WO2019182547A1 - Способ управления синхронным электродвигателем на постоянных магнитах - Google Patents

Способ управления синхронным электродвигателем на постоянных магнитах Download PDF

Info

Publication number
WO2019182547A1
WO2019182547A1 PCT/UA2019/000031 UA2019000031W WO2019182547A1 WO 2019182547 A1 WO2019182547 A1 WO 2019182547A1 UA 2019000031 W UA2019000031 W UA 2019000031W WO 2019182547 A1 WO2019182547 A1 WO 2019182547A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
voltage
zad
magnet synchronous
task
Prior art date
Application number
PCT/UA2019/000031
Other languages
English (en)
French (fr)
Inventor
Дмитрий Валерьевич ХАЧАТУРОВ
Original Assignee
Дмитрий Валерьевич ХАЧАТУРОВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Валерьевич ХАЧАТУРОВ filed Critical Дмитрий Валерьевич ХАЧАТУРОВ
Publication of WO2019182547A1 publication Critical patent/WO2019182547A1/ru

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/30Direct torque control [DTC] or field acceleration method [FAM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/128Adaptation of pump systems with down-hole electric drives
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/10Direct field-oriented control; Rotor flux feed-back control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/34Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to synchronous motors, in particular, to a method for controlling a permanent magnet synchronous motor used as a linear drive for an electric submersible pump installation.
  • Permanent magnet synchronous motors have several advantages, which makes it possible to distinguish it from all other electric machines, in particular, it is the stability of the supported speed, which is a paramount requirement for various technological processes, including the production of formation fluids by means of electric submersible pumping units .
  • the principle of control of these LEDs is based on the implementation of vector control of the moment of the moving part of the electric motor, through an intelligent control system for AC or voltage sources, as a rule, through the implementation of pulse-width modulation (PWM).
  • PWM pulse-width modulation
  • Hall sensors are usually used built into the electric motor, which allow you to determine the angle with an accuracy of ⁇ 30 degrees. With this control, the stator current vector takes a certain number of positions for one electric period, as a result of which there are moment ripples at the output.
  • Sensorless control is based on the use of blocks of "observers” that track the reverse electromotive force (EMF) during engine rotation.
  • EMF reverse electromotive force
  • Direct torque control is direct control of the PUM moment, the basic principle of which is the selection of the corresponding voltage vector depending on the position of the rotor magnetic flux vector, the difference between the set and real torque.
  • Direct torque control has the advantages of good torque performance, high electromagnetic torque at low speeds.
  • the operation of the electric drive with PUM is accompanied by high pulsations of the electromagnetic moment, especially at low speeds, and the implementation of this method requires significant computational operations, which to a certain extent slows down the control speed.
  • the angle of the converter is determined depending on the difference between the required bus voltage and the measured bus voltage. They control the converter of the electric drive depending on the angle of the inverter and thereby create the required voltage on the DC bus connected between the converter and the inverter of the electric drive. As a result, the operation of the inverter is controlled depending on the angle of the inverter and, thus, a six-pulse output signal is generated in the form of voltage supplied to the motor without using PWM.
  • the described method is based on the sensorless determination of the position of the rotor by means of the block "observer" which leads to the disadvantages associated with its use described previously. Also, as you know, the absence of PWM allows you to move away from the use of output voltage filters, but at the same time significantly reduces the energy efficiency of the system.
  • the technical problem to which the claimed invention is directed is the implementation of a method for controlling a synchronous electric motor, which allows to increase its energy efficiency while ensuring optimal speed and accuracy of control, in a wide frequency range.
  • the technical result achieved from the implementation of the proposed method is to increase the control accuracy of the electric motor moment and increase the energy efficiency of the electric motor, and it is also possible to increase the speed of control systems by minimizing settings and eliminating complex calculations of electric motor parameters.
  • the essence of the proposed method is to implement the algorithm of the control system of a synchronous permanent magnet motor. According to the described method, changes in the reactive current Iq are determined with respect to the task Iq zad , according to which corrective voltage signals Uq; Ud are generated, which lead to the values necessary to generate the set value of the reactive current Iq zad.
  • the voltage signal Ud is generated taking into account the feedback signal Uq oc from the proportional-integral (PI) current regulator Iq and the task Uq zad formed based on the characteristics of the controlled electric motor.
  • PI proportional-integral
  • the signal Iq zad is taken to be zero, while the task signal Uq zad for the PI current regulator Id is formed based on the angle between the output phase voltage and phase current, as well as the values of the rated voltage U H0M of the controlled motor.
  • figure 1 diagram of a linear electric submersible pump installation
  • figure 2 is a block diagram of a control algorithm for a synchronous permanent magnet motor.
  • the described method can be implemented in control systems for synchronous motors of various purposes and designs.
  • FIG. 1 An example of a control system for a synchronous valve electric motor of a linear electric submersible pump unit 1, 15 is shown, which is schematically displayed in (Fig. 1) and contains a submersible linear motor 2 (Fig. 1; 2) with permanent magnets, connected by cable line 3 to the ground control unit 4.
  • the motor control is implemented by software control methods controlled by a voltage source (5) U A , U B , Uc (FIG. 2) 0 such as IGBT transistors.
  • Said control system also comprises a unit (6) converting the phase currents I A, 1, 1 c, the unit (7) converting the currents Ia, Ib- Shibkov! Link source not found Lb, Iq, PI current regulators Error! Link source not found.
  • the voltage value Ud is determined taking into account the feedback signal Uq oc from the PI controller (8) of the current Iq and the task Uq zad formed based on the characteristics of the controlled electric motor, which contain angle values between the output phase voltage and phase current, as well as the rated voltage U HOM
  • phase voltage signals U A , U B , Uc are a task for controlled voltage sources (5), where phase-voltage signals are generated by pulse-width modulation (PWM), power supply to the linear electric motor of the pump unit, whereby translational movement of its moving part.
  • PWM pulse-width modulation
  • phase currents I A , 1 V , 1 s begin to flow through the stator windings, which are fixed at each moment in the sensor block (14).
  • the received signals from the sensors for fixing the phase currents 1 A , 1B, 1C " are fed to the inputs of the phase current conversion unit (6) where they are converted to the stationary coordinate system ab.
  • the converted signals are fed to the block ab - »dq coordinate transformation unit (7) and the formation of signals Id, Iq, taking into account the angle Q.
  • the signal Iq is used as feedback in the PI controller (8) of the current Iq, where it is subtracted from the generated reference signal Iq zad , which is taken to be zero, the specified PI controller is functionally connected to the control device, by means of which the values Iq zad , Uq are set zad , as well as the value of the circular frequency &> zad .
  • the signals Uq KOp , Ud KOp received at the output of blocks (8.9) are fed to block (12) to correct the main voltage signals Uq 0CH , Ud 0CH.
  • the signals corrected in block (12) serve as a task for the blocks of formation and transformation of voltages Ud, Uq— ⁇ ua, ub.
  • the position of the stator magnetic field relative to the magnetic field of the moving part of the electric motor is determined by measuring the phase current signals with their subsequent conversion in blocks (6, 7, 8, 9), determining the changes in the reactive current Iq relative to the task Iq zad , whereby corrective signals are formed Uq Kop voltage W of the armature, which lead to the values necessary for the formation of a given value of the reactive current Iq za j.
  • the described control method allows you to quickly increase and decrease the voltage and currents of LEDs during surge and load shedding.
  • the implementation of the claimed invention contributes to the achievement of the claimed technical result, providing increased energy efficiency of the electric motor, as well as increasing the speed of the control system by minimizing settings, by eliminating complex calculations of the parameters of the electric motor.
  • the specified method can be used to control electric motors of various types, taking into account changes in the signals of the PI-controllers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Изобретение относится, к синхронным электродвигателям, в частности, к способу управления синхронным электродвигателем с постоянными магнитами, применяемым в качестве линейного привода для электропогружной насосной установки. Технических результат, достигнутый от реализации заявляемого способа, заключается в увеличении точности управления моментом электродвигателя и повышении энергоэффективности электродвигателя, а также, удается достичь увеличения быстродействия систем управления за счет минимизации настроек и исключения сложных вычислений параметров электродвигателя. Сущность заявляемого способа заключается в реализации алгоритма управления синхронным электродвигателем с постоянными магнитами, в частности, применяемым в качестве линейного привода для электропогружной насосной установки. Согласно описанному способу определяют изменения реактивного тока Iq относительно задания Iqzad, согласно которому формируют корректирующие сигналы напряжения Uq и Ud, которые приводят к величинам, необходим для формирования заданного значения реактивного тока Iqzad.

Description

Способ управления синхронным
электродвигателем на постоянных магнитах
Область техники:
Изобретение относится, к синхронным электродвигателям, в частности, к способу управления синхронным электродвигателем с постоянными магнитами, применяемым в качестве линейного привода для электропогружной насосной установки.
Синхронные двигатели (СД) на постоянных магнитах обладают рядом преимуществ, что позволяет выделить его из всех остальных электрических машин, в частности это стабильность поддерживаемой скорости, что является первостепенным требованием, предъявляемым к различным технологическим процессам, среди которых, добыча пластовых жидкостей посредством электропогружных насосных установок.
На сегодняшний день широко распространены электропогружные насосные установки для добычи скважинных жидкостей с приводом от синхронного электродвигателя вращательного либо поступательного действия.
Принцип управления указанными СД базируется на реализации векторного управления моментом подвижной части электродвигателя, посредством интеллектуальной системы управления источниками переменного тока или напряжения, как правило, посредством реализации широтно-импульсной модуляции (ШИМ).
В литературе и на практике реализованы различные методы векторного управления, большинство из них основаны на определении величин характеризирующих угол положения ротора СД, при этом различают управление с применением датчиков положения ротора и бездатчиковое управление.
В качестве датчика положения ротора обычно используются датчики Холла встроенные в электродвигатель, которые позволяют определить угол с точностью ±30 градусов. При таком управление вектор тока статора принимает определенное количество положений на один электрический период, в результате чего на выходе имеются пульсации момента.
Бездатчиковое управление основано на применении блоков «наблюдателей» которые отслеживают обратную электродвижущую силу (ЭДС) во время вращения двигателя. Данная система является малоэффективной при малых оборотах двигателя, когда обратная ЭДС имеет малую амплитуду, которую сложно отличить от шума, поэтому данный метод не подходит для определения положения ротора двигателя при низких оборотах.
Общим недостатком всех рассматриваемых систем векторного управления СД является невысокое быстродействие регулирования момента, связанное с наличием момента инерции вращения двигателя.
Альтернативой векторному управлению является прямое управление моментом ПУМ, основным принципом которого является выбор соответствующего вектора напряжения в зависимости от положения вектора магнитного потока ротора, разницы между заданным и реальным крутящим моментом. Прямое управление моментом имеет такие преимущества как хорошее быстродействие по моменту, высокий электромагнитный момент при низких скоростях. Однако работа электропривода с ПУМ сопровождается высокими пульсациями электромагнитного момента, особенно на низких скоростях и реализация такого метода требует выполнения значительных вычислительных операций, что в определенной мере замедляет скорость управления . Из заявки на изобретение US 20170126160 от 04.05.2017 МПК Н02Р 27/06 известен способ контроля синхронного электродвигателя с постоянными магнитами, согласно которому измеряют выходные токи, подаваемые на двигатель, которые преобразуют в токи Id, Iq во вращающейся системе координат d-q, после чего определяют требуемое напряжение Ш в зависимости от разности между измеренным током Id и заданным значением Id. Определяют требуемое напряжение Uq в зависимости от разности между измеренным током Iq и заданным значением Iq. Определяют угол инвертора в зависимости от требуемого напряжения Ud и требуемого напряжения Uq. Определяют требуемое напряжение на шине связи с электродвигателем в зависимости от требуемого напряжения Ud и требуемого напряжения Uq. Определяют угол включения преобразователя в зависимости от разности между требуемым напряжением шины и измеренным напряжением шины. Управляют преобразователем электрического привода в зависимости от угла включения инвертора и тем самым создают требуемое напряжение на шине постоянного тока, соединенной между преобразователем и инвертором электрического привода. В результате управляют работой инвертора в зависимости от угла инвертора и, таким образом, формируют шести-пульсный выходной сигнал в виде напряжения, подаваемого на двигатель, без использования ШИМ.
Описанный способ базируется на бездатчиковом определении положения ротора посредством блока «наблюдателя» что приводит к недостаткам связанным с его применением описанными ранее. Также как известно, отсутствие ШИМ позволяет отойти от использования фильтров выходного напряжения, но при этом значительно занижает энергоэффективность системы. Техническая задача:
Технической задачей, на решение которой направлено заявляемое изобретение является реализация способа управления синхронным электродвигателем, позволяющего повысить его энергоэффективность с обеспечением оптимальной скорости и точности управления, в широком диапазоне частот.
Технический результат:
Технических результат, достигнутый от реализации заявляемого способа, заключается в увеличении точности управления моментом электродвигателя и повышении энергоэффективности электродвигателя, а также, удается достичь увеличения быстродействия систем управления за счет минимизации настроек и исключения сложных вычислений параметров электродвигателя.
Сущность заявляемого способа заключается в реализации алгоритма системы управления синхронным электродвигателем на постоянных магнитах. Согласно описанному способу определяют изменения реактивного тока Iq относительно задания Iqzad, согласно которому формируют корректирующие сигналы напряжения Uq;Ud, которые приводят к величинам, необходим для формирования заданного значения реактивного тока Iqzad.
Согласно предпочтительному варианту реализации способа, формируют значение сигнала напряжения Ud с учетом сигнала обратной связи Uqoc из пропорционально-интегрального (ПИ) регулятора тока Iq и задания Uqzad, формируемого исходя из характеристик управляемого электродвигателя.
Также согласно предпочтительному варианту реализации способа, при формировании задания для ПИ-регулятора тока Iq, сигнал Iqzad принимают равным нулю, при этом сигнал задания Uqzad для ПИ - регулятора тока Id, формируют исходя из значения угла между выходным фазным напряжением и фазным током, а также значения номинального напряжения UH0M управляемого электродвигателя.
Краткое описание чертежей:
Сущность заявляемого способа поясняется, но не ограничивается 5 следующими графическими материалами.
фиг.1 - схема линейной электропогружной насосной установки;
фиг.2- блок-схема алгоритма управления синхронным электродвигателем на постоянных магнитах.
Описание осуществления изобретения:
w Описанный способ может быть реализован в системах управления синхронными электродвигателями различного назначения и конструкции.
В качестве одного из возможных вариантов реализации заявляемого способа, представлен пример системы управления синхронным вентильным электродвигателем линейной электропогружной насосной установки 1, 15 которая схематически отображена на (фиг.1) и содержит погружной линейный электродвигатель 2 (фиг. 1;2) с постоянными магнитами, связанный кабельной линией 3 с наземным блоком управления 4.
Управление электродвигателем реализовано программными методами управления, управляемым источником (5) напряжения UA,UB,Uc (фиг.2) 0 такими как IGBT транзисторы. Указанная система управления, также содержит, блок (6) преобразования фазных токов IA, 1в, 1с, блок (7) преобразования токов Ia, Ib— шибка! Источник ссылки не найденЛб, Iq, ПИ-регуляторы токаОшибка! Источник ссылки не найден. (8), и тока Id (9) формирования напряжений Uq, Ud, блок (10) задания скорости a>zad, блок (11) 25 формирования сигналов угла Q, и основных сигналов напряжений Uq0CH, UdocH, блок (12) формирования корректирующих сигналов UqKop, UdKop, блок (13) преобразования напряженийОшибка! Источник ссылки не найден., датчики токов (14). Заявляемый способ заключается в том, что в момент пуска линейного электродвигателя, в блоке (10) формируют задание для круговой частоты wZΆά напряжения. Исходя из заданного значения круговой частоты w/ad, в блоке (1 1), определяют угол допустимого отклонения магнитного поля статора от магнитного поля подвижной части Q, который ограничивают в приделах от 0 до 2p, а также формируют основные сигналы напряжений Uq0CH, Ud0CH.
На следующем этапе, посредством ПИ-регулятора (9) тока Id, определяют значение напряжения Ud с учетом сигнала обратной связи Uqoc из ПИ-регулятора (8) тока Iq и задания Uqzad, формируемого исходя из характеристик управляемого электродвигателя, которые содержат значения угла между выходным фазным напряжением и фазным током, а также значения номинального напряжения UHOM·
Далее, при корректировании в блоке (12) с учетом, сформированных блоками 8,9 сигналов Ud, Uq основные сигналы напряжений UqOcH,Ud0CH, и сигнал со значением угла Q из блока 11 поступают на вход блока (13) преобразования напряжения Ошибка! Источник ссылки не найден.. Полученные в результате преобрахования сигналы напряжения ua,ub поступают на блок преобразования напряжений ua,ub — шибка! Источник ссылки не найден.. Полученные сигналы фазных напряжений UA,UB,Uc являются заданием для управляемых источников напряжения (5), где посредством широтно-импульсной модуляции (ШИМ) формируются сигналы фазных напряжений, питания линейного электродвигателя насосной установки, посредством чего обеспечивают поступательное движение его подвижной части.
Далее, при поступательном движения, подвижной части линейного электродвигателя, по статорным обмоткам начинают протекать фазные токи IA, 1В, 1с которые в каждый момент времени фиксируются в блоке датчиков (14). Полученные сигналы с датчиков фиксации фазных токов 1А, 1в, 1с» поступают на входы блока преобразования фазных токов (6) где выполняется их преобразование в стационарную систему координат a-b. Преобразованные сигналы, подают на блок (7) преобразования координат a-b— »d-q и формирования сигналов Id, Iq, с учетом угла Q.
Сигнал Iq используют в качестве обратной связи в ПИ-регуляторе (8) тока Iq, где его вычитают из сформированного сигнала задания Iqzad, который принимают равным нулю, указанный ПИ-регулятор функционально связан с устройством управления, посредством которого задают значения Iqzad, Uqzad, а также значение круговой частоты &>zad.
Полученные на выходе блоков (8,9) сигналы UqKOp, UdKOp подают на блок (12) для корректировки основных сигналов напряжения Uq0CH, Ud0CH. Откорректированные в блоке (12) сигналы служат заданием для блоков формирования и преобразования напряжений Ud,Uq— ^ua,ub.
Таким образом, в процессе работы линейного погружного электродвигателя на постоянных магнитах производится регулировка реактивного токаОшибка! Источник ссылки не найден.. При этом также, выполняют регулирование активного тока Id, получая на выходе ПИ- регуляторов (8;9) сигналы напряжения Шкор, UqKOp обеспечивающие необходимое корректирование основных сигналов напряжений Шосн, Uq0CH» осуществляя, таким образом, прямое управление моментом электродвигателя.
При этом, в каждый момент времени, определяют положение магнитного поля статора относительно магнитного поля подвижной части электродвигателя посредством измерения сигналов фазных токов с их последующим преобразованием в блоках (6, 7, 8, 9), определяя изменения реактивного тока Iq относительно задания Iqzad, согласно которому формируют корректирующие сигналы напряжения UqKop, Шкор, которые приводят к величинам необходим для формирования заданного значения реактивного тока Iqza j.
Описанный способ управления позволяет оперативно увеличивать и уменьшать напряжения и токи СД при набросах и сбросах нагрузки.
Реализация заявленного изобретения способствует достижению заявленного технического результата, обеспечивая повышение энергоэффективности электродвигателя, а также увеличение быстродействия системы управления за счет минимизации настроек, посредством исключения сложных вычислений параметров электродвигателя. Указанный способ может быть использован для управления электродвигателями различных типов с учетом изменения сигналов задания ПИ-регуляторов.

Claims

Формула
1. Способ управления синхронным электродвигателем на постоянных магнитах согласно которому задаются величинами, характеризирующими подаваемое напряжение и фазу, измеряют фазные токи с преобразованием полученных значений в неподвижную систему координат d-q исходя из которых формируют сигналы напряжений Ud;Uq, посредством преобразования сигналов напряжения Ud;Uq— >UaUp формируют сигналы задания фазного напряжения UA,UB,Uc, которые подают на блок формирования импульсов управляемых источников напряжения, отличающийся тем, что определяют изменения реактивного тока Iq относительно задания Iqzad, согласно которому формируют корректирующие сигналы напряжения UqKOp., Шкор, которые приводят к величинам необходим для формирования заданного значения реактивного тока Iqzad.
2. Способ управления синхронным электродвигателем на постоянных магнитах по п.1 , отличается тем, что значение сигнала напряжения Шкор формируют с учетом сигнала обратной связи Uqoc из ПИ-регулятора тока Iq и задания Uqzad, формируемого исходя из характеристик управляемого электродвигателя.
3. Способ управления синхронным электродвигателем на постоянных магнитах по п.1 отличается тем, что при формировании задания для ПИ- регулятора тока Iq, сигнал Iqzad принимают равным нулю, при этом сигнал задания Uqzad для ПИ - регулятора тока Id формируют исходя из значения угла между выходным фазным напряжением и фазным током, а также значения номинального напряжения UH0M управляемого электродвигателя.
PCT/UA2019/000031 2018-03-20 2019-03-14 Способ управления синхронным электродвигателем на постоянных магнитах WO2019182547A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAA201802830 2018-03-20
UAA201802830 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019182547A1 true WO2019182547A1 (ru) 2019-09-26

Family

ID=66089589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/UA2019/000031 WO2019182547A1 (ru) 2018-03-20 2019-03-14 Способ управления синхронным электродвигателем на постоянных магнитах

Country Status (3)

Country Link
US (1) US10594243B2 (ru)
RU (1) RU2683586C1 (ru)
WO (1) WO2019182547A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724603C1 (ru) * 2019-09-16 2020-06-25 Акционерное общество "Чебоксарский электроаппаратный завод" Способ управления синхронным электродвигателем
CN113162365B (zh) * 2021-05-11 2023-10-13 沈阳工业大学 双边磁通切换型磁悬浮永磁直线同步电动机及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636784A1 (de) * 1995-09-11 1997-03-13 Toshiba Kawasaki Kk Steuerungsvorrichtung für einen Permanentmagnet-Synchronmotor
WO2008038338A1 (fr) * 2006-09-26 2008-04-03 Mitsubishi Electric Corporation Dispositif de commande de vecteur pour moteur de synchronisation à aimant permanent
WO2008047438A1 (fr) * 2006-10-19 2008-04-24 Mitsubishi Electric Corporation Contrôleur vectoriel d'un moteur synchrone à aimant permanent
US20170126160A1 (en) * 2015-11-03 2017-05-04 Baker Hughes Incorporated Systems and Methods for Controlling a Permanent Magnet Synchronous Motor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370098A (en) * 1980-10-20 1983-01-25 Esco Manufacturing Company Method and apparatus for monitoring and controlling on line dynamic operating conditions
FI112735B (fi) * 1997-12-03 2003-12-31 Kone Corp Menetelmä synkronisen kestomagneettimoottorin ohjaamiseksi
US6392418B1 (en) * 1999-09-16 2002-05-21 Delphi Technologies, Inc. Torque current comparison for current reasonableness diagnostics in a permanent magnet electric machine
RU2397601C1 (ru) * 2006-09-26 2010-08-20 Мицубиси Электрик Корпорейшн Устройство векторного управления двигателя с синхронизацией на постоянном магните
KR101562419B1 (ko) * 2011-07-05 2015-10-22 엘에스산전 주식회사 매입형 영구자석 동기 전동기의 구동장치
CN103733504B (zh) * 2011-08-15 2016-08-17 株式会社明电舍 Pm马达的无位置传感器控制装置
US10158314B2 (en) * 2013-01-16 2018-12-18 Rockwell Automation Technologies, Inc. Feedforward control of motor drives with output sinewave filter
CN106031024B (zh) * 2014-02-10 2018-07-03 株式会社日立产机系统 电动机电力转换装置
US10020766B2 (en) * 2016-11-15 2018-07-10 Rockwell Automation Technologies, Inc. Current control of motor drives with output sinewave filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636784A1 (de) * 1995-09-11 1997-03-13 Toshiba Kawasaki Kk Steuerungsvorrichtung für einen Permanentmagnet-Synchronmotor
WO2008038338A1 (fr) * 2006-09-26 2008-04-03 Mitsubishi Electric Corporation Dispositif de commande de vecteur pour moteur de synchronisation à aimant permanent
WO2008047438A1 (fr) * 2006-10-19 2008-04-24 Mitsubishi Electric Corporation Contrôleur vectoriel d'un moteur synchrone à aimant permanent
EP2075906A1 (en) * 2006-10-19 2009-07-01 Mitsubishi Electric Corporation Vector controller of permanent magnet synchronous motor
US20170126160A1 (en) * 2015-11-03 2017-05-04 Baker Hughes Incorporated Systems and Methods for Controlling a Permanent Magnet Synchronous Motor

Also Published As

Publication number Publication date
US10594243B2 (en) 2020-03-17
RU2683586C1 (ru) 2019-03-29
US20190296673A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
US9998059B2 (en) Motor driving apparatus
CN102611370A (zh) 一种永磁同步电机的正弦调制控制方法及其控制电路
US7208908B2 (en) Apparatus and method to control torque and voltage of an AC machine
CN107241046B (zh) 一种无位置传感器的bldc电机的启动方法
US9531317B2 (en) Power conversion apparatus, power conversion method, and motor system
EP2802072A1 (en) Power conversion device
KR20080105335A (ko) 모터 드라이버 시스템 및 모터 드라이버 제어방법
JP2021136811A (ja) モータ駆動装置およびそれを用いた空気調和機の室外機、モータ駆動制御方法
CN104038115A (zh) 单绕组直流无刷电机的正弦波电流驱动系统及其控制方法
EP3876415A1 (en) Electric motor control device
JP2019532609A (ja) 永久磁石同期電動機用の閉ループ磁束弱化
RU2683586C1 (ru) Способ управления синхронным электродвигателем на постоянных магнитах
JP2019083672A (ja) インバータ並びにモータの駆動制御方法
CN104038114A (zh) 单绕组直流无刷电机的正弦波电压驱动系统及其控制方法
CN109546909B (zh) 一种交流永磁同步电机转速追踪启动方法
JP2010088238A (ja) 同期電動機制御装置とその制御方法
JP3788925B2 (ja) 永久磁石型同期発電機を用いた風力発電装置とその始動方法
JP2019146360A (ja) インバータ制御装置
Bondre et al. Study of control techniques for torque ripple reduction in BLDC motor
JP2005039889A (ja) 電動機の制御方法
JP7042568B2 (ja) モータ制御装置及びモータ制御方法
JP6951945B2 (ja) モータ制御装置及びモータ制御方法
KR102331849B1 (ko) Bldc 모터 제어장치 및 방법
Kazakbaev et al. Analysis of application of magnetic flux controller with phase-locked loop for synchronous reluctance drive
JP2016036195A (ja) モータ制御装置及び冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771528

Country of ref document: EP

Kind code of ref document: A1