半導体層4にチャネルが形成されず、ソース-ドレイン間にほとんど電流は流れず、薄膜トランジスタ10はオフとなる。
 第1ゲート電極6の電位と第2ゲート電極16の電位が実質的に同じになるようにゲート電圧を印加することにより、薄膜トランジスタ10をオン状態としてもよい。また、第1ゲート電極6の電位と第2ゲート電極16の電位が異なる電位となるようにゲート電極を印加することにより薄膜トランジスタ10をオン状態としてもよい。
 このように、ダブルゲート構造の薄膜トランジスタ10では、薄膜トランジスタ10がオン状態のとき、酸化物半導体層4に2つの電流パス39a、39bが形成される。このため、薄膜トランジスタ10がオン状態のとき、ソース-ドレイン間の電流を増加させることができ、表示装置40の高速動作化を実現することができる。
 第2ゲート電極16とソース電極7又はドレイン電極8との間の距離は、第1ゲート電極6とソース電極7又はドレイン電極8との間の距離よりも大きくすることができる。このことにより、寄生容量を小さくすることができ、薄膜トランジスタ10の動作周波数の低下などの特性低下が生じることを抑制することができる。
 ダブルゲート構造の薄膜トランジスタ10では、酸化物半導体層4に2つの電流パス39a、39bを形成する必要があるため、酸化物半導体層4の厚さは、トップゲート構造の薄膜トランジスタ10に比べ厚くする必要がある。
 酸化物半導体層4の第7領域11、第5領域12a及び第6領域12bは、第2ゲート電極16と重なるように設けることができる。また、酸化物半導体層4の第7領域11、第5領域12a及び第6領域12bは、それらのすべての領域が第2ゲート電極16と重なるように設けることができる。また、酸化物半導体層4の第3領域13aの一部及び第4領域13bの一部が第2ゲート電極16の直上に設けられてもよい。
 図12は、ダブルゲート構造を有する薄膜トランジスタ10の酸化物半導体層4にレーザアニール処理により電気抵抗率の異なる複数の領域を形成する方法の説明図である。上述の図6を用いた説明と同様に、酸化物半導体層4の厚さが厚くなってもレーザアニール処理により酸化物半導体層4の所望の領域に第7領域11、第5及び第6領域12a、12b、第3及び第4領域13a、13bを形成することができる。また、レーザ照射時の焦点位置を制御することで酸化物半導体層4の必要な領域を隈なく高抵抗化することが可能である。
 その他の構成及び工程は第1又は第2実施形態と同様である。また、第1又は第2実施形態についての記載は矛盾がない限り第3実施形態についても当てはまる。また、第2実施形態と第3実施形態とを組み合わせることもできる。
第2比較実施形態
 図13は、プラズマアッシングを用いてダブルゲート構造の薄膜トランジスタの酸化物半導体層400に高抵抗率領域110、中抵抗率領域120、低抵抗率領域130を形成する方法の説明図である。第1絶縁膜300上に酸化物半導体層400を成膜する。酸化物半導体層400の厚さは、トップゲート構造の薄膜トランジスタよりも厚くする。成膜直後の酸化物半導体層400は低い電気伝導率を有するため、高抵抗率領域400を形成するために、酸化物半導体層400の全体を加熱し、酸化物半導体層400の全体を高抵抗化する(アニール処理)。その後、酸化物半導体層400上にゲート絶縁層500及び第1ゲート電極600を形成する。そして、図13(a)に示したように、酸化物半導体層400にプラズマ処理を施す。プラズマ処理は、例えばArプラズマ処理である。図13(b)に示したように、このプラズマ処理により、酸化物半導体層400が露出した領域では、侵入したプラズマにより酸素欠陥が増加し電気抵抗率が低下した低抵抗率領域130が形成される。しかし、酸化物半導体層400の厚さが厚いため、プラズマが酸化物半導体層400の下部まで侵入することができず、酸化物半導体層400の上部にだけ低抵抗率領域130が形成される。低抵抗率領域130の下の酸化物半導体層400の領域は高抵抗率領域110のままである。第1ゲート電極600の直下の酸化物半導体層400の領域では、プラズマが第1ゲート電極600を通過することができず酸化物半導体層400に侵入しないので、高抵抗率領域110のままである。また、酸化物半導体層400のゲート絶縁層500の直下の領域で、直上に第1ゲート電極600が形成されていない領域では、プラズマの一部がゲート絶縁層500を通過し酸化物半導体層400の上部まで侵入する。このため、この領域では酸素欠陥が少し増加した中抵抗率領域120が形成される。しかし、中抵抗率領域120の下の酸化物半導体層400の領域までプラズマが侵入することができず、この領域は高抵抗率領域110のままである。
 このように、プラズマアッシングを用いると、厚さの厚い酸化物半導体層400の下部に中抵抗率領域120及び低抵抗率領域130が形成されない。このため、ボトム側チャネルを流れるソース-ドレイン間の電流パスの電気抵抗率が大きくなり、第3実施形態と比べ、薄膜トランジスタがオン状態のとき、ソース-ドレイン間の電流は少なくなる。
第4実施形態
 図14は、マスクパターンを用いたレーザ照射により、酸化物半導体層4に第7領域11、第5及び第6領域12a、12b、第3及び第4領域13a、13bを形成する方法の説明図である。
 第1実施形態では、マイクロレンズを用いるレーザ照射により酸化物半導体層4にレーザアニール処理を施したが、第4実施形態では、マスクパターンを用いたレーザ照射により酸化物半導体層4にレーザアニール処理を施す。また、第4実施形態では、マスクパターンとマイクロレンズを組み合わせてレーザ照射を行ってもよい。マスク34の材料は、金属などのレーザ光を遮へいする材料とすることができる。
 第1絶縁膜3上に酸化物半導体層4、ゲート絶縁層5を形成した後、図14(a)に示したように、酸化物半導体層4のレーザを照射したい部分に開口を有するマスク34をゲート絶縁層5上、酸化物半導体層4上、第1絶縁膜3上に形成する。その後、マスクパターンを介して酸化物半導体層4にレーザ光を照射しレーザアニールを行う。このことにより、酸化物半導体層4を局所的に加熱することができ、図14(c)に示したように、レーザ光照射により加熱した部分に第7領域11を形成することができる。また、酸化物半導体層4の熱伝導を利用してマスク34の直下に第5及び第6領域12a、12bを形成することができる。また、マスク34の直下で温度があまり上がらない部分は第3及び第4領域13a、13bのままである。また、マスク34は、図14(b)に示したように、ゲート絶縁層5、酸化物半導体層4及び第1絶縁膜3から離して配置してもよい。
 このように、マスクパターンを用いて酸化物半導体層4にレーザ光を照射することにより、酸化物半導体層4の所望の領域を局所的にレーザアニールすることができ、酸化物半導体層4の所望の領域に第7領域11、第5及び第6領域12a、12b、第3及び第4領域13a、13bを形成することができる。
 その他の構成及び工程は第1、第2又は第3実施形態と同様である。また、第1、第2又は第3実施形態についての記載は矛盾がない限り第4実施形態についても当てはまる。
 2: 基板  3、300:第1絶縁膜  4、400:酸化物半導体層  5、500:ゲート絶縁層  6、600:第1ゲート電極  7:ソース電極  8:ドレイン電極  9:第2絶縁膜  10:薄膜トランジスタ  11、110:第7領域(高抵抗率領域)  12a:第5領域(ソース側中抵抗率領域)  12b、120b:第6領域(ドレイン側中抵抗率領域)  13a:第3領域(ソース側低抵抗率領域)  13b、130b:第4領域(ドレイン側低抵抗率領域)  14a:第1領域(ソース側コンタクト領域)  14b:第2領域(ドレイン側コンタクト領域)  16、160:第2ゲート電極  17:第1開口  18:第2開口  20:表示素子  21:発光層  22:バンク  24:封止層  26:機能層  28:カバーフィルム  31:画素回路  32a、32b:コンデンサ  34:マスク  35:ソース線  36:ゲート線  37:第1コンタクトホール  38:第2コンタクトホール  39a、39b:電流パス  40:表示装置

Claims (14)

  1.  基板と、前記基板上に設けられた薄膜トランジスタと、前記薄膜トランジスタ上に設けられた第2絶縁膜とを備え、
    前記薄膜トランジスタは、前記基板上に設けられた第1絶縁膜と、第1絶縁膜上に設けられた酸化物半導体層と、前記酸化物半導体層上に設けられたゲート絶縁層と、前記ゲート絶縁層上に設けられた第1ゲート電極と、ソース電極と、ドレイン電極とを備え、
    前記酸化物半導体層は、前記ソース電極に接触する第1領域と、前記ドレイン電極に接触する第2領域と、第1領域と第2領域との間に配置された第3及び第4領域と、第3領域と第4領域との間に配置された第5及び第6領域と、第5領域と第6領域との間に配置された第7領域とを有し、
    第1及び第2領域は、第3及び第4領域よりも電気抵抗率が低い領域であり、
    第5及び第6領域は、前記薄膜トランジスタがオフ状態のとき、第7領域よりも電気抵抗率が低く、第3領域及び第4領域よりも電気抵抗率が高い領域であり、
    第5、第6及び第7領域は、第1ゲート電極と重なるように設けられたことを特徴とする表示装置。
  2.  第5、第6及び第7領域は、それらのすべての領域が第1ゲート電極と重なるように設けられた請求項1に記載の表示装置。
  3.  第3及び第4領域は、第3領域の一部及び第4領域の一部が第1ゲート電極と重なるように設けられた請求項1又は2に記載の表示装置。
  4.  前記ゲート絶縁層は、島状であり、かつ、第1ゲート電極を横切るように設けられ、
    第5、第6及び第7領域は、すべての領域が前記ゲート絶縁層と重なるように設けられた請求項1~3のいずれか1つに記載の表示装置。
  5.  前記ソース電極は、前記ゲート絶縁層及び第2絶縁膜を貫通する第1コンタクトホールに設けられ、
    前記ドレイン電極は、前記ゲート絶縁層及び第2絶縁膜を貫通する第2コンタクトホールに設けられ、
    第1コンタクトホールは、前記ゲート絶縁層を貫通する貫通孔と、第2絶縁膜を貫通する貫通孔とが整合するように設けられ、
    第2コンタクトホールは、前記ゲート絶縁層を貫通する貫通孔と、第2絶縁膜を貫通する貫通孔とが整合するように設けられた請求項1~4のいずれか1つに記載の表示装置。
  6.  前記薄膜トランジスタは、前記基板と第1絶縁膜との間に設けられた第2ゲート電極を備え、
    第5、第6及び第7領域は、それらのすべての領域が第2ゲート電極と重なるように設けられた請求項1~5のいずれか1つに記載の表示装置。
  7.  前記表示装置は、複数の発光素子を備え、
    前記発光素子は、第2絶縁膜上に設けられた発光層を備え、
    前記発光層は、有機発光ダイオード又は無機発光ダイオードである請求項1~6のいずれか1つに記載の表示装置。
  8.  基板上に薄膜トランジスタを形成する工程を備え、
    前記薄膜トランジスタを形成する工程は、前記基板上に第1絶縁膜を形成する工程と、第1絶縁膜上に酸化物半導体層を形成する工程と、レーザ光を前記酸化物半導体層に照射し前記酸化物半導体層を局所的に加熱する工程とを備え、
    前記レーザ光を照射することにより生じた熱により前記酸化物半導体層の一部の電気抵抗率が上昇し、前記酸化物半導体層に電気抵抗率が他の領域よりも高い領域が形成される表示装置の製造方法。
  9.  前記薄膜トランジスタを形成する工程は、前記酸化物半導体層上にゲート絶縁層を形成する工程を備え、
    前記酸化物半導体層を局所的に加熱する工程は、前記ゲート絶縁層を通過させたレーザ光を前記酸化物半導体層に照射する工程である請求項8に記載の製造方法。
  10.  前記薄膜トランジスタを形成する工程は、前記ゲート絶縁層上に第1ゲート電極を形成する工程を備え、
    第1ゲート電極は、前記酸化物半導体層を局所的に加熱した後に形成される請求項9に記載の製造方法。
  11.  前記酸化物半導体層を局所的に加熱する工程は、マイクロレンズにより集光したレーザ光を前記酸化物半導体層に照射する工程である請求項8~10のいずれか1つに記載の製造方法。
  12.  前記酸化物半導体層を局所的に加熱する工程は、マスクパターンを通過したレーザ光を前記酸化物半導体層に照射する工程である請求項8~11のいずれか1つに記載の製造方法。
  13.  前記マスクパターンを前記酸化物半導体層上に形成する工程をさらに含む請求項12に記載の製造方法。
  14.  前記薄膜トランジスタを形成する工程は、前記基板上に第2ゲート電極を形成する工程を備え、
    第1絶縁膜を形成する工程は、第2ゲート電極上に第1絶縁膜を形成する工程である請求項8~13のいずれか1つに記載の製造方法。
PCT/JP2018/012873 2018-03-28 2018-03-28 表示装置及び表示装置の製造方法 WO2019186798A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012873 WO2019186798A1 (ja) 2018-03-28 2018-03-28 表示装置及び表示装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012873 WO2019186798A1 (ja) 2018-03-28 2018-03-28 表示装置及び表示装置の製造方法

Publications (1)

Publication Number Publication Date
WO2019186798A1 true WO2019186798A1 (ja) 2019-10-03

Family

ID=68058652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012873 WO2019186798A1 (ja) 2018-03-28 2018-03-28 表示装置及び表示装置の製造方法

Country Status (1)

Country Link
WO (1) WO2019186798A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2590450A (en) * 2019-12-18 2021-06-30 Plessey Semiconductors Ltd Light emitting diode precursor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091013A1 (ja) * 2008-01-17 2009-07-23 Idemitsu Kosan Co., Ltd. 電界効果型トランジスタ、半導体装置及びその製造方法
US20120097943A1 (en) * 2010-10-26 2012-04-26 Au Optronics Corporation Thin film transistor
JP2015179818A (ja) * 2013-12-27 2015-10-08 株式会社半導体エネルギー研究所 半導体装置及び該半導体装置を用いた表示装置
JP2015181151A (ja) * 2014-02-05 2015-10-15 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
US20160086802A1 (en) * 2014-09-24 2016-03-24 Qualcomm Mems Technologies, Inc. Laser annealing technique for metal oxide tft
JP2016100537A (ja) * 2014-11-25 2016-05-30 株式会社ブイ・テクノロジー 薄膜トランジスタ、薄膜トランジスタの製造方法及びレーザアニール装置
WO2017065199A1 (ja) * 2015-10-14 2017-04-20 シャープ株式会社 半導体装置およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091013A1 (ja) * 2008-01-17 2009-07-23 Idemitsu Kosan Co., Ltd. 電界効果型トランジスタ、半導体装置及びその製造方法
US20120097943A1 (en) * 2010-10-26 2012-04-26 Au Optronics Corporation Thin film transistor
JP2015179818A (ja) * 2013-12-27 2015-10-08 株式会社半導体エネルギー研究所 半導体装置及び該半導体装置を用いた表示装置
JP2015181151A (ja) * 2014-02-05 2015-10-15 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
US20160086802A1 (en) * 2014-09-24 2016-03-24 Qualcomm Mems Technologies, Inc. Laser annealing technique for metal oxide tft
JP2016100537A (ja) * 2014-11-25 2016-05-30 株式会社ブイ・テクノロジー 薄膜トランジスタ、薄膜トランジスタの製造方法及びレーザアニール装置
WO2017065199A1 (ja) * 2015-10-14 2017-04-20 シャープ株式会社 半導体装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2590450A (en) * 2019-12-18 2021-06-30 Plessey Semiconductors Ltd Light emitting diode precursor
GB2590450B (en) * 2019-12-18 2022-01-05 Plessey Semiconductors Ltd Light emitting diode precursor

Similar Documents

Publication Publication Date Title
US9209026B2 (en) Method of fabricating a thin-film device
JP5909746B2 (ja) 半導体装置及び表示装置
TWI389216B (zh) 製造場效電晶體的方法
KR100689950B1 (ko) 박막 반도체 장치 및 표시 장치와 그 제조 방법
US9000437B2 (en) Thin-film semiconductor device including a multi-layer channel layer, and method of manufacturing the same
WO2013080261A1 (ja) 表示パネル及び表示パネルの製造方法
KR100549761B1 (ko) 반도체 표시 장치, 그 제조 방법 및 액티브 매트릭스형표시 장치
US12048199B2 (en) Display device including thin film transistors performing different functionality having different materials
JP2015149467A (ja) 薄膜トランジスタ基板の製造方法
WO2020031309A1 (ja) 薄膜トランジスタおよびその製造方法
US8426859B2 (en) Semiconductor device and light-emitting device using the same
KR100946809B1 (ko) 박막트랜지스터 및 그의 제조방법
WO2013001579A1 (ja) 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法
WO2019186798A1 (ja) 表示装置及び表示装置の製造方法
KR20140113678A (ko) 박막 트랜지스터 어레이 장치 및 그것을 사용한 el 표시 장치
JP6311900B2 (ja) 薄膜トランジスタ基板の製造方法
US20130015453A1 (en) Display device, thin-film transistor used for display device, and method of manufacturing thin-film transistor
JP7492410B2 (ja) 画素回路及びその製造方法
US7622739B2 (en) Thin film transistor for flat panel display and method of fabricating the same
WO2019187070A1 (ja) トランジスタおよび表示装置
US9806100B2 (en) Manufacturing method of thin film transistor array panel and thin film transistor array panel
JP5687448B2 (ja) 薄膜トランジスタ及びこれを用いた表示装置、並びに、薄膜トランジスタの製造方法
JP2009010242A (ja) 表示装置及びその製造方法
JPWO2012172714A1 (ja) 表示装置、表示装置に用いられる薄膜トランジスタ、及び薄膜トランジスタの製造方法
WO2013018123A1 (ja) 薄膜トランジスタ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP