WO2019186743A1 - 半導体レーザ素子およびその製造方法 - Google Patents

半導体レーザ素子およびその製造方法 Download PDF

Info

Publication number
WO2019186743A1
WO2019186743A1 PCT/JP2018/012627 JP2018012627W WO2019186743A1 WO 2019186743 A1 WO2019186743 A1 WO 2019186743A1 JP 2018012627 W JP2018012627 W JP 2018012627W WO 2019186743 A1 WO2019186743 A1 WO 2019186743A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity type
contact layer
layer
type contact
semiconductor laser
Prior art date
Application number
PCT/JP2018/012627
Other languages
English (en)
French (fr)
Inventor
一誠 岸本
直幹 中村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/012627 priority Critical patent/WO2019186743A1/ja
Priority to CN201880091705.5A priority patent/CN111903021B/zh
Priority to US16/963,054 priority patent/US11870212B2/en
Priority to JP2020510278A priority patent/JP7040604B2/ja
Publication of WO2019186743A1 publication Critical patent/WO2019186743A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0208Semi-insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0282Passivation layers or treatments
    • H01S5/0283Optically inactive coating on the facet, e.g. half-wave coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2224Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semi-insulating semiconductors

Definitions

  • the present invention relates to a surface-mount type semiconductor laser device in which a cavity end face is formed by dry etching, and a method for manufacturing the same.
  • Some semiconductor laser elements integrate a plurality of DFB (Distributed Feedback) lasers in order to achieve high speed.
  • DFB Distributed Feedback
  • Patent Documents 1 and 2 describe the surface-mount type semiconductor laser element. The formation of the cavity facet of the semiconductor laser device described in these is performed by cleavage.
  • Patent Document 3 discloses a surface-mount type semiconductor laser element in which the cavity end face is formed by dry etching. This document discloses a method of performing resonator end face formation and contact layer exposure for substrate side electrode formation by one dry etching.
  • the dry etching rate has a distribution in the wafer surface, and the rate is slowed down near the etching side surface due to the shadowing of ions. Therefore, in order to reliably expose the substrate-side contact layer in a desired region on the entire surface of the wafer, it is necessary to perform overetching in consideration of the rate distribution and tailing. In this case, the thickness of the substrate-side contact layer is reduced due to over-etching, leading to an increase in element resistance. Therefore, it is necessary to increase the thickness in advance by assuming a decrease in the layer thickness. However, increasing the contact layer thickness reduces the throughput of the epi growth apparatus.
  • a monitor PD for example, is to be integrated on the same chip in addition to the DFB laser, it is desirable to suppress current leakage between both elements, and this is achieved by partially increasing the resistance of the substrate side contact layer. It will be necessary. To increase the resistance, techniques such as thermal diffusion of impurities or ion implantation are assumed. However, if the contact layer is thick, the thermal diffusion time or ion implantation energy required for increasing the resistance will increase dramatically, further increasing the resistance. Increases manufacturing throughput.
  • the present invention has been made to solve the above-described problems, and its purpose is to reduce the parasitic capacitance and device capacitance, to provide high position accuracy of the resonator end face, and to minimize the contact layer thickness to reduce the production throughput. It is to obtain a semiconductor laser device and a method for manufacturing the same that can be increased.
  • a semiconductor laser device includes a substrate and a semiconductor layer formed on the substrate and having a first conductivity type contact layer.
  • the semiconductor layer has a resonator, and both sides are sandwiched between grooves.
  • a mesa having a second conductivity type contact layer is provided, and the side surface of the mesa including at least one end face of the resonator and the upper surface of the first conductivity type contact layer form an L shape, and the bottom surface of the groove and the L Both of the letter-shaped bottom surfaces are formed by the upper surface of the first conductivity type contact layer, and the side surfaces of the grooves are located near the bottom surface of the grooves and are inclined on the first inclined surface and the first inclined surface.
  • the L-shaped side surface includes a second inclined surface that is inclined in the vicinity of the L-shaped bottom surface, and a second surface that is substantially perpendicular to the second inclined surface.
  • the first conductive type contact layer is formed on the bottom surface of at least one groove. Comprising a first electrode that is continued, and a second electrode connected to the second conductive type contact layer.
  • a method of manufacturing a semiconductor laser device is a method of manufacturing a semiconductor laser device including a mesa having a resonator, and a first conductivity type contact layer, a first conductivity type cladding layer, The step of laminating the active layer, the second conductivity type cladding layer and the second conductivity type contact layer, and the dry etching to leave a part of the first conductivity type cladding layer, thereby forming grooves on both sides of the mesa Then, a dry etching process for forming an L shape having a side surface of the mesa including an end face of the resonator, and an etching side surface formed in the dry etching process are masked to provide selectivity with respect to the first conductivity type contact layer.
  • the first conductivity type contact layer is exposed by wet-etching the first conductivity type cladding layer on the bottom surface of the groove and the L-shaped bottom surface using an etchant having An etching process; a step of forming a first electrode connected to the first conductivity type contact layer at a bottom surface of at least one groove; and a second connection connected to the second conductivity type contact layer above the active layer. Forming an electrode.
  • the semiconductor laser device according to the present invention has small parasitic capacitance and device capacitance, high position accuracy of the resonator end face, and can minimize the thickness of the contact layer.
  • the manufacturing method according to the present invention it is possible to manufacture a semiconductor laser device in which the parasitic capacitance and the element capacitance are small, the position accuracy of the cavity end face is high, and the thickness of the contact layer is minimized. In addition, the throughput of the epi growth apparatus is improved.
  • FIG. 1 is a cross-sectional view of a semiconductor laser element according to a first embodiment.
  • 2 is a top view of the semiconductor laser element according to the first embodiment.
  • FIG. 1 is a cross-sectional view of a semiconductor laser element according to a first embodiment.
  • 6 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the first embodiment.
  • FIG. 6 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the first embodiment.
  • FIG. 6 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the first embodiment.
  • FIG. 6 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the first embodiment.
  • FIG. 6 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the first embodiment.
  • FIG. 6 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the first embodiment.
  • FIG. 6 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the first embodiment.
  • FIG. 6 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the first embodiment.
  • FIG. 6 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the first embodiment.
  • FIG. 6 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the first embodiment.
  • FIG. 6 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the first embodiment.
  • FIG. 6 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the first embodiment.
  • FIG. It is sectional drawing of the semiconductor laser element used for the verification experiment of the effect of this invention. It is a figure which shows the result of the verification experiment of the effect of this invention.
  • 10 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser element according to the second embodiment.
  • FIG. FIG. 6 is a cross-sectional view of a semiconductor laser element according to a second embodiment.
  • FIG. 6 is a cross-sectional view of a semiconductor laser element according to a second embodiment.
  • Embodiment 1 FIG. The semiconductor laser device and its manufacturing method according to the first embodiment will be described.
  • FIG. 1 is a cross-sectional view of the semiconductor laser device according to the first embodiment.
  • FIG. 2 is a top view.
  • AA and BB in FIG. 2 are cut lines showing the cross sections of FIGS. 1A and 1B, respectively.
  • FIG. 3 is a view similar to FIG. 1, but for the sake of explanation, hatching is removed and some lines are thickened.
  • An n-type contact layer 12 is formed on the substrate 10.
  • An n-type cladding layer 14, an active layer 18, and a p-type cladding layer 20 are formed on the n-type contact layer 12.
  • a ridge 22 is constituted by a part of the n-type cladding layer 14, the active layer 18, and a part of the p-type cladding layer 20. The ridge 22 functions as a laser waveguide. Block layers 16 are embedded on both side surfaces of the ridge 22.
  • a p-type contact layer 24 is formed on the p-type cladding layer 20.
  • a plurality of layers from the n-type contact layer 12 to the p-type contact layer 24 are collectively referred to as a semiconductor layer 36. Note that a diffraction grating structure in which the refractive index periodically changes may be formed in the n-type cladding layer 14 or the p-type cladding layer 20.
  • the substrate 10 is made of semi-insulating InP.
  • the n-type contact layer 12 is made of n-type InGaAs having a thickness of 1.0 ⁇ m.
  • the n-type cladding layer 14 is made of n-type InP having a thickness of 3.0 ⁇ m.
  • the active layer 18 has a thickness of 0.2 ⁇ m and includes an MQW (Multiple Quantum ⁇ Well) structure made of i-type AlGaInAs.
  • the p-type cladding layer 20 is made of p-type InP having a thickness of 2.0 ⁇ m.
  • the block layer 16 is formed by sequentially stacking Fe—InP (Fe-doped InP), n-type InP, and p-type InP.
  • the p-type contact layer 24 is made of p-type InGaAs having a thickness of 0.3 ⁇ m.
  • the n-type contact layer 12 and the p-type contact layer 24 may be made of n-type InGaAsP and p-type InGaAsP, respectively.
  • grooves 32 are formed on both sides of a region including the ridge 22.
  • a mesa 34 is constituted by the n-type cladding layer 14, the active layer 18, the p-type cladding layer 20, the p-type contact layer 24, and the block layer 16 sandwiched between the grooves 32.
  • An embedded semiconductor laser current confinement structure is formed from the p-type cladding layer 20 to the n-type cladding layer 14 in the mesa 34.
  • the bottom surface 46 of the groove 32 is constituted by the upper surface of the n-type contact layer 12.
  • the side surface of the groove 32 is divided into an inclined surface 38 near the bottom surface 46 and a side surface 42 thereabove.
  • the inclined surface 38 has an inclination in a reverse mesa direction with respect to a direction perpendicular to the substrate 10.
  • the reverse mesa direction is a direction in which the n-type cladding layer 14 bites from the upper side to the lower side in the direction perpendicular to the substrate.
  • the side surface 42 is substantially perpendicular to the substrate 10.
  • top surface of the n-type contact layer 12 constituting the bottom surface 46 may have unevenness after various manufacturing processes.
  • the n-type cladding layer 14 does not exist on the bottom surface 46, but may exist in a part. However, the n-type cladding layer 14 is allowed to exist only in the vicinity of the inclined surface 38 so as not to prevent electrical connection between an n-type electrode 28 and an n-type contact layer 12 described later.
  • the mesa 34 is cut in the vicinity of the resonator end face.
  • an L-shape 50 is formed on the side surface of the mesa 34 including the end face of the resonator and the upper surface of the n-type contact layer 12.
  • the bottom surface 48 of the L-shape 50 is formed by the top surface of the n-type contact layer 12.
  • the side surface of the L-shaped 50 is divided into an inclined surface 40 in the vicinity of the bottom surface 48 and a side surface 44 thereon.
  • the inclined surface 40 has a forward mesa direction inclination with respect to a direction perpendicular to the substrate 10.
  • the forward mesa direction is a direction in which the n-type cladding layer 14 spreads from above to below in a direction perpendicular to the substrate.
  • the side surface 44 is substantially perpendicular to the substrate 10.
  • the side surface 44 has a lower end extending to the vicinity of the upper surface of the n-type contact layer 12 and functions as an end surface of the resonator.
  • the inclined surface 40 is made longer for the sake of explanation. However, it is actually preferable that the inclined surface 40 is short and the lower end of the side surface 44 extends to the vicinity of the upper surface of the n-type contact layer 12.
  • the upper surface of the n-type contact layer 12 constituting the bottom surface 48 may have unevenness after various manufacturing processes.
  • the n-type cladding layer 14 does not exist on the bottom surface 48, but may exist.
  • an insulating film 26 is formed from the bottom surface of the groove 32 through the side surface and over the p-type contact layer 24.
  • the insulating film 26 is also formed over the p-type contact layer 24 from the bottom surface to the side surface of the L-shape 50.
  • the insulating film 26 has openings on the bottom surface 46 of the groove 32 and the top of the mesa 34.
  • the n-side electrode 28 connected to the n-type contact layer 12 through the opening of the insulating film 26 on the bottom surface 46 of the left-side groove 32 of the left and right grooves 32 shown in FIGS. Are formed so as to be drawn on the insulating film 26.
  • a p-side electrode 30 connected to the p-type contact layer 24 through the opening of the insulating film 26 on the mesa 34 is formed.
  • the connection here is an electrical connection.
  • the semiconductor laser device according to the first embodiment is a surface-mounting type semiconductor laser device in which both the n-side electrode 28 and the p-side electrode 30 are formed on the surface side.
  • a (100) InP substrate is prepared as the substrate 10.
  • an n-type contact layer 12, an n-type cladding layer 14, an active layer 18, and a p-type cladding layer 20 are formed on the substrate 10 by MOCVD (Metal Laminate by Organic (Chemical Vapor Deposition) method.
  • MOCVD Metal Laminate by Organic (Chemical Vapor Deposition) method.
  • a ridge 22 extending along the ⁇ 011> direction is formed.
  • a mask 52 having a ridge pattern is formed.
  • the mask 52 is formed by, for example, forming a 0.4 ⁇ m-thick SiO (composition is arbitrary) film by plasma CVD (Chemical Vapor Deposition), and then forming a resist pattern on the SiO film using photolithography. This is possible by transferring the resist pattern to the SiO film by an RIE (Reactive Ion Etching) method using a CF 4 / O 2 mixed gas, and then removing the resist with O 2 plasma.
  • RIE Reactive Ion Etching
  • the ridge 22 is formed by etching a part of the p-type cladding layer 20, the active layer 18, and the n-type cladding layer 14 by, for example, RIE using an SiCl 4 / Ar mixed gas, using the mask 52 as an etching mask. .
  • both side surfaces of the ridge 22 are buried with the block layer 16 by MOCVD.
  • the p-type cladding layer 20 and the p-type contact layer 24 are laminated on the entire surface by MOCVD.
  • a mask 54 is formed as shown in FIG.
  • the method for forming the mask 54 is the same as that for the mask 52 described above.
  • An opening 56 and an opening 58 are formed in the mask 54.
  • the edge of the opening 56 is parallel to the ridge 22 (ie, parallel to the ⁇ 011> direction), and the edge of the opening 58 is perpendicular to the ridge 22 (ie, parallel to the ⁇ 01-1> direction).
  • dry etching is performed using a mask 54 to form a groove 32a and an L-shape 50a.
  • the L-shape 50 a is composed of the side surfaces of the p-type contact layer 24, the p-type cladding layer 20, the active layer 18, the n-type cladding layer 14, and the upper surface of the n-type cladding layer 14.
  • the L shape 50a is represented by a thick line for the sake of explanation. Dry etching is performed so that the side surfaces of the groove 32a and the L-shaped 50a are substantially perpendicular to the substrate 10. The side surface thus formed is referred to as an etching side surface.
  • the inclination angle of the etching side surface with respect to the surface perpendicular to the substrate 10 is preferably within 5 °, more preferably within 1 °.
  • a gas containing a halogen element for example, a SiCl 4 / Ar mixed gas, is preferably used as an etching gas by an ICP (Inductive Coupled Plasma) -RIE method under a low pressure and a high bias. The dry etching is stopped before the deepest portion of the bottom surface of the L-shaped 50a reaches the n-type contact layer 12.
  • the electrical resistance of the n-type contact layer 12 increases by the thickness reduction, but this is acceptable. If so, you can do that. Further, only the front end face of the resonator may be formed by this dry etching, only the rear end face may be formed, or both end faces may be formed.
  • FIG. 9B shows an enlarged view of the vicinity of the bottom surface of the L-shape 50a. This tailing is because the etching rate in the vicinity of the side surface decreases due to the shadowing effect of ions.
  • a mask 60 is formed on the entire surface including the grooves 32a and the side surfaces of the L-shape 50a.
  • SiO having a thickness of 0.2 ⁇ m formed by plasma CVD can be used as the mask 60.
  • the entire surface of the mask 60 is etched back, and the mask 60 other than the grooves 32a and the side surfaces of the L-shape 50a is removed.
  • the mask 54 on the p-type contact layer 24 can be left by appropriately adjusting the etch back time.
  • Etchback is preferably performed under low pressure conditions in order to prevent the film thickness of SiO formed on the side surfaces of the groove 32a and the L-shaped 50a from being reduced by side etching.
  • a mixed gas of CF 4 / O 2 is used.
  • the ICP-RIE method used can be used.
  • the bottom surfaces of the grooves 32a and the L-shape 50a are wet-etched.
  • the n-type cladding layer 14 is immersed in an etchant having selectivity with respect to InGaAs, which is the material of the n-type contact layer, for example, a hydrochloric acid / phosphoric acid mixed solution, and is formed on the bottom surface of the groove 32a and the L-shaped 50a. Etch. In this way, the mesa 34, the groove 32, and the L shape 50 are formed.
  • InGaAs is the material of the n-type contact layer, for example, a hydrochloric acid / phosphoric acid mixed solution
  • the inclined surface 38 in the vicinity of the bottom surface 46 of the groove 32 has an inclination nearly perpendicular to the reverse mesa direction, and the n-type contact layer 12 is exposed on the bottom surface 46.
  • the inclined surface 40 in the vicinity of the L-shaped bottom surface 48 has a forward mesa direction inclination, and the n-type contact layer 12 is exposed at the bottom surface 48.
  • the etching side surface is protected from wet etching by the mask 60 formed on the side surface of the groove 32a and the L-shaped 50a, the perpendicularity of the etching side surface is maintained.
  • channel 32 and the L-shape 50 are formed simultaneously, each bottom face 46 and the bottom face 48 become equal height.
  • An etchant containing hydrogen bromide may be used. By the way, it is not essential to leave the mask 54 in the formation of the mask 60.
  • the p-type contact layer 24 is made of InGaAs, even if etching back is performed until the mask 54 disappears, the p-type contact layer 24 becomes an etching mask for wet etching, and the semiconductor surface is etched. Can be prevented.
  • the n-type cladding layer 14 on the bottom surface 46 and the bottom surface 48 is completely scraped, but a part of the n-type cladding layer 14 may remain.
  • the inclination in the reverse mesa direction and the forward mesa direction is due to the crystal orientation dependency of wet etching.
  • the mesa 34 is formed along the ⁇ 011> direction and a mixed solution of hydrochloric acid / phosphoric acid is used as the etchant, the inclined surface 38 of the mesa 34 becomes an inverted mesa that is nearly vertical, and an L-shaped 50
  • the inclined surface 40 is a forward mesa.
  • the direction of the mesa 34 may be rotated by 90 ° (that is, it may be formed along the ⁇ 01-1> direction). In this case, the forward / reverse direction of the mesa is different from that of FIG. Vice versa.
  • a liquid containing hydrogen bromide in the etchant for example, a mixed liquid of hydrogen bromide and H 2 O, and the forward / reverse mesa angle varies depending on the etching conditions.
  • the present invention does not limit the direction and angle of the mesa, and can be modified by the mesa direction and the etchant.
  • an insulating film 26 is formed as shown in FIG. Specifically, after first immersing in BHF (buffered hydrofluoric acid) and removing the mask 54 and the mask 60, for example, a plasma CVD method is used to form a 0.4 ⁇ m-thick SiO (composition is arbitrary) film over the entire surface. Form. Further, an opening 66 and an opening 68 are formed on the bottom surface 46 of the groove 32 and the mesa 34 using photolithography and RIE, respectively. The opening 66 is a contact region with the n-side electrode 28, and the opening 68 is a contact region with the p-side electrode 30.
  • the insulating film 26 defines a current injection region, functions as a protective film for protecting the semiconductor surface from contamination, and further functions as a part of the coating film for controlling the reflectance at the resonator end face.
  • the insulating film 26 may be SiN, TiO, TaO, AlO (these compositions are arbitrary) or a laminated film thereof.
  • the film formation method may be a sputtering method or an ALD (Atomic Layer Deposition) method. Good.
  • the n-side electrode 28 and the p-side electrode 30 are formed by photolithography and wet etching. Thereafter, the substrate 10 may be cleaved into a bar state, and a coat film may be formed on the side surface of the L-shaped 50 to adjust the reflectance at the resonator end face. Thereby, the formation of the semiconductor laser element is completed.
  • a diffraction grating structure made of InGaAsP having a periodic structure of, for example, a thickness of 40 nm and a pitch of 200 nm in the cavity direction may be formed in the n-type cladding layer 14 or the p-type cladding layer 20.
  • an InGaAsP layer having a thickness of 40 nm is formed in the middle of forming the InP clad layer, an SiO film having a thickness of 25 nm is formed by plasma CVD, and a diffraction grating pattern is formed using an electron beam lithography method and an RIE method. Transfer to the SiO film, etch the InGaAsP layer by the RIE method using a mixed gas of CH 4 / H 2 , and grow the cladding layer again to embed a diffraction grating made of InGaAsP.
  • this semiconductor laser element is a surface mount type, the parasitic capacitance caused by the wire wiring and the capacitance between the electrodes are small.
  • the capacitance between the electrodes is increased.
  • the capacitance between the electrodes is reduced.
  • the grooves are provided on both sides of the mesa, the element capacity can be further reduced.
  • the cavity end face is formed by dry etching, its positional accuracy is high.
  • the overlay accuracy of the resonator end face position thus formed is at a submicron level, which is the overlay accuracy of photolithography, and can be greatly improved with respect to variations of several microns when cleavage is used.
  • a multiwavelength integrated semiconductor laser element a plurality of DFB lasers having different wavelengths are integrated, and it is necessary to control the phase of the diffraction grating at the cavity end face of these DFBs in order to improve the SMSR yield. For this reason, in addition to pattern formation so that the phase of the diffraction grating is aligned at the intended position, the resonator end face must be accurately formed at that position. Therefore, the present invention is also suitable for a multiwavelength integrated semiconductor laser device.
  • the mirror loss is small. If this lower end approaches the active layer, the mirror loss due to the inclined surface below it increases, but this problem can be suppressed in this semiconductor laser device.
  • FIGS. 15A and 15B are cross-sectional views of the FP laser used in the experiment.
  • D b of FIG. 15 (a) d a and 15 in (b) in represents the distance to the upper end of the inclined surface from the lower end of the active layer, has a d a> d b.
  • FIG. 16 shows measurement results showing current (I F ) dependence (PI characteristics) on the optical output (P O ) of the FP laser, and (a) and (b) in FIG. , (B).
  • the FP laser of FIG. 15A has better PI characteristics. This is due to the condition of d a > d b , and indicates that the mirror loss is smaller as the inclined surface is farther from the active layer.
  • dry etching may be performed as long as possible until just before reaching the n-type cladding layer, or the n-type cladding layer may be thickened.
  • the cavity facet and the groove are formed at the same time, so that the semiconductor laser element can be formed with fewer steps.
  • the wet etching selectivity allows exposure without reducing the film thickness of the substrate-side contact layer, it is possible to prevent an increase in element resistance due to a decrease in the contact layer thickness. Therefore, it is sufficient to secure a minimum film thickness for obtaining a desired element resistance in advance, and the throughput of the epi growth apparatus is improved.
  • Embodiment 2 A method for manufacturing the semiconductor laser element according to the second embodiment will be described. Here, steps similar to those in the manufacturing method of the first embodiment will not be described in detail, and differences from the first embodiment will be mainly described. Differences from the first embodiment will be mainly described regarding the obtained effects.
  • the exposure of the n-type contact layer is detected by the change in the plasma emission intensity by dry etching, and the dry etching is stopped after the detection.
  • the plasma emission intensity of the constituent elements of the n-type contact layer or the n-type cladding layer changes, so that any one of these elements may be monitored.
  • the n-type contact layer is InGaAs and the n-type cladding layer is InP
  • the plasma emission intensity of any one of In, Ga, As, and P may be monitored.
  • a layer containing these elements is stacked above the n-type cladding layer, the plasma emission intensity changes during the etching of these layers. In order to prevent this change from being erroneously detected, it is only necessary to know the speed of dry etching in advance, predict the time for etching to reach the n-type cladding layer, and start monitoring after that time has elapsed.
  • FIG. 17 shows a cross-sectional view after dry etching.
  • FIG. 17 (b) shows an enlarged view of the vicinity of the corner of the L-shape 72a. From the figure, it can be seen that the deepest portion of the groove 70 a and the L-shape 72 a formed by dry etching coincides with the upper surface of the n-type contact layer 74. 17B, it can be seen that the side surface of the L-shape 72a substantially perpendicular to the substrate 10 extends to the vicinity of the lower end of the n-type cladding layer 76. The lower end of the substantially vertical side surface is maximally below the constraint that the dry etching does not overcut the n-type contact layer 74.
  • FIGS. 18 and 19 correspond to these drawings, respectively. 19 and FIG. 3, it can be seen that the lower end of the side surface 84 and the side surface 86 of the semiconductor laser device manufactured using the manufacturing method of the second embodiment extends further downward.
  • mirror loss due to the inclined surface can be suppressed.
  • the dry etching is performed until the n-type contact layer 74 is exposed, so that the side surface 86 of the L-shape 72 extends downward to the maximum. Therefore, mirror loss due to the inclined surface 82 under the side surface 86 can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

メサ(34)は共振器と第2導電型コンタクト層(24)を備える。メサ(34)の両脇に溝(32)が形成されている。共振器の端面を含むメサ(34)の側面と第1導電型コンタクト層(12)でL字形状(50)が形成されている。溝(32)とL字形状(50)の上面はどちらも第1導電型コンタクト層(12)で構成されている。溝(32)の側面は底面(46)近傍の傾斜面(38)とその上の側面(42)で構成されている。L字形状(50)の側面は底面(48)近傍の傾斜面(40)とその上の側面(44)で構成されている。溝(32)の底面(46)で第1導電型コンタクト層(12)に接続された第1の電極(28)を備える。メサ(34)の上方で第2導電型コンタクト層(24)に接続された第2の電極(30)を備える。

Description

半導体レーザ素子およびその製造方法
 この発明は、ドライエッチングで共振器端面を形成する表面実装型の半導体レーザ素子、およびその製造方法に関する。
 光通信ネットワークでやり取りされるデータ量は増大を続けているため、光通信ネットワークで使用される半導体レーザ素子には動作速度の高速化が継続的に要求されている。
 半導体レーザ素子の中には高速化を実現するために複数のDFB(Distributed Feedback)レーザを集積したものがある。一例として、波長が異なる4つの25Gbps DFBレーザを集積し、これらから出射されるレーザ光を内部で合波して100Gbpsの光信号を出力するものが挙げられる。
 このような多波長集積半導体レーザ素子の実現には電気容量の低減と共振器端面の位置精度向上が重要である。電気容量の低減は、半導体レーザ素子を変調する電気信号の高速化に寄与する。共振器端面の位置精度向上は、共振器端面における回折格子の位相制御を容易にし、SMSR(Side Mode Suppression Ratio)歩留まり向上につながる。
 電気容量を低減するには表面実装型構造の適用が有効である。表面実装型でない半導体レーザ素子では2つの電極がそれぞれ素子表面と裏面にあるため、素子容量が大きくなる。一方、表面実装型では2つの電極をどちらも素子表面側に形成するため、素子容量が低減される。加えて、フリップチップ実装が可能になるためワイヤ配線に起因する寄生容量の低減が可能になる。
 共振器端面の位置精度を向上するには端面形成にドライエッチングを用いるのが有効である。端面形成にドライエッチングでなくへき開を用いると機械的ばらつきにより位置精度が悪くなる。一方、ドライエッチングは位置精度がフォトリソグラフの重ね合わせ精度で決まり、その値はサブミクロンレベルであるため、端面形成にドライエッチングを用いれば位置精度を向上できる。
 表面実装型の半導体レーザ素子について記載したものに特許文献1、2がある。これらに記載の半導体レーザ素子の共振器端面形成はへき開で実施している。
 また、表面実装型であって、共振器端面の形成をドライエッチングで実施した半導体レーザ素子について記載したものに特許文献3がある。この文献では共振器端面形成と、基板側電極形成のためのコンタクト層露出とを1度のドライエッチングで実施する方法が開示されている。
特開平7-135369号公報 特開2012-209489号公報 特開2004-288876号公報
 特許文献1、2のように、共振器端面の形成にドライエッチングではなくへき開を用いた場合、機械的ばらつきによって端面位置精度が悪化してしまうという問題がある。このことは、DFBレーザにおいて高度な端面位相制御が求められる場合、特に100Gbps通信に用いる4波長集積DFBレーザを製造する場合においては、SMSR歩留まりを大きく低下させる要因となる。
 一方、特許文献3のように、端面をドライエッチングで形成する場合、端面位置精度は改善される。このドライエッチングによる端面形成工程は、基板側電極引き出し部分を設けるための基板側コンタクト層露出を兼ねることが工程簡略化の観点から望ましいが、その場合は以下に述べるような製造上の問題がある。
 通常ドライエッチングレートはウエハ面内で分布を持つことに加えて、イオンのシャドーイングに起因してエッチング側面近傍でレートが遅くなり裾引きが生じる。したがってウエハ全面において所望の領域で基板側コンタクト層を確実に露出させるには、レート分布および裾引きを考慮してオーバーエッチングを行う必要がある。この場合、オーバーエッチングによって基板側コンタクト層の厚みが減少し、素子抵抗の増大を招くことから、今度は層厚減少を想定してあらかじめ厚膜化しておく必要が生じる。しかしながら、コンタクト層厚膜化はエピ成長装置のスループットを低下させる。さらに、同一チップ上に、DFBレーザに加えて例えばモニタPDを集積しようとした場合、両素子間の電流リークを抑制することが望ましく、これには基板側コンタクト層を部分的に高抵抗化することがが必要になる。高抵抗化には不純物の熱拡散、あるいはイオン注入といった手法が想定されるが、コンタクト層が厚いと高抵抗化に必要な熱拡散の時間、あるいはイオン注入エネルギーが飛躍的に増大し、更なる製造スループット増大を招く。
 この発明は上述の問題を解決するためになされたもので、その目的は、寄生容量および素子容量が小さく、共振器端面の位置精度が高く、コンタクト層膜厚を最小限に抑えることで生産スループット増大を可能にする半導体レーザ素子およびその製造方法を得ることである。
 この発明に係る半導体レーザ素子は、基板と、基板の上に形成され、第1導電型コンタクト層を有する半導体層とを備え、半導体層には、共振器を有し、両脇が溝に挟まれ、第2導電型コンタクト層を有するメサが設けられ、共振器の少なくとも片側の端面を含むメサの側面と第1導電型コンタクト層の上面とがL字形状を成し、溝の底面およびL字形状の底面はどちらも第1導電型コンタクト層の上面で構成され、溝の側面は、溝の底面近傍にあり傾斜した第1の傾斜面、および、第1の傾斜面の上にありほぼ垂直な第1の側面で構成され、L字形状の側面は、L字形状の底面近傍にあり傾斜した第2の傾斜面、および、第2の傾斜面の上にありほぼ垂直な第2の側面で構成され、少なくとも1つの溝の底面で第1導電型コンタクト層に接続された第1の電極を備え、第2導電型コンタクト層に接続された第2の電極を備える。
 この発明に係る半導体レーザ素子の製造方法は、共振器を有するメサを備えた半導体レーザ素子の製造方法であって、基板の上に、順に第1導電型コンタクト層、第1導電型クラッド層、活性層、第2導電型クラッド層および第2導電型コンタクト層を積層する工程と、第1導電型クラッド層の一部を残すようにドライエッチングすることで、メサの両脇にある溝を形成し、共振器の端面を含む前記メサの側面を有するL字形状を形成するドライエッチング工程と、ドライエッチング工程で形成されたエッチング側面をマスクし、第1導電型コンタクト層に対して選択性を有するエッチャントを使用し、溝の底面およびL字形状の底面の上の第1導電型クラッド層をウェットエッチングすることで、第1導電型コンタクト層を露出させるウェットエッチング工程と、少なくとも1つの溝の底面において第1導電型コンタクト層に接続された、第1の電極を形成する工程と、第2導電型コンタクト層に活性層の上方で接続された第2の電極を形成する工程とを備える。
 この発明に係る半導体レーザ素子は、寄生容量および素子容量が小さく、共振器端面の位置精度が高く、コンタクト層の膜厚を最小限とすることができる。
 この発明に係る製造方法を用いると、寄生容量および素子容量が小さく、共振器端面の位置精度が高く、コンタクト層の膜厚を最小限に抑えた半導体レーザ素子が製造可能になる。またエピ成長装置のスループットが向上する。
実施の形態1に係る半導体レーザ素子の断面図である。 実施の形態1に係る半導体レーザ素子の上面図である。 実施の形態1に係る半導体レーザ素子の断面図である。 実施の形態1に係る半導体レーザ素子の製造方法を説明するための断面図である。 実施の形態1に係る半導体レーザ素子の製造方法を説明するための断面図である。 実施の形態1に係る半導体レーザ素子の製造方法を説明するための断面図である。 実施の形態1に係る半導体レーザ素子の製造方法を説明するための断面図である。 実施の形態1に係る半導体レーザ素子の製造方法を説明するための断面図である。 実施の形態1に係る半導体レーザ素子の製造方法を説明するための断面図である。 実施の形態1に係る半導体レーザ素子の製造方法を説明するための断面図である。 実施の形態1に係る半導体レーザ素子の製造方法を説明するための断面図である。 実施の形態1に係る半導体レーザ素子の製造方法を説明するための断面図である。 実施の形態1に係る半導体レーザ素子の製造方法を説明するための断面図である。 実施の形態1に係る半導体レーザ素子の製造方法を説明するための断面図である。 本発明の効果の検証実験に用いた半導体レーザ素子の断面図である。 本発明の効果の検証実験の結果を示す図である。 実施の形態2に係る半導体レーザ素子の製造方法を説明するための断面図である。 実施の形態2に係る半導体レーザ素子の断面図である。 実施の形態2に係る半導体レーザ素子の断面図である。
実施の形態1.
 実施の形態1に係る半導体レーザ素子とその製造方法について説明する。
(構造)
 実施の形態1に係る半導体レーザ素子の構造について説明する。図1は実施の形態1に係る半導体レーザ素子の断面図である。図2は上面図である。図2のA-A、B-Bはそれぞれ図1(a)、(b)の断面を示す切断線である。図3は図1と同様の図であるが、説明のためにハッチングを消し、一部の線を太くしている。
 基板10の上にn型コンタクト層12が形成されている。n型コンタクト層12の上にn型クラッド層14、活性層18、p型クラッド層20が形成されている。n型クラッド層14の一部、活性層18、p型クラッド層20の一部でリッジ22が構成される。リッジ22はレーザ導波路として機能する。リッジ22の両側面にブロック層16が埋め込まれている。p型クラッド層20の上にp型コンタクト層24が形成されている。n型コンタクト層12からp型コンタクト層24にかけての複数の層をまとめて半導体層36と称する。なおn型クラッド層14またはp型クラッド層20内に屈折率が周期的に変化する回折格子構造が形成されていてもいい。
 上記の各部材の材料を記載する。基板10は半絶縁性のInPでできている。n型コンタクト層12は厚さが1.0μmのn型InGaAsでできている。n型クラッド層14は厚さが3.0μmのn型InPでできている。活性層18は厚さが0.2μmでi型AlGaInAsからなるMQW(Multiple Quantum Well)構造を含む。p型クラッド層20は厚さが2.0μmのp型InPでできている。ブロック層16はFe-InP(FeがドープされたInP)、n型InP、p型InPが順に積層されてできている。p型コンタクト層24は厚さが0.3μmのp型InGaAsでできている。なおn型コンタクト層12、p型コンタクト層24がそれぞれn型InGaAsP、p型InGaAsPでできていてもいい。
 図1(a)、3(a)に示すようにリッジ22を含む領域の両脇に溝32が形成されている。これらの溝32に挟まれたn型クラッド層14、活性層18、p型クラッド層20、p型コンタクト層24、ブロック層16でメサ34が構成されている。メサ34中のp型クラッド層20からn型クラッド層14にかけて埋込み型半導体レーザの電流狭窄構造が構成されている。
 図3(a)に示すように溝32の底面46はn型コンタクト層12の上面で構成されている。溝32の側面は、底面46近傍の傾斜面38と、その上の側面42に分けられる。傾斜面38は基板10に鉛直な方向に対して逆メサ方向の傾斜を持つ。逆メサ方向とは基板に垂直な方向の上方から下方にかけてn型クラッド層14が食い込む方向のことである。一方、側面42は基板10に対してほぼ垂直である。
 なお底面46を構成するn型コンタクト層12の上面は、各種の製造工程を経て、凹凸などが存在してもいい。
 また図3(a)では底面46の上にはn型クラッド層14が存在しないが、一部に存在してもいい。ただしn型クラッド層14は、後述のn型電極28とn型コンタクト層12との電気的接続を妨げないように、傾斜面38付近にのみ存在が許される。
 図1(b)、3(b)に示すように共振器端面付近においてメサ34が削られている。この削られた領域においてL字形状50が、共振器端面を含むメサ34の側面とn型コンタクト層12の上面で形成されている。
 図3(b)に示すようにL字形状50の底面48はn型コンタクト層12の上面で構成されている。L字形状50の側面は、底面48近傍の傾斜面40と、その上の側面44に分けられる。傾斜面40は基板10に鉛直な方向に対して順メサ方向の傾斜を持つ。順メサ方向とは基板に垂直な方向の上方から下方にかけてn型クラッド層14が広がる方向のことである。一方、側面44は基板10に対してほぼ垂直である。側面44はその下端がn型コンタクト層12の上面付近まで延びており、共振器の端面として機能する。なお図では説明のために傾斜面40を長くしたが、実際は傾斜面40が短く、側面44の下端がn型コンタクト層12の上面付近まで延びているのが望ましい。
 なお底面48を構成するn型コンタクト層12の上面は、各種の製造工程を経て、凹凸などが存在してもいい。
 また図3(a)では底面48の上にはn型クラッド層14が存在しないが、存在してもいい。
 図1、3に示すように溝32の底面から側面を通り、p型コンタクト層24の上にかけて絶縁膜26が形成されている。この絶縁膜26はL字形状50の底面から側面を通り、p型コンタクト層24の上にかけても形成されている。絶縁膜26には溝32の底面46とメサ34の上部に開口がある。
 図1(a)、3(a)に示した左右の溝32のうち左側の溝32の底面46にある絶縁膜26の開口を通じてn型コンタクト層12と接続されたn側電極28が溝32の側面を通り、絶縁膜26の上に引き出されるように形成されている。またメサ34の上の絶縁膜26の開口を通じてp型コンタクト層24と接続されたp側電極30が形成されている。なおここでいう接続とは電気的な接続のことである。このように実施の形態1に係る半導体レーザ素子はn側電極28とp側電極30がどちらも表面側に形成された表面実装型の半導体レーザ素子である。
(製造方法)
 実施の形態1に係る半導体レーザ素子の製造方法を説明する。以下、図4~14を参照しながら説明する。これらの図の(a)、(b)はそれぞれ図2のA-A、B-Bにおける断面図である。
 まず、基板10として(100)InP基板を用意し、図4に示すように基板10の上にn型コンタクト層12、n型クラッド層14、活性層18、p型クラッド層20をMOCVD(Metal Organic Chemical Vapor Deposition)法によって積層する。
 次いで、図5に示すように<011>方向に沿って伸びるリッジ22を形成する。そのためにはまずリッジパターンを有するマスク52を形成する。マスク52の形成は、例えばプラズマCVD(Chemical Vapor Deposition)法により膜厚0.4μmのSiO(組成は任意)膜を成膜し、その後フォトリソグラフィを用いてレジストパターンをSiO膜上に形成し、CF4/O混合ガスを用いたRIE(Reactive Ion Etching)法によってレジストパターンをSiO膜に転写したあと、Oプラズマによりレジストを除去すれば可能である。続いて例えばSiCl4/Ar混合ガスを用いたRIE法により、マスク52をエッチングマスクとしてp型クラッド層20、活性層18、そしてn型クラッド層14の一部をエッチングしてリッジ22を形成する。
 次いで、図6に示すようにマスク52を選択成長マスクとして、MOCVD法によりリッジ22の両側面をブロック層16で埋め込む。
 次いで、図7に示すようにマスク52をフッ酸で除去したあと、全面にp型クラッド層20、p型コンタクト層24をMOCVD法により積層する。
 次いで、図8に示すようにマスク54を形成する。マスク54の形成方法は上述のマスク52と同様である。マスク54には開口56と開口58が形成されている。開口56のエッジ部はリッジ22に対して平行(すなわち<011>方向に平行)であり、開口58のエッジはリッジ22に対して垂直(すなわち<01-1>方向に平行)になるように形成する。
 次いで、図9に示すようにマスク54を用いてドライエッチングし、溝32aとL字形状50aを形成する。L字形状50aは、p型コンタクト層24、p型クラッド層20、活性層18、n型クラッド層14の側面と、n型クラッド層14の上面で構成されている。なお図9(b)では説明のためにL字形状50aを太い線で表現している。ドライエッチングは溝32aとL字形状50aの側面が基板10に対してほぼ垂直となるように行う。このようにして形成された側面をエッチング側面と称する。エッチング側面の、基板10に垂直な面に対する傾斜角は5°以内、さらには1°以内とするのが良い。ドライエッチング条件としては、エッチングガスにはハロゲン元素を含むガス、例えばSiCl4/Ar混合ガスを用い、低圧かつ高バイアス下でICP(Inductive Coupled Plasma)-RIE法により行うのがよい。ドライエッチングの停止は、L字形状50aの底面の最深部がn型コンタクト層12に到達する前に行う。なおドライエッチングをL字形状50aの底面の最深部がn型コンタクト層12に到達するまで実施した場合は、膜厚減少分だけn型コンタクト層12の電気抵抗が高くなるが、これが許容できるのであれば、そのようにしてもかまわない。またこのドライエッチングで共振器の前端面だけを形成してもいいし、後端面だけを形成してもいいし、両方の端面を形成してもいい。
 ドライエッチングを終えると、溝32aとL字形状50aの側面と底面が交わる辺りは図9に示すような裾引き形状を持つ。図9(b)にはL字形状50aの底面付近を拡大した図を示している。この裾引きは、イオンのシャドーイング効果によって側面近傍でのエッチングレートが低下するためである。
 次いで、図10に示すように溝32aおよびL字形状50aの側面を含む全面にマスク60を成膜する。マスク60には、プラズマCVDで成膜した厚さ0.2μmのSiOを用いることができる。
 次いで、図11に示すようにマスク60を全面エッチバックし、溝32aおよびL字形状50aの側面以外のマスク60を除去する。このときエッチバック時間を適切に調整することでp型コンタクト層24上のマスク54を残せる。エッチバックは、溝32aおよびL字形状50aの側面に形成されたSiOの膜厚がサイドエッチングにより減少するのを防ぐため低圧条件で行うのがよく、例えばCF/Oの混合ガスを用いたICP-RIE法を用いることができる。
 次いで、図12に示すように溝32aとL字形状50aの底面をウェットエッチングする。具体的にはn型コンタクト層の材料であるInGaAsに対して選択性を有するエッチャント、例えば塩酸/リン酸の混合液に浸漬し、溝32aとL字形状50aの底面にあるn型クラッド層14をエッチングする。このようにしてメサ34、溝32、L字形状50が形成される。図3にも示したように溝32の底面46近傍の傾斜面38は逆メサ方向の垂直に近い傾斜を持ち、底面46はn型コンタクト層12が露出する。またL字形状の底面48近傍の傾斜面40は順メサ方向の傾斜を持ち、底面48はn型コンタクト層12が露出する。また溝32aとL字形状50aの側面に形成されたマスク60によってエッチング側面がウェットエッチングから保護されるので、エッチング側面の垂直性は維持される。また溝32とL字形状50は同時に形成するため、それぞれの底面46と底面48は高さが等しくなる。なおエッチャントとして臭化水素を含んだものを使用してもいい。ところで、上記マスク60の形成において、マスク54を残すことは必須ではない。この実施例ではp型コンタクト層24をInGaAsとしたので、仮にマスク54が消失するまでエッチバックを行ったとしても、p型コンタクト層24がウェットエッチングに対するエッチングマスクとなり半導体表面がエッチングされるのを防ぐことができる。
 また、図12に示すように、このウェットエッチング工程では底面46および底面48の上のn型クラッド層14が完全に削られるとしたが、一部が残っていてもかまわない。
 逆メサ方向や順メサ方向の傾斜ができるのは、ウェットエッチングの結晶方位依存性による。この実施の形態ではメサ34を<011>方向に沿って形成し、エッチャントに塩酸/リン酸の混合液を用いたので、メサ34の傾斜面38は垂直に近い逆メサとなり、L字形状50の傾斜面40は順メサとなる。メサ34の方向を90°回転しても良く(すなわち<01-1>方向に沿って形成しても良く)、この場合はInP結晶の対称性より図12とはメサの順/逆方向が逆になる。またエッチャントに臭化水素を含む液、例えば臭化水素とHOの混合液を用いることも可能で、順/逆メサの角度はエッチング条件によって変わる。このように、この発明はメサの方向および角度を制限するものではなく、メサ方向、エッチャントによる変形が可能である。
 次いで、図14に示すように絶縁膜26を形成する。具体的にはまずBHF(バッファードフッ酸)に浸漬し、マスク54とマスク60を除去したあと、例えばプラズマCVD法を用いて厚さが0.4μmのSiO(組成は任意)膜を全面に形成する。さらにフォトリソグラフィとRIE法を用いて溝32の底面46およびメサ34の上にそれぞれ開口66、開口68を形成する。開口66はn側電極28とのコンタクト領域、開口68はp側電極30とのコンタクト領域となる。また絶縁膜26は電流注入領域を画定するとともに、半導体表面を汚染から保護する保護膜として機能し、さらには共振器端面における反射率制御のためのコーティング膜の一部として機能する。絶縁膜26にはSiOのほかに、SiN、TiO、TaO、AlO(これらの組成は任意)やこれらの積層膜でもよく、成膜方法はスパッタ法やALD(Atomic Layer Deposition)法であってもよい。
 次いで、全面にスパッタ法によりTi/Auの積層膜を形成したあと、フォトリソグラフィおよびウェットエッチングによってn側電極28およびp側電極30を形成する。このあと基板10をバー状態にへき開し、L字形状50の側面にコート膜を形成することで共振器端面における反射率調整を行っても良い。これにより半導体レーザ素子の形成を完了する。
 なお、上記はFP(ファブリペロ)レーザへの適用例であるが、これをDFBレーザに用いることもできる。この場合、n型クラッド層14またはp型クラッド層20内に、例えば厚さ40nmで共振器方向に200nmピッチの周期構造を持つ、InGaAsPからなる回折格子構造を形成すればいい。具体的には、InPクラッド層形成の途中で厚さ40nmのInGaAsP層を形成し、プラズマCVD法により厚さ25nmのSiO膜を形成し、電子ビーム描画法およびRIE法を用いて回折格子パターンをSiO膜に転写し、CH/Hの混合ガスを用いたRIE法によってInGaAsP層をエッチングし、再度クラッド層を成長させることでInGaAsPからなる回折格子を埋め込めばいい。
(効果)
 実施の形態1に係る半導体レーザ素子およびその製造方法が有する効果について述べる。
 この半導体レーザ素子は表面実装型であるため、ワイヤ配線に起因する寄生容量および電極間の容量が小さい。表面実装型でない場合、2つの電極がそれぞれ素子の上面と下面にあるため、電極間の容量が大きくなる。これに対し、表面実装型では2つの電極がどちらも素子表面側にあるため、電極間の容量が小さくなる。
 また、メサの両脇に溝を設けているため、素子容量をさらに低減することができる。
 また、共振器端面をドライエッチングで形成しているため、その位置精度が高い。このようにして形成された共振器端面位置の重ね合わせ精度はフォトリソグラフィの重ね合わせ精度であるサブミクロンレベルであり、へき開を用いた場合の数ミクロンレベルのばらつきに対して大きく向上できる。特に多波長集積半導体レーザ素子では波長の異なるDFBレーザを複数集積するが、これらDFBの共振器端面における回折格子の位相を制御することがSMSR歩留り向上のために必要となる。このため、意図した位置で回折格子の位相が揃うようにパターン形成を行うことに加え、その位置に精度よく共振器端面を形成しなければならない。従って、この発明は多波長集積半導体レーザ素子にも適している。
 また、共振器端面を含むほぼ垂直なメサ側面の下端が、活性層から離れたn型コンタクト層の上面付近まで延びているため、ミラー損失が小さい。もしこの下端が活性層に近づいた場合、その下の傾斜面に起因するミラー損失が大きくなるが、この半導体レーザ素子ではそのような問題を抑えられる。
 ここで、傾斜面の上端が活性層から遠いほどレーザ特性が優れることを実験結果から示す。図15(a)、(b)はどちらも実験に用いたFPレーザの断面図である。図15(a)中のdおよび図15(b)中のdは、活性層の下端から傾斜面の上端までの距離を表しており、d>dになっている。図16はFPレーザの光出力(P)に対する電流(I)依存性(P-I特性)を示す測定結果であり、図中の(a)、(b)がそれぞれ図15(a)、(b)に対応する。図16に示すように、図15(a)のFPレーザのほうがP-I特性がいい。これはd>dという条件によるものであり、傾斜面が活性層から離れるほどミラー損失が小さいことを示している。
 傾斜面の上端を活性層から離すには、ドライエッチングをn型クラッド層に到達する直前までできるだけ長い時間行うか、n型クラッド層を厚くすればいい。
 実施の形態1に係る製造方法では共振器端面と溝の形成を同時に行うため、少ない工程で半導体レーザ素子を形成できる。
 また、ウェットエッチングの選択性により基板側コンタクト層の膜厚を減少させることなく露出できるため、コンタクト層厚減少による素子抵抗の増大を防げる。したがって所望の素子抵抗が得られる最小限の膜厚をあらかじめ確保しておけばよく、エピ成長装置のスループットが向上する。
実施の形態2.
 実施の形態2に係る半導体レーザ素子の製造方法について説明する。ここでは実施の形態1の製造方法と同様の工程については詳述せず、主に実施の形態1との違いを説明する。得られる効果についても主に実施の形態1との違いを記述する。
(製造方法)
 実施の形態2の製造方法は、ドライエッチング直前まで、すなわち図8の状態までは実施の形態1と同じである。以下では、実施の形態1との違いがあるドライエッチング工程について図17~18を参照しながら説明する。これらの図の(a)、(b)はそれぞれ図2のA-A、B-Bにおける断面図である。
 図8のあと、ドライエッチングで溝とL字形状を形成する際、ドライエッチングでn型コンタクト層が露出したことをプラズマ発光強度の変化で検知し、その検知後にドライエッチングを停止させる。n型コンタクト層が露出すると、n型コンタクト層あるいはn型クラッド層の構成元素のプラズマ発光強度が変化するため、これらの元素のいずれかをモニタすればいい。ここではn型コンタクト層がInGaAs、n型クラッド層がInPであるため、In、Ga、As、Pのいずれかのプラズマ発光強度をモニタすればいい。なお、n型クラッド層より上にもこれらの元素を含む層が積層されているため、これらの層のエッチング途中にプラズマ発光強度が変化してしまう。この変化を誤検出しないためには、ドライエッチングの速度を事前に把握しておき、エッチングがn型クラッド層に達する時間を予想し、その時間が経過したあとにモニタを開始すればいい。
 図17にドライエッチング後の断面図を示す。図17(b)にはL字形状72aの角部付近を拡大した図を示している。図から、ドライエッチングで形成された溝70aとL字形状72aの最深部がn型コンタクト層74の上面と一致していることが分かる。また図17(b)の拡大図を見れば、基板10に対してほぼ垂直なL字形状72aの側面がn型クラッド層76の下端付近まで延びていることが分かる。このほぼ垂直な側面の下端は、ドライエッチングがn型コンタクト層74を削り過ぎないという制約の中で最大限、下方にある。
 次いで、溝70aおよびL字形状72aの側面を含む全面にマスクを成膜する。このマスク成膜の工程は、実施の形態1で図10を用いて説明したのと同じである。その後の工程も、実施の形態1と同様に実施する。そのようにして図18、19に示した半導体レーザ素子が形成される。実施の形態1ではこれらの図に対応するのはそれぞれ図1、3である。図19と図3を比べると、実施の形態2の製造方法を用いて製造した半導体レーザ素子のほうが、側面84および側面86の下端がより下方に延びていることが見て取れる。
(効果)
 実施の形態2に係る半導体レーザ素子の製造方法を用いれば、素子抵抗の増大を防げる。この製造方法ではドライエッチング時にn型コンタクト層74が露出したことを検知するため、n型コンタクト層74を削りすぎることがなく、素子抵抗の増大を防止できる。
 また、傾斜面によるミラー損失を抑えられる。この製造方法ではn型コンタクト層74が露出するぎりぎりまでドライエッチングを実施するため、L字形状72の側面86が下方に最大限延びることになる。そのため側面86の下にある傾斜面82に起因するミラー損失を低減できる。
(変形例)
 実施の形態2の変形として、ドライエッチングがn型コンタクト層74の上面に到達したことを確認したあと、一定時間経過後にドライエッチングを停止させることも可能である。n型コンタクト層74が削られることにはなるが、上記の時間を調節することで側面86の下端をさらに下に延ばせるため、ミラー損失がより低減される。
10 基板
12,74 n型コンタクト層
14,76 n型クラッド層
16 ブロック層
18 活性層
20 p型クラッド層
22 リッジ
24 p型コンタクト層
26,78 絶縁膜
28 n側電極
30 p側電極
32,32a,70,70a 溝
34,92 メサ
36,94 半導体層
38,40,80,82 傾斜面
42,44,84,86 側面
46,48,88,90 底面
50,50a,72,72a L字形状
52,54,60 マスク
56,58,66,68 開口

Claims (8)

  1.  基板と、
     前記基板の上に形成され、第1導電型コンタクト層を有する半導体層とを備え、
     前記半導体層には、共振器を有し、両脇が溝に挟まれ、第2導電型コンタクト層を有するメサが設けられ、
     前記共振器の少なくとも片側の端面を含む前記メサの側面と前記第1導電型コンタクト層の上面とがL字形状を成し、
     前記溝の底面は前記第1導電型コンタクト層の上面で構成され、
     前記溝の側面は、前記溝の底面近傍にあり傾斜した第1の傾斜面、および、前記第1の傾斜面の上にありほぼ垂直な第1の側面で構成され、
     前記L字形状の側面は、前記L字形状の底面近傍にあり傾斜した第2の傾斜面、および、前記第2の傾斜面の上にありほぼ垂直な第2の側面で構成され、
     少なくとも1つの前記溝の底面で前記第1導電型コンタクト層に接続された第1の電極を備え、
     前記第2導電型コンタクト層に接続された第2の電極を備えた半導体レーザ素子。
  2.  前記共振器は下から順に第1導電型クラッド層、活性層、第2導電型クラッド層を含み、
     前記第1導電型クラッド層または前記第2導電型クラッド層に回折格子構造を備えた請求項1に記載の半導体レーザ素子。
  3.  前記基板は半絶縁性のInPでできており、
     前記第1導電型コンタクト層はn型InGaAsまたはn型InGaAsPでできており、
     前記第1導電型クラッド層はn型InPでできた請求項1または2に記載の半導体レーザ素子。
  4.  共振器を有するメサを備えた半導体レーザ素子の製造方法であって、
     基板の上に、順に第1導電型コンタクト層、第1導電型クラッド層、活性層、第2導電型クラッド層および第2導電型コンタクト層を積層する工程と、
     前記第1導電型クラッド層の一部を残すようにドライエッチングすることで、前記メサの両脇にある溝を形成し、前記共振器の端面を含む前記メサの側面を有するL字形状を形成するドライエッチング工程と、
     前記ドライエッチング工程で形成されたエッチング側面をマスクし、前記第1導電型コンタクト層に対して選択性を有するエッチャントを使用し、前記溝の底面および前記L字形状の底面の上の前記第1導電型クラッド層をウェットエッチングすることで、前記第1導電型コンタクト層を露出させるウェットエッチング工程と、
     少なくとも1つの前記溝の底面において前記第1導電型コンタクト層に接続された、第1の電極を形成する工程と、
     前記第2導電型コンタクト層に前記メサの上方で接続された第2の電極を形成する工程とを備えた半導体レーザ素子の製造方法。
  5.  前記ドライエッチング工程において、前記第1導電型コンタクト層または前記第1導電型クラッド層の構成元素のうち、前記第1導電型コンタクト層が露出すると強度が変化する元素のプラズマ発光強度をモニタし、前記プラズマ発光強度の変化を検出した時点あるいは前記時点から一定時間経過後に前記ドライエッチングを停止する請求項4に記載の半導体レーザ素子の製造方法。
  6.  前記第1導電型クラッド層または前記第2導電型クラッド層に回折格子構造を形成する工程を備えた請求項4または5に記載の半導体レーザ素子の製造方法。
  7.  前記基板は半絶縁性のInPでできており、
     前記第1導電型コンタクト層はn型InGaAsまたはn型InGaAsPでできており、
     前記第1導電型クラッド層はn型InPでできた請求項4~6のいずれか1項に記載の半導体レーザ素子の製造方法。
  8.  前記エッチャントとして塩酸または臭化水素のいずれかを用いる請求項7に記載の半導体レーザ素子の製造方法。
PCT/JP2018/012627 2018-03-28 2018-03-28 半導体レーザ素子およびその製造方法 WO2019186743A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/012627 WO2019186743A1 (ja) 2018-03-28 2018-03-28 半導体レーザ素子およびその製造方法
CN201880091705.5A CN111903021B (zh) 2018-03-28 2018-03-28 半导体激光器元件及其制造方法
US16/963,054 US11870212B2 (en) 2018-03-28 2018-03-28 Semiconductor laser device and method for manufacturing the same
JP2020510278A JP7040604B2 (ja) 2018-03-28 2018-03-28 半導体レーザ素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012627 WO2019186743A1 (ja) 2018-03-28 2018-03-28 半導体レーザ素子およびその製造方法

Publications (1)

Publication Number Publication Date
WO2019186743A1 true WO2019186743A1 (ja) 2019-10-03

Family

ID=68059394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012627 WO2019186743A1 (ja) 2018-03-28 2018-03-28 半導体レーザ素子およびその製造方法

Country Status (4)

Country Link
US (1) US11870212B2 (ja)
JP (1) JP7040604B2 (ja)
CN (1) CN111903021B (ja)
WO (1) WO2019186743A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121857A1 (de) * 2022-08-30 2024-02-29 Ams-Osram International Gmbh Kantenemittierende halbleiterlaserdiode; verfahren zur herstellung eines halbleiterlaserbauelements und halbleiterlaserbauelement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157590A (en) * 1981-03-24 1982-09-29 Toshiba Corp Manufacture of semiconductor laser device
JPH0276284A (ja) * 1988-09-12 1990-03-15 Furukawa Electric Co Ltd:The 半導体レーザ製造方法
JPH0283990A (ja) * 1988-09-20 1990-03-26 Nec Corp 半導体発光装置の製造方法
JP2004288876A (ja) * 2003-03-20 2004-10-14 Nichia Chem Ind Ltd 窒化物半導体素子の製造方法及び窒化物半導体素子
JP2009295952A (ja) * 2008-05-02 2009-12-17 Nichia Corp 窒化物半導体レーザ素子の製造方法
US20170331247A1 (en) * 2016-05-11 2017-11-16 Prima Electro S.P.A. Method for obtaining a laser diode

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3230785B2 (ja) 1993-11-11 2001-11-19 日本電信電話株式会社 半導体レーザおよびその製造方法
JP3184440B2 (ja) * 1995-02-10 2001-07-09 株式会社リコー 半導体発光装置
JP4238508B2 (ja) * 2001-09-28 2009-03-18 沖電気工業株式会社 光導波路型素子およびその製造方法
DE10322112B4 (de) * 2003-05-10 2007-07-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Auslegung einer modengekoppelten Halbleiterlaser-Pulsquelle und damit ausgelegte Halbleiterlaser-Pulsquelle
CN101006624A (zh) * 2005-01-18 2007-07-25 松下电器产业株式会社 半导体激光装置及其制造方法
CN101160699A (zh) * 2005-02-18 2008-04-09 宾奥普迪克斯股份有限公司 高可靠性的蚀刻小面光子器件
JP2007048813A (ja) * 2005-08-08 2007-02-22 Mitsubishi Electric Corp 半導体レーザ装置およびその製造方法
JP4966591B2 (ja) * 2006-06-07 2012-07-04 日本オプネクスト株式会社 半導体発光素子の製造方法
JP5451332B2 (ja) * 2008-12-02 2014-03-26 日本オクラロ株式会社 光半導体装置
CN102025110B (zh) * 2009-09-09 2012-03-28 中国科学院半导体研究所 斜腔面二维光子晶体分布反馈量子级联激光器及制备方法
JP5691741B2 (ja) 2011-03-30 2015-04-01 富士通株式会社 光半導体素子及びその製造方法
JP6178990B2 (ja) * 2012-10-31 2017-08-16 パナソニックIpマネジメント株式会社 半導体発光装置およびその製造方法
JP6447352B2 (ja) * 2015-05-08 2019-01-09 三菱電機株式会社 半導体装置の製造方法、半導体装置
JP6897928B2 (ja) * 2016-01-14 2021-07-07 住友電工デバイス・イノベーション株式会社 光半導体素子の製造方法および光半導体素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157590A (en) * 1981-03-24 1982-09-29 Toshiba Corp Manufacture of semiconductor laser device
JPH0276284A (ja) * 1988-09-12 1990-03-15 Furukawa Electric Co Ltd:The 半導体レーザ製造方法
JPH0283990A (ja) * 1988-09-20 1990-03-26 Nec Corp 半導体発光装置の製造方法
JP2004288876A (ja) * 2003-03-20 2004-10-14 Nichia Chem Ind Ltd 窒化物半導体素子の製造方法及び窒化物半導体素子
JP2009295952A (ja) * 2008-05-02 2009-12-17 Nichia Corp 窒化物半導体レーザ素子の製造方法
US20170331247A1 (en) * 2016-05-11 2017-11-16 Prima Electro S.P.A. Method for obtaining a laser diode

Also Published As

Publication number Publication date
CN111903021B (zh) 2022-08-12
JP7040604B2 (ja) 2022-03-23
US20200350741A1 (en) 2020-11-05
JPWO2019186743A1 (ja) 2020-12-10
US11870212B2 (en) 2024-01-09
CN111903021A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
JP3104789B2 (ja) 半導体光素子およびその製造方法
JP3484394B2 (ja) 光半導体装置およびその製造方法
JP2008227367A (ja) 分布帰還型半導体レーザ素子
US8633041B2 (en) Method for manufacturing quantum cascade laser
JP2011134870A (ja) リッジ型半導体レーザー及びリッジ型半導体レーザーの製造方法
JP5185892B2 (ja) 半導体光素子、及びその製造方法
US6430203B1 (en) Semiconductor laser device with non-oxidized facet regions
WO2007072807A1 (ja) 半導体素子、および半導体素子の製造方法
KR20080014613A (ko) 반도체 광 소자 및 그 제조 방법
US8964809B2 (en) Semiconductor optical integrated device
WO2019186743A1 (ja) 半導体レーザ素子およびその製造方法
JP4664742B2 (ja) 半導体光装置及びその製造方法
CN113906640A (zh) 半导体光集成元件及半导体光集成元件的制造方法
US6316280B1 (en) Method of manufacturing semiconductor devices separated from a wafer
JP2002111125A (ja) 分布帰還型半導体レーザ
JP2001274511A (ja) 導波路型光素子
KR100745918B1 (ko) 반도체 광 소자, 반도체 광 소자의 제조 방법 및 광 모듈
JP2002057405A (ja) 半導体レーザ装置及びその製造方法
US11476642B2 (en) Quantum cascade laser
JP2953449B2 (ja) 光半導体素子及びその製造方法
US20210305769A1 (en) Quantum cascade laser
JP2011233828A (ja) 半導体光素子
JP2001345512A (ja) 分布帰還型レーザダイオード
US20220029385A1 (en) Semiconductor Laser
CN117581433A (zh) 半导体光元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510278

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911412

Country of ref document: EP

Kind code of ref document: A1